
www.renesas.com

U
ser's M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CC-RL
Compiler

User's Manual

Applicable Revision

V1.00.00 to V1.13.00

Target Device

RL78 Family

Target CPU Cores:

RL78-S1, RL78-S2, RL78-S3

Rev.1.13 2023.12



© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of 
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or 
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, 
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; 
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims 
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is 
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics 
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND 
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT 
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO 
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, 
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety 
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1  October 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

For further information on a product, technology, the most up-to-date 
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics 
Corporation. All trademarks and registered trademarks are the property 
of their respective owners.



How to Use This Manual

This manual describes the role of the CC-RL compiler for developing applications and systems for RL78 family, and pro-
vides an outline of its features.

Readers This manual is intended for users who wish to understand the functions of the CC-RL and 
design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the CC-RL to 
use for reference in developing the hardware or software of systems using these devices.

Organization This manual can be broadly divided into the following units.
1.  GENERAL
2.  COMMAND REFERENCE
3.  OUTPUT FILES
4.  COMPILER LANGUAGE SPECIFICATIONS
5.  ASSEMBLY LANGUAGE SPECIFICATIONS
6.  SECTION SPECIFICATIONS
7.  LIBRARY FUNCTION SPECIFICATIONS
8.  STARTUP
9.  FUNCTION CALL INTERFACE SPECIFICATIONS
10.  MESSAGE
11.  CAUTIONS
A.  QUICK GUIDE

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic 
circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remarks: Supplementary information
Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX



TABLE OF CONTENTS

1. GENERAL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Special Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Copyrights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Standard and Professional Editions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Free Evaluation Editions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. COMMAND REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 I/O Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Environment Variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Method for Manipulating  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Command line operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Subcommand file usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Compile options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 951Assemble options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.5.3 Link options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

2.5.4 Library generator options [V1.13.00 or later]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

2.6 Specifying Multiple Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

2.6.1 Specifying multiple times of options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

2.6.2 Priority of options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

2.6.3 Combinations of options with conflicting features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

2.6.4 Dependence between options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

2.6.5 Relationship with #pragma directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

2.6.6 Relationship with near and far  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

3. OUTPUT FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

3.1 Assemble List File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

3.1.1 Structure of the assemble list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

3.1.2 Assemble list information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

3.1.3 Section list information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

3.1.4 Command line information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

3.2 Link Map File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3.2.1 Structure of link map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3.2.2 Header information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3.2.3 Option information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



3.2.4 Error information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

3.2.5 Link map information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

3.2.6 Total section size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

3.2.7 Symbol information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

3.2.8 Contents of the function list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

3.2.9 Cross reference information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

3.2.10 Vector table address information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

3.2.11 CRC information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

3.3 Link Map File (When Objects Are Combined) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

3.3.1 Structure of link map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

3.3.2 Header information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

3.3.3 Option information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

3.3.4 Error information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

3.3.5 Entry information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

3.3.6 Combined address information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

3.3.7 Address overlap information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

3.4 Library List File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

3.4.1 Structure of the library list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

3.4.2 Option information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

3.4.3 Error information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

3.4.4 Library information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

3.4.5 Module, section, and symbol information within the library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

3.5 Intel HEX File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

3.5.1 Structure of the Intel HEX file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

3.5.2 Start linear address record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

3.5.3 Extended linear address record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

3.5.4 Start segment address record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

3.5.5 Extended segment address record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

3.5.6 Data record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

3.5.7 End of file record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

3.6 Motorola S-record File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

3.6.1 Structure of the Motorola S-record file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

3.6.2 S0 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

3.6.3 S1 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

3.6.4 S2 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

3.6.5 S3 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

3.6.6 S7 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

3.6.7 S8 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

3.6.8 S9 record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

3.7 Variable/Function Information File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

3.7.1 Outputting the variable/function information file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

3.7.2 How to use variable/function information file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322



4. COMPILER LANGUAGE SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.1 Basic Language Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.1.1 Implementation-defined behavior of C90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.1.2 Implementation-defined behavior of C99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

4.1.3 Internal representation and value area of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

4.1.4 Allocation conditions for data and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

4.1.5 Static variable initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

4.1.5.1 Initialization by address calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

4.1.5.2 Casting far address to near address and then converting to far address . . . . . . . . . . . . . . . . . . . . 346

4.2 Extended Language Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

4.2.1 Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

4.2.2 Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

4.2.3 C99 language specifications supported in conjunction with C90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

4.2.4 #pragma directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

4.2.5 Binary constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

4.2.6 Using extended language specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

4.2.7 Intrinsic functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

5. ASSEMBLY LANGUAGE SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

5.1 Description of Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

5.1.1 Basic structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

5.1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

5.1.3 Expressions and operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

5.1.4 Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

5.1.5 Bit logic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

5.1.6 Relational operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

5.1.7 Logical operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

5.1.8 Shift operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

5.1.9 Byte separation operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

5.1.10 2-byte separation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

5.1.11 Special operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

5.1.12 Section operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

5.1.13 Other operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

5.1.14 Restrictions on operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

5.1.15 Bit position specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

5.1.16 Operand characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

5.2 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

5.2.1 Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

5.2.2 Section definition directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

5.2.3 Symbol definition directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

5.2.4 Data definition/Area reservation directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

5.2.5 External definition/External reference directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496



5.2.6 Compiler output directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

5.2.7 Macro directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

5.2.8 Branch directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

5.2.9 Machine-Language Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

5.3 Control Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

5.3.1 Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

5.3.2 File input control instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

5.3.3 Mirror source area reference control instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

5.3.4 Assembler control instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

5.3.5 Conditional assembly control instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

5.4 Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

5.4.1 Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

5.4.2 Usage of macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

5.4.3 Nesting macro definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

5.4.4 Nesting macro references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

5.4.5 Macro operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

5.4.6 Error processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

5.5 Using SFR Symbols and Extended SFR Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

5.6 Reserved Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

5.7 Assembler Generated Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

6. SECTION SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

6.1 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

6.1.1 Section name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

6.1.2 Section concatenation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

6.2 Special Symbol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

6.2.1 Symbols generated regardless of option specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

6.2.2 Symbols generated by option specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

7. LIBRARY FUNCTION SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

7.1 Supplied Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

7.2 Rule for Naming Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

7.3 Allocation Area of Libraries and Startup Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

7.4 Header Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

7.5 Library Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

7.5.1 Program diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

7.5.2 Character operation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

7.5.3 Functions for greatest-width integer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

7.5.4 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

7.5.5 Non-local jump functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

7.5.6 Variable arguments of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

7.5.7 Standard I/O functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

7.5.8 General utility functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764



7.5.9 Character string operation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

7.5.10 Initialization functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

7.5.11 Runtime libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

7.6 Interrupt Disabled Time, Use of Data Sections, and Reentrancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

7.6.1 Standard library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

7.6.2 Runtime library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

8. STARTUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

8.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

8.2 Startup Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

8.2.1 Reset vector table setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

8.2.2 Register bank setting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

8.2.3 Mirror area setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

8.2.4 Stack area allocation, stack pointer setting, and stack area initialization . . . . . . . . . . . . . . . . . . . . . . . . 834

8.2.5 Initialization of peripheral I/O registers required before main function execution . . . . . . . . . . . . . . . . . . 834

8.2.6 Initialization of RAM area section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

8.2.6.1 Initialization of RAM area sections by using an initialization table [V1.12 or later]  . . . . . . . . . . . . . 837

8.2.7 Startup of main function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

8.2.8 Creation of termination routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

8.2.9 Startup of the RL78-S1 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

8.3 Coding Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

8.4 Creating ROM Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

9. FUNCTION CALL INTERFACE SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 847

9.1 Function Call Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

9.1.1 General registers and ES/CS registers whose values are guaranteed  . . . . . . . . . . . . . . . . . . . . . . . . . 847

9.1.1.1 General registers AX, BC, DE, and HL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

9.1.1.2 ES and CS registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

9.1.1.3 PSW and PC registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

9.1.1.4 MACR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

9.1.1.5 Other registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

9.1.2 Passing arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

9.1.3 Return value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

9.1.4 Stack frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

9.2 Calling of Assembly Language Routine from C Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

9.3 Calling of C Language Routine from Assembly Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

9.4 Reference of Argument Defined by Other Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

10. MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

10.1 General  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

10.2 Message Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

10.3 Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

10.4 Message Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853



10.5 Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

10.5.1 Internal errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854

10.5.2 Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856

10.5.3 Fatal errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

10.5.4 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

10.5.5 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894

11. CAUTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

11.1 Cautions Regarding Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

11.1.1 Indirect reference of pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

11.1.2 Register access via pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

11.1.3 Function calling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

11.1.4 Data flash area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

11.1.5 Function definitions in K&R format (formal parameters of _Bool type). . . . . . . . . . . . . . . . . . . . . . . . . . 906

11.1.6 MISRA2004 check (rule number 10.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907

11.1.7 Extended language specifications which needs the device file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907

11.1.8 Controlling the Output of Bit Manipulation Instructions [V1.04 or later]  . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2 Cautions Regarding Library and Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2.1 Setting of Processor Mode Control Register (PMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2.2 Label whose value is determined by the linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2.3 Options necessary at assembling the startup file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2.4 Usage Restriction of Standard Library Function Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

11.2.5 Error in standard library functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

11.2.6 Definition of comparison functions bsearch and qsort in K&R format. . . . . . . . . . . . . . . . . . . . . . . . . . . 909

11.2.7 Initialization of Stack Area at Startup [V1.07 or earlier]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

11.2.8 Specifying standard library functions when C99 standard is specified by an individual option. . . . . . . . 910

11.3 Cautions Regarding Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

11.3.1 Assembler driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

11.3.2 .DB8 directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

11.3.3 Bit symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

11.3.4 .ALIGN directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

11.3.5 Separation operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

11.3.6 Predefined macro enabled in an assembly source file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

11.3.7 An option depending on the order of specification of options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

11.4 Cautions Regarding Linker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.1 -strip option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.2 -memory option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.3 Overwrite of variable/function information file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.4 Allocation of sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.5 Variable/function information file that may cause a compile error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.6 Error output regarding an address not in the saddr access range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

11.4.7 Version of Compiler Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913



A. QUICK GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

A.1 Variables (C Language) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

A.1.1 Allocating to sections accessible with short instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

A.1.2 Defining variables for use during both ordinary and interrupt processing. . . . . . . . . . . . . . . . . . . . . . . . 916

A.1.3 Defining const pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917

A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

A.2.1 Changing area allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

A.2.2 Embedding assembler instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

A.2.3 Executing a program in RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

A.3 Variables (Assembly Language)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920

A.3.1 Defining variables with no initial values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920

A.3.2 Defining variable with initial values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920

A.3.3 Defining const data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921

Revision Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 1



CC-RL 1.  GENERAL

R20UT3123EJ0113  Rev.1.13 Page 11 of 951
Dec 01, 2023

1.  GENERAL

This document is the user's manual for the RL78 family's C compiler CC-RL V1.00 to V1.13.
This chapter provides a general outline of CC-RL.

1.1  Outline

CC-RL is a program that converts programs described in C language or assembly language into machine language.

1.2  Special Features

CC-RL is equipped with the following special features.

(1) Language specifications in accordance with C90 and C99 standards.
The C language specifications conform with the C90 and C99 standards.

(2) Advanced optimization
Advanced optimization including global program optimization is applied.
This yields smaller and faster code.

(3) High portability
The industry-standard ELF format is used for object code.  In addition, the industry-standard DWARF2 or 
DWARF3 format is used for debugging information.

(4) Multifunctional
Static analysis and other functionality is provided via linking between Renesas Electronics and partner tools.

1.3  Copyrights

This software uses the following software products:
- LLVM and CLANG are copyrighted by University of Illinois at Urbana-Champaign.
- Protocol Buffers is copyrighted by Google Inc.
The library for C++ uses the following software products. For details, see the license files included in the compiler.
- compiler_rt
- libc++
- libc++abi
- newlib
Other software components are copyrighted by Renesas Electronics Corporation.

1.4  License

A license manager manages licenses to the compilers.
If you have a license, the compiler will operate as the Standard or Professional edition depending on the license you are 

using. 
Refer to section 1.5  Standard and Professional Editions, for more on the Standard and Professional editions.
If the license manager is not able to recognize a Standard or Professional license, the compiler operates as the free 

evaluation edition. 
Refer to section 1.6  Free Evaluation Editions, for more on the free evaluation edition.
For details of the licenses and the license manager, refer to the User's Manual of the License Manager.
Use V2.00 or later versions of the license manager for V1.04 and later versions of CC-RL.

1.5  Standard and Professional Editions

There are two editions of the compilers, the Standard and the Professional editions.
The Standard editions support C90- and C99-compliant C-language specifications, and also provide the essential fea-

tures for writing programs for embedded systems.
As well as the features of the Standard editions, the Professional editions have additional features which help to 

improve the quality of the customer's programs and shorten development periods.
The additional features of Professional editions are available through compiler options, #pragma directives and libraries.
For descriptions of the options only available for the Professional editions, refer to Table 2.2  Compile Options, or the 

descriptions of the individual options. 



R20UT3123EJ0113  Rev.1.13 Page 12 of 951
Dec 01, 2023

CC-RL 1.  GENERAL

For descriptions of the #pragma directives that only the Professional editions support, refer to Table 4.15  List of Sup-
ported #pragma Directive.

See "7.1  Supplied Libraries" for libraries that are only supported by the Professional Edition.

1.6  Free Evaluation Editions

The free evaluation editions have a trial period of 60 days from the day of the first building by the compiler over which 
you can use features equivalent to those of the Professional editions.

After that period, the additional features of the Professional editions are no longer available, and the following restric-
tions apply.

- [V1.11 or earlier] The section sizes that can be allocated to the ROM area is up to 64 Kbytes in total. A linker error 
occurs when the size exceeds 64 Kbytes.

- [V1.12 or later] The available optimization levels are -Onothing and -Olite only. There is no restriction on the section 
size.

The version number of the optimizing linkage editor is prefixed by W while a compiler is operating as an evaluation edi-
tion and by V when it is operating as a paid edition.

Examples are given below.

- Version of a free evaluation edition:
Renesas Optimizing Linker W1.01.01 [25 Apr 2014]

- Version of a paid edition:
Renesas Optimizing Linker V1.01.01 [25 Apr 2014]

We do not supply the following services for the evaluation editions.
Consider purchasing a paid edition if you require them.

- Technical support

- E-mail delivery of items such as information on revisions



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 13 of 951
Dec 01, 2023

2.  COMMAND REFERENCE

This section describes the detailed specifications of each command included in CC-RL.

2.1  Overview

CC-RL generates files executable on the target system from source programs described in C language or assembly lan-
guage.

CC-RL consists of the following commands.  A single driver (ccrl) controls all phases from compilation to linking. It also 
creates standard libraries by using the library generator (lbgrl).

ccrl: Compilation driver start command
asrl: Assembler start command
rlink: Optimizing linker start command
lbgrl: Library generator [V1.13 or later]

Processing of each command is shown below.

(1) Compiler
Performs processing of preprocess directives, comment processing, and optimization for a C source program and 
then generates an assembly source file.

(2) Assembler
Converts an assembly source program into machine language instructions and then generates a relocatable 
object file.

(3) Optimizing linker
Links object files and library files to generate object files (load module files) that are executable on the target sys-
tem.
It also handles the creation of ROM images for use in embedded applications, optimization during the linking of 
relocatable files, the creation and editing of library files, conversion to Intel HEX files and Motorola S-record files, 
and the generation of variable/function information files containing declarations of saddr variables and callt func-
tions.

(4) Library generator [V1.13 or later]
A tool that generates standard libraries. When creating a standard library, any compile options can be specified.



R20UT3123EJ0113  Rev.1.13 Page 14 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Figure 2.1 Operation Flow of ccrl

Binary file

Intel HEX file

C source file
(user-created file)

Preprocessed file

Assembly source file Assembly source file
(user-created file)

Object file

Load module file

Assembler

Optimizing linker

Stack information file

Motorola S-record file

Relocatable file

Compiler
Compile driver
(ccrl)

Variable/function
information file

Library generator

lbgrl

Standard library file

User library file



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 15 of 951
Dec 01, 2023

2.2  I/O Files

The I/O files of the ccrl command are shown below.

Table 2.1 I/O Files of ccrl Command

File Type Extension I/O Description

C source file .c I Source file described in C language
This is created by the user.

C++ source file .cpp, .cc, 
.cp

I Source file described in C++ language
This is described by the user.

Preprocessed file .iNote 1 O Text file which the execution result of preprocess processing for 
the input file is output
This file is output when the -P option is specified.

Assembly source file .asmNote 1 O Assembly language file generated from C source file by compila-
tion
This file is output when the -S option is specified.

.asm

.s
I Source file described in assembly language

This is created by the user.

Header file free I File referred by source files
This file is described in C language or assembly language.
This is created by the user.
The extension is free, but the following is recommended.

- #include directive: .h

- $include control instruction: .inc

Object file .objNote 1 I/O ELF-format file including machine-language information, reloca-
tion information relating to machine-language allocation 
addresses, and symbol information

Assemble list fileNote 2 .prnNote 1 O List file which has information from the assemble result
This file is output when the -asmopt=-prn_path option is speci-
fied.

Library file .libNote 1 I/O ELF-format file in which two or more object files are included
This file is output when the -lnkopt=-form=library option is speci-
fied.

Library backup file .lbk O This file saves the contents of existing library files before they are 
overwritten by the library generator.

Load module file .absNote 1 I/O ELF-format file of the object code of the link result
This is the input file when a hex file is output.
This file is output when the -lnkopt=-form=absolute option is 
specified.
If you specify the -lnkopt option but not the -form option, the com-
mand assumes that the above option has been specified.

Relocatable file .relNote 1 I/O Relocatable object file
This file is output when the -lnkopt=-form=relocate option is spec-
ified.

Intel HEX fileNote 2 .hexNote 1 I/O Load module file converted into the Intel HEX format
This file is output when the -lnkopt=-form=hexadecimal option is 
specified.

Motorola S-record fileNote 2 .motNote 1 I/O Load module file converted into the Motorola S-record
This file is output when the -lnkopt=-form=stype option is speci-
fied.



R20UT3123EJ0113  Rev.1.13 Page 16 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Note 1. The extension can be changed by specifying the option.

Note 2. See "3.  OUTPUT FILES" for details about each file.

Binary file .binNote 1 I/O Load module file converted into the binary format
This file is output when the -lnkopt=-form=binary option is speci-
fied.

Symbol address file .fsy I/O Assembly source file where external defined symbols are 
described in assembler directives
This file is output when the -lnkopt=-fsymbol option is specified.

Link map fileNote 2 .mapNote 1 O List file which has information from the link result
This file is output when the -lnkopt=-list option is specified.

Library list fileNote 2 .lbpNote 1 O List file which has information from the library creation result
This file is output when the -lnkopt=-list option is specified.

Stack information file .sni O List file which has information of the stack capacity
This file is output when the -lnkopt=-stack option is specified.

Variable/function 
information file

.hNote 1 I/O File containing declarations of the saddr variable or callt function
This file is output when the -lnkopt=-vfinfo option is specified.

Static analysis information 
file

free I/O File which has information from the static analysis result
The extension is free, but ".cref" is recommended.
This file is output when the -cref option is specified.

Error message file free O File which contains error messages
The extension is free, but ".err" is recommended.
This file is output when the -error_file option is specified.

Subcommand file free I File which contains the parameters of the execution program
This is created by the user.

Tool usage information file .ud
.udm

O File which is output for collecting tool usage information

File Type Extension I/O Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 17 of 951
Dec 01, 2023

2.3  Environment Variable

This section explains the environment variables.
The environment variables of the optimizing linker and the examples when specifying them on the command line are 

shown below.

- HLNK_LIBRARY1, HLNK_LIBRARY2, HLNK_LIBRARY3
Specify the default library that the optimizing linker uses.
The library specified by the -library option has the precedence for linking.
After that, if unresolved symbols remain, default libraries HLNK_LIBRARY1, HLNK_LIBRARY2, and 
HLNK_LIBRARY3 are searched in that order.

Example

- HLNK_TMP
Specify the folder where the optimizing linker creates temporary files.
If this environment variable is not specified, the files are created in the current folder.

Example

- HLNK_DIR
Specify the folder where the input files for the optimizing linker are stored.
The files specified by the -input and -library options are searched from the current folder and the folder specified by 
HLNK_DIR in that order.
However, the files specified with wildcard characters are searched in the current folder.

Example

>set HLNK_LIBRARY1=usr1.lib
>set HLNK_LIBRARY2=usr2.lib
>set HLNK_LIBRARY3=usr3.lib

>set HLNK_TMP=D:\workspace\tmp

>set HLNK_DIR=D:\workspace\obj1;D:\workspace\obj2



R20UT3123EJ0113  Rev.1.13 Page 18 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

2.4  Method for Manipulating

This section explains how to manipulate each command.

- Command line operation

- Subcommand file usage

2.4.1  Command line operation

The compilation driver (ccrl) identifies the extension of the input file, and then starts the compiler, assembler, and linker. 
Alphabetical extensions are not case sensitive.

- If the input file has the extension .s or .asm, the compilation driver assumes it is an assembly language file, and 
starts the assembler.

- If the input file has the extension .c, the compilation driver assumes it is a C source file, and starts the compiler.

- If the input file has the extension .cpp, .cc, or .cp, the compilation driver assumes that it is a C++ source file, and 
starts the compiler.

- If the input file has the extension .obj, the compilation driver assumes that it is an object file, and starts the linker.
If the input file has an extension other than the above, the compilation driver assumes that the file is a C source file, and 

starts the compiler.
You can specify the language standard of C source files and C++ source files by using the -lang option.

(1) Specification format
Enter the following on the command line.

option: Option name
file: File name
[ ]: Can be omitted
...: Pattern in preceding [ ] can be repeated
{ }: Select from items delimited by the pipe symbol ("|")
: One or more spaces
[, ...]: The preceding pattern can be repeated by delimiting each with a comma.
[: ...]: The preceding pattern can be repeated by delimiting each with a colon.
string := A: string is replaced with A.
string := A | B | C: string is replaced with any one of A, B, or C.

The following points should be noted when entering a command.

- The specification formats of options depend on the command that is used.
See "2.5.1  Compile options", "2.5.2  951Assemble options" and "2.5.3  Link options" for cautions about options 
of each command.

- A file name supported by the OS can be specified.
To specify a file name, specify a relative path or an absolute path beginning with a drive name.
"-" cannot be also used at the beginning of a file name because it is regarded as the option specification.
"(" and ")" cannot be also used for a file name because they are regarded as the part of link options.
In addition, there are cautions on using characters in file names and path names of subcommand files used for 
internal processing.
Also refer to "2.4.2  Subcommand file usage".

- The length that can be specified for a file name depends on the OS (up to 259 characters in Windows).

>ccrl[option]...file[file|option]...

>asrl[option]...file[file|option]...

>rlink[{file|option}...]

>lbgrl[option]...



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 19 of 951
Dec 01, 2023

- Alphabetical file names are not case sensitive in Windows.

- Two or more files can be specified as input.
Files which have different types (C source file and assembly source file or object file, and the like) can be mixed.
Note that two or more files having the same source file name except for the extension cannot be specified (even 
when they are stored in separate folders).
In this case, even if there is an error in one file, processing of the remaining files will continue if processing is 
possible.
The generated object files are not deleted after linking.

(2) Example of operations
The examples of operations on the command line are shown below.

Remark See "2.5  Option" for details about each option.

(a) Performing compilation, assembly, and linking by one command
C source file "file1.c" is compiled by ccrl, and then assembly source file "file1.asm" is generated.
Next, assembly source file "file1.asm" and "file2.asm" are assembled by asrl, and then object file "file1.obj" and 
"file2.obj" are generated.
The assemble list files are output to the current folder.
Finally, object file "file1.obj", "file2.obj", and "file3.obj" are linked by rlink, and then link map file "sample.map" 
and load module file "sample.abs" are generated.

Remark In the ccrl command line, use the -asmopt option to specify an option dedicated to asrl; to specify 
an option dedicated to rlink, use the -lnkopt option.

(b) Performing compilation and assembly by one command, and linking separately
C source file "file1.c" is compiled by ccrl, and then assembly source file "file1.asm" is generated.
Next, assembly source file "file1.asm" and "file2.asm" are assembled by asrl, and then object file "file1.obj" and 
"file2.obj" are generated.
The assemble list files are output to the current folder.

Remark In the ccrl command line, use the -asmopt option to specify an option dedicated to asrl.

Object file "file1.obj", "file2.obj", and "file3.obj" are linked by rlink, and then link map file "sample.map" and load 
module file "sample.abs" are generated.

(c) Performing compilation, assembly, and linking separately
C source file "file1.c" is compiled by ccrl, and then assembly source file "file1.asm" is generated.

Assembly source file "file1.asm" and "file2.asm" are assembled by asrl, and then object file "file1.obj" and 
"file2.obj" are generated.
Assemble list files are also output.

Object file "file1.obj", "file2.obj", and "file3.obj" are linked by rlink, and then link map file "sample.map" and load 
module file "sample.abs" are generated.

(d) Generating a standard library
The library generator (lbgrl) is started to generate a standard library.

>ccrl file1.c file2.asm file3.obj -asmopt=-prn_path -lnkopt=-list -osample.abs -
cpu=S2 -dev=dr5f100pj.dvf

>ccrl -c file1.c file2.asm -asmopt=-prn_path -cpu=S2 -dev=dr5f100pj.dvf

>rlink file1.obj file2.obj file3.obj -output=sample.abs -list

>ccrl -S file1.c -cpu=S2 -dev=dr5f100pj.dvf

>asrl file1.asm -prn_path -cpu=S2 -dev=dr5f100pj.dvf
>asrl file2.asm -prn_path -cpu=S2 -dev=dr5f100pj.dvf

>rlink file1.obj file2.obj file3.obj -output=sample.abs -list

>lbgrl[option]...



R20UT3123EJ0113  Rev.1.13 Page 20 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

2.4.2  Subcommand file usage

A subcommand file is a file that options and file names specified for a ccrl, asrl, rlink command are described.
The command treats the contents of a subcommand file as if they were command-line arguments.
Use a subcommand file when the arguments will not fit on the command line, or when same options are specified 

repeatedly each time the command is executed.

(1) Using a subcommand file for the compiler and assembler

(a) Cautions about description of a subcommand file

- The arguments to be specified can be coded over several lines.
However, you cannot start a new line within the name of the option specification or file.

- When the subcommand option is specified in a subcommand file, the same file name as the current subcom-
mand file cannot be specified in the subcommand option.

- The character code contents of a subcommand file cannot be specified by using the -character_set option.
If you use characters other than ASCII in the subcommand file, use the UTF-8 file with BOM.

- The following characters are treated as special characters.
Special characters written in a subcommand file are deleted from the parameter string passed to the ccrl com-
mand, and the ccrl command is executed with that string.

(b) Example of subcommand file specification
Create subcommand file "sub.txt" using an editor.

Specify sub.txt by subcommand file specification option "-subccomand" on the command line.

The command line is expanded as follows.

(2) Using a subcommand file for the optimizing linker

(a) Cautions about description of a subcommand file

- The leading hyphen ("-") on option names can be omitted.

- A space can be used in place of the equals sign ("=") as the delimiter between the option and parameter.

- A character string enclosed by double quotation marks (") can be specified as a file name or a path name.

- A subcommand file should be written in the character code specified in the system locale.

- Specify one option per one line.
If the command line cannot fit on a single line, you can use the ampersand ("&") to span multiple lines.

- The subcommand option cannot be specified in a subcommand file.
[V1.03 or earlier]

" (double quotation mark) The character string until the next double quotation mark is treated as a con-
tiguous character string.

# (sharp) If this is specified at the beginning of a line, the characters on that line before 
the end of the line are interpreted as a comment.

^ (circumflex) The character immediately following this is not treated as a special character.

-cpu=S2
-dev=dr5f100pj.dvf
-c
-D test
-I dir
-Osize

>ccrl -subccomand=sub.txt -ofile.obj file.c

>ccrl -cpu=S2 -dev=dr5f100pj.dvf -c -D test -I dir -Osize -ofile.obj file.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 21 of 951
Dec 01, 2023

- When the subcommand option is specified in a subcommand file, the same file name as the current subcom-
mand file cannot be specified in the subcommand option.
[V1.04 or later]

- The following characters are treated as special characters.
These special characters themselves are not included in the command line of the rlink command and deleted.

(b) Example of subcommand file specification
Create subcommand file "sub.txt" using an editor.

Specify sub.txt by subcommand file specification option "-subcommand" on the command line.

The command line is expanded as follows.

2.5  Option

This section explains ccrl options for each phase.
Compile phase -> See "2.5.1  Compile options"
Assemble phase -> See "2.5.2  951Assemble options"
Link phase -> See "2.5.3  Link options"
Library generation phase -> See "2.5.4  Library generator options [V1.13.00 or later]"

& (and) The following line will be treated as a continuation.

; (semicolon) The characters on that line before the end of the line are interpreted as a 
comment.

input file2.obj file3.obj       ; This is a comment.
library lib1.lib, &             ; This is a line continued.
lib2.lib

>rlink file1.obj -subcommand=sub.txt file4.obj

>rlink file1.obj file2.obj file3.obj -library=lib1.lib,lib2.lib file4.obj



R20UT3123EJ0113  Rev.1.13 Page 22 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

2.5.1  Compile options

This section explains options for the compile phase.

Caution about options are shown below.

- Uppercase characters and lowercase characters are distinguished for options.

- When numerical values are specified as parameters, decimal or hexadecimal numbers which starts with "0x" ("0X") 
can be specified.
Uppercase characters and lowercase characters are not distinguished for the alphabet of hexadecimal numbers.

- When a file name is specified as a parameter, it can include the path (absolute path or relative path).
When a file name without the path or a relative path is specified, the reference point of the path is the current folder.

- When a parameter includes a space (such as a path name), enclose the parameter in a pair of double quotation 
marks (").

The types and explanations for options are shown below.
An option with the description of [Professional Edition only] can be used only in the Professional Edition.

Table 2.2 Compile Options

Classification Option Description

Version/help display 
specification

-V This option displays the version information of ccrl.

-help This option displays the descriptions of ccrl options.

Output file 
specification

-o This option specifies the output file name.

-obj_path This option specifies the folder to save an object file 
generated during compilation.

-asm_path This option specifies the folder to save an assembly source 
file generated during compilation.

-prep_path This option specifies the folder to save the preprocessed C 
source file.

Source debugging 
control

-g This option outputs information for source debugging.

-g_line [V1.02 or later] This option enhances information for source debugging at 
optimization.

Device specification 
relation

-cpu This option specifies the type of the CPU core.

-use_mda This option specifies whether to allow generation of a code 
using the division/multiplication and multiply-accumulate unit.

-use_mach [V1.11.00 or 
later]

This option supports generation of the multiply-accumulate 
instruction MACHU/MACH provided by the S3 core.

Language standard 
specification

-lang [V1.06 or later] This option specifies the language standard of C source files 
and C++ source files.

Processing interrupt 
specification

-P This option is used to execute only preprocessing for the 
input C source file.

-S This option does not execute processing after assembling.

-c This option does not execute processing after linking.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 23 of 951
Dec 01, 2023

Preprocessor control -D This option defines preprocessor macros.

-U This option deletes the definition of the preprocessor macro 
by the -D option.

-I This option specifies the folder to search header files.

-preinclude This option specifies the file that is included at the top of the 
compilation unit.

-preprocess This option controls outputting the result of preprocessing.

Memory model -memory_model This option specifies the type of the memory model when 
compiling.

-far_rom This option sets the default near/far attribute of ROM data to 
far.

Optimization -O This option specifies the optimization level or the details of 
each optimization items.

-goptimize This option generates the information for inter-module 
optimization.

Error output control -no_warning_num This option suppresses outputting warning messages of the 
specified number.

-change_message [V1.06 or 
later]

This option changes the message level.

-error_file This option outputs all compiler error messages together to a 
file.

Additional 
information output

-cref This option outputs the static analysis information file.

-pass_source This option outputs a C source program as a comment to the 
assembly source file.

Classification Option Description



R20UT3123EJ0113  Rev.1.13 Page 24 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Code generation 
changing

-dbl_size This option changes the interpretation of the double and long 
double types.

-signed_char This option specifies that a char type without a signed or 
unsigned specifier is handled as a signed type.

-signed_bitfield This option specifies that a bit field of a type without a signed 
or unsigned specifier is handled as a signed type.

-switch This option specifies the format in which the code of switch 
statements is to be output.

-volatile External variables and the variables specified with "#pragma 
address" are handled as if they were volatile-declared.

-merge_string This option merges string literals.

-pack This option sets 1 as the number of alignment for a structure 
member.

-stuff [V1.10 or later] This option allocates variables to sections separated accord-
ing to the number of alignment.

-stack_protector/
-stack_protector_all 
[Professional Edition only] 
[V1.02 or later]

This option generates a code for detection of stack smashing.

-control_flow_integrity 
[Professional Edition only] 
[V1.06 or later]

This option generates code for the detection of illegal indirect 
function calls.

-insert_nop_with_label 
[V1.05 or later]

This option inserts a local label and nop instruction.

Extensions -strict_std [V1.06 or later] / 
-ansi [V1.05 or earlier]

The C source program is processed in strict compliance with 
the language standard which is specified with the -lang 
option.

-refs_without_declaration An error is generated upon reference of an undeclared 
function or a function that does not have a prototype 
declaration.

-large_variable This option sets the maximum size of a variable to 0xffff 
bytes.

-nest_comment This option enables nesting of /* */ comments.

-character_set This option specifies the Japanese/Chinese character code.

MISRA check -misra2004 [Professional 
Edition only]

This option checks source code against the MISRA-C: 2004 
rules.

-misra2012 [Professional 
Edition only] [V1.02 or later]

This option checks source code against the MISRA-C: 2012 
rules.

-ignore_files_misra 
[Professional Edition only]

This option specifies files that will not be checked against the 
MISRA-C: 2004 rules or MISRA-C: 2012 rules.

-check_language_extension 
[Professional Edition only]

This option enables the source-code checking of the 
MISRA-C: 2004 rules or MISRA-C: 2012 rules, which are par-
tially suppressed by the extended language specifications.

-misra_intermodule 
[Professional Edition only] 
[V1.08 or later]

This option checks source code in multiple files against the 
MISRA-C:2012 rules.

Classification Option Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 25 of 951
Dec 01, 2023

Subcommand file 
specification

-subcommand This option specifies a subcommand file.

Assembler and 
linker control

-asmopt This option specifies assemble options.

-lnkopt This option specifies link options.

-asmcmd This option specifies the use of a subcommand file to specify 
the assemble options to be passed to the assembler.

-lnkcmd This option specifies the use of a subcommand file to specify 
the link options to be passed to the optimizing linker.

-dev This option specifies the device file that the assembler and 
optimizing linker use.

Compiler transition 
support

-convert_cc This option supports transition of programs written for other 
compilers.

-unaligned_pointer_for_ca78
k0r [V1.06 or later]

Indirect references by pointers are accessed in 1-byte units.

Classification Option Description



R20UT3123EJ0113  Rev.1.13 Page 26 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The version/help display specification options are as follows.

- -V

- -help

Version/help display specification



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 27 of 951
Dec 01, 2023

-V

This option displays the version information of ccrl.

[Specification format]

- Interpretation when omitted
Compilation is performed without displaying the version information of ccrl.

[Detailed description]

- This option outputs the version information of ccrl to the standard error output.
It does not execute compilation.

[Example of use]

- To output the version information of ccrl to the standard error output, describe as:

-V

>ccrl -V



R20UT3123EJ0113  Rev.1.13 Page 28 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-help

This option displays the descriptions of ccrl options.

[Specification format]

- Interpretation when omitted
The descriptions of ccrl options are not displayed.

[Detailed description]

- This option outputs the descriptions of ccrl options to the standard error output.
It does not execute compilation.

[Example of use]

- To output the descriptions of ccrl options to the standard error output, describe as:

-help

>ccrl -help



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 29 of 951
Dec 01, 2023

The output file specification options are as follows.

- -o

- -obj_path

- -asm_path

- -prep_path

Output file specification



R20UT3123EJ0113  Rev.1.13 Page 30 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-o

This option specifies the output file name.

[Specification format]

- Interpretation when omitted
The output file name differs depending on the specificated option.
The file is output to the current folder when the output folder is not specified.

- When the -P option is specified
The output file name will be the input file name with the extension replaced by ".i".

- When the -S option is specified
The output assembly source file name will be the source file name with the extension replaced by ".asm".

- When the -c option is specified
The output object file name will be the source file name with the extension replaced by ".obj".

- Other than above
The output load module file name will be the first input file name with the extension replaced by ".abs".

[Detailed description]

- This option specifies the output file name as file.

- If file already exists, it will be overwritten.

- This option is valid when processing is interrupted by specifying the -P, -S, or -c option.

- If this option is specified with the -P option
It is assumed that is the name of the file containing the results of preprocessing performed on the input file has 
been specified as file.

- If this option is specified with the -S option
It is assumed that an assembly source file name has been specified as file.

- If this option is specified with the -c option
It is assumed that an object file name has been specified as file.

- Other than above
It is assumed that the output file name to be set in the -output option for the optimizing linker is specified as file.  
When file has no extension, the output file name depends on the -form option for the optimizing linker.
See the description of "Link options" for detail.

- An error will occur if two or more files are output.

- An error will occur if file is omitted.

[Example of use]

- To output the load module file with "sample.abs" as the file name, describe as:

-ofile

>ccrl -o sample.abs -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 31 of 951
Dec 01, 2023

-obj_path

This option specifies the folder to save an object file generated during compilation.

[Specification format]

- Interpretation when omitted
The object file is saved under the source file name with the extension replaced by ".obj" to the current folder.

[Detailed description]

- This option specifies the folder to save an object file generated during compilation as path.

- If an existing folder is specified as path, the object file is saved under the source file name with the extension replaced 
by ".obj" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one object file is output, it will be saved with path as the file name.
If two or more object files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the object file is saved under the C source file name with the extension replaced by ".obj" to the 
current folder.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an object file is only saved for the last source file to be specified.

[Example of use]

- To save the object file generated during compilation to folder "D:\sample", describe as:

-obj_path[=path]

>ccrl -obj_path=D:\sample -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 32 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-asm_path

This option specifies the folder to save an assembly source file generated during compilation.

[Specification format]

- Interpretation when omitted
An assembly source file will not be output (except when specifying the -S option).

[Detailed description]

- This option specifies the folder to save an assembly source file generated during compilation as path.

- If an existing folder is specified as path, the assembly source file is saved under the C source file name with the 
extension replaced by ".asm" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one assembly source file is output, it will be saved with path as the file name.
If two or more assembly source files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the assembly source file is saved under the C source file name with the extension replaced by 
".asm" to the current folder.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an assembly source file is only saved for the last source file to be specified.

[Example of use]

- To save the assembly source file generated during compilation to folder "D:\sample", describe as:

-asm_path[=path]

>ccrl -asm_path=D:\sample -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 33 of 951
Dec 01, 2023

-prep_path

This option specifies the folder to save the preprocessed C source file.

[Specification format]

- Interpretation when omitted
A preprocessed C source file will not be output (except when specifying the -P option).

[Detailed description]

- This option specifies the folder to save a preprocessed C source file generated by specifying the -P option as path.

- If an existing folder is specified as path, the preprocessed C source file is saved under the C source file name with the 
extension replaced by ".i" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one preprocessed C source file is output, it will be saved with path as the file name.
If two or more preprocessed C source files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the preprocessed C source file is saved under the C source file name with the extension 
replaced by ".i".

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and a preprocessed C source file is only saved for the last source file to be specified.

[Example of use]

- To save the preprocessed C source file to folder "D:\sample", describe as:

-prep_path[=path]

>ccrl -prep_path=D:\sample -P -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 34 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The source debugging control options are as follows.

- -g

- -g_line [V1.02 or later]

Source debugging control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 35 of 951
Dec 01, 2023

-g

This option outputs information for source debugging.

[Specification format]

- Interpretation when omitted
Information for source debugging will not be output.

[Detailed description]

- This option outputs information for source debugging to the output file.

- Source debugging can be performed by specifying this option.

- When both this option and the optimization option are specified, the information output for source debugging is also 
affected.

[Example of use]

- To output information for source debugging to the output file, describe as:

-g

>ccrl -g -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 36 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-g_line [V1.02 or later]

This option enhances information for source debugging at optimization.

[Specification format]

- Interpretation when omitted
This option does not enhance information for source debugging at optimization.

[Detailed description]

- This option is valid only when the -g option is specified simultaneously.

- This option enhances debugging information so that step execution in the source level can be conducted more pre-
cisely at debugging when optimization has been performed.

- The amount of debugging information may increase and cause step execution to slow down.

[Example of use]

- To enhance the information for source debugging in the output file and then output it, describe as:

-g_line

>ccrl -g -g_line -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 37 of 951
Dec 01, 2023

The device specification relation options are as follows.

- -cpu

- -use_mda

- -use_mach [V1.11.00 or later]

Device specification relation



R20UT3123EJ0113  Rev.1.13 Page 38 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-cpu

This option specifies the type of the CPU core.

[Specification format]

- Interpretation when omitted
Cannot be omitted.  An error will occur if no specification is made.
However, no error will occur when the -V or -help option is specified.

[Detailed description]

- This option specifies the type of the CPU core.

- An error will occur if the string that cannot be specified is specified.

- An error will occur if the -cpu=S1 and -dbl_size=8 options are specified at the same time.

- An error will occur if the -cpu=S2 and -dbl_size=8 options are specified at the same time.

- This option only specifies the type of the CPU core and does not specify whether the arithmetic unit is implemented.

- Depending on this option setting, the interpretation differs when the -use_mda option is omitted.
See "-use_mda" for detail.

- Depending on this option setting, the interpretation differs when the -memory_model option is omitted.
See "-memory_model" for detail.

[Example of use]

- To generate a code for the RL78-S2 core specified as the CPU type, describe as:

-cpu={S1|S2|S3}
  S1: RL78-S1 core
  S2: RL78-S2 core
  S3: RL78-S3 core

>ccrl -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 39 of 951
Dec 01, 2023

-use_mda

This option specifies whether to allow generation of a code using the division/multiplication and multiply-accumulate 
unit.

[Specification format]

- Interpretation when omitted
When the -cpu=S1 or -cpu=S3 option is specified, the code is the same as when the -use_mda=not_use option is 
specified.
When the -cpu=S2 option is specified, the code is the same as when the -use_mda=mda option is specified.

[Detailed description]

- This option specifies whether to allow generation of a code by the compiler using the division/multiplication and multi-
ply-accumulate unit.

- The following shows the ccrl operation when both this option and the -cpu option are specified.

[Caution]

- To control codes other than those generated by the compiler, isolation of the runtime library is also required. For 
details, see "7.1  Supplied Libraries".

- Do not specify -use_mda=mda for devices without division/multiplication and multiply-accumulate units.

[Example of use]

- To generate a code that uses the division/multiplication and multiply-accumulate unit, describe as:

-use_mda={not_use|mda}
  not_use: Suppresses generation of a code by the compiler using the division/multipli-

cation and multiply-accumulate unit.
  mda: Allows generation of a code by the compiler using the division/multiplication 

and multiply-accumulate unit.

-use_mda=

not_use mda

-cpu= S1 Can be specified together Compile error

S2 Can be specified together Can be specified together

S3 Can be specified together Compile error

>ccrl -use_mda=mda -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 40 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-use_mach [V1.11.00 or later]

This option supports generation of the multiply-accumulate instruction MACHU/MACH provided by the S3 core.

[Specification format]

- Interpretation when omitted
The code is the same as when the -use_mach=not_use option is specified.

[Detailed description]

- This option specifies whether to use the multiply-accumulate instruction MACHU/MACH.

- If the -use_mach=mach option is specified when the -cpu=S1 or -cpu=S2 option is specified, a compilation error 
occurs.

- If the -use_mach=mach option is specified, the system register MACR used by the multiply-accumulation instruction 
MACHU/MACH will be guaranteed to have the same values before and after function calls and interrupts.

-use_mach={not_use|mach}
  not_use : Generates a code that does not use the instruction MACHU/MACH
  mach : Generates a code that uses the instruction MACHU/MACH



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 41 of 951
Dec 01, 2023

The language standard specification option is as follows.

- -lang [V1.06 or later]

Language standard specification



R20UT3123EJ0113  Rev.1.13 Page 42 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-lang [V1.06 or later]

This option specifies the language standard of C source files and C++ source files.

[Specification format]

- Interpretation when omitted
Compilation is executed in accord with the C90 standard.

[Detailed description]

This option specifies the language standard of the source file.

- When the -lang=c option is specified or the option is omitted, compilation is executed in accord with the C90 standard.

- When the -lang=c99 option is specified, compilation is executed in accord with the C99 standard.

- When the -lang=cpp14 option is specified, compilation is executed in accord with the C++14 standard. [V1.12 or later]

- If any option other than -lang=c, -lang=c99, or -lang=cpp14 is specified, an error occurs.

[Remark]

- If a C source file is specified for input when the -lang=cpp14 option is specified, a compile error occurs. 
[V1.12 or later]

- This compiler does not support the following language standards.

- Some header files and standard library functions in the C90/C99 language standard

- Complex number types in the C99 language standard

- Variable-length arrays in the C99 language standard

-lang={c|c99} [V1.11 or earlier]
-lang={c|c99|cpp14} [V1.12 or later]



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 43 of 951
Dec 01, 2023

The processing interrupt specification options are as follows.

- -P

- -S

- -c

Processing interrupt specification



R20UT3123EJ0113  Rev.1.13 Page 44 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-P

This option is used to execute only preprocessing for the input C source file.

[Specification format]

- Interpretation when omitted
Processing is continued after preprocessing.
The preprocessed C source file are not output.

[Detailed description]

- This option is used to execute only preprocessing for the input C source file and output the results to a file.

- The output file name will be the input file name with the extension replaced by ".i".

- The output file name can be specified by specifying this option and the -o option.

- The contents of the output file can be controlled by specifying the -preprocess option.

[Example of use]

- To execute only preprocessing for the input C source file and output the results to file "main.i", describe as:

-P

>ccrl -P -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 45 of 951
Dec 01, 2023

-S

This option does not execute processing after assembling.

[Specification format]

- Interpretation when omitted
Processing is continued after assembling.

[Detailed description]

- This option does not execute processing after assembling.

- The assembly source file is output under the source file name with the extension replaced by ".asm".

- The output file name can be specified by specifying this option and the -o option.

[Example of use]

- To output assembly source file "main.asm" without executing any processing after the assembling, describe as:

-S

>ccrl -S -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 46 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-c

This option does not execute processing after linking.

[Specification format]

- Interpretation when omitted
Processing is continued after linking.

[Detailed description]

- This option does not execute processing after linking.

- The object file is output under the source file name with the extension replaced by ".obj".

- The output file name can be specified by specifying this option and the -o option.

[Example of use]

- To output object file "main.obj" without executing any processing after the linking, describe as:

-c

>ccrl -c -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 47 of 951
Dec 01, 2023

The preprocessor control options are as follows.

- -D

- -U

- -I

- -preinclude

- -preprocess

Preprocessor control



R20UT3123EJ0113  Rev.1.13 Page 48 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-D

This option defines preprocessor macros.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option defines name as a preprocessor macro.

- This is equivalent to adding "#define name def" at the beginning of the source file.

- This option can be used to redefine C language macros that have been defined already: __STDC__, __LINE__, 
__FILE__, __DATE__, __TIME__, __RENESAS_VERSION__, __RL78__, __CCRL__, __CCRL, __RENESAS__ 
(except for -D __RL78__[=1], -D __CCRL__[=1], -D __CCRL[=1] and -D __RENESAS__[=1]).
If any of these macros is redefined, a warning will be output.

- An error will occur if name is omitted.

- If "=def" is omitted, def is regarded as 1.

- This option can be specified more than once.

- If both this option and -U option are specified for the same preprocessor macro, the option specified last will be valid.

[Example of use]

- To define "sample=256" as a preprocessor macro, describe as:

-D[]name[=def][,name[=def]]...

>ccrl -D sample=256 -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 49 of 951
Dec 01, 2023

-U

This option deletes the definition of the preprocessor macro by the -D option.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option deletes the definition of the preprocessor macro by the -D option.

- This is equivalent to adding "#undef name" at the beginning of the source file.

- An error will occur if name is omitted.

- This option cannot delete the definition by describing "#define name def".

- This option can be specified more than once.

- If both this option and -D option are specified for the same preprocessor macro, the option specified last will be valid.

[Example of use]

- To delete the definition of preprocessor macro "test" by the -D option, describe as:

-U[]name[,name]...

>ccrl -D TEST=XTEST -U TEST -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 50 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-I

This option specifies the folder to search header files (compile phase/assemble phase).

[Specification format]

- Interpretation when omitted
The header file is searched from only the folder that holds the source file and the standard header file folder (version 
folder\inc) (compile phase).
The include file is searched from only the folder that holds the source file and the current folder (assemble phase).

[Detailed description]

- This option specifies the folder to search for header files which are loaded by preprocessor directive "#include" and 
include files which are loaded by the assembler's control instruction "$INCLUDE" as path.
Header files are searched according to the following sequence.

<1> Folder with source files (When files are specified by using " ")

Remark When inclusion of a file is specified through #include, the folder that holds the file where the 
#include line is written is searched. When #include specifications are nested, folders are 
searched in the order from the innermost to the outermost level of the #include nest.

<2> Path specified by the -I option (If multiple paths are specified, they are searched in the order in which they 
were specified on the command line (that is, from left to right).)

<3> Standard header file folder

The include files of the assembler are searched according to the following sequence.

<1> Path specified by the -include option (If multiple paths are specified, they are searched in the order in which 
they were specified on the command line (that is, from left to right).)

<2> Folder that holds the source fil

<3> Current folder

- If path does not exist, a warning will be output.

- An error will occur if path is omitted.

[Example of use]

- To search header files from the current folder, folder D:\include, the standard folder in that order, describe as:

-I[]path[,path]...

>ccrl -I D:\include -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 51 of 951
Dec 01, 2023

-preinclude

This option specifies the file that is included at the top of the compilation unit.

[Specification format]

- Interpretation when omitted
It is assumed that the file that is included at the top of the compilation unit does not exist.

[Detailed description]

- This option specifies the file that is included at the top of the compilation unit as file.

- If the file specified as file is not found, an error will occur.

- This option starts searching from the folder that started the complier if the file is specified by its relative path.

[Example of use]

- To include file "sample.h" at the top of the compilation unit, describe as:

-preinclude=file[,file]...

>ccrl -preinclude=sample.h -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 52 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-preprocess

This option controls outputting the result of preprocessing.

[Specification format]

- Interpretation when omitted
The comments and line number information of the C source are not output to the preprocessed file.

[Detailed description]

- This option outputs the comments and line number information of the C source to the preprocessed file.

- This option is valid only when the -P option is specified.
If the -P option is not specified, a warning is output and this option will be ignored.

- The items that can be specified as string are shown below.
An error will occur if any other item is specified.

<Format of line number information>

- line-number is a decimal number, and the maximum value is the maximum number of unsigned int.

- In the full path of file-name, "\" is converted to "\\", and '"' to '\"'.
Other than printable characters (including spaces) are output as "\3-digit octal number" ("\\%03o").
Line feed characters are converted to "\\n".

