

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CC78K0R Ver. 1.00
C Compiler

Operation

User’s Manual

Target Device
 78K0R Microcontrollers

Printed in Japan

Document No. U17838EJ1V0UM00 (1st edition)
Date Published July 2006 CP(K)

© NEC Electronics Corporation 2006

User’s Manual U17838EJ1V0UM 2

[MEMO]

User’s Manual U17838EJ1V0UM 3

Windows and WindowsXP are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.
PC/AT is a trademark of International Business Machines Corporation.
i386 is a trademark of Intel Corporation.

The information in this document is current as of July, 2006. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U17838EJ1V0UM 4

[MEMO]

User’s Manual U17838EJ1V0UM 5

INTRODUCTION

The purpose of this manual is to enable complete understanding of the functions and operation of the

CC78K0R (78K0R Microcontroller C Compiler).

This manual does not explain how to write CC78K0R source programs. Therefore, before reading this

manual, please read “CC78K0R C Compiler Language User’s Manual (U17837E)” (hereafter called the

“Language manual”).

[Target Devices]

Software for 78K0R microcontrollers can be developed by using the CC78K0R. To use this software, the

RA78K0R (78K0R Microcontroller Assembler Package) (sold separately) and the target model’s device file

are required.

[Target Readers]

This manual is written for users who have the knowledge gained from reading through the user’s manual

for the device once and have software programming experience. However, since knowledge about C

compilers and the C language is not particularly needed, first-time users of C compilers can use this

manual.

[Organization]

The organization of this manual is described below.

CHAPTER 1 OVERVIEW

This chapter describes the role and position of the CC78K0R in microcontroller development.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

This chapter describes how to install the CC78K0R, the file names of the supplied programs, and the

operating environment for programs.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

This chapter uses sample programs to describe how to run the CC78K0R and presents examples

showing the processes from compiling to linking.

CHAPTER 4 CC78K0R FUNCTIONS

This chapter describes optimization methods and ROMization functions in the CC78K0R.

CHAPTER 5 COMPILER OPTIONS

This chapter describes the functions of the compiler options, specification methods, and

prioritization.

CHAPTER 6 C COMPILER OUTPUT FILES

This chapter describes the output of various list files output by the CC78K0R.

CHAPTER 7 USING C COMPILER

This chapter introduces techniques to aid in the skillful use of the CC78K0R.

User’s Manual U17838EJ1V0UM 6

CHAPTER 8 STARTUP ROUTINES

The CC78K0R provides startup routines as samples. This chapter describes the uses of the startup

routines and provides suggestions on how to improve them.

CHAPTER 9 ERROR MESSAGES

This chapter describes the error messages output by the CC78K0R.

APPENDIXES

The appendices provide and a sample programs, a list of the use-related cautions, a command

options, and an index.

[How to Read This Manual]

First, those who want to see how to actually use CC78K0R, read CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING.

Users with a general knowledge of C compilers or users who have read the Language manual can skip

CHAPTER 1 OVERVIEW.

[Related Documents]

The table below shows the documents (such as user’s manuals) related to this manual. The related

documents indicated in this publication may include preliminary versions. However, preliminary versions

are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation This document CC78K0R Ver. 1.00 C Compiler

Language U17837E

Operation U17836E RA78K0R Ver. 1.00 Assembler Package

Language U17835E

SM+ System Simulator Operation U18010E

PM+ Ver. 6.20 U17990E

ID78K0R-QB Ver. 3.20 Integrated Debugger Operation U17839E

User’s Manual U17838EJ1V0UM 7

[Conventions]

The meanings of the symbols used in this manual are explained.

RTOS: Real-time OS for 78K0R Microcontroller RX78K0R

…: Repeat in the same format.

[]: Characters enclosed in these brackets can be omitted.

 : Characters enclosed in these brackets are as shown (character string).

“ ”: Characters enclosed in these brackets are as shown (character string).

‘ ’: Characters enclosed in these brackets are as shown (character string).

Boldface: Characters in bold face are as shown (character string).

_ : Underlining at important locations or in examples is the input character sequence.

∆ : At least one space

 : Indicates an omission in a program description

() : Characters between parentheses are as shown (character string).

/ : Delimiter

\: Backslash

[File Name Conventions]

The conventions for specifying the input files that are designated in the command line are shown below.

(1) Specifying disk file names

[drive-name] [\] [[path-name]...] primary-name [.[file-type]]

 <1> <2> <3> <4> <5>

<1> Specifies the name of the drive (A: to Z:) storing the file.

<2> Specifies the name of the root directory.

<3> Specify the subdirectory name.

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<4> Primary name

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<5> File type

 Specify a character string of a length allowed by the OS.

 Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Example: C:\Program Files\NEC Electronics Tools\CC78K0R\V1.00\smp78k0r\cc78k0r

Remarks 1. A space cannot be specified before and after ‘:’, ‘.’, or ‘\’.

 2. Uppercase and lowercase letters are not distinguished (not case-sensitive).

.
.
.

User’s Manual U17838EJ1V0UM 8

(2) Specifying device file names

The following logical devices are available.

Logical Device Description

CON Output to the console.

PRN Output to the printer.

AUX Output to an auxiliary output device.

NUL Dummy output (nothing is output.)

User’s Manual U17838EJ1V0UM 9

 CONTENTS

CHAPTER 1 OVERVIEW ... 13
1.1 Role of CC78K0R ... 13
1.2 Development Procedure Using CC78K0R ... 15

1.2.1 Using editor to create source module files ... 16
1.2.2 C compiler ... 17
1.2.3 Assembler ... 18
1.2.4 Linker ... 19
1.2.5 Object converter ... 20
1.2.6 Librarian ... 21
1.2.7 Debugger ... 22
1.2.8 System simulator ... 23
1.2.9 PM+ ... 24

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION ... 25
2.1 Host Machines and Supply Medium ... 25
2.2 Installation ... 26
2.3 Installation of Device Files ... 27
2.4 Folder Configuration ... 28
2.5 File Organization ... 29

2.5.1 Library files ... 30
2.6 Uninstallation ... 33
2.7 Environment Settings ... 34

2.7.1 Host machine ... 34
2.7.2 Environment variables ... 34

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING ... 35
3.1 PM+ ... 35

3.1.1 Position of cc78k0rp.dll (tools DLL) ... 35
3.1.2 Execution environment ... 35
3.1.3 CC78K0R option setting menu ... 36
3.1.4 Description of each part of [Compiler Options] dialog box ... 41

3.2 Procedure (When Not Using Self Rewrite Mode) ... 63
3.2.1 MAKE from PM+ ... 63
3.2.2 Compiling to linking in command line (for command prompt) ... 66

3.3 Procedure (When Using Self Rewrite Mode) ... 69
3.3.1 Compiling to linking via PM+ ... 69
3.3.2 Compiling to linking in command line (for command prompt) ... 76

3.4 I/O Files of C Compiler ... 79
3.5 Execution Start and End Messages ... 81

3.5.1 Execution start message ... 81
3.5.2 Execution end message ... 81

CHAPTER 4 CC78K0R FUNCTIONS ... 82
4.1 Optimization Method ... 82
4.2 ROMization Function ... 84

4.2.1 Linking ... 84

CHAPTER 5 COMPILER OPTIONS ... 85
5.1 Specifying Compiler Options ... 85
5.2 Prioritization ... 86
5.3 Types ... 88
5.4 Descriptions ... 90

CHAPTER 6 C COMPILER OUTPUT FILES ... 135
6.1 Object Module File ... 135

10 User’s Manual U17838EJ1V0UM

6.2 Assembler Source Module File ... 136
6.3 Error List File ... 140

6.3.1 Error list file with C source ... 140
6.3.2 Error list file with error message only ... 142

6.4 Preprocess List File ... 143
6.5 Cross-reference List File ... 145

CHAPTER 7 USING C COMPILER ... 147
7.1 Efficient Operation (EXIT Status Function) ... 147
7.2 Setting Up Development Environment (Environment Variables) ... 148
7.3 Interrupting Compilation ... 149

CHAPTER 8 STARTUP ROUTINES ... 150
8.1 File Organization ... 150

8.1.1 “bat” folder contents ... 151
8.1.2 “src” folder contents ... 152
8.1.3 “lib” folder contents ... 153

8.2 Batch File Description ... 154
8.2.1 Batch files for creating startup routines ... 154

8.3 Startup Routines ... 155
8.3.1 Overview of startup routines ... 155
8.3.2 Description of sample program (cstart.asm) ... 157
8.3.3 Revising startup routines ... 164

8.4 ROMization Processing in Startup Module for Flash Area ... 167

CHAPTER 9 ERROR MESSAGES ... 169
9.1 Error Message Format ... 169
9.2 Types of Error Messages ... 170
9.3 List of Error Messages ... 171

9.3.1 Error messages for a command line ... 172
9.3.2 Error messages for an internal error and memory ... 175
9.3.3 Error messages for a character ... 177
9.3.4 Error messages for configuration element ... 178
9.3.5 Error messages for conversion ... 181
9.3.6 Error messages for an expression ... 183
9.3.7 Error messages for a statement ... 187
9.3.8 Error messages for a declaration and function definition ... 189
9.3.9 Error messages for a preprocessing directive ... 195
9.3.10 Error messages for fatal file I/O and running on an illegal operating system ... 200

9.4 List of PM+ Error Messages ... 202

APPENDIX A SAMPLE PROGRAMS ... 206
A.1 C Source Module File ... 206
A.2 Execution Example ... 207
A.3 Output List ... 208

A.3.1 Assembler source module file ... 208
A.3.2 Preprocess list file ... 212
A.3.3 Cross-reference list file ... 213
A.3.4 Error list file ... 214

APPENDIX B LIST OF USE-RELATED CAUTIONS ... 215

APPENDIX C COMMAND OPTIONS ... 226

INDEX ... 230

User’s Manual U17838EJ1V0UM 11

 LIST OF FIGURES

Figure No. Title , Page

1-1 Development Process ... 13
1-2 Software Development Process ... 14
1-3 Program Development Procedure Using CC78K0R ... 15
1-4 Creating Source Module Files ... 16
1-5 C Compiler Function ... 17
1-6 Assembler Function ... 18
1-7 Linker Function ... 19
1-8 Object Converter Function ... 20
1-9 Librarian Function ... 21
1-10 Debugger Function ... 22
1-11 System Simulator Function ... 23
1-12 PM+ Function ... 24
2-1 Folder Configuration ... 28
3-1 [Compiler Options] Dialog Box ... 36
3-2 [Browse for Folder] Dialog Box ... 37
3-3 [ParameterFile] Dialog Box ... 38
3-4 [Edit Option] Dialog Box ... 39
3-5 [Add Option] Dialog Box ... 39
3-6 [Compiler Options] Dialog Box ... 41
3-7 [Compiler Options] Dialog Box (When [Preprocessor] Tab Is Selected) ... 43
3-8 [Compiler Options] Dialog Box (When [Memory Model] Tab Is Selected) ... 45
3-9 [Compiler Options] Dialog Box (When [Data Assign] Tab Is Selected) ... 46
3-10 [Compiler Options] Dialog Box (When [Integrated Recommendable Optimizing Option] Is Selected) ... 47
3-11 [Compiler Options] Dialog Box (When [Char Expression Behavior, Automatic Allocation] Is Selected) ... 48
3-12 [Compiler Options] Dialog Box (When [Optimize Object Size by Calling Library] Is Selected) ... 49
3-13 [Compiler Options] Dialog Box (When [Others] Is Selected) ... 50
3-14 [Compiler Options] Dialog Box (When [Debug] Tab Is Selected) ... 51
3-15 [Compiler Options] Dialog Box (When [Object Module File, Assembler Source Module File] Is Selected) ...

52
3-16 [Assembler Options] Dialog Box ... 53
3-17 [Compiler Options] Dialog Box (When [Error List File, Cross-reference List File] Is Selected) ... 54
3-18 [Compiler Options] Dialog Box (When [Preprocess List File, List Format] Is Selected) ... 56
3-19 [Compiler Options] Dialog Box (When [Extend] Tab Is Selected) ... 58
3-20 [Compiler Options] Dialog Box (When [Others] Tab Is Selected) ... 59
3-21 [Compiler Options] Dialog Box (When [Startup Routine] Tab Is Selected) ... 61
3-22 [Compiler Options] Dialog Box (When [Optimize] Tab Is Selected) ... 64
3-23 [Linker Options] Dialog Box ... 65
3-24 C Compiler I/O Files ... 80
5-1 [Compiler Options] Dialog Box ... 90

12 User’s Manual U17838EJ1V0UM

 LIST OF TABLES

Table No. Title , Page

2-1 Supply Medium and Recording Formats for CC78K0R ... 25
2-2 File Organization ... 29
2-3 Library Files ... 30
2-4 Environment Variables ... 34
3-1 C Compiler I/O Files ... 79
4-1 Optimization Methods ... 82
5-1 Prioritization of Compiler Options ... 86
5-2 List of Compiler Options ... 88
7-1 EXIT Status ... 147
7-2 Environment Variables ... 148
8-1 “bat” Folder Contents ... 151
8-2 “src” Folder Contents ... 152
8-3 “lib” Folder Contents ... 153
8-4 ROM Area Section for Initialization Data ... 167
8-5 RAM Area Section for Copy Destination ... 167
9-1 Error Messages for Command Line <from 0001> ... 172
9-2 Error Messages for Internal Error and Memory <from 0101> ... 175
9-3 Error Messages for Character <from 0201> ... 177
9-4 Error Messages for Configuration Element <from 0301> ... 178
9-5 Error Messages for Conversion <from 0401> ... 181
9-6 Error Messages for Expression <from 0501> ... 183
9-7 Error Messages for Statement <from 0601> ... 187
9-8 Error Messages for Declaration and Function Definition <from 0701> ... 189
9-9 Error Messages for Preprocessing Directive <from 0801> ... 195
9-10 Error Messages for Fatal File I/O and Running on an Illegal Operating System <from 0901> ... 200
9-11 PM+ Error Messages ... 202
B-1 List of Use-related Cautions ... 215
C-1 Compiler Options ... 226

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 13

CHAPTER 1 OVERVIEW

The 78K0R Series C compiler CC78K0R translates C source programs written in ANSI-CNote or the C language

for the 78K0R Series into the machine language for the 78K0R Series.

The CC78K0R can be started up on Windows® by using PM+ supplied with the assembler package for the

78K0R Series. When PM+ is not used, the compiler is started up on the command prompt.

Note ANSI-C is the C language that conforms to the standard set by the American National Standards Institute.

1.1 Role of CC78K0R

The position of CC78K0R in product development is shown below.

Figure 1-1 Development Process

Product Creation

System Evaluation

CC78K0R
C CompilerErrors

Bugs
Defect

Product Planning

System Design

Hardware Design Software Design

Production Coding

Compile/
Assemble

DebuggingInspection

14 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

The software development process is shown below.

Figure 1-2 Software Development Process

System Evaluation

OK?

Debug

File Conversion

Link

Errors?

Compile

Edit Source Modules

Coding

Create Flow Chart

Write Program Specification

Software Development

NO

YES

Depends on 78K0R Series C language or ANSI-C

Use the editor to create the C source module files.

Use the hardware debugger (in-circuit emulator,
etc.) to verify the operation.

YES

NO

Link to the reference library and function library.

Convert the file to the hexadecimal format.

...

...

...

...

...

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 15

1.2 Development Procedure Using CC78K0R

The development procedure using CC78K0R is shown below.

Figure 1-3 Program Development Procedure Using CC78K0R

In-circuit
emulator

Flash memory
programmer

PROM programmer

List converter

Real-time OS

C source module file

Include file

Object module file

Library file

Load module file

USB

Absolute
Assemble list
file

Library file

Hexadecimal
object module file

Assembler
list file

C compiler

Assembler

Librarian

Linker

System simulator

Object converter Integrated Debugger

Assembler source
module file

Assembler source
module file

16 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

1.2.1 Using editor to create source module files

1 program is divided into several functional modules.

1 module is the coding unit and becomes the input unit to the C compiler. A module that is the input unit to the C

compiler is called a C source module.

After each C source module is coded, use the editor to save the source module to a file. A file created in this way

is called a C source module file.

The C source module files become the CC78K0R input files.

Figure 1-4 Creating Source Module Files

Source Module File

Write to File
 (Editor)

Source Module

Source Module

Program

Source Module

Source Module

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 17

1.2.2 C compiler

The C compiler translates C language into a machine language, taking a C source module file as input.

If it finds a description error in the C source module file, the C compiler outputs a compilation error. If no

compilation error occurs, an object module file is output.

In addition, an assembler source module file can also be output so that the program can be modified and

checked at the assembly language level. To output an assembler source module file, specify the -a option or -sa

option when compiling (for details of options, refer to "CHAPTER 5 COMPILER OPTIONS".).

Figure 1-5 C Compiler Function

Note Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed

from the following Website.

http://www.necel.com/micro/ods/eng/index.html

Assembler source module file

C source module file

C Compiler

Device fileNote

Object module file

http://www.necel.com/micro/ods/eng/index.html

18 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

1.2.3 Assembler

Assembly is executed by using the assembler included in the RA78K0R assembler package (sold separately).

The assembler inputs an assembler source module file and translates the source module file from the assembly

language to a machine language. If a description error is found in the assembler source module, an assembly

error is output. If no assembly error occurs, an object module file containing machine language information and

location information that indicates to which address of memory each machine language code is to be allocated is

output. In addition, information during assembly is also output as an assemble list file.

Figure 1-6 Assembler Function

Note Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed

from the following Website.

http://www.necel.com/micro/ods/eng/index.html

Asemmbler source module file

Assembler

Device fileNote

Assemble list fileObject module file

http://www.necel.com/micro/ods/eng/index.html

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 19

1.2.4 Linker

Linking is performed by using the linker included in the RA78K0R Assembler Package (sold separately).

The linker inputs multiple object module files output by the C compiler or object module files output by the

assembler, and links them to the library files (even if there is 1 object module, linking must be performed).

1 load module file is output.

In this case, the linker determines the location addresses of relocatable segments in the input module. This

determines the values of relocatable symbols and external reference symbols, and embeds the correct values in

the load module file. The linker outputs the linking information as a link map file.

Figure 1-7 Linker Function

Note Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed

from the following Website.

http://www.necel.com/micro/ods/eng/index.html

Link map fileLoad module file

Multiple object module files

. . .

Library file

Linker

Device fileNote

http://www.necel.com/micro/ods/eng/index.html

20 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

1.2.5 Object converter

The object converter uses the converter included in the RA78K0R Assembler Package (sold separately).

The object converter inputs a load module file output by the linker and converts it into an Intel HEX format object

module file. The object converter also outputs information upon file conversion as a symbol table file.

Figure 1-8 Object Converter Function

Note Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed

from the following Website.

http://www.necel.com/micro/ods/eng/index.html

Hexadecimal object module file Symbol table file

Load module file

Object Converter

Device fileNote

http://www.necel.com/micro/ods/eng/index.html

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 21

1.2.6 Librarian

Clearly defined modules having a general interface are formed into a library for convenience. By creating the

library, many object modules form 1 file and become easy to handle.

The linker has functions to extract only the needed modules from the library file and link them. Therefore, if

multiple modules are registered in 1 library file, the names of the module files needed when linking no longer have

to be individually specified.

The librarian uses the librarian included in the RA78K0R Assembler Package (sold separately).

Figure 1-9 Librarian Function

Note Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed

from the following Website.

http://www.necel.com/micro/ods/eng/index.html

Object module files output by compiler

. . .

Object module file output by assembler

Librarian

Device fileNote

Library file

http://www.necel.com/micro/ods/eng/index.html

22 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

1.2.7 Debugger

Source debugging using a GUI becomes possible by loading the load module files output by the linker into the IE

(in-circuit emulator) by using the ID78K0R-QB (78K0R Series integrated debugger).

To debug, the -g option specifying the output of debugging information is specified when the target source

program is compiled (-g is the default option). By making this specification, the symbols and line numbers needed

in debugging are added to the object module. For information on the compiler options, see "CHAPTER 5

COMPILER OPTIONS".

The debugger and the IE are packaged separately (sold separately).

Figure 1-10 Debugger Function

- Object information
- Debugging information

Integrated Debugger

In-circuit Emulator

CHAPTER 1 OVERVIEW

User’s Manual U17838EJ1V0UM 23

1.2.8 System simulator

Source debugging using a GUI becomes possible by downloading the load module files output from the linker by

using the SM+ for 78K0R (78K0R Series system simulator).

SM+ for 78K0R is software that simulates a load module file on the host machine, in the same manner as

operating with the ID78K0R-QB.

In addition to simulating machine instructions in the SM+ for 78K0R, the on-chip peripherals for the devices and

the interrupts can be simulated. Since external parts and procedures are provided to construct dummy target

systems, the programs including the operation of the target system are debugged at an early stage independent of

hardware development.

Figure 1-11 System Simulator Function

- Object information
- Debugging information

Load module file

System Simulator

24 User’s Manual U17838EJ1V0UM

CHAPTER 1 OVERVIEW

1.2.9 PM+

PM+ provides an integrated development environment that allows users to develop programs efficiently. Using

PM+, a series of works required upon user program development, such as starting the editor, builder and

debugger, can be performed.

Figure 1-12 PM+ Function

Yes

No

No

Yes

No

Yes

Product planning

System design

Hardware design

Production

Inspection

Error?

System debugging

System evaluation

Commercialization

Integrated debugger

System simulator

 Assembler
 Compiler

 Linker

Editor

Real-time OSSoftware design

Coding

Compiling/
assembling

Error?

Debugging

Bug?

PM+

Edit

Build Debugging

Object Converter

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U17838EJ1V0UM 25

CHAPTER 2 PRODUCT OVERVIEW AND
INSTALLATION

This chapter explains the procedure to install the files stored in the supply media of the CC78K0R to the user

development environment (host machine) and the procedure to uninstall them from the user development

environment.

2.1 Host Machines and Supply Medium

The CC78K0R supports the development environments listed below.

Note PM+ is required if the CC78K0R is used on Windows. The CC78K0R can be started up from the

command prompt if PM+ is not used.

Table 2-1 Supply Medium and Recording Formats for CC78K0R

Host Machine OS Supply Medium

IBM PC/ATTM compatibles Windows (2000/XP)Note CD-ROM

26 User’s Manual U17838EJ1V0UM

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

2.2 Installation

The procedure for installing to the host machine the files provided in the CC78K0R's supply media is described

below.

(1) Starting up Windows

Power on the host machine and peripherals and start Windows.

(2) Set supply media

Set the CC78K0R's supply media in the appropriate drive (CD-ROM drive) of the host machine. The setup

programs will start automatically. Perform the installation by following the messages displayed in the

monitor screen.

Caution If the setup program does not start automatically, execute INSTALL.EXE in the root.

(3) Confirmation of files

Using Windows Explorer, etc., check that the files contained in the CC78K0R's supply media have been

installed to the host machine.

For the details of each folder, refer to "2.4 Folder Configuration".

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U17838EJ1V0UM 27

2.3 Installation of Device Files

Obtain the device file by downloading it from the Online Delivery Service (ODS), which can be accessed from the

following Website.

http://www.necel.com/micro/ods/eng/index.html

Use the device file installer to install the device files. The device file installer is installed at the same time as the

CC78K0R.

http://www.necel.com/micro/ods/eng/index.html

28 User’s Manual U17838EJ1V0UM

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

2.4 Folder Configuration

The standard folder displayed during installation is "Program Files\NEC Electronics Tools" of the Windows

system. The configuration under the install folder is as follows. Note that the drive and install folder can be

changed during installation. When performing make operation with PM+, perform installation of tools (CC78K0R,

RA78K0R) to the same drive and folder.

The descriptions in this manual assume installation to the standard folder with "Program Files\NEC Electronics

Tools", which is the default program name, according to the setup program default directions.

Figure 2-1 Folder Configuration

Program Files\NEC Electronics Tools\

CC78K0R\Vx.xx\bin\

CC78K0R\Vx.xx\smp78k0r\CC78K0R\

CC78K0R\Vx.xx\inc78k0r\

CC78K0R\Vx.xx\lib78k0r\

CC78K0R\Vx.xx\src\cc78k0r\

bat\

src\

lib\

CC78K0R\Vx.xx\hlp\

Folder storing library files, object files for startup routines

Folder storing C Compiler

Folder storing header files

Folder storing batch files

Folder storing source files

Folder storing library files, object files for startup routines

Folder storing on-line help file

Folder storing files for verifying installation

CC78K0R\Vx.xx\doc\ Folder storing user's manual and supplementary explanations

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U17838EJ1V0UM 29

2.5 File Organization

The table below lists the contents of each folder.

The folder structure and file organization are the ones obtained when the installer was used.

 Remark *: Alphanumeric symbols

Table 2-2 File Organization

Folder Name File Name Description

CC78K0R\Vx.xx\bin\ cc78k0r.exe Compiler

cc78k0r.msg Message file

*.hlp Help message file

*.dll DLL files

CC78K0R\Vx.xx\hlp\ cc78k0rp.chm On-line help file

CC78K0R\Vx.xx\inc78k0r\ *.hNote 1 Header files for standard library

CC78K0R\Vx.xx\lib78k0r\
(For link)Note2, 3

cl0r*.lib Libraries (runtime and standard libraries)

s0r*.rel Object files for startup routines

CC78K0R\Vx.xx\smp78k0r\CC78K0R\ prime.c Source program for verifying installation

sample.bat Batch files for verifying installation

readme.doc Explanation of files for verifying installation

lk78k0r.dr Link directive file for reference

CC78K0R\Vx.xx\src\cc78k0r\bat\Note4 mkstup.bat Assemble batch files for startup routines

reprom.bat For updating rom.asm

*.batNote5 Batch files for updating standard functions
(partial)

CC78K0R\Vx.xx\src\cc78k0r\lib\
(For modifications)Note2

cl0r*.lib Libraries (runtime and standard libraries)

s0r*.rel Object files for startup routines

CC78K0R\Vx.xx\src\cc78k0r\src\ cstart*.asmNote 4 Source files for startup routines

rom.asm Source files for ROMization routine

*.asmNote 5 Source files for standard functions (partial)

30 User’s Manual U17838EJ1V0UM

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

Note 1 Refer to CC78K0R C Compiler Language User's Manual.

Note 2 To modify the startup routine, modify the source file below the CC78K0R\Vx.xx\src\cc78k0r\lib folder.

The file assembled with a batch file is stored in the CC78K0R\Vx.xx\src\cc78k0r\lib folder, so copy

the file to the CC78K0R\Vx.xx\lib78k0r folder and link it with the user program.

Note 3 Refer to "2.5.1 Library files".

Note 4 The batch files stored in this folder cannot be used with PM+. To use these batch files, execute them

via command prompt. Use these batch files only when the source files must be modified.

Note 5 Refer to the contents in Table 8-1.

Note 6 * = B | E | N (B: when the boot area is specified, E: when the flash area is specified, N: when the

standard libraries are not used)

Note 7 Refer to the contents in Table 8-2.

2.5.1 Library files

The library file consist of standard libraries, runtime libraries, and startup routines.

The table below lists the folder contents.

Table 2-3 Library Files

Folder
Name

File Name
File Role

Normal Boot Area Flash Area

lib78k0r\ cl0rm.lib
cl0rl.lib
cl0rmf.lib
cl0rlf.lib
cl0rxm.libNote3

cl0rxl.libNote3

cl0rm.lib
cl0rl.lib
cl0rmf.lib
cl0rlf.lib
cl0rxm.libNote3

cl0rxl.libNote3

cl0rme.lib
cl0rle.lib
cl0rmfe.lib
cl0rlfe.lib
cl0rxme.libNote3

cl0rxle.libNote3

Library (runtime and standard
libraries)Note 1

s0rm.rel
s0rml.rel
s0rl.rel
s0rll.rel

s0rmb.rel
s0rmlb.rel
s0rlb.rel
s0rllb.rel

s0rme.rel
s0rmle.rel
s0rle.rel
s0rlle.rel

Object files for startup routines
Note 2

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U17838EJ1V0UM 31

Note 1 The rule for naming libraries is given below.

<mul>

None: Multiplier not used

x: Multiplier used

<model>

m: Small model or medium model

l: Compact model or large model

<float>

None: Standard library and runtime library (floating point library is not used)

f: For floating point library

<flash>

None: For normal/boot area

e: For flash memory area

Note 2 The rule for naming startup routines is given below.

<model>

m: Medium model (can also be used for specifying the small model)

l: Large model (can also be used for specifying the compact model)

<lib>

None: When standard library functions are not used

l: When standard library functions are used

<flash>

None: Normal

b: For boot area

e: For flash memory area

lib78k0r\cl0r<mul><model><float><flash>.lib

lib78k0r\s0r<model><lib><flash>.rel

32 User’s Manual U17838EJ1V0UM

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

Note 3 The CC78K0R libraries are compatible with the following multiplier devices.

However, if an interrupt occurs while computation is in progress, some of the computation results are

disabled from being interrupted so that they are not corrupted.

Refer to the CC78K0R C Compiler Language User's Manual in regards to library functions and

interrupt disable times.

[Special function register]

<Register configuration>

Function Reserved Words Addresses Size

Multiplication input data A MULA FFFF0H 16bit

Multiplication input data B MULB FFFF2H 16bit

Multiplication result data MULOH, MULOL FFFF4H, FFF6H 16bit x 2

<Multiplier A> <Multiplier B> <Product>

MULA (bits 15 to 0) * MULB (bits 15 to 0) = MULOH (upper) (bits 15 to 0), MULOL (lower) (bits 15 to 0)

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U17838EJ1V0UM 33

2.6 Uninstallation

The procedure for uninstalling the files installed to the host machine is described below.

(1) Windows startup

Power on the host machine and peripherals and start Windows.

(2) Deletion of CC78K0R

Open "Add/Remove Programs" or "Add or Remove Programs" on the Control Panel and select "NEC EL

CC78K0R Vx.xx".

(3) Confirmation of files

Using Windows Explorer, etc., check that the files installed to the host machine have been uninstalled.

For the details of each folder, refer to "2.4 Folder Configuration".

34 User’s Manual U17838EJ1V0UM

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

2.7 Environment Settings

2.7.1 Host machine

The CC78K0R handles 32 bits and runs on models equipped with the i386™ CPU or later versions.

- Windows 2000/XP

- Command prompt in Windows 2000/XP

2.7.2 Environment variables

Set the following environment variables for command prompt operation.

[Specification Example]

Table 2-4 Environment Variables

Environment Variable Description

PATH Specifies the folder where the compiler is located.

TMP Specifies the folder where temporary files are created.

LANG78K Specifies the kanji code (2-byte code) in the source files.
 sjis: Shift JIS (Default)
 euc: EUC
 none: No 2-byte codes

INC78K0R Specifies the folder where the standard header files of the C compiler are
located.

LIB78K0R Specifies the folder where the C compiler's libraries are located.

PATH=%PATH%;C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\bin
set TMP=C:\tmp
set LANG78K=sjis
set INC78K0R=C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r
set LIB78K0R=C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 35

CHAPTER 3 PROCEDURE FROM COMPILING TO
LINKING

This chapter uses the CC78K0R and the RA78K0R Assembler Package to describe the procedure from

compiling to linking.

By actually performing the processes from compiling to linking of the “prime.c” sample program following the

execution procedure given in this chapter, you can become familiar with the operations of compiling, assembling,

and linking (see "APPENDIX A SAMPLE PROGRAMS" for information about the sample program).

How to execute on the PM+ and how to execute from the command line is described (for information on

installation, see "2.2 Installation").

3.1 PM+

This section describes the user interface when the CC78K0R is started in PM+ included in the RA78K0R

Assembler Package.

If the CC78K0R is started from PM+, cc78k0rp.dll included in CC78K0R is referenced.