- If an input source file contains the preprocessor directive '#number "string"' or '#line number "string"', then 
number is used as line-number, and string as file-name.

- An error will occur if string is omitted.

- It is output in the standard character encoding of the OS.

[Example of use]

- To output the comments and line number information of the C source to the preprocessed file, describe as:

The following example is equivalent to the example above.

-preprocess=string[,string]

comment Outputs the comments of the C source.

line Outputs line number information.

#line line-number "file-name"

>ccrl -preprocess=comment,line -P -cpu=S2 -dev=dr5f100pj.dvf main.c

>ccrl -preprocess=comment -preprocess=line -P -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 53 of 951
Dec 01, 2023

The memory model options are as follows.

- -memory_model

- -far_rom

Memory model



R20UT3123EJ0113  Rev.1.13 Page 54 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-memory_model

This option specifies the type of the memory model when compiling.

[Specification format]

- Interpretation when omitted
When the -cpu=S1 option is specified, small is assumed.
When the -cpu=S2 or -cpu=S3 option is specified, medium is assumed.

[Detailed description]

- This option specifies the type of the memory model when compiling.

- The following shows the memory model that can be specified.

- An error will occur if multiple types of the memory model are specified at the same time.

- See "2.6.6  Relationship with near and far" for the relationship with near and far.

[Example of use]

- To specify the small model as the type of the memory model when compiling, describe as:

-memory_model={small|medium}

Type Memory Model Description

small Small model The default attribute of both variables and functions is set to near.

medium Medium model The default attribute of variables is set to near and that for functions 
is set to far.

>ccrl -memory_model=small -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 55 of 951
Dec 01, 2023

-far_rom

This option sets the default near/far attribute of ROM data to far.

[Specification format]

- Interpretation when omitted
The default near/far attribute of ROM data is determined by the -memory_model option setting.

[Detailed description]

- This option changes the near/far attribute for ROM data, which is specified by the memory model, to far.

- This option is not applied to the ROM data with the __near or __far keyword specified.

- When this option is specified and a pointer points to const data, the near/far attribute of this pointer is far.  However, 
when a pointer points to non-const data, its attribute is near.  Therefore, though in violation of the C90 and C99 stan-
dard, the pointer size depends on whether the pointer points to const data.  This option should be used on this under-
standing.

- When a standard library functionNote using a pointer to a const variable as a parameter is linked, it is replaced with a 
standard library function for a far pointer by "#if defined(__FAR_ROM__)" in the standard header.

Note puts, perror, atof, atoff, strtod, strtof, atoi, atol, strtol, strtoul, bsearch, qsort, memcpy, memmove, 
memcmp, memchr, memset, strcpy, strncpy, strcat, strncat, strcmp, strncmp, strchr, strcspn, strp-
brk, strrchr, strspn, strstr, strlen

[Example of use]

- To change the near/far attribute for ROM data, which is specified by the memory model, to far, describe as:

-far_rom

// -far_rom is specified.
      char* ptr;    // The pointer size is 2 bytes. It points to the char with __near 
attribute.
const char* c_ptr;  // The pointer size is 4 bytes. It points to the const char with 
__far attribute.

>ccrl -far_rom -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 56 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The optimization options are as follows.

- -O

- -goptimize

Optimization



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 57 of 951
Dec 01, 2023

-O

This option specifies the optimization level or the details of each optimization items.

[Specification format]

- Interpretation when omitted
The -Odefault option is assumed.

[Detailed description]

- This option specifies the optimization level or the details of each optimization items.

- The following items can be specified for level.

Note that the items that can be specified for level vary depending on the version.
[V1.11 or earlier] All items other than -Olite can be specified for level for both the paid editions and free evaluation 

edition.
[V1.12 or later] All items can be specified for level for the paid editions and the free evaluation edition within the 

trial period.
Only -Olite or -Onothing can be specified for a free evaluation edition whose trial period has 
expired. If any other value is specified, a warning message is output, and then the value is 
changed to -Olite.

- The items that can be specified as item and value are shown below.
An error will occur if any other item is specified.

-O[level]
-Oitem[=value][,item[=value]]...

size Optimization with the object size precedence
Regards reducing the ROM/RAM capacity as important and performs the maximum optimization 
that is effective for general programs.

speed Optimization with the execution speed precedence
Regards improving the execution speed as important and performs the maximum optimization 
that is effective for general programs.

default Default
Does optimization that is effective for both the object size and execution speed.

lite
[V1.12 or later]

Partial optimization
Performs partial optimization with marginal affect on the debug function.

nothing Optimization with debugging precedence
Regards debugging as important and suppresses all optimization.

Optimization Item 
(item)

Parameter 
(value)

Description

unroll 0 to 
4294967295
(Integer value)

Loop expansion
The loop statements (for, while, and do-while) are expanded.
Use value to specify the maximum rate of increase in code size after loop 
expansion.
A value of 0 set as value has the same meaning as a value of 1.
If value is omitted, it is assumed that "2" has been specified.
This item is valid when the -Osize, -Ospeed, or -Odefault option is speci-
fied.



R20UT3123EJ0113  Rev.1.13 Page 58 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

delete_static_func on or off Deleting unused static functions
If value is omitted, it is assumed that "on" has been specified.

inline_level 0 to 3
(Integer value)

Inline expansion for functions
value signifies the level of the expansion.

0: Suppresses all inline expansion including the function for which 
"#pragma inline" is specified.
1: Performs inline expansion for only a function for which "#pragma 
inline" is specified.
2: Distinguishes a function that is the target of expansion automatically 
and expands it.
3: Distinguishes the function that is the target of expansion automati-
cally and expands it, while minimizing the increase in code size.

However, if 1 to 3 is specified, the function that is specified by "#pragma 
inline" may not be expanded according to the content of the function and 
the status of compilation.
If value is omitted, 2 is assumed if the -Osize, -Ospeed, or -Odefault 
option is specified, and 1 is assumed if the -Olite option is specified.
If the -Osize, -Ospeed, or -Odefault option is specified, all items for value 
are valid.
If the -Olite option is specified, 0 and 1 are valid.
If the -Onothing option is specified, 0 is only valid.

inline_size 0 to 65535
(Integer value)

Size for inline expansion
Specify the maximum increasing rate (%) of the code size up to which 
inline expansion is performed.
When 100 is specified, functions are expanded inline until the code size 
increases by 100%.
If value is omitted, it is assumed that 100 has been specified.
This item is valid when the -Oinline_level=2 option is specified (including 
when the -Ospped option is specified).

pipeline
[V1.03 or later]

on or off Pipeline optimization
If value is omitted, it is assumed that "on" has been specified.
This item is valid when the -Osize, -Ospeed, or -Odefault option is speci-
fied.

tail_call on or off Replacement of a function call at the end of a function with br instruction
If "on" is specified, then if there is a function call at the end of a function, 
and certain conditions are met, a br instruction will be generated for that 
call rather than a call instruction.  The ret code will be removed, reducing 
the code size.
However, some debug functions cannot be used.
If value is omitted, it is assumed that "on" has been specified.

Optimization Item 
(item)

Parameter 
(value)

Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 59 of 951
Dec 01, 2023

merge_files - Merging of multiple files before compilation
If this option is omitted, compilation is done in input file units without 
merging the files.
Multiple C source files are merged then compiled, and output as a single 
file.
The output file name is the specified output file name when -o is speci-
fied.  When -o is not specified, the output file name becomes the file 
name according to the interpretation when -o is omitted for the C source 
file name that has been specified first.
When there is only one input file or this option is specified simultaneously 
with -P, this option is invalid.
When this option is specified simultaneously with -S or -c, an empty file is 
created and its file name is in accordance with the interpretation when -o 
is omitted for the C source file name that has been specified second or 
later.
When this option is specified simultaneously with -Oinline_level, inline 
expansion is performed between files.
When linking an object file created with this option specified, operation is 
not guaranteed if linker option -delete, -rename, or -replace is specified 
simultaneously.

intermodule - Global optimization execution
The main optimization contents are the following.

- Optimization using alias analysis between procedures

- Propagation of constants, such as parameters and return values

whole_program - Optimization assuming that the whole program consists only of the input 
file
If this option is omitted, it is not assumed that the whole program consists 
only of the target file for compilation.
The compilation is performed assuming that the following conditions are 
met. Operation is not guaranteed if these conditions are not met.

- The values and addresses of extern variables defined in the files to be 
compiled will not be modified or referenced from outside those files.

- If a file to be compiled calls a function defined outside the files to be 
compiled, the called function will never call a function in the files to be 
compiled.

If this option is specified, it is assumed that the -Ointermodule option is 
specified.
If two or more C source files are input, it is assumed that the 
-Omerge_files option is specified.

alias ansi or noansi Optimization considering the type pointed to by pointers
If this option is omitted, noansi is assumed.

same_code
[V1.02 or later]

on or off The multiple same instruction sequences that are found within a single 
section of the compilation unit are integrated into a function.
If value is omitted, it is assumed that on is specified.
This option is valid when the -Osize, -Ospeed, or -Odefault option is 
specified.

Optimization Item 
(item)

Parameter 
(value)

Description



R20UT3123EJ0113  Rev.1.13 Page 60 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

- If this option is specified more than once for the same item, the option specified last will be valid.

- According to the -Olevel setting, each -Oitem item is set to the value shown in the following.
The -Oitem items not listed in the table are not affected by the -Olevel setting.
Note that optimization through the -Olevel setting does not precisely match the optimization result obtained by speci-
fying each -Oitem value separately. For example, when the -Odefault level is specified as -Olevel and then each 
-Oitem is separately set to match the corresponding item value for the -Osize level, the optimization result is not 
equivalent to that obtained when -Osize is specified from the beginning.

branch_chaining
[V1.10 or later]

on or off Optimization by reducing the branch instruction code size
This option uses a branch instruction whose code size is small. To use a 
branch instruction whose code size is small, a branch destination may be 
another branch instruction which shares the same destination, not a 
direct branch to the final destination.
As a result, although this option reduces the code size, it also lowers the 
execution speed.
Note that using this optimization without specifying the -g_line option may 
affect the behavior of single-step execution.
If the value is omitted, it is assumed that on has been specified.
This option is valid when the -Osize or -Odefault option is specified.

align
[V1.10 or later]

on or off Optimization by changing the alignment condition
The number of generated instructions is decreased, the code size is 
reduced and the execution speed is increased by changing the variable 
alignment condition and then combining multiple accesses into one 
when, for example, accessing contiguous areas in a structure-type vari-
able.
As a result of changing the alignment condition, padding data is filled in 
and the amount of consumption may increase in the data storage area.
If value is omitted, it is assumed that on has been specified.
This option is valid when the -Osize, -Ospeed, or -Odefault option is 
specified.
This option is invalid if the -stuff option is specified at the same time.

Optimization Item 
(item)

Optimization Level (level)

-Osize -Ospeed -Odefault -Olite -Onothing

unroll 1 2 1 - -

delete_static_func on on on on off

inline_level 3 2 3 1 0

inline_size 0 100 0 - -

tail_call on on on off off

pipeline on on on - -

same_code on off off - -

branch_chaining on - on - -

align on on off - -

Optimization Item 
(item)

Parameter 
(value)

Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 61 of 951
Dec 01, 2023

- The interpretation when the -O option is partially or entirely omitted is as follows.

- If specification of the -O option is omitted, it is assumed that the -Odefault option has been specified.

- If the level parameter of the -O option is omitted, it is assumed that size has been specified.

- If only -Oitem is specified (-Olevel is not specified), it is assumed that -Odefault has been specified for -Olevel.

[Example of use]

- To perform optimization with the object size precedence, describe as:

- Partial or entire omission of the -O option is interpreted as follows.

- To perform global execution, describe as

- Optimization using alias analysis between procedures

<C source code>

<Output code>

- Propagation of constants, such as parameters and return values

>ccrl -Osize -cpu=S2 -dev=dr5f100pj.dvf main.c

>ccrl -cpu=S2 -dev=dr5f100pj.dvf main.c # Same as -Odefault
>ccrl -cpu=S2 -dev=dr5f100pj.dvf -O main.c # Same as -Osize
>ccrl -cpu=S2 -dev=dr5f100pj.dvf -Ounroll=8 main.c # Same as -Odefault 

-Ounroll=8
>ccrl -cpu=S2 -dev=dr5f100pj.dvf -O -Ounroll=8 main.c # Same as -Osize -Ounroll=8

> ccrl -cpu=S2 im1.c -Odelete_static_func=off,intermodule

extern long x[2];
extern int y[2];
static long func1(long *a, int *b) {
    *a=0;
    *b=1;
    return *a;
}
long func2(void) {
    return func1(&x[0], &y[1]);
}

_func1@1:
    .STACK _func1@1 = 6
    movw de, ax
    push bc
    pop hl
    clrw ax
    movw [de+0x02], ax
    movw [de], ax
    onew ax
    movw [hl], ax
    clrw bc         ; 0 is directly assigned because a and b point to different 
    clrw ax         ; addresses.
    ret

> ccrl -cpu=S2 im2.c -Oinline_level=1,intermodule



R20UT3123EJ0113  Rev.1.13 Page 62 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

<C source code>

<Output code>

- To perform optimization considering the type pointed to by pointers, describe as:

<C source code>

<Output code>
As ps and n have different types, the value of n will not be affected by "ps = 2;". Therefore, the value used for 
assignment in "n = 1" is used again at (A).
(When "ps = 2;" changes the value of n, the result will be changed.)

static __near int func(int x, int y, int z) {
    return z-x-y;
}
int func2(void) {
    return func(3,4,8);
}

    .SECTION .text,TEXT
_func@1:
    .STACK _func@1 = 4
    onew ax         ; 1(=8-3-4) is directly assigned.
    ret
    .SECTION .textf,TEXTF
_func2:
    .STACK _func2 = 4
    movw de, #0x0008
    movw bc, #0x0004
    movw ax, #0x0003
    br !_func@1

> ccrl -cpu=S2 al1.c -Oalias=ansi

long x, n;
void func(short *ps)
{
    n = 1;
    *ps = 2;
    x = n;
}

_func:
    .STACK _func = 4
    movw de, ax
    clrw ax
    movw bc, ax
    movw !LOWW(_n+0x00002), ax
    onew ax
    movw hl, ax
    movw !LOWW(_n), ax
    onew ax
    incw ax
    movw [de], ax
    movw ax, bc     ; (A) The value used for assignment in n = 1 is used again.
    movw !LOWW(_x+0x00002), ax
    movw ax, hl     ; (A)
    movw !LOWW(_x), ax
    ret



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 63 of 951
Dec 01, 2023

[Caution]

When source-level debugging is performed using an optimized object code, take account of the following ramifications.

- A variable may not be read or written at the location where that variable is referenced in the source program because 
an expression has been transformed (copy propagation, common subexpression recognition, etc.) due to optimiza-
tion.

- Step execution may not be performed according to the source program because statements have been optimized 
(code sharing, elimination, rearrangement, etc.).
In addition, a breakpoint may not be set for a particular statement.  For example, if a statement has been deleted, a 
breakpoint cannot be set at that statement.

- There is a possibility that the variable's available range (range in which the variable can be referenced in the program) 
or variable's location (register or memory location) is changed due to optimization (rearrangement of statements, reg-
ister allocation, etc.) of statements or variables.

- Step execution for an inline-expanded statement is performed not at the inline-expanded part but within the inline 
expansion source function.
Since calling of the inline-expanded function is deleted, a breakpoint cannot be set there.

- Since a great amount of memory is consumed to process debugging information at compilation, it may result in "out of 
memory".



R20UT3123EJ0113  Rev.1.13 Page 64 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-goptimize

This option generates the information for inter-module optimization.

[Specification format]

- Interpretation when omitted
The information for inter-module optimization is not generated.

[Detailed description]

- This option generates the additional information for inter-module optimization in the output file.

- At linkage, inter-module optimization is applied to files for which this option has been specified.
For details on inter-module optimization, see the description of the link option -Optimize.

[Example of use]

- To generate the information for inter-module optimization, describe as:

-goptimize

>ccrl -c -goptimize -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 65 of 951
Dec 01, 2023

The error control options are as follows.

- -no_warning_num

- -change_message [V1.06 or later]

- -error_file

Error output control



R20UT3123EJ0113  Rev.1.13 Page 66 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-no_warning_num

This option suppresses outputting warning messages of the specified number.

[Specification format]

- Interpretation when omitted
All warning messages are output.

[Detailed description]

- This option suppresses outputting warning messages of the specified number.

- Specify the error numbers as num, num1, and num2.
If the error number that does not exist, it will be ignored.

- An error will occur if num, num1, or num2 is omitted.

- If num1-num2 is specified, it is assumed that error numbers within the range have been specified.

- If this option is specified more than once, all of the given specifications will be effective.

- The error number specified by this option is the rightmost 5 digits of the 7-digit number following the "W".

- This option does not control messages that have been changed to be conveyed as errors with the -change_message 
option.

- This option controls the following message numbers.

- W0510000 to W0529999 and W0550000 to W0559999 [V1.05 or earlier]

- W0510000 to W0559999 [V1.06 or later]

[Example of use]

- To suppress outputting warning message "W0511146" and "W0511147", describe as:

-no_warning_num={num|num1-num2}[, ...]

>ccrl -no_warning_num=11146,11147 -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 67 of 951
Dec 01, 2023

-change_message [V1.06 or later]

This option changes the message levels.

[Specification format]

- Interpretation when omitted
Message levels are not changed.

[Detailed description]

- This option changes the specified warning messages to error messages.
This option controls message numbers W0510000 to W0549999.

- The rightmost 5 digits of the message number are specified for num, num1, and num2.
If a message number that does not exist is specified, it will be ignored.

- If no message number is included, operation is as if all message numbers have been specified.

- If num1-num2 is specified, it is assumed that message numbers within the range have been specified.

- If this option is specified more than once, all of the given specifications will be effective.

-change_message=error[={num|num1-num2}[, ...]]



R20UT3123EJ0113  Rev.1.13 Page 68 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-error_file

This option outputs all error messages of the compiler to the specified file.

[Specification format]

- Interpretation when omitted
Error messages are output to only the standard error output.

[Detailed description]

- This option outputs error messages to the standard error output and file file.

- If file already exists, it will be overwritten.

- An error will occur if file is omitted.

[Example of use]

- To output error messages to the standard error output and file "err", describe as:

-error_file=file

>ccrl -error_file=err -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 69 of 951
Dec 01, 2023

The additional information output options are as follows.

- -cref

- -pass_source

Additional information output



R20UT3123EJ0113  Rev.1.13 Page 70 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-cref

This option outputs the static analysis information file.

[Specification format]

- Interpretation when omitted
The static analysis information file is not output.

[Detailed description]

- This option specifies the location where the static analysis information file to be generated during compilation as path.

- If an existing folder is specified as path, the static analysis information file is saved under the C source file name with 
the extension replaced by ".cref" to path.

- If an existing file name is specified or a non-existing folder or file name is specified, the static analysis information file 
is output with path as the file name when one static analysis information file is output.
If two or more static analysis information files are output, an error will occur.

- An error will occur if "=path" is omitted.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and a static analysis information file is only saved for the last source file to be specified.

[Example of use]

- To output the static analysis information file as file name "info.cref", describe as:

-cref=path

>ccrl -cref=info.cref -cpu=S2 -dev=dr5f100pj.dvf main.cs



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 71 of 951
Dec 01, 2023

-pass_source

This option outputs a C source program as a comment to the assembly source file.

[Specification format]

- Interpretation when omitted
The C source program is not output as a comment to the assembly source file.

[Detailed description]

- This option outputs a C source program as a comment to the assembly source file.

- The output comments are for reference only and may not correspond exactly to the code.
Additionally, non-executed lines may not be output as comments (e.g. type declarations and labels).
For example, comments concerning global variables, local variables, function declarations, etc., may be output to 
incorrect positions.
By specifying the optimization options, the code may be deleted and only the comment may remain.

[Example of use]

- To output a C source program as a comment to the assembly source file, describe as:

-pass_source

>ccrl -pass_source -S -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 72 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The code generation changing options are as follows.

- -dbl_size

- -signed_char

- -signed_bitfield

- -switch

- -volatile

- -merge_string

- -pack

- -stuff [V1.10 or later]

- -stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later]

- -control_flow_integrity [Professional Edition only] [V1.06 or later]

- -insert_nop_with_label [V1.05 or later]

Code generation changing



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 73 of 951
Dec 01, 2023

-dbl_size

This option changes the interpretation of the double and long double types.

[Specification format]

- Interpretation when omitted
Both the double type and long double type are handled as the single-precision floating-point type (as when the 
-dbl_size=4 option is specified).

[Detailed description]

- This option changes the interpretation of the double and long double types.

- When 4 is specified for the parameter, the double type and the long double type are handled as the single-precision 
floating-point type.

- When 8 is specified for the parameter, the double type and the long double type are handled as the double-precision 
floating-point type.

- An error will occur if neither 4 nor 8 is specified as the parameter.

- An error will occur if the -cpu=S1 and -dbl_size=8 options are specified at the same time.

- An error will occur if the -cpu=S2 and -dbl_size=8 options are specified at the same time.

- When the -dbl_size=4 option is specified and a standard library function for the double type is called, it is replaced 
with the corresponding standard library for the float type.

- This option affects the predefined macros.

[Example of use]

- To regard both the double type and the long double type as the float type, describe as:

-dbl_size={4|8}

>ccrl -dbl_size=4 -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 74 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-signed_char

This option specifies that a char type without a signed or unsigned specifier is handled as a signed type.

[Specification format]

- Interpretation when omitted
A char type without a signed or unsigned specifier as an unsigned type.

[Detailed description]

- When integer promotion is applied to a char type without a signed or unsigned specifier, it is handled as a signed type.

- This option affects the predefined macros.

- This option does not have effect on bit fields.
Use the -signed_bitfield option for bit fields.

[Example of use]

- To specify that a char type without a signed or unsigned specifier is handled as a signed type, describe as:

-signed_char

>ccrl -signed_char -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 75 of 951
Dec 01, 2023

-signed_bitfield

This option specifies that a bit field of a type without a signed or unsigned specifier is handled as a signed type.

[Specification format]

- Interpretation when omitted
A bit field of a type without a signed or unsigned specifier as an unsigned type.

[Detailed description]

- This option specifies that a bit field of a type without a signed or unsigned specifier is handled as a signed type.

- This option affects the predefined macros.

[Example of use]

- To specify that a bit field of a type without a signed or unsigned specifier is handled as a signed type, describe as:

-signed_bitfield

>ccrl -signed_bitfield -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 76 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-switch

This option specifies the format in which the code of switch statements is to be output.

[Specification format]

- Interpretation when omitted
ccrl selects the optimum output format for each switch statement.

[Detailed description]

- This option specifies the format in which the code of switch statements is to be output.

- The parameters that can be specified are shown below.
An error will occur if any other parameter is specified.

- Specify the -far_rom option in a device without a mirror area.

- An error will occur if the parameter is omitted.

[Example of use]

- To output a code for the switch statement in the binary search format, describe as:

-switch={ifelse|binary|abs_table|rel_table}

ifelse Outputs the code in a format in which the case labels are compared one by one. This item should be 
specified when there are not so many case statements.

binary Outputs the code in the binary search format.
Searches for a matching case statement by using a binary search algorithm.
If this item is selected when many labels are used, any case statement can be found at almost the 
same speed.

abs_table
rel_table

Uses the case branch table in the switch statement to output a code.
A table indexed by the case value is referenced to obtain the location of each case label from the 
case value and a branch to the location is done. The branch speed is almost the same for all case 
labels. When the case values are not sequential, unused areas are generated in the table.
If the difference between the maximum and minimum case values in a switch statement exceeds 
8192, this option setting is ignored and processing is done as described in "Interpretation when omit-
ted".
When abs_table is specified, the absolute address of each case label location is stored in the table.
When rel_table is specified, the relative distance from a branch instruction to each case label loca-
tion is stored in the table. However, if a relative distance exceeds 64 Kbytes, a linkage error will 
occur.
When a function including a switch statement is allocated to the near area, a code using an absolute 
addressing table is generated regardless of which parameter is specified.

>ccrl -switch=binary -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 77 of 951
Dec 01, 2023

-volatile

External variables and the variables specified with "#pragma address" are handled as if they were volatile-declared.

[Specification format]

- Interpretation when omitted
Only the volatile-qualified variables are handled as if they were volatile-declared.

[Detailed description]

- All external variables and the variables specified with #pragma address are handled as if they were volatile-declared.
The number of times and order in which external variables and variables specified with #pragma address are 
accessed are kept unchanged from those written in the C source file.

[Example of use]

- To handle all external variables and the variables specified with #pragma address as if they were volatile-declared, 
describe as:

-volatile

>ccrl -volatile -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 78 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-merge_string

This option allocates string literals to a single area.

[Specification format]

- Interpretation when omitted
If the same string literals are included multiple times in the source file, each will be allocated to a separate area.

[Detailed description]

- When the same string literals exist in the source file, this option merges them and allocates to the one area.

- The same string literals are allocated to the same area, regardless of whether #pragma section is specified.

[Example of use]

- When the same string literals exist in the source file, to merge them and allocate to the one area, describe as:

-merge_string

>ccrl -merge_string -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 79 of 951
Dec 01, 2023

-pack

This option performs packing of a structure.

[Specification format]

- Interpretation when omitted
Packing of a structure is not performed.

[Detailed description]

- This option sets 1 as the number of alignment for a structure member.

- When this option is specified, members of a structure are not aligned according to its type, but code is generated with 
them packed to be aligned at a 1-byte boundary.

- Correct operation is not guaranteed if there is a mixture of C source files with this option specified and C source files 
without this option specified.

- Correct operation is not guaranteed if a structure, union, or address of those members whose alignment condition has 
been changed from two bytes to one byte by this option is passed as an argument of a standard library function.

- Correct operation is not guaranteed if the address of a structure or union member whose alignment condition has 
been changed from two bytes to one byte by this option is passed to a pointer whose type has two bytes as the align-
ment condition and indirect reference to the pointer is performed.

[Example of use]

- To perform packing of a structure, describe as:

-pack

>ccrl -pack -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 80 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-stuff [V1.10 or later]

This option allocates variables to sections separated according to the number of alignment.

[Specification format]

- Interpretation when omitted
Variables are allocated without separating sections.

[Detailed description]

- This option allocates the variables belonging to the specified <variable-type> to sections separated according to the 
number of alignment.

- bss specifies uninitialized variables, data specifies initialized variables, and const specifies const variables.

- If <variable-type> is omitted, all types of variables are applicable.

- If this option is specified multiple times, all specified types of variables are applicable.

- If the same variable type is specified multiple times, the compiler handles this as one specification. For this, no warn-
ing is issued.

- If anything other than bss, data, and const is specified for <variable-type>, an error occurs.

- Variables are output to a section whose section name has <number-of-alignment>.
However, if the number of alignment is 2, "_2" is not added to a section name.

Examples:
When the number of alignment of variables is 2: .bss 
When the number of alignment of variables is 1: .bss_1

[Example of use]

-stuff[=<variable-type>[,...]]
<variable-type> : { bss | data | const }

// near area
const char  __near c_n = 1;
const short __near s_n = 2;
const long  __near l_n = 3;
// far area
const char  __far c_f = 1;
const short __far s_f = 2;
const long  __far l_f = 3;



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 81 of 951
Dec 01, 2023

[Remark]

- Each section name reflects the following options or specification in #pragma section:
-memory_model, -far_rom

Default -stuff specification

       .SECTION .const,CONST
_c_n:
       .DB 0x01
       .ALIGN 2
_s_n:
       .DB2 0x0002
       .ALIGN 2
_l_n:
       .DB4 0x00000003
       .SECTION .constf,CONSTF
_c_f:
       .DB 0x01
       .ALIGN 2
_s_f:
       .DB2 0x0002
       .ALIGN 2
_l_f:
       .DB4 0x00000003

       .SECTION .const_1,CONST,align=1
_c_n:
       .DB 0x01

       .SECTION .const,CONST
       .ALIGN 2
_s_n:
       .DB2 0x0002
       .ALIGN 2
_l_n:
       .DB4 0x00000003

       .SECTION .constf_1,CONSTF,align=1
_c_f:
       .DB 0x01

       .SECTION .constf,CONSTF
       .ALIGN 2
_s_f:
       .DB2 0x0002
       .ALIGN 2
_l_f:
       .DB4 0x00000003



R20UT3123EJ0113  Rev.1.13 Page 82 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later]

This option generates a code for detection of stack smashing.

[Specification format]

- Interpretation when omitted
A code for detection of stack smashing is not generated.

[Detailed description]

- This option generates a code for detection of stack smashing at the entry and end of a function.

- A 2-byte area is allocated just before the local variable area (in the direction towards address 0xFFFFF) at the entry to 
a function, and the value specified by num is stored. After that, the 2-byte area in which num was stored is checked 
for smashing at the end of the function. If smashing has occurred, the __stack_chk_fail function is called.

- The __stack_chk_fail function needs to be created by the user. It should be defined as a function having no parame-
ters or return values, it should be located in the far area, and the processing to be executed at stack smashing should 
be written.

- Do not define the function as static.

- When calling another function in the __stack_chk_fail function, note that stack smashing is not detected recursively in 
the function that was called.

- Specify an integer from 0 to 65535 for num.

- If num is omitted, the compiler automatically determines the integer value.

- If -stack_protector is specified, this option generates a code for detection of stack smashing for only functions having 
a structure, union, or array that exceeds eight bytes as a local variable.

- If -stack_protector_all is specified, this option generates a code for detection of stack smashing for all functions.

- If this option is used simultaneously with #pragma stack_protector, the specification by #pragma stack_protector 
becomes valid.

- A code for detection of stack smashing is not generated for the functions in which the following is specified.
#pragma inline, __inline keyword, #pragma inline_asm, #pragma no_stack_protector, #pragma rtos_interrupt, or 
#pragma rtos_task

[Example of use]

- To generate a code for detection of stack smashing, describe as:

-stack_protector[=num]
-stack_protector_all[=num]

>ccrl -stack_protector=1000 -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 83 of 951
Dec 01, 2023

-control_flow_integrity [Professional Edition only] [V1.06 or later]

This option generates code for the detection of illegal indirect function calls.

[Specification format]

- Interpretation when omitted
Code for the detection of illegal indirect function calls is not generated.

[Detailed description]

- This option generates code for the detection of illegal indirect function calls.
When this option is specified, code for the following processing is generated in the C source program.
(1) The __control_flow_integrity checking function is called with an indirect calling address as an argument immedi-
ately before indirect function calls.
(2) Within the checking function, the address given as the argument is checked against a list of the addresses of func-
tions (hereafter referred to as the function list) which may be indirectly called. If the list does not include the address, 
the __control_flow_chk_fail function will be called since this is regarded as an illegal indirect function call.

The correctness of processing to change the flow of the program, such as through indirect function calls, is 
referred to as control flow integrity (CFI), and CFI techniques are used to verify this.

- A checking function is defined as follows and provided as library functions.
Calling the checking function in the same way as normal functions is prohibited.

- The compiler automatically extracts the information on the functions which may be indirectly called from the C source 
program. The linker consolidates that information in creating the function list. For the linker to create a function list, the 
-CFI link option must be specified.
For details, refer to section 2.5.3  Link options.

- The __control_flow_chk_fail function contains code for the processing which is to be executed when an illegal indirect 
function call is detected. The user must define this function.
Note the following when defining the __control_flow_chk_fail function.

- Specify void as the type of the return value and parameter, and allocate it in the far area.

- Do not define the function as static.

- Calling the __control_flow_chk_fail function in the same way as a normal function is prohibited.

- The __control_flow_chk_fail function is not for the creation of code for detecting illegal indirect function calls.

- In the __control_flow_chk_fail function, note that execution must not be returned to the checking function, for 
example, by calling abort() to terminate the program.

-control_flow_integrity



R20UT3123EJ0113  Rev.1.13 Page 84 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Example]

- <C source code>

#include <stdlib.h>

int glb;

void __control_flow_chk_fail(void)
{
    abort();
}

void func1(void) // Added to the function list.
{
    ++glb;
}

void func2(void) // Not added to the function list.
{
    --glb;
}

void (*pf)(void) = func1;

void main(void)
{
    pf(); // Indirect call of the function func1.
    func2();
}



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 85 of 951
Dec 01, 2023

- <Output  code>
When -cpu=S2 -S -control_flow_integrity is specified for compilation

___control_flow_chk_fail:
    .STACK ___control_flow_chk_fail = 4
    br !!_abort
_func1:
    .STACK _func1 = 4
    incw !LOWW(_glb)
    ret
_func2:
    .STACK _func2 = 4
    decw !LOWW(_glb)
    ret
_main:
    .STACK _main = 8
    subw sp, #0x04
    movw de, !LOWW(_pf)
    movw ax, de
    movw [sp+0x02], ax
    mov a, !LOWW(_pf+0x00002)
    mov [sp+0x00], a
    call !!___control_flow_integrity ; Call the checking function.
    mov a, [sp+0x00]
    mov cs, a
    movw ax, [sp+0x02]
    movw hl, ax
    call hl ; Indirect call of the function func1.
    call $!_func2 ; Direct call of the function func2.
    addw sp, #0x04
    ret
    .SECTION .bss,BSS
    .ALIGN 2
_glb:
    .DS (2)
    .SECTION .data,DATA
    .ALIGN 2
_pf:
    .DB2 LOWW(_func1)
    .DB LOW(HIGHW(_func1))
    .DB 0x00



R20UT3123EJ0113  Rev.1.13 Page 86 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-insert_nop_with_label [V1.05 or later]

This option inserts a local label and nop instruction.

[Specification format]

- Interpretation when omitted
A local label and nop instruction are not inserted.

[Detailed description]

- This option inserts a local label and nop instruction at the specified location based on the information for source 
debugging.

- When this option is specified, the -g option also becomes valid.

- This function is assumed to be used via CS+ or e2studio and should not be used directly by the user.

-insert_nop_with_label=file,line,label



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 87 of 951
Dec 01, 2023

The extensions options are as follows.

- -strict_std [V1.06 or later] / -ansi [V1.05 or earlier]

- -refs_without_declaration

- -large_variable

- -nest_comment

- -character_set

Extensions



R20UT3123EJ0113  Rev.1.13 Page 88 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-strict_std [V1.06 or later] / -ansi [V1.05 or earlier]

The C source program is processed in strict compliance with the language standard.

[Specification format]

- Interpretation when omitted
Compatibility with the conventional C language specifications is conferred and processing continues after warning is 
output. With C90 specified, some of the specifications that were added in C99 are acceptable.

[Detailed description]

- This option selects processing of the C source program in strict compliance with the language standard which is spec-
ified with the -lang option, and errors or warnings are output for code that violates the standard.

- When this option is specified, the macro name "__STDC__" is defined as a macro with the value 1.

- Processing when compilation is executed in strict compliance with the language standard is as follows.

- Compliance with C90

- _Bool type
An error will occur.

- long long type
An error will occur.

- #line-number
An error will occur.
If this option is not specified, "#line-number" will be handled in the same way as "#line line-number".

- Type conversion
Type conversions such as the assignment of a function pointer to a void pointer will cause errors.

- Binary constants
An error will occur. [V1.06 or later]

- Compliance with C99 [V1.06 or later]

- #line-number
An error will occur.
If this option is not specified, "#line-number" will be handled in the same way as "#line line-number".

- Type conversion
Type conversions such as the assignment of a function pointer to a void pointer will cause errors.

- Binary constants
An error will occur. 

-strict_std [V1.06 or later]
-ansi       [V1.05 or earlier]



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 89 of 951
Dec 01, 2023

-refs_without_declaration

When a function without a declaration or a function with a declaration in the old style (K&R) is called, an error will occur.

[Specification format]

- Interpretation when omitted
No message is output when a function without a declaration or a function with a declaration in the old style (K&R) is 
called.

[Detailed description]

- When a function without a declaration or a function with a declaration in the old style (K&R) is called, an error will 
occur.

[Example of use]

- When a function without a declaration or a function with a declaration in the old style (K&R) is called, an error will 
occur, describe as:

-refs_without_declaration

>ccrl -refs_without_declaration -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 90 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-large_variable

This option sets the maximum size of a variable to 0xffff bytes.

[Specification format]

- Interpretation when omitted
The maximum size of a variable is set to 0x7fff bytes.
Declaration of a variable with a size larger than 0x7fff bytes will cause an error.

[Detailed description]

- This option changes the maximum size of a variable from 0x7fff bytes to 0xffff bytes.

- Declaration of a variable with a size larger than 0xffff bytes will cause an error.

- When this option is specified and if the result of pointer subtraction exceeds the range of values that can be repre-
sented in signed int, the value cannot be correctly expressed in ptrdiff_t (signed int). Therefore, when this option is 
specified, take special care regarding the result of pointer calculation.

[Example of use]

- To set the maximum size of a variable to 0xffff bytes, describe as:

-large_variable

>ccrl -large_variable -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 91 of 951
Dec 01, 2023

-nest_comment

This option enables nesting of /* */ comments.

[Specification format]

- Interpretation when omitted
Nested /* */ comments cause a warning.

[Detailed description]

- This option enables nesting of /* */ comments.

[Example of use]

- To enable nesting of /* */ comments, describe as:

-nest_comment

/*
  /*
    Nest
  */
*/

>ccrl -nest_comment -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 92 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-character_set

This option specifies the Japanese/Chinese character code.

[Specification format]

- Interpretation when omitted
In a Japanese OS, sjis is assumed as the parameter for this option.  In other OS's, none is assumed.

[Detailed description]

- This option specifies the character code to be used for Japanese/Chinese comments and character strings in the 
input file.

- The parameters that can be specified are shown below.
An error will occur if any other item is specified.
Operation is not guaranteed if the specified character code differs from the character code of the input file.

- An error will occur if the parameter is omitted.

[Example of use]

- To specify EUC as the character code to be used for Japanese comments and character strings in the input file, 
describe as:

-character_set={none|sjis|euc_jp|utf8|big5|gbk}

none Does not process the Japanese and Chinese character code

euc_jp EUC (Japanese)

sjis SJIS

utf8 UTF-8

big5 Traditional Chinese

gbk Simplified Chinese

>ccrl -character_set=euc_jp -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 93 of 951
Dec 01, 2023

The MISRA check options are as follows.

- -misra2004 [Professional Edition only]

- -misra2012 [Professional Edition only] [V1.02 or later]

- -ignore_files_misra [Professional Edition only]

- -check_language_extension [Professional Edition only]

- -misra_intermodule [Professional Edition only] [V1.08 or later]

MISRA check



R20UT3123EJ0113  Rev.1.13 Page 94 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-misra2004 [Professional Edition only]

This option checks source code against the MISRA-C:2004 rules.

[Specification format]

- Interpretation when omitted
The source code is not checked against the MISRA-C: 2004 rules.

[Detailed description]

- This option checks source code against the MISRA-C:2004 rules.
A message is output if the item specified for the check is item.

- The items that can be specified as item are shown below.
An error will occur if any other item is specified.

- The items that can be specified as num are shown below.
An error will occur if any other item is specified.

2.2 2.3
4.1 4.2
5.2 5.3 5.4 5.5 5.6
6.1 6.2 6.3 6.4 6.5
7.1
8.1 8.2 8.3 8.5 8.6 8.7 8.11 8.12
9.1 9.2 9.3
10.1 10.2 10.3 10.4 10.5 10.6
11.1 11.2 11.3 11.4 11.5
12.1 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13
13.1 13.2 13.3 13.4
14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10
15.1 15.2 15.3 15.4 15.5
16.1 16.3 16.5 16.6 16.9

-misra2004=item[=value]

Check Item 
(item)

Parameter 
(value)

Description

all None The source code is checked against all of the rules which are supported.

apply num[,num]... The source code is checked against the rules with the numbers specified by 
num among the rules which are supported.

ignore num[,num]... The source code is checked against the rules with the numbers that are not 
specified by num among the rules which are supported.

required None The source code is checked against the rules of the "required" type among 
the rules which are supported.

required_add num[,num]... The source code is checked against the rules of the "required" type and the 
rules with the numbers specified by num among the rules which are sup-
ported.

required_remove num[,num]... The source code is checked against the rules of the "required" type except 
for the rules with the numbers specified by num among the rules which are 
supported.

file The source code is checked against the rules with the numbers described in 
specified file file among the rules which are supported.
Specify one rule number per one line in the file.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 95 of 951
Dec 01, 2023

17.5
18.1 18.4
19.3 19.6 19.7 19.8 19.11 19.13 19.14 19.15
20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12

- An error will occur if item is omitted.

[Example of use]

- To check the source code against MISRA-C:2004 rule number: 5.2, 5.3, and 5.4, describe as:

[Caution]

- An error will occur when this option is specified in the Standard Edition of the compiler.

- The source code cannot be simultaneously checked against the MISRA-C: 2012 rules.

- If the -lang=c99 option is specified, this option will be invalid.

>ccrl -misra2004=apply=5.2,5.3,5.4 -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 96 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-misra2012 [Professional Edition only] [V1.02 or later]

This option checks source code against the MISRA-C:2012 rules.

[Specification format]

- Interpretation when omitted
The source code is not checked against the MISRA-C: 2012 rules.

[Detailed description]

- This option checks source code against the MISRA-C:2012 rules.
A message is output if the item specified for the check is item.

- The items that can be specified as item are shown below.
An error will occur if any other item is specified.
The source code is always checked against the rules of the "mandatory" type regardless of the following specification.

- The items that can be specified as num are shown below. [V1.09]
An error will occur if any other item is specified.

2.2 2.6 2.7
3.1 3.2
4.1 4.2
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
6.1 6.2
7.1 7.2 7.3 7.4
8.1 8.2 8.3 8.4 8.5 8.6 8.8 8.9 8.11 8.12 8.13 8.14
9.1 9.2 9.3 9.4 9.5
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9
12.1 12.2 12.3 12.4 12.5
13.1 13.2 13.3 13.4 13.5 13.6
14.2 14.3 14.4

-misra2012=item[=value]

Check Item 
(item)

Parameter 
(value)

Description

all None The source code is checked against all of the rules which are supported.

apply num[,num]... The source code is checked against the rules with the numbers specified by 
num among the rules which are supported.

ignore num[,num]... The source code is checked against the rules with the numbers that are not 
specified by num among the rules which are supported.

required None The source code is checked against the rules of the "mandatory" and 
"required" types among the rules which are supported.

required_add num[,num]... The source code is checked against the rules of the "mandatory" and 
"required" types and the rules with the numbers specified by num among 
the rules which are supported.

required_remove num[,num]... The source code is checked against the rules of the "required" type except 
for the rules with the numbers specified by num among the rules which are 
supported.

file The source code is checked against the rules with the numbers described in 
specified file file among the rules which are supported.
Specify one rule number per one line in the file.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 97 of 951
Dec 01, 2023

15.1 15.2 15.3 15.4 15.5 15.6 15.7
16.1 16.2 16.3 16.4 16.5 16.6 16.7
17.1 17.3 17.4 17.5 17.6 17.7 17.8
18.4 18.5 18.7
19.2
20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12 21.13 21.15 21.16

- An error will occur if item is omitted.

[Example of use]

- To check the source code against MISRA-C:2012 rule number: 5.2, 5.3 describe as:

[Caution]

- An error will occur when this option is specified in the Standard Edition of the compiler.

- The source code cannot be simultaneously checked against the MISRA-C: 2004 rules.

>ccrl -misra2012=apply=5.2,5.3 -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 98 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-ignore_files_misra [Professional Edition only]

This option specifies files that will not be checked against the MISRA-C: 2004 rules or MISRA-C: 2012 rules.

[Specification format]

- Interpretation when omitted
All C source files are checked.

[Detailed description]

- This option does not check file file against the MISRA-C: 2004 rules or MISRA-C: 2012 rules.

- This option is valid only when the -misra2004 or -misra2012 option is specified.
If the -misra2004 or -misra2012 option is not specified, a warning is output and this option will be ignored.

[Example of use]

- Not to check sample.h against the MISRA-C: 2004 rules, describe as:

[Caution]

- An error will occur when this option is specified in the Standard Edition of the compiler.

-ignore_files_misra=file[,file]...

>ccrl -misra2004=all -ignore_files_misra=sample.h -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 99 of 951
Dec 01, 2023

-check_language_extension [Professional Edition only]

This option enables the source-code checking of the MISRA-C:2004 rules or MISRA-C: 2012 rules, which are partially 
suppressed by the extended language specifications.

[Specification format]

- Interpretation when omitted
The source-code checking of the MISRA-C:2004 rules or MISRA-C: 2012 rules is disabled, which are partially sup-
pressed by the extended language specifications.

[Detailed description]

- This option enables the source-code checks of the MISRA-C:2004 rules or MISRA-C: 2012 rules in the following 
cases where they are suppressed by the unique language specifications extended from the C language standard.

- When the function has no prototype declaration (rule 8.1) and #pragma interrupt is specified for it.

- This option is valid only when the -misra2004 or -misra2012 option is specified.
If the -misra2004 or -misra2012 option is not specified, a warning is output and this option will be ignored.

[Example of use]

- To enable the source-code checking of the MISRA-C:2004 rules, which are partially suppressed by the extended lan-
guage specifications, describe as:

[Caution]

- An error will occur when this option is specified in the Standard Edition of the compiler.

-check_language_extension

>ccrl -misra2004=all -check_language_extension -cpu=S2 -dev=dr5f100pj.dvf main.c



R20UT3123EJ0113  Rev.1.13 Page 100 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-misra_intermodule [Professional Edition only] [V1.08 or later]

This option checks source code in multiple files against the MISRA-C:2012 rules.

[Specification format]

- Interpretation when omitted
None (checking of source code in multiple files against the MISRA-C:2012 rules is disabled)

[Detailed description]

- This option saves symbol information of multiple files in file and checks source code in these files against the 
MISRA-C:2012 rules. If file does not exist, a new file will be created. If file exists, symbol information will be added to 
the file.

- This option is only valid when the -misra2012 option is specified. A warning is output and this option will be ignored if 
the -misra2012 option is not specified.

- An error will occur if file is omitted.

- This option is applied to rules classified as "System" in the analysis scope of MISRA-C:2012. Source code will be 
checked against the following MISRA-C:2012 rules. [V1.08]

5.1 5.6 5.7 5.8 5.9
8.3 8.5 8.6

[Example of use]

- To check source code in multiple files a.c, b.c, and c.c against the MISRA-C:2012 rules, describe as:

[Caution]

- .{c|a|f} cannot be specified as the extension of file. If specified, an error will occur. Correct operation is not guaranteed 
if file overlaps with another input or output file.

- If there are many files to be checked and the symbol information to be stored in file is huge, the compilation speed 
gets slower.

- If any of the source files is modified after file was created, recompilation will update the information of file. If any of the 
source files is deleted or its file name is changed, delete file and recheck source code against the MISRA-C:2012 
rules because the information of file cannot be updated.

- An error will occur if this option is specified in the Standard edition of the compiler.

[Remark]

- This option cannot correctly check the source code when files are compiled in parallel by using, for example, parallel 
builds. Specify this option without performing parallel compilation.

-misra_intermodule=file

>ccrl -cpu=S2 -dev=dr5f100pj.dvf -misra2012=all -misra_intermodule=test.mi a.c b.c 
c.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 101 of 951
Dec 01, 2023

The subcommand file specification option is as follows.

- -subcommand

Subcommand file specification



R20UT3123EJ0113  Rev.1.13 Page 102 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-subcommand

This option specifies a subcommand file.

[Specification format]

- Interpretation when omitted
Only the options and file names specified on the command line are recognized.

[Detailed description]

- This option handles file as a subcommand file.

- An error will occur if file does not exist.

- An error will occur if file is omitted.

- See "2.4.2  Subcommand file usage" for details about a subcommand file.

[Example of use]

- To handle "command.txt" as a subcommand file, describe as:

-subcommand=file

>ccrl -subcommand=command.txt -cpu=S2 -dev=dr5f100pj.dvf



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 103 of 951
Dec 01, 2023

The assembler and linker control options are as follows.

- -asmopt

- -lnkopt

- -asmcmd

- -lnkcmd

- -dev

Assembler and linker control



R20UT3123EJ0113  Rev.1.13 Page 104 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-asmopt

This option specifies assemble options.

[Specification format]

- Interpretation when omitted
Only the assemble options specified by the compilation driver are passed to the assembler.

[Detailed description]

- This option passes arg to the assembler as the assemble option.

- An error will occur if arg is omitted.

[Example of use]

- To pass the -prn_path option to the assembler, describe as:

The -asmopt option specified in the above example has the same effect as the following example.

-asmopt=arg

>ccrl -c -asmopt=-prn_path -cpu=S2 -dev=dr5f100pj.dvf main.c

>ccrl -S -cpu=S2 -dev=dr5f100pj.dvf main.c
>asrl -prn_path -cpu=S2 -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 105 of 951
Dec 01, 2023

-lnkopt

This option specifies link options.

[Specification format]

- Interpretation when omitted
Only the link options specified by the compilation driver are passed to the optimizing linker.

[Detailed description]

- This option passes arg to the optimizing linker as the link option.

- An error will occur if arg is omitted.

[Example of use]

- To pass the -form=relocate option to the optimizing linker, describe as:

The -lnkopt option specified in the above example has the same effect as the following example.

-lnkopt=arg

>ccrl -lnkopt=-form=relocate -cpu=S2 -dev=dr5f100pj.dvf main.c

>ccrl -c -cpu=S2 -dev=dr5f100pj.dvf main.c
>rlink -form=relocate main.obj



R20UT3123EJ0113  Rev.1.13 Page 106 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-asmcmd

This option specifies the use of a subcommand file to specify the assemble options to be passed to the assembler.

[Specification format]

- Interpretation when omitted
Only the assemble options specified by the compilation driver are passed to the assembler.

[Detailed description]

- This option specifies the use of subcommand file file to specify the assemble options to be passed to the assembler.

- When this option is specified more than once, all subcommand files are valid.

- An error will occur if file is omitted.

[Example of use]

- To specify the use of subcommand file "command_asm.txt" to specify the assemble options to be passed to the 
assembler.

-asmcmd=file

>ccrl -asmcmd=command_asm.txt -cpu=S2 -dev=dr5f100pj.dvf



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 107 of 951
Dec 01, 2023

-lnkcmd

This option specifies the use of a subcommand file to specify the link options to be passed to the optimizing linker.

[Specification format]

- Interpretation when omitted
Only the link options specified by the compilation driver are passed to the optimizing linker.

[Detailed description]

- This option specifies the use of subcommand file file to specify the link options to be passed to the optimizing linker.

- When this option is specified more than once, all subcommand files are valid.

- An error will occur if file is omitted.

[Example of use]

- To specify the use of subcommand file "command_lnk.txt" to specify the link options to be passed to the optimizing 
linker.

-lnkcmd=file

>ccrl -lnkcmd=command_lnk.txt -cpu=S2 -dev=dr5f100pj.dvf



R20UT3123EJ0113  Rev.1.13 Page 108 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-dev

This option specifies the device file that the assembler and optimizing linker use.

[Specification format]

- Interpretation when omitted
No device file is passed to the assembler or optimizing linker.

[Detailed description]

- This option specifies device file file that the assembler and optimizing linker use.

- If this option is omitted at compilation, an error may occur in the assembler or the optimizing linker.

- An error will occur if this option is specified more than once.

- An error will occur if file is omitted.

[Example of use]

- To specify device file "DR5F100PJ.DVF" that the assembler and optimizing linker use, describe as:

-dev=file

>ccrl -cpu=S2 -dev=dr5f100pj.dvf main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 109 of 951
Dec 01, 2023

The compiler transition support options are as follows.

- -convert_cc

- -unaligned_pointer_for_ca78k0r [V1.06 or later]

Compiler transition support



R20UT3123EJ0113  Rev.1.13 Page 110 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-convert_cc

This option supports transition of programs written for other compilers.

[Specification format]

- Interpretation when omitted
The function for supporting transition of programs written for other compilers is disabled.

[Detailed description]

- This option converts expanded functions of another compiler into expanded functions of the CC-RL. Operations come 
into compliance with the CC-RL specifications.

- The same operations as the compiler before transition are not guaranteed for unspecified, undefined, and implemen-
tation-defined items in the ANSI C language.

- A compile error will occur when this option is specified for more than once.

- Correct operation is not guaranteed when linking objects with different compiler as a parameter of this option.

- The parameters that can be specified are shown below.
A compile error will occur if any other parameter is specified.

- If the -lang=c99 option is specified, this option will be invalid.

Operations when -convert_cc=ca78k0r is specified are shown below.

- The __CNV_CA78K0R__ macro is enabled.

- A keyword following #pragma is recognized when it consists of only uppercase characters or only lowercase charac-
ters.
A keyword consisting of both uppercase and lowercase characters is handled as an unknown keyword.

- The expanded language specifications are handled as follows:

Table 2.3 Operation When Transition Support Option is Specified (-convert_cc=ca78k0r)

-convert_cc={ca78k0r|nc30|iar}

Parameter Description

ca78k0r Enables the function for supporting transition of CA78K0R expanded language specifi-
cations.

nc30 Enables the function for supporting transition of NC30 expanded language specifica-
tions.

iar Enables the function for supporting transition of ICCRL78 (IAR compiler) expanded lan-
guage specifications.

Functions of ca78k0r Functions in CC-RL Operation When the Option is Specified

__callt, callt __callt When the -strict_std option is not specified, the callt key-
word is replaced with __callt.

__callf, callf None Not supported.
A syntax error will occur.

__sreg, sreg __saddr The __sreg keyword is replaced with __saddr.
When the -strict_std option is not specified, the sreg key-
word is replaced with __saddr.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 111 of 951
Dec 01, 2023

__leaf, norec, noauto None Not supported.
A syntax error will occur.

__boolean, boolean, bit None When the -strict_std option is specified, the __boolean 
keyword is replaced with char.
When the -strict_std option is not specified, the 
__boolean, boolean, or bit keyword is replaced with 
_Bool.

__interrupt
__interrupt_brk

#pragma interrupt
#pragma interrupt_brk

When the #pragma directive for the function qualified with 
the keyword is in the same file, the keyword is deleted. 
Otherwise, the keyword is replaced with the #pragma 
directive.

__asm
#asm ~ #endasm

#pragma inline_asm Not supported.
__asm is handled as a normal function call.
#asm and #endasm will generate a syntax error.

__rtos_interrupt #pragma 
rtos_interrupt

When the #pragma directive for the function qualified with 
the keyword is in the same file, the keyword is deleted. 
Otherwise, the keyword is replaced with the #pragma 
directive.

__pascal None Not supported.
A syntax error will occur.

__flash None Not supported.
A syntax error will occur.

__flashf None Not supported.
A syntax error will occur.

__directmap #pragma address The keyword is deleted and #pragma address is newly 
created. When __sreg, sreg or __saddr is specified addi-
tionally, a compile error will occur. When multiple vari-
ables are specified in the same address, an error will 
occur.

__temp None Not supported.
A syntax error will occur.

__near, __far __near, __far The operation rules for the far pointer conform to the 
CC-RL specifications.
The location for writing the __near or __far keyword in a 
function declaration or function pointer declaration con-
forms to the CC-RL specifications. When conforming to 
the CA78KOR specifications, a syntax error will occur.
For the operation rules for the far pointer, see "Pointer 
operation" in "Specifying memory allocation area (__near 
/__far)".

__mxcall None Not supported.
A syntax error will occur.

#pragma sfr #include "iodefine.h" The #pragma directive is ignored and a warning message 
is output.
Reference to SFR including bit access is converted into 
reference to a symbolic constant defined in iodefine.h.
Inclusion of iodefine.h must be specified manually.

Functions of ca78k0r Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 112 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

#pragma vect
#pragma interrupt

#pragma interrupt
#pragma interrupt_brk

The specifications are replaced with the CC-RL specifica-
tions.
The vect keyword is replaced with interrupt.
When the interrupt request name is BRK_I, the interrupt 
or vect keyword is replaced with interrupt_brk.
If the directive includes stack switching, the specification 
is deleted and a warning message is output.
The interrupt request name is converted into the address 
defined in iodefine.h. Inclusion of iodefine.h must be 
specified manually.
If the C source file has only a #pragma directive and no 
function declaration or function definition, no vector table 
is generated and no error will occur at linkage.
Only a single interrupt request name can be set in an 
interrupt handler.

#pragma rtos_interrupt #pragma 
rtos_interrupt

The specifications are replaced with the CC-RL specifica-
tions.
The interrupt request name is converted into the address 
defined in iodefine.h. Inclusion of iodefine.h must be 
specified manually.
If the C source file has only a #pragma directive and no 
function declaration or function definition, no vector table 
is generated and no error will occur at linkage.

#pragma rtos_task #pragma rtos_task The specifications are replaced with the CC-RL specifica-
tions.

#pragma di
#pragma ei

__DI
__EI

Call to function DI or EI is replaced with call to __DI or 
__EI, respectively.

#pragma halt
#pragma stop
#pragma brk
#pragma nop

__halt
__stop
__brk
__nop

Call to function HALT, STOP, BRK, or NOP is replaced 
with call to __halt, __stop, __brk, or __nop, respectively.

#pragma section #pragma section The compiler output section name is replaced with a sec-
tion name conforming to the CC-RL specifications. If the 
directive includes an address specification, the specifica-
tion is deleted and a warning message is output. If it can-
not be replaced with a section name conforming to the 
CC-RL specifications, the #pragma directive is deleted 
and a warning message is output.
For the section names that can be written in the CC-RL, 
see "Changing compiler output section name (#pragma 
section)".

#pragma name None The #pragma directive is deleted and a warning message 
is output.

#pragma rot __rolb, __rorb,
__rolw, __rorw

Call to function rolb, rorb, rolw, or rorw is replaced with 
call to __rolb, __rorb, __rolw, or __rorw, respectively.

#pragma mul __mulu,
__mului, __mulsi

Call to function mulu, muluw, or mulsw is replaced with 
call to __mulu, __mului, or __mulsi, respectively.

#pragma div __divui, __remui Call to function divuw or moduw is replaced with call to 
__divui or __remui, respectively.

#pragma mac __macui, __macsi Call to function macuw or macsw is replaced with call to  
__macui or __macsi, respectively.

Functions of ca78k0r Functions in CC-RL Operation When the Option is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 113 of 951
Dec 01, 2023

#pragma bcd None The #pragma directive is deleted and a warning message 
is output.

#pragma opc None The #pragma directive is deleted and a warning message 
is output.

#pragma ext_func None The #pragma directive is deleted and a warning message 
is output.

#pragma inline None If a line feed follows the #pragma directive, the #pragma 
directive is deleted and a warning message is output.
If a function name following the #pragma directive is in the 
same line, the #pragma directive is handled as #pragma 
inline (with different function) in the CC-RL specifications.

Binary constant Binary constant Handled as a binary constant without change.

__K0R__ __RL78__ The macro is enabled (decimal constant 1).

__K0R__SMALL__ __RL78_SMALL__ The macro is enabled (decimal constant 1) when small is 
specified with the -memory_model option or when S1 is 
specified with the -cpu option while the -memory_model 
option is not specified.

__K0R__MEDIUM__ __RL78_MEDIUM__ The macro is enabled (decimal constant 1) when medium 
is specified with the -memory_model option or when other 
than S1 is specified with the -cpu option while the 
-memory_model option is not specified.

__K0R__LARGE__ None Not supported.
Handled as a user-defined macro.

__CHAR_UNSIGNED__ __UCHAR The macro is enabled (decimal constant 1) when the 
-signed_char option is not specified.

__RL78_1__ __RL78_S2__ The macro is enabled (decimal constant 1) when S2 is 
specified with the -cpu option.

__RL78_2__ __RL78_S3__ The macro is enabled (decimal constant 1) when S3 is 
specified with the -cpu option.

__RL78_3__ __RL78_S1__ The macro is enabled (decimal constant 1) when S1 is 
specified with the -cpu option.

__CA78K0R__ None The macro is enabled (decimal constant 1).

CPU macro None Not supported.
Handled as a user-defined macro.

Standard library function
va_starttop

va_start In stdarg.h, va_starttop is replaced with va_start.

Standard library functions
toup, _toupper, tolow,
_tolower, _putc, calloc,
free, malloc, realloc,
atexit, brk, sbrk, itoa,
ltoa, ultoa, strbrk, strsbrk,
stritoa, strltoa, strultoa,
strcoll, strxfrm, matherr,
_assertfail

None Not supported.
Handled as a normal function call.

Functions of ca78k0r Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 114 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Operations when -convert_cc=nc30 is specified are shown below.

- The __CNV_NC30__ macro is enabled.

- The expanded language specifications are handled as follows:

Table 2.4 Operation When Transition Support Option is Specified (-convert_cc=nc30)

standard library functions
Others

Standard library 
functions

Conforms to the CC-RL specifications.
The location for writing the __near or __far keyword in a 
function declaration or function pointer declaration con-
forms to the CC-RL specifications. When conforming to 
the CA78KOR specifications, a syntax error will occur.

Standard library
Macro

Standard library
Macro

A macro with the same name as a macro defined in the 
header file of the CC-RL conforms to the CC-RL specifi-
cations.
Other macros are not supported. They are handled as 
user-defined macros.

Functions of nc30 Functions in CC-RL Operation When the Option is Specified

wchar_t type None In stddef.h, the wchar_t type is declared as the unsigned 
short type using typedef.

Decimal constant with no 
suffix or with suffix l or L
int
long int
long long int

Decimal constant with 
no suffix or with suffix l 
or L
int
long int
long long int

Conforms to the CC-RL specifications.

Binary constant Binary constant Handled as a binary constant without change.
"_" can be written between numeric values. If written in 
any other location, a syntax error will occur.

Wide character string Wide character string When combining a character string constant and a wide 
character string constant, conforms to the CC-RL specifi-
cations.

Default parameter 
declaration of function

None Not supported.
A syntax error will occur.

near, far
_near, _far

__near, __far The keyword is replaced with __near or __far.
The operation rules for the far pointer conform to the 
CC-RL specifications.
For the operation rules for the far pointer, see "Pointer 
operation" in "Specifying memory allocation area (__near 
/__far)".

asm, _asm #pragma inline_asm Not supported.
Handled as a normal function call.

inline, _inline __inline The keyword is replaced with __inline.

restrict None The keyword is deleted and a warning message is output.

_ext4mptr None The keyword is deleted and a warning message is output.

#pragma ROM None The #pragma directive is deleted and a warning message 
is output.

Functions of ca78k0r Functions in CC-RL Operation When the Option is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 115 of 951
Dec 01, 2023

#pragma SECTION #pragma section The compiler output section name is replaced with a sec-
tion name conforming to the CC-RL specifications. 
If the invalid section type is used, the #pragma directive is 
deleted and a warning message is output. 
If it cannot be replaced with a section name conforming to 
the CC-RL specifications, a compile error will occur.

#pragma STRUCT None The #pragma directive is deleted and a warning message 
is output.

#pragma EXT4MPTR None The #pragma directive is deleted and a warning message 
is output.

#pragma ADDRESS #pragma address Handled as #pragma address in the CC-RL specifica-
tions.
If the numeric notation of the address differs from that in 
the CC-RL specifications, the #pragma directive is 
deleted and a warning message is output.

#pragma BITADDRESS None The #pragma directive is deleted and a warning message 
is output.

#pragma INTCALL None The #pragma directive is deleted and a warning message 
is output.

#pragma INTERRUPT #pragma interrupt Handled as #pragma interrupt in the CC-RL specifica-
tions.
If written in a format that differs from that in the CC-RL 
specifications, the #pragma directive is deleted and a 
warning message is output.

#pragma PARAMETER None The #pragma directive is deleted and a warning message 
is output.

#pragma SPECIAL #pragma callt The function specified by the #pragma directive is han-
dled as the callt function and a warning message is out-
put.
The calling number is ignored.

#pragma ALMHANDLER None The #pragma directive is deleted and a warning message 
is output.

#pragma CYCHANDLER None The #pragma directive is deleted and a warning message 
is output.

#pragma INTHANDLER
#pragma HANDLER

None The #pragma directive is deleted and a warning message 
is output.

#pragma TASK None The #pragma directive is deleted and a warning message 
is output.

#pragma __ASMMACRO None The #pragma directive is deleted and a warning message 
is output

#pragma ASM ~ ENDASM None The #pragma directive is deleted and a warning message 
is output.

#pragma JSRA None The #pragma directive is deleted and a warning message 
is output.

#pragma JSRW None The #pragma directive is deleted and a warning message 
is output.

#pragma PAGE None The #pragma directive is deleted and a warning message 
is output.

Functions of nc30 Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 116 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Operations when -convert_cc=iar is specified are shown below.

- The __CNV_IAR__ macro is enabled.

- The expanded language specifications are handled as follows:

Table 2.5 Operation When Transition Support Option is Specified (-convert_cc=iar)

#pragma SBDATA None The #pragma directive is deleted and a warning message 
is output.

NC30 None The macro is enabled (a space is defined).

M16C None The macro is enabled (a space is defined).

__R8C__ None The macro is enabled (a space is defined).

__cplusplus None Handled as a user-defined macro.

Standard library functions
clearerr, fgetc, getc,
fgets, fread, fscanf, fputc,
putc, fputs, fwrite, fflush,
fprintf, vfprintf, ungetc,
ferror, feof, calloc, free,
malloc, realloc, mblen,
mbstowcs, mbtowc,
wcstombs, wctomb,
strcoll, stricmp, strnicmp,
strxfrm, bzero, bcopy,
memicmp, localeconv,
setlocale

None Not supported.
Handled as a normal function call.
When an unsupported header file is included, a compile 
error will occur.

Standard library functions
Others

Standard library 
functions

Conforms to the CC-RL specifications.
The location for writing the __near or __far keyword in a 
function declaration or function pointer declaration con-
forms to the CC-RL specifications.

Standard library
Macro

Standard library
Macro

A macro with the same name as a macro defined in the 
header file of the CC-RL conforms to the CC-RL specifi-
cations.
Other macros are not supported. They are handled as 
user-defined macros.

Functions of iar Functions in CC-RL Operation When the Option is Specified

wchar_t type None In stddef.h, the wchar_t type is declared as the unsigned 
short type using typedef.

Anonymous union of file 
scope

None Not supported.
A syntax error will occur.

__near, __far __near, __far The operation rules for the far pointer conform to the 
CC-RL specifications.
For the operation rules for the far pointer, see "Pointer 
operation" in "Specifying memory allocation area (__near 
/__far)".

__near_func, __far_func __near, __far The keyword is replaced with __near or __far.
The operation rules for the far pointer conform to the 
CC-RL specifications.
For the operation rules for the far pointer, see "Pointer 
operation" in "Specifying memory allocation area (__near 
/__far)".

Functions of nc30 Functions in CC-RL Operation When the Option is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 117 of 951
Dec 01, 2023

__interrupt #pragma interrupt Replaced with "#pragma interrupt <function name>".

__monitor None The keyword is deleted and a warning message is output.

__no_bit_access None The keyword is deleted and a warning message is output.

__no_init None The keyword is deleted and a warning message is output.

__intrinsic None Not supported.
A syntax error will occur.

__noreturn None The keyword is deleted and a warning message is output.

__no_save None The keyword is deleted and a warning message is output.

__root None The keyword is deleted and a warning message is output.

__ro_placement None The keyword is deleted and a warning message is output.

__sfr None Not supported.
A syntax error will occur.

__saddr __saddr Handled as the __saddr keyword without change.

@ operator #pragma address Not supported.
A syntax error will occur.

__segment_begin __sectop Conversion is not performed and an error message is out-
put.

__segment_end __secend Conversion is not performed and an error message is out-
put.

__segment_size None An error message is output.

__ALIGNOF__ None An error message is output.

static_assert None An error message is output.

__break __brk Replaced with __brk.

__disable_interrupt __DI Replaced with __DI.

__enable_interrupt __EI Replaced with __EI.

__get_interrupt_level None Handled as a normal function call.

__get_interrupt_state None Handled as a normal function call.

__mach None Handled as a normal function call.

__machu None Handled as a normal function call.

__no_operation __nop Replaced with __nop.

__set_interrupt_level None Handled as a normal function call.

__set_interrupt_state None Handled as a normal function call.

__stop __stop Handled as __stop without change.

Functions of iar Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 118 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

#pragma vector #pragma interrupt Replaced with "#pragma interrupt <function name> (vect 
= address)".
The function name should be a function name in the func-
tion declaration subsequent to #pragma vector, and the 
__interrupt keyword is deleted.
If there is no subsequent __interrupt function, the 
#pragma declaration is deleted.
If multiple interrupt request names are specified for an 
interrupt handler, the first interrupt request name is set, 
and a warning message will be output for the second and 
subsequent interrupt request names and they will be 
ignored.

#pragma bank #pragma interrupt Replaced with "#pragma interrupt <function name> 
(bank={RB0 | RB1 | RB2 |RB3})".
The function name should be a function name in the func-
tion declaration subsequent to #pragma bank, and the 
__interrupt keyword is deleted.
The register bank after transition has "RB" added to the 
beginning of the number specified by #pragma bank.
If there is no subsequent __interrupt function, the 
#pragma declaration is deleted.

#pragma 
basic_template_matching

None The #pragma directive is deleted and a warning message 
is output.

#pragma bitfields None The #pragma directive is deleted and a warning message 
is output.

#pragma constseg #pragma section The #pragma directive is deleted and a warning message 
is output.

#pragma data_alignment None The #pragma directive is deleted and a warning message 
is output.

#pragma dataseg #pragma section The #pragma directive is deleted and a warning message 
is output.

#pragma diag_default None The #pragma directive is valid.

#pragma diag_error None The #pragma directive is valid.

#pragma diag_remark None The #pragma directive is valid.

#pragma diag_suppress None The #pragma directive is valid.

#pragma diag_warning None The #pragma directive is valid.

#pragma error None The #pragma directive is deleted and a warning message 
is output.

#pragma include_alias None The #pragma directive is deleted and a warning message 
is output.

Functions of iar Functions in CC-RL Operation When the Option is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 119 of 951
Dec 01, 2023

#pragma inline #pragma inline / 
#pragma noinline

Replaced with #pragma inline when forced is specified 
and with #pragma noinline when never is specified.
Note that even when forced is specified, inline expansion 
is not always performed.
The target function should be a function in the function 
declaration subsequent to #pragma inline.
When other than a function declaration follows, an error 
will occur.
When no function declaration follows, the #pragma direc-
tive is deleted and a warning message is output.
Only #pragma inline in the IAR format can be used. 
#pragma inline in the CC-RL format leads to a compile 
error.

#pragma language None The #pragma directive is deleted and a warning message 
is output.

#pragma location #pragma address Replaced with #pragma address when an absolute 
address is specified.
The variable name used in #pragma address should be a 
variable name in the variable declaration subsequent to 
#pragma location.
When no variable declaration follows, the #pragma direc-
tive is deleted and a warning message is output.
Segment names are not supported. They will lead to a 
syntax error.

#pragma message None The #pragma directive is deleted and a warning message 
is output.

#pragma object_attribute None The #pragma directive is deleted and a warning message 
is output.

#pragma optimize None The #pragma directive is deleted and a warning message 
is output.

#pragma pack None This option selects the conversion of structure type vari-
ables as #pragma pack for CC-RL when the number for 
alignment is regarded as 1 and as #pragma unpack for 
CC-RL when the number for alignment is regarded as 2. 
This option ignores other specifications of alignment and 
parameters that are not the numbers of alignment.

#pragma __printf_args None The #pragma directive is valid.

#pragma required None The #pragma directive is deleted and a warning message 
is output.

#pragma rtmodel None The #pragma directive is deleted and a warning message 
is output.

#pragma __scanf_args None The #pragma directive is valid.

#pragma segment None The #pragma directive is deleted and a warning message 
is output.

#pragma section None Handled as #pragma section in the CC-RL.
When written in a format different from that in the CC-RL 
specifications, the #pragma directive is deleted and a 
warning message is output.

#pragma STDC 
CX_LIMITED_RANGE

None The #pragma directive is deleted and a warning message 
is output.

Functions of iar Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 120 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

#pragma STDC 
FENV_ACCESS

None The #pragma directive is deleted and a warning message 
is output.

#pragma STDC 
FP_CONTRACT

None The #pragma directive is deleted and a warning message 
is output.

#pragma type_attribute None The #pragma directive is deleted and a warning message 
is output.

#pragma unroll None The #pragma directive is deleted and a warning message 
is output.

#warning None The #pragma directive is valid.

_Pragma() None Handled as a normal function call.

__CORE__ None The macro is enabled.
Becomes one of the following values according to the 
specification of the -cpu option.

- __RL78_0__ (when S1 is specified by the -cpu option)

- __RL78_1__ (when S2 is specified by the -cpu option)

- __RL78_2__ (when S3 is specified by the -cpu option)

__RL78_0__ __RL78_S1__ The macro is enabled (value is 1).

__RL78_1__ __RL78_S2__ The macro is enabled (value is 2).

__RL78_2__ __RL78_S3__ The macro is enabled (value is 3).

__CODE_MODEL__ None The macro is enabled.
Becomes one of the following values according to the 
specification of the -memory_model option or -cpu option.

- __CODE_MODEL_NEAR__ (when small is specified 
by the -memory_model option or when S1 is specified 
by the -cpu option while the -memory_model option is 
not specified)

- __CODE_MODEL_FAR__ (when medium is specified 
by the -memory_model option or when other than S1 is 
specified by the -cpu option while the -memory_model 
option is not specified)

__CODE_MODEL_NEAR__ __RL78_SMALL__ The macro is enabled (value is 1).

__CODE_MODEL_FAR__ __RL78_MEDIUM__ The macro is enabled (value is 2).

__DATA_MODEL__ None The macro is enabled. 
The value becomes __DATA_MODEL_NEAR__ regard-
less of the specification of the -cpu option.

__DATA_MODEL_NEAR__ __RL78_SMALL__ The macro is enabled (value is 1).

__DATA_MODEL_FAR__ None The macro is enabled (value is 2).

__func__ None The macro is enabled.

__FUNCTION__ None The macro is enabled.

__PRETTY_FUNCTION__ None The macro is enabled. 

__IAR_SYSTEMS_ICC__ None The macro is enabled (value is 8). 

__ICCRL78__ None The macro is enabled (value is 1).

Functions of iar Functions in CC-RL Operation When the Option is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 121 of 951
Dec 01, 2023

[Example of use]

- To enable the function for supporting transition of programs written for ca78k0r, describe as:

__BUILD_NUMBER__
__cplusplus
__DOUBLE__
__embedded_cplusplus
__LITTLE_ENDIAN__
__SUBVERSION__
__VER__

None Handled as a user-defined macro.

Standard library functions
fabsl
acosl
asinl
atanl
atan2l
ceill
cosl
coshl
expl
floorl
fmodl
frexpl
ldexpl
logl
log10l
modfl
powl
sinl
sinhl
sqrtl
tanl
tanhl
strtold

None Replaced with the following function names.
fabs
acos
asin
atan
atan2
ceil
cos
cosh
exp
floor
fmod
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh
strtod
The location for writing the __near or __far keyword in a 
function declaration or function pointer declaration con-
forms to the CC-RL specifications.

Standard library functions 
supported by CC-RL

Standard library func-
tions

Conforms to the CC-RL specifications.
The location for writing the __near or __far keyword for a 
function or function pointer in its declaration conforms to 
the CC-RL specifications.

Standard library functions
Others

None Not supported.
Handled as a normal function call.
When an unsupported header file is included, a compile 
error will occur.

Standard library
Macro

Standard library
Macro

A macro with the same name as a macro defined in the 
header file of the CC-RL conforms to the CC-RL specifi-
cations.
Other macros are not supported. They are handled as 
user-defined macros.

>ccrl -convert_cc=ca78k0r -cpu=S2 -dev=dr5f100pj.dvf main.c

Functions of iar Functions in CC-RL Operation When the Option is Specified



R20UT3123EJ0113  Rev.1.13 Page 122 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-unaligned_pointer_for_ca78k0r [V1.06 or later]

Indirect references by pointers are accessed in 1-byte units.

[Specification format]

- Interpretation when omitted
This option generates code for indirect reference with 2-byte access for types having a 2-byte alignment condition.

[Detailed description]

- The purpose of this option is to support the porting of code written for the CA78K0R compiler. This option is specified 
when the same function was used with the CA78K0R compiler. Specifying this option increases the size of the object 
code and decreases the speed of execution.

- If a pointer to a type having a 2-byte alignment condition and without the volatile qualifier may indicate an odd 
address, this option generates code that handles indirect reference with 1-byte access. When the type is specified 
with the volatile qualifier, code handles indirect reference with 2-byte access even if an odd address is indicated for a 
type having the 2-byte alignment condition.

- When structure packing is performed by CC-RL, only the members of the structure do not have the 2-byte alignment 
condition; other types such as int have the 2-byte alignment condition and pointer reference to those types also has 
the 2-byte alignment condition. Thus, if the pointer to a member of a packed structure is assigned to a pointer to a 
type which is not to be packed, normal operation is not guaranteed. When this option is specified, since indirect refer-
ence by pointers involves 1-byte access, indirect reference by pointers to the members of packed structures is possi-
ble.

-unaligned_pointer_for_ca78k0r



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 123 of 951
Dec 01, 2023

2.5.2  951Assemble options

This section explains options for the assemble phase.

Caution about options are shown below.

- Uppercase characters and lowercase characters are distinguished for options.

- When numerical values are specified as parameters, hexadecimal numbers which starts with "0x" ("0X") or decimal 
numbers can be specified.
Uppercase characters and lowercase characters are not distinguished for the alphabet of hexadecimal numbers.

- When a file name is specified as a parameter, it can include the path (absolute path or relative path).
When a file name without the path or a relative path is specified, the reference point of the path is the current folder.

- When a parameter includes a space (such as a path name), enclose the parameter in a pair of double quotation 
marks (").

- When the -prn_path, -mirror_source, -mirror_region, -define, -undefine, -include, -base_number, -warning, or -
no_warning option is specified for ccrl command, the -asmopt option must be used.
The -include option can also be specified as the -I option for the ccrl command.

The types and explanations for options are shown below.

Table 2.6 Assemble Options

Classification Option Description

Version/help display specifi-
cation

-V This option displays the version information of asrl.

-help This option displays the descriptions of asrl options.

Output file specification -output This option specifies the output file name.

-obj_path This option specifies the folder to save an object file generated 
after assembling.

-prn_path This option specifies the folder to save the assemble list file.

Source debugging control -debug This option outputs information for source debugging.

Device specification control -dev This option specifies the target device file with the path.

-cpu This option specifies the type of the CPU core.

-mirror_source This option specifies the value to be set in the MAA register.

-mirror_region This option specifies the address range of the mirror destination 
area.

Optimization -goptimize This option generates the information for inter-module optimiza-
tion.

Symbol definition specifica-
tion

-define This option defines assembler symbols.

-undefine This option deletes the assembler symbol definition by the 
-define option.

Include file reading path 
specification

-include This option specifies the folder to search include files.

Input file control -character_set This option specifies the Japanese/Chinese character code.

-base_number This option specifies the notation of the radix for numeric con-
stants.

Assembler transition sup-
port

-convert_asm This option enables the assembler transition supporting function.



R20UT3123EJ0113  Rev.1.13 Page 124 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Error message file output 
specification

-error_file This option outputs error messages to a file.

Warning message output 
control

-warning This option outputs the specified warning message.

-no_warning This option suppresses outputting warning messages of the 
specified number.

Subcommand file specifica-
tion

@ This option specifies a subcommand file.

Classification Option Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 125 of 951
Dec 01, 2023

The version/help display specification options are as follows.

- -V

- -help

Version/help display specification



R20UT3123EJ0113  Rev.1.13 Page 126 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-V

This option displays the version information of asrl.

[Specification format]

- Interpretation when omitted
Assembling is performed without displaying the version information of asrl.

[Detailed description]

This option outputs the version information of asrl to the standard error output.
It does not execute assembling.

[Example of use]

- To output the version information of asrl to the standard error output, describe as:

-V

>asrl -V



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 127 of 951
Dec 01, 2023

-help

This option displays the descriptions of asrl options.

[Specification format]

- Interpretation when omitted
The descriptions of asrl options are not displayed.

[Detailed description]

- This option outputs the descriptions of asrl options to the standard error output.
It does not execute assembling.

[Example of use]

- To output the descriptions of asrl options to the standard error output, describe as:

-help

>asrl -help



R20UT3123EJ0113  Rev.1.13 Page 128 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The output file specification options are as follows.

- -output

- -obj_path

- -prn_path

Output file specification



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 129 of 951
Dec 01, 2023

-output

This option specifies the output file name.

[Specification format]

- Interpretation when omitted
The file is output to the current folder.
The output object file name will be the source file name with the extension replaced by ".obj".

[Detailed description]

- This option specifies the object file name as file.

- If file already exists, it will be overwritten.

- Even when this option is specified, if an error occurs and assembly processing cannot be continued, no object file will 
be output.

- An error will occur if two or more files are output.

- An error will occur if file is omitted.

[Example of use]

- To output the object file with "sample.obj" as the file name, describe as:

-output=file

>asrl -output=sample.obj -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 130 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-obj_path

This option specifies the folder to save an object file generated after assembling.

[Specification format]

- Interpretation when omitted
The object file is saved under the source file name with the extension replaced by ".obj" to the current folder.

[Detailed description]

- This option specifies the folder to save an object file generated after assembling as path.

- If an existing folder is specified as path, the object file is saved under the source file name with the extension replaced 
by ".obj" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one object file is output, it will be saved with path as the file name.
If two or more object files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the object file is saved under the C source file name with the extension replaced by ".obj" to the 
current folder.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an object file is only saved for the last source file in the command line.

[Example of use]

- To save the object file generated during assembling to folder "D:\sample", describe as:

-obj_path[=path]

>asrl -obj_path=D:\sample -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 131 of 951
Dec 01, 2023

-prn_path

This option specifies the folder to save the assemble list file.

[Specification format]

- Interpretation when omitted
An assemble list file will not be output.

[Detailed description]

- This option specifies the folder to save the assemble list file output during assembling as path.

- If an existing folder is specified as path, the assemble list file is saved to folder path.
When the extension of the input file name is ".asm", ".s", or ".fsy", the name with the extension replaced with ".prn" is 
used for the assemble list file.
For other extensions, the file name with extension ".prn" added after the existing extension is used.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
The assemble list file is saved with path as the file name.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the assemble list file is saved to the current folder.
When the extension of the input file name is ".asm", ".s", or ".fsy", the name with the extension replaced with ".prn" is 
used for the assemble list file.
For other extensions, the file name with extension ".prn" added after the existing extension is used.

[Example of use]

- To save the assemble list file output during assembling to folder "D:\sample", describe as:

-prn_path[=path]

>asrl -prn_path=D:\sample -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 132 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The source debugging control option is as follows.

- -debug

Source debugging control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 133 of 951
Dec 01, 2023

-debug

This option outputs information for source debugging.

[Specification format]

- Interpretation when omitted
Information for source debugging will not be output.

[Detailed description]

- This option outputs information for source debugging to the output file.

- Source debugging will become enabled by specifying this option.

[Example of use]

- To output information for source debugging to the output file, describe as:

-debug

>asrl -debug -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 134 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The device specification control options are as follows.

- -dev

- -cpu

- -mirror_source

- -mirror_region

Device specification control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 135 of 951
Dec 01, 2023

-dev

This option specifies the target device file with the path.

[Specification format]

- Interpretation when omitted
When the -cpu option is specified, the specification of the CPU core type by the -cpu option becomes valid.
When the -cpu option is not specified, an error will occur.

[Detailed description]

- This option specifies target device file file with path path.

- The information read from the specified device file is used and an object file that matches the settings in the device 
file is generated.

- An error will occur if the specified device file is not found.

- When both this option and the -cpu option are specified and if the CPU core type in the device file specified by this 
option differs from that specified in the -cpu option, an error will occur.

[Example of use]

- To specify device file "DR5F100PJ.DVF", describe as:

-dev=[path\]file

>asrl -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 136 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-cpu

This option specifies the type of the CPU core.

[Specification format]

- Interpretation when omitted
When the -dev option is specified, the CPU core written in the device file specified by -dev option is used.  When the -
dev option is not specified, an error will occur.

[Detailed description]

- An object file that can be used in common for the devices implementing the specified CPU core is output.

- An error will occur if the string that cannot be specified is specified.

- When both this option and the -dev option are specified and if the CPU core type specified in this option differs from 
that in the device file specified by the -dev option, an error will occur.
In other cases, the specified device file is used for processing.

- The following shows other options that can be specified together with the -dev or -cpu option.

Note The -cpu=S1 option and -mirror_source=1 option cannot be specified at the same time.

[Example of use]

- To generate a code for the RL78-S2 core specified as the CPU type, describe as:

-cpu={S1|S2|S3}
  S1: RL78-S1 core
  S2: RL78-S2 core
  S3: RL78-S3 core

Option When -dev Option Is Specified When -cpu Option Is Specified

-mirror_source Can be specified Can be specifiedNote

-mirror_region Cannot be specified Can be specified

>asrl -cpu=S2 main.c



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 137 of 951
Dec 01, 2023

-mirror_source

This option specifies the value to be set in the MAA register.

[Specification format]

- Interpretation when omitted
It is the same result as when the -mirror_source=0 option is specified.

[Detailed description]

- This option specifies the value to be set in the MAA register.

- Specify 0 when the mirror source section is allocated to address 0x0xxxx, or specify 1 when the section is allocated to 
address 0x1xxxx.
This option is used to determine whether a symbol in an absolute addressing section is in the mirror source area or to 
notify the linker of the address where the mirror source section is allocated.
When the CPU core is RL78-S1, the mirror source section is fixed at address 0x0xxxx and this option setting is not 
necessary.  If 1 is specified in this case, an error will occur.

- When common is specified, reference to a symbol allocated to the mirror source area is not supported. Mirror conver-
sion of mirror source addresses is also not supported.

- When the -cpu=S1 option is specified and if 1 is specified in this option, an error will occur.

- When both the -dev option and this option are specified, the specified allocation address is checked against the on-
chip ROM (CodeFlash) address range.

- When the -mirror_source=common option is specified and if the -mirror_region option is specified, an error will occur.

[Example of use]

- To specify 0x0xxxx as the address where the mirror source section is allocated, describe as:

-mirror_source={0|1|common}

>asrl -dev=dr5f100pj.dvf -mirror_source=0 main.asm



R20UT3123EJ0113  Rev.1.13 Page 138 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-mirror_region

This option specifies the address range of the mirror destination area.

[Specification format]

- Interpretation when omitted
When the -dev option is not specified, a device without a mirror area is assumed.

[Detailed description]

- This option specifies the address range (start address and end address) of the mirror destination area.

- This option is used to calculate the address range of the mirror source area.
0xF8000 is subtracted from the specified addresses when the CPU core type is RL78-S1, or 0xF0000 is subtracted 
when the CPU core type is RL78-S2 or RL78-S3.  The obtained addresses are assumed as the address range of the 
mirror source area.  If a value outside the range from 0xF0000 to 0xFFFFF is specified, an error will occur.

- If both the -dev option and this option are specified, an error will occur.

- When the -cpu option is specified but this option is not specified, a device without a mirror area is assumed.

- When both the -mirror_source=common option and this option are specified, an error will occur.

[Example of use]

- To specify the address range of the mirror destination area.

-mirror_region=start_address,end_address

>asrl -cpu=S2 -mirror_region=0xf3000,0xfaeff main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 139 of 951
Dec 01, 2023

The optimization option is as follows.

- -goptimize

Optimization



R20UT3123EJ0113  Rev.1.13 Page 140 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-goptimize

This option generates the information for inter-module optimization.

[Specification format]

- Interpretation when omitted
The information for inter-module optimization is not generated.

[Detailed description]

- This option generates the additional information for inter-module optimization in the output file.

- At linkage, inter-module optimization is applied to files for which this option has been specified.
For details on inter-module optimization, see the description of the link option -Optimize.

[Example of use]

- To generate the information for inter-module optimization, describe as:

-goptimize

>asrl -goptimize -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 141 of 951
Dec 01, 2023

The symbol definition specification options are as follows.

- -define

- -undefine

Symbol definition specification



R20UT3123EJ0113  Rev.1.13 Page 142 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-define

This option defines a user-defined assembler symbol (name).

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies name as a user-defined assembler symbol (name).

- Specification of def is as follows.

- Only integer values can be specified.

- If a value other than an integer is specified, 0 is assumed. 

- Integer values can be specified in decimal notation, octal notation with the prefix method (0 ...), and 
hexadecimal notation (0x ...).

- Only a negative (-) sign (not positive (+)) can be specified at the beginning of the value.

- A negative number is converted to a two's complement value.

- This is equivalent to adding "name .SET def" at the beginning of the assembly source program.

- An error will occur if name is omitted.

- If "=def" is omitted, def is regarded as 1.

- This option can be specified more than once.

- If both this option and -undefine option are specified, the option specified last will be valid.

[Example of use]

- To define "sample=256" as an assembler symbol, describe as:

-define=name[=def][,name[=def]]...

>asrl -define=sample=256 -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 143 of 951
Dec 01, 2023

-undefine

This option deletes the assembler symbol definition by the -define option.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option cancels the definition of user-defined assembler symbol name specified by the -define option.

- An error will occur if name is omitted.

- This option cannot delete the definition by describing "name .EQU def".

- This option can be specified more than once.

- If both this option and -define option are specified, the option specified last will be valid.

[Example of use]

- To delete the definition of assembler symbol "test" by the -define option, describe as:

-undefine=name[,name]...

>asrl -define=test -dev=dr5f100pj.dvf main.asm -undefine=test



R20UT3123EJ0113  Rev.1.13 Page 144 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The include file reading path specification option is as follows.

- -include

Include file reading path specification



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 145 of 951
Dec 01, 2023

-include

This option specifies the folder to search include files.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies path as the folder where the include file is searched for when the include file name is specified 
without a path or as a relative path in the $INCLUDE or $BINCLUDE control instruction.
Include files are searched according to the following sequence.

<1> Path specified by this option (If multiple paths are specified, they are searched in the order in which they were 
specified on the command line (that is, from left to right).)

<2> Folder that contains the source file where the $INCLUDE or $BINCLUDE control instruction is specified.

<3> Current folder (asrl startup folder)

- An error will occur if path is omitted.

[Example of use]

- To search include files from folder "D:\include", "D:\src", and the current folder in that order, describe as:

-include=path[,path]...

>asrl -include=D:\include -dev=dr5f100pj.dvf D:\src\main.asm



R20UT3123EJ0113  Rev.1.13 Page 146 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The input file control options are as follows.

- -character_set

- -base_number

Input file control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 147 of 951
Dec 01, 2023

-character_set

This option specifies the Japanese/Chinese character code.

[Specification format]

- Interpretation when omitted
Processing of Japanese/Chinese character encoding is not performed.

[Detailed description]

- This option specifies the character code to be used for Japanese/Chinese comments and character strings in the 
input file.

- The parameters that can be specified are shown below.
An error will occur if any other item is specified.
Operation is not guaranteed if the specified character code differs from the character code of the input file.

- An error will occur if the parameter is omitted.

[Example of use]

- To specify EUC as the character code to be used for Japanese comments and character strings in the input file, 
describe as:

-character_set={none|sjis|euc_jp|utf8|big5|gb2312}

none Does not process the Japanese and Chinese character code

euc_jp EUC (Japanese)

sjis SJIS

utf8 UTF-8

big5 Traditional Chinese

gb2312 Simplified Chinese

>asrl -character_set=euc_jp -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 148 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-base_number

This option specifies the notation of the radix for numeric constants.

[Specification format]

- Interpretation when omitted
It is the same result as when the -base_number=prefix option is specified.

[Detailed description]

- This option specifies the notation of the radix for numeric constants.

- The parameters that can be specified are shown below.
An error will occur if any other item is specified.

- An error will occur if the parameter is omitted.

[Example of use]

- To specify the suffix notation of the radix for numeric constants, describe as:

-base_number={prefix|suffix}

prefix Specifies the prefix notation (0xn...n).

suffix Specifies the suffix notation (n...nH).

>asrl -base_number=suffix -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 149 of 951
Dec 01, 2023

The assembler transition support option is as follows.

- -convert_asm

Assembler transition support



R20UT3123EJ0113  Rev.1.13 Page 150 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-convert_asm

This option enables the assembler transition supporting function.

[Specification format]

- Interpretation when omitted
The assembler transition supporting function is not enabled.

[Detailed description]

- For the descriptions on "CA78K0R Assembler Language Specifications" in the table below, the descriptions on "RL78 
Assembler Language Specifications" should be read instead.

Table 2.7 Assembler transition supporting function

-convert_asm

Classification CA78K0R
Assembler
Language

Specifications

RL78 Assembler
Language

Specifications

Necessity for Modifying the Source and 
Specifying Options

Numerical
constant

n...nB (n = 0, 1)
(binary)

Same as left Specify -base_number=suffix.

n...nO (n = 0 to 7)
(octal)

Same as left Specify -base_number=suffix.

n...nH (n = 0 to 9, A to 
F, a to f)
(hexadecimal)

Same as left Specify -base_number=suffix.

String 'Character ... 
Character'

"Character ... 
Character"

Change two consecutive single quotation 
marks ('') in each string to (\'), and enclose 
the string with double quotation marks(").
Example: .DB 'abc"de' -> .DB "abc\'de"

Operand column Special function register 
(SFR, 2nd SFR)

Same as left Specify -dev.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 151 of 951
Dec 01, 2023

Segment 
definition directive

No segment .CSEG TEXT

No CSEG relocation 
attribute

.CSEG TEXTF

CSEG CALLT0 .CSEG CALLT0

CSEG FIXED .CSEG TEXT

CSEG BASE .CSEG TEXT

CSEG AT .CSEG AT

CSEG UNIT .CSEG TEXTF

CSEG UNITP .CSEG TEXTF Add .ALIGN 2.

CSEG IXRAM .CSEG TEXTF

CSEG OPT_BYTE .CSEG OPT_BYTE

CSEG SECUR_ID .CSEG SECUR_ID

CSEG PAGE64KP .CSEG 
TEXTF_UNIT64KP

CSEG UNIT64KP .CSEG 
TEXTF_UNIT64KP

CSEG MIRRORP .CSEG CONST

No DSEG relocation 
attribute

.DSEG BSSF

DSEG SADDR .DSEG SBSS

DSEG SADDRP .DSEG SBSS

DSEG AT .DSEG BSS_AT

DSEG UNIT .DSEG BSS

DSEG UNITP .DSEG BSS

DSEG IHRAM .DSEG BSS

DSEG LRAM .DSEG BSS

DSEG DSPRAM .DSEG BSS

DSEG IXRAM .DSEG BSS

DSEG BASEP .DSEG BSS

DSEG PAGE64KP .DSEG BSS

DSEG UNIT64KP .DSEG BSS

No BSEG relocation 
attribute

.BSEG SBSS_BIT

BSEG UNIT .BSEG SBSS_BIT

BSEG AT .BSEG BIT_AT

ORG .ORG

Classification CA78K0R
Assembler
Language

Specifications

RL78 Assembler
Language

Specifications

Necessity for Modifying the Source and 
Specifying Options



R20UT3123EJ0113  Rev.1.13 Page 152 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Symbol definition 
directive

EQU .EQU A relocatable label cannot be written for an 
operand.

SET .SET

Memory 
initialization and 
area allocation 
directive

DB .DB The code should be changed for size 
specifications.

DW .DB2 The code should be changed for size 
specifications. If the operand is a string 
constant, change it to a string.
Example: DW 'ab' -> .DB "ba"

DG .DB4 The code should be changed for size 
specifications. If the operand is a string 
constant, change it to a string.
Example: DG 'ab' -> .DB "ba\0\0"

DS .DS

DBIT .DBIT

Linkage directive PUBLIC .PUBLIC

EXTRN .EXTERN

EXTBIT .EXTBIT

Object module 
name declaration 
directive

NAME Commented out

Branch instruction 
automatic 
selection directive

BR BR !!addr20

CALL CALL !!addr20

Assemble end 
directive

END Commented out Invalidate this because the code after END 
becomes valid.

Assemble product 
type specification 
control instruction

$PROCESSOR($PC) Commented out Specify -dev.

Debug 
information output 
control instruction

$DEBUG($DG) Commented out Specify -debug.

$NODEBUG($NODG) Commented out Specify -debug.

$DEBUGA Commented out Specify -debug.

$NODEBUGA Commented out Specify -debug.

Cross reference 
list output 
specification 
control instruction

$XREF($XR) Commented out

$NOXREF($NOXR) Commented out

$SYMLIST Commented out

$NOSYMLIST Commented out

Include control 
instruction

$INCLUDE($IC) $INCLUDE

Classification CA78K0R
Assembler
Language

Specifications

RL78 Assembler
Language

Specifications

Necessity for Modifying the Source and 
Specifying Options



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 153 of 951
Dec 01, 2023

Assemble list 
control instruction

$EJECT($EJ) Commented out

$LIST($LI) Commented out

$NOLIST($NOLI) Commented out

$GEN Commented out

$NOGEN Commented out

$COND Commented out

$NOCOND Commented out

$TITLE($TT) Commented out

$SUBTITLE($ST) Commented out

$FORMFEED Commented out

$NOFORMFEED Commented out

$WIDTH Commented out

$LENGTH Commented out

$TAB Commented out

Conditional 
assemble control 
instruction

$IF(switch name) Same as left Specify -define=switch name=1 or
-define=switch name=0.

$IF(switch name : 
switch name ...)

$IF(switch name | 
switch name ...)

Specify -define=switch name=1 or
-define=switch name=0.
Another method is to add "switch name 
.SET 1" or "switch name .SET 0".

$_IF $IF

$ELSEIF(switch name : 
switch name ...)

$ELSEIF(switch 
name | switch name 
...)

Specify -define=switch name=1 or
-define=switch name=0.
Another method is to add "switch name 
.SET 1" or "switch name .SET 0".

$_ELSEIF $ELSEIF

$SET Commented out

$RESET Commented out

Kanji code 
control instruction

$KANJICODE Commented out Specify -character_set.

RAM area 
allocation 
specification 
control instruction

$RAM_ALLOCATE Commented out Allocate the target segment using ".CSEG 
TEXTF_UNIT64KP".

Other control 
instructions

$TOL_INF Commented out

$DGS Commented out

$DGL Commented out

Classification CA78K0R
Assembler
Language

Specifications

RL78 Assembler
Language

Specifications

Necessity for Modifying the Source and 
Specifying Options



R20UT3123EJ0113  Rev.1.13 Page 154 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Caution]

- The language specifications of the CA78K0R assembler which are not listed in the above table require the source 
program to be modified.

- A relocatable label cannot be written for an operand of the symbol definition directive .EQU.
In this case, replace the reference to the name in the left side of EQU with the relocatable label, and delete the .EQU 
directive.

Example 1.

(Modification method)

Disable the above code.

Modify the above code to the code below.

- When the address width exceeds 16 bits, error occurs at linkage.
In this case, add a LOWW operator to an address.

Example 2.

(Modification method)

Modify the above code to the code below.

- Operand "(size)" of memory initialization and area allocation directive is different.
Correct according to the following Example 3.

Example 3.

DMAINP  DSEG   SADDRP
RABUF1: DS     8
RABUF2: DS     8
OFFSET  EQU    RABUF2 - RABUF1  ; E0551203: Relocatable symbol is not allowed.
FPREAD  EQU    RABUF1.4         ; E0551203: Relocatable symbol is not allowed.
        CSEG
        ADD    A,#OFFSET
        CLR1   FPREAD
        END

OFFSET  EQU    RABUF2 - RABUF1
FPREAD  EQU    RABUF1.4

        ADD    A,#OFFSET
        CLR1   FPREAD

        ADD    A,#RABUF2 - RABUF1
        CLR1   RABUF1.4

DMAINP  DSEG   SADDRP
RABUF1: DS     8
        CSEG
        MOVW   HL,#RABUF1  ; E0562330:Relocation size overflow
        END

        MOVW   HL,#RABUF1

        MOVW   HL,#LOWW RABUF1

        CSEG
        DW     (3)
        END



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 155 of 951
Dec 01, 2023

(Modification method)

CA78K0R Assembler:  initialize 6 bytes (3 words) area to 00H.
RL78 Assembler:         initialize 2 bytes (1 word) area to 03H.

- Change operation not allowed by RL78 Assembler to other method.

Example 4.

(Modification method)

Modify the above code to the code below.

- Change Section definition directives "CSEG UNITP" to ".CSEG TEXTF" + ".ALIGN 2".

Example 5.

(Modification method)

Modify the above code to the code below.

[Example of use]

- To enable the function for supporting transition of programs written for ca78k0r, describe as:

        .CSEG
        .DS     6
        .END

MSGDATA CSEG   AT 80H
TMSGOK:
        DB     'OK'
        CSEG
        MOV    H,#LOWW TMSGOK/100H   ; E0551215: Illegal label reference.
                                     ; E0550250: Illegal syntax (100H).
        END

        MOV    H,#LOWW TMSGOK/100H

        MOV    H,#HIGH TMSGOK

XMAIN2  CSEG   UNITP
TINTVL: DW     47999
        END

XMAIN2  CSEG   UNITP

XMAIN2  .CSEG   TEXTF
        .ALIGN  2

>asrl -convert_asm -cpu=S2 -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 156 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The error message file output specification option is as follows.

- -error_file

Error message file output specification



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 157 of 951
Dec 01, 2023

-error_file

This option outputs error messages to a file.

[Specification format]

- Interpretation when omitted
Error messages are output to only the standard error output.

[Detailed description]

- This option outputs error messages to the standard error output and file file.

- If file already exists, it will be overwritten.

- An error will occur if file is omitted.

[Example of use]

- To output error messages to the standard error output and file "err", describe as:

-error_file=file

>asrl -error_file=err -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 158 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The warning message output control options are as follows.

- -warning

- -no_warning

Warning message output control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 159 of 951
Dec 01, 2023

-warning

This option outputs the specified warning message.

[Specification format]

- Interpretation when omitted
All warning messages are output.

[Detailed description]

- This option outputs the specified warning message.

- Specify the error numbers as num, num1, and num2.
If the error number that does not exist, it will be ignored.

- An error will occur if num, num1, or num2 is omitted.

- If num1-num2 is specified, it is assumed that error numbers within the range have been specified.

- The error number specified by this option is the rightmost 5 digits of the 7-digit number following the "W".

- This option can only control output for warning messages with message numbers (here written with the component 
number) in the range from 0550000 to 0559999.

[Example of use]

- To output warning message "W0550001" and "W0550005", describe as:

-warning={num|num1-num2}[, ...]