3.1.1 Position of cc78k0rp.dll (tools DLL)

The tools DLL file, such as the cc78k0rp.dll file, is needed to run the Windows version of the 78K0R Series C

compiler (CC78K0R) from PM+.

3.1.2 Execution environment

This environment conforms to PM+.

36 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

3.1.3 CC78K0R option setting menu

(1) Option menu items

The item [Compiler Options] is added to the [Tools] menu in PM+ by the tools DLL file included in the

CC78K0R C Compiler Package.

(2) [Compiler Options] dialog box

Select the [Compiler Options] menu under [Tools] in PM+ to call the option setting function for the tools DLL

and open the [Compiler Options] dialog box.

Figure 3-1 [Compiler Options] Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 37

(a) [Browse for Folder] dialog box

In the [Compiler Options] dialog box, when the [Browse] button is clicked for the following path settings, the

following dialog box appears.

Only the folders can be specified in this dialog box.

- Object module file output path under the [Output] tab

- Assembler module file output path under the [Output] tab

- Error list file output path under the [Output] tab

- Cross-reference list file output path under the [Output] tab

- Preprocessor list file output path under the [Output] tab

- Temporary file path under the [Others] tab

Figure 3-2 [Browse for Folder] Dialog Box

38 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(b) [ParameterFile] dialog box

When the [Browse] button is clicked for the following path settings, the following dialog box appears.

- Parameter file under the [Others] tab

This dialog box displays the following.

Current folder: Project file folder

File type: Parameter files (*.pcc)

Figure 3-3 [ParameterFile] Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 39

(c) [Edit Option]dialog box

In the [Compiler Options] dialog box, when the [Edit...] button is clicked for the following path settings, the

following dialog box appears.

- Define macro under the [Preprocessor] tab

- Undefine macro under the [Preprocessor] tab

- Include search path under the [Preprocessor] tab

Items are edited in list format in the [Edit Option] dialog box.

Figure 3-4 [Edit Option] Dialog Box

The [Edit Option] dialog box is described below.

- [Add...] button

Adds a list item.

If the item to be added is a file or folder, the corresponding [Browse for Folder] dialog box opens.

In all other cases, the [Add Option] dialog box opens. Specify details of the item to be added in this box.

Figure 3-5 [Add Option] Dialog Box

- [Delete] button

Deletes the selected list item.

- [Up] button

Moves the selected list item up.

- [Down] button

Moves the selected list item down.

40 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

- [Add Sub Directory] button

A subdirectory can be added to the selected list item when the item is specified as Include Search Path[-i](I)

under the [Preprocessor] tab.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 41

3.1.4 Description of each part of [Compiler Options] dialog box

Each part of the [Compiler Options] dialog box is described.

Figure 3-6 [Compiler Options] Dialog Box

- Setting of compiler options

The compiler options are divided into the following 9 options and set respectively.

Each setting screen is displayed by clicking the corresponding tab at the top of the dialog box.

[Preprocessor] tab (default)

[Memory Model] tab

[Data Assign] tab

[Optimize] tab

[Debug] tab

[Output] tab

[Extend] tab

[Others] tab

[Startup Routine] tab

42 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

- Command Line Options

The option character string currently set is displayed.

The option character string entered is reflected and displayed in real time.

Nothing can be input in this display area.

Even though the default option of the CC78K0R is the "specified" state (i.e., a check box is selected, etc.),

nothing is displayed in this area by default.

Options that do not fit in the option character display area can be checked by scrolling with the scroll bar.

- [OK] button

The settings edited in this dialog box are set, and the [Compiler Options] dialog box closes.

If [Special Compiler Options] is selected in the Project Window, the options are set for the source file. If

[Compiler Options] is selected in the [Tools] menu, the options are set for all of the source files.

- [Cancel] button

The options are not set, and the dialog box closes.

The ESC key has the same effect as the [Cancel] button no matter where the focus is in the dialog box.

- [Apply] button

This button is effective only when option settings have been changed.

The edited contents in this dialog box are applied and the [Compiler Options] dialog box remains displayed.

- [Help] button

The help file for this dialog box opens.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 43

[Preprocessor] tab

Figure 3-7 [Compiler Options] Dialog Box (When [Preprocessor] Tab Is Selected)

- Define Macro[-d]

The macro name and definition name specified by the -d option is input to the combo box.

For the macro name, 30 macro definitions can be performed at once by delimiting with ",".

Up to 256 characters can be input for specifying a defined macro name.

Up to 7,709 characters can be input into this combo box.

Can be specified using the [Edit...] button. (Opens the [Edit Option]dialog box.)

An error message will appear if a defined macro name is specified twice.

- Undefine Macro[-u]

The macro name specified by the -u option is input to the combo box.

For the macro name, 30 macro definitions can be invalidated at once by delimiting with ",".

Up to 256 characters can be input for specifying an undefined macro name.

Up to 7,709 characters can be input into this combo box.

Can be specified using the [Edit...] button. (Opens the [Edit Option]dialog box.)

An error message will appear if an undefined macro name is specified twice.

44 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

- Include Search Path[-i]

The folder that contains include files specified by the -i option is input to the combo box.

64 folders can be specified at once by delimiting with ",".

Up to 259 characters can be input for specifying an include file path.

Up to 16,639 characters can be input into this combo box.

Can be specified using the [Edit...] button. (Opens the [Edit Option]dialog box.)

Unexisted path cannot be specified.

An error message will appear if the same include file path is specified twice.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 45

[Memory Model] tab

Figure 3-8 [Compiler Options] Dialog Box (When [Memory Model] Tab Is Selected)

Caution The settings for the [Memory Model] tab cannot be performed if special compiler options are set

per source file.

- Memory Model

Specify with the radio button the memory model type used for compilation.

- Control Object

Output the Object for Flash Memory[-zf]

Select the check box to validate the -zf option.

46 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

[Data Assign] tab

Figure 3-9 [Compiler Options] Dialog Box (When [Data Assign] Tab Is Selected)

- Assign External Variable to SADDR Area

The type of an external variable to be assigned to the saddr area is selected in the drop-down list box.

Caution This area cannot be performed if special compiler options are set per source file.

- Assign Static Variable to SADDR Area

The type of a static variable to be assigned to the saddr area is selected in the drop-down list box.

- Assign Bit Field from MSB[-rb]

Select the check box to validate the -rb option.

- Indirect address in byte units[-ra]

Select the check box to validate the -ra option.

- Packing structure members and indirect address in byte units[-rc]

Select the check box to validate the -rc option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 47

[Optimize] tab

(1) When "Integrated Recommendable Optimizing Option" is selected in the [Group] drop-down list box

Figure 3-10 [Compiler Options] Dialog Box (When [Integrated Recommendable Optimizing Option] Is Selected)

- Integrated Recommendable Optimizing Option

The "Integrated Recommendable Optimizing Option" integrates optimization options according to

purpose, instead of specifying them individually. Accordingly this option makes the optimization

option easier to set.

There are 2 settings: "Exec Time [-qx1]", "Default [-qx2]". Their meanings are as follows.

Exec Time[-qx1]

Select this option when the efficiency of executing speed is important.

Default[-qx2]

Select this option when both the efficiency of executing speed and the efficiency of object code

size are equally important.

48 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(2) When "Char Expression Behavior, Automatic Allocation" is selected in the [Group] drop-down list box

Figure 3-11 [Compiler Options] Dialog Box (When [Char Expression Behavior, Automatic Allocation] Is Selected)

- Char Expression Behavior

Assign char without Sign Expand[-qc]

Select this check box to validate the -qc option (do not execute integrate promotion).

Change Plain char to unsigned char[-qu]

Select this check box to validate the -qu option.

- Automatic Allocation

Use SADDR Area for norec+Register Variable

Select this check box to validate the -qr option and select a variable to be assigned by checking

a radio button.

Use Register for Auto Variable[-qv]

Select this check box to validate the -qv option.

- Jump Optimization[-qj]

Select this check box to validate the -qj option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 49

(3) When "Optimize Object Size by Calling Library" is selected in the [Group] drop-down list box

Figure 3-12 [Compiler Options] Dialog Box (When [Optimize Object Size by Calling Library] Is Selected)

- Optimize Object Size by Calling Libraries

Select this check box to validate the -ql option and specify the level of the object size priority

optimization by checking a radio button. When the number n of -qln becomes greater, the object

code size becomes smaller, and accordingly the executing speed becomes slower.

50 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(4) When "Others" is selected in the [Group] drop-down list box

Figure 3-13 [Compiler Options] Dialog Box (When [Others] Is Selected)

- Aggressive Optimization[-qw]

Select this check box to validate the -qw option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 51

[Debug] tab

Figure 3-14 [Compiler Options] Dialog Box (When [Debug] Tab Is Selected)

- Output Debugging Information

Select this check box to validate the -g option and select a file that should output debug information by

checking a radio button.

52 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

[Output] tab

(1) When "Object Module File, Assembler Source Module File" is selected in the [Group] drop-down list box

Figure 3-15 [Compiler Options] Dialog Box (When [Object Module File, Assembler Source Module File] Is
Selected)

- Object Module File

To specify an object module file output path, input the path name in the combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [Browse for Folder] dialog

box).

When universal options are specified in PM+, processing is always performed assuming that the

path name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a

file name if no path exists.

- Create Assembler Source Module File

To enable the -a/-sa/-li options, select this check box, and select with/without C source to attach to

the assembler source module file and with/without include file contents by clicking the appropriate

radio button.

To specify the output path of the assembler source module file, input the path name in the combo

box. To specify a source file name, append the extension "asm".

Up to 259 characters can be input into this combo box.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 53

Specification is also possible using the [Browse..] button (Opens the [Browse for Folder] dialog

box).

When univarsal options are specified in PM+, processing is always performed assuming that the

path name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a

file name if no path exists.

- [Assembler Options[H]] button

Specify assembler options for the assembler source module file.

If no option is specified, processing is performed assuming that all assembler options have been

specified.

When the [Assembler Options[H]] button under the [Output] tab in the [Compiler Options] dialog

box is clicked, the following dialog box appears.

Figure 3-16 [Assembler Options] Dialog Box

- Use Assembler common option

Select this check box to enable all the options set in the [Assembler Options] dialog box.

- Assembler Source Options

To enable options for the output assembler source file of the C compiler, input a character

string including the option name in the combo box.

Up to 259 characters can be input into this combo box.

Caution Do not describe chip type specification (-c), device file specification (-y), and

parameter file specification (-f) because they are set separately with this tools DLL.

- Command Line Options

This edit box is a read-only box.

The option character strings that are currently set are displayed.

All of the assembler common options and assembler source options are targets.

Option character strings that are specified with radio buttons, check boxes, or combo boxes in

the option setting dialog boxes are displayed in this edit box.

54 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(2) When "Error List File, Cross-reference List File" is selected in the [Group] drop-down list box

Figure 3-17 [Compiler Options] Dialog Box (When [Error List File, Cross-reference List File] Is Selected)

- Create Error List File

Select this check box to enable the -e/-se option. Also select whether or not to attach the C source

to the error list by selecting the appropriate radio button.

To specify the error list file output path, input the path name in the combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [Browse for Folder] dialog

box).

When universal options are specified, processing is always performed assuming that the path

name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a

file name if no path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 55

- Create Cross Reference List File[-x]

Select this check box to enable the -x option. To specify the cross-reference list file output path,

input the path name in the combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [Browse for Folder] dialog

box).

When universal options are specified, processing is always performed assuming that the path

name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a

file name if no path exists.

56 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(3) When "Preprocess List File, List Format" is selected in the [Group] drop-down list box

Figure 3-18 [Compiler Options] Dialog Box (When [Preprocess List File, List Format] Is Selected)

- Create Preprocess List File

Select this check box to validate the -p option and the specification for the following preprocess list

files.

Delete Comment[-kc]

Select this check box to validate the -kc option.

Execute #define[-kd]

Select this check box to validate the -kd option.

Execute #if, #ifdef, #ifndef[-kf]

Select this check box to validate the -kf option.

Execute #include[-ki]

Select this check box to validate the -ki option.

Execute #line[-kl]

Select this check box to validate the -kl option.

Add Line No. and Paging[-kn]

Select this check box to validate the -kn option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 57

To specify the preprocess list file output path, input the path name in the combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [Browse for Folder] dialog

box).

When universal options are specified, processing is always performed assuming that the path

name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a

file name if no path exists.

- Add Form Feed at End of List File[-lf]

Select this check box to validate the -lf option.

- Columns per Line[-lw]

Specifies the number of characters in 1 line by using the -lw option.

The specifiable number of characters is 0 and 72 to 132.

- Lines per Page[-ll]

Specifies the number of lines in 1 page by using the -ll option.

The specifiable number of lines is 0 and 20 to 32,767.

- Expand TAB Character[-lt]

Specifies the length of tab character by using the -lt option.

The specifiable range for the tab stop position is 0 to 8.

58 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

[Extend] tab

Figure 3-19 [Compiler Options] Dialog Box (When [Extend] Tab Is Selected)

- Change Source Regulation

Disable Extensions (ANSI Standard Only)[-za]

Select this check box to validate the -za option.

Enable C++ Comment, Ignore from // Till End of Line[-zp]

Select this check box to validate the -zp option.

Comment Can Nest[-zc]

Select this check box to validate the -zc option.

Not Expand Argument and Return Value[-zb]

Select this check box to validate the -zb option.

Kanji Code of Source

Select the type (SJIS/EUC/None) of kanji code (2-byte code) used in the comment of the source by

selecting the appropriate radio button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 59

[Others] tab

Figure 3-20 [Compiler Options] Dialog Box (When [Others] Tab Is Selected)

- Verbose Compile Messages[-v]

Select this check box to enable the -v option.

- Warning Level[-w]

Specify the warning level using the -w option.

The specifiable range for the level is 0 to 2.

- Use Command File

By selecting this check box, the option character string is output to the command file, so awareness of

restrictions on the length of the option character string is not required.

Caution This check box cannot be performed if special compiler options are set per source file.

Level Description

0 Do not output warning messages.

1 Output normal warning messages.

2 Output detailed warning messages.

60 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

- Temporary File Creation Directory[-t]

Input the folder in which to store the temporary files specified with the -t option in the combo box.

Only one folder can be specified in this combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [Browse for Folder] dialog box).

- Parameterfile

Input the parameter file name specified with the -f option in the combo box.

Only one folder can be specified in this combo box.

Up to 259 characters can be input into this combo box.

Specification is also possible using the [Browse...] button (Opens the [ParameterFile] dialog box).

- Other Options

If a compiler option other than the various option specification items must be specified, input that option

in the combo box.

Up to 259 characters can be input into this combo box.

- [Reset] button

Clicking this button sets the default option settings.

- [Option file read...] button

Clicking this button causes the option information file containing the option settings to be read.

- [Option file save...] button

Option settings are saved as an option information file.

This button is enabled only when information has been set with the [OK] button or the [Apply] button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 61

[Startup Routine] tab

Figure 3-21 [Compiler Options] Dialog Box (When [Startup Routine] Tab Is Selected)

Caution The settings for the [Startup Routine] tab cannot be performed if special compiler options are set

per source file.

- Using Startup Routine

Select this check box to use the standard startup routine provided for this C compiler.

Using Fixed Area of Standard Library

Select this check box to use the fixed area used by the standard library.

ROMization processes of far area

Select this check box to perform ROMization processing for the far area.

Select Object

Select the desired startup routine for the normal, boot, or flash area by selecting the corresponding

radio button.

If the [Output the Object for Flash Memory[-zf]] check box under the [Memory Model] tab is not

selected, the startup routine for the normal or boot areas can be selected, and if the check box is

selected, only the startup routine for the flash area can be selected.

Startup Routine

Indicates the file name of the startup routine to be used.

62 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

- Using Library

Select this check box to use the standard library provided for this C compiler.

Using Floating Point in sprintf,sscanf,printf,scanf,vprintf,vsprintf

Select this check box to use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting

floating points.

Using Multiplier

Select this check box when using the multiplier of a product that have multiplier.

Caution Product types that do not have a multiplier cannot be selected.

Library

Displays the file name of the library to be used.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 63

3.2 Procedure (When Not Using Self Rewrite Mode)

3.2.1 MAKE from PM+

The MAKE method using PM+ is described below.

PM+ is a software program used for the integrated management of tools as the core of the development

environment. Using PM+ enables handling application programs and environment settings as projects. Program

creation using an editor, source management, compilation, and debugging can be performed as a continuous

series of operations.

(1) Starting up PM+

When a development tool packages are correctly installed, the [NEC Electronics Tools] menu is created in

the Programs folder displayed from the [Start] button, and PM+ and other programs are registered in this

menu.

Click [PM+] from the menu to start up PM+.

(2) Creating project

Register a project first to start a series of development operations using PM+.

To register a project, first create the workspace in which that project is managed. For the procedure to

create a workspace, refer to the PM+ User's Manual.

(3) Setting compiler and linker options

A minimum number of options are set for build in the MAKE file created automatically upon completion of

project creation. Project-specific options are set in the [Tools] menu.

If the [Compiler Options] in the [Tools] menu is selected, the [Compiler Options] dialog box appears.

An example changing the Optimize option from default [-qcjlvw] to "Exec Time[-qx1]" is shown below.

64 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

Figure 3-22 [Compiler Options] Dialog Box (When [Optimize] Tab Is Selected)

If "Using Startup Routine" is selected in the [Startup Routine] tab of the [Compiler Options] dialog box, the

standard startup routine for this C compiler gets linked before all sources (not displayed to the [Linker

Options] dialog box).

When "Using Library" is selected, the standard library for this C compiler gets linked behind all libraries.

If C source is included in the source file settings, stack symbol automatic generation option -s is

automatically specified to the linker.

The name of the startup routine file does not affect the load module file name.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 65

Figure 3-23 [Linker Options] Dialog Box

(4) Building project

Projects are built with the set options.

Building of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the [Build]

button on the tool bar. PM+ MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed normally.

Caution The contents displayed in the [OutPut] window during build are saved as the "Project file name +

.plg" file name to the project folder.

66 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

3.2.2 Compiling to linking in command line (for command prompt)

(1) When parameter file is not used

The command below is used to start the CC78K0R, assembler, and linker in a command line.

Assembling is not needed when there is no assembler description in C source. In this case, link the object

module file output from a C compiler (Δ : space).

Caution To link libraries created by users, be sure to specify the libraries attached to the CC78K0R and the

floating point libraries at the end of the library list.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points,

specify the floating point libraries attached to the CC78K0R and the libraries attached to the

compiler, in this order.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating points,

specify the libraries attached to the CC78K0R and the floating point libraries attached to the

compiler, in this order.

Also, specify the startup routine attached to the CC78K0R before the user programs.

The library and object module file specification order during linking is shown below.

(Library specification order)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating

points

(i) User program library file (specified with the -b option)

(ii) Library file attached to C compiler (specified with the -b option)

(iii) Floating point library file attached to C compiler (specified with the -b option)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points

(i) User program library file (specified with the -b option)

(ii) Floating point library file attached to C compiler (specified with the -b option)

(iii) Library file attached to C compiler (specified with the -b option)

(Specification order of other files)

(i) Object file of startup routine attached to CC78K0R

(ii) Object module file of user program

>[path-name]cc78k0r[Δoption]ΔC-source-name[Δoption]
>[path-name]ra78k0r[Δoption]Δassembler-source-name[Δoption]
>[path-name]lk78k0r[Δoption]Δobject-module-name[Δoption]

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 67

The following shows an example of linking C source s1.c and assembler source s2.asm.

Remark When specifying multiple compiler options, delimit between compiler options by a space. It does

not matter whether a description is written in uppercase or lowercase (non case sensitive). For

detailed information, see "CHAPTER 5 COMPILER OPTIONS".

The -i option specification, -b option path specification, and -y option specification can be omitted

depending on the condition. For details, see "CHAPTER 5 COMPILER OPTIONS" and RA78K0R

Assembler Package Operation User's Manual.

C>cc78k0r -cf1166a0 s1.c -e -a
-i"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r"
-y"C:\Program Files\NEC Electronics Tools\dev"
C>ra78k0r -cf1166a0 s2.asm -e
-y"C:\Program Files\NEC Electronics Tools\dev"
C>lk78k0r s0rll.rel s01.rel s2.rel
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rxm.lib"
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rm.lib" -s
-osample.lmf -y"C:\Program Files\NEC Electronics Tools\dev"

68 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(2) When parameter file is used

When multiple options are input in starting a C compiler, assembler, or linker, the same specification may be

repeated several times if sufficient information for startup has not been specified in the command line. In

such cases, a parameter file should be used.

Specify the parameter file specification option (-f) in the command line when using a parameter file.

The following shows the startup method for a compiler, assembler, and linker by using a parameter file.

The following shows a usage example.

Parameter files are created by an editor. All options and output file names that should be specified in a

command line can be written.

The following shows examples of creating parameters by the editor.

<Contents of para.pcc>

<Contents of para.pra>

<Contents of para.plk>

The -i option specification, -b option path specification, and -y option specification can be omitted depending

on the condition. For details, see "CHAPTER 5 COMPILER OPTIONS" and RA78K0R Assembler Package

Operation User's Manual.

>[path-name]cc78k0rΔ-fparameter-file-name
>[path-name]ra78k0rΔ-fparameter-file-name
>[path-name]lk78k0rΔ-fparameter-file-name

C>cc78k0r -fpara.pcc
C>ra78k0r -fpara.pra
C>lk78k0r -fpara.plk

-cf1166a0 s1.c -e -a
-i"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r"
-y"C:\Program Files\NEC Electronics Tools\dev"

-cf1166a0 s2.asm -e -y"C:\Program Files\NEC Electronics Tools\dev"

s0rll.rel s1.rel s2.rel
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rxm.lib"
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rm.lib" -s
-osample.lmf -y"C:\Program Files\NEC Electronics Tools\dev"

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 69

3.3 Procedure (When Using Self Rewrite Mode)

This function is available only for the device having the flash memory self rewriting function.

3.3.1 Compiling to linking via PM+

PM+ is used to illustrate the make technique.

Be sure to execute compiling to linking in the following order.

(1) Compiling to linking program for boot area

(a) Creating a project
Create a project for the boot area and register the source file.

(b) Compiler, linker, and object converter options settings

Only the minimum options required for build are set in MAKE file automatically created when project

creation is ended. Project-specific options are set with the [Tools] menu.

Selecting [Compiler Options] in the [Tools] menu displays the [Compiler Options] dialog box.

(i) Setting compiler option

Do not specify the [Output the Object for Flash Memory[-zf]] check box under the [Memory Model]

tab.

70 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

Select [Boot] radio button in the [Select Object] box under the [Startup Routine] tab.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 71

(ii) Setting linker option

Specify "Flash Start Address for the Product with Flash ROM[-zb]" and then click the [OK] button.

Since "Using Startup Routine" and "Using Library" check boxes are selected under the [Startup

Routine] tab, it is not necessary to specify the startup routine and library in the [Linker Options]

dialog box.

Also, since the C source (boot.c) is included in the source file specification, "Create Stack Symbol[-

s]" option is automatically set.

Remark For information about the linker options, refer to RA78K0R Assembler Package Operation

User’s Manual.

72 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(iii) Setting object converter option

Do not specify the [Divide HEX File for Product with Flash ROM[-zf]] check box.

Caution After the program for boot area is compiled and object-converted, write in the HEX file

(e.g. boot.hex) with a flash programmer. After writing, be sure to save the load module file

(e.g. boot.lmf) and HEX file created in the above procedure. Do not build the program for

boot area again.

(c) Building project

Projects are built with the set options.

Build of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the [Build]

button on the tool bar. PM+ MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed

normally.

Caution The contents displayed in the [OutPut] window during build are saved as the "Project file name

+ .plg" file name to the project folder.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 73

(2) Compiling to linking program for flash area

(a) Creating a project
Create a project for the flash area and register the source file.

(b) Compiler, linker, and object converter option settings

Only the minimum options required for build are set in MAKE file automatically created when project

creation is ended. Project-specific options are set with the [Tools] menu.

Selecting [Compiler Options] in the [Tools] menu displays the [Compiler Options] dialog box.

(i) Setting compiler option

Specify the [Output the Object for Flash Memory[-zf]] check box under the [Memory Model] tab.

Select [Flash] radio button in the [Select Object] box under the [Startup Routine] tab.

74 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(ii) Setting linker option

Specify the boot area load module file that was created in the "Other options" combo box.

Since the "Using Startup Routine" and "Using Library" check boxes are selected under the [Startup

Routine] tab in the [Compiler Options] dialog box, it is not necessary to specify the startup routine

and library in the [Linker Options] dialog box.

Also, since the C source (flash.c) is included in the source file specification, "Create Stack Symbol[-

s]" option is automatically set.

Remark For information about the linker options, refer to RA78K0R Assembler Package Operation

User’s Manual.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 75

(iii) Setting object converter option (for flash area)

Be sure to specify the [Divide HEX File for Product with Flash ROM[-zf]] check box.

By specifying the -zf option, the HEX file for boot area (e.g. flash.hxb) and the HEX file for flash

area (e.g. flash.hxf) are output.

The flash.hxb and the boot.hex that is generated when the program for boot area is built have the

same contents. However, when the HEX file for boot area is already written and the program for

flash area is built again, it is recommended to confirm that there is no difference in the saved

boot.hex and the created flash.hxb.

(c) Building project

Projects are built with the set options.

Build of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the [Build]

button on the tool bar. PM+ MAKE is started up by the automatically created make file.

Upon completion of build, a message dialog box appears. Check that build has been completed

normally.

Caution The contents displayed in the [OutPut] window during build are saved as the "Project file name

+ .plg" file name to the project folder.

76 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

3.3.2 Compiling to linking in command line (for command prompt)

(1) When parameter file is not used

The command below is used to start the CC78K0R, assembler, and linker in a command line.

Assembling is not needed when there is no assembler description in the C source. In this case, link the

object module file output from a C compiler (Δ: space).

The following shows examples of compiling and linking the C source for boot area and the C source for flash

area.

(a) Compiling to linking, object-converting program for boot area

<Example 1: Compiling program for boot area>

<Example 2: Linking program for boot area>

<Example 3: Object-converting program for boot area>

Caution After the program for boot area is compiled and object-converted, write in the HEX file (e.g.

boot.hex) with a flash programmer. After writing, be sure to save the load module file (e.g.

boot.lmf) and the HEX file created in the above procedure. Do not build the program for boot

area again.

(b) Compiling to linking program for flash area

<Example 1: Compiling program for flash area>

<Example 2: Linking program for flash area>

>[path-name]cc78k0r[Δoption]ΔC-source-name[Δoption]
>[path-name]ra78k0r[Δoption]Δassembler-source-name[Δoption]
>[path-name]lk78k0r[Δoption]ΔObject-module-name,etc.[Δoption]

C>cc78k0r -cf1166a0 boot.c
-i"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r"
-y"C:\Program Files\NEC Electronics Tools\dev"

C>lk78k0r s0rllb.rel boot.rel
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rxm.lib"
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rm.lib"
-s -oboot.lmf -zb2000h -y"C:\Program Files\NEC Electronics Tools\dev"

C>oc78k0r boot.lmf -oboot.lmf -y"C:\Program Files\NEC Electronics Tools\dev"

C>cc78k0r -cf1166a0 flash.c -zf
-i"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r"
-y"C:\Program Files\NEC Electronics Tools\dev"

C>lk78k0r boot.lmf s0lle.rel flash.rel
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rxm.lib"
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rm.lib"
-s -oflash.lmf -y"C:\Program Files\NEC Electronics Tools\dev"

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 77

<Example 3: Object-converting program for flash area>

Caution By specifying the -zf option when object-converting, the HEX file for boot area (e.g. flash.hxb)

and the HEX file for flash area (e.g. flash.hxf) are output. The flash.hxb and the boot.hex that

is generated when the program for boot area is built have the same contents. However,

when the HEX file for boot area is already written and the program for flash area is built

again, it is recommended to confirm that there is no difference in the saved boot.hex and the

created flash.hxb.

Remark When specifying multiple compiler options, delimit between compiler options by a space. It

does not matter whether a description is written in uppercase or lowercase (non case

sensitive). For detailed information, see "CHAPTER 5 COMPILER OPTIONS".

The -i option specification, -b option path specification, and -y option specification can be omitted depending

on the condition. For details, see "CHAPTER 5 COMPILER OPTIONS" and RA78K0R Assembler Package

Operation User’s Manual.

Caution When linking a library created by a user or a floating-point library, be sure to specify the library

attached to the CC78K0R at the end of the library line. When linking a program for flash area and

a program for boot area, specify the load module file for boot area in the beginning, and specify the

startup routine for flash area before the user program.

The following shows the library and object module file specification orders when linking.

(Library specification order)

- When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating

points

(i) User program library file (specified with the -b option)

(ii) Library file attached to the CC78K0R (specified with the -b option)

(iii) Floating point library file attached to the CC78K0R (specified with the -b option)

- When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points

(i) User program library file (specified with the -b option)

(ii) Floating point library file attached to the CC78K0R (specified with the -b option)

(iii) Library file attached to the CC78K0R (specified with the -b option)

Caution Specify the library for boot area when linking the program for boot area, and the library

for flash area when linking the program for flash area.

(Specification order of other files)

(i) Load module file for boot area of user program

(ii) Startup routine object module file for flash area attached to the CC78K0R

(iii) Object module file for flash area of user program

C>oc78k0r flash.lmf -oflash.lmf -y"C:\Program Files\NEC Electronics Tools\dev"

78 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

(2) When parameter file is used

When multiple options are input in starting a C compiler, assembler, or linker, the same specification may be

repeated several times if sufficient information for startup has not been specified in the command line. In

such cases, a parameter file should be used.

Specify the parameter file specification option (-f) in the command line when using a parameter file.

The following shows the startup method for a compiler, assembler, and linker by using a parameter file.

The following shows a usage example.

Parameter files are created by Editor. All options and output file names that should be specified in a

command line can be written.

The following shows examples of creating parameters by Editor.

<Contents of para.pcc>

<Contents of para.pra>

Remark The -i option specification, -b option path specification, and -y option specification can be omitted

depending on the condition. For details, see "CHAPTER 5 COMPILER OPTIONS" and RA78K0R

Assembler Package Operation User’s Manual.

>[path-name]cc78k0rΔ-fparameter-file-name
>[path-name]ra78k0rΔ-fparameter-file-name
>[path-name]lk78k0rΔ-fparameter-file-name

C>cc78k0r -fpara.pcc
C>lk78k0r -fpara.plk

-cf1166a0 boot.c
-i"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r"
-y"C:\Program Files\NEC Electronics Tools\dev"

s0rllb.rel boot.rel
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rxm.lib"
-b"C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r\cl0rm.lib"
-s -oboot.lmf -zb2000h
-y"C:\Program Files\NEC Electronics Tools\dev"

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 79

3.4 I/O Files of C Compiler

The CC78K0R inputs the C source module files written in the C language. These are converted into machine

language and output as object module files.

After compiling, the assembler source module files are output so that the user can check and revise the contents

at the assembly language level. Based on the compiler options, the list files such as the preprocess list, cross-

reference list, and error list are output.

If there is a compiler error, the error message is output to the console and the error list file. If errors occur,

various files other than an error list file cannot be output.

The CC78K0R I/O files are shown below.

Table 3-1 C Compiler I/O Files

Type File Name Description Default File Type

Input Files C source module file - Source file written in the C language
(File created by the user)

c

Include file - File referenced by a C source module
file (File written in the C language)

- File created by the user

h

Parameter file - File created by the user when the user
wants to specify multiple commands that
cannot be specified in the command line
when the C compiler is run

pcc

Output Files Object module file - Binary image file containing machine
language information, relocatable
information related to the location
address of the machine language, and
symbol information

rel

Assembler source
module file

- ASCII image file of the object code
output by the compiler

asm

Preprocess list file - List file output by the preprocess
instructions such as #include

- ASCII image file

ppl

Cross-reference list file - List file containing the function name
and variable name information used in
the C source module file

xrf

Error list file - List file containing the source file and
compiler error messages

ecc
cer
her
erNote

I/O File Temporary file - Intermediate file for compiling
- The file is renamed to an appropriate

name when compiling ends without error
and is deleted when compiling ends in
error.