>asrl -waning=50001,50005 -dev=dr5f100pj.dvf main.asm



R20UT3123EJ0113  Rev.1.13 Page 160 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-no_warning

This option suppresses outputting warning messages of the specified number.

[Specification format]

- Interpretation when omitted
All warning messages are output.

[Detailed description]

- This option suppresses outputting warning messages of the specified number.

- Specify the error numbers as num, num1, and num2.
If the error number that does not exist, it will be ignored.

- An error will occur if num, num1, or num2 is omitted.

- If num1-num2 is specified, it is assumed that error numbers within the range have been specified.

- The error number specified by this option is the rightmost 5 digits of the 7-digit number following the "W".

- This option can only control output for warning messages with message numbers (here written with the component 
number) in the range from 0550000 to 0559999.

[Example of use]

- To suppress outputting warning message "W0550001" and "W0550005", describe as:

-no_warning={num|num1-num2}[, ...]

>asrl -no_waning=50001,50005 -dev=dr5f100pj.dvf main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 161 of 951
Dec 01, 2023

The subcommand file specification option is as follows.

- @

Subcommand file specification



R20UT3123EJ0113  Rev.1.13 Page 162 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

@

This option specifies a subcommand file.

[Specification format]

- Interpretation when omitted
Only the options and file names specified on the command line are recognized.

[Detailed description]

- This option handles file as a subcommand file.

- An error will occur if file does not exist.

- An error will occur if file is omitted.

- See "2.4.2  Subcommand file usage" for details about a subcommand file.

[Example of use]

- To handle "command.txt" as a subcommand file, describe as:

@file

>asrl @command.txt main.asm



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 163 of 951
Dec 01, 2023

2.5.3  Link options

This section explains options for the link phase.

Caution about options are shown below.

- Uppercase characters and lowercase characters are not distinguished for options.

- Uppercase characters in options and parameters indicate that they can be specified as abbreviations for options and 
parameters.
The characters after the uppercase characters can be omitted.

Example For example, -FOrm=Absolute can be specified as follows.
-fo=a
-fo=abs
-for=absolu

- When a file name is specified as a parameter, "(" and ")" cannot be used.

- When link options are specified for the ccrl command, the -lnkopt option must be used.

The types and explanations for options are shown below.

Table 2.8 Link Options

Classification Option Description

Input control -Input This option specifies the input file.

-LIBrary This option specifies the input library file.

-Binary This option specifies the input binary file.

-DEFine This option defines an undefined symbol forcedly.

-ENTry This option specifies the execution start address.

-ALLOW_DUPLICATE_MODULE_
NAME [V1.09 or later]

This option allows multiple same module names to be 
specified.



R20UT3123EJ0113  Rev.1.13 Page 164 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Output control -FOrm This option specifies the output format.

-DEBug This option outputs debug information to the output file.

-NODEBug This option does not output the debug information.

-RECord This option specifies the size of the data record to be 
output.

-END_RECORD [V1.05 or later] This option specifies the end record.

-ROm This option specifies the section that maps symbols 
from ROM to RAM.

-OUtput This option specifies the output file.

-SPace This option fills the vacant area of the output range.

-Message This option output information messages.

-NOMessage This option suppresses the output of information 
messages.

-MSg_unused This option notifies the symbol that is not referenced.

-BYte_count This option specifies the maximum byte count for a data 
record.

-FIX_RECORD_LENGTH_AND_A
LIGN [V1.06 or later]

Fixes the format of data records to be output.

-PADDING This option fills in data at the end of a section.

-CRc This option specifies whether to perform the CRC 
operation.

-VECT This option stores an address value in the unused 
areas in the vector table.

-VECTN This option stores address values in the specified areas 
in the vector table.

-SPLIT_VECT [V1.07 or later] This option generates split vector table sections.

-VFINFO This option outputs the variable/function information 
file.

-CFI [Professional Edition only] 
[V1.06 or later]

Generates the function list for use in detecting illegal 
indirect function calls.

-CFI_ADD_Func [Professional Edi-
tion only] [V1.06 or later]

Specifies the symbol or address of a function to be 
added to the function list for use in detecting illegal indi-
rect function calls.

-CFI_IGNORE_Module [Profes-
sional Edition only] [V1.06 or later]

Specifies modules which are to be exempted from the 
function list for use in detecting illegal indirect function 
calls.

-RAM_INIT_TABLE_SECTION 
[V1.12 or later]

This option generates an information table for RAM 
initialization.

List output -LISt This option outputs the list file.

-SHow This option specifies information that is output to the list 
file.

Classification Option Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 165 of 951
Dec 01, 2023

Optimization -Optimize This option specifies whether to execute 
inter-module optimization.

-NOOptimize This option disables inter-module optimization.

-SEction_forbid This option disables optimization for the specified 
section.

-Absolute_forbid This option disables optimization regarding address + 
size specification.

-SYmbol_forbid [V1.02 or later] This option specifies unreferenced symbols that are not 
to be deleted.

-ALLOW_OPTIMIZE_ENTRY_BL
OCK [V1.13 or later]

This option performs optimization on the areas that are 
allocated before the execution start symbol.

Section specification -STARt This option specifies the start address of the section.

-FSymbol This option outputs external defined symbols to the 
symbol address file.

-USER_OPT_BYTE This option specifies the value set for the user option 
bytes.

-OCDBG This option specifies the control value for the on-chip 
debug.

-SECURITY_OPT_BYTE [V1.12 or 
later]

This option specifies the control value for the security 
option byte.

-SECURITY_ID This option specifies a security ID value.

-FLASH_SECURITY_ID [V1.12 or 
later]

This option specifies the value to be set for the flash 
programmer security ID.

-AUTO_SECTION_LAYOUT This option automatically allocates sections.

-SPLIT_SECTION [V1.12 or later] This option enables automatic allocation of sections for 
each module.

-STRIDE_DSP_MEMORY_AREA 
[V1.12 or later]

This option enables automatic allocation of sections to 
areas split by the memory area shared with the 
FLEXIBLE APPLICATION ACCELERATOR (FAA).

-DEBUG_MONITOR This option specifies the OCD monitor area.

-RRM This option specifies the work area for the RRM/DMM 
function.

-SELF This option disables allocation of a section to the self 
RAM area.

-SELFW This option outputs a warning message when a section 
is allocated to the self RAM area.

-OCDTR This option disables allocation of a section to the trace 
RAM and self RAM areas.

-OCDTRW This option outputs a warning message when a section 
is allocated to the trace RAM and self RAM areas.

Classification Option Description



R20UT3123EJ0113  Rev.1.13 Page 166 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Section specification -OCDHPI This option disables allocation of a section to the hot 
plug-in RAM, trace RAM, and self RAM areas.

-OCDHPIW This option outputs a warning message when a section 
is allocated to the hot plug-in RAM, trace RAM, and self 
RAM areas.

-DSP_MEMORY_AREA [V1.12 or 
later]

This option disables allocation of a section to the 
memory area shared with the FLEXIBLE 
APPLICATION ACCELERATOR (FAA).

Verify specification -CPu This option checks the consistency of the address to 
which the section is allocated.

-CHECK_DEVICE This option checks the device file specified when creat-
ing an object file.

-CHECK_64K_ONLY This option disables checking whether an allocated sec-
tion exceeds the (64K-1)-byte boundary.

-NO_CHECK_SECTION_LAYOUT This option disables checking of the consistency 
between the address to which the section is allocated 
and the address information in a device file.

-CHECK_OUTPUT_ROM_AREA 
[V1.07 or later]

This option checks whether the output address of a 
HEX file ranges in internal ROM or the data flash area.

Subcommand file 
specification

-SUbcommand This option specifies options with a subcommand file.

Microcontroller spec-
ification

-DEVICE This option specifies the device file name.

Classification Option Description



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 167 of 951
Dec 01, 2023

Other -S9 This option outputs the S9 record at the end.

-STACk This option outputs the stack information file.

-COmpress This option compresses the debug information.

-NOCOmpress This option does not compress the debug information.

-MEMory This option specifies the memory size occupied during linking.

-REName This option changes an external symbol name or a 
section name.

-LIB_REName [V1.08 or later] This option changes the name of a symbol or section 
that was input from a library.

-DELete This option deletes an external symbol name or a 
library module.

-REPlace This option replaces library modules.

-EXTract This option extracts library modules.

-STRip This option deletes debug information in the load 
module file or library file.

-CHange_message This option changes the type of information, warning, 
and error messages.

-Hide This option deletes local symbol name information from 
the output file.

-Total_size This option displays the total size of sections after the 
linking to the standard error output.

-VERBOSE [V1.10 or later] This option displays detailed information in the standard 
error output.

-LOgo This option outputs the copyright notice.

-NOLOgo This option suppresses the output of the copyright notice.

-END This option executes option strings specified before this 
option.

-EXIt This option specifies the end of option specifications.

Classification Option Description



R20UT3123EJ0113  Rev.1.13 Page 168 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The input control options are as follows.

- -Input

- -LIBrary

- -Binary

- -DEFine

- -ENTry

- -ALLOW_DUPLICATE_MODULE_NAME [V1.09 or later]

Input control



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 169 of 951
Dec 01, 2023

-Input

This option specifies the input file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies input file file.
If multiple files are specified, delimit them with a comma (,) or space.

- Wildcard characters (*, ?) can also be used.
The character strings specified with wildcard characters are expanded in alphabetical order.
Expansion of numerical values precedes that of alphabetic characters.  Uppercase characters are expanded before 
lowercase characters. 

- Files that can be specified as input files are object files output from the compiler or the assembler and relocatable 
files, load module files, Intel HEX files, and Motorola S-record files output from the optimizing linker.
In addition, a module in a library can be specified using the format of "library(module)". 
Specify the module name without the extension.

- If no extension is specified for the input filename, then if no module name is specified, it is assumed to be ".obj"; if a 
module name is specified, it is assumed to be ".lib".

[Caution]

- This option can be used only in a subcommand file.
An error will occur if this option is specified on the command line.
When input files are specified on the command line, specify them without the -input option.

[Example of use]

- To input a.obj and module "e" in lib1.lib, describe as: 
<Command line>

<Subcommand file "sub.txt">

- To input all ".obj" files beginning with "c", describe as: 
<Command line>

<Subcommand file "sub.txt">

-Input=suboption[{,|} ...]
  suboption := {file|file(module[, ...])}

>rlink -subcommand=sub.txt

-input=a.obj lib1(e)

>rlink -subcommand=sub.txt

-input=c*.obj



R20UT3123EJ0113  Rev.1.13 Page 170 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Remark]

- If the -form=object or -extract option is specified, this option will be invalid.

- If an Intel HEX file is specified as an input file, only the -form=hexadecimal option can be specified.  If a Motorola 
S-record file is specified, only the -form=stype option can be specified.
If the output file name is not specified, it will be "first input file name_combine.extension" (If the input file is "a.mot", the 
output file will be "a_combine.mot").



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 171 of 951
Dec 01, 2023

-LIBrary

This option specifies the input library file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies input library file file.
If multiple files are specified, delimit them with a comma (,).

- Wildcard characters (*, ?) can also be used.
The character strings specified with wildcard characters are expanded in alphabetical order.
Expansion of numerical values precedes that of alphabetic characters.  Uppercase characters are expanded before 
lowercase characters. 

- If the extension is omitted from the input file specification, it is assumed that ".lib" has been specified.

- If this option and the -form=library or -extract option are specified at the same time, the specified library file is input as 
the target library to be edited. 
Otherwise, undefined symbols are searched in the library file after the link processing between files specified as the 
input files are executed.

- The symbols are searched in the library file in the following sequence:

- User library files specified by this option (in the specified order)

- System library files specified by this option (in the specified order)

- Default library (environment variables "HLNK_LIBRARY1", "HLNK_LIBRARY2", and "HLNK_LIBRARY3"Note in 
that order)

Note See "2.3  Environment Variable" for details about environment variables.

[Example of use]

- To input a.lib and b.lib, describe as: 

- To input all ".lib" files beginning with "c", describe as: 

-LIBrary=file[,file]...

>rlink main.obj -library=a.lib,b

>rlink main.obj -library=c*.lib



R20UT3123EJ0113  Rev.1.13 Page 172 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-Binary

This option specifies the input binary file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies input binary file file.
If multiple files are specified, delimit them with a comma (,).

- If the extension is omitted from the input file specification, it is assumed that ".bin" has been specified.

- Input binary data is allocated as the data of specified section section.
Specify the section address by the -start option.
An error will occur if section is omitted.

- When symbol symbol is specified, it can be linked as a defined symbol.
For a variable name referenced by a C program, add "_" at the head of the reference name in the program.

- The section specified by this option can have its section attribute and number of alignment specified.

- CODE or DATA can be specified as section attribute attribute.
If attribute is omitted, the write, read, and execute attributes will be all valid by default. [V1.04 or earlier]

- CALLT0, CODE, TEXT, TEXTF, TEXTF_UNIT64KP, CONST, CONSTF, SDATA, DATA, DATAF, OPT_BYTE, or 
SECUR_ID can be specified as the section attribute attribute. CODE becomes the same as the relocation attribute of 
TEXT. If a name other than ".option_byte" is specified for the section name while OPT_BYTE is specified, an error will 
occur. If a name other than ".security_id" is specified for the section name while SECUR_ID is specified, an error will 
occur.
If attribute is omitted, the write, read, and execute attributes will all be valid by default. [V1.05 or later]

- The value that can be specified for number of alignment alignment is a power of 2 (1, 2, 4, 8, 16, or 32).
Other value cannot be specified.
If alignment is omitted, "1" will be valid by default.

[Restrictions]

- The binary file specified by this option can be allocated to only addresses 0 to 0x0FFFF. [V1.04 or earlier]
Generate an assembler source code like that shown below to change the section attribute to the desired attribute, 
such as for allocating the binary file to an address greater than address 0x10000.

[Example of use]

- b.bin is allocated from 0x200 as the .D1bin section.
c.bin is allocated after .D1bin as the .D2bin section (with the number of alignment = 4).
The c.bin data is linked as defined symbol "_datab".  
To perform the above operations, describe as:

-Binary=suboption[, ...]
  suboption := file(section[:alignment][/attribute][,symbol])

    .SECTION BIN_SEC, TEXTF
    $BINCLUDE(tp.bin)

>rlink a.obj -start=.D*/200 -binary=b.bin(.D1bin),c.bin(.D2bin:4,_datab)



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 173 of 951
Dec 01, 2023

[Remark]

- If the -form={object|library} option or -strip option is specified, this option will be invalid.

- If input object file is not specified, this option cannot be specified.



R20UT3123EJ0113  Rev.1.13 Page 174 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-DEFine

This option defines an undefined symbol forcedly.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option defines undefined symbol symbol1 forcedly as external defined symbol symbol2 or numerical value value.

- Specify value in hexadecimal.
If the specified value starts with a character from A to F, symbols are searched first, and if corresponding symbol is 
not found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values. 

- If the specified symbol name is a C variable name, add "_" at the head of the definition name in the program.

[Example of use]

- To define "_sym1" as the same value as external defined symbol "_data", describe as:

- To define "_sym2" as 0x4000, describe as:

[Remark]

- If the -form={object|relocate|library} option is specified, this option will be invalid.

-DEFine=suboption[, ...]
  suboption := {symbol1=symbol2|symbol1=value}

>rlink -define=_sym1=_data a.obj b.obj

>rlink -define=_sym2=4000 a.obj b.obj



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 175 of 951
Dec 01, 2023

-ENTry

This option specifies the execution start address.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option defines execution start address with external defined symbol symbol or address address.

- Specify address in hexadecimal.
If the specified value starts with a character from A to F, defined symbols are searched first, and if corresponding sym-
bol is not found, the value is interpreted as an address.
Values starting with 0 are always interpreted as addresses.

- If the specified symbol name is a C variable name, add "_" at the head of the definition name in the program.

- This option setting takes priority over the entry symbol specified at compilation.

[Example of use]

- To specify main function in C as the execution start address, describe as:

- To specify 0x100 as the execution start address, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- Be sure to specify symbol if you intend to enable inter-module optimization (-optimize[={symbol_delete|speed}]). If 
address is specified with this option, optimization regarding deletion of unreferenced symbols will be disabled.

- If the address specified by the -entry option is included in any of the sections allocated by the -start option, optimiza-
tion in the range from the first address of the section up to the address specified by the -entry option will be sup-
pressed.

-ENTry={symbol|address}

>rlink -entry=_main a.obj b.obj

>rlink -entry=100 a.obj b.obj



R20UT3123EJ0113  Rev.1.13 Page 176 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-ALLOW_DUPLICATE_MODULE_NAME [V1.09 or later]

This option allows a library to be generated from multiple same module names.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option allows multiple input files with the same module name to be specified to generate a library.

- If the library already contains a module having the same name with other modules to be registered in the library, the 
other modules are renamed by adding a postfix number ".<N>".

- <N> is assigned a number as a unique module name in the generating library. If can't assigned a unique number, The 
linker will output the error message and quit.

[Example of use]

- To generate a library a.lib from multiple input files having the same module name (mod), describe as:

The command line above leads to generate a library a.lib containing the following modules:

- mod (originally b\mod.obj)

- mod.1 (originally c\mod.obj)

- mod.2 (originally d\mod.obj)

[Remark]

- If the -form={ object|absolute|relocate|hexadecimal|stype|binary }, -strip, or -extract option is specified, this option will 
be invalid.

-ALLOW_DUPLICATE_MODULE_NAME

> rlink -allow_duplicate_module_name -form=lib -output=a.lib b\mod.obj c\mod.obj 
d\mod.obj



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 177 of 951
Dec 01, 2023

The output control options are as follows.

- -FOrm

- -DEBug

- -NODEBug

- -RECord

- -END_RECORD [V1.05 or later]

- -ROm

- -OUtput

- -SPace

- -Message

- -NOMessage

- -MSg_unused

- -BYte_count

- -FIX_RECORD_LENGTH_AND_ALIGN [V1.06 or later]

- -PADDING

- -CRc

- -VECT

- -VECTN

- -SPLIT_VECT [V1.07 or later]

- -VFINFO

- -CFI [Professional Edition only] [V1.06 or later]

- -CFI_ADD_Func [Professional Edition only] [V1.06 or later]

- -CFI_IGNORE_Module [Professional Edition only] [V1.06 or later]

- -RAM_INIT_TABLE_SECTION [V1.12 or later]

Output control



R20UT3123EJ0113  Rev.1.13 Page 178 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-FOrm

This option specifies the output format.

[Specification format]

- Interpretation when omitted
A load module file is output (It is the same result as when the -form=absolute option is specified).

[Detailed description]

- This option specifies output format format.

- The items that can be specified as format are shown below.

[Remark]

- The relations between output formats and input files or other options are shown below.

-FOrm=format

Absolute Outputs a load module file.

Relocate Outputs a relocatable file.

Object Outputs an object file.
Use this when a module is extracted as an object file from a library by the -extract option.

Library[={S|U}] Outputs a library file.
When "library=s" is specified, a system library file is output.
When "library=u" is specified, a user library file is output.
If only "library" is specified, it is assumed that "library=u" has been specified.

Hexadecimal Outputs an Intel HEX file.
See "3.5  Intel HEX File" for details.

Stype Outputs a Motorola S-record file.
See "3.6  Motorola S-record File" for details.

Binary Outputs a binary file.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 179 of 951
Dec 01, 2023

Table 2.9 Relations Between Output Formats And Input Files Or Other Options

Output 
Format

Specified Option File Format That 
Can Be Input

Specifiable Option Note 1

Absolute -strip specified Load module file -input, -output

Other than above Object file
Relocatable file
Binary file
Library file

-input, -library, -binary, -debug, -nodebug, -cpu, -start, -rom,
 -entry, -output, -hide, -optimize, -nooptimize, 
-symbol_forbid, -section_forbid, -absolute_forbid, 
-compress, -nocompress, -rename, -lib_rename, -delete, 
-define, -fsymbol, -stack, -memory, -msg_unused, 
-show={symbol|reference|xreference|total_size|
vector|struct|relocation_attribute|cfi|all}, 
-user_opt_byte, -ocdbg, -security_id, -device, -padding, 
-vect, -vectn, -split_vect, -vfinfo, -auto_section_layout, 
-debug_monitor, -rrm, -self, -selfw, -ocdtr, -ocdtrw, -ocdhpi, 
-ocdhpiw, -check_device, -check_64k_only, 
-no_check_section_layout, -cfi, -cfi_add_func, 
-cfi_ignore_module

Relocate -extract specified Library file -library, -output

Other than above Object file
Relocatable file
Binary file
Library file

-input, -library, -debug, -nodebug, -output, -hide, -rename, 
-lib_rename, -delete, 
-show={symbol|xreference|total_size|all}, 
-device, -check_device

Object -extract specified Library file -library, -output

Hexadecimal
Stype
Binary

Object file
Relocatable file
Binary file
Library file

-input, -library, -binary, -cpu, -start, -rom, -entry, -output, 
-space, -optimize, -nooptimize, -symbol_forbid, 
-section_forbid, -absolute_forbid, -rename, -lib_rename, 
-delete, -define, -fsymbol, -stack, -record, -end_recordNote 2, 
-s9Note 2, -byte_countNote 3, 
-fix_record_length_and_alignNote 6, -memory, 
-msg_unused, 
-show={symbol|reference|xreference|total_size|vector|
struct|relocation_attribute|cfi|all}, 
-user_opt_byte, -ocdbg, -security_id, -crc, -device, 
-padding, -vect, -vectn, -split_vect, -vfinfo, 
-auto_section_layout, -debug_monitor, -rrm, -self, -selfw, 
-ocdtr, -ocdtrw, -ocdhpi, -ocdhpiw, -check_device, 
-check_64k_only, -no_check_section_layout, 
-check_output_rom_areaNote 7, -cfi, -cfi_add_func, 
-cfi_ignore_module

Load module file -input, -output, -record, -end_recordNote 2, -s9Note 2, 
-byte_countNote 3, -fix_record_length_and_alignNote 6, 
-show={symbol|reference|xreference|all}
-device, -check_output_rom_areaNote 7

Intel HEX fileNote 4 -input, -output
-device, -check_output_rom_areaNote 7

Motorola S-record 
fileNote 4

-input, -output, -s9Note 2

-device, -check_output_rom_areaNote 7

Library -strip specified Library file -library, -output, -memoryNote 5 

-extract specified Library file -library, -output

Other than above Object file
Relocatable file

-input, -library, -output, -hide, -rename, -delete, -replace, 
-memoryNote 5, -show={symbol|section|all}, 
-allow_duplicate_module_name



R20UT3123EJ0113  Rev.1.13 Page 180 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Note 1. The following options can always be specified.
-message, -nomessage, -change_message, -logo, -nologo, -form, -list, -subcommand

Note 2. The -end_record and -s9 option are valid only when the -form=stype option is specified.

Note 3. The -byte_count option is valid only when the -form=hexadecimal or -form=stype option is speci-
fied.

Note 4. If an Intel HEX file is specified as an input file, only the -form=hexadecimal option can be specified.  
If a Motorola S-record file is specified, only the -form=stype option can be specified.

Note 5. The -memory option cannot be specified when the -hide option is specified.

Note 6. The -fix_record_length_and_align option is valid only when the -form=hexadecimal or -form=stype 
option is specified.

Note 7. The -check_output_rom_area option is valid only when the -form=hexadecimal or -form=stype 
option is specified.

[Example of use]

- To output relocatable file c.rel from a.obj and b.obj, describe as:

- To extract module "a" from lib.lib and output as an object file, describe as:

- To extract module "a" from lib.lib and output library file exta.lib, describe as:

- To extract module "a" from lib.lib and output relocatable file a.rel, describe as:

>rlink a.obj b.obj -form=relocate -output=c.rel

>rlink -library=lib.lib -extract=a -form=object

>rlink -library=lib.lib -extract=a -form=library -output=exta

>rlink -library=lib.lib -extract=a -form=relocate



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 181 of 951
Dec 01, 2023

-DEBug

This option outputs debug information to the output file.

[Specification format]

- Interpretation when omitted
The debug information is output to the output file (It is the same result as when the -debug option is specified).

[Detailed description]

- This option outputs debug information to the output file.

[Example of use]

- To output debug information to the output file, describe as:

[Remark]

- If the -form={object|library|hexadecimal|stype|binary}, -strip option or -extract option is specified, this option will be 
invalid.

- If two or more output file names are specified using the -form=absolute option and -output option, the debug informa-
tion will not be output.

-DEBug

>rlink a.obj b.obj -debug -output=c.abs



R20UT3123EJ0113  Rev.1.13 Page 182 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-NODEBug

This option does not output the debug information.

[Specification format]

- Interpretation when omitted
The debug information is output to the output file (It is the same result as when the -debug option is specified).

[Detailed description]

- This option does not output the debug information.

[Example of use]

- Not to output the debug information, describe as:

[Remark]

- If the -form={object|library|hexadecimal|stype|binary}, -strip option or -extract option is specified, this option will be 
invalid.

-NODEBug

>rlink a.obj b.obj -nodebug -output=c.abs



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 183 of 951
Dec 01, 2023

-RECord

This option specifies the size of the data record to be output.

[Specification format]

- Interpretation when omitted
Various data records are output according to each address.

[Detailed description]

- This option outputs data with data record record regardless of the address range.

- The items that can be specified as record are shown below.

- If there is an address that is larger than the specified data record, the appropriate data record is selected for the 
address.

[Example of use]

- To output 32-bit HEX record regardless of the address range:

[Remark]

- If the -form={hexadecimal|stype} option is not specified, this option will be invalid.

- An error will occur if the -record={S1|S2|S3} option is specified when the -form=hexadecimal option is specified, or if 
the -record={H16|H20|H32} option is specified when the -form=stype option is specified.

-RECord=record

H16 HEX record

H20 Expanded HEX record

H32 32-bit HEX record

S1 S1 record

S2 S2 record

S3 S3 record

>rlink a.obj b.obj -record=H32 -form=hexadecimal -output=c.hex



R20UT3123EJ0113  Rev.1.13 Page 184 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-END_RECORD [V1.05 or later]

This option specifies the end record.

[Specification format]

- Interpretation when omitted
The end record is output to suit the address of the entry point.

[Detailed description]

- This option specifies the type of end record for a Motorola S-record file.

- The following can be specified for record.

- When the entry point address is larger than the specified address field, select an end record to suit the address of the 
entry point.

[Example of use]

- To output a 32-bit S-type end record regardless of the address range, write this as:

[Remark]

- When -form={stype} is not specified, this option outputs an error message and terminates execution.

-END_RECORD=record

S7 S7 record

S8 S8 record

S9 S9 record

> rlink a.obj b.obj -end_record=S7 -form=stype -output=c.mot



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 185 of 951
Dec 01, 2023

-ROm

This option specifies the section that maps symbols from ROM to RAM.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option reserves ROM and RAM areas in the initialized data area and relocates defined symbols in the ROM sec-
tion with the address in the RAM section.

- Specify a relocatable section including the initial value for ROM section ROMsection.

- Specify a nonexistent section or relocatable section whose size is 0 for RAM section RAMsection.

- A wildcard symbol (*) can be used in ROMsection and RAMsection. [V1.13 or later]

- If the name of a relocatable ROM section with the initial value matches the wildcard expression of ROMsection, 
the name is processed as a RAM section name. At this time, a wildcard symbol (*) in RAMsection is replaced 
with the part that matches the wildcard symbol (*) in the ROM section name.

Example When there are four ROM sections (.data, .data_1, .sdata, and .sdata_1) and 
-rom=*data*=*data*_R is specified, four RAM sections (.data_R, .data_1_R, .sdata_R, and 
.sdata_1_R) are generated.

Note The RAM section names after replacement must be handled appropriately by using, 
for example, the -start option.

- Multiple wildcard symbols (*) can be specified. The number of wildcard symbols must match between ROMsec-
tion and RAMsection.

Example

- If a section having the same name as the one generated by replacement already exists, an error occurs.

[Example of use]

- To reserve the .data.R section with the same size as the .data section and relocate defined symbols in the .data sec-
tion with address in the .data.R section, describe as:

[Remark]

- If the -form={object|relocate|library} option, -strip option, or -extract option is specified, this option will be invalid.

-ROm=ROMsection=RAMsection[,ROMsection=RAMsection]...

-rom=.data*=.data*_R # No problem
-rom=.data*=.data*_R_* # Error due to too many wildcard symbols in 

RAMsection

>rlink a.obj b.obj -rom=.data=.data.R -start=.data/100,.data.R/FAF00



R20UT3123EJ0113  Rev.1.13 Page 186 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-OUtput

This option specifies the output file.

[Specification format]

- Interpretation when omitted
The output file name is "first-input-file-name.default-extension".
The default extensions are shown below.

When the -form=absolute option is specified: abs
When the -form=relocate option is specified: rel
When the -form=object option is specified: obj
When the -form=library option is specified: lib
When the -form=hexadecimal option is specified: hex
When the -form=stype option is specified: mot
When the -form=binary option is specified: bin

[Detailed description]

- This option specifies output file file.

- Specify the start address and end address of the output range in hexadecimal as address1 and address2.
The output range including "-" is always interpreted as addresses. 

- Specify the section to be output as section.
If multiple files are specified, delimit them with a colon (:).

- If this option and the -form={absolute|hexadecimal|stype|binary} option are specified at the same time, two or more 
files can be specified.

- If "load-address" is specified, when outputting an Intel HEX file or Motorola S-record file, the first load address in the 
file is changed to the value specified with "load-address".

[Example of use]

- To output the range from 0 to 0xffff to file1.abs and the range from 0x10000 to 0x1ffff to file2.abs, describe as:

- To output the .sec1 and .sec2 sections to file1.abs and the .sec3 section to file2.abs, describe as:

[Remark]

- If a input file is an Intel Hex file or Motorola S-record file, two or more output files cannot be specified by this option.
If this option is omitted, the output file name will be "first input file name_combine.extension" (If the input file is 
"a.mot", the output file will be "a_combine.mot").

- "load-address" can be specified only when the -form={hexadecimal | stype} option is specified.

-OUtput=suboption[, ...]
[V1.06 or earlier]
  suboption := {file|file=range}
  range := {address1-address2|section[: ...]}
[V1.07 or later]
  suboption := {file|file=range|file=range/load-address|file=/load-address}
  range := {address1-address2|section[: ...]}

>rlink a.obj b.obj -output=file1.abs=0-ffff,file2.abs=10000-1ffff

>rlink a.obj b.obj -output=file1.abs=.sec1:.sec2,file2.abs=.sec3



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 187 of 951
Dec 01, 2023

-SPace

This option fills the vacant area of memory in the output range.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option fills the vacant area of the output range with user-specified data data.

- The items that can be specified as data are shown below.

- The way of filling unused areas differs with the output range specification as follows.

- When the -Output option is used to specify sections as the range for output:
The specified numerical value is output to unused areas between the specified sections.

- When the -Output option is used to specify a range of addresses as the range for output:
The specified numerical value is output to unused areas within the specified address range.

- When the -FIX_RECORD_LENGTH_AND_ALIGN option is specified:
The specified numerical value is output to an unused area at the top of a section, which starts at an address that 
can be divided by the alignment number.
The specified numerical value is output when the end of a section does not reach the specified record length.

- Output data sizes in units of 1, 2, or 4 bytes are valid.  The size is determined by the hexadecimal number specified 
using this option.
If a 3-byte value is specified, the upper digit is extended with 0 to handle it as a 4-byte value.
If an odd number of digits is specified, the upper digit is extended with 0 to handle it as an even number of digits.

- If the size of a vacant area is not a multiple of the size of the output data, the value is output as many times as possi-
ble, and then a warning will be output.

[Example of use]

- To fill the vacant memory area with "0xff" within the range from address 0x100 to address 0x2FF, describe as:

[Remark]

- If the specification of the data is omitted in this option, vacant areas are not filled with values.

- This option is valid only when the -form={binary|stype|hexadecimal} option is specified.

- If the output range is not specified in the -output option and the -fix_record_length_and_align option is not specified, 
this option will be invalid.

-SPace[=data]

Numerical Value Hexadecimal value

Random Random number

>rlink a.obj b.obj -form=hexadecimal -output=file1=100-2ff -start=.SEC1/100,.SEC2/
200 -space=ff



R20UT3123EJ0113  Rev.1.13 Page 188 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-Message

This option output messages of information level.

[Specification format]

- Interpretation when omitted
The output of messages of information level is suppressed (It is the same result as when the -nomessage option is 
specified).

[Detailed description]

- This option output messages of information level.

[Example of use]

- To output messages of information level, describe as:

-Message

>rlink a.obj b.obj -message



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 189 of 951
Dec 01, 2023

-NOMessage

This option suppresses the output of information messages.

[Specification format]

- Interpretation when omitted
The output of information messages is suppressed.

[Detailed description]

- This option suppresses the output of information messages.

- If message number num is specified, the output of the message with the specified number is suppressed.
Also, a range of message numbers can be specified using a hyphen (-).

- Specify the 4-digit number that is output after the component number (05) and the phase of occurrence (6) as num 
(for example, specify 0004 for message number M0560004).
0 at the beginning of the 4-digit number can be omitted (for example, specify 4 for message number M0560004).

- If a number of a warning or error type message is specified, the output of the message is suppressed assuming that 
-change_message option has changed the specified message to the information type.

[Example of use]

- To suppress outputting messages of M0560004, M0560100 to M0560103, and M0560500, describe as:

-NOMessage[={num|num-num}[, ...]]

>rlink a.obj b.obj -nomessage=4,100-103,500



R20UT3123EJ0113  Rev.1.13 Page 190 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-MSg_unused

To output externally defined symbols that are not referenced.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option is used to detect externally defined symbols that have not been referenced even once during the link pro-
cessing.

[Example of use]

- To output externally defined symbols that are not referenced.

[Remark]

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

- If a load module file is input, this option will be invalid.

- This option must be specified together with the -message option.

- The a message may be output for the function that inline expansion was performed during compilation.
In this case, add a static declaration for the function definition to suppress the output of the message.

- In either of the following cases, the reference relationship cannot be analyzed correctly and the information notified 
through an output message will be incorrect.

- If there are references to constant symbols within the same file

- When optimization is enabled at compilation and a function directly under another function is called.

-MSg_unused

>rlink a.obj b.obj -message -msg_unused



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 191 of 951
Dec 01, 2023

-BYte_count

This option specifies the maximum byte count for a data record.

[Specification format]

- Interpretation when omitted
When the -form=hexadecimal option is specified, an Intel HEX file is generated assuming that the maximum byte 
count is "0xFF".
When the -form=stype option is specified, a Motorola S-record file is generated assuming that the maximum byte 
count is "0x10".

[Detailed description]

- This option is used to specify the length of data records in Intel HEX files or Motorola S-record files to be generated.

- Values from 01 to FF (hexadecimal) are specifiable for Intel HEX files.

- The following ranges of values are specifiable for Motorola S-record files.

- S1 records: 01 to FC (hexadecimal)

- S2 records: 01 to FB (hexadecimal)

- S3 records: 01 to FA (hexadecimal)

[Example of use]

- To specify 0x10 as the maximum byte count for a data record, describe as:

[Remark]

- When the -form={hexadecimal|stype} option is not specified, this option will be invalid.

-BYte_count=num

>rlink a.obj b.obj -form=hexadecimal -byte_count=10



R20UT3123EJ0113  Rev.1.13 Page 192 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-FIX_RECORD_LENGTH_AND_ALIGN [V1.06 or later]

Fixes the format of data records to be output.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option is used to output an Intel HEX file or a Motorola S-record file with records of a fixed length starting from 
the address that has alignment with the specified number.

- The address of the first record to be output should be less than or equal to the first address of a section and be the 
largest number that can be divided by the specified alignment number.

- The specified numerical value or default value for the parameter of the -BYte_count option will be used as the length 
of the records.

- Since the length of records is fixed, each record may include data for more than one section.

- In unused areas, the value specified by the -SPace option will be output. If the -SPace option is not specified, 0x00 
(with the -CRc option not specified) or 0xff (with the -CRc option specified) as the default value will be output.

[Example of use]

- Starting the output of records from an address that can be divided by 8, with the length of each record fixed to 16 
bytes (10 in hexadecimal).

[Remark]

- When the -form={hexadecimal|stype} option is not specified, this option will be invalid.

-FIX_RECORD_LENGTH_AND_ALIGN=align

>rlink a.obj b.obj -form=hexadecimal -byte_count=10 -fix_record_length_and_align=8



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 193 of 951
Dec 01, 2023

-PADDING

This option fills in data at the end of a section.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option fills in data at the end of a section so that the section size is a multiple of the alignment of the section.

- This option fills in padding data only in sections of an instruction, the const variable, and a variable with the initial 
value. This option does not apply to sections of variables that have no initial values.

[Example of use]

- In the following case, 1 byte of padding data is filled in the .SEC1 section, and linking is performed with a size of 0x06.
Alignment of the .SEC1 section: 2 bytes
Size of the .SEC1 section: 0x05 bytes
Alignment of the .SEC2 section: 1 byte
Size of the .SEC2 section: 0x03 bytes

- In the following case, if 1 byte of padding data is filled in the .SEC1 section, and linking is performed with a size of 
0x06, then an error will be output because it overlaps with the .SEC2 section.

Alignment of the .SEC1 section: 2 bytes
Size of the .SEC1 section: 0x05 bytes
Alignment of the .SEC2 section: 1 byte
Size of the .SEC2 section: 0x03 bytes

[Remark]

- The value of the generated padding data is 0x00.

- Since padding is not performed to an absolute address section, the size of an absolute address section should be 
adjusted by the user.

-PADDING

>rlink a.obj b.obj -start=.SEC1,.SEC2/0 -padding

>rlink a.obj b.obj -start=.SEC1/0,.SEC2/5 -padding



R20UT3123EJ0113  Rev.1.13 Page 194 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CRc

This option specifies whether to perform the CRC operation.

[Specification format]

- Interpretation when omitted
The CRC operation and outputting the result are not performed.

[Detailed description]

- CRC (cyclic redundancy check) operation is done for the specified range of load objects in the order from the lower to 
the higher addresses, and the result is output to the specified output address in the specified endian.

- Specify the output address for address.
The range that can be specified is 0x0 to 0xFFFFF.

- Specify the operation range (start address and end address) for start and end.
The range that can be specified is 0x0 to 0xFFFFF.

- Specify one of the following as the operation method.

-CRc=address=operation-range[/operation-method][(initial-value)][:endian]
    operation-range:= start-end[,start-end]... [V1.01]
                      {start-end|section}[,{start-end|section}]... [V1.02 or later]
    operation-method:= {16-CCITT-MSB-LITTLE-4|16-CCITT-LSB|SENT-MSB} [V1.01]
                       {CCITT|16-CCITT-MSB|16-CCITT-MSB-LITTLE-4|16-CCITT-MSB-
                        LITTLE-2|16-CCITT-LSB|16|SENT-MSB|32-ETHERNET} [V1.02 or later]
    endian:= {BIG|LITTLE}[-size-offset]

Operation Method Description

CCITT
[V1.02 or later]

The result of CRC-16-CCITT operation is obtained with the MSB first, an initial 
value of 0xFFFF, and inverse of XOR performed.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB
[V1.02 or later]

The result of CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB-LITTLE-4 The input is handled in little endian in 4-byte units and the result of 
CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB-LITTLE-2
[V1.02 or later]

The input is handled in little endian in 2-byte units and the result of 
CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-LSB The result of CRC-16-CCITT operation is obtained with the LSB first.
The generator polynomial is x16+x12+x5+1.

16
[V1.02 or later]

The result of CRC-16 operation is obtained with the LSB first.
The generator polynomial is x16+x15+x2+1.

SENT-MSB The input is handled in little endian in the lower 4-bit units of one byte and the 
result of SENT-compliant CRC operation is obtained with the MSB first and an 
initial value of 0x5.
The generator polynomial is x4+x3+x2+1.

32-ETHERNET
[V1.02 or later]

The result of CRC-32-ETHERNET operation is obtained with an initial value of 
0xFFFFFFFF, inverse of XOR performed, and the bits reversed.
The generator polynomial is x32+x26+x23+x22+x16+x12+x11+x10+x8 +x7+x5+x4 
+x2 +x+1.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 195 of 951
Dec 01, 2023

When the specification of the operation method is omitted, it is assumed that 16-CCITT-MSB-LITTLE-4 has been 
specified.

- Specify the initial value for the operation for initial-value.
The range of specifiable values is from 0x0 to 0xFFFFFFFF when the operation method is 32-ETHERNET, from 0x0 
to 0xF when the operation method is SENT-MSB, and from 0x0 to 0xFFFF for other cases.

When the specification of the initial value is omitted, operation is performed on the assumption that 0x5 has been 
specified for the operation method of SENT-MSB, 0xFFFF for CCITT, 0xFFFFFFFF for 32-ETHERNET, and 0x0 for 
other cases.

- Specify the endian, size, and offset for endian.
The following shows the available combinations.

- LITTLE

- LITTLE-2-0

- LITTLE-4-0

- BIG

- BIG-2-0

- BIG-4-0

- When the endian specification of big or little is omitted, the endian is the same as that of the input object file.

- When the operation result is output to the specified output address, data is written in the byte order specified as BIG 
or LITTLE at the specified offset from the beginning of the area allocated with the specified size.  0 is output from the 
beginning of the allocated area until immediately before the offset location.

- When the size and offset are omitted, the size is assumed to be 2 bytes and the offset is assumed to be 0.

- When the -space option is not specified, the -space=FF option is assumed for CRC operation for the unused areas in 
the operation range.
Note that 0xFF is only assumed for CRC operation for the unused areas, but the areas are not actually filled with 
0xFF.
Operation is done from the lower to the higher addresses of the specified operation range.

- If this option is specified more than once, the results of all the specified CRC operations will be output. [V1.12 or later]

[Example of use]

Example 1.

-crc option: -crc=2FFE=1000-2FFD

>rlink *.obj -form=stype -start=.SEC1,.SEC2/1000,.SEC3/2000 -crc=2FFE=1000-2FFD 
-output=out.mot=1000-2FFF

0x1000

0x2000

0x2FFF

Linked result CRC operation -output specification Output (out.mot)

.SEC3

Unused

Unused
0xFF is assumed 

for operation

.SEC1

.SEC3

Output location

.SEC1

.SEC2

.SEC3

CRC result

Output range 
specification
0x1000 to 
0x2FFF

.SEC1
0x1000

0x2FFF

0x2FFE

.SEC2 .SEC2

0xFF is assumed 
for operation



R20UT3123EJ0113  Rev.1.13 Page 196 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

CRC operation is done for the area from 0x1000 to 0x2FFD and the result is output to address 0x2FFE.
When the -space option is not specified, the -space=FF option is assumed for CRC operation for the unused 
areas in the operation range.

-output option: -output=out.mot=1000-2FFF
As the -space option is not specified, nothing is output to out.mot for the unused areas.
0xFF is assumed for CRC operation for the unused areas, but the areas are not actually filled with 0xFF.

Caution 1. The CRC output location cannot be included in the operation range.

Caution 2. The CRC output location should be included in the output range specified by the -output option.

Example 2.

-crc option: -crc=2FFE=1000-17FD,2000-27FF
CRC operation is done for two areas from 0x1000 to 0x17FD and from 0x2000 to 0x27FF, and the result is out-
put to address 0x2FFE.
Multiple non-contiguous operation ranges can be specified as the target of CRC operation.

-space option: -space=7F
For unused areas in the specified operation ranges, the value (0x7F) specified by the -space option is used for 
CRC operation.

-output option: -output=out.mot=1000-2FFF
As the -space option is specified, data for the unused areas is output to out.mot.
The unused areas are filled with 0x7F.

Caution 1. CRC operation is not done in the order of the operation range specifications.  CRC is calculated in 
the order from the lower to the higher addresses.

Caution 2. When both the -crc option and the -space option are specified, "random" or a value larger than 2 
bytes must not be specified in the -space option. Be sure to specify a 1-byte value.

>rlink *.obj -form=stype -start=.SEC1/1000,.SEC2/1800,.SEC3/2000 -space=7F 
-crc=2FFE=1000-17FF,2000-27FF -output=out.mot=1000-2FFF

0x1000

0x1800

0x2000

0x2800

0x2FFF

Linked result CRC operation -output specification
Output 

(flmem.mot)

.SEC2

.SEC3

Unused

Unused

Unused

0x7F is assumed 
for operation

.SEC1

.SEC3

0x7F is assumed 
for operation

Output location

Filled with 0x7F

.SEC1

.SEC2

Filled with 0x7F

.SEC3

Filled with 0x7F

CRC result

Output range 
specification
0x1000 to 
0x2FFF

.SEC1
0x1000

0x2FFF

0x2FFE



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 197 of 951
Dec 01, 2023

Example 3.

-crc option: -crc=1FFE=1000-1FFD,2000-2FFF
CRC operation is done for areas from 0x1000 to 0x1FFD and from 0x2000 to 0x2FFF, and the result is output to 
address 0x1FFE.
When the -space option is not specified, the -space=FF option is assumed for CRC operation for the unused 
areas in the operation range.

-output option: -output=flmem.mot=1000-1FFF
As the -space option is not specified, nothing is output to flmem.mot for the unused areas.
0xFF is assumed for CRC operation for the unused areas, but the areas are not actually filled with 0xFF.

Example 4.

-crc option (1): -crc=2FFC=1000-1FFF
CRC operation is done for areas from 0x1000 to 0x1FFF, and the result is output to address 0x2FFC.

-crc option (2): -crc=2FFE=2000-2FFB
CRC operation is done for areas from 0x2000 to 0x2FFB, and the result is output to address 0x2FFE.

>rlink *.obj -form=stype -start=.SEC1,.SEC2/1000,.SEC3/2000 
-crc=1FFE=1000-1FFD,2000-2FFF -output=flmem.mot=1000-1FFF

>rlink *.obj -form=stype -start=.SEC1,.SEC2/1000,.SEC3/2000 -output=out.mot=1000-2FFF
-crc=2FFC=1000-1FFF -crc=2FFE=2000-2FFB

0x1000

0x2000

0x2FFF

Linked result CRC operation -output specification
Output 

(flmem.mot)

.SEC3

Unused

Unused
0xFF is assumed 

for operation

.SEC1

.SEC3

Output location

.SEC1

.SEC2

CRC result

Output range 
specification
0x1000 to 
0x1FFF

.SEC1
0x1000

0x1FFF

0x1FFE

.SEC2 .SEC2

0xFF is assumed 
for operation

Link result CRC operation
-output

specification
Output

(out.mot)

0x1000 0x1000

.SEC2 .SEC2 .SEC2

0x2000 .SEC3 .SEC3 .SEC3

0x2FFC

Output location (1) CRC result (1) 0x2FFE

0x2FFF
Output location (2) CRC result (2) 0x2FFF

Output range
specification

0x1000 to
0x2FFF

.SEC1.SEC1

Unused

Unused

.SEC1

0xFF is assumed
for operation

0xFF is assumed
for operation



R20UT3123EJ0113  Rev.1.13 Page 198 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Remark]

- This option does not take effect when multiple load module files are input.

- [V1.06 or earlier]
This option is valid only when the -form={stype|hexadecimal} option is specified.
[V1.07 or later]
This option will be valid only if the -form={stype | hexadecimal | bin} option is specified.

- When the -space option is not specified and the operation range includes an empty area that is not output, 0xFF is 
assumed to be stored in the unused area during CRC operation.

- An error will occur if the CRC operation range includes an overlaid area.

- The following is CRC type mapping from OC78K0R (the object converter of the RL78,78K0R C compiler package 
CA78K0R (sold separately)) to the optimizing linker.

OC78K0R Optimizing Linker

HIGH 16-CCITT-MSB-LITTLE-4

HIGH(SENT) SENT-MSB

GENERAL 16-CCITT-LSB



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 199 of 951
Dec 01, 2023

-VECT

This option stores an address value in the unused areas in the vector table.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option stores the specified address value in the unused areas of the vector table (addresses where no handler 
address value is stored).

- When this option is specified, the optimizing linker creates a vector table section and stores the specified address 
value in the vector table addresses even if no interrupt handlers are written in the source program.

- Specify the external name of the target function prefixed with an underscore (_) as symbol.

- Specify the desired hexadecimal address for address.

- The value to be set at address 0x2 and 0x3 of the vector table is determined in the following order of priority.
-rrm option > -debug_monitor option > Assembly source file specification > -vectn option > -vect option

[Example of use]

- To store the address of _dummy in the unused locations in the vector table, describe as:

[Remark]

- This option is ignored when the user creates a vector table address section in the source program because the vector 
table is not automatically created in this case.

- When the {symbol|address} specification is started with 0, the whole specification is assumed as an address.

- If the -form={object|relocate|library} option, -strip option, or -extract option is specified, this option will be invalid.

-VECT={symbol|address}

>rlink a.obj b.obj -vect=_dummy



R20UT3123EJ0113  Rev.1.13 Page 200 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-VECTN

This option stores address values in the specified areas in the vector table.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option stores the specified address values in the specified locations of the vector table.

- When this option is specified, the optimizing linker creates a vector table section and stores the specified address val-
ues in the vector table even if no interrupt handlers are written in the source program.

- Specify an even number within the range of 0x0 to 0x7E in hexadecimal for "vector-number".

- Specify the external name of the target function prefixed with an underscore (_) as symbol.

- Specify the desired hexadecimal address for address.

- The value to be set at address 0x2 and 0x3 of the vector table is determined in the following order of priority.
-rrm option > -debug_monitor option > Assembly source file specification > -vectn option > -vect option

- When the -SPLIT_VECT option is not specified, set a value in an unused area which is not specified with the -VECTN 
option according to the following priority.
1. Value specified with the VECT option
2. If there is a defined symbol with the name (internal name) of "__dummy_int" in the link target, the address of that 
symbol
3. If there is a defined symbol with the name (internal name) of "dummy_int" in the link target, the address of that sym-
bol
4. 0 for cases other than any of the above

- When the -SPLIT_VECT option is specified, a section for each vector number is not generated for an unused area 
which is not specified with the -VECTN option.

[Example of use]

- To store the address of _dummy at address 0x14 in the vector table, describe as:

[Remark]

- This option is ignored when the user creates a vector table address section in the source program because the vector 
table is not automatically created in this case.

- If the -form={object|relocate|library} option, -strip option, or -extract option is specified, this option will be invalid.

-VECTN=suboption[, ...]
  suboption := {vector-number=symbol|vector-number=address}

>rlink a.obj b.obj -vectn=14=_dummy



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 201 of 951
Dec 01, 2023

-SPLIT_VECT [V1.07 or later]

This option generates vector table sections split by vector table address.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option generates vector table sections split by vector table address.

- A vector table section is not generated for an unused area of the vector table address.

[Example of use]

- To generate a vector table section ".vect14" for vector table address 0x14, code as:

[Remark]

- If the -vect option is specified, this option will be invalid.

- If the -form={object | relocate | library} option, -strip option, or -extract option is specified, this option will be invalid.

-SPLIT_VECT

>rlink a.obj b.obj –vectn=14=__dummy -split_vect



R20UT3123EJ0113  Rev.1.13 Page 202 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-VFINFO

This option outputs the variable/function information file.

[Specification format]

- Interpretation when omitted
The variable/function information file is not output.

[Detailed description]

- Specify the variable/function information file as file.

- If the file name is omitted, vfinfo.h is output as the variable/function information file.

- When the file name has no extension, ".h" is assumed as the extension.

- callt, near, rom_forbid, or far_forbid can be specified for the output attribute attribute. A variable/function information 
file is generated as shown below, according to the output attribute. [V1.05 or later]

-VFINFO[=file]                    [V1.04 or earlier]
-VFINFO[=[file][(attribute,...)]] [V1.05 or later]

Variable Information

Output Attribute Description

No specification #pragma saddr is output for frequently referenced variables for the amount of surplus space 
remaining in the saddr area.
Variables that have already been declared as saddr variables continue to be saddr vari-
ables regardless of how many times they are referenced. #pragma saddr will not be output 
for those variables, and the variable information will be output with those variables com-
mented out.

Function Information

Output Attribute Description

No specification 
or callt

#pragma callt is output for frequently called functions for the amount of surplus space 
remaining in the callt entry or near area.
Functions that have already been declared as callt functions continue to be callt functions 
regardless of how many times they are called. #pragma callt will not be output for those 
functions, and the function information will be output with those functions commented out.

near #pragma near is output for frequently called functions for the amount of surplus space 
remaining in the near area.
#pragma near will not be output for functions that have already been declared as callt func-
tions or near functions regardless of how many times they are called. The function informa-
tion will be output with those functions commented out.

callt or near #pragma callt is output for frequently called functions for the amount of surplus space 
remaining in the callt entry or near area.
Functions that have already been declared as callt functions continue to be callt functions 
regardless of how many times they are called. #pragma callt will not be output for those 
functions, and the function information will be output with those functions commented out.
Next, from among the remaining functions, #pragma near is output for frequently called 
functions for the amount of surplus space remaining in the near area. Functions that have 
already been declared as near functions continue to be near functions regardless of how 
many times they are called. #pragma near will not be output for those functions, and the 
function information will be output with those functions commented out.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 203 of 951
Dec 01, 2023

[Example of use]

- To output the variable/function information file to file.h, describe as:

[Remark]

- If the -form={object|relocate|library} option, -strip option, or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When the section allocation address exceeds the allowable address range, information regarding only the symbols 
and sections allocated within the allowable areas are output to the variable/function information file. [V1.04]

- When section allocation exceeds the area specified for the object files, a warning message is output and the external 
variable allocation information file is output. [V1.05 or later]

rom_forbid #pragma callt or #pragma near will not be output for functions in the section specified by the 
ROM option.

far_forbid #pragma callt or #pragma near will not be output for functions in an absolute address sec-
tion or a section specified as a far area by the -start option.

>rlink a.obj b.obj -vfinfo=file.h



R20UT3123EJ0113  Rev.1.13 Page 204 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CFI [Professional Edition only] [V1.06 or later]

This option generates the function list for use in detecting illegal indirect function calls.

[Specification format]

- Interpretation when omitted
The function list for use in detecting illegal indirect function calls is not generated.

[Detailed description]

- This option selects generation of the function list for use in detecting illegal indirect function calls.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V1.06 or later]' compile option.
Since the linker generates the function list for the .constf section, the .constf section must be specified with the -start 
option at the time of linking.

- When an object file is created with -control_flow_integrity specified at the time of compilation, the linker generates the 
function list according to information that the compiler has automatically extracted.

- When an object file is created without -control_flow_integrity specified at the time of compilation, the linker generates 
function lists for all symbols that were resolved for relocation in the object file.

- To add specific functions to the function list, specify the -CFI_ADD_Func link option.
When a function in the specific object file is to be exempted from the function list, specify the -CFI_IGNORE_Module 
link option.

-CFI



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 205 of 951
Dec 01, 2023

-CFI_ADD_Func [Professional Edition only] [V1.06 or later]

This option specifies the symbol or address of a function to be added to the function list for use in detecting illegal indi-
rect function calls.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option registers the symbol or address of functions in the function list for use in detecting illegal indirect function 
calls.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V1.06 or later]' compile option.

- Specify addresses in hexadecimal.

- If the specified symbol of a function is not included in the load module that was optimized by the linker, an error will 
occur.

- If this option is specified more than once, all specified symbols or addresses of functions are registered in the function 
list.

- When this option is used, the -CFI option must also be specified. If the -CFI option is not specified, an error will occur.

[Example of use]

- To register the main function of the C source code, function address 0x100, and the function sub in the C source code 
in the function list, write this as:

-CFI_ADD_Func={symbol|address}[, ...]

>rlink -cfi -cfi_add_func=_main,100 -cfi_add_func=_sub a.obj b.obj



R20UT3123EJ0113  Rev.1.13 Page 206 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CFI_IGNORE_Module [Professional Edition only] [V1.06 or later]

This option specifies object files to be exempted from the function list for use in detecting illegal indirect function calls.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- [V1.06 or earlier]
This option specifies object files to be exempted from the function list for use in detecting illegal indirect function calls.
[V1.07 or later]
This option specifies object files and library files to be exempted from the function list for use in detecting illegal indi-
rect function calls. The module name in a library can be used to specify a library file.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V1.06 or later]' compiler option.

- If the specified object file does not exist, an error will occur.

- If this option is specified more than once, the functions of all specified object files are exempted from the function list.

- When this option is used, the -CFI option must also be specified. If the -CFI option is not specified, an error will occur.

[Example of use]

- To remove functions in a.obj, b.obj, and c.obj from the function list, write this as:

- [V1.07 or later]
To remove functions in the c module in the b.lib library from the function list, code as:

-CFI_IGNORE_Module=suboption[, ...]
[V1.06 or earlier]
  suboption := file
[V1.07 or later]
  suboption := file[(module[, ...])]

>rlink -cfi -cfi_ignore_module=a.obj,b.obj -cfi_ignore_module=c.obj

>rlink -cfi -cfi_ignore_module=b.lib(c) -lib=b.lib a.obj



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 207 of 951
Dec 01, 2023

-RAM_INIT_TABLE_SECTION [V1.12 or later]

This option generates an information table for RAM initialization.

[Specification format]

- Interpretation when omitted
An information table for RAM initialization will not be generated.

[Detailed description]

- This option generates an information table for RAM initialization.

- The information table is generated for the specified section name.

- If a section name is not specified, the table is generated with section name ".ram_init_table".

- Generally, the contents of the .data section are transferred from ROM to RAM at startup of a program. In addition, the 
RAM to which the .bss section is allocated is cleared to 0. This option generates a table containing the address and 
size information required for such operations.

- The information table contains a series of records that have the following fields.

- Fields 1 to 3 are set to 0 at the end of the table.

- During startup processing, perform the following processing up to the end of the table:

- If field 1 and field 3 are different, copy the memory data for the size of field 2 from field 1 to field 3.

- If field 1 and field 3 are the same, clear the memory data for the size of field 2 from field 1 or field 3.

- The sections to be initialized are used for CPU program operations. Sections for the FLEXIBLE APPLICATION 
ACCELERATOR (FAA) are not contained in the table.

[Example of use]

- To generate an information table for RAM initialization, code as:

-RAM_INIT_TABLE_SECTION[= section-name]

Size Description

Field 1 4 bytes ROM start address: For data transfer from ROM to RAM
RAM start address: For clearing the RAM
0: End of the record

Field 2 2 bytes Transfer size: For data transfer from ROM to RAM or for clearing 
the RAM
0: End of the record

Field 3 2 bytes RAM start address: For data transfer from ROM to RAM or for 
clearing the RAM
0: End of the record

> rlink a.obj b.obj -start=.data/1000,.dataR/f1000,.bss/f2000 -rom=.data=.dataR
-ram_init_table_section=.ram_init_table



R20UT3123EJ0113  Rev.1.13 Page 208 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

- If the size of the .data section is 0x100 bytes and the size of the .bss section is 0x200 bytes, the following table is 
generated for the .ram_init_table section.

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

Field 1 Field 2 Field 3

0x01000 0x100 0x1000

0xf2000 0x200 0x2000

0 0 0



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 209 of 951
Dec 01, 2023

The list output options are as follows.

- -LISt

- -SHow

List output



R20UT3123EJ0113  Rev.1.13 Page 210 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-LISt

This option outputs the list file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option outputs list file file.

- An error will occur if the specification of the file name is omitted.

Note If there are two or more output files, this is the first input file name.

- Even if the section allocation address exceeds the allowable address range, this option outputs the link map informa-
tion and symbol information. In this case, "**OVER**" is output. [V1.04 or later]

[Example of use]

- To output the link map file to file.map, describe as:

-LISt[=file]

Specified Option File Type File Name

-form=library option or -extract option Library list file Output file nameNote.lbp

Other than above Link map file Output file nameNote.map

>rlink a.obj b.obj -list=file.map



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 211 of 951
Dec 01, 2023

-SHow

This option specifies information that is output to the list file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies information info that is output to the list file.

- The items that can be specified as info are shown below.

-SHow[=info[,info]...]

Output Informa-
tion (info)

When -form=library 
Option Is Specified

When Other Than -form=library Option Is Specified

SYmbol Outputs symbol names 
within a module.

Outputs the symbol address, size, type, and optimization status.

Reference Not specifiable Outputs the symbol address, size, type, optimization status, and 
number of symbol references.

SEction Outputs section names 
in a module.

Not specifiable

Xreference Not specifiable Outputs cross reference information.

Total_size Not specifiable Outputs the total sizes of sections separately for ROM-allocated 
sections and RAM-allocated sections.

VECTOR Not specifiable Outputs vector information.

STRUCT Not specifiable Outputs information on structure or union members (which have 
been defined in files that have been compiled with the -g option 
specified) as part of the symbol information in the link map file. This 
setting will be invalid if the -form=relocate/object, -rename, 
-lib_rename, -hide, -compress, or -optimize=symbol_delete option 
is specified.

RELOCATION_AT
TRIBUTE

Not specifiable Outputs the relocation attribute.

CFI Not specifiable When the -form=absolute option is specified
Outputs the function list for use in detecting illegal indirect func-
tion calls.

When the -form=hex/bin/stype option is specified and input files 
are other than absolute/hex/stype

Outputs the function list for use in detecting illegal indirect func-
tion calls.



R20UT3123EJ0113  Rev.1.13 Page 212 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Remark See "3.2  Link Map File" and "3.4  Library List File" for details about output information.

- See [Remark] for details about when the specification of output information is omitted.

[Example of use]

- To output the symbol address, size, type, optimization contents, and number of symbol references, describe as:

[Remark]

- The following table shows whether output information info will be valid or invalid by the combinations of the -form 
option and the -show or -show=all option.

Note 1. If a load module file, Intel Hex file, or Motorola S-record file is input, this combination will be invalid.

Note 2. If an Intel Hex file is input, the -show option cannot be specified.

Note 3. If a Motorola S-record file is input, the -show option cannot be specified.

ALL Outputs symbol names 
and section names in a 
module.

When the -form=relocate option is specified
Outputs the same information as when the -show=symbol,xrefer-
ence,total_size option is specified.

When the -form=absolute option is specified
Outputs the same information as when the -show=symbol,refer-
ence,xreference,total_size,vector,struct option is specified.

When the -form=hexadecimal/stype/binary option
Outputs the same information as when the -show=symbol,refer-
ence,xreference,total_size,vector,struct option is specified.

When the -form=object option is specified
Not specifiable

>rlink a.obj b.obj -list -show=symbol,reference

SYm
bol

Refer
ence

SEcti
on

Xrefere
nce

Total_s
ize

VECTOR STRU
CT

RELO
CATI
ON_A
TTRIB
UTE

CFI

-form=absolute only -show Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

-show=all Valid Valid Invalid Valid Valid Valid Valid Invalid Invalid

-form=library only -show Valid Invalid Valid Invalid Invalid Invalid Invalid Invalid Invalid

-show=all Valid Invalid Valid Invalid Invalid Invalid Invalid Invalid Invalid

-form=relocate only -show Valid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

-show=all Valid Invalid Invalid Valid Invalid Valid Invalid Invalid Invalid

-form=object only -show Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

-show=all Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

-form=
hexadecimalNote 2/
stypeNote 3/binary

only -show Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

-show=all Valid Valid Invalid Valid ValidNote1 ValidNote1 ValidNote1 Invalid Invalid

Output Informa-
tion (info)

When -form=library 
Option Is Specified

When Other Than -form=library Option Is Specified



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 213 of 951
Dec 01, 2023

The limitations on the output of the cross reference information are shown below.

- When a load module file is input, the referrer address information is not output.

- The information about references to constant symbols within the same file is not output.

- When optimization is specified during compilation, information about branches to immediate subordinate func-
tions is not output.



R20UT3123EJ0113  Rev.1.13 Page 214 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

The optimization options are as follows.

- -Optimize

- -NOOptimize

- -SEction_forbid

- -Absolute_forbid

- -SYmbol_forbid [V1.02 or later]

- -ALLOW_OPTIMIZE_ENTRY_BLOCK [V1.13 or later]

Optimization



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 215 of 951
Dec 01, 2023

-Optimize

This option specifies whether to execute inter-module optimization.

[Specification format]

- Interpretation when omitted
All optimizations are provided.  It is the same result as when the -optimize option is specified.

[Detailed description]

- Optimization is applied to the files specified by the -goptimize option at compilation or assembly.

- Whether to execute each type of optimization is specified by using the suboptions.

[Example of use]

- To optimize the branch size, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- When the execution address (entry) is not specified, -optimize=symbol_delete is invalid.

- If an invalid parameter is specified, a warning will be output and the specification will be ignored.

-OPtimize[=Branch] [V1.01]
-Optimize[={SYmbol_delete|Branch|SPeed|SAFe}] [V1.02 or later]

Parameter Meaning Program To Be Optimized

C Language Assembly Language

None Provides all optimizations. OK NG

symbol_delete
[V1.02 or later]

Deletes variables or functions that have not been 
referenced even once. Be sure to specify the 
entry option at compilation.

OK NG

branch Optimizes branch instruction size according to 
program allocation information.
Even if this option is not specified, it is performed 
when any other optimization is executed.

OK OK

speed
[V1.02 or later]

Executes types of optimization except for those 
that may slow down the object speed.
Same as -optimize=symbol_delete or -opti-
mize=branch.

OK NG

safe
[V1.02 or later]

Executes types of optimization except for those 
that may restrict the attributes of variables or 
functions.
Same as -optimize=branch.

OK NG

>rlink a.obj b.obj -optimize=branch



R20UT3123EJ0113  Rev.1.13 Page 216 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-NOOptimize

This option disables inter-module optimization.

[Specification format]

- Interpretation when omitted
It is the same result as when the -optimize option is specified.

[Detailed description]

- This option disables inter-module optimization.

[Example of use]

- To disable inter-module optimization, describe as:

-NOOPtimize

>rlink a.obj b.obj -nooptimize



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 217 of 951
Dec 01, 2023

-SEction_forbid

This option disables optimization for the specified section.

[Specification format]

- Interpretation when omitted
Optimization for the specified section is not disabled.

[Detailed description]

- This option disables optimization for the specified section.

- Specify the file name, module name, and section name for sub.

- If an input file name or library module name is also specified, the optimization can be disabled for a specific file, not 
only the entire section.

[Example of use]

- To disable all optimizations for the .SEC1 section, describe as:

- To disable all optimizations for the .SEC1 and .SEC2 sections in a.obj. describe as:

[Remark]

- This option is ignored if optimization is not applied at linkage.

- To disable optimization for an input file with its path name, type the path with the file name.

- To disable optimization for the mirror destination area, specify the mirror source area.

-SEction_forbid=sub[,sub]...
    sub: [file-name|module-name](section-name[,section-name]...)

>rlink a.obj b.obj -optimize -section_forbid=(.SEC1)

>rlink a.obj b.obj -optimize -section_forbid=a.obj(.SEC1,.SEC2)



R20UT3123EJ0113  Rev.1.13 Page 218 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-Absolute_forbid

This option disables optimization regarding address + size specification.

[Specification format]

- Interpretation when omitted
Optimization regarding address + size specification is not disabled.

[Detailed description]

- This option disables optimization regarding address + size specification.

- Specify the hexadecimal address and size for address and size.

[Caution]

- In the allocation of a section to memory before optimization, if some sections are allocated to overlapping areas and 
the addresses of those areas are specified with optimization disabled (absolute_forbid), optimization is not applied to 
all of the overlapping sections. Accordingly, optimization is unexpectedly disabled, which causes overlaps or over-
flows in section allocation.
In such cases, optimization must not be disabled by specifying an address (absolute_forbid) but disabled by specify-
ing the section (section_forbid).

[Example of use]

- To disable optimization for addresses 0x1000 to 0x11ff, describe as:

[Remark]

- This option is ignored if optimization is not applied at linkage.

-Absolute_forbid=address[+size][,address[+size]]...

>rlink a.obj b.obj -optimize -absolute_forbid=1000+200



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 219 of 951
Dec 01, 2023

-SYmbol_forbid [V1.02 or later]

This option disables optimization regarding deletion of unreferenced symbols.

[Specification format]

- Interpretation when omitted
Optimization regarding deletion of unreferenced symbols is not disabled.

[Detailed description]

- This option disables optimization regarding deletion of unreferenced symbols.

[Example of use]

- To disable optimization of the _func symbol, describe as:

[Remark]

This option is ignored if optimization is not applied at linkage.

-SYmbol_forbid=symbol-name[,symbol-name]...

>rlink a.obj b.obj –optimize –symbol_forbid=_func



R20UT3123EJ0113  Rev.1.13 Page 220 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-ALLOW_OPTIMIZE_ENTRY_BLOCK [V1.13 or later]

This option performs optimization on the areas that are allocated before the execution start symbol.

[Specification format]

- Interpretation when omitted
Optimization is not performed on any area allocated before the execution start symbol.

[Detailed description]

- This option performs optimization on the areas that are allocated before the execution start symbol.

- Specifying this option more than once has the same effect as specifying it once only. A warning is output in this case.

[Example of use]

- To perform optimization including the areas that are allocated before the execution start symbol, describe as:

[Remark]

- This option is invalid for link processing that does not use optimization.

- If an address is specified by the -entry option, this option outputs a warning and ignores the specification.

- This option is invalid unless the -entry option is specified.

-ALLOW_OPTIMIZE_ENTRY_BLOCK

>rlink a.obj b.obj -optimize -entry=_main -allow_optimize_entry_block



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 221 of 951
Dec 01, 2023

The section specification options are as follows.

- -STARt

- -FSymbol

- -USER_OPT_BYTE

- -OCDBG

- -SECURITY_OPT_BYTE [V1.12 or later]

- -SECURITY_ID

- -FLASH_SECURITY_ID [V1.12 or later]

- -AUTO_SECTION_LAYOUT

- -SPLIT_SECTION [V1.12 or later]

- -STRIDE_DSP_MEMORY_AREA [V1.12 or later]

- -DEBUG_MONITOR

- -RRM

- -SELF

- -SELFW

- -OCDTR

- -OCDTRW

- -OCDHPI

- -OCDHPIW

- -DSP_MEMORY_AREA [V1.12 or later]

Section specification



R20UT3123EJ0113  Rev.1.13 Page 222 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-STARt

This option specifies the start address of the section.

[Specification format]

- Interpretation when omitted
Absolute address sections are allocated from smallest to largest, and then relative address sections starting at the 
end of the absolute address sections are allocated, in the order of appearance of the input files.

[Detailed description]

- This option specifies start address address of section section.
Specify address in hexadecimal.

- Wildcard characters (*, ?) can also be used for section.
The section specified with wildcard characters are expanded in the input order.

- Two or more sections (specifing by delimiting them with a comma (,)) can be allocated to the same address (i.e., sec-
tions are overlaid) by delimiting them with a colon (:).
Sections specified at a single address are allocated in their specified order.
Sections to be overlaid can be changed by enclosing them by parentheses "()".

- Objects in a single section are allocated in the specified order of the input file and the input library.

- If the specification of an address is omitted, the section is allocated from address 0.

- A section that is not specified by the -start option is allocated after the last allocation address.

[Example of use]

- The example below shows how sections are allocated when the objects are input in the following order (The names 
enclosed by parentheses are sections in each object).

tp1.obj(.A,.D1,.E)
tp2.obj(.B,.D3,.F)
tp3.obj(.C,.D2,.E,.G)
lib.lib(.E)

- When the -start=.A,.B,.E/400,.C,.D*:.F:.G/8000 option is specified

- Sections .C, .F, and .G delimited by ":" are allocated to the same address.

- Sections specified with wildcard characters (in this example, the sections whose names start with ".D") are 
allocated in the input order.

- Objects in the sections having the same name (section .E in this example) are allocated in the input order. 

- An input library's sections having the same name (section .E in this example) are allocated after the input 
objects.

-STARt=suboption[, ...]
  suboption := section-group[/address]
  section-group := section-list[: ...]
  section-list := section[, ...]

.F

0x400 0x8000

.E(lib).E(tp3).E(tp1).B.A .D2.D3.D1.C

.G



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 223 of 951
Dec 01, 2023

- When the -start=.A,.B,.C,.D1:.D2,.D3,.E,.F:.G/400 option is specified

- The sections that come immediately after ":" (sections .A, .D2, and .G in this example) are selected as the 
start and allocated to the same address.

- When the -start=.A,.B,.C,(.D1:.D2,.D3),.E,(.F:.G)/400 option is specified

- When the sections to be allocated to the same address are enclosed by "()", the sections within "()" are allo-
cated to the address immediately after the sections that come before the "()" (sections .C and .E in this exam-
ple).

- The section that comes after the "()" (section .E in this example) is allocated after the last of the sections 
enclosed by "()".

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- "()" cannot be nested.

- One or more colons must be described within "()".
If ":" is not described, "()" cannot be described.

- If "()" is described, ":" cannot be described outside of "()".

- When "()" is used in this option, the optimization function of the linker is disabled.

.G

.F

0x400

.D2 .D3 .E

.D1.C.B.A

.G

.F

0x400

.E

.D2 .D3

.D1.C.B.A



R20UT3123EJ0113  Rev.1.13 Page 224 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-FSymbol

This option outputs external defined symbols to the symbol address file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option outputs the external defined symbols in section section to a file (symbol address file) in the form of assem-
bler directives.
The file name is "output file name.fsy".

[Example of use]

- To output the external defined symbols in sections ".A" and ".B" to symbol address file "test.fsy", describe as:

The output example of symbol address file "test.fsy" is shown below.

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

-FSymbol=section[,section]...

>rlink a.obj b.obj -fsymbol=.A,.B -output=test.abs

;RENESAS OPTIMIZING LINKER GENERATED FILE XXXX.XX.XX
        ;fsymbol = .A, .B

        ;SECTION NAME = .A
            .public _f
        _f .equ 0x00000000
            .public _g
        _g .equ 0x00000010
        ;SECTION NAME = .B
            .public _main
        _main .equ 0x00000020



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 225 of 951
Dec 01, 2023

-USER_OPT_BYTE

This option specifies the value set for the user option bytes.

[Specification format]

- Interpretation when omitted
When this option is not used, be sure to set the user option byte value by using an assembly source file.

[Detailed description]

- This option specifies the value set for the user option bytes for user-option-byte.

- The user option byte value depends on the device in use.  See the user's manual of the device for the value to be 
specified.
When this option is omitted, the user option bytes are set to the initial value specified in the device file.

- Specify a hexadecimal value from 0x0 to 0xFFFFFF for the user option bytes.
If the specified value is less than 3 bytes, the higher bits are filled with 0.

- The user option bytes is specified at addresses 0xC0 to 0xC2.
The specified value is stored in byte units from the MSB side of the user option bytes in the order from 0xC0 to 0xC2.

- The user option byte value to be allocated at addresses 0xC0 to 0xC2 can also be specified by defining the segment 
with relocation attributes shown below, in the assembly source file.
However, define the segment with 4 bytes in total, including the control value at address 0xC3.

- If specification of the device file and specification of this option are made in duplicate, this option takes priority.

- If specification of the assembly source file and specification of this option are made in duplicate, this option takes pri-
ority.

- If a device file is specified in addition to the specification of the user option bytes in the assembly source file, the spec-
ification in the assembly source file takes priority.

- If a device file is specified but the user option bytes are not specified in the assembly source file or through this option, 
a warning is output to notify that the initial value in the device file is used.

[Example of use]

- To specify 0xFD at address 0xC0, 0xFE at address 0xC1, and 0xFF at address 0xC2 as the user option byte value, 
describe as:

-USER_OPT_BYTE=user-option-byte

        .section    .option_byte, opt_byte
          .db       0xFD                ;Address 0xC0
          .db       0xFE                ;Address 0xC1
          .db       0xFF                ;Address 0xC2
          .db       0x04                ;Address 0xC3

>rlink a.obj b.obj -device=dr5f10y14.dvf -user_opt_byte=FDFEFF



R20UT3123EJ0113  Rev.1.13 Page 226 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Remark]

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When specifying the user option byte value in the assembly source file, do not use a label reference.  If such an 
attempt is made, the result may be an unexpected value due to relocation resolution.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 227 of 951
Dec 01, 2023

-OCDBG

This option specifies the control value for the on-chip debug.

[Specification format]

- Interpretation when omitted
When this option is not used, be sure to set the control value for the on-chip debug by using an assembly source file.

[Detailed description]

- This option specifies the control value for the on-chip debug for value.

- The control value for the on-chip debug depends on the device in use.  See the user's manual of the device for the 
value to be specified.
When this option is omitted, the control value for the on-chip debug are set to the initial value specified in the device 
file.

- Specify a hexadecimal value from 0x0 to 0xFF for the control value for the on-chip debug.

- An error occurs if a value that cannot be specified for the control value for the on-chip debug is specified.

- The control value for the on-chip debug is specified at addresses 0xC3.

- The control value for the on-chip debug can also be specified by defining the segment with relocation attributes 
shown below, in the assembly source file.  However, define the segment with 4 bytes in total, including the user option 
bytes starting from address 0xC0.
If a device file is specified in addition to the specification of the control value in the assembly source file, the specifica-
tion in the assembly source file takes priority.

- If specification of the device file and specification of this option are made in duplicate, this option takes priority.

- If the control value is specified both in the assembly source file and through this option, this option takes priority.

[Example of use]

- To set 0x04 at address 0xC3 as the control value for the on-chip debug, describe as:

[Remark]

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When specifying the control value for the on-chip debug in the assembly source file, do not use a label reference.  If 
such an attempt is made, the result may be an unexpected value due to relocation resolution.

-OCDBG=value

        .section    .option_byte, opt_byte
          .db       0xfd                ;Address 0xC0
          .db       0xfe                ;Address 0xC1
          .db       0xff                ;Address 0xC2
          .db       0x04                ;Address 0xC3

>rlink a.obj b.obj -device=dr5f10y14.dvf -ocdbg=04



R20UT3123EJ0113  Rev.1.13 Page 228 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-SECURITY_OPT_BYTE [V1.12 or later]

This option specifies the control value for the security option byte.

[Specification format]

- Interpretation when omitted
The value specified in an assembly source file or the value defined in the device file is set.

[Detailed description]

- This option specifies the control value for the security option byte for value.

- Specify a hexadecimal value in the range from 0x0 to 0xFF for the control value for the security option byte.

- Specifying a value that cannot be specified for the control value for the security option byte will cause an error.

- The control value for the security option byte is specified at address 0xC4.

- The control value for the security option byte can also be specified by defining the segment with the following reloca-
tion attributes in the assembly source file.
Define the segment with 5 bytes in total, including the user option bytes and on-chip debugging control value starting 
from address 0xC0.

- If the assembly source file and this option are specified at the same time, this option takes priority.

- If the device file, the assembly source file, and this option are specified at the same time, this option takes priority.

[Example of use]

- To set 0xC4 at address 0x04 as the control value for the security option byte, describe as:

[Remark]

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When specifying the security ID value in the assembly source file, do not use a label reference. Doing so might result 
in an unexpected value due to relocation resolution.

-SECURITY_OPT_BYTE=value

        .section    .option_byte, opt_byte
          .db       0xfd                ;Address 0xC0
          .db       0xfe                ;Address 0xC1
          .db       0xff                ;Address 0xC2
          .db       0x04                ;Address 0xC3
          .db       0xff                ;Address 0xC4

>rlink a.obj b.obj -device=dr7f124fgj.dvf -security_opt_byte=04



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 229 of 951
Dec 01, 2023

-SECURITY_ID

This option specifies a security ID value.

[Specification format]

- Interpretation when omitted
A security ID value is not set.

[Detailed description]

- This option specifies a security ID value for value.

- Specify a hexadecimal value for the security ID value.

- An error occurs if a value that cannot be specified for the security ID value is specified.
The value is set in byte units from the MSB side of the user option byte in the order from the lower to the higher 
addresses.

- The location where the security ID value is stored and the maximum size of the security ID are specified in the device 
file.

- (V1.11 or later) Specify the value for the option that does not exceed the maximum size of the security ID of the device 
specifications.
(V1.10 or earlier) Specify the value within 1 byte.
An error occurs if the specified value exceeds the maximum size of the security ID of the device specifications.
If the specified security ID size is less than the maximum size, the higher bits are filled with 0.

- A security ID value can also be specified by defining the segment with relocation attributes shown below, in the 
assembly source file.
However, in the same way as the option specification, make sure that the defined value conforms to the security ID 
size of the device specifications.

- If the security ID value is specified both in the assembly source file and through this option, this option takes priority.

- Be sure to see the user's manual of the device to specify the security ID value.

[Example of use]

- To specify storage of the security ID values 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, and 0x0A at 
addresses starting from 0xC4, describe as:

-SECURITY_ID=value

        .section    .security_id, SECUR_ID
          .db       0x01            ;Address 0xC4
          .db       0x02            ;Address 0xC5
          .db       0x03            ;Address 0xC6
          .db       0x04            ;Address 0xC7
          .db       0x05            ;Address 0xC8
          .db       0x06            ;Address 0xC9
          .db       0x07            ;Address 0xCA
          .db       0x08            ;Address 0xCB
          .db       0x09            ;Address 0xCC
          .db       0x0A            ;Address 0xCD

>rlink a.obj b.obj -device=dr5f10y14.dvf -security_id=0102030405060708090A



R20UT3123EJ0113  Rev.1.13 Page 230 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Remark]

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When specifying the security ID value in the assembly source file, do not use a label reference.  If such an attempt is 
made, the result may be an unexpected value due to relocation resolution.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 231 of 951
Dec 01, 2023

-FLASH_SECURITY_ID [V1.12 or later]

This option specifies the value to be set for the flash programmer security ID.

[Specification format]

- Interpretation when omitted
A flash programmer security ID value is not set.

[Detailed description]

- This option specifies the flash programmer security ID value for value.

- Specify a hexadecimal value for the flash programmer security ID value.

- Specifying a value that cannot be specified for the flash programmer security ID value will cause an error.
The value is set in byte units from the MSB side of the flash programmer security ID value in the order from lower to 
higher addresses.

- The location where the flash programmer security ID value is stored and the maximum size of the security ID are 
specified in the device file.

- Specify the value for the option that does not exceed the maximum size of the security ID of the device specifications.
An error occurs if the specified value exceeds the maximum size of the security ID of the device specifications.
If the size of the specified security ID is less than the maximum size, the higher bits are filled with 0.

- The security ID value can also be specified by defining the segment with the following relocation attributes in the 
assembly source file.
However, in the same way as the option specification, make sure that the defined value does not exceed the maxi-
mum size of the security ID of the device specifications.

- If the assembly source file and this option are specified at the same time, this option takes priority.

- Be sure to specify the security ID value by referring to the user's manual of the device.

[Example of use]

- To specify the storage of the security ID values 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F, and 0x10 at the address starting from 0xD6, describe as:

-FLASH_SECURITY_ID=value

        .section  .flash_security_id, FLASH_SECUR_ID
          .db       0x01            ;Address 0xD6
          .db       0x02            ;Address 0xD7
          .db       0x03            ;Address 0xD8
          .db       0x04            ;Address 0xD9
          .db       0x05            ;Address 0xDA
          .db       0x06            ;Address 0xDB
          .db       0x07            ;Address 0xDC
          .db       0x08            ;Address 0xDD
          .db       0x09            ;Address 0xDE
          .db       0x0A            ;Address 0xDF
          .db       0x0B            ;Address 0xE0
          .db       0x0C            ;Address 0xE1
          .db       0x0D            ;Address 0xE2
          .db       0x0E            ;Address 0xE3
          .db       0x0F            ;Address 0xE4
          .db       0x10            ;Address 0xE5

>rlink a.obj b.obj -device=dr5f10y14.dvf -security_id=0102030405060708090A0B0C0D0E0F10



R20UT3123EJ0113  Rev.1.13 Page 232 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Remark]

- If the -form={object|relocate|library} or -extract option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

- When specifying the security ID value in the assembly source file, do not use a label reference. Doing so might result 
in an unexpected value due to relocation resolution.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 233 of 951
Dec 01, 2023

-AUTO_SECTION_LAYOUT

This option automatically allocates sections.

[Specification format]

- Interpretation when omitted
Sections are not automatically allocated.

[Detailed description]

- Sections are automatically allocated based on the information of the device file.

- After the section specified by the -start option and the absolute address sections have been allocated, the remaining 
sections are automatically allocated based on the information of the device file.

- With the -cpu option specified, -AUTO_SECTION_LAYOUT automatically allocates sections to an address in the 
range from address1 to address2 designated by the -cpu option and within the memory space defined in the device 
file designated by the -device option.

[Example of use]

- To automatically allocate sections from the information of the device file, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-AUTO_SECTION_LAYOUT

>rlink a.obj b.obj -device=dr5f10y14.dvf -auto_section_layout



R20UT3123EJ0113  Rev.1.13 Page 234 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-SPLIT_SECTION [V1.12 or later]

This option enables automatic allocation of a section for each module.

[Specification format]

- Interpretation when omitted
Automatic section allocation is performed in units of combined sections.

[Detailed description]

- When SPLIT_SECTION is specified, sections separated by a module are separately allocated to available areas in 
the device.
When sections are automatically allocated without SPLIT_SECTION specified, the same sections of modules to be 
linked combine as one section, and then the combined section is allocated to an available area in the device.

Suppose that file1.obj and file2.obj each contain text_section and data_section as shown below.

-SPLIT_SECTION

file1.obj

text_section size 1 K

data_section size 1 K

file2.obj

text_section size 1 K

data_section size 1 K



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 235 of 951
Dec 01, 2023

When the device is configured with ROM size 3 K, RAM-A size 1.5 K, and RAM-B size 1.5 K, automatic allocation of 
sections by using the auto_section_layout option is as follows.
The ROM size (3 K) is sufficient enough to allocate text_section of both file1.obj and file2.obj. The RAM is split to 
RAM-A (size 1.5 K) and RAM-B (size 1.5 K), and data_section (size 2 K) of the combined file1.obj and file2.obj cannot 
be allocated, as shown below.

When SPLIT_SECTION is specified, data_section (size 1 K) of file1.obj is allocated to RAM-A (size 1.5 K), and then 
data_section (size 1 K) of file2.obj is allocated to RAM-B (size 1.5 K), as shown below.

A section for each module has the following section name.

sss : Section name before the split
?? : 01 to 99

$sss_part??

Memory Section allocation
ROM
size 3 K

Section text_section size 2 K
file1.obj: text_section size 1 K

file2.obj: text_section size 1 K

Unused size 1 K

Memory unallocated
RAM-A
size 1.5 K

Section data_section size 2 K
file1.obj: data_section

file2.obj: data_section
Allocation fails with overflow of 0.5 K.

Memory unallocated
RAM-B
size 1.5 K

Unused size 1.5 K

Memory Section allocation

ROM
size 3 K

Section text_section size 1 K
file1.obj: text_section size 1 K

Section $text_section_part01 size 1 K
file2.obj: text_section size 1 K

Unused size 1 K

Memory unallocated
RAM-A
size 1.5 K

Section data_section size 1 K
file1.obj: data_section size 1 K

Unused size 0.5 K

Memory unallocated
RAM-B
size 1.5 K

Section $data_section_part01 size 1 K
file2.obj: data_section size 1 K

Unused size 0.5 K



R20UT3123EJ0113  Rev.1.13 Page 236 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

[Example of use]

- To allocate sections for each module, describe as:

[Remark]

- If the -form={object|relocate|library} or -strip option is specified, this option will be invalid.

- If the -auto_section_layout option is not specified, this option will be invalid.

>rlink a.obj b.obj -device=dr5f100pj.dvf -auto_section_layout -split_section



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 237 of 951
Dec 01, 2023

-STRIDE_DSP_MEMORY_AREA [V1.12 or later]

This option enables automatic allocation of sections to areas split by the memory area shared with the FLEXIBLE 
APPLICATION ACCELERATOR (FAA).

[Specification format]

- Interpretation when omitted
Automatic allocation of sections is not split by the memory area shared with the FLEXIBLE APPLICATION 
ACCELERATOR (FAA). 

[Detailed description]

- With STRIDE_DSP_MEMORY_AREA specified, sections are allocated in sequence up to just before the FLEXIBLE 
APPLICATION ACCELERATOR (FAA) memory area, and the remaining sections are allocated as another section 
from after the FLEXIBLE APPLICATION ACCELERATOR (FAA) memory area.

Suppose that file1.obj, file2.obj, file3.obj, and file4.obj each contain data_section, as shown below.

-STRIDE_DSP_MEMORY_AREA

file1.obj
data_section size 1 K

file2.obj
data_section size 1 K

file3.obj
data_section size 1 K

file4.obj
data_section size 1 K



R20UT3123EJ0113  Rev.1.13 Page 238 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

When the device is configured with RAM-A size 2.5 K and RAM-B size 2.5 K, automatic allocation of sections by 
using the auto_section_layout option is as follows.
The RAM is split to RAM-A (size 2.5 K) and RAM-B (size 2.5 K), and data_section (size 4 K) of the combined file1.obj, 
file2.obj, file3.obj, and file4.obj cannot be allocated as shown below.

When STRIDE_DSP_MEMORY_AREA is specified, data_section (size 2 K) of file1.obj and file2.obj is allocated to 
RAM-A (size 2.5 K), and then data_section (size 2 K) of file3.obj and file4.obj is allocated to RAM-B (size 2.5 K), as 
shown below.

At this time, the other section allocated after the split has the following section name.

sss : Section name before the split
?? : 01 to 99

[Example of use]

- To allocate sections to areas split by the FLEXIBLE APPLICATION ACCELERATOR (FAA) memory area, describe 
as:

$sss_part??

> rlink a.obj b.obj -device=dr5f10y14.dvf -auto_section_layout -dsp_memory_area 
-stride_dsp_memory_area

Memory Section allocation
RAM-A
size 2.5 K

Section data_section: Size 4 K
file1.obj: data_section size 1 K

file2.obj: data_section size 1 K

file3.obj: data_section size 1 K
Memory area for DSP

file4.obj: data_section size 1 K
Allocation fails with overflow of 1.5 K.

RAM-B
size 2.5 K

Unused size 2.5 K

Memory Section allocation
RAM-A
size 2.5 K

Section data_section: Size 2 K
file1.obj: data_section size 1 K
file2.obj: data_section size 1 K
Unused size 0.5 K

Memory area for DSP
RAM-B
size 2.5 K

Section $data_section_part01: Size 2 K
file3.obj: data_section size 1 K
file4.obj: data_section size 1 K
Unused size 0.5 K



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 239 of 951
Dec 01, 2023

[Remark]

- If the -form={object|relocate|library} or -strip option is specified, this option will be invalid.

- When split_section is specified, this option outputs an error message and terminates execution.

- When auto_section_layout is not specified, a warning will be output and the specification will be ignored.

- When dsp_memory_area is not specified, a warning will be output and the specification will be ignored.



R20UT3123EJ0113  Rev.1.13 Page 240 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-DEBUG_MONITOR

This option specifies the memory area for the OCD monitor.

[Specification format]

- Interpretation when omitted
The memory area for the OCD monitor is not allocated.

[Detailed description]

- Specify the start address for the OCD monitor as address1 and the end address for the OCD monitor as address2.

- When the start address for the OCD monitor and the end address for the OCD monitor are omitted, the following is 
assumed to be specified.

- For an 8-bit CPU
0 bytes

- For other than an 8-bit CPU
Start address for OCD monitor: End address for on-chip ROM - 512 + 1
End address for OCD monitor: End address for on-chip ROM

- [V1.10 or earlier] This option fills addresses 0x2, 0x3, and 0xCE to 0xD7 and the area from the OCD monitor start 
address to the OCD monitor end address with 0xFF.

- [V1.11 or later] This option fills addresses 0x2 and 0x3, the area conforming to device specifications, and the area 
from the OCD monitor start address to the OCD monitor end address with 0xFF.

- The area of addresses 0x2 and 0x3 which is also the vector table gives priority to the following specifications.
-rrm option > -debug_monitor option > Assembly source file specification > -vectn option > -vect option

- When the memory area for the OCD monitor includes the location to allocate the user option bytes, the following 
specifications are given priority.
-user_opt_byte option > Assembly source file specification > Device file specification > -debug_monitor option

- When the memory area for the OCD monitor includes the location to allocate the control value for on-chip debugging, 
the following specifications are given priority.
-ocdbg option > Assembly source file specification > Device file specification > -debug_monitor option

- When the memory area for the OCD monitor includes the location to allocate the security ID value, the following spec-
ifications are given priority.
-security_id option > Assembly source file specification > Device file specification > -debug_monitor option

[Example of use]

- To specify addresses 0x300 to 0x3FF as the memory area for the OCD monitor, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-DEBUG_MONITOR[=address1-address2]

>rlink a.obj b.obj -device=dr5f10y14.dvf -debug_monitor=300-3FF



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 241 of 951
Dec 01, 2023

-RRM

This option specifies the work area for the RRM/DMM function.

[Specification format]

- Interpretation when omitted
The work area for the RRM/DMM function is not allocated.

[Detailed description]

- Specify the start address for the work area for the RRM/DMM function as address.

- Four bytes from the start address become the work area for the RRM/DMM function.

- The start address of the RRM is set to addresses 0x2 and 0x3 which are allocated by the -debug_monitor option.

- [V1.13 or later] No section is allocated to the first four bytes from the RRM start address.

- The area of addresses 0x2 and 0x3 which is also the vector table gives priority to the following specifications.
-rrm option > -debug_monitor option > Assembly source file specification > -vectn option > -vect option

[Example of use]

- To specify four bytes from address 0xFFDE0 as the work area for the RRM/DMM function, describe as:

[Remark]

- This option will be invalid in any one of the following cases.

- If the -form={object|relocate|library} option or -strip option is specified

- If the device specified by the -device option does not support the RRM/DMM function

- If the -debug_monitor option is not specified

-RRM=address

>rlink a.obj b.obj -device=dr5f10y14.dvf -debug_monitor=2FC00-2FFF -rrm=FFDE0



R20UT3123EJ0113  Rev.1.13 Page 242 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-SELF

This option disables allocation of a section to the self RAM area.

[Specification format]

- Interpretation when omitted
It is possible to allocate a section to the self RAM area.

[Detailed description]

- This option disables allocation of a section to the self RAM area.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To disable allocation of a section to the self RAM area, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-SELF

>rlink a.obj b.obj -device=dr5f10y14.dvf -self



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 243 of 951
Dec 01, 2023

-SELFW

This option outputs a warning message when a section is allocated to the self RAM area.

[Specification format]

- Interpretation when omitted
The self RAM area is not checked.

[Detailed description]

- This option outputs a warning message when a section is allocated to the self RAM area.

- When an allocated section exceeds the self RAM area, an error will occur.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To output a warning message when a section is allocated to the self RAM area, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-SELFW

>rlink a.obj b.obj -device=dr5f10y14.dvf -selfw



R20UT3123EJ0113  Rev.1.13 Page 244 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-OCDTR

This option disables allocation of a section to the trace RAM and self RAM areas.

[Specification format]

- Interpretation when omitted
It is possible to allocate a section to the trace RAM and self RAM areas.

[Detailed description]

- This option disables allocation of a section to the trace RAM and self RAM areas.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To disable allocation of a section to the trace RAM and self RAM areas, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-OCDTR

>rlink a.obj b.obj -device=dr5f10y14.dvf -ocdtr



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 245 of 951
Dec 01, 2023

-OCDTRW

This option outputs a warning message when a section is allocated to the trace RAM and self RAM areas.

[Specification format]

- Interpretation when omitted
The trace RAM and self RAM areas are not checked.

[Detailed description]

- This option outputs a warning message when a section is allocated to the trace RAM and self RAM areas.

- When an allocated section exceeds the trace RAM and self RAM areas, an error will occur.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To output a warning message when a section is allocated to the trace RAM and self RAM areas, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-OCDTRW

>rlink a.obj b.obj -device=dr5f10y14.dvf -ocdtrw



R20UT3123EJ0113  Rev.1.13 Page 246 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-OCDHPI

This option disables allocation of a section to the hot plug-in RAM, trace RAM, and self RAM areas.

[Specification format]

- Interpretation when omitted
It is possible to allocate a section to the hot plug-in RAM, trace RAM, and self RAM areas.

[Detailed description]

- This option disables allocation of a section to the hot plug-in RAM, trace RAM, and self RAM areas.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To disable allocation of a section to the hot plug-in RAM, trace RAM, and self RAM areas, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-OCDHPI

>rlink a.obj b.obj -device=dr5f10y14.dvf -ocdhpi



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 247 of 951
Dec 01, 2023

-OCDHPIW

This option outputs a warning message when a section is allocated to the hot plug-in RAM, trace RAM, and self RAM 
areas.

[Specification format]

- Interpretation when omitted
The hot plug-in RAM, trace RAM, and self RAM areas are not checked.

[Detailed description]

- This option outputs a warning message when a section is allocated to the hot plug-in RAM, trace RAM, and self RAM 
areas.

- When an allocated section exceeds the hot plug-in RAM, trace RAM, and self RAM areas, an error will occur.

- The __STACK_ADDR_START symbol and __STACK_ADDR_END symbol are set except for in the saddr area.

[Example of use]

- To output a warning message when a section is allocated to the hot plug-in RAM, trace RAM, and self RAM areas, 
describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-OCDHPIW

>rlink a.obj b.obj -device=dr5f10y14.dvf -ocdhpiw



R20UT3123EJ0113  Rev.1.13 Page 248 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-DSP_MEMORY_AREA [V1.12 or later]

This option disables allocation of a section to the memory area shared with the FLEXIBLE APPLICATION 
ACCELERATOR (FAA).

[Specification format]

- Interpretation when omitted
It is possible to allocate a section to the memory area shared with the FLEXIBLE APPLICATION ACCELERATOR 
(FAA).

[Detailed description]

- This option disables allocation of a section to the memory area shared with the FLEXIBLE APPLICATION 
ACCELERATOR (FAA).

[Example of use]

- To disable allocation of a section to the memory area shared with the FLEXIBLE APPLICATION ACCELERATOR 
(FAA), describe as:

[Remark]

- If the -form={object|relocate|library} or -strip option is specified, this option will be invalid.

- If the -device option is not specified, this option will be invalid.

-dsp_memory_area

>rlink a.obj b.obj -device=dr5f100pj.dvf -auto_section_layout -dsp_memory_area



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 249 of 951
Dec 01, 2023

The verify specification options are as follows.

- -CPu

- -CHECK_DEVICE

- -CHECK_64K_ONLY

- -NO_CHECK_SECTION_LAYOUT

- -CHECK_OUTPUT_ROM_AREA [V1.07 or later]

Verify specification



R20UT3123EJ0113  Rev.1.13 Page 250 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CPu

This option checks the consistency of the address to which the section is allocated.

[Specification format]

- Interpretation when omitted
The consistency of the address to which the specified section is allocated is not checked.

[Detailed description]

- This option checks the consistency of the address to which the section is allocated.
An error will be output if the section allocation address for memory type type does not fit in the specified address 
range.

- The items that can be specified as type are shown below.
An error will occur if any other item is specified.

- Specify the start address and end address of the address range to check for consistency in hexadecimal as address1 
and address2.

[Example of use]

- The result is normal when section .text and section .bss are respectively allocated within the ranges from 0x100 to 
0x1FF and from 0x200 to 0x2FF.
If they are not allocated within the ranges, an error will be output.

[Remark]

[V1.01 or earlier]

- If the -form={object|relocate|library} option, -strip option, or -device option is specified, this option will be invalid.

[V1.02 or later]

- If the -form={object|relocate|library} option, or -strip option is specified, this option will be invalid.

-CPU=suboption[, ...]
  suboption := type=address1-address2

ROm Allocates the section to a ROM area.

RAm Allocates the section to a RAM area.

FIX Allocates the section to a fixed-address area (e.g. I/O area).
If the address range overlaps with ROM or RAM, the setting for FIX is valid.

>rlink a.obj b.obj -start=.text/100,.bss/200 -cpu=ROM=100-1FF,RAM=200-2FF



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 251 of 951
Dec 01, 2023

-CHECK_DEVICE

This option checks the device file specified when creating an object file.

[Specification format]

- Interpretation when omitted
The device file is not checked.

[Detailed description]

- This option checks that the device files specified when creating object files and the device file specified by the -device 
option are all the same.

- If there is a different device file, an error will occur.

[Example of use]

- To check that the device files specified when creating object files and the device file specified by the -device option 
are all the same, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

-CHECK_DEVICE

>rlink a.obj b.obj -check_device -device=dr5f10y14.dvf



R20UT3123EJ0113  Rev.1.13 Page 252 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CHECK_64K_ONLY

This option disables checking whether an allocated section exceeds the (64K-1)-byte boundary.

[Specification format]

- Interpretation when omitted
When an allocated section exceeds the 64K-byte boundary or (64K-1)-byte boundary, an error will occur.

[Detailed description]

- This option disables checking whether an allocated section exceeds the (64K-1)-byte boundary.

- When an allocated section exceeds the 64K-byte boundary, an error will occur.

- The sections with the following relocation attributes are subject to checking whether the 64K-byte boundary or 
(64K-1)-byte boundary is exceeded.

- An allocated section exceeding the 64K-byte boundary means that the lower 16 bits of the section's address will 
exceed 0xFFFF and continue to 0x0000.

- An allocated section exceeding the (64K-1)-byte boundary means that the lower 16 bits of the section's address will 
exceed 0xFFFE and continue to 0xFFFF.

[Example of use]

- To disable checking whether an allocated section exceeds the (64K-1)-byte boundary, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

-CHECK_64K_ONLY

Relocation Attribute Default Section Name

TEXTF_UNIT64KP .textf_unit64kp

CONST .const

CONSTF .constf

DATA .data

BSS .bss

DATAF .dataf

BSSF .bssf

>rlink a.obj b.obj -check_64k_only



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 253 of 951
Dec 01, 2023

-NO_CHECK_SECTION_LAYOUT

This option disables checking of the address to which the section is allocated.

[Specification format]

- Interpretation when omitted
Whether sections are allocated to memory as shown below is checked, and if they are not allocated so, an error will 
occur.

[Detailed description]

- This option disables checking whether the memory location that is read from the device file is consistent with the 
memory location of the section.

[Example of use]

- To disable checking of the address to which the section is allocated, describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

-NO_CHECK_SECTION_LAYOUT

Section Location for Allocation

.option_byte Address is fixed

.security_id Address is fixed

.sbss / .sdata saddr area

.sbss / .sdata (RAM side when the -rom option is specified) saddr area

.bss / .data Internal RAM

.bss / .data (RAM side when the -rom option is specified) Internal RAM

.const Flash mirror space

.constf Internal ROM

.sdata / .data (ROM side when the -rom option is specified) Internal ROM

.text Program memory

.text_unit64kp / .textf Program memory

>rlink a.obj b.obj -no_check_section_layout



R20UT3123EJ0113  Rev.1.13 Page 254 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-CHECK_OUTPUT_ROM_AREA [V1.07 or later]

This option checks whether the output address of a HEX file ranges in internal ROM or the data flash area.