$nn
(file name fixed)

80 User’s Manual U17838EJ1V0UM

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

Note The following 4 file types are available for error list files.

Figure 3-24 C Compiler I/O Files

Remark If there are compiling errors, a variety of files other than the error list and cross reference files cannot be

output.

A temporary file is renamed to an appropriate name when the compiling ends without error. If compiling

ends in error, the temporary files are deleted.

File Types Description

cer Error list files with C source corresponding to *.c' files
(output by specifying the -se option)

her Error list files with C source corresponding to *.h' files
(output by specifying the -se option)

er Error list files with C source corresponding to files other than the above
(output by specifying the -se option)

ecc Error list files without C source corresponding to all of the source files
(output by specifying the -se option)

Assembler source module files

C source module files Include filesParameter files

Preprocess list filesTemporary files

Object module files Error list files Cross-reference list files

CC78K0R

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U17838EJ1V0UM 81

3.5 Execution Start and End Messages

3.5.1 Execution start message

When the CC78K0R starts, the execution start message is displayed on the console.

3.5.2 Execution end message

If compiler errors were not detected in the compilation result, the CC78K0R outputs the following message to the

console and returns control to the operating system.

If compiler errors were detected in the compilation result, the CC78K0R outputs the error messages and the

number of errors to the console and returns control to the operating system.

If a fatal error was detected where the compiling process cannot continue during compilation, the compiler

outputs a message to the console, stops compilation, and returns control to the operating system.

An example that outputs an error is shown below.

In this example, since a nonexistent compiler option (-s) was input, an error results and the compiler stops.

If the CC78K0R outputs error messages and stops the compilation, find the sources of these error messages in

"CHAPTER 9 ERROR MESSAGES" and correct.

78K0R Series C Compiler Vx.xx [xx xxx xxxx]
 Copyright (C) NEC Electronics Corporation xxxx, xxxx

Target chip : uPD78F1166_A0
Device file : Vx.xx

Compilation complete, 0 error(s) and 0 warning(s) found.

prime.c(18) : CC78K0R warning W0745 : Expected function prototype
prime.c(20) : CC78K0R warning W0745 : Expected function prototype
prime.c(26) : CC78K0R warning W0622 : No return value
prime.c(37) : CC78K0R warning W0622 : No return value
prime.c(44) : CC78K0R warning W0622 : No return value

Target chip : uPD78F1166_A0
Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

78K0R Series C Compiler Vx.xx [xx xxx xxxx]
 Copyright (C) NEC Electronics Corporation xxxx, xxxx

CC78K0R error F0018 : Option is not recognized '-s'
Please enter 'CC78K0R --', if you want help messages.
Program aborted.

82 User’s Manual U17838EJ1V0UM

CHAPTER 4 CC78K0R FUNCTIONS

CHAPTER 4 CC78K0R FUNCTIONS

4.1 Optimization Method

Optimization is performed to create efficient object module files in the CC78K0R.

The table below lists the supported optimization methods.

Table 4-1 Optimization Methods

Phase Contents Example

Syntax

(1) Execute during constant
computations compilation

a = 3 * 5 ; --> a = 15 ;

(2) True or false decision based on
partial evaluation of a logical
expression

0 && (a || b) --> 0
1 || (a && b) --> 1

(3) Offset calculations of pointers,
arrays, etc.

Calculate the offsets during compilation.

Code Generator

(4) Register management Effectively use unused registers.

(5) Use the special instructions of
the target CPU.

a = a + 1 ; --> Use the inc instruction.
Use the move instruction to substitute array elements.

(6) Use short instructions. If there is an instruction with the same operation, use the
instruction with fewer bytes.
mov a , #0 --> clrb a

(7) Change long jump instructions to
short jump instructions.

The intermediate code that was output is reprocessed.

Optimizer

(8) Delete common partial
expressions.

a = b + c ; --> a = b + c ;
d = b + c + e ; d = a + e ;

(9) Move outside an instruction loop. for (i = 0 ; i < 10 ; i++)
{
 :
 a = b + c ;
 :
}
 ↓
a = b + c ;
for (i = 0 ; i < 10 ; i++)
{
 :
}

(10) Delete unused instructions. a = a ; --> Delete
After a = b ; , a is not referenced --> Delete
(a is an automatic variable)

CHAPTER 4 CC78K0R FUNCTIONS

User’s Manual U17838EJ1V0UM 83

Remark (1) to (7), (14), and (15) are performed regardless of the optimization option specifications.

The optimizations in (8) to (13), (17), and (18) are performed when optimization options are specified.

(16) is performed when there are register declarations in the C source program. However, the saddr

area is only allocated when the -qr option is specified.

For information about the optimization options, see "CHAPTER 5 COMPILER OPTIONS".

(11) Delete copies. a = b ;
c = a + d ; --> c = b + d ;
a is not referenced any more (a is an automatic variable).

(12) Change the calculation order in
an expression.

The calculation whose result remains in the register as valid
before other calculations is executed.

(13) Memory device allocation
(temporary variables)

Variables used locally are allocated to registers.

(14) Peephole optimization Replacement of special patterns
Examples a * 1 --> a , a + 0 --> a

(15) Decrease the strength of the
calculation.

Examples a * 2 --> a + a , a << 1

(16) Memory device allocation
(register variables)

Data is allocated to rapidly accessible memory.
Examples Registers, saddr (only when the -qr option is
specified)

(17) Jump optimization (the -qj option) Consecutive jump instructions are combined into 1 instruction.

(18) Register allocation (the -qv, -qr, -
rd, -rs options)

Variables are automatically allocated to registers.

Table 4-1 Optimization Methods

Phase Contents Example

84 User’s Manual U17838EJ1V0UM

CHAPTER 4 CC78K0R FUNCTIONS

4.2 ROMization Function

ROMization means that the initial values, such as the initial values of external variables, are placed in the ROM.

These values are copied to RAM when the system is executed.

The CC78K0R provides startup routines with the processing of programs in ROM as samples. For ROMization,

using the startup routines in ROM eliminates the problem of describing ROMization processes for startup.

For information about the startup routines, see "8.3 Startup Routines".

How to store a program on ROM is described below.

4.2.1 Linking

During linking, the startup routine, object module files, and libraries are linked. The startup routine initializes the

object program.

- s0r*.rel

Startup routine (when stored on ROM)

The copy routine for the initialization data is included, and the beginning of the initial data is indicated.

The label "_@cstart" (symbol) is added to the start address.

- cl0r*.lib

Library attached to CC78K0R.

The library files of the CC78K0R include the following 2 libraries.

(1) Runtime library

"@@" is added to the symbol head of the runtime library name. For the special library cprep, cdisp,

however, "_@" is added to the symbol head.

(2) Standard library

"_" is added to the symbol head of the standard library name.

- *.lib

Library created by a user.

"_" is added to the symbol head.

Caution The CC78K0R provides various kinds of startup routines and libraries. For details of startup

routine, refer to "CHAPTER 8 STARTUP ROUTINES". For details of libraries, refer to "2.5.1

Library files".

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 85

CHAPTER 5 COMPILER OPTIONS

When the CC78K0R is started, the compiler options can be specified. The compiler options provide instructions

for the CC78K0R operation and indicate the information required beforehand in program execution.

The compiler options are not only specified individually, but multiple options can also be simultaneously

specified. The user selects the compiler options to match the objectives and to perform the tasks efficiently.

5.1 Specifying Compiler Options

Compiler options can be specified in the following ways.

- Specified in the command line when the CC78K0R starts.

- Specified in the [Compiler Options] dialog box of PM+.

- Specified in the parameter file.

For the specification methods for the compiler options described above, see "CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING".

Specify the suboption or file name after a compiler option without inserting a blank, such as a space. Spaces are

required between the compiler options.

Uppercase characters and lowercase characters are not distinguished for the compiler options.

<Example>

Remark Δ: blanks such as spaces

cc78k0rΔ-cf1166a0Δprime.cΔ-aprime.asmΔ-qx2

86 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

5.2 Prioritization

For the compiler options shown in the following table, the prioritization is explained in a case where two or more

options along the vertical axis and options along the horizontal axis are simultaneously specified.

[Location marked by NG]

If an option in the horizontal axis is specified, the option in the vertical axis becomes invalid.

<Example>

The -rd and -g options become invalid.

[Location marked by Δ]

If an option in the horizontal axis is not specified, the option in the vertical axis becomes invalid.

<Example>

Since the -p option is specified, the -k option is valid.

[Location marked by OK]

The option specified last out of an option in the horizontal axis and an option in the vertical axis has priority.

<Example>

Since the -d option is specified last, the -u option becomes invalid, and the -d option has priority.

Table 5-1 Prioritization of Compiler Options

-no -p -np -d -u -a -e -x -sa

-r NG - - - - - - - -

-q NG - - - - - - - -

-g NG - - - - - - - -

-k - Δ NG - - - - - -

-d - - - - OK - - - -

-u - - - OK - - - - -

-sa - - - - - NG - - -

-lw - Δ - - - Δ Δ Δ -

-ll - Δ - - - Δ Δ Δ -

-lt - Δ - - - Δ Δ Δ -

-lf - Δ - - - Δ Δ Δ -

-li - - - - - - - - Δ

C>cc78k0r -cf1166a0 -e sample.c -no -rd -g

C>cc78k0r -cf1166a0 -e sample.c -p -k

C>cc78k0r -cf1166a0 -e sample.c -utest -dtest=1

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 87

As with the -o and -no options, the option specified last has priority even if n can be added before the option

name.

<Example>

Since the -no option is specified last, the -o option becomes invalid, and the -no option has priority.

Options not described in Table 5-1 are not particularly affected by other options. However, if the help

specification option (--/-?-h) was specified, all of the option specifications become invalid.

The help specification option (--/-?-h) cannot be specified in PM+. To reference help in PM+, click the [Help]

button in each option dialog box of PM+.

C>cc78k0r -cf1166a0 -e sample.c -o -no

88 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

5.3 Types

Compiler options are categorized into the following types.

Table 5-2 List of Compiler Options

Types Option Description

Device type specification -c Specifies the type of target device.

Object module file creation specification -o Specifies the output of the object module files.

-no

Memory assignment specification -r Specifies the method of memory assignment.

-nr

-rd Specifies the automatic assignment of an external
variable/external static variable (except for the const-
type variable) to the saddr area.-nr

-rs Specifies the automatic assignment of a static auto
variable to the saddr area.

-nr

Optimization specification -q Specifies optimization types.

-nq

Debugging information output
specification

-g Specifies the output of the C source level debugging
information.

-ng

Preprocess list file creation specification -p Specifies the output of the preprocess list files.

-k Specifies processing for the preprocess lists.

Preprocess specification -d Performs macro definitions.

-u Invalidates macro definitions.

-i Reads from the folder that is specified as the include
file.

Assembler source module file creation
specification

-a Specifies the output from the assembler source
module files.

-sa

Error list file creation specification -e Specifies the output from the error list files.

-se

Cross-reference list file creation
specification

-x Specifies the output from the cross reference list files.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 89

List format specification -lw Specifies number of characters for 1 line of each list
file.

-ll Specifies number of lines for 1 page of each list file.

-lt Changes the expanded number of characters for
each list file tab.

-lf Adds the page break code at the end of the list files.

-li Adds the C source of the include files to the
assembler source module file with C source
comments.

Warning output specification -w Specifies whether a warning message is output to the
console.

Execution state display specification -v Specifies whether the execution status of compilation
is output to the console.

-nv

Parameter file specification -f Inputs input file names and options from specified
files.

Temporary file creation folder
specification

-t Specifies the drive and folder where the temporary
files are created.

Help specification -- Outputs help messages to the console.

-?

-h

Function expansion specification -z Enables extended functions.

-nz

Device file search path -y Specifies paths that search device files.

Memory model specification -m Specifies the memory model used for compilation.

Table 5-2 List of Compiler Options

Types Option Description

90 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

5.4 Descriptions

This section describes each compiler option in detail.

This example illustrates starting the CC78K0R in the command line. To start in PM+, specify the command,

device type specification, and options left out of the C source in the <Compiler Options> dialog box.

[Example: (In command line)]

[Example: (When using PM+)]

Figure 5-1 [Compiler Options] Dialog Box

C>cc78k0r -cf1166a0 prime.c -g

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 91

Device type specification

(1) -c

[Description format]

- Interpretation when omitted

Specification of this option cannot be omitted.

[Function]

- The -c option specifies the target device designated for compilation.

[Application]

- Be sure to specify this option. The CC78K0R compiles for the specified target device and generates the

object code for it.

[Description]

- For the target devices that can be specified by the -c option and the corresponding device type, refer to the

user's manual of the device used or "Device Files Operating Precautions".

- When CC78K0R is used, device files are required.

[Caution]

- The -c option cannot be omitted. However, if the following description is in the C source, the specification

can be omitted from the command line.

- If different devices were specified in the C source and the command line, the device in the command line

has priority.

- It is not necessary for this option to be set by the compiler option when PM+ is used, because the setting of

this option is determined by the project setting.

[Use Example]

- To specify in the command line that the uPD78F1166_A0 is to be the target device, describe as:

-cdevice-type

#pragma pc (device-type)

C>cc78k0r -cf1166a0 prime.c

92 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

- Specify the target device (uPD78F1166_A0) in the C source (prime.c) and start the compiler.

This allows the target device specification to be omitted from the command line.

- Specify different devices in C source (prime.c) and the command line, and then start the compiler.

<C source>

<Command line>

The target device specified in the command line is given priority, so the compiler runs as follows.

#pragma pc (f1166a0)
#define TRUE 1
#define FALSE 0
#define SIZE 200

char mark [SIZE + 1] ;

main () {
 int i , prime , k , count ;
 :
}

C>cc78k0r prime.c

#pragma pc (f1166a0)
#define TRUE 1
#define FALSE 0
#define SIZE 200

char mark [SIZE + 1] ;

main () {
 int i , prime , k , count ;
 :

C>cc78k0r -cf1176 prime.c

78K0R Series C Compiler Vx.xx [xx xxx xxxx]
 Copyright (C) NEC Electronics Corporation xxxx, xxxx

sample\prime.c (1) : CC78K0R warning W0832 : Duplicated chip specifier
sample\prime.c (18) : CC78K0R warning W0745 : Expected function prototype
sample\prime.c (20) : CC78K0R warning W0745 : Expected function prototype
sample\prime.c (26) : CC78K0R warning W0622 : No return value
sample\prime.c (37) : CC78K0R warning W0622 : No return value
sample\prime.c (44) : CC78K0R warning W0622 : No return value

Target chip : uPD78F1176
Device file : Vx.xx

Compilation complete, 0 error(s) and 6 warning(s) found.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 93

Object module file creation specification

(1) -o/-no

[Description formats]

- Interpretation when omitted

-oinput-file-name.rel

[Function]

- The -o option specifies the output of the object module file. In addition, the output destination or output file

name is specified.

- The -no option specifies not to output the object module file.

[Application]

- If you want to change the output destination or the output file name of the object module file, specify the -o

option.

- If only the output of the assembler source module file is the target for compilation, specify the -no option.

Consequently, the compilation time is reduced.

[Description]

- If the output file name is omitted when the -o option is specified, the object module file name becomes

"input-file-name.rel".

- If the extension for the output file name is omitted when the -o option is specified, object module file output-

file-name.rel will be output.

- If there is a compilation error even when the -o option is specified, the object module file is not output.

- If the drive name is omitted when the -o option is specified, the object module file is output to the current

drive.

- If both the -o and -no options are simultaneously specified, the last specified one is valid.

[Cautions]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Object Module File" area under the [Output] tab.

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the [Output Path] combo box under the [Output] tab.

-o[output-file-name]
-no

94 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

 [Use Example]

- The -no option that is specified first is ignored, the -o option that is specified second is valid, so the object

module file (prime.o) will be output.

C>cc78k0r -cf1166a0 prime.c -no -o

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 95

Memory assignment specification

(1) -r/-nr

[Description formats]

- Interpretation when omitted

 -nr

[Function]

- The -r option specifies how to assign a program to the memory.

- The -nr option invalidates the -r option.

[Application]

- If you want to specify how to assign a program to the memory, specify the -r option.

[Description]

- The process types that can be specified by the -r option are shown below.

Process type specification cannot be omitted. Otherwise, Fatal error (F0012) will occurs.

Remark Multiple process types can be specified.

-rprocess-type (Multiple specifications are possible)
-nr

Process Type Function

a Performs indirect reference in 1-byte units.

b Assigns a bit field from the most significant bit (MSB).

d[n][m]
(n = 1, 2, 4)

Assigns an external variable/external static variable (except for the const-type
variable) automatically to the saddr area, irrespective of whether there is an
sreg declaration or not.
For details, see "(2) -rd/-nr".

s[n][m]
(n = 1, 2, 4)

Assigns a static auto variable automatically to the saddr area, irrespective of
whether there is an sreg declaration or not.
For details, see "(3) -rs/-nr".

c Performs indirect reference in 1-byte units.
Packs a structure and aligns the structure members to 1 byte.

96 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

- When the -nr option is specified, the process types are interpreted as follows.

[Use Example]

- To allocate the external variable or external static variable, and static auto variable automatically to the

saddr area, regardless of whether sreg has been declared, describe as:

Process Type Function

a Does not perform indirect reference in 1-byte units.

b Assigns a bit field from the least significant bit (LSB).

d Does not automatically assign any variable to the saddr area.

s Does not automatically assign any variable to the saddr area.

c Does not perform indirect reference in 1-byte units.
Does not pack a structure and does not align the structure members to 1 byte.

C>cc78k0r -cf1166a0 -rds

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 97

(2) -rd/-nr

[Description formats]

- Interpretation when omitted

 -nr

[Function]

- The -rd option specifies the automatic assignment of an external variable/external static variable (except for

the const-type variable) to the saddr area.

- The -nr option invalidates the -rd option.

[Application]

- If you want to automatically assign an external variable/external static variable (except for the const-type

variable) to the saddr area irrespective of whether there is an sreg declaration or not, specify the -rd option.

[Description]

- Variables to be assigned change depending on the value of n and the specification of m.

- The sreg-declared variable is automatically assigned to the saddr area irrespective of the -rd option

specification.

- The variable that is referenced by means of an extern declaration is processed as are to be assigned to the

saddr area.

- The variable assigned to the saddr area by specifying this option is handled in a similar way to an sreg

variable.

[Use Example]

- To allocate the char or unsigned char type external variable or external static variable automatically to the

saddr area, regardless of whether sreg has been declared, describe as:

-rd[n][m] (n = 1, 2, 4)
-nr

Specification of n, m Variable Types to Be Assigned

n When n = 1: char, unsigned char
When n = 2: char, unsigned char, short, unsigned short, int, unsigned

int, enum, near pointer
When n = 4: char, unsigned char, short, unsigned short, int, unsigned

int, enum, long, unsigned long, pointer

m Structure, Union, Array

Omitted All variables

C>cc78k0r -cf1166a0 -rd1

98 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(3) -rs/-nr

[Description formats]

- Interpretation when omitted

 -nr

[Function]

- The -rs option specifies the automatic assignment of a static auto variable to the saddr area.

- The -nr option invalidates the -rs option.

[Application]

- If you want to automatically assign a static auto variable to the saddr area irrespective of whether there is an

sreg declaration or not, specify the -rs option.

[Description]

- Variables to be assigned change depending on the value of n and the specification of m.

- The sreg-declared variable is automatically assigned to the saddr area irrespective of the -rs option

specification.

- The static auto variable that is assigned to the saddr area by specifying this option is handled in a similar

way to an sreg-declared auto variable.

[Use Example]

- To allocate the char or unsigned char type static auto variable automatically to the saddr area, regardless of

whether sreg has been declared, describe as:

-rs[n][m] (n = 1, 2, 4)
-nr

Specification of n, m Variable Types to Be Assigned

n When n = 1: char, unsigned char
When n = 2: char, unsigned char, short, unsigned short, int, unsigned

int, enum, near pointer
When n = 4: char, unsigned char, short, unsigned short, int, unsigned

int, enum, long, unsigned long, pointer

m Structure, Union, Array

Omitted All variables

C>cc78k0r -cf1166a0 -rs1

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 99

Optimization specification

(1) -q/-nq

[Description formats]

- Interpretation when omitted

-qcjlvw

[Function]

- The -q option specifies calling the optimization phase to generate efficient objects.

- The -nq option invalidates the -q option.

[Application]

- If you want to improve the execution speed of the objects and reduce the code size, specify the -q option.

If the -q option is specified and you want to perform multiple optimizations simultaneously, specify the

optimization types consecutively. For details, see [Description].

[Description]

- The table below lists the optimization types that can be specified by the -q option.

-q[optimization-type] (Multiple specifications are possible)
-nq

Optimization Type Process Description

No specification Regards as the -qcjlvw specification.

u Regards the char with no qualifier as a unsigned char to improve code
efficiency

c Performs calculations including char without sign extension.

Calculation Target Calculation Result

unsigned char type variable and unsigned char
type variable

unsigned char type

unsigned char type variable and signed char
type variable

unsigned char type

signed char type variable and signed char type
variable

signed char type

Constants from -128 to 255 and unsigned char
type variable

unsigned char type

Constants from -128 to 127 and signed char
type variable

signed char type

Constants from 0 to 255 with suffix U and
signed char type variable

unsigned char type

100 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

- Multiple optimization types can be specified.

- If the -q option or optimization types are omitted, the optimization is identical to when the -qcjlvw option is

specified.

- To delete a portion of the default options specify the options other than the options you want to delete

(Example -qr is specified -> Deletes -qcjlvw).

- If both the object module file and the assembler source module file are not output, the -q option other than -

qu becomes invalid.

- If both the -q and -nq options are simultaneously specified, the last specified one is valid.

- If several -q options are simultaneously specified, the last specified one is valid.

r[n]
(n = 1, 2)

Adds a register variable to a register and assigns it to the saddr area.
The code size may be reduced if the -ql2 option is specified simultaneously.
The scope of assigning register variable changes depending on the value of n
as follows. If n is omitted, it is interpreted as n = 2.
 1: Assigns norec argument and auto variable to the saddr area
 2: Assigns norec argument, auto variable, and register variable to the

saddr area

j Optimizes jump instructions.

x[n]
(n = 1, 2)

Assigns the optimization options automatically according to the priority of
speed/code size.
The assigned option differs depending on the value of n as follows. If n is
omitted, it is interpreted as n = 2.
 1: Speed precedence. Regarded as the -qcjvw option specification.
 2: Default. Regarded as the -qcjlvw option specification.v

w Performs aggressive optimization.
Reshuffles the execution order in an expression.

v Assigns an argument and automatic variable automatically to a register or the
saddr area.

l[n]
(n = 1, 2)

Performs optimization based on the priority of code size and replaces the
standard code pattern with a library. If this option is not specified, the code is
optimized based on the priority of speed.
The scope changes depending on the value of n as follows. If n is omitted, it is
interpreted as n = 1.
 1: No replacement
 2: Executes the only the processes before/after a function

Optimization Type Process Description

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 101

[Use Example]

- Regarding char without a qualifier as an unsigned char enhances code efficiency.

- The -qc option that is specified first is ignored, the -qr option that is specified second is valid, and arguments

of norec, auto variables, and register variables are allocated to the saddr area.

- To validate both the -qc and -qr options, describe as:

C>cc78k0r -cf1166a0 prime.c -qu

C>cc78k0r -cf1166a0 prime.c -qc -qr

C>cc78k0r -cf1166a0 prime.c -qcr

102 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Debugging information output specification

(1) -g/-ng

[Description formats]

- Interpretation when omitted

 -g2

[Function]

- The -g option specifies the addition of debugging information to the object module file.

- The -ng option invalidates the -g option.

[Application]

- If the -g option is not specified, the line numbers and symbol information needed in the object module file to

be input to the debugger are not output. Therefore, in source level debugging, all of the modules to be

linked are compiled by specifying the -g option.

[Description]

- The operation differs depending on the value of n as follows.

- If both -g and -ng are simultaneously specified, the last specified one is valid.

- If both the object module file and the assembler source module file are not output, the -g option becomes

invalid.

[Use Example]

- To add debug information in the object module file (prime.o), describe as:

-g[n] (n = 1, 2)
-nq

Value of n Function

Omitted Regarded as n = 2.

1 Adds debug information (information starting with $DGS or $DGL) to the object
module file only. No debug information is added to the assembler source
module file.
This option makes it easier to reference an assembler file.
Source debugging of object files is available since debug information is added
to them.

2 Adds debug information to the object module file and the assembler source
module file.

C>cc78k0r -cf1166a0 prime.c -g

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 103

Preprocess list file creation specification

(1) -p

[Description format]

- Interpretation when omitted

None (no file is output)

[Function]

- The -p option specifies the output of the preprocess list file. In addition, the output destination or output file

name is specified. If the -p option is omitted, no preprocess list file is output.

[Application]

- If you want to output the source file after preprocess processing is executed according to the -k option

process type, or want to change the output destination or the output file name of the preprocess list file,

specify the -p option.

[Description]

- If the output file name is omitted when the -p option is specified, the preprocess list file name becomes

"input-file-name.ppl".

- If the extension for the output file name is omitted when the -p option is specified, preprocess list file output-

file-name.ppl will be output.

- If the drive name is omitted when the -p option is specified, the preprocess list file is output to the current

drive.

[Cautions]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Create Preprocess List File" area under the [Output] tab.

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the [Output Path] combo box under the [Output] tab.

[Use Example]

- To output the preprocess list file (sample.ppl), describe as:

-p[output-file-name]

C>cc78k0r -cf1166a0 prime.c -psample.ppl

104 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(2) -k

[Description format]

- Interpretation when omitted

-kfln

[Function]

- The -k option specifies the processing for the preprocess list.

[Application]

- This option is specified when comments are deleted and definition expansions are referenced when the

preprocess list file is output.

[Description]

- The process types that can be specified by the -k option are listed below.

Remark Multiple process types can be specified.

- If the -p option is not specified, the -k option becomes invalid.

- If several -k options are simultaneously specified, the last specified one is valid.

-k[process-type] (Multiple specifications are possible)

Process Type Description

Omitted Same as specifying -kfln

c Delete comments

d #define expansion

f Conditional compilations of #if, #ifdef, and #ifndef

i #include expansion

l #line processing

n Same as specifying FLN

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 105

[Use Example]

- To perform deletion of comments, line number processing and page processing when the preprocess list file

(prime.ppl), describe as:

<Output example>

C>cc78k0r -cf1166a0 prime.c -p -kcn

/*
78K0R Series C Compiler VX.XX Preprocess List
 Date : XX XXX XXXX Page : 1

Command : -cf1166a0 prime.c -p -kcn
In-file : prime.c
PPL-file : prime.ppl
Para-file :
*/

 1 : #define TRUE 1
 2 : #define FALSE 0
 3 : #define SIZE 200
 4 :
 5 : char mark [SIZE + 1] ;
 6 :
 7 : main ()
 8 : {
 :
/*
Target chip : uPD78F1166_A0
Device file : Vx.xx
*/

106 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Preprocess specification

(1) -d

[Description format]

- Interpretation when omitted

Only the macro definitions in a C source module file are valid.

[Function]

- The -d option specifies the same macro definition as the #define statement in the C source.

[Application]

- Specify this option when you want to validate the special macro definition.

[Description]

- By delimiting each definition by a comma ",", 30 macro definitions are made at one time.

- Spaces are not allowed before and after "=" and ",".

- If the definition name is omitted, the compiler presumes that "macro name=1" was defined.

- If the same macro name was specified in both the -d and -u options, the last specified one is valid.

[Use Example]

- This is an example where the following codes are defined in the C source (prime.c).

#define TEST 1

#define TIME 10

-dmacro-name[=definition-name][,macro-name[=definition-name]]...
(Multiple specifications are possible)

C>cc78k0r -cf1166a0 prime.c -dTEST,TIME=10

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 107

(2) -u

[Description format]

- Interpretation when omitted

A macro definition specified with -d is valid.

[Function]

- The -u option disables macro definitions similar to the #undef statement in the C source.

[Application]

- Specify this option to invalidate the macro name defined by the -d option.

[Description]

- By delimiting each macro name by a comma ",", 30 macro definitions can be disabled at one time.

Spaces are not allowed before and after a comma ",".

- A macro definition that can be disabled by the -u option is one that has been defined by the -d option.

A macro name defined by #define in a C source module file or a system macro name of the CC78K0R

cannot be disabled by the -u option.

- If the same macro name is specified by both the -d and -u options, the last specified one is valid.

[Use Example]

- The -d option that is specified first is ignored and the -u option that is specified second is valid, the macro

definition for TEST thus becomes invalid.

-umacro-name[,macro-name]... (Multiple specifications are possible)

C>cc78k0r -cf1166a0 prime.c -dTEST,TIME=10 -uTEST

108 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(3) -i

[Description format]

- Interpretation when omitted

The compiler considers that the following folders were specified.

(i) Folder with source fileNote 1

(ii) Folder specified by environment variable INC78K0R

(iii) C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0rNote 2

[Function]

- The -i option specifies input of the include files specified by the #include statement in the C source from the

specified folder.

[Application]

- Specify this option when you want to search for the include files from a certain folder.

[Description]

- By using a comma "," to delimit, 64 folders can be specified at one time.

- Spaces cannot be inserted before and after a comma ",".

- If multiple folders are specified after -i, or if the -i option is specified multiple times, the files specified by

#include are searched for in the specified order.

- The search sequence is as follows.

(i) Folder with source fileNote 1

(ii) Folder specified with the -i option

(iii) Folder specified with environment variable INC78K0R

(iv) C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0rNote 2

Note 1 If the include file name is specified with " " (double quotation marks) in the #include statement,

folders with source files are searched first. If the include file name is specified with < >, search

is not performed.

Note 2 This is an example of when the CC78K0R is installed to C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx.

-ifolder[,folder]... (Multiple specifications are possible)

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 109

[Use Example]

- To input the include file that is specified in an #include statement in the C source (prime.c) from folder b: and

b:\sample, describe as:

C>cc78k0r -cf1166a0 prime.c -ib:,b:\sample

110 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Assembler source module file creation specification

(1) -a

[Description format]

- Interpretation when omitted

No assembler source module file is output.

[Function]

- The -a option specifies the output of the assembler source module file. In addition, the output destination or

output file name is specified.

[Application]

- If you want to change the output destination or the output file name of the assembler source module file,

specify the -a option.

[Description]

- A disk file name or device file name can be specified as the file name.

- If the output file name is omitted when the -a option is specified, the assembler source module file name

becomes "input-file-name.asm".

- If the extension for the output file name is omitted when the -a option is specified, assembler source module

file output-file-name.asm will be output.

- If the drive name is omitted when the -a option is specified, the assembler source module file is output to the

current drive.

- If both the -a and -sa options are simultaneously specified, the -sa option is ignored.

[Caution]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Create Assembler Source Module File" area under the [Output] tab, and select "without C

Source[-a]".

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the [Output Path] combo box under the [Output] tab. To

specify a file name, append the extension "asm".

[Use Example]

- To output the assembler source module file (sample.asm), describe as:

-a[output-file-name]

C>cc78k0r -cf1166a0 prime.c -asample.asm

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 111

(2) -sa

[Description format]

- Interpretation when omitted

No assembler source module file is output.

[Function]

- The -sa option adds the C source as a comment to the assembler source module file. In addition, the output

destination or output file name is specified.

[Application]

- If you want to output the assembler source module file and the C source module file together, specify the -sa

option.