[Specification format]

- Interpretation when omitted
Not checked.

[Detailed description]

- If this option is specified, whether the output address of an Intel HEX file or a Motorola S-record file ranges in internal 
ROM or the data flash area is checked. If there is data outside of the range of internal ROM or the data flash area, a 
warning is output.

[Example of use]

- To check whether the address of the output data of an Intel HEX file is outside of the range of internal ROM or the 
data flash area, code as:

[Remark]

- If the -device option is not specified, this option will be invalid.

- If the -form={hexadecimal | stype} option is not specified, this option will be invalid.

-CHECK_OUTPUT_ROM_AREA

>rlink -form=hex a.obj b.obj -device=dr5f100pj.dvf -check_output_rom_area



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 255 of 951
Dec 01, 2023

The subcommand file specification option is as follows.

- -SUbcommand

Subcommand file specification



R20UT3123EJ0113  Rev.1.13 Page 256 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-SUbcommand

This option specifies options with a subcommand file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies options with subcommand file file.

- Option contents specified with a subcommand file are expanded to the location at which this option is specified on the 
command line and are executed.

- See "2.4.2  Subcommand file usage" for details about a subcommand file.

[Example of use]

- Create subcommand file "sub.txt" with the following content.

To specify subcommand file sub.txt, describe as:

The command line is expanded as follows, and the file input order is: file1.obj, file2.obj, file3.obj, file4.obj.

-SUbcommand=file

input file2.obj file3.obj       ; This is a comment.
library lib1.lib, &             ; This is a line continued.
lib2.lib

>rlink file1.obj -subcommand=sub.txt file4.obj

>rlink file1.obj file2.obj file3.obj -library=lib1.lib,lib2.lib file4.obj



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 257 of 951
Dec 01, 2023

The microcontroller specification option is as follows.

- -DEVICE

Microcontroller specification



R20UT3123EJ0113  Rev.1.13 Page 258 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-DEVICE

This option specifies the device file name used at linkage.

[Specification format]

- Interpretation when omitted
The information of the device file is not used at linkage.
When this option is omitted, the settings of the user option bytes, the control value for the on-chip debug, and the 
security ID value become invalid.

[Detailed description]

- Specify the name of the target device file used at linkage as file.

- An error will occur if the specified file is not found.

- An object code corresponding to information of the specified target device file is generated.

- An error will occur if the specifications in the device file differ from the CPU core or the use of the division/multiplica-
tion and multiply-accumulate unit specified in the compiler, or the CPU core specified in the assembler.

- An error will occur if the mirror area specified in the assembler differs from that specified in the device file.

[Example of use]

- To specify target device file name DR5F10Y14.DVF, describe as:

[Remark]

- If a device file has not been specified, an error is not output even when the section for the saddr variables is located 
outside of the saddr area.

-DEVICE=file

>rlink file1.obj -device=dr5f10y14.dvf



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 259 of 951
Dec 01, 2023

Other options are as follows.

- -S9

- -STACk

- -COmpress

- -NOCOmpress

- -MEMory

- -REName

- -LIB_REName [V1.08 or later]

- -DELete

- -REPlace

- -EXTract

- -STRip

- -CHange_message

- -Hide

- -Total_size

- -VERBOSE [V1.10 or later]

- -LOgo

- -NOLOgo

- -END

- -EXIt

Other



R20UT3123EJ0113  Rev.1.13 Page 260 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-S9

This option outputs the S9 record at the end.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option outputs the S9 record at the end even if the entry point address exceeds 0x10000.

[Example of use]

- To output the S9 record at the end, describe as:

[Remark]

- If the -form=stype option is not specified, this option will be invalid.

-S9

>rlink a.obj b.obj -form=stype -output=c.mot -s9



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 261 of 951
Dec 01, 2023

-STACk

This option outputs the stack information file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option outputs the stack information file.

- The file name is "output-file-name.sni".

[Example of use]

- To output stack information file "c.sni", describe as:

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

-STACk

>rlink a.obj b.obj -output=c.abs -stack



R20UT3123EJ0113  Rev.1.13 Page 262 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-COmpress

This option compresses the debug information.

[Specification format]

- Interpretation when omitted
The debug information is not compressed (It is the same result as when the -nocompress option is specified).

[Detailed description]

- This option compresses the debug information.

- By compressing the debug information, the loading speed of the debugger is improved.

[Example of use]

- To compress the debug information, describe as:

[Remark]

- If the -form={object|relocate|library|hexadecimal|stype|binary} option or -strip option is specified, this option will be 
invalid.

-COmpress

>rlink a.obj b.obj -output=c.abs -compress



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 263 of 951
Dec 01, 2023

-NOCOmpress

This option does not compress the debug information.

[Specification format]

- Interpretation when omitted
The debug information is not compressed.

[Detailed description]

- This option does not compress the debug information.

- Link time when specifying this option is shorter than when the -compress option is specified.

[Example of use]

- Not to compress the debug information, describe as:

-NOCOmpress

>rlink a.obj b.obj -output=c.abs -nocompress



R20UT3123EJ0113  Rev.1.13 Page 264 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-MEMory

This option specifies the memory size occupied during linking.

[Specification format]

- Interpretation when omitted
The processing is the same as when the -memory=high option is specified.

[Detailed description]

- This option specifies memory size occupancy occupied during linking.

- The items that can be specified as occupancy are shown below.

- If occupancy is omitted, it is assumed that "High" has been specified.

- Specify "Low" as occupancy if processing is slow because a large project is linked and the memory size occupied by 
the optimizing linker exceeds the available memory in the machine used.

[Example of use]

- To reduce the memory occupancy, describe as:

[Remark]

- In the following cases, the specification of the -memory=low option will be invalid.

- When the -form={absolute|hexadecimal|stype|binary} option and following options are specified at the same 
time

- Any of the -compress, -delete, -rename, -lib_rename, -stack, or -optimize options

- Combination of the -list option and the -show[={reference|xreference|struct|all}] option

- When the -form=library option and following options are specified at the same time

- Any of the -delete, -rename, -extract, -hide, -replace, or -allow_duplicate_module_name options

- When the -form={object|relocate} option and following options are specified at the same time

- -extract option
Some combinations of this option and the input or output file format are invalid.
See "Table 2.9  Relations Between Output Formats And Input Files Or Other Options" for details.

-MEMory=[occupancy]

High The optimizing linker loads the information necessary for linking in large units to prioritize the pro-
cessing speed.

Low The optimizing linker loads the information necessary for linking in smaller units to reduce the 
memory occupancy.
This increases the frequency of file access.  As a result, processing will be slower than when 
"High" is specified if the memory used is not larger than implementation memory.

>rlink a.obj b.obj -nooptimize -memory=low



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 265 of 951
Dec 01, 2023

-REName

This option changes an external symbol name or a section name.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option changes an external symbol name or a section name.

- Specify the symbol name or section name to be changed as name1.  Specify the symbol name or section name after 
changing as name2.

- By specifying file, you can change only the names of the sections included in file.

- When the output of library files is selected (with -form=library), you can specify module so that only the names of the 
sections included in module within the input library will be changed.
To change section names within the input library in other cases, use the -lib_rename option.

- By specifying file or module, you can change only the names of the global symbols included in file or module.

- When a C variable name is specified, add "_" at the head of the definition name in the program.

- If the specified name matches both section and symbol names, the symbol name is changed.

- If there are two or more files or modules with the same name, the priority depends on the input order.

- If this option is specified more than once, all specifications will be valid.

- An error will occur in the following case.

- When the specified name, file, or module cannot be found

[Example of use]

- To change symbol name "_sym1" to "_data", describe as:

- To change section ".SEC1" in library module "lib1" to section ".SEC2", describe as:

[Remark]

- If this option is specified together with the -extract option or -strip option, an error will occur.

- When the -form={absolute|hexadecimal|stype|binary} option is specified, the section name of the input library cannot 
be changed.

- Operation is not guaranteed if this option is used in combination with compile option -Omerge_files.

-REName=suboption[, ...]
  suboption := {(names)|file(names)|module(names)}
  names := name1=name2[, ...]

>rlink a.obj b.obj -rename=(_sym1=_data)

>rlink -form=library -library=lib1.lib -rename=(.SEC1=.SEC2)



R20UT3123EJ0113  Rev.1.13 Page 266 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-LIB_REName [V1.08 or later]

This option changes the name of a symbol or section that was input from a library.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option changes the name of a global symbol or section included in a module within the library that was specified 
by the -library option.

- Specify the symbol name or section name to be changed as name1. Specify the symbol name or section name after 
changing as name2.

- When you specify a C variable name, add "_" at the head of the definition name in the program.

- If the specified name matches both section and symbol names, the symbol name is changed.

- If there are two or more files or modules with the same name, the priority depends on the input order.

- If this option is specified more than once, all specifications will be valid.

- An error will occur in any of the following cases.

- When the specified name, file, or module cannot be found

- When the parameter is omitted

[Example of use]

- To change "_sym1" in b.lib to "_data", describe as:

[Remark]

- If this option is specified together with the -form={object,library}, -extract or -strip option, an error will occur.

- When the -form={absolute|hexadecimal|stype|binary} option is specified, the -show=struct option cannot be specified 
together.

- The section name of the input library cannot be changed.

- Correct operation is not guaranteed if this option is used in combination with the compile option -Omerge_files.

-LIB_REName=suboption[, ...]
  suboption := (names)
            |  file(names)
            |  file|modules(names)
  modules := module[|module ...]
  names := name1=name2[, ...]

>rlink a.obj -lib=b.lib,c.lib -lib_rename=b.lib(_sym1=_data)



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 267 of 951
Dec 01, 2023

-DELete

This option deletes an external symbol name or a library module.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option deletes external symbol name symbol or library module module.

- Symbol names or modules in specific file file can be deleted.

- When a C variable name or C function name is specified, add "_" at the head of the definition name in the program.

- If there are two or more files with the same name, the priority depends on the input order.

- When a symbol is deleted using this option, the object is not deleted but the attribute is changed to the internal sym-
bol.

[Example of use]

- To delete symbol name "_sym1" in all the files, describe as:

- To delete symbol name "_sym2" in b.obj, describe as:

[Remark]

- If this option is specified together with the -extract option or -strip option, this option will be invalid.

- When the -form=library option is specified, library modules can be deleted.

- When the -form={absolute|relocate|hexadecimal|stype|binary} option is specified, external symbols can be deleted.

- Operation is not guaranteed if this option is used in combination with compile option -Omerge_files.

-DELete=suboption[, ...]
  suboption := {(symbol[, ...])|file(symbol[, ...])|module}

>rlink a.obj -delete=(_sym1)

>rlink a.obj b.obj -delete=b.obj(_sym2)



R20UT3123EJ0113  Rev.1.13 Page 268 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-REPlace

This option replaces library modules.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option replaces specified file file or library module module with the module having the same name in the library 
file specified by the -library option.

[Example of use]

- To replace file1.obj with module "file1" in library file lib1.lib, describe as: 

- To replace module "mdl1" with module "mdl1" in library file lib1.lib, describe as: 

[Remark]

- If the -form={object|relocate|absolute|hexadecimal|stype|binary} option and the -extract or -strip option is specified, 
this option will be invalid.

- Operation is not guaranteed if this option is used in combination with compile option -Omerge_files.

-REPlace=suboption[, ...]
  suboption := {file|file(module[, ...])}

>rlink -library=lib1.lib -replace=file1.obj -form=library

>rlink -library=lib2.lib -replace=lib1.lib(mdl1) -form=library



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 269 of 951
Dec 01, 2023

-EXTract

This option extracts library modules.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option extracts library module module from the library file specified by the -library option.

[Example of use]

- To extract module "file1" from library file "lib.lib" and output it to a file with the object file output format, describe as:

[Remark]

- If the -form={absolute|hexadecimal|stype|binary} option and the -strip option is specified, this option will be invalid.

- When the -form=library option is specified, library modules can be deleted. 

- When the -form={absolute|relocate|hexadecimal|stype|binary} option is specified, external symbols can be deleted. 

-EXTract=module[,module]...

>rlink -library=lib1.lib -extract=file1 -form=obj



R20UT3123EJ0113  Rev.1.13 Page 270 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-STRip

This option deletes debug information in the load module file or library file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option deletes debug information in the load module file or library file.

- The files before debug information is deleted are backed up in file "file-name.abk".

- Multiple input files cannot be specified.

[Example of use]

- To delete debug information of file1.abs and output these to file1.abs, respectively, describe as:
The files before debug information is deleted are backed up in file1.abk.

[Remark]

- If the -form={object|relocate|hexadecimal|stype|binary} option is specified, this option will be invalid.

-STRip

>rlink -strip file1.abs



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 271 of 951
Dec 01, 2023

-CHange_message

This option changes the type of information, warning, and error messages.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option changes type level of information, warning, and error messages.

- The execution continuation or abort at the message output.

- The items that can be specified as level are shown below.

- If message number num is specified, the type of the message with the specified number is changed.
Also, a range of message numbers can be specified using a hyphen (-).

- Specify the 4-digit number that is output after the component number (05) and the phase of occurrence (6) as num 
(for example, specify 2310 for message number E0562310).

- If the specification of a message number is omitted, the types of all messages are changed to the specified one.

[Example of use]

- To change "E0561310" to a warning and continue the execution at the "E0561310" output, describe as:

- To change all information and warning messages to error messages, describe as:
If a message is output, the execution will abort.

-CHange_message=suboption[, ...]
  suboption := {level|level=range[, ...]}
  range := {num|num-num}

INFORMATION Information

WARNING Warning

ERROR Error

>rlink a.obj b.obj -change_message=warning=1310

>rlink a.obj b.obj -change_message=error



R20UT3123EJ0113  Rev.1.13 Page 272 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-Hide

This option deletes local symbol name information from the output file.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option deletes local symbol name information from the output file.

- Since the name information regarding local symbols is deleted, local symbol names cannot be checked even if the file 
is opened with a binary editor.
This option does not affect the operation of the generated file.

- Use this option to keep the local symbol names secret.

- The following types of symbols are hidden.
The entry function name is not hidden.

- C source: Variable or function names specified with the static qualifiers

- C source: Label names for the goto statements

- Assembly source: Symbol names of which external definition (reference) symbols are not declared

[Example of use]

- To delete local symbol name information from the output file, describe as:

The C source example in which this option is valid is shown below.

-Hide

>rlink a.obj b.obj -hide



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 273 of 951
Dec 01, 2023

[Remark]

- This option is valid only when the -form={absolute|relocate|library} option is specified.

- This option cannot be specified when a file specified by the -goptimize option at compilation or assembly is input and 
the relocatable or library file format is specified for the output file.

- When this option is specified with the external variable access optimization, do not specify it for the first linking, and 
specify it only for the second linking.

- The symbol names in the debug information are not deleted by this option.

int g1;
int g2=1;
const int g3=3;
static int s1;          //<--- The static variable name will be hidden.
static int s2=1;        //<--- The static variable name will be hidden.
static const int s3=2;  //<--- The static variable name will be hidden.

static int sub1()       //<--- The static variable name will be hidden.
{
        static int s1;  //<--- The static variable name will be hidden.
        int l1;
    
        s1 = l1; l1 = s1;
        return(l1);
}

int main()
{
        sub1();
        if (g1==1)
                goto L1;
        g2=2;
L1:                     //<--- The label name of the goto statement will be hidden.
        return(0);
}



R20UT3123EJ0113  Rev.1.13 Page 274 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-Total_size

This option displays the total size of sections after the linking to the standard error output.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option displays the total size of sections after the linking to the standard error output.

- The sections are categorized as follows, with the overall size of each being displayed.

- Executable program sections

- Non-program sections allocated to the ROM area

- Sections allocated to the RAM area

- This option makes it easy to see the total sizes of sections allocated to the ROM and RAM areas.

[Example of use]

- To display the total size of sections after the linking to the standard error output, describe as:

[Remark]

- The -show=total_size option must be specified in order to output the total sizes to the link map file.

- When the -rom option has been specified for a section, that section will be used by both the origin (ROM) and destina-
tion (RAM) for the transfer of the data in the section. The sizes of such sections are to be considered in the total sizes 
of sections in both ROM and RAM.

- If the -form={object|relocate|library} option or -extract option is specified, this option will be invalid.

-Total_size

>rlink a.obj b.obj -total_size



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 275 of 951
Dec 01, 2023

-VERBOSE [V1.10 or later]

This option displays detailed information in the standard error output.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option displays the contents specified by the suboption in the standard error output.

- The suboption below can be specified.

[Example of use]

- To display the CRC operation result and its output address in the standard error output, describe as:

-VERBOSE=<sub>[, ...]
sub : CRC

CRC This suboption displays the CRC operation result and its output address.
Valid when the crc option is specified.

> rlink a.obj -form=stype -start=.SEC1/1000 -crc=2000=1000-10ff/CCITT -verbose=crc



R20UT3123EJ0113  Rev.1.13 Page 276 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-LOgo

This option outputs the copyright notice.

[Specification format]

- Interpretation when omitted
This option outputs the copyright notice.

[Detailed description]

- This option outputs the copyright notice.

[Example of use]

- To output the copyright notice, describe as:

-LOgo

>rlink a.obj b.obj -logo



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 277 of 951
Dec 01, 2023

-NOLOgo

This option suppresses the output of the copyright notice.

[Specification format]

- Interpretation when omitted
The copyright notice is output (It is the same result as when the -logo option is specified).

[Detailed description]

- This option suppresses the output of the copyright notice.

[Example of use]

- To suppress the output of the copyright notice, describe as:

-NOLOgo

>rlink a.obj b.obj -nologo



R20UT3123EJ0113  Rev.1.13 Page 278 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-END

This option executes option strings specified before this option.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option executes option strings specified before this option.
After link processing is terminated, option strings specified before this option are input and link processing is contin-
ued.

[Caution]

- This option can be used only in a subcommand file.

[Example of use]

- Create subcommand file "sub.txt" with the following content.

To specify subcommand file sub.txt, describe as:

Processing from (1) to (3) are executed and a.abs is output.
Then processing from (4) to (6) are executed and a.mot is output.

-END

input=a.obj,b.obj                       ;(1)
start=.SEC1,.SEC2,.SEC3/100,.SEC4/8000  ;(2)
output=a.abs                            ;(3)
end
input=a.abs                             ;(4)
form=stype                              ;(5)
output=a.mot                            ;(6)

>rlink -subcommand=sub.txt



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 279 of 951
Dec 01, 2023

-EXIt

This option specifies the end of option specifications.

[Specification format]

- Interpretation when omitted
None

[Detailed description]

- This option specifies the end of option specifications.

[Caution]

- This option can be used only in a subcommand file.

[Example of use]

- Create subcommand file "sub.txt" with the following content.

To specify subcommand file sub.txt, describe as:

Processing from (1) to (3) are executed and a.abs is output.
The -nodebug option specified on the command line after this option is executed is invalid.

-EXIt

input=a.obj,b.obj                       ;(1)
start=.SEC1,.SEC2,.SEC3/100,.SEC4/8000  ;(2)
output=a.abs                            ;(3)
exit

>rlink -subcommand=sub.txt -nodebug



R20UT3123EJ0113  Rev.1.13 Page 280 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

2.5.4  Library generator options [V1.13.00 or later]

This section explains options for the library generation phase.

Table 2.10 Library Generator Options

Classification Option Description

Library 
generation 
control

-head This option specifies the library to be configured.

-lang This option specifies the language standard of the standard 
library.

-secure_malloc [Professional 
Edition only]

This option generates a malloc library for security facility.

Output control -output This option specifies the output file name.

Other -logo / -nologo This option controls the copyright display.

-subcommand This option specifies the subcommand file.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 281 of 951
Dec 01, 2023

The library generation control options are as follows.

- -head

- -lang

- -secure_malloc [Professional Edition only]

Library generation control



R20UT3123EJ0113  Rev.1.13 Page 282 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-head

This option specifies the library to be configured.

[Specification format]

- Interpretation when omitted
It is the same result as when -head=all is specified.

[Detailed description]

- This option specifies a library to be configured with a header file name.

- If -head=all is specified, all header file names are specified as those to be configured.

- Runtime libraries are always configured.

-head=<sub>[,...]
<sub> : { all | runtime | ctype | math | mathf | stdio | stdlib | string | inttypes }



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 283 of 951
Dec 01, 2023

-lang

This option specifies the language standard of the standard library.

[Specification format]

- Interpretation when omitted
It is the same result as when -lang=c is specified.

[Detailed description]

- This option specifies the language standard of the standard library.

- When -lang=c is selected, the library includes only the components that conform to the C89 standard, and the 
functions expanded in the C99 standard are not included. When -lang=c99 is selected, the library is configured by 
components conforming to the C89 and C99 standards.

- Make sure that the specification is the same as those for the applications that reference the library.

[Remark]

- The C++ standard library is not supported.

-lang={ c | c99 }



R20UT3123EJ0113  Rev.1.13 Page 284 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-secure_malloc [Professional Edition only]

This option generates a malloc library for security facility.

[Specification format]

- Interpretation when omitted
A malloc library for normal use is generated.

[Detailed description]

- This option generates a malloc library for security facility.

- When using a malloc library for security facility, the __heap_chk_fail function is called when one of the following 
operations is performed:

- A pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- After a value is written to an address outside the area allocated by calloc, malloc, or realloc (within two bytes 
before and after the allocated area), the pointer to that area is passed to free or realloc.

- The __heap_chk_fail function needs to be defined by the user. This function describes the processing to be executed 
when an error occurs in management of dynamic memory.

- Note the following points when defining the __heap_chk_fail function.

- The __heap_chk_fail function should be a far function whose return value and parameter type should be the 
void type.
void __far __heap_chk_fail(void);

- Do not define the __heap_chk_fail function as static.

- Corruption of heap memory area should not be detected recursively in the __heap_chk_fail function.

- The calloc, malloc, and realloc functions for the security facility allocate two extra bytes each before and after an 
allocated area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap 
memory area than with the usual functions.

[Caution]

- The default size of the heap memory area is 0x100 bytes.

- To change the heap memory area, define the _REL_sysheap array and set the array size in the 
_REL_sizeof_sysheap variable.

Remark The _REL_sysheap array should be allocated to an even address.

-secure_malloc

[Example of setting the heap memory area]
#include <stddef.h>
#define SIZEOF_HEAP  0x200
int _REL_sysheap[SIZEOF_HEAP / sizeof(int)];
size_t _REL_sizeof_sysheap = SIZEOF_HEAP;



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 285 of 951
Dec 01, 2023

The output control option is as follows.

- -output

Output control



R20UT3123EJ0113  Rev.1.13 Page 286 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-output

This option specifies the output file.

[Specification format]

- Interpretation when omitted
A standard library with the file name stdlib.lib is generated in the current folder.

[Detailed description]

- This option specifies the output file name for the standard library.

- file should be specified by using an absolute path or a relative path.

- A relative path used to specify file is interpreted as the relative path from the current folder.

- An error will occur if file is omitted.

-output=file



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 287 of 951
Dec 01, 2023

Other options are as follows.

- -logo / -nologo

- -subcommand

Other



R20UT3123EJ0113  Rev.1.13 Page 288 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

-logo / -nologo

This option controls the copyright display.

[Specification format]

- Interpretation when omitted
The copyright is displayed.

[Detailed description]

- When -logo is specified, the copyright is displayed. When -nologo is specified, the copyright is not displayed.

- If these options are specified at the same time, the option specified last will be valid.

-logo
-nologo



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 289 of 951
Dec 01, 2023

-subcommand

This option specifies the subcommand file.

[Specification format]

[Detailed description]

- This option handles file as a subcommand file.

- An error will occur if the file specified by file does not exist.

- An error will occur if file is omitted.

-subcommand=file



R20UT3123EJ0113  Rev.1.13 Page 290 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

Compile options that can be specified for the library generator

In addition to library options, compile options can be specified for the library generator so that they can be selected 
when compiling a library.

The following compile options can be specified for the library generator. If any other compile option is specified, an error 
occurs or the specification is ignored without a warning output.

Make sure that the specifications of these options are the same as those for the application programs that reference the 
library. Library-specific specifications of some options are possible. Such options are indicated in the "Individual 
specification" column.

For details about each option, see "2.5.1  Compile options".

Compile option name Individual Specification Remarks

-cpu Not possible

-use_mda Not possible

-lang Not possible

-dbl_size Not possible

-O[level] Possible

-Oitem Possible The following can be specified for item:
- unroll
- delete_static_func
- inline_level
- inline_size
- pipeline
- tail_call
- alias
- same_code
- branch_chaining
- align

-goptimize Possible

-stuff Possible



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 291 of 951
Dec 01, 2023

2.6  Specifying Multiple Options

This section describes the operation when two or more options are specified for the ccrl command at the same time.

Note the following when specifying multiple options by using -subcommand or -asmopt.

- When a file is specified through the -subcommand option, the options in the file are expanded at the location where 
the -subcommand option is specified on the command line.  Therefore, the rules described in this section are applied 
to the options and location after expansion.

- When options are specified through any of -asmopt, -lnkopt, -asmcmd, and -lnkcmd, the specified options are not 
expanded on the command line.  Therefore, the rules described in this section are not applied to these options.

2.6.1  Specifying multiple times of options

The following describes the compiler operation when the same option is specified multiple times.

2.6.2  Priority of options

The following options disable other options.

Specifying any of the following options disables part of the functions of other options.

- -volatile
The external variables and the variables specified with #pragma address are not optimized even when the -O option 
is specified.

Same operation as when speci-
fied only one time (with no param-
eter)

-V, -help, -g, -far_rom, -goptimize, -pass_source, -signed_char, -signed_bitfield, 
-volatile, -merge_string,  -pack, -strict_std, -refs_without_declaration, 
-large_variable, -nest_comment, -check_language_extension, -Omerge_files, 
-Ointermodule, -Owhole_program, -g_line, 
-control_flow_integrity, -unaligned_pointer_for_ca78k0r

The parameters for all option 
specifications are valid

-D, -U, -I, -preinclude, -preprocess, -no_warning_num, -change_message,
-subcommand, -asmopt, -asmcmd , -lnkopt, -lnkcmd

The last option specification and 
its location are valid, or the 
parameters for the last option 
specification are valid

-o, -obj_path, -asm_path, -prep_path, -Olevel, -Oinline_level, 
-Oinline_size, -Opipeline, -Ounroll, -Odelete_static_func, -Oalias, 
-Otail_call, -Osame_code, -switch, -character_set, -stack_protector, 
-stack_protector_all, -lang, -P, -S, -c, -use_mda, -memory_model, 
-dbl_size, -error_file, -misra2004, -misra2012, -ignore_files_misra, 
-misra_intermodule, -Obranch_chaining, -Oalign

Error -cpu, -dev, -convert_cc

-V, -h All options will be invalid.

-P Since execution is terminated at preprocessing, the options related to the subsequent processing 
after preprocessing will be invalid.
Note that only the macro definitions resulted from option settings are valid even if the options them-
selves are invalid.

Example When -P and -cpu=S1 are specified together, the operation ends after the prepro-
cessing and no code is generated for the S1 core.
However, predefined macro __RL78_S1__, which should be output when -
cpu=S1 is specified, becomes valid, and the definitions depending on 
__RL78_S1__ (such as #ifdef definitions) are valid in the preprocessing.

-S Since execution is terminated at compile processing, options related to the assemble processing 
will be invalid.

-c Since execution is terminated at assemble processing, options related to the link processing will be 
invalid.

-lang=c99 -misra2004 and -convert_cc will be invalid.



R20UT3123EJ0113  Rev.1.13 Page 292 of 951
Dec 01, 2023

CC-RL 2.  COMMAND REFERENCE

- -far_rom
The near/far attribute of ROM data is set to far regardless of whether the -memory_model option is specified.

- -Oalias
Even when -Oalias=noansi and -strict_std are specified together, -Oalias=ansi is not valid.

If options are specified by the following combinations, the option specified last will be valid with outputting a warning.

- -P, -S, -c

- -D, -U (When their symbol names are same.)

- -Onothing, -Olite, -Odefault, -Osize, -Ospeed

Depending on the order of specified options, the following options will be invalid.

- -OitemNote that is specified before -Onothing, -Olite, -Odefault, -Osize, or -Ospeed

Note -Oitem can be any of the following options.
-Ounroll, -Odelete_static_func, -Oinline_level, -Oinline_size, -Opipeline, -Otail_call, -Osame_code, 
-Obranch_chaining, -Oalign

2.6.3  Combinations of options with conflicting features

If options are specified by the following combinations, an error will occur.

- -dev
If the specifications in -cpu or -use_mda do not match the contents of the device file specified by -dev, an error will 
occur.

- -misra2004 and –misra2012
A compile error will occur when -misra2004 and -misra2012 are specified simultaneously.

2.6.4  Dependence between options

The behavior of the following options varies depending on what other options are specified.

2.6.5  Relationship with #pragma directives

The behavior of the following options varies depending on the relationship with #pragma directives.

- -cpu=S1
If register bank specification "bank=" is used in #pragma interrupt or #pragma interrupt_brk, a compilation error will 
occur.

- When a #pragma-specified function or variable is declared without ___near or __far, the near/far attribute of the func-
tion or variable is affected by the settings of the -cpu, -memory_model, and -far_rom options.

-preprocess This option will be invalid if the -P option is not specified at the same time.
At this time, a warning will not be output.

-o If the -P, -S, or -c option is specified at the same time, then the generated file types will be a prepro-
cessed file, assembly source file, or object file.

-g If the -O option is specified at the same time, debug information may not be output in source line 
units due to optimization effects.

-Oinline_level If this option is specified at the same time with the -merge_files option, inline expansion may be 
performed between files.



CC-RL 2.  COMMAND REFERENCE

R20UT3123EJ0113  Rev.1.13 Page 293 of 951
Dec 01, 2023

2.6.6  Relationship with near and far

The near/far attribute of data and functions is determined by options and keywords. 
The following shows how to determine the near/far attribute.

For (b) and (c) in the above table (-memory_model and -far_rom options), the following shows the near/far attribute 
determined for ROM data and RAM data when only the former option is specified and when both options are specified.

Option Or Keyword How to Determine near/far Attribute Priority

(a) -cpu This option determines the default near/far attribute. 1

(b) -memory_model This option overwrites the default near/far attribute determined by (a). 2

(c) -far_rom Only for ROM data, this option overwrites the near/far attribute deter-
mined by (b) with the far attribute.

3

(d) __near/__far These settings are not affected by (a) to (c); the __near and _far 
specifications are valid.

4

type Value Specified in -
memory_model=type

-far_rom 
Specification

Function ROM Data RAM Data

small Not specified near near near

medium far near near

small Specified near far near

medium far far near



R20UT3123EJ0113  Rev.1.13 Page 294 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.  OUTPUT FILES

This chapter explains the format and other aspects of files output by a build via each command.

3.1  Assemble List File

This section explains the assemble list file.
The assemble list is the list-formatted version of the code that is output when the source has been compiled and assem-

bled.
It can be used to check the code resulting from compilation and assembly.

3.1.1  Structure of the assemble list

The structure and contents of the assemble list are shown below.

3.1.2  Assemble list information

The assembler information, location counter value, code, line number, and source program under assembly is  output.
The output example of the assemble list is shown below.

Output Information Description

Assemble list information Assembler information, location counter value, code, line number, and source program 
under assembly

Section list information Type, size, and name of section

Command line information Character string of command line of assembler

(1)* RL78 Family Assembler VX.XX.XXx * Assemble Source List *
(2)       (3)                 (4) (5)
OFFSET    CODE                NO  SOURCE STATEMENT

00000000                       1  #CC-RL Compiler RL78 Assembler Source
00000000                       2  #@  CC-RL Version : VX.XX.XXx [DD Mmm YYY]
00000000                       3  #@  Commmand :
00000000                       4  #@   -cpu=S3
00000000                       5  #@   -S
00000000                       6  #@   tp.c
00000000                       7  #@  compiled at Sun May 18 18:59:17 2014
00000000                       8
00000000                       9            .PUBLIC     _label
00000000                      10            .PUBLIC     _func
00000000                      11
00000000                      12            .SECTION    .textf,TEXTF
00000000                      13  _func:
00000000                      14            .STACK      _func = 4
00000000 8F0000               15            mov         a, !LOWW(_label)
00000003 D7                   16            ret
00000000                      17            .SECTION    .bss,BSS
00000000                      18            .ALIGN      2
00000000                      19  _label:
00000000                      20            .DS         (2)

Number Description

(1) Assembler information
The type and version of the assembler are output.



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 295 of 951
Dec 01, 2023

Remark The output of instructions DIVHU and DIVWU in an assemble list.

In the assemble list, the DIVHU and DIVWU instructions are shown as follows.
The DIVHU and DIVWU instructions in the assembly source program are each expanded by macro 
expansion into the DIVHU and NOP instructions and the DIVWU and NOP instructions.

Example
Input program example including DIVHU and DIVWU (sample.asm).

Output program example including DIVHU and DIVWU (a part of sample.prn).

(2) Location counter value
The location counter value for the beginning of the code generated for the source program of the corre-
sponding line is output.

(3) Code
The code (machine language instruction or data) generated for the source program of the corresponding 
line is output.
Each byte is expressed as 2-digit hexadecimal number.

Example When "8F0000" is output in the list, "8F", "00", and "00" are stored from the lower bytes.

(4) Line number
The number of the line is output.  The lines where include files are expanded are also counted.
This is expressed in a decimal number.

(5) Source program
The source program of the line is output.
Compiler information (lines 1 to 4) is output only when an assembly source file output from the compiler 
is assembled.

DIVHU   ; comment1
DIVWU   ; comment2

00000000                1  DIVHU       ; comment1
00000000 CEFB03         2  -- div**
00000003 00             3  -- nop
00000004                4  DIVWU       ; comment2
00000004 CEFB0B         5  -- div**
00000007 00             6  -- nop

Number Description



R20UT3123EJ0113  Rev.1.13 Page 296 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.1.3  Section list information

The type, size, and name of the section is output.
The output example of the section list is shown below.

3.1.4  Command line information

The character string of the command line of the assembler is output.
The output example of the command line information is shown below.

Section List
(1)     (2)                 (3)
Attr    Size                Name

TEXTF   4 (00000004)        .textf
BSS     2 (00000002)        .bss

Number Description

(1) Section type
The relocation attribute of the section is output.

(2) Section size
The size of the section is output.
This is expressed in a decimal number and also expressed in hexadecimal number in parentheses.

(3) Section name
The name of the section is output.

Command Line Parameter
-cpu=S3 tp.asm -prn_path        (1)

Number Description

(1) Character string of command line
The character string of the command line specified for the assembler is output.



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 297 of 951
Dec 01, 2023

3.2  Link Map File

This section explains the link map file.
The link map has information of the link result.  It can be referenced for information such as the section's allocation 

addresses.

3.2.1  Structure of link map

The structure and contents of the link map are shown below.

Caution The -show option is valid when the -list option is specified.
See "-SHow" for details about the -show option.

3.2.2  Header information

The version information of the optimizing linker and the time of linkage are output.
The output example of the header information is shown below.

Output Information Description -show Option 
Specification

When -show 
Option Is Omitted

Header information Version information of the optimizing linker 
and time of linkage

- Output

Option information Option strings specified by a command line 
or subcommand file

- Output

Error information Error message - Output

Link map information Section name, start/end addresses, size, 
and type

- Output

When -show=relocation_attribute is speci-
fied, the relocation attribute is output.

-show=relocation_
attribute

No output

Total section size Total sizes of RAM, ROM, and program sec-
tions

-show=total_size No output

Symbol information Static defined symbol name, address, size, 
type (in the order of address), and whether 
optimization is applied
When the -show=reference is specified, the 
reference count of each symbol is also out-
put.
When -show=struct is specified, information 
on the structure and union members is out-
put.

-show=symbol
-show=reference
-show=struct

No output

Contents of the function list Contents of the function list for use in 
detecting illegal indirect function calls

-show=cfi No output

Cross reference information Symbol reference information -show=xreference No output

Vector table address infor-
mation

Contents of the vector table addresses -show=vector No output

CRC information CRC operation result and its output address - Always output 
when the -crc 
option is specified

Renesas Optimizing Linker (VX.XX.XX)            XX-Xxx-XXXX XX:XX:XX    (1)



R20UT3123EJ0113  Rev.1.13 Page 298 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.2.3  Option information

Option strings specified by a command line or subcommand file are output.
The output example of the option information when the following command line and subcommand file are specified is 

shown below.

<Command line>

<Subcommand file "sub.txt">

3.2.4  Error information

Error messages are output.
The output example of the error information is shown below.

3.2.5  Link map information

Start/end addresses, size, and type of each section are output in the order of address.
The output example of the link map information is shown below.

Number Description

(1) Version information of the optimizing linker and time of linkage
The version information of the optimizing linker and the time of linkage are output.

>rlink -subcommand=sub.txt -list -show

input sample.obj

*** Options ***

-subcommand=sub.txt     (1)
input sample.obj        (2)
-list                   (1)
-show                   (1)

Number Description

(1) Options specified by command line
The options specified by the command line are output (in their specified order).

(2) Options specified in subcommand file
The options specified in subcommand file "sub.txt" are output.

*** Error Information ***

** E0562310:Undefined external symbol "_func_02" referenced in "sample.obj"     (1)

Number Description

(1) Error message
Error messages are output.



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 299 of 951
Dec 01, 2023

When -show=relocation_attribute is specified, the relocation attribute corresponding to the section is output. An output 
example of the relocation attribute is shown below.

*** Mapping List ***

(1)                                (2)        (3)         (4)     (5)
SECTION                            START      END         SIZE    ALIGN

.textf
                                  00000100  0000013b        3c    1
.data
                                  000f0400  000f0403         4    2
.bss
                                  000f0404  000f040b         8    2

Number Description

(1) Section name
The name of the section is output.

(2) Start address
The start address is output.
This is expressed in a hexadecimal number.

(3) End address
The end address is output.
This is expressed in a hexadecimal number.

(4) Section size
The section size is output (byte).
This is expressed in a hexadecimal number.

(5) Section alignment size
The section alignment size is output.

*** Mapping List ***

SECTION                            START      END         SIZE    ALIGN    ATTRIBUTE
                                                                           (1)

.textf
                                  00000100  0000013b        3c    1        TEXTF
.data
                                  000f0400  000f0403         4    2        DATA
.bss
                                  000f0404  000f040b         8    2        BSS



R20UT3123EJ0113  Rev.1.13 Page 300 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.2.6  Total section size

When the -show=total_size option is specified, the total sizes of RAM, ROM, and program sections are output.
The output example of the total section size is shown below.

3.2.7  Symbol information

When the -show=symbol option is specified, the external defined symbol or static internal defined symbol address, size, 
type, and whether optimization is applied are output in the order of address.

When the -show=reference option is specified, the reference count of each symbol is also output.
The output example of the symbol information is shown below.

Number Description

(1) Relocation attribute
The relocation attribute of the section is output.
It is output as shown below in response to the code written in the assembly language.

Relocation attribute
CALLT0
TEXT
TEXTF
TEXTF_UNIT64KP
AT
CONST
CONSTF
DATA
DATAF
SDATA
DATA_AT
BSS
BSSF
SBSS
BSS_AT
OPT_BYTE
SECUR_ID
FLASH_SECUR_ID
OTHER

Link map information
CALLT0
TEXT
TEXTF
TEXTF_UNIT64KP
TEXT_AT
CONST
CONSTF
DATA
DATAF
SDATA
DATA_AT
BSS
BSSF
SBSS
BSS_AT
OPT_BYTE
SECUR_ID
FLASH_SECUR_ID
OTHER

*** Total Section Size ***

RAMDATA SECTION:        00000660 Byte(s) (1)
ROMDATA SECTION:        00000174 Byte(s) (2)
PROGRAM SECTION:        000016d6 Byte(s) (3)

Number Description

(1) Total size of RAM data sections
The total size of RAM data sections is output.
This is expressed in a hexadecimal number.

(2) Total size of ROM data sections
The total size of ROM data sections is output.
This is expressed in a hexadecimal number.

(3) Total size of program sections
The total size of program sections is output.
This is expressed in a hexadecimal number.



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 301 of 951
Dec 01, 2023

*** Symbol List ***

SECTION=(1)
FILE=(2)
                (3)          (4)              (5)
                START        END              SIZE
  (6)           (7)          (8)              (9)           (10)    (11)
  SYMBOL        ADDR         SIZE             INFO          COUNTS  OPT

SECTION=.text
FILE=sample.obj
                00000100     00000123         24
  _main
                00000100            0         func ,g            0
  _func_01
                00000118            0         func ,g            0
SECTION=.bss
FILE=sample.obj
                000f0404     000f040b         8
  _gvall
                000f0404            4         data ,g            0

Number Description

(1) Section name
The name of the section is output.

(2) File name
The file name is output.

(3) Start address
The start address of the corresponding section included in the file shown in (2) is output.
This is expressed in a hexadecimal number.

(4) End address
The end address of the corresponding section included in the file shown in (2) is output.
This is expressed in a hexadecimal number.

(5) Section size
The size of the corresponding section included in the file shown in (2) is output (in byte units).
This is expressed in a hexadecimal number.

(6) Symbol name
The symbol name is output.

(7) Symbol address
The symbol address is output.
This is expressed in a hexadecimal number.

(8) Symbol size
The symbol size is output (in byte units).
This is expressed in a hexadecimal number.

(9) Symbol type
The data type and declaration type are output.

- Data type
func: Function name
data: Variable name
entry: Entry function name
none: Undefined (label, assembler symbol)

- Declaration type
g: External definition
l: Internal definition



R20UT3123EJ0113  Rev.1.13 Page 302 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

When the -show=struct option is specified, the addresses for the structure and union members that are defined in the 
source file for which the -g option was specified at compilation are output.

The output example of the symbol information is shown below.

(10) Reference count of symbol
The reference count of the symbol is output.
This is expressed in a hexadecimal number.
This item is output only when the -show=reference option is specified.
When the reference count of the symbol is not output, "*" is output.

(11) Whether optimization is applied
Whether optimization is applied is output.
ch: Symbol changed by optimization
cr: Symbol generated by optimization
mv: Symbol moved by optimization

*** Symbol List ***

SECTION
FILE
                START        END              SIZE
  SYMBOL        ADDR         SIZE             INFO          COUNTS  OPT
    (1)                      (2)
  STRUCT                     SIZE
    (3)         (4)          (5)              (6)
  MEMBER        ADDR         SIZE             INFO

SECTION=B
FILE=sample.obj
                00001000     00001003         4
  a
                00001000     4                data ,g       1
  struct A{
                             4
  a.b
                00001000     1                char
  a.c
                00001002     2                short

Number Description

(1) Type name
The type name of the structure or union is output.

(2) Size
The size of the structure or union is output.

(3) Name of member
The names of the members of the structure or union are output.

(4) Address of member
The addresses of the members of the structure or union are output.

(5) Size of member
The sizes of the members of the structure or union are output.
For a bit field, the type size of the member of the structure or union is output.

Number Description



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 303 of 951
Dec 01, 2023

3.2.8  Contents of the function list

If show=cfi is specified, this option outputs the contents of the function list for use in detecting illegal indirect function 
calls.

The output example is given below.

3.2.9  Cross reference information

When the -show=xreference option is specified, the reference information of symbols (cross reference information) is 
output.

The output example of the cross reference information is shown below.

(6) Type name of member
The type names of the members of the structure or union are output.
For a bit field, the type name of the member of the structure or union is output.
For the pointer type, the following is output.
[pointer]: When __near or __far is not specified
[near pointer]: When the pointer is specified to be a near pointer
[far pointer]: When the pointer is specified to be a far pointer

*** CFI Table List ***

SYMBOL/ADDRESS

_func     (1)
0000F100  (2)

Number Description

(1) Outputs the symbol for the function.

(2) Outputs the address of the function if a symbol for it has not been defined.

Number Description



R20UT3123EJ0113  Rev.1.13 Page 304 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.2.10  Vector table address information

When the -show=vector option is specified, the contents of the vector table addresses is output.
The output example of the vector table address information is shown below.

*** Cross Reference List ***

(1)  (2)        (3)            (4)       (5)
No   Unit Name  Global.Symbol  Location  External Information
0001 sample1
     SECTION=.text
                _main
                               00000100
                _func_01
                               00000118
     SECTION=.data
                _gval3
                               000f0400  0003(00000032:.text)
                                         0003(00000038:.text)
     SECTION=.bss
                _gval1
                               000f0404  0001(0000001a:.text)
                                         0001(00000020:.text)
                _gval2
                               000f0408  0002(00000026:.text)
                                         0002(0000002c:.text)
0002 sample2
     SECTION=.text
                _func02
                               00000124  0001(0000000a:.text)
0003 sample3
     SECTION=.text
                _func03
                               00000130  0001(00000010:.text)

Number Description

(1) Unit number
The identification number in object units is output.

(2) Object name
The object name is output in the order of input when linking.

(3) Symbol name
The symbol name is output in the ascending order of allocation address for each section.

(4) Symbol allocation address
The symbol allocation address is output.
When the -form=relocate option is specified, this is a relative value from the start of the section.

(5) Address of external symbol that has been referenced 
The address of the external symbol that has been referenced is output. 
Unit number (address or offset in section:section name)

*** Variable Vector Table List ***
(1)     (2)
ADDRESS SYMBOL/ADDRESS
00      start
02      dummy
04      INTWDTI
06      0000F100
 :



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 305 of 951
Dec 01, 2023

3.2.11  CRC information

When the -crc option is specified, the CRC operation result and its output address is output.
The output example of the CRC information is shown below.

Number Description

(1) Vector table address
The vector table address is output.

(2) Symbol
The symbol is output.
When no symbol is specified, the address is output.

***CRC Code***
CODE:    cbob       (1)
ADDRESS: 00007ffe   (2)

Number Description

(1) CRC operation result
The CRC operation result is output.

(2) Address of CRC operation result output
The address of CRC operation result output is output.



R20UT3123EJ0113  Rev.1.13 Page 306 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.3  Link Map File (When Objects Are Combined)

This section explains the contents and format of the link map file that is output by the optimizing linker when the input file 
is an Intel HEX file or a Motorola S-record file.

3.3.1  Structure of link map

The structure and contents of the link map are shown below.

3.3.2  Header information

The version information of the optimizing linker and the time of linkage are output.
The output example of the header information is shown below.

3.3.3  Option information

Option strings specified by a command line or subcommand file are output.
The output example of the option information when the following command line and subcommand file are specified is 

shown below.

<Command line>

<Subcommand file "sub.txt">

Output Information Description

Header information Version information of the optimizing linker and time of linkage

Option information Option strings specified by a command line or subcommand file

Error information Error message

Entry information Execution start address

Combined address informa-
tion

Combined source files, and start and end addresses and size of continuous range data

Address overlap informa-
tion

Overlapped combine source files, and start and end addresses and size of overlapped 
range data

Renesas Optimizing Linker (VX.XX.XX)            XX-Xxx-XXXX XX:XX:XX    (1)

Number Description

(1) Version information of the optimizing linker and time of linkage
The version information of the optimizing linker and the time of linkage are output.

>rlink -subcommand=sub.txt -list

input sample1.mot
input sample2.mot
form stype
output result



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 307 of 951
Dec 01, 2023

3.3.4  Error information

Error messages are output.
The output example of the error information is shown below.

3.3.5  Entry information

The execution start address is output.
The output example of the entry information is shown below.

3.3.6  Combined address information

The combined source files, and the start and end addresses and size of the continuous range data are output.
The output example of the combined address information is shown below.

*** Options ***

-subcommand=sub.txt     (1)
input sample1.mot       (2)
input sample2.mot       (2)
form stype              (2)
output result           (2)
-list                   (1)

Number Description

(1) Options specified by command line
The options specified by the command line are output (in their specified order).

(2) Options specified in subcommand file
The options specified in subcommand file "sub.txt" are output.

*** Error Information ***

E0562420:"sample1.mot" overlap address "sample2.mot" : "00000100"       (1)

Number Description

(1) Error message
Error messages are output.

*** Entry address ***
00000100        (1)

Number Description

(1) Execution start address
The execution start address is output.
However, if the execution start address is "00000000", it is not output.



R20UT3123EJ0113  Rev.1.13 Page 308 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.3.7  Address overlap information

The overlapped combine source files, and the start and end addresses and size of the continuous range data are out-
put.

The output example of the address overlap information is shown below.

*** Combine information ***
(1)             (2)         (3)         (4)
FILE            START       END         SIZE
sample1.mot
                00000100    00000127    28
sample1.mot
                00000200    00000227    28
sample2.mot
                00000250    00000263    14
sample2.mot
                00000300    0000033b    3c

Number Description

(1) Combined source file name
The combined source file name is output.

(2) Start addresses of continuous range data
The start addresses of the continuous range data are output.
This is expressed in a hexadecimal number.

(3) End addresses of continuous range data
The end addresses of the continuous range data are output.
This is expressed in a hexadecimal number.

(4) Size of continuous range data
The size of the continuous range data is output (in byte units).
This is expressed in a hexadecimal number.

*** Conflict information ***
(1)             (2)         (3)         (4)
FILE            START       END         SIZE
Conflict 1
                00000200    00000213    14
sample1.mot
sample2.mot

Number Description

(1) Overlapped combine source file name
The overlapped combine source file name is output.

(2) Start addresses of overlapped range data
The start addresses of the overlapped range data are output.
This is expressed in a hexadecimal number.

(3) End addresses of overlapped range data
The end addresses of the overlapped range data are output.
This is expressed in a hexadecimal number.

(4) Size of overlapped range data
The size of the overlapped range data is output (in byte units).
This is expressed in a hexadecimal number.



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 309 of 951
Dec 01, 2023

3.4  Library List File

This section explains the library list file.
The library list has information from the library creation result.

3.4.1  Structure of the library list

The structure and contents of the library list are shown below.

Caution The -show option is valid when the -list option is specified.
See "-SHow" for details about the -show option.

3.4.2  Option information

Option strings specified by a command line or subcommand file are output.
The output example of the option information when they are specified by a command line or subcommand file as follows 

is shown below.

<Command line>

<Subcommand file "sub.txt">

Output Information Description -show Option 
Specification

When -show 
Option Is Omitted

Option information Option strings specified by a command line 
or subcommand file

- Output

Error information Error message - Output

Library information Library information - Output

Module, section, and sym-
bol information within the 
library

Module within the library - Output

Symbol names within a module -show=symbol No output

Section names and symbol names within 
each module

-show=section No output

>rlink -subcommand=sub.txt -list -show

form library
input extmod1
input extmod2
output usrlib.lib

*** Options ***

-subcommand=sub.txt     (1)
form library            (2)
input extmod1           (2)
input extmod2           (2)
output usrlib.lib       (2)
-list                   (1)
-show                   (1)

Number Description

(1) Options specified by command line
The options specified by the command line are output (in their specified order).



R20UT3123EJ0113  Rev.1.13 Page 310 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.4.3  Error information

Messages for errors or warnings are output.
The output example of the error information is shown below.

3.4.4  Library information

The type of the library is output.
The output example of the library information is shown below.

3.4.5  Module, section, and symbol information within the library

Modules within the library is output.
When the -show=symbol option is specified, symbol names within the module is output.
When the -show=section option is specified, section names within the module is also output.
The output example of the module, section, and symbol information within the library is shown below.

(2) Options specified in subcommand file
The options specified in subcommand file "sub.txt" are output.

*** Error Information ***

** E0561200:Backed up file "sample1.lib" into "usrlib.lbk"      (1)

Number Description

(1) Message
The message is output.

*** Library Information ***

LIBRARY NAME=usrlib.lib (1)
CPU=RL78                (2)
ENDIAN=Little           (3)
ATTRIBUTE=user          (4)
NUMBER OF MODULE=2      (5)

Number Description

(1) Library name
The library name is output.

(2) Microcontroller name
The microcontroller name is output.

(3) Endian type
The endian type is output.

(4) Library file attribute
Either a system library or user library is output.

(5) Number of modules within library
The number of modules within the library is output.

Number Description



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 311 of 951
Dec 01, 2023

*** Library List ***

(1)             (2)
MODULE          LAST UPDATE
  (3)
  SECTION
    (4)
    SYMBOL
extmod1
                12-Dec-2011 16:30:00
  .text
    _func_01
    _func_02
extmod2
                12-Dec-2011 16:30:10
  .text
    _func_03
    _func_04

Number Description

(1) Module name
The module name is output.

(2) Module definition date
The module definition date is output.
If the module is updated, the date of the latest update is output.

(3) Name of section within module
The name of the section within the module is output.

(4) Name of symbol within section
The name of the symbol within the section is output.



R20UT3123EJ0113  Rev.1.13 Page 312 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.5  Intel HEX File

This section explains the Intel HEX file.

3.5.1  Structure of the Intel HEX file

The Intel HEX file (20 bits) consists of four recordsNote: start segment address record, extended segment address 
record, data record, and end record.

The Intel HEX file (32 bits) consists of six recordsNote: start linear address record, extended linear address record, start 
segment address record, extended segment address record, data record, and end of file record.

Note Each record is output in ASCII code.

The structure and contents of the Intel HEX file are shown below.

Figure 3.1 Structure of Intel HEX File

Note The extended segment address and data record are repeated.

Each record consists of the following fields.

Output Information Description

Start linear address record Linear address

Extended linear address record Upper 16-bit address at bits 32 to 16

Start segment address record Entry point address

Extended segment address record Paragraph value of load address

Data record Value of code

End of file record End of code

:   XX  XXXX  XX  DD......DD SS  NL
(1) (2) (3)   (4)     (5)    (6) (7)

Number Description

(1) Record mark

(2) Number of bytes
The number of bytes is expressed as 2-digit hexadecimal number of (5).

(3) Location address

Start segment address

Data recordNote

Data record

Extended segment address

Data record

Data record

End of file record

Extended segment addressNote

:

:



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 313 of 951
Dec 01, 2023

Remark The location address in the Intel HEX format is 2 bytes (16 bits).
Therefore, only a 64-Kbyte space can be directly specified.
To extend this area, the Intel HEX format adds the 16-bit extended address so that a space of up to 1 
Mbyte (20 bits) can be used.
Specifically, the record type that specifies the 16-bit extended address is added.
This extended address is shifted by four bits and added to the location address to express a 20-bit 
address.

3.5.2  Start linear address record

This indicates the linear address.

3.5.3  Extended linear address record

This indicates the upper 16-bit address at bits 32 to 16.

(4) Record type
05: Start linear address record
04: Extended linear address record
03: Start segment address
02: Extended segment address
00: Data record
01: End of file record

(5) Code
Each byte of code is expressed as 2-digit hexadecimal number.

(6) Checksum
This is the 2-digit two's complement value of a result of hexadecimal addition of all bytes in the record 
except for ":", "SS", and "NL".

(7) Newline (\n)

:   04  0000  05  XXXXXXXX  SS  NL
(1) (2) (3)   (4)    (5)    (6) (7)

Number Description

(1) Record mark

(2) Fixed at 04

(3) Fixed at 0000

(4) Record type (Fixed at 05)

(5) Linear address value

(6) Checksum

(7) Newline

:   02  0000  04  XXXX  SS  NL
(1) (2) (3)   (4)  (5)  (6) (7)

Number Description

(1) Record mark

(2) Fixed at 02

Number Description



R20UT3123EJ0113  Rev.1.13 Page 314 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

Note The location address of the data record is used as the lower 16 bits.

3.5.4  Start segment address record

This indicates the entry point address.

Note The address is calculated by (paragraph value << 4) + offset value.

3.5.5  Extended segment address record

This indicates the paragraph value of the load addressNote.

Note This is output at the beginning of the segment (when the data record is output) or when the offset value of 
the data record's load address exceeds the maximum value of 0xffff and a new segment is output.

(3) Fixed at 0000

(4) Record type (Fixed at 04)

(5) Upper 16-bit address at bits 32 to 16

(6) Checksum

(7) Newline

:   04  0000  03  PPPP  XXXX  SS  NL
(1) (2) (3)   (4)  (5)   (6)  (7) (8)

Number Description

(1) Record mark

(2) Fixed at 04

(3) Fixed at 0000

(4) Record type (Fixed at 03)

(5) Paragraph value of entry point addressNote

(6) Offset value of entry point address

(7) Checksum

(8) Newline

:   02  0000  02  PPPP  SS  NL
(1) (2) (3)   (4)  (5)  (6) (7)

Number Description

(1) Record mark

(2) Fixed at 02

(3) Fixed at 0000

(4) Record type (Fixed at 02)

(5) Paragraph value of segment

(6) Checksum

Number Description



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 315 of 951
Dec 01, 2023

3.5.6  Data record

This indicates the value of the code.

Note This is limited to the range of 0x1 to 0xff (the minimum value for the number of bytes of the code indi-
cated by one data record is 1 and the maximum value is 255).

Example

3.5.7  End of file record

This indicates the end of the code.

(7) Newline

:   XX  XXXX  00  DD......DD  SS  NL
(1) (2) (3)   (4)     (5)     (6) (7)

Number Description

(1) Record mark

(2) Number of bytesNote

(3) Location address

(4) Record type (Fixed at 00)

(5) Code
Each byte of code is expressed as 2-digit hexadecimal number.

(6) Checksum

(7) Newline

:   04  0100  00  3C58E01B  6C  NL
(1) (2) (3)   (4)    (5)    (6) (7)

Number Description

(1) Record mark

(2) Number of bytes of 3C58E01B expressed as 2-digit hexadecimal numbers

(3) Location address

(4) Record type 00

(5) Each byte of code is expressed as 2-digit hexadecimal number.

(6) Checksum
The lower 1 byte of E6C, which is the two's complement of 04 + 01 + 00 + 00 + 3C + 58 + E0 + 1B = 194, 
is expressed as a 2-digit hexadecimal number.

(7) Newline (\n)

:   00  0000  01  FF  NL
(1) (2) (3)   (4) (5) (6)

Number Description



R20UT3123EJ0113  Rev.1.13 Page 316 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

Number Description

(1) Record mark

(2) Fixed at 00

(3) Fixed at 0000

(4) Record type (Fixed at 01)

(5) Fixed at FF

(6) Newline



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 317 of 951
Dec 01, 2023

3.6  Motorola S-record File

This section explains the Motorola S-record file.

3.6.1  Structure of the Motorola S-record file

The Motorola S-record file consists of seven recordsNote 1: S0 record as the header record, S1, S2, and S3 records as 
the data record, and S9, S8, and S7 records as the termination recordsNote 2.

Note 1. Each record is output in ASCII code.

Note 2. The Motorola S-record files are divided into three types: 16-bit address type, (24-bit) standard address 
type, and 32-bit address type. The format of the 16-bit address type consists of S0, S1, and S9 records, 
the format of the standard address type consists of S0, S2, and S8 records, and the format of the 32-bit 
address type consists of S0, S3, and S7 records.

The structure and contents of the Motorola S-record file are shown below.

Figure 3.2 Structure of Motorola S-record File

Each record consists of the following fields.

Output Information Description

S0 record File name

S1 record Value of code

S2 record Value of code

S3 record Value of code

S7 record Entry point address

S8 record Entry point address

S9 record Entry point address

Sx  XX  YY......YY  SS  NL
(1) (2)     (3)     (4) (5)

Number Description

(1) Record type
S0: S0 record
S1: S1 record
S2: S2 record
S3: S3 record
S4: S4 record
S5: S5 record
S6: S6 record
S7: S7 record
S8: S8 record
S9: S9 record

S9/S8/S7 record

S0 record

S1/S2/S3 record

S1/S2/S3 record

:



R20UT3123EJ0113  Rev.1.13 Page 318 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

Note This is 1 byte.

3.6.2  S0 record

This indicates the file name.

3.6.3  S1 record

This indicates the value of the code.

(2) Record length
The number of bytes as 2-digit hexadecimal number of (3) + number of bytes expressed by "SS"Note.

(3) Field

(4) Checksum
The one's complement is obtained from the sum of the number of 2-digit hexadecimal bytes in the record 
except for Sx, SS, and NL, and the lower one byte of the one's complement is expressed as a 2-digit 
hexadecimal number.

(5) Newline (\n)

S0  0E  0000  XX......XX  SS  NL
(1) (2)  (3)      (4)     (5) (6)

Number Description

(1) Fixed at S0

(2) Fixed at 0E

(3) Fixed at 0000

(4) File name (eight characters) + file format (three characters) in most cases

(5) Checksum

(6) Newline

S1  XX  YYYY  ZZ......ZZ  SS  NL
(1) (2)  (3)      (4)     (5) (6)

Number Description

(1) Fixed at S1

(2) Record length

(3) Load address
16 bits (0x0 to 0xFFFF)

(4) Code
Each byte of code is expressed as 2-digit hexadecimal number.

(5) Checksum

(6) Newline

Number Description



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 319 of 951
Dec 01, 2023

3.6.4  S2 record

This indicates the value of the code.

3.6.5  S3 record

This indicates the value of the code.

3.6.6  S7 record

This indicates the entry point address.

S2  XX  YYYYYY  ZZ......ZZ  SS  NL
(1) (2)   (3)       (4)     (5) (6)

Number Description

(1) Fixed at S2

(2) Record length

(3) Load address
24 bits (0x0 to 0xFFFFFF)

(4) Code
Each byte of code is expressed as 2-digit hexadecimal number.

(5) Checksum

(6) Newline

S3  XX  YYYYYYYY  ZZ......ZZ  SS  NL
(1) (2)   (3)         (4)     (5) (6)

Number Description

(1) Fixed at S3

(2) Record length

(3) Load address
32 bits (0x0 to 0xFFFFFFFF)

(4) Code
Each byte of code is expressed as 2-digit hexadecimal number.

(5) Checksum

(6) Newline

S7  XX  YYYYYYYY  SS  NL
(1) (2)   (3)     (4) (5)

Number Description

(1) Fixed at S7

(2) Record length

(3) Entry point address
32 bits (0x0 to 0xFFFFFFFF)

(4) Checksum



R20UT3123EJ0113  Rev.1.13 Page 320 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.6.7  S8 record

This indicates the entry point address.

3.6.8  S9 record

This indicates the entry point address.

(5) Newline

S8  XX  YYYYYY  SS  NL
(1) (2)   (3)   (4) (5)

Number Description

(1) Fixed at S8

(2) Record length

(3) Entry point address
24 bits (0x0 to 0xFFFFFF)

(4) Checksum

(5) Newline

S9  XX  YYYY  SS  NL
(1) (2)  (3)  (4) (5)

Number Description

(1) Fixed at S9

(2) Record length

(3) Entry point address
16 bits (0x0 to 0xFFFF)

(4) Checksum

(5) Newline

Number Description



CC-RL 3.  OUTPUT FILES

R20UT3123EJ0113  Rev.1.13 Page 321 of 951
Dec 01, 2023

3.7  Variable/Function Information File

This section explains the variable/function information file.
The variable/function information file is in the text format and contains declarations of the saddr variable or callt function 

for variables and functions defined in the C source file.

3.7.1  Outputting the variable/function information file

- When the -lnkopt=-vfinfo option is specified, the optimizing linker outputs the variable/function information file.
For details on the -vfinfo option, see "-VFINFO".

- The optimizing linker significantly reduces the size of the code as a whole by selecting variables and functions on the 
basis of size of variables and frequency of reference and producing header files (variable/function information files) in 
which #pragma directives to use the saddr variables, callt function, or near function are added.
For #pragma saddr, see "Using saddr area (__saddr)". For #pragma callt, see "callt function (__callt)". For #pragma 
near, see "near/far function (#pragma near/#pragma far) [V1.05 or later]".

- The following variables or functions are not targets of the variable/function information file.
However, interrupt handlers are commented out in the variable/function information file.

- Standard library functions and runtime library functions

- Software interrupt handler, hardware interrupt handler, and RTOS interrupt handler

- Variables or functions defined in the assembly source file

- The output example of the variable/function information file is shown below.

/* RENESAS OPTIMIZING LINKER GENERATED FILE 2014.10.20 */
/*** variable information ***/
(1)                   (2)      (3)    (4)   (5)
#pragma saddr var1 /* count:10,size:1,near, file1.obj */
(6)                         (2)      (3)    (4)  (7)    (5)
/* #pragma saddr var2 */ /* count: 0,size:2,near,unref, file2.obj */

/*** function information ***/
(8)                    (9)      (10)  (11)
#pragma callt func1 /* count:20,near, file1.obj */
(12)                  (9)      (10) (11)
#pragma near func2 /* count:10,far, file2.obj */
(13)                        (9)      (10) (14)  (11)
/* #pragma near func3 */ /* count: 0,far,unref, file3.obj */

Number Description

(1) Variable information
A declaration of the saddr variable by a #pragma directive is output.

(2) Number of references
The number of times the variable is referenced is output.

(3) Size of variable
The size of the variable is output.

(4) Reference type
The original reference type of the variable is output as near, far, or saddr.

(5) File name
The object file name to which the variable belongs is output.

(6) Variable information
The variable spilled from the saddr area is output as a comment.



R20UT3123EJ0113  Rev.1.13 Page 322 of 951
Dec 01, 2023

CC-RL 3.  OUTPUT FILES

3.7.2  How to use variable/function information file

- Add #include directive to the C source files to include variable/function information file, and then compile the files.
That will reduce the size of object codes.

- Specifying -preinclude option is another way to include the information file.
In this case, no modification is required for C source files.

- Variable/function information file can be edited manually.
This enables users to tune the code size by enabling/disabling saddr specification for global variables or callt/near 
specification for functions in the variable/function information file and by adding/removing saddr specification for static 
variables or callt/near specification for static functions in the C source files.

(7) Supplementary information of variable
Supplementary information of the variable is output. The following items are such supplementary infor-
mation.
unref: Output when the variable is not referenced.
const: Output for a const variable.
fix: Output when the location of the variable is not relocatable.
unrecognizable: Output when the variable cannot be recognized as a symbol.

(8) Function information
A declaration of the callt function by a #pragma directive is output.

(9) Number of references
The number of times the function is referenced is output.

(10) Method of function call
The original method of function call is output as near, far, or callt.

(11) File name
The object file name to which the function belongs is output.

(12) Function information
A declaration of the near function by a #pragma directive is output.

(13) Function information
The function spilled from the callt or near area is output as a comment.

(14) Supplementary information of function
Supplementary information of the function is output. The following items are such supplementary infor-
mation.
unref: Output when the function is not referenced.
interrupt: Output for an interrupt handler.
unrecognizable: Output when the function cannot be recognized as a symbol.

Number Description



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 323 of 951
Dec 01, 2023

4.  COMPILER LANGUAGE SPECIFICATIONS

This chapter explains Compiler language specifications (basic language specification, extended language specifica-
tions, etc.)supported by the CC-RL.

4.1  Basic Language Specifications

This section explains the implementation-defined behavior of the CC-RL which is compliant with the C90 and C99 stan-
dards.

See "4.2  Extended Language Specifications" for extended language specifications explicitly added by the CC-RL.

4.1.1  Implementation-defined behavior of C90

This section covers the implementation-defined behavior given by the C90 standard.

(1) How to identify diagnostic messages (5.1.1.3).
Refer to "10.  MESSAGE".

(2) The semantics of the arguments to main (5.1.2.2.1).
Not defined because of a freestanding environment.

(3) What constitutes an interactive device (5.1.2.3).
Not defined for the configuration of an interactive device.

(4) The number of significant initial characters (beyond 31) in an identifier without external linkage (6.1.2).
The entire identifier is handled as meaningful. The length of an identifier is unlimited.

(5) The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2).
The entire identifier is handled as meaningful. The length of an identifier is unlimited.

(6) Whether case distinctions are significant in an identifier with external linkage (6.1.2).
Uppercase and lowercase characters are distinguished in identifiers.

(7) The members of the source and execution character sets, except as explicitly specified in the Standard (5.2.1).
The values of elements of the source code and execution character set are ASCII codes, EUC, SJIS, UTF-8, big5, 
and gb2312.
Japanese and Chinese characters are supported in comments and character strings.

(8) The shift states used for the encoding of multibyte characters (5.2.1.2).
No shift state is supported.

(9) The number of bits in a character in the execution character set (5.2.4.2.1).
8 bits.

(10) The mapping of members of the source character set (in character constants and string literals) to members of the 
execution character set (6.1.3.4).
Associated with the element having the same value.

(11) The value of an integer character constant that contains a character or escape sequence not represented in the 
basic execution character set or the extended character set for a wide character constant (6.1.3.4).
Specific non-graphical characters can be expressed by means of extended notation, consisting of a backslash (\) 
followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other 
extended notation; other letters following a backslash (\) become that letter.

Escape Sequence Value (ASCII)

\a 0x07

\b 0x08

\f 0x0C

\n 0x0A

\r 0x0D

\t 0x09



R20UT3123EJ0113  Rev.1.13 Page 324 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(12) The value of an integer character constant that contains more than one character or a wide character constant that 
contains more than one multibyte character (6.1.3.4).
A simple character constant consisting of up to two characters has a two-byte value with the lower byte being the 
last character and the upper byte being the start character. A character constant having three or more characters 
results in an error. A character which is not represented by basic execution environment character set is regarded 
as a simple character constant having that value. In an invalid escape sequence, the backslash is ignored and the 
next character is regarded as a simple character constant.

(13) The current locale used to convert multibyte characters into corresponding wide characters (codes) for a wide 
character constant (6.1.3.4).
Locale is not supported.

(14) Whether a "plain" char has the same range of values as signed char or unsigned char (6.2.1.1).
The char type has the same range of values, the same representation format and the same behavior as the 
unsigned char type. However, it can be switched to the signed char type by option -signed_char.

(15) The representations and sets of values of the various types of integers (6.1.2.5).
Refer to "4.1.3  Internal representation and value area of data".

(16) The result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer to a 
signed integer of equal length, if the value cannot be represented (6.2.1.2).
Bit string masked by the width of the conversion target type (with the upper bits truncated).

(17) The results of bitwise operations on signed integers (6.3).
Arithmetic shift is performed for a shift operator. For other operators, a signed integer is calculated as an unsigned 
value (as a bit image).

(18) The sign of the remainder on integer division (6.3.5).
The result of the "%" operator takes the sign of the first operand in the expression.

(19) The result of a right shift of a negative-valued signed integral type (6.3.7).
Arithmetic shift is performed.

(20) The representations and sets of values of the various types of floating-point numbers (6.1.2.5).
Refer to "4.1.3  Internal representation and value area of data".

(21) The direction of truncation when an integral number is converted to a floating-point number that cannot exactly 
represent the original value (6.2.1.3).
Rounded to the nearest representable direction.

(22) The direction of truncation or rounding when a floating-point number is converted to a narrower floating-point num-
ber (6.2.1.4).
Rounded to the nearest representable direction.

(23) The type of integer required to hold the maximum size of an array --- that is, the type of the sizeof operator, size_t 
(6.3.3.4, 7.1.1).
unsigned int type.

(24) The result of casting a pointer to an integer or vice versa (6.3.4).
Refer to "Specifying memory allocation area (__near /__far)" in "4.2.6  Using extended language specifications".

(25) The type of integer required to hold the difference between two pointers to members of the same array, ptrdiff_t 
(6.3.4, 7.1.1).
signed int type.

(26) The extent to which objects can actually be placed in registers by use of the register storage-class specifier 
(6.5.1).
User requests for register variables are not honored.

(27) A member of a union object is accessed using a member of a different type (6.3.2.3).
If the value of a union member is stored in a different member, the value will be stored in accordance with the 
alignment condition. As a result, when a union member is accessed using a member of a different type, the inter-
nal representation of the data will be of the type of the access.

(28) The padding and alignment of members of structures (6.5.2.1).
Refer to "4.1.3  Internal representation and value area of data".

\v 0x0B

Escape Sequence Value (ASCII)



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 325 of 951
Dec 01, 2023

(29) Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int bit-field (6.5.2.1).
Treated as an unsigned int type. However, this can be changed by option -signed_bitfield.

(30) The order of allocation of bit-fields within an int (6.5.2.1).
Allocated from the lower order.

(31) Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).
When structure type packing is not specified, a bit-field cannot straddle a strage-unit boundary, but it is allocated to 
the next area.
When structure type packing is specified, a bit-field may straddle a strage-unit boundary.

(32) The integer type chosen to represent the values of an enumeration type (6.5.2.2).
Any of the char, signed char, unsigned char or signed short type. Minimum type that an enumerated type fits in.

(33) What constitutes an access to an object that has volatile-qualified type (6.5.3).
Although the access width, and order and number of accesses are as described in the C source, this does not 
apply to those accesses to a type for which the microcomputer does not have a corresponding instruction.

(34) The maximum number of declarators that may modify an arithmetic, structure, or union type (6.5.4).
128.

(35) The maximum number of case values in a switch statement (6.6.4.2).
65535.

(36) Whether the value of a single-character character constant in a constant expression that controls conditional inclu-
sion matches the value of the same character constant in the execution character set. Whether such a character 
constant may have a negative value (6.8.1).
A value for the character constant specified in conditional inclusion is equal to the character constant value that 
appears in other expressions.
A character constant cannot be a negative value if it is a plain char type (char type which is neither signed nor 
unsigned) and a plain char type is unsigned. It can be a negative value if a plain char type is signed.

(37) The method for locating includable source files (6.8.2).
Folders are searched in this order and a file having the same name in the folder is identified as the header.

(1) Folder specified by the path (if it is full-path)
(2) Folder specified by option -I
(3) Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(38) The support for quoted names for includable source files (6.8.2).
Searched in this order:

(1) Folder specified by the path (if it is full-path)
(2) Folder having the source file
(3) Folder specified by option -I
(4) Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(39) The mapping of source file character sequences (6.8.2).
A character string described in the #include is interpreted as the character code specified as the source character 
set and is associated with a header name or an external source file name.

(40) The behavior on each recognized #pragma directive (6.8.6).
Refer to "4.2.4  #pragma directive".

(41) The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are not available 
(6.8.8).
A date and time are always obtained.

(42) The null pointer constant to which the macro NULL expands (7.1.6).
(void *)0.

(43) The diagnostic printed by and the termination behavior of the assert function (7.2).
The displayed diagnostic message is as follows:

Assertion failed : expression, file file name, line line number
The termination behavior depends on how the abort function is implemented.

(44) The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions (7.3.1).
unsigned char type (0 to 255) and EOF (-1).

(45) The values returned by the mathematics functions on domain errors (7.5.1).
Refer to "7.5  Library Function".



R20UT3123EJ0113  Rev.1.13 Page 326 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(46)  Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on 
underflow range errors (7.5.1).
ERANGE is set in errno in case of an underflow.

(47) Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero 
(7.5.6.4).
A domain error is generated. For details, see the description about the fmod function group.

(48) The set of signals for the signal function (7.7.1.1).
The signal handling functions are not supported.

(49) The semantics for each signal recognized by the signal function (7.7.1.1).
The signal handling functions are not supported.

(50) The default handling and the handling at program startup for each signal recognized by the signal function 
(7.7.1.1).
The signal handling functions are not supported.

(51) If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal handler, the blocking of the 
signal that is performed (7.7.1.1).
The signal handling functions are not supported.

(52) Whether the default handling is reset if the SIGILL signal is received by a handler specified to the signal function 
(7.7.1.1).
The signal handling functions are not supported.

(53) Whether the last line of a text stream requires a terminating new-line character (7.9.2).
The last line does not need to end in a newline character.

(54) Whether space characters that are written out to a text stream immediately before a new-line character appear 
when read in (7.9.2).
Space characters appear when data is read.

(55) The number of null characters that may be appended to data written to a binary stream (7.9.2).
0.

(56) Whether the file position indicator of an append mode stream is initially positioned at the beginning or end of the 
file (7.9.3).
The file handling functions are not supported.

(57) Whether a write on a text stream causes the associated file to be truncated beyond that point (7.9.3).
The file handling functions are not supported.

(58) The characteristics of file buffering (7.9.3).
The file handling functions are not supported.

(59) Whether a zero-length file actually exists (7.9.3).
The file handling functions are not supported.

(60) The rules for composing valid file names (7.9.3).
The file handling functions are not supported.

(61) Whether the same file can be open multiple times (7.9.3).
The file handling functions are not supported.

(62) The effect of the remove function on an open file (7.9.4.1).
The file handling functions are not supported.

(63) The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2).
The file handling functions are not supported.

(64) The output for %p conversion in the fprintf function (7.9.6.1).
Hexadecimal notation.
The fprintf function is not supported.

(65) The input for %p conversion in the fscanf function (7.9.6.2).
Hexadecimal number.
The fscanf function is not supported.

(66) The interpretation of a - character that is neither the first nor the last character in the scan list for %[ conversion in 
the fscanf function (7.9.6.2).
Refer to "scanf" in "7.5.7  Standard I/O functions".
The fscanf function is not supported.



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 327 of 951
Dec 01, 2023

(67) The value to which the macro errno is set by the fgetpos or ftell function on failure (7.9.9.1, 7.9.9.4).
The file handling functions are not supported.

(68) The messages generated by the perror function (7.9.10.4).
Refer to "7.5  Library Function".

(69) The behavior of the calloc, malloc, or realloc function if the size requested is zero (7.10.3).
NULL is returned.

(70) The behavior of the abort function with regard to open and temporary files (7.10.4.1).
The file handling functions are not supported.

(71) The status returned by the exit function if the value of the argument is other than zero, EXIT_SUCCESS, or 
EXIT_FAILURE (7.10.4.3).
Not defined because of a freestanding environment.

(72) The set of environment names and the method for altering the environment list used by the getenv function 
(7.10.4.4).
The getenv function is not supported.

(73) The contents and mode of execution of the string by the system function (7.10.4.5).
The system function is not supported.

(74) The contents of the error message strings returned by the strerror function (7.11.6.2).
Refer to "7.5  Library Function".

(75) The local time zone and Daylight Saving Time (7.12.1).
time.h is not supported.

(76) The era for the clock function (7.12.2.1).
time.h is not supported.

Translation limits

The table below shows the translation limits of CC-RL.
The upper limit depends on the memory situation of the host environment for the item "No limit".

Table 4.1 Translation limits (C90)

Item C90 CC-RL

Number of nesting levels of conditional inclusion 8 No limit

Number of pointers, arrays, and function declarators (in any combinations) 
qualifying an arithmetic, structure, union, or incomplete type in a declara-
tion

12 128

Number of nesting levels of parenthesized declarators within a full declara-
tor

31 No limit

Number of nesting levels of parenthesized expressions within a full expres-
sion

32 No limit

Number of significant initial characters in an internal identifier or a macro 
name

31 No limit

Number of significant initial characters in an external identifier 6 No limit

Number of external identifiers in one translation unit 511 No limit

Number of identifiers with block scope declared in one block 127 No limit

Number of macro identifiers simultaneously defined in one preprocessing 
translation unit

1024 No limit

Number of parameters in one function definition 31 No limit

Number of arguments in one function call 31 No limit

Number of parameters in one macro definition 31 No limit



R20UT3123EJ0113  Rev.1.13 Page 328 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note 1. The value in parentheses indicates the number of bytes in cases where -large_variable is specified.

4.1.2  Implementation-defined behavior of C99

This section covers the implementation-defined behavior given by the C99 standard.

(1) How a diagnostic is identified (3.10, 5.1.1.3).
Refer to "10.  MESSAGE".

(2) Whether each non-empty sequence of white-space characters other than new-line is retained or replaced by one 
space character in translation phase 3 (5.1.1.2).
Retained as they are.

(3) The mapping between physical source file multi-byte characters and the source character set in translation phase 
1 (5.1.1.2).
Multibyte characters are mapped to the corresponding source character set according to the compile option.

(4) The name and type of the function called at program startup in a freestanding environment (5.1.2.1).
Not defined. Depends on the startup implementation.

(5) The effect of program termination in a freestanding environment (5.1.2.1).
Depends on startup in a normal termination. The abort function is used to terminate the program abnormally.

(6) An alternative manner in which the main function may be defined (5.1.2.2.1).
Not defined because of a freestanding environment.

(7) The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).
Not defined because of a freestanding environment.

(8) What constitutes an interactive device (5.1.2.3).
Not defined for the configuration of an interactive device.

(9) The set of signals, their semantics, and their default handling (7.14).
The signal handling functions are not supported.

(10) Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational exception (7.14.1.1).
The signal handling functions are not supported.

(11) Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup (7.14.1.1).
The signal handling functions are not supported.

(12) The set of environment names and the method for altering the environment list used by the getenv function 
(7.20.4.5).
The getenv function is not supported.

Number of arguments in one macro invocation 31 No limit

Number of characters in a logical source line 509 No limit

Number of characters in a character string literal or wide string literal (after 
concatenation)

509 No limit

Number of bytes in an object (in a hosted environment only) 32767 32767(65535) Note 1

Number of nesting levels for #included files 8 No limit

Number of case labels for a switch statement (excluding those for any 
nested switch statements)

257 65535

Number of members in a single structure or union 127 No limit

Number of enumeration constants in a single enumeration 127 No limit

Number of levels of nested structure or union definitions in a single 
struct-declaration-list

15 No limit

Item C90 CC-RL



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 329 of 951
Dec 01, 2023

(13) The manner of execution of the string by the system function (7.20.4.6).
The system function is not supported.

(14) Which additional multibyte characters may appear in identifiers and their correspondence to universal character 
names (6.4.2).
Multibyte characters cannot be used as identifiers.

(15) The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).
The entire identifier is handled as meaningful. The length of an identifier is unlimited.

(16) The number of bits in a byte (3.6).
8 bits.

(17) The values of the members of the execution character set (5.2.1).
The element values of the execution character set are ASCII code, EUC, SJIS, UTF-8, big5 and gb2312 values.

(18) The unique value of the member of the execution character set produced for each of the standard alphabetic 
escape sequences (5.2.2).

(19) The value of a char object into which has been stored any character other than a member of the basic execution 
character set (6.2.5).
Value that is type-converted to char type.

(20) Which of signed char or unsigned char has the same range, representation, and behavior as "plain" char (6.2.5, 
6.3.1.1).
The char type has the same range of values, the same representation format and the same behavior as the 
unsigned char type. However, it can be switched to the signed char type by option -signed_char.

(21) The mapping of members of the source character set (in character constants and string literals) to members of the 
execution character set (6.4.4.4, 5.1.1.2).
Associated with the element having the same value.

(22) The value of an integer character constant containing more than one character or containing a character or 
escape sequence that does not map to a single-byte execution character (6.4.4.4).
A simple character constant consisting of up to two characters has a two-byte value with the lower byte being the 
last character and the upper byte being the start character. A character constant having three or more characters 
results in an error. A character which is not represented by basic execution environment character set is regarded 
as a simple character constant having that value. In an invalid backslash representation, the backslash is ignored 
and the next character is regarded as a simple character constant.

(23) The value of a wide character constant containing more than one multibyte character, or containing a multibyte 
character or escape sequence not represented in the extended execution character set (6.4.4.4).
Left-most character value as a multibyte character.

(24) The current locale used to convert a wide character constant consisting of a single multi-byte character that maps 
to a member of the extended execution character set into a corresponding wide character code (6.4.4.4).
Locale is not supported.

(25) The current locale used to convert a wide string literal into corresponding wide character codes (6.4.5).
Locale is not supported.

(26) The value of a string literal containing a multi-byte character or escape sequence not represented in the execution 
character set (6.4.5).
Corresponding byte value for escape sequence or corresponding each byte value for a multibyte character.

Escape Sequence Value (ASCII)

"\a" 0x07

"\b" 0x08

"\f" 0x0C

"\n" 0x0A

"\r" 0x0D

"\t" 0x09

"\v" 0x0B



R20UT3123EJ0113  Rev.1.13 Page 330 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(27) Any extended integer types that exist in the implementation (6.2.5).
No extended integer types are provided.

(28) Whether signed integer types are represented using sign and magnitude, two's complement, or one's comple-
ment, and whether the extraordinary value is a trap representation or an ordinary value (6.2.6.2).
The signed integer type is represented in two's complement, and there are no trap representations.

(29) The rank of any extended integer type relative to another extended integer type with the same precision (6.3.1.1).
No extended integer types are provided.

(30) The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be rep-
resented in an object of that type (6.3.1.3).
Bit string masked by the width of the conversion target type (with the upper bits truncated).

(31) The results of some bit-wise operations on signed integers (6.5).
Arithmetic shift is performed for a shift operator. For other operators, a signed integer is calculated as an unsigned 
value (as a bit image).

(32) The accuracy of the floating-point operations and of the library functions in <math.h> and <complex.h> that return 
floating-point results (5.2.4.2.2).
Unknown.

(33) The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).
No nonstandard value is defined for FLT_ROUNDS.

(34) The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD (5.2.4.2.2).
No nonstandard value is defined for FLT_EVAL_METHOD.

(35) The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the 
original value (6.3.1.4).
Rounded to the nearest representable direction.

(36) The direction of rounding when a floating-point number is converted to a narrower floating-point number (6.3.1.5).
Rounded to the nearest representable direction.

(37) How the nearest representable value or the larger or smaller representable value immediately adjacent to the 
nearest representable value is chosen for certain floating constants (6.4.4.2).
Rounded to the nearest value.

(38) Whether and how floating expressions are contracted when not disallowed by the FP_CONTRACT pragma (6.5).
Contraction of expressions depends on each option specification.
The FP_CONTRACT pragma does not work.
#pragma STDC FP_CONTRACT is ignored even if it is specified.

(39) The default state for the FENV_ACCESS pragma (7.6.1).
The default state of the FENV_ACCESS pragma is ON.
#pragma STDC FENV_ACCESS is ignored even if it is specified.

(40) Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names 
(7.6, 7.12).
As per the math.h library provided by the compiler. There are no additional definitions.

(41) The default state for the FP_CONTRACT pragma (7.12.2).
The default state of the FP_CONTRACT pragma is ON.

(42) Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the 
mathematical result in an IEC 60559 conformant implementation (F.9).
Floating-point exceptions are not supported.
No "inexact" floating-point exception is generated.

(43) Whether the underflow (and inexact) floating-point exception can be raised when a result is tiny but not inexact in 
an IEC 60559 conformant implementation (F.9).
Floating-point exceptions are not supported. No "underflow" or "inexact" floating-point exception is generated.

(44) The result of converting a pointer to an integer or vice versa (6.3.2.3).
Refer to "Specifying memory allocation area (__near /__far)" in "4.2.6  Using extended language specifications".

(45) The size of the result of subtracting two pointers to elements of the same array (6.5.6).
The resultant type is the signed int type.

(46) The extent to which suggestions made by using the register storage-class specifier are effective (6.7.1).
User requests for register variables are not honored.



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 331 of 951
Dec 01, 2023

(47) The extent to which suggestions made by using the inline function specifier are effective (6.7.4).
Inlining is always tried. However, inlining may not be performed depending on the condition.

(48) Whether a "plain" int bit-field is treated as signed int bit-field or as an unsigned int bit-field (6.7.2, 6.7.2.1).
Treated as an unsigned int type. However, this can be changed by option -signed_bitfield.

(49) Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).
All integer types are allowed.

(50) Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).
When structure type packing is not specified, a bit-field cannot straddle a strage-unit boundary, but it is allocated to 
the next area.
When structure type packing is specified, a bit-field may straddle a strage-unit boundary.

(51) The order of allocation of bit-fields within a unit (6.7.2.1).
Allocated from the lower order.

(52) The alignment of non-bit-field members of structures (6.7.2.1).
Refer to "4.1.3  Internal representation and value area of data".

(53) The integer type compatible with each enumerated type (6.7.2.2).
Any of the char, signed char, unsigned char or signed short type. Minimum type that an enumerated type fits in.

(54) What constitutes an access to an object that has volatile-qualified type (6.7.3).
Although the access width, and order and number of accesses are as described in the C source, this does not 
apply to those accesses to a type for which the microcomputer does not have a corresponding instruction.

(55) How sequences in both forms of header names are mapped to headers or external source file names (6.4.7).
A character string described in the #include is interpreted as the character code specified as the source character 
set and is associated with a header name or an external source file name.

(56) Whether the value of a character constant in a constant expression that controls conditional inclusion matches the 
value of the same character constant in the execution character set (6.10.1).
A value for the character constant specified in conditional inclusion is equal to the character constant value that 
appears in other expressions.

(57) Whether the value of a single-character character constant in a constant expression that controls conditional inclu-
sion may have a negative value (6.10.1).
A character constant cannot be a negative value if it is a plain char type (char type which is neither signed nor 
unsigned) and a plain char type is unsigned. It can be a negative value if a plain char type is signed.

(58) The places that are searched for an included < > delimited header, and how the places are specified other header 
is identified (6.10.2).
Folders are searched in this order and a file having the same name in the folder is identified as the header.

(1) Folder specified by the path (if it is full-path)
(2) Folder specified by option -I
(3) Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(59) How the named source file is searched for in an included " " delimited header (6.10.2).
Searched in this order: 

(1) Folder specified by the path (if it is full-path)
(2) Folder having the source file
(3) Folder specified by option -I
(4) Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(60) The method by which preprocessing tokens (possibly resulting from macro expansion) in a #include directive are 
combined into a header name (6.10.2).
Treated as a preprocessing token of a single header or file name only in a macro that replaces preprocessing 
tokens with a single <character string> or "character string" format.

(61) The nesting limit for #include processing (6.10.2).
There are no limits.

(62) Whether the # operator inserts a \ character before the \ character that begins a universal character name in a 
character constant or string literal (6.10.3.2).
A \ character is not inserted in front of the first \ character. 

(63) The behavior on each recognized non-STDC #pragma directive (6.10.6).
Refer to "4.2.4  #pragma directive" in the User's Manual.



R20UT3123EJ0113  Rev.1.13 Page 332 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(64) The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are not available 
(6.10.8).
A date and time are always obtained.

(65) Any library facilities available to a freestanding program, other than the minimal set required by clause 4 (5.1.2.1).
Refer to "7.  LIBRARY FUNCTION SPECIFICATIONS".

(66) The format of the diagnostic printed by the assert macro (7.2.1.1).
As follows: 
Assertion failed: Expression, function function_name, file file_name, line line_number

(67) The representation of the floating-point status flags stored by the fegetexceptflag function (7.6.2.2).
The fegetexceptflag function is not supported.

(68) Whether the feraiseexcept function raises the "inexact" floating-point exception in addition to the "overflow" or 
"underflow" floating-point exception (7.6.2.3).
The feraiseexcept function is not supported.

(69) Strings other than "C" and "" that may be passed as the second argument to the setlocale function (7.11.1.1).
The setlocale function is not supported.

(70) The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro is less than zero or 
greater than two (7.12).
float_t is defined as the float type and double_t as the double type.

(71) Domain errors for the mathematics functions, other that those required by this International Standard (7.12.1).
A domain error occurs if:

- The input argument of the cos, sin, tan function groups is NaN or +/- Inf.

- The input argument of the atan, fabs, ceil, or floor function groups is NaN.

- Either input argument of the atan2 function group is NaN, or both arguments are +/- Inf.

- The input argument val of the frexp, modf function groups is NaN or +/- Inf.

- The input argument val of the ldexp function groups is NaN.

- The input argument x of the scalbn, scalbln function groups is NaN.

- Either argument of the fmod function group is NaN or +/- Inf.

For details, refer to (72).

(72) The values returned by the mathematics functions on domain errors (7.12.1).
The table below summarizes the conditions in which a domain error occurs and returned values.

functions Domain error occurrence condition and return value

cos/cosf/cosl
sin/sinf/sinl
tan/tanf/tanl

Returns NaN if the input argument is NaN or +/- Inf.

atan/atanf/atanl
fabs/fabsf/fabsl
ceil/ceilf/ceill
floor/floorf/floorl

Returns NaN if the input argument is NaN.

atan2/atan2f/atan2l Returns NaN if either input argument is NaN or both input arguments are +/- Inf.

frexp/frexpf/frexpl Returns NaN if the input argument val is NaN or +/- Inf, and returns 0 to argument 
*exp.

ldexp/ldexpf/ldexpl Returns NaN if the input argument val is NaN.

scalbn/scalbnf/scalbnl
scalbln/scalblnf/scalblnl

Returns NaN if the input argument x is NaN.

fmod/fmodf/fmodl Returns NaN if the input argument x or y is NaN.
Returns Nan if the input argument x is +/- Inf or the input argument y is 0.
Returns x if the input argument x is not +/- Inf and the input argument y is +/- Inf.



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 333 of 951
Dec 01, 2023

(73) The values returned by the mathematics functions on underflow range errors, whether errno is set to the value of 
the macro ERANGE when the integer expression math_errhandling & MATH_ERRNO is nonzero, and whether 
the "underflow" floating-point exception is raised when the integer expression math_errhandling & 
MATH_ERREXCEPT is nonzero. (7.12.1).
The return value is 0 or a denormalized number. ERANGE is set in errno in case of an underflow. No "underflow" 
floating-point exception is generated.

(74) Whether a domain error occurs or zero is returned when an fmod function has a second argument of zero 
(7.12.10.1).
A domain error is generated. For details, see the description about the fmod function group.

(75) The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient (7.12.10.3).
The remquo function group is not supported.

(76) Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler, and, if not, the 
blocking of signals that is performed (7.14.1.1).
The signal handling functions are not supported.

(77) The null pointer constant to which the macro NULL expands (7.17).
(void *)0.

(78) Whether the last line of a text stream requires a terminating new-line character (7.19.2).
The last line does not need to end in a newline character.

(79) Whether space characters that are written out to a text stream immediately before a new-line character appear 
when read in (7.19.2).
Space characters appear when data is read.

(80) The number of null characters that may be appended to data written to a binary stream (7.19.2).
0.

(81) Whether the file position indicator of an append-mode stream is initially positioned at the beginning or end of the 
file (7.19.3).
The file handling functions are not supported.

(82) Whether a write on a text stream causes the associated file to be truncated beyond that point (7.19.3).
The file handling functions are not supported.

(83) The characteristics of file buffering (7.19.3).
The file handling functions are not supported.

(84) Whether a zero-length file actually exists (7.19.3).
The file handling functions are not supported.

(85) The rules for composing valid file names (7.19.3).
The file handling functions are not supported.

(86) Whether the same file can be simultaneously open multiple times (7.19.3).
The file handling functions are not supported.

(87) The nature and choice of encodings used for multibyte characters in files (7.19.3).
The file handling functions are not supported.

(88) The effect of the remove function on an open file (7.19.4.1).
The file handling functions are not supported.

(89) The effect if a file with the new name exists prior to a call to the rename function (7.19.4.2).
The file handling functions are not supported.

(90) Whether an open temporary file is removed upon abnormal program termination (7.19.4.3).
The file handling functions are not supported.

(91) Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).
The file handling functions are not supported.

modf/modff/modfl Returns 0 if the input argument val is +/- Inf, and returns +/- Inf to argument iptr.
Returns NaN if the input argument val is NaN, and returns NaN to argument iptr.

Other functions Returns NaN if a domain error occurs in accordance with the C99 standard.

functions Domain error occurrence condition and return value



R20UT3123EJ0113  Rev.1.13 Page 334 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(92) The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence printed for a NaN 
(7.19.6.1, 7.24.2.1).
inf or INF is output for a positive infinity, -inf or -INF for a negative infinity, and nan or NAN for a NaN.
n character strings or n wide character strings are not supported when a NaN is written.

(93) The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).
Hexadecimal notation.
The fprintf and fwprintf functions are not supported.

(94) The interpretation of a - character that is neither the first nor the last character, nor the second where a ^ character 
is the first, in the scanlist for %[ conversion in the fscanf() or fwscanf() function (7.19.6.2, 7.24.2.1).
Refer to "scanf" in "7.5.7  Standard I/O functions".
The fscanf and fwscanf functions are not supported.

(95) The set of sequences matched by a %p conversion and the interpretation of the corresponding input item in the 
fscanf() or fwscanf() function (7.19.6.2, 7.24.2.2).
Hexadecimal number.
The fscanf and fwscanf functions are not supported.

(96) The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3, 
7.19.9.4).
The file handling functions are not supported.

(97) The meaning of any n-char or n-wchar sequence in a string representing a NaN that is converted by the strtod(), 
strtof(), strtold(), wcstod(), wcstof(), or wcstold() function (7.20.1.3, 7.24.4.1.1).
Interpreted as a value other than a number of floating-point type in case of the strtod, strtof ot strtold function.
The wcstod, wcstof, and wcstold functions are not supported.

(98) Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno to ERANGE when under-
flow occurs (7.20.1.3, 7.24.4.1.1).
The strtod, strtof and strtold functions set ERANGE in global variable errno.
The wcstod, wcstof, and wcstold functions are not supported.

(99) Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an allocated object when the 
size requested is zero (7.20.3).
NULL is returned.

(100) Whether open streams with unwritten buffered data are flushed, open streams are closed, or temporary files are 
removed when the abort or _Exit function is called (7.20.4.1, 7.20.4.4).
The file handling functions are not supported.

(101) The termination status returned to the host environment by the abort, exit, or _Exit function (7.20.4.1, 7.20.4.3, 
7.20.4.4).
Not defined because of a freestanding environment.

(102) The value returned by the system function when its argument is not a null pointer (7.20.4.6).
The system function is not supported.

(103) The local time zone and Daylight Saving Time (7.23.1).
time.h is not supported.

(104) The range and precision of times representable in clock_t and time_t (7.23).
time.h is not supported.

(105) The era for the clock function (7.23.2.1).
time.h is not supported.

(106) The replacement string for the %Z specifier to the strftime, and wcsftime functions in the "C" locale (7.23.3.5, 
7.24.5.1).
time.h is not supported.

(107) Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic, error, and log gamma 
functions raise the "inexact" floating-point exception in an IEC 60559 conformant implementation (F.9).
No "inexact" floating-point exception is generated

(108) Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant implementa-
tion (F.9).
The rounding direction mode is fixed.
The fesetround function is not supported.



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 335 of 951
Dec 01, 2023

(109) The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>, and <stdint.h> 
(5.2.4.2, 7.18.2, 7.18.3).
Refer to "Standard header" in "4.2.3  C99 language specifications supported in conjunction with C90".

(110) The number, order, and encoding of bytes in any object (when not explicitly specified in this International Stan-
dard) (6.2.6.1).
Refer to "4.1.3  Internal representation and value area of data".

(111) The value of the result of the sizeof operator (6.5.3.4).
Refer to "4.1.3  Internal representation and value area of data".

Translation limits

The table below shows the translation limits of CC-RL.
The upper limit depends on the memory situation of the host environment for the item "No limit".

Table 4.2 Translation limits (C99)

Item C99 CC-RL

Number of nesting levels of blocks 127 No limit

Number of nesting levels of conditional inclusion 63 No limit

Number of pointers, arrays, and function declarators (in any combinations) 
qualifying an arithmetic, structure, union, or incomplete type in a declara-
tion

12 128

Number of nesting levels of parenthesized declarators within a full declara-
tor

63 No limit

Number of nesting levels of parenthesized expressions within a full expres-
sion

63 No limit

Number of significant initial characters in an internal identifier or a macro 
name

63 No limit

Number of significant initial characters in an external identifier 31 No limit

Number of external identifiers in one translation unit 4095 No limit

Number of identifiers with block scope declared in one block 511 No limit

Number of macro identifiers simultaneously defined in one preprocessing 
translation unit

4095 No limit

Number of parameters in one function definition 127 No limit

Number of arguments in one function call 127 No limit

Number of parameters in one macro definition 127 No limit

Number of arguments in one macro invocation 127 No limit

Number of characters in a logical source line 4095 No limit

Number of characters in a character string literal or wide string literal (after 
concatenation)

4095 No limit

Number of bytes in an object (in a hosted environment only) 65535 32767(65535)Note1

Number of nesting levels for #included files 15 No limit

Number of case labels for a switch statement (excluding those for any 
nested switch statements)

1023 65535

Number of members in a single structure or union 1023 No limit

Number of enumeration constants in a single enumeration 1023 No limit



R20UT3123EJ0113  Rev.1.13 Page 336 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note 1. The value in parentheses indicates the number of bytes in cases where -large_variable is specified.

4.1.3  Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CC-RL.

(1) Integer type

(a) Internal representation
The leftmost bit in an area is a sign bit with a signed type.  The value of a signed type is expressed as 2' s com-
plement.

Figure 4.1 Internal Representation of Integer Type

_Bool

Only the 0th bit has meaning.  Bits 1 to 7 are undefined.
When the -lang=c and -strict_std options are specified, _Bool type will cause a C90 violation error.

char

A plain char type not specified as signed or unsigned has the same representation as unsigned char.
When the -signed_char option is used, a plain char type has the same representation as signed char.

signed char (no sign bit for unsigned)

short (no sign bit for unsigned)

int (no sign bit for unsigned)

long (no sign bit for unsigned)

Number of levels of nested structure or union definitions in a single 
struct-declaration-list

63 No limit

Item C99 CC-RL

7 0

7 0

7 0

15 0

15 0

31 0



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 337 of 951
Dec 01, 2023

long long (no sign bit for unsigned)

When the -lang=c and -strict_std options are specified, long long type will cause a C90 violation error.

(b) Value area

Table 4.3 Value Area of Integer Type

(c) Integer constants
The type of an integer constant will be the first type in the lists below capable of representing that value.

Table 4.4 Types of Integer Constants (If type long long is enabled (when -lang=c is specified and -strict_std 
is not))

Type Value Area

_Bool 0 to 1

signed char -128 to +127

signed short -32768 to +32767

signed int -32768 to +32767

signed long -2147483648 to +2147483647

signed long long -9223372036854775808 to +9223372036854775807

(unsigned) char 0 to 255

unsigned short 0 to 65535

unsigned int 0 to 65535

unsigned long 0 to 4294967295

unsigned long long 0 to 18446744073709551615

Suffix Decimal Constant Binary Constant, Octal Constant, 
or Hexadecimal Constant

None int
long int
unsigned long intNote

long long int
unsigned long long int

int
unsigned int
long int
unsigned long int
long long int
unsigned long long int

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
unsigned long intNote

long long int
unsigned long long int

long int
unsigned long int
long long int
unsigned long long int

Both u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int
unsigned long long int

long long int
unsigned long long int

Both u or U, and ll or LL unsigned long long int unsigned long long int

063



R20UT3123EJ0113  Rev.1.13 Page 338 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note Different from C99 specification.  This is added to avoid the case where an integer constant rep-
resented as 4-byte data in C90 is unexpectedly represented as 8-byte data.

Table 4.5 Types of Integer Constants (If type long long is disabled (when -lang=c and -strict_std are 
specified))

Table 4.6 Types of Integer Constants (If type long long is enabled (when -lang=c99 is specified))

(2) Floating-point type

(a) Internal representation
Internal Representation of floating-point data type conforms to IEC 60559:1989 (IEEE 754-1985)Note.  The left-
most bit in an area of a sign bit.  If the value of this sign bit is 0, the data is a positive value; if it is 1, the data is 
a negative value.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a standard to unify specifications such as the data format and numeric range in sys-
tems that handle floating-point operations.