[Description]

- A disk file name or device file name can be specified as the file name.

- If the output file name is omitted when the -sa option is specified, the assembler source module file name

becomes "input-file-name.asm".

- If the extension for the output file name is omitted when the -sa option is specified, assembler source

module file output-file-name.asm will be output.

- If the drive name is omitted when the -sa option is specified, the assembler source module file is output to

the current drive.

- If both the -sa and -a options are simultaneously specified, the -sa option is ignored.

- The C source in an include file is not added to the comments in the output assembler source module.

However, if the -li option is specified, the C source in the include file is also added to the comments.

[Caution]

- To change the output destination when using PM+, specify the new output destination in the "Output Path"

combo box in the "Create Assembler Source Module File" area under the [Output] tab, and select either

"with C Source[without Include][-sa]" or "with C Source[with Include][-sa -li]".

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the "Output Path" combo box under the [Output] tab. To

specify a file name, append the extension "asm".

[Use Example]

- To add the C source (prime.c) as a comment to the assembler source module file (prime.asm), describe as:

-sa[output-file-name]

C>cc78k0r -cf1166a0 prime.c -sa

112 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

<Output example>

; 78K0R Series C Compiler Vx.xx Assembler Source
; Date : xx xxx xxxx Time : xx : xx : xx

; Command : -cf1166a0 prime.c -sa
; In-file : prime.c
; Asm-file : prime.asm
; Para-file :

$PROCESSOR (f1166a0)
$DEBUG
$NODEBUGA
$KANJICODE SJIS
$TOL_INF 03FH , 100H , 00H , 00H , 00H

$DGS FIL_NAM , .file , 037H , 0FFFEH , 03FH , 067H , 01H , 00H
$DGS AUX_FIL , prime.c
$DGS MOD_NAM , prime , 00H , 0FFFEH , 00H , 077H , 00H , 00H
 :
 EXTRN _@RTARG0
 EXTRN @@isrem
 PUBLIC _printf
 PUBLIC _putchar
 PUBLIC _mark
 PUBLIC _main
 :
@@CODEL CSEG
_main :
$DGL 1 , 19
 push hl ; [INF] 1 , 1
 subw sp , #08H ; [INF] 2 , 1
 movw hl , sp ; [INF] 3 , 1
??bf_main :
; line 9 : int i , prime , k , count ;
; line 10 :
; line 11 : count = 0 ;
$DGL 0 , 4
 clrw ax ; [INF] 1 , 1
 movw [hl] , ax ; count ; [INF] 1 , 1
; line 12 :
; line 13 : for (i = 0 ; i <= SIZE ; i++)
$DGL 0 , 6
 movw [hl + 6] , ax ; i ; [INF] 2 , 1
?L0003 :
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 cmpw ax , #0C8H ; 200 ; [INF] 3 , 1
 or1 CY , a.7 ; [INF] 2 , 1
 skc ; [INF] 2 , 1
 bnz $?L0004 ; [INF] 2 , 4
 :

; *** Code Information ***
;
;

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 113

; $FILE C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\smp78k0r\cc78k0r\prime.c
;
; $FUNC main (8)
; bc = (void)
; CODE SIZE = 117 bytes , CLOCK_SIZE = 86 clocks , STACK_SIZE = 16 bytes
;
; $CALL printf (18)
; bc = (pointer : ax , int : [sp + 2])
;
; $CALL putchar (18)
; bc = (pointer : ax , int : [sp + 2])
;
; $CALL putchar(20)
; bc = (int : ax)
;
; $CALL printf (25)
; bc = (pointer : ax , int : [sp + 2])
;
; $FUNC printf (31)
; bc = (pointer s : ax , int i : [sp + 4])
; CODE SIZE = 22 bytes , CLOCK_SIZE = 20 clocks , STACK_SIZE = 14 bytes
;
; $FUNC putchar (41)
; bc = (char c : x)
; CODE SIZE = 16 bytes , CLOCK_SIZE = 16 clocks , STACK_SIZE = 6 bytes

; Target chip : uPD78F1166_A0
; Device file : Vx.xx

114 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Error list file creation specification

(1) -e

[Description format]

- Interpretation when omitted

No error list file is output.

[Function]

- The -e option specifies the output of the error list file. In addition, the output destination or output file name

is specified.

[Application]

- If you want to change the output destination or the output file name of the error list file, specify the -e option.

[Description]

- A disk file name or device file name can be specified as the file name.

- If the output file name is omitted when the -e option is specified, the error list file name becomes "input-file-

name.ecc".

- If the extension for the output file name is omitted when the -e option is specified, error list file output-file-

name.ecc will be output.

- If the drive name is omitted when the -e option is specified, the error list file is output to the current drive.

- If the -w0 option is specified, warning messages are not output.

[Cautions]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Create Error List File" area under the [Output] tab and select "without C Source[-e]".

- When individual compileroptions are specified, the output file name can also be changed.

- Specify the file name or the output destination in the "Output Path" combo box under the [Output] tab.

-e[output-file-name]

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 115

[Use Example]

- To output the error list file (prime.ecc), describe as:

<Output example>

C>cc78k0r -cf1166a0 prime.c -e

prime.c (18) : CC78K0R warning W0745 : Expected function prototype
prime.c (20) : CC78K0R warning W0745 : Expected function prototype
prime.c (26) : CC78K0R warning W0622 : No return value
prime.c (37) : CC78K0R warning W0622 : No return value
prime.c (44) : CC78K0R warning W0622 : No return value

Target chip : uPD78F1166_A0
Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

116 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(2) -se

[Description format]

- Interpretation when omitted

No error list file is output.

[Function]

- The -se option adds the C source module file to the error list file. In addition, the output destination or output

file name is specified.

[Application]

- If you want to output the error list file and the C source module file together, specify the -se option.

[Description]

- A disk file name or device file name can be specified as the file name.

- If the output file name is omitted when the -se option is specified, the error list file name becomes input-file-

name.cer.

- If the extension for the output file name is omitted when the -se option is specified, error list file output-file-

name.cer will be output.

- If the drive name is omitted when the -se option is specified, the error list file is output to the current drive.

- The folder and the file name cannot be specified for include files.

If the file type of the include file is "H", the error list file with the file type of "her" is output to the current drive.

It the file type of the include file is "C", the error list file with the file type of "cer" is output. In all other cases,

the error list file with the "er" file type is output.

- If there weren't any errors, the C source is not added. In this case, the error list file is not created for the

include file.

- If the -w0 option is specified, warning messages are not output.

[Cautions]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Create Error List File" area under the [Output] tab and select "with C Source[-se]".

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the [Output Path] combo box under the [Output] tab.

-se[output-file-name]

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 117

[Use Example]

- To add the C source module file (prime.c) to the error list file (prime.cer), describe as:

<Output example>

C>cc78k0r -cf1166a0 prime.c -se

/*
78K0R Series C Compiler VX.XX Error List
 Date : XX XXX XXXX Time : XX : XX : XX

Command : -cf1166a0 prime.c -se
In-file : prime.c
Err-file : prime.cer
Para-file :
*/

#define TRUE 1
#define FALSE 0
#define SIZE 200

char mark [SIZE + 1] ;
main ()
{
 :
 prime = i + i + 3 ;
 printf ("%6d" , prime) ;
*** CC78K0R warning W0745 : Expected function prototype
 count++ ;
 if ((count%8) == 0) putchar ('\n') ;
*** CC78K0R warning W0745 : Expected function prototype
 for (k = i + prime ; k <= SIZE ; k += prime)
 :
}

118 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Cross-reference list file creation specification

(1) -x

[Description format]

- Interpretation when omitted

No cross-reference list file is output.

[Function]

- The -x option specifies the output of the cross-reference list file. In addition, the output destination or output

file name is specified. The cross-reference list file is valuable for checking the referencing frequency,

definition, and referenced point of a symbol.

[Application]

- If you want to output the cross-reference list file or want to change the output destination or the output file

name of the cross-reference list file, specify the -x option.

[Description]

- A disk file name or a device file name can be specified as the file name.

- If the output file name is omitted when the -x option is specified, the cross-reference list file name becomes

"input-file-name.xrf".

- If the extension for the output file name is omitted when the -x option is specified, cross-reference list file

output-file-name.xrf will be output.

- Even if an internal error other than C0101 or a compilation error with the number F0024 or a number starting

from E occurs, a cross-reference list file is created. However, the contents of the file are not guaranteed.

[Cautions]

- To change the output destination when using PM+, specify the new output destination in the [Output Path]

combo box in the "Create Cross Reference List File[-x]" area under the [Output] tab.

- When individual compiler options are specified, the output file name can also be changed.

- Specify the file name or the output destination in the [Output Path] combo box under the [Output] tab.

-x[output-file-name]

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 119

[Use Example]

- To output the cross-reference list file (prime.xrf), describe as:

<Output example>

C>cc78k0r -cf1166a0 prime.c -x

78K/0R Series C Compiler Vx.xx Cross reference List Date : XX XXX XXXX Page : 1

Command : -cf1166a0 prime.c -x
In-file : prime.c
Xref-file : prime.xrf
Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN NEAR array mark 5 29 31 37
EXTERN FAR func printf 7 33 40
REG1 pointer s 7 13
PARAM
REG1 int i 7 12
PARAM
REG1 int j 9 12
REG1 pointer ss 10 13
EXTERN FAR func putchar 16 35
REG1 char c 16 19
PARAM
REG1 char d 18 19
EXTERN FAR func main 22
REG1 int i 24 28 28 28 29
 30 30 30 31 32 32
 36
REG1 int prime 24 32 33 36 36
REG1 int k 24 36 36 36 37
REG1 int count 24 26 34 35 40
 #define TRUE 1 29
 #define FALSE 2 37
 #define SIZE 3 5 28 30 36

 Target chip : uPD78F1166_A0
 Device file : Vx.xx

120 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

List format specification

(1) -lw

[Description format]

- Interpretation when omitted

-lw132 (For console output, this becomes 80 characters)

[Function]

- The -lw option specifies the number of characters in 1 line of each type of list file.

[Application]

- If you want to change the number of characters in 1 line of each list file, specify the -lw option.

[Description]

- The range of the number of characters that can be specified by the -lw option is as follows and does not

include terminators (CR, LF).

72 < number of characters printed in 1 line < 132

- If the number of characters is omitted, the number of characters in 1 line becomes 132 characters (If output

to the console, there is a maximum of 80 characters).

- If the list file specification specifies nothing, the -lw option is invalid.

[Use Example]

- To set the number of characters on 1 line of the cross-reference list file (prime.xrf) to 72 characters, describe

as:

-lw[number-of-characters]

C>cc78k0r -cf1166a0 prime.c -x -lw72

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 121

(2) -ll

[Description format]

- Interpretation when omitted

There is no page break

[Function]

- The -ll option specifies the number of lines on 1 page of each type of list file.

[Application]

- If you want to change the number of lines in 1 page in each type of list file, specify the -ll option.

[Description]

- The range of the number of lines that can be specified by the -ll option is as follows.

20 < number of lines printed on 1 page < 65535

- If -ll0 is specified, there is no page break.

- If the number of lines is omitted, there is no page break.

- If the list file specification specifies nothing, the -ll option is invalid.

[Use Example]

- To set the number of lines on 1 page of the cross-reference list file (prime.xrf) to 20 lines, describe as:

-ll[number-of-lines]

C>cc78k0r -cf1166a0 prime.c -x -ll20

122 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(3) -lt

[Description format]

- Interpretation when omitted

-lt8

[Function]

- The -lt option indicates the basic number of characters for outputting a horizontal tabulation (HT) code in the

source module file, replacing it with several blanks (spaces) in each list (tabulation processing).

[Application]

- If few characters are specified in 1 line in each list by the -lw option, few blanks will result from an HT code,

so specify the -lt option to reduce the number of characters.

[Description]

- The range of the number of characters that can be specified by the -lt option is as follows.

0 < number of specifiable characters < 8

- If the -lt0 is specified, the tabulation processing is not performed, and the tab codes are output.

- If the number of characters is omitted, the number of expansion characters of a tab becomes 8 characters.

- If the list file specification specifies nothing, the -lt option is invalid.

[Use Example]

- If the -lt option is omitted, the compiler presumes that the -lt8 option was specified and the number of blanks

to be output from the HT code is set to 8.

- The number of blanks to be output from the HT code is set to 1.

-lt[number-of-characters]

C>cc78k0r -cf1166a0 prime.c -p

C>cc78k0r -cf1166a0 prime.c -p -lt1

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 123

(4) -lf

[Description format]

- Interpretation when omitted

The new page break code will not be added.

[Function]

- The -lf option specifies adding the new page break code at the end of each list file.

[Description]

- If the list file specification specifies nothing, the -lf option is invalid.

[Use Example]

- To add the new page break code at the end of the assembler source module file (prime.asm), describe as:

-lf

C>cc78k0r -cf1166a0 prime.c -a -lf

124 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

(5) -li

[Description format]

- Interpretation when omitted

No C sources of the include file will be added.

[Function]

- The -li option adds the C source of the include file to the assembler source module file with C source

comments.

[Description]

- If the -sa option is not specified, this option is ignored.

[Use Example]

- To add the C source file of the include file to the assembler source module file (prime.asm) with C source

comments, describe as:

-li

C>cc78k0r -cf1166a0 prime.c -sa -li

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 125

Warning output specification

(1) -w

[Description format]

- Interpretation when omitted

-w1

[Function]

- The -w option specifies whether a warning message is output to the console.

[Application]

- This option specifies whether to output warning messages to the console.

Detailed messages can also be output.

[Description]

- The levels of the warning message are given below.

- If the -e or -se option is specified, the warning messages are output to the error list file.

- Level 0 indicates not to output warning messages to the console and the error list file (when -e or -se is

specified).

[Use Example]

- If the -w option is omitted, the compiler presumes that the -w1 option was specified and outputs normal

warning messages.

-w[level]

Level Description

0 Do not output warning messages.

1 Output normal warning messages.

2 Output detailed warning messages.

C>cc78k0r -cf1166a0 prime.c

126 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Execution state display specification

(1) -v/-nv

[Description formats]

- Interpretation when omitted

-nv

[Function]

- The -v option outputs the execution state of the current compilation to the console.

- The -nv option invalidates the -v option.

[Application]

- Specify this option to check the execution status of compilation.

[Description]

- The phase name and function names in the process are output.

- If both the -v and -nv options are simultaneously specified, the last specified one is valid.

[Use Example]

- To output the current status of compilation to the console, describe as:

-v
-nv

C>cc78k0r -cf1166a0 prime.c -v

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 127

Parameter file specification

(1) -f

[Description format]

- Interpretation when omitted

The input of an option and an input file name is possible only from a command line.

[Function]

- The -f option specifies the input of the options or input file name from the specified file.

[Application]

- When sufficient information for starting the CC78K0R cannot be specified in a command line because

multiple options are input while compiling, specify the -f option.

- When specifying options repeatedly for compilation, describe the options in the parameter file and specify

the -f option.

[Description]

- Parameter file nesting is not allowed.

- The number of characters that can be described in a parameter file is not limited.

- Spaces and tabs delimit the options or input file names.

- The options or input file names described in the parameter file are expanded at the location of the parameter

file specification in the command line.

- The prioritization of the expanded options is that the last specified one is valid.

- Characters described after the ";" and "#" are interpreted as comments until the end of the line.

[Use Example]

- Contents of the parameter file (prime.pcc)

The parameter file (prime.pcc) is used in the compilation.

-ffile-name

; parameter file
prime.c -cf1166a0 -aprime.asm -e -x

C>cc78k0r -fprime.pcc

128 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Temporary file creation folder specification

(1) -t

[Description format]

- Interpretation when omitted

The temporary files are created in the drive folder specified by the environment variable TMP. If not

specified, the files are created in the current drive and current folder.

[Function]

- The -t option specifies the drive and folder where the temporary files are created.

[Application]

- The location for creating the temporary files can be specified.

[Description]

- Even if there are temporary files that have been created previously, if a file is not protected, it is overwritten

the next time it is created.

- A temporary file expands in memory to the required memory size.

If the required memory size is no longer available, the temporary file is created in the specified folder and

the memory contents are written to the file. Accesses to subsequent temporary files are to files not in

memory.

- The temporary files are deleted when compilation ends. By pressing CTRL-C, the files are deleted when

compilation stops.

[Use Example]

- To output the temporary files to the tmp folder, describe as:

-tfolder

C>cc78k0r -cf1166a0 prime.c -ttmp

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 129

Help specification

(1) --/-?/-h

[Description formats]

- Interpretation when omitted

Nothing is displayed

[Function]

- The --, -?, and -h options display brief explanations of the options and the help messages such as the

default options on the console (valid only in the command lineNote).

Note Do not specify this option in PM+. To reference help in PM+, click the [Help] button in the [Compiler

Options] dialog box.

[Application]

- The option and its description are displayed. Refer to them when running the CC78K0R.

[Description]

- If the --, -?, or -h option is specified, all of the other compiler options become invalid.

- When viewing the continuation of a displayed help message, press the [Enter] key. To exit the display

before the end, press any character other than the [Enter] key, and then press the [Enter] key.

[Use Example]

- To display the help messages on the console, describe as:

--
-?
-h

C>cc78k0r -h

130 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Function expansion specification

(1) -z/-nz

[Description formats]

- Interpretation when omitted

-nz

[Function]

- The -z option enables extended functions.

- The -nz option invalidates the -z option.

- Types must not be omitted, otherwise, Fatal error (F0012) will occur.

[Application]

- The functions for processing by the following type specifications are available for the 78K0R Series

expansion functions.

-ztype (Multiple specifications are possible)
-nz

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 131

[Description]

- The type specifications of the -z option are as follows.

Note s, e, and n cannot be specified simultaneously.

[Use Example]

- The characters after "//" until the line return in the C source (prime.c) are interpreted as a comment. Also,

nested comments "/* */" are allowed.

Type Specification Description

p The characters after "//" until the line return are interpreted as a comment.

c Nested comments "/* */" are allowed.

sNote Interprets the type of kanji (2-byte character) in comments as SJIS code.

eNote Interprets the type of kanji in comments as EUC code.

nNote Interprets comments as not containing kanji codes (2-byte codes).

b char-/unsigned char-type argument and return value are not int-extended.

a Functions not in the ANSI standard are illegal. The ANSI-compliant portion of
the functions are valid.
Specifically, the following tasks are performed.
- The following are no longer reserved words.

callt, noauto, norec, sreg, bit, boolean, #asm, #endasm
- The trigraph sequence (3-character representation) becomes valid.
- The compiler-defined macro __STDC__ is 1.
- fData allocation to the last one byte of a 64 KB boundary area is enabled by

performing a relational expression for the far pointer for three bytes.
- The following warning is output for a char type bit field.

(CC78K0R warning W0787: Bit field type is char)
- If -w2 is specified, the following warnings are output for the -qc, -zp, -zc

options.
(CC78K0R warning W0029: '-QC' option is not portable)
(CC78K0R warning W0031: '-ZP' option is not portable)
(CC78K0R warning W0032: '-ZC' option is not portable)

- If -w2 is specified, the following warning is output for each #pragma
statement.
(CC78K0R warning W0849: #pragma statement is not portable)

- If -w2 is specified, the following warning is output for an __asm statement
and the assemble output is performed.
(CC78K0R warning W0850: Asm statement is not portable)

- If -w2 is specified, the following error is output for an #asm to #endasm
block.
(CC78K0R error E0801: Undefined control, etc.)

f Outputs object from flash.

C>cc78k0r -cf1166a0 prime.c -zpc

132 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

Device file search path

(1) -y

[Description format]

- Interpretation when omitted

Normal search path only

Remark The normal search paths are as follows.

(i) <..\..\..\dev> (for the path where cc78k0r.exe started)

(ii) Path where the CC78K0R started

(iii) Current folder

(iv) PATH environment variable

[Function]

- The -y option first searches the path specified as the search path for reading device files. If it does not exist,

the normal paths are searched.

[Application]

- If the device file is not installed in the normal search path, but in a special folder, the path is specified by this

option.

[Caution]

- When using PM+, a folder is determined when registering a device file at "Device Name" in the [Project

Setup] dialog box. Therefore, it is not necessary to specify this option when setting options with this

compiler.

[Use Example]

- To search "C:\tmp\dev" first to read the device file, describe as:

-yfolder

C>cc78k0r -cf1166a0 -yC:\tmp\dev

CHAPTER 5 COMPILER OPTIONS

User’s Manual U17838EJ1V0UM 133

Memory model specification

(1) -m

[Description format]

- Interpretation when omitted

-mm

[Function]

- The -m option specifies the memory model used for compilation.

- Multiple models cannot be specified at the same time.

- Types must not be omitted; otherwise, the fatal error (F0012) will occur.

[Application]

- By specifying a memory model, whether each function and variable is allocated in the near or far area is

specified.

- If a __near or __far qualifier is described for functions or variables in a C source, specification of the near or

far area that is specified by the __near or __far qualifier takes precedence.

[Description]

- The following items are available for specifying the memory model with the -m option.

Remark Even if a memory model that consists of a data portion or code portion of 64 KB (max.) is

specified, functions and variables for which the __far qualifier is specified can be allocated to

the space of 1 MB (max.).

Memory model specification specifies the location of functions or variables for which the __far

qualifier is not specified.

-mtype

Type Specifications Memory Model Explanation

s Small model Considers the memory to consist of a code portion 64 KB
(max.) and a data portion of 64 KB (max.), 128 KB in total,
and specifies the near or far area.

m Medium model Considers the memory to consist of a code portion of 1
MB (max.) and a data portion 64 KB (max.), 1 MB in total,
and specifies the near or far area.

c Compact model Considers the memory to consist of a code portion of 64
KB (max.) and a data portion of 1 MB (max.), 1 MB in total,
and specifies the near or far area.

l Large model Considers the memory to consist of a code portion of 1
MB (max.) and a data portion of 1 MB (max.), 1 MB in
total, and specifies the near or far area.

134 User’s Manual U17838EJ1V0UM

CHAPTER 5 COMPILER OPTIONS

[Use Example]

- To use the small model for the memory model during compilation, describe as:

C>cc78k0r -cf1166a0 prime.c -ms

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 135

CHAPTER 6 C COMPILER OUTPUT FILES

This chapter describes the files that the CC78K0R outputs.

The CC78K0R outputs the following files.

- Object Module File

- Assembler Source Module File

- Error List File

- Preprocess List File

- Cross-reference List File

6.1 Object Module File

The object module file is a binary image file containing C source program compilation results.

If the debug data output option (-g) has been specified, the object module file will also contain debug data.

136 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

6.2 Assembler Source Module File

The assembler source module file is an ASCII image list of C source program compilation results, and is a

source module file in assembly language that corresponds to the target C source program.

It can also include the C source program to this file as comments by setting the assembler source module file

creation specification option (-sa).

[Output format]

 ; 78K0R Series C Compiler V(1)x.xx Assembler Source
 ; Date: (2)xxxxx Time: (3)xxxxx

 ; Command : (4)-cf1166a0 prime.c –sa
 ; In-file : (5)prime.c
 ; Asm-file : (6)prime.asm
 ; Para-file : (7)

 $PROCESSOR ((8)f1166a0)
(9) $DEBUG
(10)$NODEBUGA
(11)$KANJICODE SJIS
(12)$TOL_INF 03FH , 100H , 00H , 00H , 00H

(13)$DGS FIL_NAM , .file , 034H , 0FFFEH , 03FH , 067H , 01H , 00H
 :
(14) EXTRN _@RTARG0
 :
 ; line (15)1 : (16)#define TRUE 1
 ; line (15)2 : (16)#define FALSE 0
 ; line (15)3 : (16)#define SIZE 200
 :
(14)_main :
(17)$DGL 1 , 14
(14) push hl ; (21) [INF] 1 , 1
(14) subw sp , #08H ; (21) [INF] 2 , 1
(14) movw ax , sp ; (21) [INF] 2 , 1
(14) movw hl , ax ; (21) [INF] 1 , 1
 :
(18)??bf_main :
 :
 ; (22)*** Code Information ***
 ;
 ; (23)$FILE C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\CC78K0R
\prime.c
 ;
 ; (24)$FUNC main (8)
 ; (25) bc = (void)
 ; (26) CODE SIZE = 116 bytes , CLOCK_SIZE = 86 clocks , STACK_SIZE
= 16 bytes
 ;
 ; (27)CALL printf (18)
 ; (28) bc = (pointer:ax , int : [sp + 2])
 ;
 ; (27)$CALL putchar (20)
 ; (28) bc = (int : ax) ;
 ;
 ; (27)$CALL printf (25)

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 137

 ; (28) bc = (pointer : ax , int : [sp + 2])
 ;
 ; (24)$FUNC printf (31)
 ; (25) bc = (pointer s : ax , int i : [sp + 4])
 ; (26) CODE SIZE = 23 bytes , CLOCK_SIZE = 22 clocks , STACK_SIZE =
14 bytes
 ;
 ; (24)$FUNC putchar (41)
 ; (25) bc = (char c : x)
 ; (26) CODE SIZE = 16 bytes , CLOCK_SIZE = 18 clocks , STACK_SIZE =
6 bytes

 ; Target chip : (19)uPD78F1166_A0
 ; Device file : (20)Vx.xx

Item
Number Description Number of

Columns Format

(1) Version number 4 (fixed) Displayed in "x.yz" format

(2) Date 11 (fixed) System date (Displayed in "DD Mmm YYYY"
format)

(3) Time 8 (fixed) System time (Displayed in "HH:MM:SS" format)

(4) Command line - Outputs the command line contents following
"CC78K0R".
Contents after column 80 are output beginning at
column 15 on the next line. A semicolon (;) is
output to column 1. One or more white-space
characters or tabs are replaced by a single white-
space character.

(5) C source module file
name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".c" is attached as the file
type (extension). Contents after column 80 are
output beginning at column 15 on the next line. A
semicolon (;) is output to column 1.

(6) Assembler source
module file name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".asm" is attached as the
file type (extension). Contents after column 80
are output beginning at column 15 on the next
line. A semicolon (;) is output to column 1.

(7) Parameter file contents - Outputs the parameter file contents.
Contents after column 80 are output beginning at
column 15 on the next line. A semicolon (;) is
output to column 1. One or more white-space
characters or tabs are replaced by a single white-
space character.

(8) Device type Maximum 6
(variable)

This character string is specified via the -c option.

(9) Debug data Maximum 8
(variable)

Outputs DEBUG control. Output is either
$DEBUG or $NODEBUG.

(10) Debug information
control of assembler

9 (fixed) Outputs NODEBUGA control. Output is
$NODEBUGA.

138 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

(11) Kanji type information Maximum 15
(variable)

Outputs the kanji code (2-byte code) type.
Output is $KANJICODE SJIS, $KANJICODE
EUC, or $KANJICODE NONE.

(12) Tool information 37 (fixed) Outputs tool information, version number, error
information, specified options, etc. (information
starts with $TOL_INF).

(13) Symbol information - Outputs symbol information (information starts
with $DGS). This information is output only when
the debug data output option has been specified.
Even then, it is not output if the -g1 option has
been specified.

(14) Assembler source - Outputs an assembler source file containing the
compilation results.

(15) Line number 4 (fixed) Outputs the C source module file's line numbers
as right-aligned decimal value with zeros
suppressed.

(16) C source - This is the input C source image.
Contents after column 80 are output beginning at
column 16 on the next line. A semicolon (;) is
output to column 1.

(17) Line number
information

- Line number for line number entry (information
starts with $DGL)
This information is output only when the debug
data output option has been specified. Even
then, it is not output if the -g1 option has been
specified.

(18) Labels for symbol
information creation

Maximum 34
(variable)

Outputs function label information (information
starts with ??).
This information is output only when the debug
data output option has been specified.

(19) Target device for this
compiler

Maximum 15
(variable)

Displays the target device as specified via
command line option (-c) or the source file.

(20) Device file version 6 (fixed) Displays the version number of the input device
file.

(21) Size, clock - Outputs size and clock for output instructions.
(Information starting with ;[INF]).
The number of clocks when accessing the
internal RAM area or SFR area, or when not
accessing for data, is output.
For the conditional branch instruction, the number
of clocks when the condition is established is
output.
Hazards are not considered.

(22) Function information
(start)

- Indicates start of function information.

(23) Function information
(file name)

- Outputs target source file name with full path.
(Information starting with ;$FILE).

(24) Function information
(definition function)

- Outputs function name and defined line number
as decimal code. (Information starting with
;$FUNC).

Item
Number Description Number of

Columns Format

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 139

(25) Function information
(return value,
argument of definition
function)

- Outputs the definition function's return value
register and argument information (register or
stack position).

(26) Function information
(definition function's
size, clock, stack)

- Outputs the size, clock, and maximum
consumption stacks calculated statically for the
definition function.
Only the stack size used by a function itself is
shown here.
If a function calls another function, the stack size
used by the called function is not added to the
stack size of the calling function.
CLOCK_SIZE is the result to which the number of
clocks in item (21) is added.

(27) Function information
(call function)

- Outputs the function name and function call line
number as decimal code. (Information starting
with ;$CALL).

(28) Function information
(Call function's return
value, argument)

- Outputs return value register and argument
information during function call (register or stack
position).

Item
Number Description Number of

Columns Format

140 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

6.3 Error List File

An error list file contains messages regarding any errors and warnings that occurred during compilation.

The C source program can be added to the error list by specifying a compiler option. An error list file that

contains a C source program can be used as a C source module file by revising the C source program and deleting

comments, such as the list header.

6.3.1 Error list file with C source

[Output format]

/*
78K0R Series C Compiler V(1)x.xx Error List Date : (2)xxxxx Time : (3)xxxxx

Command : (4)-cf1166a0 prime.c -se
C-file : (5)prime.c
Err-file : (6)prime.cer
Para-file : (7)
*/

(8)#define TRUE 1
(8)#define FALSE 0
(8)#define SIZE 200

(8)char mark [SIZE + 1] ;

(8)main ()
(8){
(8) int i , prime , k , count ;
(8) cont = 0 ;
 *** CC78K0R error (9)E0711 : (10)Undeclared 'cont' ; function 'main'
(8) for (i = 0 ; i <= SIZE ; i++)
(8) mark [i] = TRUE ;
(8) for (i = 0 ; i <= SIZE ; i++) {
(8) if (mark [i]) {
 prime = i + i + 3 ;
 printf ("%6d" , prime) ;
 *** CC78K0R warning (9)W0745 : (10)Expected function prototype
 :
/*
 (11)Target chip : uPD78F1166_A0
 (12)Device file : Vx.xx
Compilation complete, (13)1 error(s) and (14)5 warning(s) found.
*/

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 141

Item
Number Description Number of

Columns Format

(1) Version number 4 (fixed) Displayed in "x.yz" format

(2) Date 11 (fixed) System date (Displayed in "DD Mmm YYYY"
format)

(3) Time 8 (fixed) System time (Displayed in "HH:MM:SS" format)

(4) Command line - Outputs the command line contents following
"CC78K0R".
Contents after column 80 are output beginning at
column 13 on the next line. One or more white-
space characters or tabs are replaced by a single
white-space character.

(5) C source module
file name

Number of
characters enabled
by OS (variable)

Outputs the specified file name.
If the file type is omitted, ".c" is attached as the file
type (extension). Contents after column 80 are
output beginning at column 13 on the next line.

(6) Error list file name Number of
characters enabled
by OS (variable)

Outputs the specified file name.
If the file type is omitted, ".cer" is attached.
Contents after column 80 are output beginning at
column 13 on the next line.

(7) Parameter file
contents

- Outputs the parameter file contents.
Contents after column 80 are output beginning at
column 13 on the next line. One or more white-
space characters or tabs are replaced by a single
white-space character.

(8) C source - This is the input C source image.
Contents after column 80 are not wrapped to the
next line.

(9) Error message
number

5 (fixed) Outputs error numbers in the "#nnnn" format.
"F" is output if "#" is an abort error, "E" if it is a fatal
error, "C" if is an Internal error, and "W" if it is a
warning.
"nnnn" (the error number) is displayed as a 4-digit
decimal number (no zero suppression).

(10) Error message - See "CHAPTER 9 ERROR MESSAGES".
Contents after column 80 are not wrapped to the
next line.

(11) Target device for
this compiler

Maximum 15
(variable)

Displays the target device as specified via
command line option (-c) or the source file.

(12) Device file
version

6 (fixed) Displays the version number of the input device
file.

(13) Number of errors 4 (fixed) Outputs a right-aligned decimal value with zeroes
suppressed.

(14) Number of
warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes
suppressed.

142 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

6.3.2 Error list file with error message only

[Output format]

(1)prime.c ((2)18) : CC78K0R warning (3)W0745 : (4)Expected function prototype
(1)prime.c ((2)20) : CC78K0R warning (3)W0745 : (4)Expected function prototype
(1)prime.c ((2)26) : CC78K0R warning (3)W0622 : (4)No return value
(1)prime.c ((2)37) : CC78K0R warning (3)W0622 : (4)No return value
(1)prime.c ((2)44) : CC78K0R warning (3)W0622 : (4)No return value

Target chip : (7)uPD78F1166_A0
Device file : (8)Vx.xx

Compilation complete, (5)0 error(s) and (6)5 warning(s) found.

Item
Number Description Number of

Columns Format

(1) C source module
file name

Number of
characters enabled
by OS

Outputs the specified file name.
If the file type is omitted, ".c" is attached as the file
type (extension).

(2) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros
suppressed.

(3) Error message
number

5 (fixed) Outputs the error message number in "#nnnn"
format.
"F" is output if "#" is an abort error, "E" if it is a fatal
error, "C" if is an internal error, and "W" if it is a
warning.
"nnnn" (the error number) is displayed as a 4-digit
decimal number (no zero suppression).

(4) Error message - See "CHAPTER 9 ERROR MESSAGES".

(5) Number of errors 4 (fixed) Outputs a right-aligned decimal value with zeroes
suppressed.

(6) Number of
warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes
suppressed.

(7) Target device for
this compiler

Maximum 15
(variable)

Displays the target device as specified via
command line option -c or the source file.

(8) Device file
version

6 (fixed) Displays the version number of the input device
file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 143

6.4 Preprocess List File

The preprocess list file is an ASCII image file that contains results of C source program preprocessing only.

When specifying the -k option, a preprocess list file can be used as a C source module file unless "n" has been

specified as the processing type. When the -kd option is specified, the list with #define expansion is output.

[Output format]

<When PAGEWIDTH=80>

/*
78K0R Series C Compiler V(1)x.xx Preprocess List Date : (2)xxxxx Page :
(3)xxx

Command : (4)-cf1166a0 prime.c -p -lw80
In-file : (5)prime.c
PPL-file : (6)prime.ppl
Para-file : (7)
*/

 (8)1 : (9)#define TRUE 1
 (8)2 : (9)#define FALSE 0
 (8)3 : (9)#define SIZE 200
 (8)4 : (9)
 (8)5 : (9)char mark [SIZE + 1] ;
 (8)6 : (9)
/*
 (10)Target chip : uPD78F1166_A0
 (11)Device file : Vx.xx
*/

Item
Number Description Number of

Columns Format

(1) Version number 4 (fixed) Displayed in "x.yz" format

(2) Date 11 (fixed) System date (Displayed in "DD Mmm YYYY" format)

(3) Number of
pages

4 (fixed) Outputs a right-aligned decimal number with zeros
suppressed.

(4) Command line - Outputs the command line contents following
"CC78K0R".
Contents that exceed the line length are output
beginning at column 13 on the next line. One or more
white-space characters or tabs are replaced by a single
white-space character.

(5) C source module
file name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".c" is attached as the file type
(extension). Contents that exceed the line length are
output beginning at column 13 on the next line.

(6) Preprocess list
file name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".ppl" is attached. Contents
that exceed the line length are output beginning at
column 13 on the next line.

144 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

(7) Parameter file
contents

- Outputs the parameter file contents.
Contents that exceed the line length are output
beginning at column 13 on the next line. A semicolon
";" is output to column 1. One or more white-space
characters or tabs are replaced by a single white-space
character.

(8) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros
suppressed.

(9) C source - This is the input C source.
Contents that exceed the line length are output
beginning at column 9 on the next line.

(10) Target device for
this compiler

Maximum 15
(variable)

Indicates the target device that is specified by a
command line option or in a source file

(11) Device file
version

6 (fixed) Displays the version number of the input device file.

Item
Number Description Number of

Columns Format

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U17838EJ1V0UM 145

6.5 Cross-reference List File

Cross-reference list files contain lists of identifiers such as declarations, definitions, referenced functions, and

variables. They also include other information, such as attributes and line numbers. These are output in the order

they are found.

[Output format]

<When PAGEWIDTH=80>

78K0R Series C Compiler V(1)x.xx Cross reference List
 Date: (2)xxxxx Page: (3)xxx

Command : (4) -cf1166a0 prime.c -x -lw80
In-file : (5)prime.c
Xref-file : (6)prime.xrf
Para-file : (7)
Inc-file : [n] (8)

(9)ATTRIB (10)MODIFY (11)TYPE (12)SYMBOL (13)DEFINE (14)REFERENCE

EXTERN NEAR array mark 5 14 16 22
EXTERN FAR func main 7
AUTO1 int i 9 13 13 13 14
 15 15 15 16
 17 17 21
AUTO1 int prime 9 17 18 21 21
AUTO1 int k 9 21 21 21 22
AUTO1 int count 9 11 19 20 25
 :
/*(15)Target chip : uPD78F1166_A0
 (16)Device file : Vx.xx */

Item
Number Description Number of

Columns Format

(1) Version number 4 Displayed in "x.yz" format

(2) Date 11 (fixed) System date (Displayed in "DD Mmm YYYY" format)

(3) Number of
pages

4 (fixed) Outputs a right-aligned decimal number with zeros
suppressed.

(4) Command line - Outputs the command line contents following
"CC78K0R".
Contents that exceed the line length are output
beginning at column 13 on the next line. One or more
white-space characters or tabs are replaced by a single
white-space character.

(5) C source module
file name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".c" is attached as the file type
(extension). Contents that exceed the line length are
output beginning at column 13 on the next line.

(6) Cross-reference
list file name

Number of
characters
enabled by OS

Outputs the specified file name.
If the file type is omitted, ".xrf" is attached. Contents
that exceed the line length are output beginning at
column 13 on the next line.

146 User’s Manual U17838EJ1V0UM

CHAPTER 6 C COMPILER OUTPUT FILES

(7) Parameter file
contents

- Outputs the parameter file contents.
Contents that exceed the line length are output
beginning at column 13 on the next line. One or more
white-space characters or tabs are replaced by a single
white-space character.

(8) Include file Number of
characters
enabled by OS

Outputs the file name specified in the C source.
"n" is a number starting with "1" that indicates the
include file number. Contents that exceed the line
length are output beginning at column 13 on the next
line. This line is not output when there is no include file.

(9) Symbol attribute 6 (fixed) Displays the symbol attributes.
An external variable is displayed as EXTERN, an
external static variable as EXSTC, an internal static
variable as INSTC, an auto variable as AUTOnn, a
register variable as REGnn (where nn is the scope
value, a numerical value that begins with "1"), an
external typedef declaration as EXTYP, an internal
typedef declaration as INTYP, a label as LABEL, a
structure or union tag as TAG, a member as MEMBER,
and a function parameter as PARAM.

(10) Symbol qualifier
attributes

6 (fixed) Displays the symbol qualifier attributes (left-aligned).
A const variable is displayed as CONST, a volatile
variable as VLT, a callt function as CALLT, a norec
function as NOREC, an sreg-bit variable as SREG, an
sfr variable as RWSFR, a read-only sfr variable as
ROSFR, a write-only sfr variable as WOSFR, an
interrupt function as VECT, functions and variables allo-
cated in near area as NEAR, functions and variables
allocated in far area as FAR.

(11) Symbol type 7 (fixed) Displays the symbol type. Types include char, int,
short, long, and field. "u" is added at the start for
unsigned type.
Additional types include void, float, double, ldouble
(long double), func, array, pointer, struct, union, enum,
bit, inter, and #define.

(12) Symbol name 15 (fixed) If the symbol name exceeds 15 characters and fit into a
line, that name is output as it is. If it exceeds 15
characters and one line, the excess is output from
column 23 on the next line and items (13) and (14) are
output from column 39 on the next line.

(13) Symbol definition
line number

7 (fixed) This outputs the line number and file name defined for
the symbol, and is displayed as:
line number (5-digit): include file number

(14) Symbol
reference line
number

7 (fixed) This outputs the line number and file name that
reference the symbol, and is displayed as:
line number (5-digit): include file number
If the line contents exceed the line length, the remaining
contents are output beginning at column 47 of the next
line.

(15) Target device for
this compiler

Maximum 15
(variable)

Displays the target device as specified via command
line option -c or the source file.

(16) Device file
version

6 (fixed) Displays the version number of the input device file.

Item
Number Description Number of

Columns Format

CHAPTER 7 USING C COMPILER

User’s Manual U17838EJ1V0UM 147

CHAPTER 7 USING C COMPILER

This chapter introduces methods for efficiently using the CC78K0R.

7.1 Efficient Operation (EXIT Status Function)

When the compilation ends, the CC78K0R returns the top error level generated during compilation to the

operating system as the EXIT status.

The EXIT status is shown below.

 If PM+ is not used and the CC78K0R is started in the command line, efficient operation can be further improved

by using the status in a batch file.

[Use Example]

[Description]

- When the C source passed to %1 was compiled, a fatal error was generated. Essentially, the process

continues after an error message was output. But using the 1 returned in the EXIT status, execution can be

stopped without processing the next C source in %2.

Table 7-1 EXIT Status

Processing EXIT Statuses

Normal operation 0

WARNING occurs 0

FATAL ERROR occurs 1

ABORT 2

cc78k0r -cf1166a0 %1
IF ERRORLEVEL 1 GOTO ERR
cc78k0r -cf1166a0 %2
IF ERRORLEVEL 1 GOTO ERR
GOTO EXIT
ERR
echo Some error found.
EXIT

148 User’s Manual U17838EJ1V0UM

CHAPTER 7 USING C COMPILER

7.2 Setting Up Development Environment (Environment Variables)

The CC78K0R supports the following environment variables.

[Use Example]

<When using command prompt>

[Description]

- Executable files are searched in the sequence of C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\bin, C:\bat, C:\cc78k0r, C:\tool by path specification.

- Include files are searched from C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r.

If no setting is made, search is performed from C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\inc78k0r (if the CC78K0R is installed to C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx).

- Library files are searched from C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r during

linking.

If no setting is made, search is performed from C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx\lib78k0r (if the CC78K0R is installed to C:\Program Files\NEC Electronics

Tools\CC78K0R\Vx.xx).

- Temporary files are created in C:\tmp.

- Shift JIS code is used as kanji code.

[Caution]

Do not set environment variables when using PM+.

Table 7-2 Environment Variables

Environment Variables Description

PATH Search path for executable forms

INC78K0R Search path for include files

TMP Search path for temporary files

LANG78K Type of kanji code (2-byte code) (can be specified by the -zs, -ze, or -zn
option)
(sjis: shift JIS code, euc: EUC code, none: no 2-byte codes)

LIB78K0R Search path for libraries

; AUTOEXEC.BAT
PATH C:\Program Files\NEC Electronics
Tools\CC78K0R\Vx.xx\bin;C:\bat;C:\cc78k0r;C:\tool
VERIFY ON
BREAK ON
SET INC78K0R=C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\inc78k0r
SET LIB78K0R=C:\Program Files\NEC Electronics Tools\CC78K0R\Vx.xx\lib78k0r
SET TMP=C:\tmp
SET LANG78K=sjis

CHAPTER 7 USING C COMPILER

User’s Manual U17838EJ1V0UM 149

7.3 Interrupting Compilation

If compiling was started from the command line, the compilation can be interrupted by the command key input

(CTRL-C). If 'break on' was specified, control returns to the operating system unrelated to the timing of the key

input. And for 'break off,' control returns to the operating system only when the screen is displayed. Then all of the

open temporary files and output files are deleted.

If you want to stop a build (make) in PM+, select [Stop build] in the [Run] menu in the PM+, or click the [Stop

Build] button in the tool bar. When building in PM+, command key input is not accepted.

150 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

CHAPTER 8 STARTUP ROUTINES

To execute a C language program, a program is needed to activate ROMization for inclusion in the system and

the user program (main function). This program is called the startup routine.

To execute a program written by a user, a startup routine must be created for that program. The CC78K0R

provides the object files of the startup routines that include the processing required before program execution and

the source files (assembly source) of the startup routines that the user can adapt to the system. By linking the

object file of the startup routine to the user program, an executable program can be created even if the user does

not describe the execution preprocess.

This chapter describes the contents, uses, and improvements of the startup routines.

8.1 File Organization

The files related to a startup routine are stored in the folder src\cc78k0r of the C compiler package.

The contents of the folders under src\cc78k0r are shown next.

Program Files\NEC Electronics Tools\

CC78K0R\Vx.xx\bin\

CC78K0R\Vx.xx\smp78k0r\CC78K0R\

CC78K0R\Vx.xx\inc78k0r\

CC78K0R\Vx.xx\lib78k0r\

CC78K0R\Vx.xx\src\cc78k0r\

bat\

lib\

src\

CC78K0R\Vx.xx\hlp\

Folders that contain files related to startup routines

CC78K0R\Vx.xx\doc\

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 151

8.1.1 “bat” folder contents

A batch file in this folder cannot be used in PM+.

Use these batch files only when the source, such as for a startup routine, must be modified.

Note 1 Since ROMization routines are in the library, the library is also updated by this batch file.

Note 2 The setjmp and longjmp that save the compiler reserved area (saddr area secured for KREGxx, etc.),

and the setjmp and longjmp that do not save the compiler reserved area (only the registers are

saved) are created.

Table 8-1 “bat” Folder Contents

Batch File Name Description

mkstup.bat Assemble batch file for startup routine

reprom.bat Batch file for updating rom.asmNote 1

repgetc.bat Batch file for updating getchar.asm

repputc.bat Batch file for updating putchar.asm

repputcs.bat Batch file for updating _putchar.asm

repselo.bat Batch file for updating setjmp.asm and longjmp.asm
(the compiler reserved area is saved)Note 2

repselon.bat Batch file for updating setjmp.asm and longjmp.asm
(the compiler reserved area is not saved)Note 2

repvect.bat Batch file for updating vect*.asm

152 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

8.1.2 “src” folder contents

The src folder contains the assembler sources of the startup routines, ROM routines, error processing routines,

and standard library functions (a portion). If the source must be modified to conform to the system, the object files

for linking can be created by modifying this assembler source and using a batch file in the bat folder to assemble.

Note A file name with "n" added is a startup routine that does not have standard library processing. Use only if

the standard library will not be used.

cstartb*.asm is a startup routine for boot area and cstarte*.asm is a startup routine for flash area.

Table 8-2 “src” Folder Contents

Startup Routine Source File Name Description

cstart.asmNote Source file for startup routine (when standard library is used)

cstartn.asmNote Source file for startup routine (when standard library is not used)

rom.asm Source file for ROMization routine

_putchar.asm _putchar function

putchar.asm putchar function

getchar.asm getchar function

longjmp.asm longjmp function

setjmp.asm setjmp function

vectxx.asm Vector source for each interrupt (xx: vector address)

def.inc For setting library according to type

macro.inc Macro definition for each typical pattern

vect.inc Start address of flash memory area branch table

library.inc Selection of library assigned to boot area explicitly

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 153

8.1.3 “lib” folder contents

The lib folder contains the object files that were assembled from the source files of startup routines and libraries.

This object file can be linked with programs for any 78K0R Series target device. If the code modification is not

especially needed, link the default object file as is. This object file is overwritten when batch file mkstup.bat, which

is provided by the CC78K0R, is executed.

For details on the file contents, refer to "2.5.1 Library files".

Table 8-3 “lib” Folder Contents

File Name
File Role

Normal Boot Area Flash Area

cl0rm.lib
cl0rl.lib
cl0rmf.lib
cl0rlf.lib
cl0rxm.lib
cl0rxl.lib

cl0rm.lib
cl0rl.lib
cl0rmf.lib
cl0rlf.lib
cl0rxm.lib
cl0rxl.lib

cl0rme.lib
cl0rle.lib
cl0rmfe.lib
cl0rlfe.lib
cl0rxme.lib
cl0rxle.lib

Library (runtime and standard libraries)

s0rm.rel
s0rml.rel
s0rl.rel
s0rll.rel

s0rmb.rel
s0rmlb.rel
s0rlb.rel
s0rllb.rel

s0rme.rel
s0rmle.rel
s0rle.rel
s0rlle.rel

Object files for startup routines

154 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

8.2 Batch File Description

8.2.1 Batch files for creating startup routines

The mkstup.bat in the bat folder is used to create the object file of a startup routine.

The assembler in the RA78K0R Assembler Package is required for mkstup.bat. Therefore, if PATH is not

specified, specify it and run.

How to use this file is described next.

[How To Use]

- Execute the following command line in the src\cc78k0r\bat folder containing mkstup.bat.

Note Refer to the user's manual of the device used or "Device Files Operating Precautions".

[Use Example]

- The startup routine to be used is created when the target device is the uPD78F1166_A0.

The mkstup.bat batch file is stored in the form that overwrites the object file of the startup routine in the lib

folder at the same level as the bat folder as shown below.

The startup routine that is required to link the object file is output to each folder.

The names of the object files created in lib are shown below.

mkstup device-typeNote

mkstup f1166a0

lib s0rm.rel
s0rmb.rel
s0rme.rel
s0rml.rel
s0rmlb.rel
s0rmle.rel
s0rl.rel
s0rlb.rel
s0rle.rel
s0rll.rel
s0rllb.rel
s0rlle.rel

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 155

8.3 Startup Routines

8.3.1 Overview of startup routines

A startup routine makes the preparations needed to execute the C source program written by the user. By

linking to a user program, a load module file that achieves the objective can be created.

(1) Function

Memory initialization, ROMization for inclusion in the system, and the starting and ending processes for the

C source program are performed.

- ROMization

The initial values of the external variables, static variables, and sreg variables defined in the C source

program are located in ROM. However, the variable values cannot be rewritten; only placed in ROM as

is. Therefore, the initial values located in ROM must be copied to RAM. This process is called a

ROMization. When a program is written to ROM, it can be run by a microcontroller.

(2) Configuration

The figure below shows the programs related to the startup routines and their configurations.

Note 1 If the standard library is used, the processing related to the library is performed first. Files that

do not have an “n” appended at the end of the name in the startup routine source file are

processed in relation to the standard library. Files with the appended “n” are not processed.

Note 2 The hdwinit function is a function created when needed by the user as the function to initialize a

peripheral device (sfr). By creating the hdwinit function, the timing of the initial settings can be

sped up (the initial settings can be made in the main function). If the user does not create the

hdwinit function, the process returns without doing anything.

ROMization

For system inclusion

PreprocessNote 1

 Initial settings
 (hdwinit function call) Note 2

Start main function

Postprocess

Definitions of labels used
 in ROM processing

156 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

cstart.asm and cstartn.asm have nearly identical contents.

The table below shows the differences between cstart.asm and cstartn.asm.

(3) Uses of startup routines

Thetable below lists the names of the object files for the source files provided by the CC78K0R.

Note 1 *: If the standard library is not used, "n" is added. If used, the character is not added.

Note 2 *: "b" is startup routine for boot area, and "e" is that for flash area.

Note 3 *: If a fixed area in the standard library is used, "l" is added.

Note 4 *: if the small model or compact model is specified, "m" is added. if the compact model or large

model is specified, "l" is added.

if the small model or compact model is specified, use the startup routine that "l" is added when

variables are allocated in the far area.

Remark rom.asm defines the label indicating the final address of the data copied by ROMization.

The object of the rom.asm is included in the library.

Type of Startup Routine Uses Library Processing

cstart.asm Yes

cstartn.asm No

File Type Source File Object File

Startup routine cstart*.asmNote1, 2 s0r*.relNote2, 3, 4

ROM file rom.asm Included in library

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 157

8.3.2 Description of sample program (cstart.asm)

This section uses cstart.asm and rom.asm as examples to describe the contents of the startup routines. A

startup routine consists of the preprocessing, initial settings, ROMization processing, starting the main function,

and postprocessing.

Remark cstart is called in the format added _@ to its head.

(1) Preprocessing

Preprocessing in cstart.asm is described.

<cstart.asm preprocessing>

 NAME @cstart

$INCLUDE (def.inc) ; (1)
$INCLUDE (macro.inc)
 ; (2)
BRKSW EQU 1 ; brk , sbrk , calloc , free , malloc , realloc function use
EXITSW EQU 1 ; exit , atexit function use
RANDSW EQU 1 ; rand , srand function use
DIVSW EQU 1 ; div function use
LDIVSW EQU 1 ; 1div function use
FLOATSW EQU 1 ; floating point variables use
STRTOKSW EQU 1 ; strtok function use

 PUBLIC _@cstart , _@cend ; (3)

$_IF (BRKSW)
 PUBLIC _@BRKADR , _@MEMTOP , _@MEMBTM
 :
$ENDIF
 EXTRN _main , _@STBEG , _hdwinit , _@MAA ; (4)
$_IF (EXITSW)
 EXTRN _exit
$ENDIF
 ; (5)
 EXTRN _?R_INIT , _?RLINIT , _?R_INIS , _?DATA , _?DATAL , _?DATS
@@DATA DSEG BASEP ; near ; (6)

$_IF (EXITSW)
_@FNCTBL : DS 4 * 32
_@FNCENT : DS 2
 :
_@MEMTOP : DS 32
_@MEMBTM :
$ENDIF

158 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

(1) Including include files

def.inc --> For setting library according to the type.

macro.inc --> Macro definition for each typical pattern.

(2) Library switch

If standard libraries in comments are not used, by changing the EQU definition to 0, the space secured

for the processing of unused libraries and for use by the library can be conserved. The default is set to

use everything (In a startup routine without library processing, this processing is not performed).

(3) Symbol definitions

The symbols used when using the standard library are defined.

(4) External reference declaration of symbol for stack resolution

- The public symbol (_@STBEG) for stack resolution is an external reference declaration.

_@STBEG has the value of the last address in the stack area + 1.

- _@STBEG is automatically generated by specifying the symbol generation option (-s) for stack

resolution in the linker. Therefore, always specify the -s option when linking. In this case, specify

the name of the area used in the stack. If the name of the area is omitted, the RAM area is used,

but the stack area can be located anywhere by creating a link directive file. For memory mapping,

refer to the user's manual of the target device.

An example of a link directive file is shown below. The link directive file is a text file created by the

user in an ordinary editor (for details about the description method, refer to RA78K0R Assembler

Package Operation User's Manual).

<Example when -sSTACK is specified in linking>

Create lk78k0r.dr (link directive file). Since ROM and RAM are allocated as default operations by

referencing the memory map of the target device, it is not necessary to specify ROM and RAM

allocations unless they should be changed. For link directive, refer to lk78k0r.dr in the

smp78k0r\cc78k0r folder.

(5) External reference declaration of label for ROMization processing

The label for ROMization processing is defined in the postprocessing section.

(6) Securing area for standard library

The area used when using the standard library is secured.

 First address Size
 | |
memory SDR : (0xFFE20h , 0000098h)
memory STACK : (0xxxxxxh , 0xxxxxxh) <-- Specify the first
 addressand size here,
 then specify lk78k0r.dr
 by the -d linker option.
 (Example: -dlk78k0r.dr)
merge @@INIS : = SDR
merge @@DATS : = SDR
merge @@BITS : = SDR

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 159

(2) Initial settings

The initial settings in cstart.asm are described.

<Initial settings in cstart.asm>

(1) Reset vector setting

The segment of the reset vector table is defined as follows. The first address of the startup routine is

set.

(2) Mirror area setting

The mirror area is set.

For the mirror area, refer to the user's manual of the target device.

(3) Register bank setting

Register bank RB0 is set as the work register.

(4) Stack pointer (SP) setting

_@STBEG is set in the stack pointer.

_@STBEG is automatically generated by specifying the symbol generation option (-s) for stack

resolution in the linker.

(5) Hardware initialization function call

The hdwinit function is created when needed by the user as the function for initializing a peripheral

device (SFR). By creating this function, initial settings can be made to match the user's objectives.

If the user does not create the hdwinit function, the process returns without doing anything.

@@VECT00 CSEG AT 0 ; (1)
 DW _@cstart

@@LCODE CSEG BASE
_@cstart :
 SEL RB0 ; (3)
 MOV A , #_@MAA ; (2)
 MOV1 CY , A.0
 MOV1 MAA , CY
 MOVW SP , #LOWW _@STBEG ; SP <-stack begin address ; (4)
 CALL !!_hdwinit ; (5)
 :
$_IF (BRKSW OR EXITSW OR RANDSW OR FLOATSW)
 CLRW AX
$ENDIF
 :

@@VECT00 CSEG AT 0000H
 DW _@cstart

160 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

(3) ROMization processing

The ROMization processing in cstart.asm is described.

<ROMization processing>

In ROMization processing, the initial values of the external variables and the sreg variables stored in ROM are

copied to RAM. The variables to be processed have the 4 types (a) to (d) shown in the following example.

<Example>

Note The external variables without initial value and sreg variables without initial value are not copied, and

zeros are written directly to RAM.

- The figure below shows the ROMization processing for (a) External variable with initial value.

The initial value of the variable (a) is placed in @@R_INIT segment in the ROM by the CC78K0R. The

ROMization processing copies this value to the @@INIT segment in RAM (the same processes are

performed for the variable (c)).

; copy external variables having initial value
$_IF (_ESCOPY)
 MOV ES , #HIGHW _@R_INIT
$ENDIF
 MOVW HL , #LOWW _@R_INIT
 MOVW DE , #LOWW _@INIT
 BR $LINIT2
LINIT1 :
$_IF (_ESCOPY)
 MOV A , ES : [HL]
$ELSE
 MOV A , [HL]
$ENDIF
 MOV [DE] , A
 INCW HL
 INCW DE
LINIT2 :
 MOVW AX , HL
 CMPW AX , #LOWW _?R_INIT
 BNZ $LINIT1

char c = 1 ; (a) External variable with initial value

int i ; (b) External variable without initial valueNote

__sreg int si = 0 ; (c) sreg variable with initial value

__sreg char sc ; (d) sreg variable without initial valueNote

main ()
{
 :
}

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 161

- The first and end labels in the @@R_INIT segment are defined by _@R_INIT and _?R_INIT. The first

and end labels in the @@INIT segment are defined by _@INIT and _?INIT.

- The variables (b) and (d) are not copied, but zeros are directly placed in the segment determined by the

RAM. The tables below show the segment names of the ROM and RAM areas where the variables (a)

to (d) are placed, and the first and end labels of the initial values in each segment.

<ROM Area for Initial Values>

<RAM Area for Initial Values (Copy Destination)>

Variable Type Segment First Label End Label

External variable with initial value (a)
(when allocated in near area)

@@R_INIT _@R_INIT _?R_INIT

External variable with initial value (a)
(when allocated in far area)

@@RLINIT _@RLINIT _?RLINIT

sreg variable with initial value (c) @@R_INIS _@R_INIS _?R_INIS

Variable Type Segment First Label End Label

External variable with initial value (a)
(when allocated in near area)

@@INIT _@INIT _?INIT

External variable with initial value (a)
(when allocated in far area)

@@INITL _@INITL _?INITL

External variable without initial value (b)
(when allocated in near area)

@@DATA _@DATA _?DATA

External variable without initial value (b)
(when allocated in far area)

@@DATAL _@DATAL _?DATAL

sreg variable with initial value (c) @@INIS _@INIS _?INIS

sreg variable without initial value (d) @@DATS _@DATS _?DATS

@@R_INIT (segment name)

_@R_INIT :
(first label)

_?R_INIT :
(end label)

Area storing initial
value of variable (a)

@@INIT

_@INIT :

_?INIT :

Copy

162 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

(4) Starting main function and postprocessing

Starting the main function and postprocessing in cstart.asm are described.

<Starting main function and postprocessing>

(1) Starting main function

The main function is called.

(2) Starting exit function

The exit function is called if needed.

(3) Definitions of segments and labels used in ROMization processing

The segments and labels used in each variable (a) to (d) (see "(3) ROMization processing") in

ROMization processing are defined. A segment indicates the area that stores the initial value of each

variable. A label indicates the first address in each segment.

 CALL !!_main ; main () ; ; (1)
$_IF (EXITSW)
 CLRW AX
 CALL !!_exit ; exit (0) ; ; (2)
$ENDIF
 BR $$
;
_@cend :
 ; (3)
@@R_INIT CSEG UNIT64KP
_@R_INIT :
@@RLINIT CSEG UNIT64KP
_@RLINIT :
@@R_INIS CSEG UNIT64KP
_@R_INIS :
@@INIT DSEG BASEP
_@INIT :
@@INITL DSEG UNIT64KP
_@INITL :
@@DATA DSEG BASEP
_@DATA :
@@DATAL DSEG UNIT64KP
_@DATAL :
@@INIS DSEG SADDRP
_@INIS :
@@DATS DSEG SADDRP
_@DATS :
@@CALT CSEG CALLT0
@@CNST CSEG MIRRORP
@@CNSTL CSEG PAGE64KP
@@BITS BSEG
;
 END

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 163

The ROMization processing file rom.asm is described. The relocatable object file of rom.asm is in the library.

(1) Definition of labels used in ROMization processing

The labels used for each variable (a) to (d) (see "(3) ROMization processing") in ROMization

processing, are defined. These labels indicate the last address of the segment storing the initial value

of each variable.

 NAME @rom
;
 PUBLIC _?R_INIT , _?RLINIT , _?R_INIS
 PUBLIC _?INIT , _?INITL , _?DATA , _?DATAL , _?INIS , _?DATS
;
@@R_INIT CSEG UNIT64KP ; (1)
_?R_INIT :
@@RLINIT CSEG UNIT64KP
_?RLINIT :
@@R_INIS CSEG UNIT64KP
_?R_INIS :
@@INIT DSEG BASEP
_?INIT :
@@INITL DSEG UNIT64KP
_?INITL :
@@DATA DSEG BASEP
_?DATA :
@@DATAL DSEG UNIT64KP
_?DATAL :
@@INIS DSEG SADDRP
_?INIS :
@@DATS DSEG SADDRP
_?DATS :
;
 END

164 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

8.3.3 Revising startup routines

The startup routines provided by the CC78K0R can be revised to match the target system actually being used.

The essential points about revising these files are explained in this section.

(1) When revising startup routine

The essential points about revising a startup routine source file are described. After revising, use the batch

file mkstup.bat in the src\cc78k0r\bat folder to assemble the revised source file (cstart*.asm) (*:

alphanumeric symbols).

- Symbols used in standard library functions

If the library functions listed in the table below are not used, the symbols corresponding to each function

in the startup routine (cstart.asm) can be deleted. However, since the exit function is used in the startup

routine, _@FNCTBL and _@FNCENT cannot be deleted (if the exit function is deleted, these symbols

can be deleted). The symbols in the unused library functions can be deleted by changing the library

switch.

Library Function Name Symbols Used

brk
sbrk
malloc
calloc
realloc
free

_errno
_@MEMTOP
_@MEMBTM
_@BRKADR

exit _@FNCTBL
_@FNCENT

rand
srand

_@SEED

div _@DIVR

ldiv _@LDIVR

strtok _@TOKPTR

atof
strtod
Mathematical function
Floating-point runtime library

_errno

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 165

- Areas that are used for utility functions (block assignments/releases)

If the size of the area used by a utility function (block assignment/release) is defined by the user, this is

explained in the following example.

[Example]

If you want to reserve 72 bytes for use by utility functions (block assignments/releases), make the

following changes to the initial settings of the startup routine.

Add one byte to the area size to be secured and then specify the value in the startup routine. In the above

example, 73 bytes are secured in the startup routine, but up to 72 bytes can actually be secured for utility

functions.

If the specified size is too big to be stored in the RAM area, errors may occur when linking.

In this case, decrease the size specified as shown below, or avoid by correcting the link directive file. For

correction of the link directive file, see "(2) Link directive file".

[Example]

To decrease the specified size

_@MEMTOP : DS 73
_@MEMBTM :

72 bytes
reserved as area
for utility
functions
(block assignments
/releases)

_@MEMTOP

_@MEMBTM

_@MEMTOP : DS 72 Change to 40

166 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

(2) Link directive file

How to create a link directive file is explained. Specify a file created using the -d option when linking to

match the actual target system. Heed the following cautions when creating the file (for the detailed

description method for a link directive, see RA78K0R Assembler Package Operation User's Manual).

- The CC78K0R sometimes uses a portion of the short direct address area (saddr area) in the following

compiler-specific objectives.

Specifically, this is the 44-byte area of FFEB8H to FFEDFH.

(a) register variable when the -qr option is specified [FFEB4H to FFEC3H]

(b) Arguments or automatic variables of norec function [FFEC4H to FFED3H]

(c) Segment information [FFED4H to FFED7H]

(d) Arguments of runtime library [FFED8H to FFEDFH]

(e) Standard library task (part of the area (a) and (b)).

Caution If the user does not use the standard library, the area (e) is not used.

The following shows an example of changing RAM size with the link directive file (lk78k0r.dr). When

changing memory size, do not overlap another area. Refer to the memory map of the target device to be

used when changing memory size.

<lk78k0r.dr>

If you want to change the location of the segment, add a merge statement. If the function to revise the

compiler output section name was used, the segment can be independently located (refer to CC78K0R C

Compiler Language User's Manual).

If the result of changing the location of a segment does not provide enough memory for the location, change

the corresponding memory statement.

(3) When using RTOS

The RX78K0R and CC78K0R provide sample programs for initialization routines (assembler format). When

using the RX78K0R and CC78K0R in combination, initialization routines for both tools must therefore be

modified.

For the method for modifying initialization routines, refer to the RX78K0R Functions user's manual.

 First address Size
memory RAM : (0FCF00h , 002F20h)-> Make this size larger.
memory SDR : (0FFE20h , 000098h) (also change the first address if necessary)
merge @@INIS : = SDR -> Specifies the location of the segment.
merge @@DATS : = SDR -> Specifies the location of the segment.
merge @@BITS : = SDR -> Specifies the location of the segment.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U17838EJ1V0UM 167

8.4 ROMization Processing in Startup Module for Flash Area

The startup modules for flash differ with the ordinary startup modules in the following points.

- In the startup module, the following labels are added at the head of each segment in ROM area and RAM

area.

E@R_INIT, E@R_INIS, E@INIT, E@DATA, E@INIS, E@DATS, E@INITL, E@DATAL

Furthermore, the following labels are added if the compact model or large model is specified or variables are

allocated in the far area.

E@RLINIT, E@INITL, E@DATAL

- In the terminal module, the following labels are added at the terminal of each segment in ROM area and

RAM area.

E?R_INIT, E?R_INIS, E?INIT, E?DATA, E?INIS, E?DATS, E?RLINIT, E?INITL, E?DATAL

- The startup module copies the contents from the first label address of each segment in ROM area to the end

label address -1, to the area from the first label address of each segment in RAM area.

- Zeros are embedded from E@DATA to E?DATA, and from E@DATS to E?DATS.

Table 8-4 ROM Area Section for Initialization Data

Variable Type Segment First Label End Label

External variable with initial value (a)
(when allocated in near area)

@ER_INIT CSEG UNIT64KP E@R_INIT E?R_INIT

External variable with initial value (a)
(when allocated in far area)

@ERLINIT CSEG UNIT64KP E@RLINIT E?RLINIT

sreg variable with initial value (c) @ER_INIS CSEG UNIT64KP E@R_INIS E?R_INIS

Table 8-5 RAM Area Section for Copy Destination

Variable Type Segment First Label End Label

External variable with initial value (a)
(when allocated in near area)

@EINIT DSEG BASEP E@INIT E?INIT

External variable with initial value (a)
(when allocated in far area)

@EINITL DSEG UNIT64KP E@INITL E?INITL

External variable without initial value (b)
(when allocated in near area)

@EDATA DSEG BASEP E@DATA E?DATA

External variable without initial value (b)
(when allocated in far area)

@EDATAL DSEG UNIT64KP E@DATAL E?DATAL

sreg variable with initial value (c) @EINIS DSEG SADDRP E@INIS E?INIS

sreg variable without initial value (d) @EDATS DSEG SADDRP E@DATS E?DATS

168 User’s Manual U17838EJ1V0UM

CHAPTER 8 STARTUP ROUTINES

- Furthermore, zeros are embedded from E@DATAL to E?DATAL if the compact model or large model is

specified or variables are allocated in the far area.

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 169

CHAPTER 9 ERROR MESSAGES

This chapter explains the causes of error messages output by the CC78K0R.

9.1 Error Message Format

The error message format is as follows.

<Examples>

However, the C0101, C0103, and C0104 internal errors are output in the following format.

Remark xxx.c: source file name

yyy: line number

zzz: message

Source-file-name (line-number) : Error-message

prime.c (8) : CC78K0R error E0712 : Declaration syntax
prime.c (8) : CC78K0R error E0301 : Syntax error
prime.c (8) : CC78K0R error E0701 : External definition syntax
prime.c (19) : CC78K0R warning W0745 : Expected function prototype

[xxx.c <yyy> zzz] CC78K0R error C0101 : Internal error
[xxx.c <yyy> zzz] CC78K0R error C0103 : Intermediate file error
[xxx.c <yyy> zzz] CC78K0R error C0104 : Illegal use of register

170 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

9.2 Types of Error Messages

The following 10 types of error messages are output by the CC78K0R.

- Error messages for a command line

- Error messages for an internal error and memory

- Error messages for a character

- Error messages for configuration element

- Error messages for conversion

- Error messages for an expression

- Error messages for a statement

- Error messages for a declaration and function definition

- Error messages for a preprocessing directive

- Error messages for fatal file I/O and running on an illegal operating system

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 171

9.3 List of Error Messages

It is necessary to understand the format of an error number before using the list of error messages.

The error number indicates the type of error message and the CC78K0R processing for the error.

The error number format is as follows.

(1) Abort error (Fxxxx)

Compilation is always stopped if this error occurs. The object module file and assembler source file are not

output.

(2) Fatal error (Exxxx)

If more than a specific number of this error occurs, compilation is stopped. The object module file and

assembler source file are not output.

(3) Internal error (Cxxxx)

Compilation is always stopped if this error occurs. The object module file and assembler source file are not

output.

(4) Warning (Wxxxx)

Compilation continues.

Remark xxxx (4-digit number):

Caution If the file name contains a syntax error, the file name is added to the message.

An error message is added, changed, and deleted according to the language specification of the C

compiler being developed.

F/E/C/Wxxxx

Type Description

From 0001 Error message for a command line

From 0101 Error message for an internal error or memory

From 0201 Error message for a character

From 0301 Error message for a configuration element

From 0401 Error message for conversion

From 0501 Error message for an expression

From 0601 Error message for a statement

From 0701 Error message for a declaration or a function definition

From 0801 Error message for a preprocessing directive

From 0901 Error message for fatal file I/O or running on an illegal operating system

172 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

9.3.1 Error messages for a command line

Table 9-1 Error Messages for Command Line <from 0001>

Error
Number Error Message

F0001 Message Missing input file

Cause The input source file name was not specified.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the file name
correctly.

F0002 Message Too many input files

Cause Multiple input source file names are specified.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the file name
correctly.

F0003 Message Unrecognized string

Cause An item other than an option was specified on the interactive command line.

F0004 Message Illegal file name file name

Cause Either the format, characters, or number of characters in the specified file name
are incorrect.

F0005 Message Illegal file specification

Cause An illegal file name was specified.

F0006 Message File not found

Cause The specified input file does not exist.

F0007 Message Input file specification overlapped file name

Cause Duplicate input file names were specified.

F0008 Message File specification conflicted file name

Cause Duplicate I/O file names were specified.

F0009 Message Unable to make file file name

Cause Since the specified output file already exists as a read-only file, it cannot be
created.

F0010 Message Directory not found

Cause A drive or folder not existed is included in the output file name.

F0011 Message Illegal path

Cause An illegal path name was specified in the option setting the path name in the
parameter.

F0012 Message Missing parameter 'option'

Cause A required parameter is not specified.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the parameter
correctly.

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 173

F0013 Message Parameter not needed 'option'

Cause An unnecessary option parameter was specified.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the parameter
correctly.

F0014 Message Out of range 'option'

Cause The specified value of the option parameter is out of range.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the value correctly.

F0015 Message Parameter is too long

Cause The number of characters in the option parameter exceeded the limit.

F0016 Message Illegal parameter 'option'

Cause There is a syntax error in the option parameter.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the option correctly.

F0017 Message Too many parameters

Cause The total number of option parameters exceeds the limit.

F0018 Message Option is not recognized 'option'

Cause An incorrect option was specified.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and input the option correctly.

F0019 Message Parameter file nested

Cause The -f option was specified in the parameter file.

Action by User Since a parameter file cannot be specified in a parameter file, correct them so
that there is no nesting.

F0020 Message Parameter file read error

Cause The parameter file read failed.

F0021 Message Memory allocation failed

Cause Memory allocation failed.

W0022 Message Same category option specified – ignored 'option'

Cause Conflicting options had duplicate specifications.

Program
Processing

The option specified later is validated and processing continues.

W0023 Message Incompatible chip name

Cause The device type in the command line and the device type in the source differ.

Program
Processing

The device type in the command line has priority.

Table 9-1 Error Messages for Command Line <from 0001>

Error
Number Error Message

174 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

F0024 Message Illegal chip specifier on command line

Cause The device type in the command line is incorrect.

W0029 Message '-QC' option is not portable

Cause The -qc option does not conform to the ANSI standard (For details about -qc, see
"CHAPTER 5 COMPILER OPTIONS").

W0031 Message '-ZP' option is not portable

Cause The -zp option does not conform to the ANSI standard (For details about -zp, see
"CHAPTER 5 COMPILER OPTIONS").

W0032 Message '-ZC' option is not portable

Cause The -zc option does not conform to the ANSI standard (For details about -zc, see
"CHAPTER 5 COMPILER OPTIONS").

F0033 Message Same category option specified 'option'

Cause Conflicting options had duplicate specifications.

Action by User "Please enter 'cc78k0r--' if you want help message" is output.
Use the --, -?, or -h option to reference the help file and correct the input.

W0046 Message '-ZF' option specified - regarded as '-QL1'

Cause Since flash area object creation option -zf is specified, after -ql2 in the library
replace option of standard code pattern -ql is regarded as - ql1.

W0067 Message 'Option' option deleted - ignored

Cause The deleted option was specified. 'option' is ignored.

W0068 Message 'Option 1' option deleted - regarded as 'option 2'

Cause 'Option 1' was deleted, so 'option 2' is enabled.

Table 9-1 Error Messages for Command Line <from 0001>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 175

9.3.2 Error messages for an internal error and memory

Table 9-2 Error Messages for Internal Error and Memory <from 0101>

Error
Number Error Message

C0101 Message Internal error

Cause An internal error occurred.

Action by User Contact support.

E0102 Message Too many errors

Cause The total number of FATAL errors exceeded 30.

Program
Processing

Processing continues, but subsequent error messages are not output.
The previous errors may have caused many errors. First, remove these previous
errors.

C0103 Message Intermediate file error

Cause The intermediate file contains errors.

Action by User Contact support.

C0104 Message Illegal use of register

Cause The register is incorrectly used.

E0105 Message Register overflow : simplify expression

Cause The expression is too complex and no more usable registers remain.

Action by User Simplify the complex expression causing the error.

C0106 Message Stack overflow 'overflow cause'

Cause The stack overflowed.
The cause of the overflow is the stack or heap.

Action by User Contact support.

E0108 Message Compiler limit : too much automatic data in function

Cause The area allocated for the automatic variables of the function exceeded the limit
of 64 KB.

Action by User Decrease the variables so that 64 KB is not exceeded.

E0109 Message Compiler limit : too much parameter of function

Cause The area allocated for the parameters of the function exceeded the limit of 64 KB.

Action by User Decrease the parameters so that 64 KB is not exceeded.

E0110 Message Compiler limit : too much code defined in file

Cause The area allocated for the code in the file exceeded the limit of 64 KB.

E0111 Message Compiler limit : too much global data defined in file

Cause The area allocated for the global variables in the file exceeded the limit of 64 KB.

176 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

E0113 Message Compiler limit: too many local labels

Cause Number of local labels in 1 function exceeds the process limit.

Action by User The function itself is too large.
Divide it.

Table 9-2 Error Messages for Internal Error and Memory <from 0101>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 177

9.3.3 Error messages for a character

Table 9-3 Error Messages for Character <from 0201>

Error
Number Error Message

E0201 Message Unknown character 'hexadecimal number'

Cause Characters having the specified internal code cannot be recognized.

E0202 Message Unexpected EOF

Cause The file ended while the function was operating.

W0203 Message Trigraph encountered

Cause A trigraph sequence (3-character representation) appeared.

Action by User If the -za option was specified, since trigraph sequences are valid, this warning is
not output.

178 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

9.3.4 Error messages for configuration element

Table 9-4 Error Messages for Configuration Element <from 0301>

Error
Number Error Message

E0301 Message Syntax error

Cause A syntax error occurred.

Action by User Make sure there are no description errors in the source.

E0303 Message Expected identifier

Cause An identifier is required for the goto statement.

Action by User Correctly describe the identifier to be specified for the goto statement.

W0304 Message Identifier truncate to 'identifier'

Cause The specified identifier is too long. The character number of the identifier
(including '_') exceeds 250.

Action by User Shorten the length of the identifier.

E0305 Message Compiler limit : too many identifiers with block scope

Cause There are too many symbols having block scope in 1 block.

E0306 Message Illegal index, indirection not allowed

Cause An index is used in an expression that does not take a pointer value.

E0307 Message Call of non-function 'variable name'

Cause The variable name is used as a function name.

E0308 Message Improper use of a typedef name

Cause The typedef name is improperly used.

W0309 Message Unused 'variable name'

Cause The specified variable is declared in the source, but is never used.

W0310 Message 'Variable name' is assigned a value which is never used

Cause The specified variable is used in an assignment statement, but is never used
otherwise.

E0311 Message Number syntax

Cause The constant expression is illegal.

E0312 Message Illegal octal digit

Cause This is illegal as an octal digit.

E0313 Message Illegal hexadecimal digit

Cause This is illegal as a hexadecimal digit.

E0314 Message Too big constant

Cause The constant is too large and cannot be represented.

E0315 Message Too small constant

Cause The constant is too small and cannot be represented.

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 179

E0316 Message Too many character constants

Cause The character constant exceeds 2 characters.

E0317 Message Empty character constant

Cause The character constant ' ' is empty.

E0318 Message No terminated string literal

Cause There is no double quote " " at the end of the string.

E0319 Message Changing string literal

Cause A character string literal is rewritten.

W0320 Message No null terminator in string literal

Cause The null character is not added to the character string literal.

E0321 Message Compiler limit : too many characters in string literal

Cause The number of characters in the character string literal exceeded 509.

E0322 Message Ellipsis requires three periods

Cause The C compiler detected "..", but "..." is required.

E0323 Message Missing 'delimiter'

Cause The delimiter is incorrect.

E0324 Message Too many }'s

Cause The "{" and "}" are incorrectly paired.

E0325 Message No terminated comment

Cause The comment is not terminated by "*/".

E0326 Message Illegal binary digit

Cause This is illegal as a binary digit.

E0327 Message Hex constants must have at least one hex digit

Cause At least 1 hexadecimal digit is required in a hexadecimal constant representation.

W0328 Message Unrecognized character escape sequence 'character'

Cause The escape sequence cannot be correctly recognized.

E0329 Message Compiler limit : too many comment nesting

Cause The number of nesting levels of comments exceeded the limit of 255.

W0332 Message Non-supported keyword found-ignored 'function attributes' in this file

Cause A keyword not supported is detected.
Function attributes in this file are ignored.

W0340 Message Unreferenced label 'label name'

Cause The specified label has been defined, but has not been referenced even once.

Table 9-4 Error Messages for Configuration Element <from 0301>

Error
Number Error Message

180 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

E0342 Message 'function qualifier' keyword is not allowed

Cause This function qualifier cannot be used.

Table 9-4 Error Messages for Configuration Element <from 0301>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 181

9.3.5 Error messages for conversion

Table 9-5 Error Messages for Conversion <from 0401>

Error
Number Error Message

W0401 Message Conversion may lose significant digits

Cause A long was converted into int. Be careful the value may be lost.

E0402 Message Incompatible type conversion

Cause An illegal type conversion took place in the assignment statement.

E0403 Message Illegal indirection

Cause The * operator is used in an integer type expression.

E0404 Message Incompatible structure type conversion

Cause The types on both sides of an assignment statement to a structure or structure
pair differ.

E0405 Message Illegal lvalue

Cause This is an illegal left value.

E0406 Message Cannot modify a const object 'variable name'

Cause A variable with the const attribute is rewritten.

E0407 Message Cannot write for read/only sfr 'SFR name'

Cause Tried to write to a read-only sfr.

E0408 Message Cannot read for write/only sfr 'SFR name'

Cause Tried to read a write-only sfr.

E0409 Message Illegal SFR access 'SFR name'

Cause Illegal data was read from or written to an sfr.

W0410 Message Illegal pointer conversion

Cause A pointer and an object other than a pointer are converted.

W0411 Message Illegal pointer combination

Cause Different types are mixed in the same pointer combination.

W0412 Message Illegal pointer combination in conditional expression

Cause Different types in a pointer combination are used in a conditional expression.

W0413 Message Illegal structure pointer combination

Cause Pointers to structures with different types are mixed.

E0414 Message Expected pointer

Cause A pointer is required.

W0415 Message Conversion may lose significant digits for far pointer

Cause An attempt was made to convert a far pointer into a near pointer or int.
Note that the values may be lost.

182 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0416 Message Illegal type and size (far/near) pointer combination

Cause Different types or different sizes (far or near pointer) are used together in the
same pointer combination.

W0417 Message Illegal type and size (far/near) pointer combination in conditional expression

Cause Different types or different sizes (far or near pointer) are used in a conditional
expression between pointers.

W0418 Message Illegal structure and size (far/near) pointer combination

Cause Pointers to structures with different types or different sizes (far or near pointer)
are used together.

Table 9-5 Error Messages for Conversion <from 0401>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 183

9.3.6 Error messages for an expression

Table 9-6 Error Messages for Expression <from 0501>

Error
Number Error Message

E0501 Message Expression syntax

Cause The expression contained a syntax error.

E0502 Message Compiler limit : too many parentheses

Cause The nesting of parentheses in the expression exceeded 32.

W0503 Message Possible use of 'variable name' before definition

Cause The variable is used before a value is assigned to it.

W0504 Message Possibly incorrect assignment

Cause The main operators in conditional expressions, such as if, while, and do
statements, are assignment operators.

W0505 Message Operator 'operator' has no effect

Cause The operator has no effect in the program.
This is probably due to a description error.

E0507 Message Expected integral index

Cause Only an integer type expression is allowed in the index of an array.

W0508 Message Too many actual arguments

Cause The number of arguments specified in a function call is more than the number of
parameters specified in the list of argument types or the function definition.

W0509 Message Too few actual arguments

Cause The number of arguments specified in a function call is fewer than the number of
parameters specified in the list of argument types or the function definition.

W0510 Message Pointer mismatch in function 'function name'

Cause The given arguments have different pointer types than the arguments specified in
the list of argument types or the function definition.

W0511 Message Different argument types in function 'function name'

Cause The argument types given in the function call do not match the list of argument
types or the function definition.

E0512 Message Cannot call function in norec function

Cause A function is called in the norec function.
A function cannot be called in a norec function.

E0513 Message Illegal structure / union member 'member name'

Cause A member that is referenced in the structure and not defined is indicated.

E0514 Message Expected structure / union pointer

Cause The expression before the '->' operator is not a pointer to a structure or a union,
but is the name of a structure or a union.

Action by User Make the expression before the '->' operator a pointer to a structure or a union.

184 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

E0515 Message Expected structure/union name

Cause The expression before the "." operator is not the name of a structure or a union,
but is a pointer to a structure or a union.

Action by User Make the expression before the "." operator a structure or a union variable.

E0516 Message Zero sized structure 'structure name'

Cause The size of the structure is zero.

E0517 Message Illegal structure operation

Cause An operator that cannot be used in a structure is used.

E0518 Message Illegal structure/union comparison

Cause 2 structures or unions cannot be compared.

E0519 Message Illegal bit field operation

Cause There is an illegal description for a bit field.

E0520 Message Illegal use of pointer

Cause The only operators that can be used on pointers are addition, subtraction,
assignment, relational, indirection (*), and member reference (->).

E0521 Message Illegal use of floating

Cause An operator that cannot be used on floating-point variables is used.

W0522 Message Ambiguous operators need parentheses

Cause 2 shift, relational, and bit logical operators appear continuously without
parentheses.

E0523 Message Illegal bit, boolean type operation

Cause An illegal operation is performed on bit or boolean type variables.

E0524 Message '&' on constant

Cause A constant address is not obtained.

E0525 Message '&' requires lvalue

Cause The '&' operator can only be used in an expression assigned to the left value.

E0526 Message '&' on register variable

Cause The address of a register variable is not obtained.

E0527 Message '&' on bit, boolean ignored

Cause The address of a bit field, or bit or boolean type variable is not obtained.

W0528 Message '&' is not allowed array/function, ignored

Cause The & operator does not have to be applied to an array name or function name.

E0529 Message Sizeof returns zero

Cause The value of the sizeof expression becomes zero.

Table 9-6 Error Messages for Expression <from 0501>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 185

E0530 Message Illegal sizeof operand

Cause The operand of the sizeof expression must be an identifier or a type name.

E0531 Message Disallowed conversion

Cause Illegal casting occurred.

Action by User Check for illegal casting.
This error occurs when a constant is cast to a pointer, or when an address is
outside the range of the memory model.

E0532 Message Pointer on left, needs integral right : 'operator'

Cause Since the left operand is a pointer, the right operand must be an integral value.

E0533 Message Invalid left-or-right operand : 'operator'

Cause The left or right operand is illegal for the operator.

E0534 Message Divide check

Cause The divisor of the / operation or % operation is zero.

E0535 Message Invalid pointer addition

Cause 2 pointers are not added.

E0536 Message Must be integral value addition

Cause Only integral values can be added to a pointer.

E0537 Message Illegal pointer subtraction

Cause The subtraction between pointers must be for pointers having the same type.

E0538 Message Illegal conditional operator

Cause The conditional operator is not correctly described.

E0539 Message Expected constant expression

Cause A constant expression is required.

W0540 Message Constant out of range in comparison

Cause The constant partial expression is compared to a value outside of the range
permitted by the type of the other partial expression.

E0541 Message Function argument has void type

Cause The argument of the function has the void type.

W0543 Message Undeclared parameter in norec function prototype

Cause The parameter declarations are not in the prototype declarations of the norec
function.

E0544 Message Illegal type for parameter in norec function prototype

Cause Parameters with illegal types are declared in the prototype declarations of the
norec function.

Table 9-6 Error Messages for Expression <from 0501>

Error
Number Error Message

186 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

E0546 Message Too few actual argument for inline function 'function name'

Cause The number of arguments specified in the function call of a function expanded
inline is less than the number of parameters provided in the specifications.

Table 9-6 Error Messages for Expression <from 0501>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 187

9.3.7 Error messages for a statement

Table 9-7 Error Messages for Statement <from 0601>

Error
Number Error Message

E0602 Message Compiler limit : too many characters in logical source line

Cause The number of characters in a logical source line exceeded 2,048.

E0603 Message Compiler limit : too many labels

Cause The number of labels exceeded 33.

E0604 Message Case not in switch

Cause The case statement is not described in the correct position.

E0605 Message Duplicate case 'label name'

Cause The same case label is described two or more times in a switch statement.

E0606 Message Non constant case expression

Cause Something other than an integral constant is specified in a case statement.

E0607 Message Compiler limit : too many case labels

Cause The number of case labels in the switch statement exceeded 257.

E0608 Message Default not in switch

Cause The default statement is not described in the correct position.

E0609 Message More than one 'default'

Cause The default statement is described multiple times in the switch statement.

E0610 Message Compiler limit : block nest level too depth

Cause The block nesting exceeded 45.

E0611 Message Inappropriate 'else'

Cause There is no correspondence between if and else.

W0613 Message Loop entered at top of switch

Cause A while, do, or for is specified immediately after the switch statement.

W0615 Message Statement not reached

Cause The statement is never reached.

E0617 Message Do statement must have 'while'

Cause A while is required at the end of a do.

E0620 Message Break/continue error

Cause The positions of the break and continue statements are incorrect.

E0621 Message Void function 'function name' cannot return value

Cause A function declared as void returns a value.

188 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0622 Message No return value

Cause A function that should return a value does not return a value.

Action by User If a value must be returned, add a return statement. If a value does not have to
be returned, give the function the void type.

E0623 Message No effective code and data, cannot create output file

Cause Since the code and data are not valid, the output file cannot be created.

Table 9-7 Error Messages for Statement <from 0601>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 189

9.3.8 Error messages for a declaration and function definition

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

E0701 Message External definition syntax

Cause The function is not correctly defined.

E0702 Message Too many callt functions

Cause There are too many declarations of the callt function. A maximum of 32 callt
functions can be declared.

Action by User Decrease the number of callt function declarations.

E0703 Message Function has illegal storage class

Cause The function is specified with an illegal storage class.

E0704 Message Function returns illegal type

Cause The return value of the function is an illegal type.

E0705 Message Too many parameters in norec function

Cause A norec function has too many parameters.

Action by User Decrease the number of parameters.

E0706 Message Parameter list error

Cause The function parameter list contains errors.

E0707 Message Not parameter 'character string'

Cause Something other than a parameter is declared in a function definition.

E0710 Message Illegal storage class

Cause The auto and register declarations are outside the function or the boolean
variable is defined inside the function.

E0711 Message Undeclared 'variable name'; function 'function name'

Cause An undeclared variable is used.

E0712 Message Declaration syntax

Cause The declaration statement does not match the syntax.

E0713 Message Redefined 'variable name'

Cause Two or more of the same variables are defined.

Action by User Set the variable definition once.

W0714 Message Too many register variables

Cause There are too many declarations of register variables.

Action by User Decrease the number of register variables. For the number that can be used,
refer to CC78K0R C Compiler Language User's Manual.

E0715 Message Too many sreg variables

Cause There are too many declarations of sreg variables.

190 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

E0717 Message Too many automatic data in norec function

Cause There are too many automatic variables in a norec function.

Action by User Decrease the number of automatic variables in a norec function. For the number
that can be used, refer to CC78K0R C Compiler Language User's Manual.

E0718 Message Too many bit, boolean type variables

Cause There are too many bit and boolean type variables.

Action by User Decrease the number of bit, boolean, and __boolean type variables. For the
number that can be used, refer to CC78K0R C Compiler Language User's
Manual.

E0719 Message Illegal use of type

Cause An illegal type name is used.

E0720 Message Illegal void type for 'identifier'

Cause The identifier is declared by void.

W0721 Message Illegal type for register declaration

Cause A register declaration is specified with an illegal type.

Program
Processing

The register declaration is ignored and processing continues.

E0723 Message Illegal type for parameter in norec function

Cause The type of a parameter in a norec function is too big.

E0724 Message Structure redefinition

Cause The same structure is redefined.

W0725 Message Illegal zero sized structure member

Cause The area taken as a structure member is not secured.

E0726 Message Function cannot be structure/union member

Cause A function cannot be a member of a structure or a union.

E0727 Message Unknown size structure/union 'name'

Cause Structures or unions have undefined sizes.

E0728 Message Compiler limit : too many structure/union members

Cause The members in a structure or union exceeded 256.

E0729 Message Compiler limit : structure/union nesting

Cause The nesting of structures or unions exceeded 15.

E0730 Message Bit field outside of structure

Cause A bit field is declared outside of the structure.

E0731 Message Illegal bit field type

Cause A type other than an integral type is specified in a bit field type.

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 191

E0732 Message Too long bit field size

Cause The number of bit specifications in a bit field declaration exceeds the number of
bits in that type.

E0733 Message Negative bit field size

Cause The number of bit specifications in a bit field declaration is negative.

E0734 Message Illegal enumeration

Cause The enumeration type declaration does not match the syntax.

E0735 Message Illegal enumeration constant

Cause The enumeration constant is illegal.

E0736 Message Compiler limit : too many enumeration constants

Cause The number of enumeration constants exceeded 255.

E0737 Message Undeclared structure / union / enum tag

Cause A tag is not declared.

E0738 Message Compiler limit : too many pointer modifying

Cause The number of indirection operators (*) exceeded 12 in a pointer definition.

E0739 Message Expected constant

Cause A variable is used in the index in an array declaration.

E0740 Message Negative subscript

Cause The specification of the size of an array is negative.

E0741 Message Unknown size array 'array name'

Cause The size of an array is undefined.

Action by User Specify the size of the array.

E0742 Message Compiler limit : too many array modifying

Cause The array declaration exceeds 12 dimensions.

E0743 Message Array element type cannot be function

Cause An array of functions is not allowed.

W0744 Message Zero sized array 'array name'

Cause The number of elements of the defined array is zero.

W0745 Message Expected function prototype

Cause The function prototype is not declared.

E0747 Message Function prototype mismatch

Cause The function prototype declaration contains errors.

Action by User Check whether the parameter and return value types match the function.

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

192 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0748 Message A function is declared as a parameter

Cause A function is declared as an argument.

W0749 Message Unused parameter 'parameter name'

Cause The parameter is not used.

E0750 Message Initializer syntax

Cause The initialization does not match the syntax.

E0751 Message Illegal initialization

Cause The constant of an initial value setting does not match the type of the variable.

W0752 Message Undeclared initializer name 'name'

Cause The initializer name is not declared.

E0753 Message Cannot initialize static with automatic

Cause The static variable cannot be initialized using an automatic variable.

E0756 Message Too many initializers 'array name'

Cause There are more initial values than elements in the declared array.

E0757 Message Too many structure initializers

Cause There are more initial values than members in the declared structure.

E0758 Message Cannot initialize a function 'function name'

Cause The function cannot be initialized.

E0759 Message Compiler limit : initializers too deeply nested

Cause The depth of the nesting of initialized elements exceeded the limit.

W0760 Message Double and long double are treated as IEEE 754 single format

Cause double and long double are handled as IEEE 754 single-precision formats.

W0761 Message Cannot declare sreg with const or function

Cause sreg cannot be declared with a const declaration or function.

Program
Processing

An sreg declaration is ignored.

W0762 Message Overlapped memory area 'variable name 1' and 'variable name 2'

Cause The variable name 1 and variable name 2 areas for which absolute address
allocation specification is performed overlap.

W0763 Message Cannot declare const with bit, boolean

Cause bit and boolean type variables cannot have const declarations.

Program
Processing

A const declaration is ignored.

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 193

W0764 Message 'Variable name' initialized and declared extern-ignored extern

Cause An externally referenced variable without a body was initialized.

Program
Processing

The extern declaration is ignored.

E0765 Message Undefined static function 'function name'

Cause There was a reference to a function whose body is not in the same file and was
declared static.

E0766 Message Illegal type for automatic data in norec function

Cause The type of the automatic variable in a norec function is large.

E0769 Message __far is not allowed for callt/interrupt function

Cause The __far qualifier must not be used for the callt and interrupt functions.

E0770 Message Parameters are not allowed for interrupt function

Cause An interrupt function cannot have arguments.

E0771 Message Interrupt function must be void type

Cause An interrupt function must have the void type.

E0772 Message Callt / norec are not allowed for interrupt function

Cause An interrupt function cannot be declared callt, norec.

E0773 Message Cannot call interrupt function

Cause An interrupt function cannot be called.

E0774 Message Interrupt function can't use with the other kind interrupts

Cause An interrupt function cannot be used in other types of interrupts.

E0775 Message Cannot call rtos_task function

Cause RTOS task cannot be called.

E0776 Message Cannot call ret_int/_kernel_int_entry

Cause System call ret_int/_kernel_int_entry cannot be called from a function.

E0777 Message Cannot allocate rtos_system_call

Cause The RTOS system call function must not be allocated.

E0778 Message Cannot call ext_tsk except in rtos_task

Cause System call ext_tsk cannot be called from a function other than the RTOS task
function.

W0779 Message Not call ext_tsk in rtos_task

Cause System call ext_tsk is not called in the RTOS task.

E0780 Message Zero width for bit field 'member name'

Cause Member name is specified to the member whose bit specification number of bit
field declaration is 0.

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

194 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0787 Message Bit field type is char

Cause char type is specified for bit field type.

E0788 Message Cannot allocate a __flash function 'function name'

Cause One of the __flash functions cannot be allocated.

E0789 Message '-ZF' option did not specify - cannot allocate an EXT_FUNC function 'function
name'

Cause Flash memory area object creation option -zf is not specified.
It cannot be allocated to the function specified in the #pragma EXT_FUNC.

E0790 Message Callt/__interrupt are not allowed for EXT_FUNC function 'function name'

Cause Callt/__interrupt declarations are not allowed for the function specified in the
#pragma EXT_FUNC.

E0791 Message '-ZF' option specified - cannot allocate a callt function 'function name'

Cause Flash memory area object creation option -zf was specified.
A callt function cannot be allocated.

E0799 Message Cannot allocate 'variable name' out of 'address range'

Cause Address specification for variable names for which absolute address allocation
specification is performed exceed the specifiable address range.

Table 9-8 Error Messages for Declaration and Function Definition <from 0701>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 195

9.3.9 Error messages for a preprocessing directive

Table 9-9 Error Messages for Preprocessing Directive <from 0801>

Error
Number Error Message

E0801 Message Undefined control

Cause A symbol starting with # cannot be recognized as a keyword.

E0802 Message Illegal preprocess directive

Cause The preprocess directive is illegal.

Action by User Check if the preprocess directive (such as #pragma) is written in front of the
header of the file and if there is any error.

E0803 Message Unexpected non-whitespace before preprocess directive

Cause A character other than a whitespace character precedes the preprocess
directive.

W0804 Message Unexpected characters following 'preprocess directive' directive - newline
expected

Cause Extra characters follow the preprocess directive.

E0805 Message Misplaced else or elif

Cause The #if, #ifdef, and #ifndef do not correspond to #else and #elif.

E0806 Message Misplaced endif

Cause The #if, #ifdef, and #ifndef do not correspond to #endif.

E0807 Message Compiler limit : too many conditional inclusion nesting

Cause The nesting of conditional compiling exceeded 255.

E0810 Message Cannot find include file 'file name'

Cause The include file was not found.

Action by User Specify the path in which an include file exists or specify a path using the -i option
for the environmental variable INC78K0R.

E0811 Message Too long file name 'file name'

Cause The file name is too long.

E0812 Message Include directive syntax

Cause The file name in the definition of the #include statement is not correctly enclosed
by " " or < >.

E0813 Message Compiler limit : too many include nesting

Cause The nesting of the include files exceeded 8.

E0814 Message Illegal macro name

Cause The macro name is illegal.

E0815 Message Compiler limit: too many macro nesting

Cause The number of nesting macros exceeds 200.

196 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0816 Message Redefined macro name 'macro name'

Cause The macro name is redefined.

W0817 Message Redefined system macro name 'macro name'

Cause The system macro name is redefined.

E0818 Message Redeclared parameter in macro 'macro name'

Cause The same identifier appears in the parameter list in the macro definition.

W0819 Message Mismatch number of parameter 'macro name'

Cause The number of parameters when referencing differs from the number of
parameters defined by #define.

E0821 Message Illegal macro parameter 'macro name'

Cause The description enclosed by parentheses () in the function format macro is
illegal.

E0822 Message Missing) 'macro name'

Cause The right parenthesis ")" was not found in the same line as the #define definition
in the function format macro.

E0823 Message Too long macro expansion 'macro name'

Cause The actual argument during macro expansion is too long.

W0824 Message Identifier truncate to 'macro name'

Cause The macro name is too long.

Program
Processing

It is shortened to the displayed 'macro name'.

W0825 Message Macro recursion 'macro name'

Cause The #define definition becomes recursive.

E0826 Message Compiler limit : too many macro defines

Cause The number of macro definitions exceeded 10,000.

E0827 Message Compiler limit : too many macro parameters

Cause 1 macro definition had over 31 calling parameters.

E0828 Message Not allowed #undef for system macro name

Cause The system macro name is specified by #undef.

W0829 Message Unrecognized pragma 'character string'

Cause This character string is not supported.

Action by User Check that the keywords are correct.
This warning occurs if an incorrect segment was specified in the #pragma
section.

E0830 Message No chip specifier : #pragma pc ()

Cause There is no device specifier.

Table 9-9 Error Messages for Preprocessing Directive <from 0801>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 197

E0831 Message Illegal chip specifier : #pragma pc (device type)

Cause The device specifier is illegal.

W0832 Message Duplicated chip specifier

Cause The device specifier is duplicated.

E0833 Message Expected #asm

Cause There is no #asm.

E0834 Message Expected #endasm

Cause There is no #endasm.

W0835 Message Too many characters in assembler source line

Cause A line in the assembler source is too long.

W0836 Message Expected assembler source

Cause There is no assembler source between #asm and #endasm.

W0837 Message Output assembler source file, not object file

Cause There is a #asm block or __asm statement.
Assembler source file is output instead of the object file.

Action by User Specify the -a or -sa compiler option in order to output the #asm and __asm
statement description to the object file, and then assemble the output assembler
file.

E0838 Message Duplicated pragma VECT or INTERRUPT or RTOS_INTERRUPT 'character
string'

Cause The #pragma VECT 'character string', INTERRUPT 'character string', or
RTOS_INTERRUPT ’character string’ is duplicated.

E0839 Message Unrecognized pragma VECT or INTERRUPT or RTOS_INTERRUPT 'character
string'

Cause There is an unrecognized #pragma VECT 'character string', INTERRUPT
'character string', or RTOS_INTERRUPT ’character string’.

W0840 Message Undefined interrupt function 'function name'- ignored BANK or SP_SWITCH or
LEAFWORK specified

Cause The save destination is specified for an undefined interrupt function.

Program
Processing

Register bank specifications, stack switching specifications specifications are
ignored.

E0842 Message Unrecognized pragma SECTION 'character string'

Cause There is an unrecognized #pragma SECTION 'character string'.

E0843 Message Unspecified start address of 'section name'

Cause The correct starting address is not specified after AT in the #pragma section.

E0845 Message Cannot allocate 'section name' out of 'address range'

Cause The specified section cannot be placed at the specified starting address.

Table 9-9 Error Messages for Preprocessing Directive <from 0801>

Error
Number Error Message

198 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

W0846 Message Rechanged section name 'section name'

Cause The same section name is duplicated and its specification is changed.

Program
Processing

The section name specified last is valid and processing continues.

E0847 Message Different BANK or SP_SWITCH specified on same interrupt function 'function
name'

Cause A different register bank specification or stack switching specification is specified
for an interrupt function with the same name.

W0849 Message #pragma statement is not portable

Cause The #pragma statement does not conform to ANSI.

W0850 Message Asm statement is not portable

Cause The ASM statement does not conform to ANSI.

W0851 Message Data aligned in 'area name'

Cause The segment area or structure tag is data aligned. The area name is a segment
name or a structure tag.

W0852 Message Module name truncate to 'module name'

Cause The specified module name is too long.

Program
Processing

It is shortened to the displayed 'module name'.

E0853 Message Unrecognized pragma NAME 'module name'

Cause Unrecognizable characters are in the 'module name'.

E0854 Message Undefined rtos_task ’character string’

Cause The body of RTOS task is not defined.

E0855 Message Cannot assign rtos_interrupt_handler to non-maskable and software interrupt

Cause The non-maskable interrupt and software interrupt cannot be specified in the
RTOS_INTERRUPT handler.

W0856 Message Rechanged module name 'module name'

Cause Duplicate module names are specified.

W0857 Message Section name truncate to 'section name'

Cause The specified section name is too long.

Program
Processing

It is shortened to the displayed 'section name'.
Make the section name 8 or fewer characters.

E0858 Message Unrecognized pragma 'pragma character string' 'illegal character string'

Cause There is an unrecognized #pragma 'pragma character string', 'illegal character
string'.

E0859 Message Cannot allocate EXT_TABLE out of 0xc0-0xff80

Cause The start address of the flash area branch table must be within 0xc0 to 0xff80.

Table 9-9 Error Messages for Preprocessing Directive <from 0801>

Error
Number Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 199

E0860 Message Redefined #pragma EXT_TABLE

Cause The #pragma EXT_TABLE is redefined.

E0861 Message No EXIT_TABLE specifier

Cause Flash area branch table start address is not specified.

Program
Processing

Specify the -zf option only when the self-rewriting function is used in flash
memory products with a self-rewriting function.

E0862 Message Illegal EXT_FUNC id specifier : out of 0x0-0xff

Cause The ID value of the function in the flash memory area that are specified by
#pragma EXT_FUNC must be 0x80-0xff80.

E0863 Message Redefined #pragma EXT_FUNC name 'function name'

Cause The function name specified by the #pragma EXT_FUNC is redefined.

E0864 Message Redefined #pragma EXT_FUNC id 'ID value'

Cause The ID value specified by the #pragma EXT_FUNC is redefined.

E0865 Message Out of range - cannot allocate an EXT_FUNC function 'function name'

Cause Address of the flash memory area branch table exceeds the specifiable address
range.
A function specified by the #pragma EXT_FUNC cannot be allocated.

E0866 Message #pragma section found after C body. cannot include file containing #pragma
section and without C body at the line

Cause There is #pragma section syntax after C body description.
Subsequent files that contain #pragma section syntax and no C body (including
external reference declarations of variables and functions) cannot be included.

E0867 Message #pragma section found after C body. cannot specify #include after #pragma
section in this file

Cause There is #pragma section syntax after C body description.
Hereafter, #include syntax cannot be described.

E0868 Message #include found after C body. cannot specify #pragma section after #include
directive

Cause There is #include syntax after C body description.
Hereafter, #pragma section syntax cannot be described.

W0869 Message 'Section name' section cannot change after C body

Cause Specified section cannot be changed after C body description.

W0870 Message Data aligned before 'variable name' in 'section name'

Cause Data alignment is done before 'variable name' is allocated in 'section name'.

W0871 Message Data aligned after 'variable name' in 'section name'

Cause Data alignment is done after 'variable name' is allocated in 'section name'.

E0899 Message Character string specified by #error is output

Cause An #error character string was specified.

Table 9-9 Error Messages for Preprocessing Directive <from 0801>

Error
Number Error Message

200 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

9.3.10 Error messages for fatal file I/O and running on an illegal operating
system

Table 9-10 Error Messages for Fatal File I/O and Running on an Illegal Operating System <from 0901>

Error
Number Error Message

F0901 Message File I/O error

Cause A physical I/O error was generated during file input/output.

Action by User If an intermediate file is the cause, increase the conventional memory, or use
EMS or XMS memory.

F0902 Message Cannot open 'file name'

Cause The file cannot be opened.

Action by User Check if a device file is installed in an ordinary search path. The path can be
specified by the -y option. Refer to the description about the search path in "5.4
Device file search path".

F0903 Message Cannot open overlay file 'file name'

Cause The overlay file cannot be opened.

F0904 Message Cannot open temp

Cause The input temporary file cannot be opened.

F0905 Message Cannot create 'file name'

Cause A file create error was generated.

F0906 Message Cannot create temp

Cause A create error was generated in an output temporary file.

Action by User Check if the environmental variable TMP is specified.

F0907 Message No available data block

Cause A temporary file cannot be created because the drive file does not have sufficient
capacity.

F0908 Message No available directory space

Cause A temporary file cannot be created because of insufficient folder area on the
drive.

F0909 Message R/O : read/only disk

Cause A temporary file cannot be created because the drive is read only.

F0910 Message R/O file : read/only, file opened read/only mode

Cause A write error was generated by a temporary file for the following reasons.

- A file with the same name as a temporary file already exists on the drive and it
has the read-only attribute.

- The output temporary file is opened with the read-only attribute because of
internal conflicts.

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 201

F0911 Message Reading unwritten data, no available directory space

Cause An I/O error was generated for the following reasons.

- EOF was passed and input proceeded.
- The temporary file cannot be created because of insufficient folder area on the

drive.

F0912 Message Write error on temp

Cause A write error was generated to the output temporary file.

Action by User A complex source expression (such as too deep nesting) may be the cause.
Contact support.

F0914 Message Insufficient memory in hostmachine

Cause The CC78K0R cannot start because of insufficient memory.

Action by User Increase the free area in the conventional memory.

W0915 Message Asm statement found. skip to jump optimize this function 'function name'

Cause #asm block or __asm statement was detected.
This function does not have jump optimization. Perform the W0837 response.

E0922 Message Heap overflow : please retry compile without -QJ

Cause A memory overflow was generated in jump optimization.
Recompile without specifying -qj.

F0923 Message Illegal device file format

Cause A device file in an old format was referenced.

Table 9-10 Error Messages for Fatal File I/O and Running on an Illegal Operating System <from 0901>

Error
Number Error Message

202 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

9.4 List of PM+ Error Messages

Table 9-11 PM+ Error Messages

Error
Type Error Message

! Message Out of range.
The range of columns is from 72 to 132.

Cause A value out of the specifiable range is described for the number of characters per
line.

Action by User Specify a value in the specifiable range and retry the execution.

Button [OK] ... Close the message box.

! Message Out of range.
The range of lines is from 0, and 20 to 32,767.

Cause A value out of the specifiable range is described for the number of lines per page.

Action by User Specify a value in the specifiable range and retry the execution.

Button [OK] ... Close the message box.

! Message Out of range.
The range of TAB character is from 0 to 8.

Cause A value out of the specifiable range is described for the tab stop position.

Action by User Specify a value in the specifiable range and retry the execution.

Button [OK] ... Close the message box.

! Message Out of range.
The range of warning level is from 0 to 2.

Cause A value out of the specifiable range is described for the warning level.

Action by User Specify a value in the specifiable range and retry the execution.

Button [OK] ... Close the message box.

! Message Cannot find folder.
Willyou create?

Cause A non-existing folder is described.

Action by User Click the [OK] button to create a new folder. Click the [Cancel] button to cancel
the folder creation.

Button [OK] ... Creates a folder and closes the message box.
[Cancel] ... Closes the message without creating a new folder.

! Message Cannot find drive.
Make sure the drive.

Cause The specified drive is not found.

Action by User Specify the correct drive name.

Button [Retry] ... Retries accessing the drive.
[Cancel] ... Accessing is ignored.

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 203

! Message Illegal File name.

Cause The file name includes characters whose use are not allowed by the OS or the
CC78K0R.

Action by User Do not use characters that cannot be handled by the OS, or "#" or "," which
cannot be handled by the CC78K0R.

Button [OK] ... Close the message box.

! Message Unable to create the falder.

Cause Folder creation was rejected by the OS because of a shortage of available disk
space, read-only, etc.

Action by User Check the available disk space and whether write is permitted.

Button [OK] ... Close the message box.

! Message Ignored Options.

Cause Option information in the project file includes a combination of options that
causes warning or an error in the CC78K0R.

Action by User Check whether the option specification contradicts.

Button [OK] ... Close the message box.

! Message Can't read Option Information.

Cause Valid option information is not included in the file specified by option information
read specification.

Action by User Check whether the specified option information file is of the 78K0R Series, or
whether the specified option information file is not destroyed.

Button [OK] ... Close the message box.

! Message Cannot find path or file.
Make sure the path or filename.

Cause A non-existing path or file was specified, where a path or file name that actually
exists,
such as an include file, must be specified.

Action by User Check the target file name and the path for it, and specify the correct name or
path.

Button [OK] ... Close the message box.

X Message Cannot find %s shown in environment variable PATH.

Cause cc78k0r.exe is not found.

Action by User Check whether the CC78K0R was installed normally, or whether the PATH
environment variable was set correctly.

Button [OK] ... Close the message box.

Table 9-11 PM+ Error Messages

Error
Type Error Message

204 User’s Manual U17838EJ1V0UM

CHAPTER 9 ERROR MESSAGES

! Message Multiple Include Search Path definition.

Cause The same include file path was specified twice.

Action by User Do not specify the same include file path twice.

Button [OK] ... Close the message box.

! Message Too many characters for Include Search Path.

Cause The include file path whose length exceeds the specifiable range was specified.

Action by User Specify the correct path name.

Button [OK] ... Close the message box.

! Message Too many Include Search Path.
Up to 64 can be specified for Include Search Path.

Cause The number of specified include file paths exceeds the specifiable number.

Action by User Keep the number of specified paths 64 or fewer.

Button [OK] ... Close the message box.

! Message Multiple define definition.

Cause The same defined macro was specified twice.

Action by User Do not specify the same defined macro twice.

Button [OK] ... Close the message box.

! Message Too many characters for macro Definition.
Up to 256 characters can be described for a macro name.

Cause The length of characters used for specifying the defined macro name exceeds
the specifiable range.

Action by User Keep the number of characters used for macro name specification 256 or fewer.

Button [OK] ... Close the message box.

! Message Too many macro for macro Definition.
macro Definition and macro Undefinition can be specified to 30 in all.

Cause The number of defined and undefined macros that can be specified exceeds the
specifiable range.

Action by User Keep the number of defined and undefined macros 30 or fewer in total.

Button [OK] ... Close the message box.

! Message Multiple undefine definition.

Cause The same undefined macro was specified twice.

Action by User Do not specify the same undefined macro twice.

Button [OK] ... Close the message box.

Table 9-11 PM+ Error Messages

Error
Type Error Message

CHAPTER 9 ERROR MESSAGES

User’s Manual U17838EJ1V0UM 205

! Message Too many characters for undefine Definition.
Up to 256 characters can be described for a macro name.

Cause The length of characters used for specifying the undefined macro name exceeds
the specifiable range.

Action by User Keep the number of characters used for macro name specification 256 or fewer.

Button [OK] ... Close the message box.

! Message Too many macro for macro Undefinition.
macro Definition and macro Undefinition can be specified to 30 in all.

Cause The number of defined and undefined macros that can be specified exceeds the
specifiable range.

Action by User Keep the number of defined and undefined macros 30 or fewer in total.

Button [OK] ... Close the message box.

! Message Can't set options correctly to (source name)

Cause When an attempt was made to reflect a common option in a special option, a
contradiction was found in specification, or the specification exceeds the
quantitative limits.

Action by User Option specification that cannot be reflected is ignored.
Check the special option settings, as necessary.

Button [OK] ... Close the message box.

Table 9-11 PM+ Error Messages

Error
Type Error Message

206 User’s Manual U17838EJ1V0UM

APPENDIX A SAMPLE PROGRAMS

APPENDIX A SAMPLE PROGRAMS

This chapter introduces sample programs for the CC78K0R.

A.1 C Source Module File

#define TRUE 1
#define FALSE 0
#define SIZE 200

char mark [SIZE + 1] ;

main ()
{
 int i , prime , k , count ;

 count = 0 ;

 for (i = 0 ; i <= SIZE ; i++)
 mark [i] = TRUE ;
 for (i = 0 ; i <= SIZE ; i++) {
 if (mark [i]) {
 prime = i + i + 3 ;
 printf ("%6d" , prime) ;
 count++ ;
 if ((count%8) == 0) putchar ('\n') ;
 for (k = i + prime ; k <= SIZE ; k += prime)
 mark [k] = FALSE ;
 }
 }
 printf ("\n%d primes found." , count) ;
}

printf (char *s , int i)
{
 int j ;
 char *ss ;

 j = i ;
 ss = s ;
}

putchar (char c)
{
 char d ;
 d = c ;
}

APPENDIX A SAMPLE PROGRAMS

User’s Manual U17838EJ1V0UM 207

A.2 Execution Example

C>cc78K0R -cf1166a0 prime.c -a –p -x -e -ng

78K0R Series C Compiler Vx.xx [xx xxx xxxx]
Copyright (C) NEC Electronics Corporation xxxx, xxxx

prime.c (18) : CC78K0R warning W0745 : Expected function prototype
prime.c (20) : CC78K0R warning W0745 : Expected function prototype
prime.c (26) : CC78K0R warning W0622 : No return value
prime.c (35) : CC78K0R warning W0622 : No return value
prime.c (41) : CC78K0R warning W0622 : No return value

Target chip : uPD78F1166_A0
Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

208 User’s Manual U17838EJ1V0UM

APPENDIX A SAMPLE PROGRAMS

A.3 Output List

A.3.1 Assembler source module file

; 78K0R Series C Compiler Vx.xx Assembler Source
; Date : xx xxx xxxx Time : xx : xx : xx
; Command : -cf1166a0 prime.c -a -p -x -e -ng
; In-file : prime.c
; Asm-file : prime.asm
; Para-file :

$PROCESSOR (f1166a0)
$NODEBUG
$NODEBUGA
$KANJICODE EUC
$TOL_INF 03FH , 100H , 02H , 00H , 00H

 EXTRN _@RTARG0
 EXTRN @@isrem
 PUBLIC _mark
 PUBLIC _main
 PUBLIC _printf
 PUBLIC _putchar

@@CNST CSEG MIRRORP
L0011 : DB '%6d'
 DB 00H
L0017 : DB ' '
 DB 0AH
 DB '%d primes found.'
 DB 00H

@@DATA DSEG BASEP
_mark : DS (201)
 DS (1)

; line 5
; line 8

@@CODE CSEG BASE
_main :
 push hl ; [INF] 1 , 1
 subw sp , #08H ; [INF] 2 , 1
 movw hl , sp ; [INF] 3 , 1
; line 11
 clrw ax ; [INF] 1 , 1
 movw [hl] , a ; count ; [INF] 1 , 1
; line 13
 movw [hl + 6] , ax ; i ; [INF] 2 , 1
L0003 :
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 cmpw ax , #0C8H ; 200 ; [INF] 3 , 1
 orl CY , a.7 ; [INF] 2 , 1
 skc ; [INF] 2 , 1
 bnz $L0004 ; [INF] 2 , 4
; line 14
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 movw bc , ax ; [INF] 1 , 1
 mov _mark [bc] , #01H ; 1 ; [INF] 4 , 1
 movw ax , [hl + 6] ; i ; [INF] 2 , 1

APPENDIX A SAMPLE PROGRAMS

User’s Manual U17838EJ1V0UM 209

 incw ax ; [INF] 1 , 1
 movw [hl + 6] , ax ; i ; [INF] 2 , 1
 br $L0003 ; [INF] 2 , 4
L0004 :
; line 15
 clrw ax ; [INF] 1 , 1
 movw [hl + 6] , ax ; i ; [INF] 2 , 1

L0006 :
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 cmpw ax , #0C8H ; 200 ; [INF] 3 , 1
 or1 CY , a.7 ; [INF] 2 , 1
 skc ; [INF] 2 , 1
 bnz !L0007 ; [INF] 2 , 4
; line 16
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 addw ax , #loww (_mark) ; [INF] 3 , 1
 movw de , ax ; [INF] 1 , 1
 mov a , [de] ; [INF] 2 , 2
 cmp0 a ; [INF] 1 , 1
 bz $L0015 ; [INF] 2 , 4
; line 17
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 addw ax , ax ; [INF] 1 , 1
 addw ax , #03H ; 3 ; [INF] 3 , 1
 movw [hl + 4] , ax ; prime ; [INF] 2 , 1
; line 18
 push ax ; [INF] 1 , 1
 movw ax , #loww (L0011) ; 0 ; [INF] 3 , 1
 call !!_printf ; [INF] 4 , 3
 pop ax ; [INF] 1 , 1
; line 19
 movw ax , [hl] ; count ; [INF] 1 , 1
 incw ax ; [INF] 1 , 1
 movw [hl] , ax ; count ; [INF] 1 , 1
; line 20
 movw _@RTARG0 , ax ; [INF] 2 , 1
 movw ax , #08H ; 8 ; [INF] 3 , 1
 call !!@@isrem ; [INF] 3 , 3
 or a , x ; [INF] 2 , 1
 bnz $L0012 ; [INF] 2 , 4
 movw ax , #0AH ; 10 ; [INF] 3 , 1
 call !!_putchar ; [INF] 4 , 3
L0012 :
; line 21
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 xchw ax , bc ; [INF] 1 , 1
 movw ax , [hl + 4] ; prime ; [INF] 2 , 1
 addw ax , bc ; [INF] 1 , 1
 movw [hl + 2] , ax ; k ; [INF] 2 , 1
L0014 :
 movw ax , [hl + 2] ; k ; [INF] 2 , 1
 cmpw ax , #0C8H ; 200 ; [INF] 3 , 1
 or1 CY , a.7 ; [INF] 2 , 1
 skc ; [INF] 2 , 1
 bnz $L0015 ; [INF] 2 , 4
; line 22
 movw ax , [hl + 2] ; k ; [INF] 2 , 1
 movw bc , ax ; [INF] 1 , 1
 mov _mark [bc] , #00H ; 0 ; [INF] 4 , 1
 movw ax , [hl + 2] ; k ; [INF] 2 , 1
 xchw ax , bc ; [INF] 1 , 1

210 User’s Manual U17838EJ1V0UM

APPENDIX A SAMPLE PROGRAMS

 movw ax , [hl + 4] ; prime ; [INF] 2 , 1
 addw ax , bc ; [INF] 1 , 1
 movw [hl + 2] , ax ; k ; [INF] 2 , 1
 br $L0014 ; [INF] 2 , 4
L0015 :
; line 24
 movw ax , [hl + 6] ; i ; [INF] 2 , 1
 incw ax ; [INF] 1 , 1
 movw [hl + 6] , ax ; i ; [INF] 2 , 1
 br $L0006 ; [INF] 2 , 4
L0007 :
; line 25
 movw ax , [hl] ; count ; [INF] 1 , 1
 push ax ; [INF] 1 , 1
 movw ax , #loww (L0017) ; 0 ; [INF] 3 , 1
 call !!_printf ; [INF] 4 , 3
 pop ax ; [INF] 1 , 1
; line 26
 addw sp , #08H ; [INF] 2 , 1
 pop hl ; [INF] 1 , 1
 ret ; [INF] 1 , 6
; line 29
_printf :
 push hl ; [INF] 1 , 1
 push ax ; [INF] 1 , 1
 subw sp , #04H ; [INF] 2 , 1

 movw hl , sp ; [INF] 3 , 1
; line 33
 movw ax , [hl + 12] ; i ; [INF] 2 , 1
 movw [hl + 2] , ax ; j ; [INF] 2 , 1
; line 34
 movw ax , [hl + 4] ; s ; [INF] 2 , 1
 movw [hl] , ax ; ss ; [INF] 1 , 1
; line 35
 addw sp , #04H ; [INF] 2 , 1
 pop hl ; [INF] 1 , 1
 ret ; [INF] 1 , 6
; line 38
_putchar :
 push hl ; [INF] 1 , 1
 movw hl , ax ; [INF] 1 , 1
; line 40
 mov a , l ; [INF] 1 , 1
 mov h , a ; [INF] 1 , 1
; line 41
 pop hl ; [INF] 1 , 1
 ret ; [INF] 1 , 6
 END

; *** Code Information ***
;
; $FILE /auto/proj/cmp/cc.new/work/egashira/cc78sk0r/src/test/prime2.c
;
; $FUNC main (8)
; bc = (void)
; CODE SIZE = 155 bytes , CLOCK_SIZE = 117 clocks , STACK_SIZE = 16 bytes
;
; $CALL printf (18)
; bc = (pointer : ax , int : [sp + 2])
;

APPENDIX A SAMPLE PROGRAMS

User’s Manual U17838EJ1V0UM 211

; $CALL putchar (20)
; bc = (int : ax)
;
; $CALL printf (25)
; bc = (pointer : ax , int : [sp + 2])
;
; $FUNC printf (29)
; bc = (pointer s : ax , int i : [sp + 4])
; CODE SIZE = 18 bytes , CLOCK_SIZE = 16 clocks , STACK_SIZE = 8 bytes
;
; $FUNC putchar (38)
; bc = (char c : x)
; CODE SIZE = 6 bytes , CLOCK_SIZE = 11 clocks , STACK_SIZE = 2 bytes

; Target chip : uPD78F1166_A0
; Device file : Vx.xx

212 User’s Manual U17838EJ1V0UM

APPENDIX A SAMPLE PROGRAMS

A.3.2 Preprocess list file

/*
78K0R Series C Compiler Vx.xx Preprocess List Date : xx xxx xxxx Page : 1
Command : -cf1166a0 prime.c -a -p -x -e -ng
In-file : prime.c
PPL-file : prime.ppl
Para-file :
*/

 1 : #define TRUE 1
 2 : #define FALSE 0
 3 : #define SIZE 200
 4 :
 5 : __far char mark [SIZE + 1] ;
 6 :
 7 : main ()
 8 : {
 9 : int i , prime , k , count ;
 10 :
 11 : count = 0 ;
 12 :
 13 : for (i = 0 ; i <= SIZE ; i++)
 14 : mark [i] = TRUE ;
 15 : for (i = 0 ; i <= SIZE ; i++) {
 16 : if (mark [i]) {
 17 : prime = i + i + 3 ;
 18 : printf ("%6d", prime) ;
 19 : count++ ;
 20 : if ((count%8) == 0) putchar ('\n') ;
 21 : for (k = i + prime ; k <= SIZE ; k += prime)
 22 : mark [k] = FALSE ;
 23 : }
 24 : }
 25 : printf ("\n%d primes found." , count) ;
 26 : }
 27 :
 28 : printf (char *s , int i)
 29 : {
 30 : int j ;
 31 : char *ss ;
 32 :
 33 : j = i ;
 34 : ss = s ;
 35 : }
 36 :
 37 : putchar (char c)
 38 : {
 39 : char d ;
 40 : d = c ;
 41 : }

/*
Target chip : uPD78F1166_A0
Device file : Vx.xx
*/

APPENDIX A SAMPLE PROGRAMS

User’s Manual U17838EJ1V0UM 213

A.3.3 Cross-reference list file

78K0R Series C Compiler Vx.xx Cross reference List Date : XX XXX XXXX Page : 1

Command : -cf1166a0 prime.c -a -p -x -e –ng
In-file : prime.c
Xref-file : prime.xrf
Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN FAR array mark 5 14 16 22
EXTERN FAR func main 7
AUTO1 int i 9 13 13 13 14 15 15 15 16 17 17
 21
AUTO1 int prime 9 17 18 21 21
AUTO1 int k 9 21 21 21 22
AUTO1 int count 9 11 19 20 25
EXTERN FAR func printf 28 18 25
EXTERN FAR func putchar 37 20
PARAM pointer s 28 34
PARAM int i 28 33
AUTO1 int j 30 33
AUTO1 pointer ss 31 34
REG1 char c 37 40
PARAM
REG1 char d 39 40
 #define TRUE 1 14
 #define FALSE 2 22
 #define SIZE 3 5 13 15 21

 Target chip : uPD78F1166_A0
 Device file : Vx.xx

214 User’s Manual U17838EJ1V0UM

APPENDIX A SAMPLE PROGRAMS

A.3.4 Error list file

prime.c (18) : CC78K0R warning W0745 : Expected function prototype
prime.c (20) : CC78K0R warning W0745 : Expected function prototype
prime.c (26) : CC78K0R warning W0622 : No return value
prime.c (35) : CC78K0R warning W0622 : No return value
prime.c (41) : CC78K0R warning W0622 : No return value

Target chip : uPD78F1166_A0
Device file : Vx.xx
Compilation complete, 0 error(s) and 5 warning(s) found.

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 215

APPENDIX B LIST OF USE-RELATED CAUTIONS

This chapter indicates cautions related to the use of the CC78K0R.

Table B-1 List of Use-related Cautions

Number Cautions

1 [Specification of options]
- When several specifications have been made for an option that does not allow multiple

specifications, the last specification takes priority (is valid).
- The type specification following the -c option must not be omitted. If it is omitted, an abort error

will occur.
If the -c option is not specified, be sure to enter #pragma pc (type) in the C source module file
instead.
During compilation, if the specified option is different from the option in the C source, the
specified option takes priority. A warning message is output at that time.

- If the help option has been specified, all other options are ignored.

2 [File output destinations]
Only disk-type files can be specified as the output destination for object module files.

3 [Error messages]
When a syntax error has been found in a file, an error message is attached to the file name.
If a device file has been specified at a prohibited location, the specified character string is output by
itself. In all other cases, the drive, path, and file extension must be attached.

4 [Source file names]
In the CC78K0R, the part except the source file name extension (primary name) is used as the
module name by default. Therefore, some restrictions apply to the source file names that can be
used.
- Regarding the length of the file name, configure the file name with a primary name and extension

within the range allowed by the OS, and separate the primary name and the extension with a dot
(.).

- The characters that can be used for the primary name and the extension consist of the
characters allowed by the OS, except parentheses (()), semicolons (;), and commas (,). Note
that a hyphen (-) cannot be used as the first character of a file name or file name. Do not specify
file names that include a space or 2-byte characters.

- An error is output during linking for files that have the same name as the first 8 characters of the
primary name.

- Sharp symbol (#) cannot be used for file names and path names in parameter files.

5 [Include files]
It is not possible to define functions (excluding declarations) in an include file and then expand the
file within the C source.
When definitions are made within an include file, problems such as incorrect display of definition
lines during source debugging may occur.

216 User’s Manual U17838EJ1V0UM

APPENDIX B LIST OF USE-RELATED CAUTIONS

6 [Use of output assembler source]
When a C source program contains descriptions that use assembly language such as #asm blocks
or __asm statements, the load module file creation procedure sequence is compile, assemble, and
then link.
Be careful about the following points when using the assembler by outputting the assembler source
to perform assembly without outputting direct objects by the CC78K0R, such as when descriptions
using assembly language are used.
- If symbols need to be defined in the #asm block (part between #asm and #endasm) and the

__asm statement, use a symbol of 8 or less characters beginning with the strings ?L@ (for
example, ?L@01, ?L@sym, etc.). However, these symbols cannot be defined externally
(PUBLIC declaration). It is not possible to define segments in the #asm block and the __asm
statement. If a symbol beginning with the strings ?L is not used, the Fatal error (F2114) is output
during assembly.

- When using variables that are extern-ed in the #asm block in C source, EXTRN is not generated
if there are no references in other C descriptions, and a link error is output. Therefore, perform
EXTRN in the #asm block if no referencing is done in C.

- If the C source contains #asm blocks and __asm statements, specify the -a or -sa option to
enable assembly descriptions, and assemble the output assembler source.
When using PM+, either specify the -a/-sa options through individual option specification for
sources for which only assembler source files are output, or specify the -a/-sa options through
universal option specification.

- When using PM+, the RA78K0R is started regardless of compiler options -o/-no when compiler
option -a or -sa is specified.

- When changing the segment name using the #pragma section directive, do not specify a
segment having the same name as the primary name of the source file name. Otherwise, error
(F2106) is output during assembly.

Table B-1 List of Use-related Cautions

Number Cautions

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 217

7 [Creating link directive file]
When an area outside of the ROM or RAM area of the target device is used when linking the objects
created by the CC78K0R, or when you want to place the code or data at any specified address,
create a link directive file and specify the -d option when linking.
For information about creating link directive files, see RA78K0R Assembler Package Operation
User's Manual and lk78k0r.dr (in the smp78k0r folder) equipped with the CC78K0R.

<Example: When you want to place external variables without initial values (except sreg variables)
from a certain C source file to the external memory.>

(1) Change the section name for the external variables without initial value at the beginning of
the C source.

 #pragma section @@DATAL EXTDATA
 :

Caution Initialization of the changed segment and ROMization should be performed by
changing the startup routine.

(2) Create a link directive file.
<lk78k0r.dr>

 memory EXTRAM : (040000h , 1000h)
 merge EXTDATA : = EXTRAM

Heed the following points when creating a link directive file.

- When using the -s automatic generation option for stack symbols while linking, it is
recommended to secure the stack area by the memory directive of the link directive file and
specify its name explicitly. If the area name is omitted, it is used as the stack area in the RAM
(except for the SFR area).

<Example: When added to the link directive file lk78k0r.dr>
 memory EXTRAM : (040000h , 1000h)
 memory STK : (0FB000H , 100H)
 merge EXTDATA : = EXTRAM

(Command line)
 > lk78k0r s0rml.rel prime.rel -bcl0rm.lib -sSTK -dlk78k0r.dr

- The following error may be output when linking in the defined memory area.
 "*** RA78K0R error E3206: Segment 'xxx' can't allocate to memory-ignored."

[Cause]
Because of insufficient space in the defined memory area, the indicated segment cannot
be located.

[Response]
The response action is roughly divided into the following 3 steps.

(i) Examine the size of a segment that cannot be located (refer to the .map file).

(ii) Based on the size of the segment examined in step (i), increase the size of the area
where the segment is located in the directive file.

(iii) Specify directive file specification option -d and link.

However, based on the type of the segment marked by an error in step (i), the method
used to examine the segment size differs in the following way.

- When the segment is automatically generated during compilation
Examine the size of the segment by the map file that is linked and created.

- When the segment is created by the user
Examine the size of the segment that is not located by the assemble list file (.prn).

Table B-1 List of Use-related Cautions

Number Cautions

218 User’s Manual U17838EJ1V0UM

APPENDIX B LIST OF USE-RELATED CAUTIONS

8 [When using va_start macro]
The operation of va_start macro defined in stdarg.h is not guaranteed (because the offset of the first
argument differs depending on the function).
Choose a macro as follows.

- When the first argument is specified, use the va_starttop

- When the second and subsequent arguments are specified, use the va_start macro.

9 [Startup routines and libraries]

- Use the provided startup routines and libraries with the same versions as the files in the
executable form (cc78k0r.exe).

- (b) For the floating point support functions sprintf, vprintf, and vsprintf, if the result value of a
conversion that is specified with the conversion specifiers "%f", "%e", "%E", "%g" or "%G" is
smaller than the precision, the value is rounded down. "%f" conversion is executed even if the
result value of conversion that is specified with "%g"/"%G" is greater than the precision.
For functions sscanf and scanf, if no effective character is read during conversion that is
specified with the conversion specifiers "%f", "%e", "%E", "%g", or "%G", +0 is regarded as the
conversion result. If the conversion result is "+", +0 is regarded as the conversion result.

[Prevention method]
None

Table B-1 List of Use-related Cautions

Number Cautions

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 219

10 [When performing ROMization]
ROMization consists in placing initial values such as those of external variables that have an initial
value in ROM, and then copying these values to RAM during system operation. In CC78K0R, a
code is generated by default for ROMization. Therefore, it is necessary to perform linking with the
startup routine including ROMization during linking.
The startup routine for the small model and medium model does not include ROMization processing
for the far area. When variables are allocated in the far area using the __far qualifier or the like, use
the startup routine for the compact model and large model.
The following startup routines, all including ROMization processing, are provided by the CC78K0R.
If the flash memory self rewrite mode for is used, refer to “8.3.3 (3) When using RTOS“.
Startup routines:

- When not using C standard library area: s0rm.rel, s0rl.rel

- When using C standard library area: s0rml.rel, s0rll.rel

<Usage example>
 C>lk78k0r s0rl.rel sample.rel -s -bcl0rxm.lib -bcl0rm.lib -osample.lmf

 sample.rel: Object module file of user program
 s0rl.rel: Startup routine
 cl0rxm.lib: Library that uses a multiplier
 cl0rm.lib: Runtime library, standard library

The -s option is a stack symbol (_@STBEG, _@STEND) automatic generation option.

Caution 1: Be sure to link the startup routine at the beginning.

Caution 2: When creating a library, create it separately from the library provided by the
CC78K0R, and specify it prior to the compiler library during linking.

Caution 3: Do not add user functions to the CC78K0R library.

Caution 4: When using a floating point library (cl0r*f.lib), it is necessary to link the startup
routine including the ROMization processing to both the standard library and the
floating point library.

- When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating
points

<Example>
 -bmylib.lib -bcl0rmf.lib -bcl0rm.lib

- When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting
floating points

<Example>
 -bmylib.lib -bcl0rm.lib -bcl0rmf.lib

11 [Stack area symbol generation (-s)]
In CC78K0R, the user cannot secure a stack area. To secure a stack area, specify the -s option
during linking.
When using PM+, the -s option is automatically attached when the source file specification includes
the C source.

Table B-1 List of Use-related Cautions

Number Cautions

220 User’s Manual U17838EJ1V0UM

APPENDIX B LIST OF USE-RELATED CAUTIONS

12 [ROM code]
When ordering ROM code, specify the -r or -u object converter options, such as -r, -u0FFH (do not
cancel the specification).

<Example>
 -r -u0FFH

 -r: Sort HEX file contents by order of addresses.
 -ucomplement-value: Fill empty space in ROM code with the specified
 complement value.

13 [Help specification option]
In PM+, compiler options --, -?, and -h, which display option descriptions, are ignored.
For help, click the [Help] button in the [Option Setup] dialog box of each tool.

14 [-ll option specification]
When using PM+, the maximum number that can be specified for the -ll option is 32,767. If a
number that exceeds 32,767 is specified, specify the -ll option with another option.

Table B-1 List of Use-related Cautions

Number Cautions

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 221

15 [When using PM+]

(a) Parameter file created by user
When PM+ is specified for the parameter file created by the user, those contents are loaded to
the parameter file created by PM+. When creating a parameter file, be careful about the
following points. Otherwise, an error will occur during build execution.

- Specify a file with the same name as the parameter file created by PM+.

- Do not describe the device type specification option (-c), device file search path
specification option (-y), and source file.

- No validity check is performed for the options described in the parameter file created by
the user.

(b) [Assembler Options] dialog box
Do not specify the -c, -f, and -y options and the source file, or an error will occur during build
execution.
No validity check is performed for the options specified in the [Assembler Options] dialog box,
so an error will occur during build execution in case of description errors.

(c) Include file dependence relationship
During checking of dependence relationships of include files during MAKE file creation with
PM+, condition statements such as #if are ignored. Therefore, include files not required for
build are mistaken as required files. If described as comments or character strings, they are
correctly judged as without dependence relationship.

<Example>
 #if 0
 #include "header1.h" /* Dependence relationship judged to exist */
 #else / * ! zero */
 #include "header2.h"
 #endif
 /*
 #include "header3.h"
 */

header1.h is judged as required for build during the dependence relationship check. If the
header1.h file exists, header1.h gets registered to ProjectWindow of PM+.

[Prevention method]
None. However, this has no effect on the build processing.

(d) Project-related file settings
The CC78K0R attribute startup routines and standard libraries can be added and deleted from
the [Project] menu of PM+ or from "Add Project-Related File" displayed by right-clicking in the
Project window.
Perform the CC78K0R attribute startup routine and standard library settings from the [Startup
Routine] tab in the [Compiler Options] dialog box.

16 [Prototype declaration]
An error (E0301, E0701) will occur if a function prototype declaration does not contain a function
type specification.

<Example>
 f (void) ; /* E0301 : Syntax error */
 /* E0701 : External definition syntax */

[Prevention method]
Describe the function type.
<Example>

 int f (void) ;

Table B-1 List of Use-related Cautions

Number Cautions

222 User’s Manual U17838EJ1V0UM

APPENDIX B LIST OF USE-RELATED CAUTIONS

17 [Error message output]
If there is a spelling error in the keyword at the beginning of a line outside the function, the display
position of the error line may be offset and an inappropriate error output.

<Example>
 extren int i ; /* extern spelling error. No error will occur here. */
 /* comment */
 void f (void) ;
 [EOF] /* Error such as E0712 */

[Prevention method]
None

18 [Description of comments in preprocessing directive]
In the description of preprocessing directives, an error (E0803, E0814, E0821, etc.) will occur when
a comment is described at the same line as a function type macro either before or within a
preprocessing directive.

<Example>
 /* com1 */ #pragma sfr /* E0803 */
 /* com2 */ #define ONE 1 /* E0803 */
 #define /* com3 */ TWO 2 /* E0814 */
 #ifdef /* com4 */ ANSI_C /* E0814 */

 /* com5 */ #endif
 #define SUB (p1 , /* com6 */ p2) p2 = p1 /* E0821 */

[Prevention method]
Describe the comment after the preprocessing directive.

<Example>
 #pragma sfr /* com1 */
 #define ONE 1 /* com2 */
 #define TWO 2 /* com3 */
 #ifdef ANSI_C /* com4 */

 #endif /* com5 */
 #define SUB (p1 , p2) p2 = p1 /* com6 */

Table B-1 List of Use-related Cautions

Number Cautions

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 223

19 [Use of tag for structure, union, or enum]
If the tag (for a structure, union, or enum) is used before defining it in a function prototype
declaration, a warning will occur if condition (a) below is fulfilled, and an error will occur if condition
(b) below is fulfilled.

(a) If the tag is used in an argument declaration and a pointer to a structure or union is defined, the
warning (W0510) will occur when a function is called.
<Example>

 void func (int , struct st) ;

 struct st {
 char memb1 ;
 char memb2 ;
 } st [] = {
 { 1 , 'a' } , { 2 , 'b' }
 } ;

 void caller (void) {
 /* W0510 Pointer mismatch */
 func (sizeof (st) / sizeof (st [0]) , st) ;
 }

(b) An error (E0737) will occur if the tag is used in a return value type declaration of an argument
declaration, and a structure, union, or enum type is specified.
<Example>

 /* E0737 Undeclared structure/union/enum tag */
 void func1 (int , struct st) ;
 /* E0737 Undeclared structure/union/enum tag */
 struct st func2 (int) ;
 struct st {
 char memb1 ;
 char memb2 ;
 } ;

[Prevention method]
Define the tag of the structure, union, or enum beforehand.

20 [Initialization of array, structure, or union in function]
Arrays, structures, and unions using something other than a static variable address, constant, or
character string cannot be initialized.

<Example>
 void f (void) ;
 void f (void) {
 char *p , *p1 , *p2 ;
 char *ca [3] = { p , p1 , p2 } ; /* Error(E0750) */
 }

[Prevention method]
Describe an assignment statement and use it instead of initialization.

<Example>
 void f (void) ;
 void f (void) {
 char *ca [3] ;
 char *p , *p1 , *p2 ;
 ca [0] = p ; ca [1] = p1 ; ca [2] = p2 ;
 }

Table B-1 List of Use-related Cautions

Number Cautions

224 User’s Manual U17838EJ1V0UM

APPENDIX B LIST OF USE-RELATED CAUTIONS

21 [extern callt function]
If the address of an extern callt function is referenced by initializing the function table, etc., and the
callt function is called by the same module, the assemble list is illegal and an error will occur during
assembly.

<Example>
 callt extern void funca (void) ;
 callt extern void funcb (void) ;
 callt extern void funcc (void) ;

 static void (* const func []) () = {
 funca , funcb , funcc
 } ;
 void func2 (void) {
 funcc () ;
 funcb () ;
 funca () ;
 }

[Prevention method]
Separate the function table and function call module.

22 [Functions returning a structure]
When a function returns a structure, an interrupt is generated in the process of returning a return
value. If there is a call of the same function during interrupt servicing, the return value is illegal after
the interrupt servicing ends.

<Example>
 struct str {
 char c ;
 int i ;
 long l ;
 } st ;

 struct str func () {
 /* Interrupt occurrence */
 :
 }

 void main () {
 st = func () ; /* Interrupt occurrence */
 }

If the func function is called at the interrupt destination during the above servicing, st may be
corrupted.

[Prevention method]
None

Table B-1 List of Use-related Cautions

Number Cautions

APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U17838EJ1V0UM 225

23 [Union initialization]
An error (E0750) will occur when, during initialization of unions having structures, unions, or arrays
as members, the initializer syntax is specified with nesting.

<Example>
 struct Ss {
 int d1 , d2 ;
 } ;
 union Au {
 struct Ss t1 ;
 } u = { { 1 , 2 } } ; /* E0750 Initializer syntax */

[Prevention method]
Do not specify the initializer of a union with nesting.

<Example>
 struct Ss {
 int d1 , d2 ;
 } ;
 union Au {
 struct Ss t1 ;
 } u = { 1 , 2 } ;

24 [Kanji code (2-byte code) classification]
To use a source containing EUC code, set the environmental variable LANG78K to euc, or specify
the -ze option.

25 [Section start address specification]
The size of the section whose start address is specified with the #pragma section directive is always
an even number.

Table B-1 List of Use-related Cautions

Number Cautions

226 User’s Manual U17838EJ1V0UM

APPENDIX C COMMAND OPTIONS

APPENDIX C COMMAND OPTIONS

In this chapter the program options are summarized in table format.

Use this when developing programs.

This option table can be used as an option index.

Table C-1 Compiler Options

Types Description Format Functions Relationship with
Other Options

Interpretation
when omitted

Device type
specification

-cdevice-type Specifies the type of
target device.

Independent Specification
of this option
cannot be
omitted.

Object
module file
creation
specification

-o[output-file-name] Specifies the output of
the object module files.

If -o and -no are
specified
simultaneously,
the last one
specified is
enabled.

-oinput-file-
name.rel

-no Specifies not to output
the object module file.

Memory
assignment
specification

-rprocess-type
(Multiple specifications
are possible)

Specifies the method of
memory assignment.

If -r and -nr, -rd
and -nr, -rs and -
nr are specified
simultaneously,
the last ones
specified are
enabled.

-nr

-rd[n][m] (n = 1, 2, 4) Specifies external
variables/external static
variables are
automatically assigned
to the saddr area.

-rs[n][m] (n = 1, 2, 4) Assigns a static auto
variable automatically to
the saddr area.

-nr The -r, -rd, -rk and -rs
options are disabled.

Optimization
specification

-q[optimization-type]
(Multiple specifications
are possible)

Specifies calling the
optimization phase to
generate efficient
objects.

If -q and -nq are
specified
simultaneously,
the last one
specified is
enabled.

-qcjlvw

-nq Invalidates the -q option.

Debugging
information
output
specification

-g[n] (n = 1, 2) Specifies the output of
the source level
debugging information.

If -g and -ng are
specified
simultaneously,
the last one
specified is
enabled.

-g2

-nq Invalidates the -g option.

Preprocess
list file
creation
specification

-p[output-file-name] Specifies the output of
the preprocess list files.

If -p is not
specified, then -k
is disabled.

None (no file
is output)

-k[process-type]
(Multiple specifications
are possible)

Specifies processing for
the preprocess lists.

-kfln

APPENDIX C COMMAND OPTIONS

User’s Manual U17838EJ1V0UM 227

Preprocess
specification

-dmacro-name[=definition-
name][,macro-
name[=definition-
name]]...
(Multiple specifications
are possible)

Specifies processing
which is compatible for
text that is defined in the
C source.

Independent Only the
macro
definitions in a
C source
module file
are valid.

-umacro-name[,macro-
name]...
(Multiple specifications
are possible)

Disables macro
definitions similar to the
#undef statement in the
C source.

Independent A macro
definition
specified with
-d is valid.

-ifolder[,folder]...
(Multiple specifications
are possible)

Specifies input of the
include files specified by
the #include statement
in the C source from the
specified folder.

Independent 1. Folder with
source file
2. Folder
specified by
environment
variable
INC78K0R
3. C:\Program
Files\NEC
Electronics
Tools\CC78K
0R\Vx.xx\inc7
8k0r

Assembler
source
module file
creation
specification

-a[output-file-name] Specifies the output of
the assembler source
module file.

If -a and -sa are
specified
simultaneously,
then -sa is
disabled.

No assembler
source
module file is
output.

-sa[output-file-name] Adds the C source as a
comment to the
assembler source
module file.

Error list file
creation
specification

-e[output-file-name] Specifies the output of
the error list file.

Independent No error list
file is output.

-se[output-file-name] Adds the C source
module file to the error
list file.

Independent

Cross-
reference list
file creation
specification

-x[output-file-name] Specifies the output of
the cross-reference list
file.

Independent No cross-
reference list
file is output.

Table C-1 Compiler Options

Types Description Format Functions Relationship with
Other Options

Interpretation
when omitted

228 User’s Manual U17838EJ1V0UM

APPENDIX C COMMAND OPTIONS

List format
specification

-lw[number-of-
characters]

Specifies the number of
characters in 1 line of
each type of list file.

Independent -lw132 (For
console
output, this
becomes 80
characters)

-ll[number-of-lines] Specifies the number of
lines on 1 page of each
type of list file.

Independent There is no
page break

-lt[number-of-
characters]

The -lt option indicates
the basic number of
characters for outputting
a horizontal tabulation
(HT) code in the source
module file, replacing it
with several blanks
(spaces) in each list
(tabulation processing).

Independent -lt8

-lf Specifies adding the new
page break code at the
end of each list file.

Independent The new page
break code
will not be
added.

-li Adds the C source of the
include file to the
assembler source
module file with C
source comments.

Independent No C sources
of the include
file will be
added.

Warning
output
specification

-w[level] Specifies the output of
warning messages to
the console.

Independent -w1

Execution
state display
specification

-v Specifies whether or not
the current compilation
execution status is
output to the console.

If -v and -nv are
specified
simultaneously,
the last one
specified is
enabled.

-nv

-nv Invalidates the -v option.

Parameter
file
specification

-ffile-name Specifies the input of the
options or input file
name from the specified
file.

Independent The input of
an option and
an input file
name is
possible only
from a
command
line.

Table C-1 Compiler Options

Types Description Format Functions Relationship with
Other Options

Interpretation
when omitted

APPENDIX C COMMAND OPTIONS

User’s Manual U17838EJ1V0UM 229

Temporary
file creation
folder
specification

-tfolder Creates temporary files
in specified drives and
folders.

Independent The tempo-
rary files are
created in the
drive folder
specified by
the
environment
variable TMP.
If not
specified, the
files are
created in the
current drive
and current
folder.

Help
specification

--/-?/-h The --, -?, and -h options
display brief
explanations of the
options and the help
messages such as the
default options on the
console (valid only in the
command line).

All other options
are disabled.

Nothing is
displayed

Function
expansion
specification

-ztype
(Multiple specifications
are possible)

Enables extended
functions.

If -z and -nz are
specified
simultaneously,
the last one
specified is
enabled.

-nz

-nz Invalidates the -z option.

Device file
search path

-yfolder Specifies paths that
search device files.

Independent Normal
search path
only

Memory
model
specification

-mtype Specifies the memory
model used for
compilation.

Independent -mm

Table C-1 Compiler Options

Types Description Format Functions Relationship with
Other Options

Interpretation
when omitted

230 User’s Manual U17838EJ1V0UM

INDEX

Symbols
#pragma pc ... 91
*.asm ... 29
*.bat ... 29
*.dll ... 29
*.h ... 29
*.hlp ... 29
--/-?/-h option ... 129
_@BRKADR ... 164
_@DIVR ... 164
_@FNCENT ... 164
_@FNCTBL ... 164
_@LDIVR ... 164
_@MEMBTM ... 164
_@MEMTOP ... 164
_@SEED ... 164
_@STBEG ... 158, 159
_@TOKPTR ... 164
[Compiler Options] dialog box ... 41

A
-a option ... 110
ABORT ... 147
ANSI-C ... 13
Assembler ... 18
Assembler source ... 216
Assembler source module file ... 136

C
C compiler ... 17
-c option ... 91
cc78k0r.exe ... 29
cc78k0r.msg ... 29
cc78k0rp.chm ... 29
cc78k0rp.dll ... 35
cer ... 79
cl0r*.lib ... 29
Cross-reference list file ... 145
cstart*.asm ... 29, 156
cstart.asm ... 152, 156, 157
cstartn.asm ... 152, 156

D
-d option ... 106
Debugger ... 22

E
-e option ... 114
ecc ... 79
Environment variable ... 34
er ... 79
_errno ... 164
Error level ... 147

Error list file ... 140

F
-f option ... 127

G
-g option ... 102

H
Hardware initialization function ... 159
Hdwinit function ... 155, 159
her ... 79

I
-i option ... 108
INC78K0R ... 34, 108, 148
Include file ... 215, 221

K
-k option ... 104

L
LANG78K ... 34, 148
-lf option ... 123
-li option ... 124
LIB78K0R ... 34, 148
Librarian ... 21
Library ... 30, 218
Library file ... 30
Library naming rule ... 31
Link directive file ... 158, 166, 217
Linker ... 19
lk78k0r.dr ... 29
-ll option ... 121
-lt option ... 122
-lw option ... 120

M
-m option ... 133
mkstup.bat ... 29, 151, 154

N
-ng option ... 102
-no option ... 93
-nq option ... 99
-nr option ... 95, 97, 98
-nv option ... 126
-nz option ... 130

User’s Manual U17838EJ1V0UM 231

O
-o option ... 93
Object converter ... 20
Object module file ... 135
On-line help file ... 29
Optimization ... 82

P
-p option ... 103
Parameterfile ... 60
PATH ... 34, 148
Preprocess list file ... 143
prime.c ... 29

Q
-q option ... 99

R
-r option ... 95
-rd option ... 97
readme.doc ... 29
repgetc.bat ... 151
repputc.bat ... 151
repputcs.bat ... 151
reprom.bat ... 29, 151
repselo.bat ... 151
repselon.bat ... 151
repvect.bat ... 151
Reset vector ... 159
rom.asm ... 29, 156
ROMization ... 84, 150
ROMization processing ... 160, 167
ROMization routine ... 151
-rs option ... 98
Runtime library ... 30, 84

S
s0r*.rel ... 29, 156
-sa option ... 111
sample.bat ... 29
-se option ... 116
sjis ... 34
Source file name ... 215
Stack pointer ... 159
Standard library ... 30, 84
Startup module ... 167
Startup routine ... 30, 84, 150, 154, 155, 217
Startup routine naming rule ... 31
System simulator ... 23

T
-t option ... 128
TMP ... 34, 148

U
-u option ... 107

V
-v option ... 126

W
-w option ... 125
WARNING ... 147

X
-x option ... 118

Y
-y option ... 132

Z
-z option ... 130

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
TEL: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

Seoul Branch
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

For further information,
please contact:

G05.12A

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielski Strasse 166 B
30177 Hanover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52180
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Limburglaan 5
5616 HR Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES

	CHAPTER 1 OVERVIEW
	1.1 Role of CC78K0R
	1.2 Development Procedure Using CC78K0R
	1.2.1 Using editor to create source module files
	1.2.2 C compiler
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 Debugger
	1.2.8 System simulator
	1.2.9 PM+

	CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION
	2.1 Host Machines and Supply Medium
	2.2 Installation
	2.3 Installation of Device Files
	2.4 Folder Configuration
	2.5 File Organization
	2.5.1 Library files

	2.6 Uninstallation
	2.7 Environment Settings
	2.7.1 Host machine
	2.7.2 Environment variables

	CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING
	3.1 PM+
	3.1.1 Position of cc78k0rp.dll (tools DLL)
	3.1.2 Execution environment
	3.1.3 CC78K0R option setting menu
	3.1.4 Description of each part of [Compiler Options] dialog box
	[Preprocessor] tab
	[Memory Model] tab
	[Data Assign] tab
	[Optimize] tab
	[Debug] tab
	[Output] tab
	[Extend] tab
	[Others] tab
	[Startup Routine] tab

	3.2 Procedure (When Not Using Self Rewrite Mode)
	3.2.1 MAKE from PM+
	3.2.2 Compiling to linking in command line (for command prompt)

	3.3 Procedure (When Using Self Rewrite Mode)
	3.3.1 Compiling to linking via PM+
	3.3.2 Compiling to linking in command line (for command prompt)

	3.4 I/O Files of C Compiler
	3.5 Execution Start and End Messages
	3.5.1 Execution start message
	3.5.2 Execution end message

	CHAPTER 4 CC78K0R FUNCTIONS
	4.1 Optimization Method
	4.2 ROMization Function
	4.2.1 Linking

	CHAPTER 5 COMPILER OPTIONS
	5.1 Specifying Compiler Options
	5.2 Prioritization
	5.3 Types
	5.4 Descriptions
	Device type specification
	Object module file creation specification
	Memory assignment specification
	Optimization specification
	Debugging information output specification
	Preprocess list file creation specification
	Preprocess specification
	Assembler source module file creation specification
	Error list file creation specification
	Cross-reference list file creation specification
	List format specification
	Warning output specification
	Execution state display specification
	Parameter file specification
	Temporary file creation folder specification
	Help specification
	Function expansion specification
	Device file search path
	Memory model specification

	CHAPTER 6 C COMPILER OUTPUT FILES
	6.1 Object Module File
	6.2 Assembler Source Module File
	6.3 Error List File
	6.3.1 Error list file with C source
	6.3.2 Error list file with error message only

	6.4 Preprocess List File
	6.5 Cross-reference List File

	CHAPTER 7 USING C COMPILER
	7.1 Efficient Operation (EXIT Status Function)
	7.2 Setting Up Development Environment (Environment Variables)
	7.3 Interrupting Compilation

	CHAPTER 8 STARTUP ROUTINES
	8.1 File Organization
	8.1.1 “bat” folder contents
	8.1.2 “src” folder contents
	8.1.3 “lib” folder contents

	8.2 Batch File Description
	8.2.1 Batch files for creating startup routines

	8.3 Startup Routines
	8.3.1 Overview of startup routines
	8.3.2 Description of sample program (cstart.asm)
	8.3.3 Revising startup routines

	8.4 ROMization Processing in Startup Module for Flash Area

	CHAPTER 9 ERROR MESSAGES
	9.1 Error Message Format
	9.2 Types of Error Messages
	9.3 List of Error Messages
	9.3.1 Error messages for a command line
	9.3.2 Error messages for an internal error and memory
	9.3.3 Error messages for a character
	9.3.4 Error messages for configuration element
	9.3.5 Error messages for conversion
	9.3.6 Error messages for an expression
	9.3.7 Error messages for a statement
	9.3.8 Error messages for a declaration and function definition
	9.3.9 Error messages for a preprocessing directive
	9.3.10 Error messages for fatal file I/O and running on an illegal operating system

	9.4 List of PM+ Error Messages

	APPENDIX A SAMPLE PROGRAMS
	A.1 C Source Module File
	A.2 Execution Example
	A.3 Output List
	A.3.1 Assembler source module file
	A.3.2 Preprocess list file
	A.3.3 Cross-reference list file
	A.3.4 Error list file

	APPENDIX B LIST OF USE-RELATED CAUTIONS
	APPENDIX C COMMAND OPTIONS
	INDEX