Suffix Decimal Constant Binary Constant, Octal Constant, 
or Hexadecimal Constant

None int
long int
unsigned long int

int
unsigned int
long int
unsigned long int

u or U unsigned int
unsigned long int

unsigned int
unsigned long int

l or L long int
unsigned long int

long int
unsigned long int

Both u or U, and l or L unsigned long int unsigned long int

Suffix Decimal Constant Binary Constant, Octal Constant, 
or Hexadecimal Constant

None int
long int
long long int
unsigned long long int

int
unsigned int
long int
unsigned long int
long long int
unsigned long long int

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int
unsigned long long int

long int
unsigned long int
long long int
unsigned long long int

Both u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int
unsigned long long int

long long int
unsigned long long int

Both u or U, and ll or LL unsigned long long int unsigned long long int



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 339 of 951
Dec 01, 2023

Figure 4.2 Internal Representation of Floating-Point Type

float

S: Sign bit of mantissa
E: Exponent (8 bits) 
M: Mantissa (23 bits)

double, long double

S: Sign bit of mantissa
E: Exponent (11 bits) 
M: Mantissa (52 bits)

When the option -dbl_size=4 is used, it has the same representation as type float.  Even if you write type dou-
ble, it will be treated as if you had written type float.  Similarly, if you write long double, it will be treated as if you 
had written type float.
When the option dbl_size=8 is used, it is represented in 64 bits.

(b) Value area

Table 4.7 Value Area of Floating-Point Type

(3) Pointer type

(a) Internal representation
The internal representation of a near pointer is a 16-bit unsigned type and that of a far pointer is a 32-bit 
unsigned type.
The most significant byte of a far pointer is undetermined.
The internal representation of a null pointer constant (NULL) has a value of 0. (Note that the byte corresponding 
to the undefined byte of the far pointer is not always 0.)
Therefore, for both the near and far pointers, access to address 0 is not guaranteed.
Correct operation is not guaranteed if the value of a far pointer exceeds 0xfffff.
Do not allocate a function or a variable to address 0x0f0000 or access the address.

Figure 4.3 Internal Representation of Pointer Type

near pointer

far pointer

Type Value Area

float 1.17549435E-38F to 3.40282347E+38F

double 2.2250738585072014E-308 to 1.7976931348623158E+308

long double 2.2250738585072014E-308 to 1.7976931348623158E+308

M

031  30

S E

23 22

ME

063  62

S

52 51

015

0781516232431

Undefined



R20UT3123EJ0113  Rev.1.13 Page 340 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(4) Enumerated type

(a) Internal representation
The internal representation of an enumerated type depends on the range of the enumerator value.

<1> When option -signed_char is not specified

<2> When option -signed_char is specified

(5) Array type

(a) Internal representation
The internal representation of an array type arranges the elements of an array in the form that satisfies the 
alignment condition (alignment) of the elements

Example

The internal representation of the array shown above is as follows.

Figure 4.4 Internal Representation of Array Type

(6) Structure type

(a) Internal representation
In a single structure, members are allocated from the head of the structure in the order of declaration.  The inter-
nal representation of a structure type arranges the elements of a structure in a form that satisfies the alignment 
condition of the elements.
The alignment condition for the largest member of a structure is used as the alignment condition for the whole of 
the structure. This rule is also applied recursively when members are structures or unions.
The size of a structure is a multiple of the "alignment condition for the whole of the structure". Therefore, this 
size includes the unused area that is created to guarantee the alignment condition of the next data when the 
end of a structure does not match the alignment condition of that structure.

Minimum Value of 
Enumerator

Maximum Value 
of Enumerator

Type of Internal 
Representation

Remark

-128 127 signed char

0 255 char When the range is 0 to 127, this type is used

Others signed short

Minimum Value of 
Enumerator

Maximum Value 
of Enumerator

Type of Internal 
Representation

Remark

-128 127 char When the range is 0 to 127, this type is used

0 255 unsigned char

Others signed short

char    a[8] = {1, 2, 3, 4, 5, 6, 7, 8};

07 07070707070707



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 341 of 951
Dec 01, 2023

Example 1.

The internal representation of the structure shown above is as follows.

Figure 4.5 Internal Representation of Structure Type (without Structure Packing Specification)

Figure 4.6 Internal Representation of Structure Type (with Structure Packing Specification)

Example 2.

The internal representation of the structure shown above is as follows.

Figure 4.7 Internal Representation of Structure Type (without Structure Packing Specification)

Figure 4.8 Internal Representation of Structure Type (with Structure Packing Specification)

For details on the structure packing specification, see "-pack".

(7) Union type

(a) Internal representation
The alignment condition for the largest member of a union is used as the alignment condition for the whole of 
the union. This rule is also applied recursively when members are structures or unions.

struct {
        short           s1;
        signed long     s2;
        char            s3;
        signed long     s4;
} s;

struct {
        short           s1;
        char            s2;
} s;

s2 s1

_s

s3s4

_s+8 _s+6 _s+2

s2 s1

_s

s3s4

_s+7 _s+6 _s+2

s1s2

_s+3 _s+2 _s

s1s2

_s+2 _s



R20UT3123EJ0113  Rev.1.13 Page 342 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Example

The internal representation of the union shown in the above example is as follows.

Figure 4.9 Internal Representation of Union Type

(8) Bit field

(a) Internal representation
The types that can be specified for bit fields are _Bool, char, signed char, unsigned char, signed short, unsigned 
short, signed int, unsigned int, signed long, unsigned long, signed long long, unsigned long long, and enumer-
ated types.
Although only (signed or unsigned) int is allowed in C90, all of the above types are valid for bit fields in CC-RL if 
the -strict_std option is not used.
With the -strict_std option, the _Bool, signed long long, and unsigned long long types will cause a C90 violation 
error.
A bit field is allocated starting from the least significant bit for the type specified in the declaration of the bit field.
When an attempt is made to allocate a bit field from the bit contiguous to the previous bit field and the location of 
the end of the bit field after allocation exceeds the location of adding the "bit width of declared type" to the 
boundary that is previous to satisfaction of the alignment condition for the bit field, the bit field is allocated to an 
area starting from the first boundary that satisfies the alignment condition after the previous bit field.

- The bit field of a type not specified as signed or unsigned is handled as unsigned.
However, when the -signed_bitfield option is specified, it is handled as signed.

- Bit fields within an allocation unit are allocated from the lower order (LSB) toward the higher order (MSB).

union {
        int     u1;
        short   u2;
        char    u3;
        long    u4;
} tag;

0

tag.u3 (1 byte)

tag.u4 (4 bytes)

31

tag.u1, tag.u2 (2 bytes)

16 15 8 7



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 343 of 951
Dec 01, 2023

Example 1.

The internal representation for the bit field in the above example is as follows.

Figure 4.10 Internal Representation of Bit Field (without Structure Packing Specification)

sizeof(struct S)=8

Figure 4.11 Internal Representation of Bit Field (with Structure Packing Specification)

sizeof(struct S)=7

struct S{
        char            a;
        char            b:2;
        signed char     c:3;
        unsigned char   d:4;
        int             e;
        short           f:5;
        int             g:6;
        unsigned char   h:2;
        unsigned int    i:2;
};

d

+3

c

+2 +1 0

ef

+7

g

+4+6 +5

LSB

b a

i h

MSB

d

+3

c

+2 +1 0

ef

+4+6 +5

LSB

b a

MSB

ghi

e

+7



R20UT3123EJ0113  Rev.1.13 Page 344 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Example 2.

The internal representation for the bit field in the above example is as follows.

Figure 4.12 Internal Representation of Bit Field

sizeof(struct S)=2

Example 3.

The internal representation for the bit field in the above example is as follows.

Figure 4.13 Internal Representation of Bit Field (without Structure Packing Specification)

sizeof(struct S)=2

Figure 4.14 Internal Representation of Bit Field (with Structure Packing Specification)

sizeof(struct S)=1

For details on the structure packing specification, see "-pack".

(9) Alignment

(a) Alignment condition for basic type
Alignment condition for basic type is as follows.

Table 4.8 Alignment Condition for Basic Type

struct S{
        char    f1:4;
        int     f2:5;
        int     f3:6;
};

struct S{
        long    f1:4;
};

Basic Type Alignment Conditions

(unsigned) char
_Bool type

1-byte boundary

Others 2-byte boundary

f 1f2

0815

f 3

7

f 1

015

f 1

07



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 345 of 951
Dec 01, 2023

(b) Alignment condition for enumerated type
Alignment condition for enumerated type is as follows.

<1> When option -signed_char is not specified

<2> When option -signed_char is specified

(c) Alignment condition for array type
The alignment condition for an array type is the same as that for the array elements.

(d) Alignment condition for pointers
The alignment condition (value) for near and far pointers is 2.

(e) Alignment condition for union type
The alignment conditions for a union type are the same as those of the structure's member whose type has the 
largest alignment condition.

(f) Alignment condition for structure type
The alignment conditions for a structure type are the same as those of the structure's member whose type has 
the largest alignment condition.

(g) Alignment condition for function argument
See "9.1  Function Call Interface".

(h) Alignment condition for function
The alignment condition for a function is a 1-byte boundary.

4.1.4  Allocation conditions for data and function

The allocation conditions for data and functions are as follows.

- 1Static variables and functions in a single section are allocated in the order of their definitions; that is, when data (or 
function) A and data (or function) B are allocated in the same section S and A is defined before B in a program, A is 
allocated to a smaller address than that of B in section S.

- Alignment of static variables and functions conforms to the alignment condition for the static variables and functions 
regardless of the type of the section; that is, even if a variable having an alignment value of 1 is allocated to a section 
having an alignment value of 2, the variable is aligned with a 1-byte boundary, and a variable having an alignment 
value of 2 cannot be allocated to a section having an alignment value of 1.

Minimum Value of Enu-
merator

Maximum Value of Enu-
merator

Type of Internal Repre-
sentation

Alignment Condition

-128 127 signed char 1

0 255 char 1

Others signed short 2

Minimum Value of Enu-
merator

Maximum Value of Enu-
merator

Type of Internal Repre-
sentation

Alignment Condition

-128 127 char 1

0 255 unsigned char 1

Others signed short 2



R20UT3123EJ0113  Rev.1.13 Page 346 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

4.1.5  Static variable initialization

This section explains the static variable initialization.

4.1.5.1  Initialization by address calculation

When a static variable is initialized as follows, addition and subtraction affects only the lower-order 2 bytes.

((Integer type cast) Address constant)Integer type constant

This specification is valid only when -strict_std is not used.

Example

4.1.5.2  Casting far address to near address and then converting to far address

When a static variable is initialized as follows, loss of the upper-order 2 bytes due to a cast to a near pointer does not 
occur.

(Cast to four or more bytes)(Cast to near pointer)(far address constant)

This specification is valid only when -strict_std is not used.

Example

int     x;
static long     l = (long)&x + 1;       //The upper-order 2 bytes of &x do not change

int     __far x;
static long     l = (long)(int __near*)&x;      //far address is stored in l



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 347 of 951
Dec 01, 2023

4.2  Extended Language Specifications

This section explains the extended language specifications supported by the CC-RL.

4.2.1  Reserved words

The CC-RL adds the following characters as reserved words to implement the expanded function.  These words are 
similar to the ANSI C keywords, and cannot be used as a label or variable name.

Reserved words that are added by the CC-RL are listed below.

Table 4.9 List of Reserved Words

All names that include two underscores (__) are also invalid as label or variable names.

4.2.2  Macro

All the following macro names are supported.

Table 4.10 List of Supported Macros

Reserved Words Usage

__saddr Allocating a static variable to the saddr area

__callt Calling a function with the callt instruction

__near Specifying memory allocation area

__far Specifying memory allocation area

__inline Specifying memory allocation area

__sectop Section start address

__secend Section end address + 1

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd 
yyyy").  Here, the name of the month is the same as that created by the asctime func-
tion stipulated by ANSI standards (3 alphabetic characters with only the first character 
is capital letter) (The first character of dd is blank if its value is less than 10).Note2

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" 
similar to the time created by the asctime function).Note2

__STDC__ Decimal constant 1 (defined when the -strict_std option is specified).Note1

__RENESAS__ Decimal constant 1.

__RENESAS_VERSION__ If the version is V.XX.YY.ZZ, this will be 0xXXYYZZ00.
Example) V.1.00.00 -> -D__RENESAS_VERSION__=0x01000000

__RL78__ Decimal constant 1.

__RL78_S1__ Decimal constant 1 (defined when S1 is specified by the -cpu option).

__RL78_S2__ Decimal constant 1 (defined when S2 is specified by the -cpu option).

__RL78_S3__ Decimal constant 1 (defined when S3 is specified by the -cpu option).



R20UT3123EJ0113  Rev.1.13 Page 348 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note 1. For the processing to be performed when the -strict_std option is specified, see "-strict_std [V1.06 or 
later] / -ansi [V1.05 or earlier]".

Note 2. The date and time of translation can be obtained in any case; the __DATE__ and __TIME__ macro val-
ues are always defined.

4.2.3  C99 language specifications supported in conjunction with C90

CC-RL supports some of the C99-standard specifications even when the C90 standard is selected (with -lang=c).

(1) Comment by //
Text from two slashes (//) until a newline character is a comment.  If there is a backslash character (\) immediately 
before the newline, then the next line is treated as a continuation of the current comment.

(2) Concatenating wide string literal
The result of concatenating a character string literal with a wide string literal is a wide string literal.

(3) _Bool type
_Bool type is supported.
_Bool type is a 1-byte integer type that holds only 0 or 1.
When the -lang=c and -strict_std options are specified, _Bool type is not supported and it generates a compilation 
error.

__RL78_SMALL__ Decimal constant 1 (defined when small is specified by the -memory_model option or 
when S1 is specified by the -cpu option while the -memory_model option is not speci-
fied).

__RL78_MEDIUM__ Decimal constant 1 (defined when medium is specified by the -memory_model option 
or when S2 or S3 is specified by the -cpu option while the 
-memory_model option is not specified).

__CCRL__ Decimal constant 1.

__CCRL Decimal constant 1.

__DBL4 Decimal constant 1 (defined when 4 is specified by the -dbl_size option).

__DBL8 Decimal constant 1 (defined when 8 is specified by the -dbl_size option).

__SCHAR Decimal constant 1 (defined when the -signed_char option is specified).

__UCHAR Decimal constant 1 (defined when the -signed_char option is not specified).

__SBIT Decimal constant 1 (defined when the -signed_bitfield option is specified).

__UBIT Decimal constant 1 (defined when the -signed_bitfield option is not specified).

__FAR_ROM__ Decimal constant 1 (defined when the -far_rom option is specified).

__CNV_CA78K0R__ Decimal constant 1 (defined when ca78k0r is specified by the -convert_cc option).

__CNV_NC30__ Decimal constant 1 (defined when nc30 is specified by the -convert_cc option).

__CNV_IAR__ Decimal constant 1 (defined when iar is specified by the -convert_cc option)

__BASE_FILE__ C source file name (character string constant).
Unlike __FILE__, the C source file name is returned even when used in an include 
file.

__STDC_VERSION__ Decimal constant 199409L (defined when the -lang=c and -strict_std options are 
specified).Note1

Decimal constant 199901L (defined when the -lang=c99 option is specified).

__STDC_HOSTED__ Decimal constant 0 (defined when the -lang=c99 option is specified).

__STDC_IEC_559__ Decimal constant 1 (defined when the -lang=c99 option is specified).

Macro Name Definition



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 349 of 951
Dec 01, 2023

(4) long long int type
long long int type is supported.  long long int type is an 8-byte integer type.
Appending "LL" and "ULL" to a constant value is also supported.  It is also possible to specify this for bit field 
types.
When the -lang=c and -strict_std options are specified, the long long int type is not supported and it generates a 
compilation error.

(5) Integer promotion
In accordance with support for types _Bool and long long, integer promotion is also in accordance with the C99 
specification.
When the -lang=c and -strict_std options are specified, _Bool type and long long type is not supported and integer 
promotion is in accordance with the C90 specification.

(6) Aggregate initialization
The initializer for an aggregate or union type object that has automatic storage duration conforms to the C99 spec-
ifications.
In the C90 specifications, only a constant expression is allowed for an initializer, but other expressions can be 
used in CC-RL.

(7) Default argument promotions
In accordance with support for types _Bool and long long, default argument promotions is also in accordance with 
the C99 specification..

- Functions are called after expanding type _Bool_ to type int (2 bytes).

- Functions are called with type (unsigned) long long remaining as an 8 bytes value.

- When the option -dbl_size=4 is used, functions are called with type float remaining 4 bytes.
This is because as a result of this option, even if a float is promoted to a double, the double type will have 4 
bytes (same as the float type).

A near pointer is converted to a far pointer.
void* conforms to the rules for variable pointers.

(8) Comma permission behind the last enumerator of a enum definition
When defining an enum type, it is permissible for the last enumerator in the enumeration to be followed by a 
comma (,).

When the -lang=c and -strict_std options are specified, this comma will generate an error.

(9) Types of integer constants
The type of an integer constant changes due to addition of the long long type. For details, see "(c)  Integer 
constants" in "4.1.3  Internal representation and value area of data".

(10) Standard header
Standard header stdint.h is added, which defines the following types.

(a) limits.h

Table 4.11 limits.h

void func(int param) {
        int i = param;              //Allowed both in C90 and C99
        int array[] = { param };    //Not allowed in C90, allowed in C99, and 
                                    //allowed in CC-RL

enum EE {a, b, c,};

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the minimum 
object not in bit field

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX +127 Maximum value of signed char

UCHAR_MAX +255 Maximum value of unsigned char



R20UT3123EJ0113  Rev.1.13 Page 350 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(b) float.h
The values in parentheses are for the case when the -dbl_size=4 option is used, which specifies sizeof(double) 
= sizeof(long double) = 4.  -dbl_size=4 is the default setting in the CC-RL.

Table 4.12 float.h

CHAR_MIN 0 (-128) Minimum value of char (The default is the value 
of unsigned char. When the -signed_char option 
is specified, it becomes the value of signed char.)

CHAR_MAX +255 (+127) Maximum value of char (The default is the value 
of unsigned char. When the -signed_char option 
is specified, it becomes the value of signed char.)

SHRT_MIN -32768 Minimum value of short int

SHRT_MAX +32767 Maximum value of short int

USHRT_MAX +65535 Maximum value of unsigned short int

INT_MIN -32768 Minimum value of int

INT_MAX +32767 Maximum value of int

UINT_MAX +65535 Maximum value of unsigned int

LONG_MIN -2147483648 Minimum value of long int

LONG_MAX +2147483647 Maximum value of long int

ULONG_MAX +4294967295 Maximum value of unsigned long int

LLONG_MIN -9223372036854775807 Minimum value of long long int
(Invalid when using option -lang=c and 
-strict_std)

LLONG_MAX +9223372036854775807 Maximum value of long long int
(Invalid when using option -lang=c and 
-strict_std)

ULLONG_MAX +18446744073709551615 Maximum value of unsigned long long int
(Invalid when using option -lang=c and 
-strict_std)

Name Value Meaning

FLT_ROUNDS +1 Rounding mode for floating-point addition.
1 for the RL78 family (rounding in the nearest 
direction).

FLT_EVAL_METHOD 0 Evaluation format of floating-point number
(Invalid when using option -lang=c)

FLT_RADIX +2 Radix of exponent (b)

FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of float-
ing- point mantissa as base

DBL_MANT_DIG +53 (+24)

LDBL_MANT_DIG +53 (+24)

Name Value Meaning



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 351 of 951
Dec 01, 2023

DECIMAL_DIG +17 (+9) Number of digits of a decimal number (q) that can 
round a floating-point number of p digits using 
radix b to a decimal number of q digits and then 
restore the floating-point number of p digits using 
radix b without any change
(Invalid when using option -lang=c)

FLT_DIG +6 Number of digits of a decimal number (q) that can 
round a decimal number of q digits to a float-
ing-point number of p digits of the radix b and 
then restore the decimal number of q

DBL_DIG +15 (+6)

LDBL_DIG +15 (+6)

FLT_MIN_EXP -125 Minimum negative integer (emin) that is a normal-
ized floating-point number when FLT_RADIX is 
raised to the power of the value of FLT_RADIX 
minus 1.

DBL_MIN_EXP -1021 (-125)

LDBL_MIN_EXP -1021 (-125)

FLT_MIN_10_EXP -37 Minimum negative integer log10bemin-1 that falls in 
the range of a normalized floating-point number 
when 10 is raised to the power of its value.DBL_MIN_10_EXP -307 (-37)

LDBL_MIN_10_EXP -307 (-37)

FLT_MAX_EXP +128 Maximum integer (emax) that is a finite float-
ing-point number that can be expressed when 
FLT_RADIX is raised to the power of its value 
minus 1.

DBL_MAX_EXP +1024 (+128)

LDBL_MAX_EXP +1024 (+128)

FLT_MAX_10_EXP +38 Maximum integer that falls in the range of a nor-
malized floating-point number when 10 is raised 
to this power.
log10 ((1 - b-p) * bemax)

DBL_MAX_10_EXP +308 (+38)

LDBL_MAX_10_EXP +308 (+38)

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point numbers 
that can be expressed
(1 - b-p) * bemaxDBL_MAX 1.7976931348623158E+308 

(3.40282347E+38F)

LDBL_MAX 1.7976931348623158E+308 
(3.40282347E+38F)

FLT_EPSILON 1.19209290E - 07F Difference between 1.0 that can be expressed by 
specified floating-point number type and the low-
est value which is greater than 1.
b1 - p

DBL_EPSILON 2.2204460492503131E-016 
(1.19209290E - 07)

LDBL_EPSILON 2.2204460492503131E-016 
(1.19209290E - 07F)

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive float-
ing-point number
bemin - 1DBL_MIN 2.2250738585072014E-308 

(1.17549435E - 38F)

LDBL_MIN 2.2250738585072014E-308 
(1.17549435E - 38F)

Name Value Meaning



R20UT3123EJ0113  Rev.1.13 Page 352 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(c) stdint.h

Table 4.13 Type Definition Names in stdint.h

Type Name Actual Type Remark

int8_t signed char

int16_t signed short

int32_t signed long

int64_t signed long long When -strict_std is not used or 
-lang=c99 is used

uint8_t unsigned char

uint16_t unsigned short

uint32_t unsigned long

uint64_t unsigned long long When -strict_std is not used or 
-lang=c99 is used

int_least8_t signed char

int_least16_t signed short

int_least32_t signed long

int_least64_t signed long long When -strict_std is not used or 
-lang=c99 is used

uint_least8_t unsigned char

uint_least16_t unsigned short

uint_least32_t unsigned long

uint_least64_t unsigned long long When -strict_std is not used or 
-lang=c99 is used

int_fast8_t signed char

int_fast16_t signed short

int_fast32_t signed long

int_fast64_t signed long long When -strict_std is not used or 
-lang=c99 is used

uint_fast8_t unsigned char

uint_fast16_t unsigned short

uint_fast32_t unsigned long

uint_fast64_t unsigned long long When -strict_std is not used or 
-lang=c99 is used

intptr_t signed long

uintptr_t unsigned long

intmax_t signed long When -lang=c and -strict_std are 
used

signed long long When -strict_std is not used or 
-lang=c99 is used



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 353 of 951
Dec 01, 2023

Table 4.14 Macro Definition Names in stdint.h

uintmax_t unsigned long When -lang=c and -strict_std are 
used

unsigned long long When -strict_std is not used or 
-lang=c99 is used

Macro Name Value Remark

INT8_MIN -128

INT16_MIN -32768

INT32_MIN -2147483648

INT64_MIN -9223372036854775808 When -strict_std is not used or 
-lang=c99 is used

INT8_MAX +127

INT16_MAX +32767

INT32_MAX +2147483647

INT64_MAX +9223372036854775807 When -strict_std is not used or 
-lang=c99 is used

UINT8_MAX +255

UINT16_MAX +65535

UINT32_MAX +4294967295

UINT64_MAX +18446744073709551615 When -strict_std is not used or 
-lang=c99 is used

INT_LEAST8_MIN -128

INT_LEAST16_MIN -32768

INT_LEAST32_MIN -2147483648

INT_LEAST64_MIN -9223372036854775808 When -strict_std is not used or 
-lang=c99 is used

INT_LEAST8_MAX +127

INT_LEAST16_MAX +32767

INT_LEAST32_MAX +2147483647

INT_LEAST64_MAX +9223372036854775807 When -strict_std is not used or 
-lang=c99 is used

UINT_LEAST8_MAX +255

UINT_LEAST16_MAX +65535

UINT_LEAST32_MAX +4294967295

UINT_LEAST64_MAX +18446744073709551615 When -strict_std is not used or 
-lang=c99 is used

INT_FAST8_MIN -128

Type Name Actual Type Remark



R20UT3123EJ0113  Rev.1.13 Page 354 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

(11) Variadic macro
The variadic macro is enabled.

INT_FAST16_MIN -32768

INT_FAST32_MIN -2147483648

INT_FAST64_MIN -9223372036854775808 When -strict_std is not used or 
-lang=c99 is used

INT_FAST8_MAX +127

INT_FAST16_MAX +32767

INT_FAST32_MAX +2147483647

INT_FAST64_MAX +9223372036854775807 When -strict_std is not used or 
-lang=c99 is used

UINT_FAST8_MAX +255

UINT_FAST16_MAX +65535

UINT_FAST32_MAX +4294967295

UINT_FAST64_MAX +18446744073709551615 When -strict_std is not used or 
-lang=c99 is used

INTPTR_MIN -2147483648

INTPTR_MAX +2147483647

UINTPTR_MAX +4294967295

INTMAX_MIN -2147483648 When -lang=c and -strict_std are 
used

-9223372036854775808 When -strict_std is not used or 
-lang=c99 is used

INTMAX_MAX +2147483647 When -lang=c and -strict_std are 
used

+9223372036854775807 When -strict_std is not used or 
-lang=c99 is used

UINTMAX_MAX +4294967295 When -lang=c and -strict_std are 
used

+18446744073709551615 When -strict_std is not used or 
-lang=c99 is used

PTRDIFF_MIN -32768

PTRDIFF_MAX +32767

SIZE_MAX +65535

#define pf(form, ...) printf(form, __VA_ARGS__)

pf("%s %d\n", "string", 100);
                      
printf("%s %d\n", "string", 100);

Macro Name Value Remark



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 355 of 951
Dec 01, 2023

4.2.4  #pragma directive

Below are #pragma directives supported as extended language specifications. These extended specifications can also 
be used with the _Pragma operator in C99. See "4.2.6  Using extended language specifications" for details.

Table 4.15 List of Supported #pragma Directive

4.2.5  Binary constants

Binary constants are supported in the CC-RL.

4.2.6  Using extended language specifications

This section explains using expanded specifications.

- Using saddr area (__saddr)

- callt function (__callt)

- Specifying memory allocation area (__near /__far)

- Specifying inline function (__inline)

- Section address operator (__sectop/__secend)

- Hardware interrupt handler (#pragma interrupt)

- Software interrupt handler (#pragma interrupt_brk)

- Changing compiler output section name (#pragma section)

- Interrupt handler for RTOS (#pragma rtos_interrupt)

- Task function for RTOS (#pragma rtos_task)

- Inline expansion of function (#pragma inline, #pragma noinline)

#pragma directive Definition

#pragma interrupt Hardware interrupt handler

#pragma interrupt_brk Software interrupt handler

#pragma section Changing compiler output section name

#pragma rtos_interrupt Interrupt handler for RTOS

#pragma rtos_task Task function for RTOS

#pragma inline Inline expansion of function

#pragma noinline

#pragma inline_asm Describing assembler instruction

#pragma address Absolute address allocation specification

#pragma saddr Using saddr area

#pragma callt callt function

#pragma near near function

#pragma far far function

#pragma pack Structure packing

#pragma unpack

#pragma stack_protector Generating a code for detection of stack 
smashing [Professional Edition only]

#pragma no_stack_protector



R20UT3123EJ0113  Rev.1.13 Page 356 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

- Describing assembler instruction (#pragma inline_asm)

- Absolute address allocation specification (#pragma address)

- Using saddr area (#pragma saddr)

- callt function (#pragma callt)

- near/far function (#pragma near/#pragma far) [V1.05 or later]

- Structure packing (#pragma pack/#pragma unpack) [V1.05 or later]

- Generating a code for detection of stack smashing (#pragma stack_protector/#pragma no_stack_protector) 
[Professional Edition only] [V1.02 or later]

- Binary constants



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 357 of 951
Dec 01, 2023

When declared with __saddr, external variables and static variables in a function are allocated to the saddr area.

[Function]

- Initialized variables are allocated to the .sdata section.

- Uninitialized variables are allocated to the .sbss section.

- Address reference always returns a near pointer.

- External variables and static variables in a function are allocated to the saddr area when they are declared with 
__saddr.

- These variables are handled in the same way as other variables in a C source file.

[Effect]

- Instructions that access the saddr area are shorter than those accessing the normal memory area and their object 
code also becomes smaller, leading to improved execution speed.

[Usage]

- Specify __saddr in the declaration of the variable to be allocated to the saddr area.
In a function, only variables with the extern or static storage class specifier can be declared with __saddr.

[Restrictions]

- If __saddr is specified for a const type variable, a compilation error will occur.

- If __saddr is specified for a function, a compilation error will occur.

- If __saddr is specified for a variable which does not have static storage duration, a compilation error will occur.

- If __saddr and __near or __far are specified together, a compilation error will occur.

- If __saddr is used in a typedef declaration, a compilation error will occur.

Using saddr area (__saddr)

__saddr variable-declaration;
extern __saddr  variable-declaration;
static __saddr  variable-declaration;
__saddr extern  variable-declaration;
__saddr static  variable-declaration;

__saddr __near int      ni;     //Error
__saddr __far int       fi;     //Error

typedef __saddr int     SI;     //Error



R20UT3123EJ0113  Rev.1.13 Page 358 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[Example]

The following shows a sample C source code.

The following shows the declarations and section allocation in the assembly source code.

The following shows the code in the function.

[Remark]

- Difference between the __saddr keyword and #pragma saddr

- The __saddr keyword cannot be used together with the __near or __far keyword, and a compilation error will 
occur if used so.

- #pragma saddr can be specified for a variable with __near or __far keyword. #pragma saddr overrides the 
__near or __far specification without a warning.

__saddr int     hsmm0;          //.sbss
__saddr int     hsmm1=1;        //.sdata
__saddr int     *hsptr;         //hsptr is allocated to. sbss
                                //The pointed location is in a normal area.
void main(){
        hsmm0 -= hsmm1;
        hsptr = 0;
}

        .PUBLIC _hsmm0                  ;Declaration
        .PUBLIC _hsmm1                  ;Declaration
        .PUBLIC _hsptr                  ;Declaration

        .SECTION        .sbss,SBSS      ;Allocated to the .sbss section
        .ALIGN  2
_hsmm0:
        .DS     2
        .ALIGN  2
_hsptr:
        .DS     2

        .SECTION        .sdata,SDATA    ;Allocated to the .sdata section
        .ALIGN  2
_hsmm1:
        .DB2    0x0001

        movw    ax, _hsmm0
        subw    ax, _hsmm1
        movw    _hsmm0, ax
        movw    _hsptr, #0x0000



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 359 of 951
Dec 01, 2023

A function declared with __callt is called by the callt instruction.

[Function]

- A function declared with __callt (callt function) is called by the callt instruction.
The callt instruction enables a function whose "start address of function definition" is stored in the area (0x80 to 0xBF) 
called as the callt instruction table to be called by a shorter code than a direct function call.

- The callt function is called by the callt instruction using a label name with "@_" added to the beginning of the function 
name.
When the callt function is called at the end of a function, the callt instruction is not used to make the call in some 
cases.

- The called function is handled as a normal function in the C source program.

- The specification becomes __near, and address reference always returns a near pointer.

- The callt function is allocated to a section with the relocation attribute TEXT.

- The callt instruction table is allocated to the .callt0 section.

[Effect]

- The size of the object code becomes smaller because the function is called by a 2-byte call instruction.

[Usage]

- The __callt declaration is made in the module that defines the function.

[Restrictions]

- The callt function is allocated to addresses 0xC0 to 0xFFFF regardless of the memory model.

- When __callt is specified for other than a function declaration, a compilation error will occur.

- The number of callt functions is checked at linkage.

- __callt needs to be specified for all declarations of the target function.
When there is a __callt specification for only some declarations, a compilation error will occur.

- __callt can be specified simultaneously with __near but a compilation error will occur when it is specified simultane-
ously with __far.

- When __callt is used in typedef, a compilation error will occur.

callt function (__callt)

__callt function-declaration;
extern __callt  function-declaration;
static __callt  function-declaration;
__callt extern  function-declaration;
__callt static  function-declaration;

        void func(void);
__callt void func(void);          //Error

__callt void func1(void);         //Function address is set to near
__callt __near void func2(void);  //Function address is set to near
__callt __far void func3(void);   //Error

typedef __callt int    CI;        //Error



R20UT3123EJ0113  Rev.1.13 Page 360 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

- When there is a #pragma specification for a function that is qualified with __callt in the function declaration, a compi-
lation error will occur.

[Example]

The following shows a sample C source code.

The following shows the section allocation and output codes in the assembly source code.

[Remark]

- Difference between the __callt keyword and #pragma callt

- The __callt keyword cannot be used together with the __far keyword, and a compilation error will occur if used 
so.

- #pragma callt handles even a function to which the __far keyword is added as if __callt was specified without a 
warning being output.

__callt void func(void){
          :
}

void main(void){
        func();    //Call of callt function
          :
}

        .PUBLIC _func
        .PUBLIC _main
        .PUBLIC @_func
          :

        .SECTION        .text,TEXT
_func:
          :

        .SECTION        .textf,TEXTF
_main:
        callt   [@_func]
          :

        .SECTION        .callt0,CALLT0
@_func:
        .DB2    _func
          :



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 361 of 951
Dec 01, 2023

An allocating place of the function and a variable can be designated specifically by adding the __near or __far type qual-
ifier when a function or variable declared.

Remark 1. A declaration without __near or __far is handled according to the default __near and __far determined by 
the memory model.

Remark 2. near, far, __near, and __far have the following meanings here.

[Function]

- __near and __far are added as type qualifiers. Explicitly specifying __near or __far for a variable or function declara-
tion gives the compiler a direction regarding the allocation area.

- __near and __far indicate that the variables and functions qualified by them are allocated to the following areas.

Figure 4.15 Memory Image for near and far

- Explicit __near and __far specified in the source code take priority over the related option settings.

- For the internal representation of the pointer (2 bytes) pointing to the near area and that (4 bytes) pointing to the far 
area, see the "Pointer type" description.

- Extension from a pointer pointing to the near area to a pointer pointing to the far area is basically done as follows.

Specifying memory allocation area (__near /__far)

Character 
String

Meaning

near
near area

Address range 0x0F0000 to 0x0FFFFF for RAM data and ROM data.
Address range 0x000000 to 0x00FFFF for functions.

far
far area

Address range 0x000000 to 0x0FFFFF for all RAM data, ROM data, and functions.

__near Type qualifier indicating the near area.

__far Type qualifier indicating the far area.

Type Qualifier Function Data

__near 0x000000 to 0x00FFFF 0x0F0000 to 0x0FFFFF

__far 0x000000 to 0x0FFFFF 0x000000 to 0x0FFFFF

Pointer Extension from near to far

Function pointer The third byte from the least significant is set to 0x00. The most significant 
byte is undefined.

Variable pointer The third byte from the least significant is set to 0x0f. The most significant 
byte is undefined.

0FFFFF
near area for data

0F0000

00FFFF

000000
near area for program

far area for data and program



R20UT3123EJ0113  Rev.1.13 Page 362 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

For details of general cast specifications including integer types, see the "Cast" description.

- A pointer to void is handled as a variable pointer.

- The internal representation of a null pointer constant (NULL) is 0, both for a function pointer and a variable pointer.
In a variable pointer pointing to far, the third byte from the least significant is set to 0x0f, but only in NULL, the pointer 
is set to 0x000000 (the most significant byte is undefined).

- Allocation sections for __near and __far

- Declaration

- A declaration is checked from the right to the left, and when __near or __far is found between a "variable, func-
tion, or * " and the next " *, (, or left end of declaration", it is set to the __near or __far attribute for the "variable, 
function, or *".
If neither __near nor __far is found, the default __near or __far attribute for the "variable, function, or * " is used.
The order of __near/__far and other declarators can be changed as long as the above order is observed.

The following shows examples in the medium model.

Function Uninitialized Variable Initialized Non-const 
Variable

Initialized const Variable and 
Character String Data

__near .text .bss .data .const

__far .textf .bssf .dataf .constf

Declaration Meaning

int x; int __near x;           //int type variable x is 
                        //allocated to the near section

int func(); int __far func ();      //Function func that returns a 
                        //int type is allocated to the 
                        //far section

int* x; int __near * __near x;  //Pointer x pointing to near is
                        //allocated to the near section

int* func (); int __near * __far func (); //Function func that returns 
                            //a near pointer is allocated
                            //to the far section

int (*fp)(); int (__far * __near fp)();  //far function pointer fp is
                            //allocated to the near 
                            //section

int __far * func (); int __far * __far func();   //Function func that returns 
                            //a far pointer is allocated 
                            //to the far section

int (__far * fp)(); int (__far * __near fp)();  //far function pointer fp is 
                            //allocated to the near 
                            //section



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 363 of 951
Dec 01, 2023

- The following shows the locations of __near and __far specifications for variable declarations and their mean-
ing.
__near and __far are type qualifiers and can be written at the same locations as const and volatile. The objects 
to be affected by __near and __far are also the same as those of const and volatile.

- The following shows the locations of __near and __far specifications for function declarations and their mean-
ing.
__near and __far are type qualifiers and can be written at the same locations as const and volatile. The objects 
to be affected by __near and __far are the same as those of const and volatile.

- If multiple __near or __far qualifiers are specified in a single declaration, an error will occur.

- If both __near and __far are specified for declaration of a single variable or function, an error will occur.

- If __near or __far is written as a structure or union member, an error will occur. [V1.04 or earlier]

- If __near or __far is written as a structure or union member, a warning is output and __near or __far will be 
ignored. [V1.05 or later]

- Relationship with keywords and #pragma 
For the operation when __near or __far is specified together with __saddr, __callt, #pragma callt, #pragma near, 
#pragma far, #pragma interrupt, or #pragma interrupt_brk, see the description of each keyword and "4.2.4  
#pragma directive".

- Cast
Cast involving a near pointer or a far pointer is handled as follows.

- Variable pointer
For conversion from near* to far*, 0x0f is set in the third byte from the least significant.

int __far i;                    //i is output to the far section (.bssf)
                                //sizeof(&i) is 4
__near int j;                   //j is output to the near section (.bss)
                                //sizeof(&j) is 2
int __far * __near p;           //p is output to the near section (.bss)
                                //sizeof(&p) is 2
                                //p points to an int object in the far section
                                //sizeof(p) is 4
void (__far * __near fp)( );    //fp is output to the near section (.bss)
                                //sizeof(&fp) is 2
                                //fp points to a function in the far section
                                //sizeof(fp) is 4

void (__far func1)( );  //func1 is output to the far section (.textf)
                        //sizeof(&func1) is 4
void __far func2( );    //func2 is output to the far section (.textf)
                        //sizeof(&func2) is 4

int __near __far i;     //Error
int __near __near i;    //Error
int __far __far i;      //Error

__near int i;
__near int i;           //OK

__near int i;
__far int i;            //Compilation error

__near const int i;
       const int i;     //OK only when the default setting is near
                        //Compilation error when the default is far

       const int i;
__near const int i;     //OK only when the default setting is near
                        //Compilation error when the default is far



R20UT3123EJ0113  Rev.1.13 Page 364 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note that only for NULL, both near* and far* are 0 and 0x00 is set in the third byte from the least significant.
For conversion between an integer type and a pointer type, the value is kept unchanged in principle.

<a> After being extended to int, this type is converted to near* with the value unchanged.

<b> After being extended to long, this type is converted to far* with only the value of the lower-order three bytes 
unchanged.
(This is because the most significant byte is undefined and its value is not guaranteed.)

<c> This type is converted with the value unchanged. When it is converted to far*, the size of the type is set to 
three bytes and the upper-order bytes are truncated.
(This is because the most significant byte is undefined and its value is not guaranteed.)

<d> A NULL pointer is converted to 0. Other pointers are converted to 1.

<e> The upper-order bytes are truncated to fit within the size of the target type of conversion. The type is con-
verted with the value of the remaining bytes unchanged. When the type is converted to far*, the size of the 
type is set to three bytes and the upper-order bytes are truncated.
(This is because the most significant byte is undefined and its value is not guaranteed.)

<f> For a NULL pointer, the third byte from the least significant is set to 0x00. For other pointers, the byte is set 
to 0x0F.
(This is because the most significant byte is undefined and its value is not guaranteed.)

<g> After being extended to a far pointer <f>, the upper-order bytes Note (including the undefined byte in the far 
pointer) are extended with zero.

<h> The upper-order bytes Note (including the undefined byte in the far pointer) are extended with zero.

Note This is applied to the most significant byte for conversion to the long type or the upper-order 
five bytes for conversion to the long long type.

- Function pointer
For conversion from near* to far*, 0x00 is set in the third byte from the least significant.
For conversion from far* to near*, the upper-order 2 bytes are truncated.
Conversion is done in the same way as variable pointers except for conversion between pointers.

- Conversion between a variable pointer and a function pointer

- When the -strict_std option is specified, type conversion between a variable pointer and a function pointer will 
cause an error.  Note that explicit type conversion generates an error as well as implicit conversion.

- When the -strict_std option is not used, conversion between a variable pointer and a function pointer is done 
with a warning being output.
When the near or far specification is the same between the variable pointer and the function pointer, only the 
type is changed and no other processing is done because the size is the same before and after conversion.
For conversion from far to near, the upper-order 2 bytes are discarded and truncated.
For conversion from near to far, the pointer is extended from near to far with the type unchanged, and then 
the type is converted.

Converted to

_Bool char short
int

near* far* long long long

Converted 
from

_Bool
char

- - - <a> <b> - -

short
int

- - - <c> <b> - -

near* <d> <e> <c> - <f> <g> <g>

far* <d> <e> <e> <e> - <h> <h>

long - - - <e> <c> - -

long long - - - <e> <e> - -



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 365 of 951
Dec 01, 2023

- Example of cast

- Assignment between pointers

- Conversion from an integer constant to "a variable pointer"

- Conversion from an integer constant to "a function pointer"

- Conversion from a variable to "a function pointer"

char __near* o_np;
char __far* o_fp;

typedef void(FT)(void);

__near FT* f_np;
__far FT* f_fp;

void func(){
    o_fp = o_np;  //Upper and lower-order 2 bytes of o_fp =(0xnn00, 0x0000)
                  //or (0xnn0f, o_np)
    f_fp = f_np;  //Upper and lower-order 2 bytes of f_fp =(0xnn00, f_np)
}

(char __near*)(char)0x12;           //0x0012
(char __near*)0x34;                 //0x0034
(char __far*)0x56;                  //0x00000056
(char __far*)(char __near*)0x78;    //0x000f0078

typedef void(FT)(void);

void func1(){
  (__far FT*)0x34;                //0x00000034
  (__far FT*)(char __near*)0x56;  //0x000f0056
                                  //(char __near*)->(char __far*)->(__far FT*)
  (__far FT*)(char __far*)0x78;   //0x00000078
  (__far FT*)(__near FT*)0xab;    //0x000000ab
  (__far FT*)(__far FT*)0xcd;     //0x000000cd
}

typedef void(FT)(void);

void func2(__near FT* f_np, unsigned int i, unsigned char ch){
        (__far FT*)f_np;        //0xnn00, f_np
        (__far FT*)i;           //0xnn00, i
        (__far FT*)ch;          //0xnn00, ch (Unsigned 2 bytes)
}



R20UT3123EJ0113  Rev.1.13 Page 366 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

- Conversion from a variable to a pointer

signed char sc;
signed short ss;
signed long sl;

unsigned char uc;
unsigned short us;
unsigned long ul;

void func3(){
        (char __near*)uc;       //0x00, uc
        (char __near*)sc;       //(0x00 or 0xff), sc

        (char __far*)uc;        //nn, 0x00, 0x00, uc
        (char __far*)us;        //nn, 0x00, us(1), us(0)
        (char __far*)ul;        //nn, ul(2), ul(1), ul(0)

        (char __far*)sc;        //nn, (0x0000 or 0xffff), sc
        (char __far*)ss;        //nn, (0x00 or 0xff), ss(1), ss(0)
        (char __far*)sl;        //nn, sl(2), sl(1), sl(0)

        (__far FT*)uc;          //nn, 0x00, 0x00, uc
        (__far FT*)us;          //nn, 0x00, us(1), us(0)
        (__far FT*)ul;          //nn, ul(2), ul(1), ul(0)

        (__far FT*)sc;          //nn, (0x0000 or 0xffff), sc
        (__far FT*)ss;          //nn, (0x00 or 0xff), ss(1), ss(0)
        (__far FT*)sl;          //nn, sl(2), sl(1), sl(0)
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 367 of 951
Dec 01, 2023

- Conversion from a pointer to a variable

- Pointer operation

- Addition to a far pointer is done only in the lower-order 2 bytes.  The upper-order bytes are not changed.

- Subtraction to a far pointer is done only in the lower-order 2 bytes.  The upper-order bytes are not changed.

char __near* o_np;
char __far* o_fp;

typedef void(FT)(void);

__near FT* f_np;
__far FT* f_fp;

signed char sc;
signed short ss;
signed long sl;

unsigned char uc;
unsigned short us;
unsigned long ul;

void func(){
        uc = o_np;      //Least significant byte o_np
        uc = o_fp;      //Least significant byte o_fp
        uc = f_np;      //Least significant byte f_np
        uc = f_fp;      //Least significant byte f_fp

        us = o_np;      //Bit pattern of o_np is retained
        us = o_fp;      //Lower-order 2 bytes of o_fp
        us = f_np;      //Bit pattern of f_np is retained
        us = f_fp;      //Lower-order 2 bytes of f_fp

        ul = o_np;      //(0x0000,o_np)or(0x000f,o_np)
        ul = o_fp;      //(0x00,lower-order three bytes of o_fp, 
                        //lower-order 2 bytes of o_fp)
        ul = f_np;      //(0x0000,f_np)
        ul = f_fp;      //(0x00,lower-order three bytes of of_fp, 
                        //lower-order 2 bytes of f_fp)

        sc = o_np;      //Least significant byte o_np
        sc = o_fp;      //Least significant byte o_fp
        sc = f_np;      //Least significant byte f_np
        sc = f_fp;      //Least significant byte f_fp

        ss = o_np;      //Bit pattern of o_np is retained
        ss = o_fp;      //Lower-order 2 bytes of o_fp
        ss = f_np;      //Bit pattern of f_np is retained
        ss = f_fp;      //Lower-order 2 bytes of f_fp

        sl = o_np;      //(0x0000,o_np)or(0x000f,o_np)
        sl = o_fp;      //(0x00,lower-order three bytes of oo_fp, 
                        //lower-order 2 bytes of o_fp)
        sl = f_np;      //(0x0000,f_np)
        sl = f_fp;      //(0x00,lower-order three bytes of of_fp, 
                        //lower-order 2 bytes of f_fp)
}

char __far* ptr = (char __far*)0x5ffff + 1;     //0x00050000

char __far* ptr = (char __far*)0x050002 - 3;    //0x05ffff



R20UT3123EJ0113  Rev.1.13 Page 368 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

- For subtraction between a near pointer and a far pointer, the type of the right term is cast to the type of the left 
term before subtraction.

- A near pointer is returned as the result of operation between a near pointer and an integer.

- Comparison with pointers

- When the -strict_std option is specified, a pointer cannot be directly compared with an integer.  However, when 
the -strict_std option is not specified, direct comparison is done with a warning being output.
In the case when a warning is output, the integer type is processed to match the pointer type before compari-
son.  Conversion from an integer type to a pointer type conforms to the rules shown in the "Cast" description.

- When the -strict_std option is specified, a variable pointer cannot be directly compared with a function pointer.  
However, when the -strict_std option is not specified, direct comparison is done with a warning being output.
In the case when a warning is output, comparison is processed as follows.

<a> The type of the right side is cast to the type of the left side.

<b> When the near or far specification does not match between both sides, the near pointer is cast to the far 
pointer.

- Equality operation (== or !=) for a far pointer is done only in the lower-order three bytes. The most significant 
byte does not affect the operation result.

- Relational operation (<,>,<=,>=) for a far pointer is done only in the lower-order 2 bytes. The upper-order 2 
bytes do not affect the operation result.
If comparison is to be performed including the upper-order bytes, they should be cast to unsigned long before 
comparison.

- Type of ptrdiff_t
This type is always set to signed int (2-byte) regardless of the operation of near and far pointers.

[Usage]

- The __near or __far type qualifier is added to a function or variable declared.

__near int i;
__far int j;

void func( )
{
        &j - &i;        //OK (&j) - ((int __far *)(&i))
        &i - &j;        //OK (&i) - ((int __near *)(&j))

        &j - (__far int*)&i; //OK
}

int b = ((char __near *)0xffff+1 == (char __near *)0);  //=1 (True)

obj_near_ptr  == func_near_ptr  ->   obj_near_ptr == (obj *)func_near_ptr
func_near_ptr == obj_near_ptr   ->   func_near_ptr == (func *)obj_near_ptr
obj_near_ptr  == func_far_ptr
                      ->   (obj __far *)obj_near_ptr == (obj __far *)func_far_ptr
func_f_ptr == obj_n_ptr         ->   func_f_ptr == (func _far *)obj_n_ptr
func_n_ptr == obj_f_ptr
                      ->   (func __far *)func_n_ptr == (func __far *)obj_f_ptr
obj_f_ptr == func_n_ptr         ->   obj_f_ptr == (obj __far *)func_n_ptr

if((char __far*)0x1105ffffUL == (char __far*)0x05ffffUL)
        OK();
else
        NG();



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 369 of 951
Dec 01, 2023

[Example]

(1) i1 has an int type and is allocated to the near area.

(2) i2 has an int type and is allocated to the far area.

(3) p1 is a 4-byte type variable that points to "an int type in the far area", and the variable itself is allocated to the near 
area.

(4) p2 is a 2-byte type variable that points to [a 4-byte type in the near area, which points to "an int type in the far 
area"], and the variable itself is allocated to the far area.

(5) func1 is a function that returns "an int type", and the function itself is allocated to the far area.

(6) func2 is a function that returns [a 4-byte type that points to "an int type in the far area", and the function itself is 
allocated to the near area.

(7) fp1 is a 2-byte type variable that points to [a function in the near area, which returns "an int type"], and the variable 
itself is allocated to the far area.

(8) fp2 is a 2-byte type variable that points to "a function in the near area, which returns [a 4-byte type that points to 
"an int type in the far area"]", and the variable itself is allocated to the near area.

(9) fp3 is a 4-byte type variable that points to "a function in the far area, which returns [a 2-byte type that points to "an 
int type in the near area"]", and the variable itself is allocated to the near area.

(10) fp4 is a 2-byte type variable that points to "a function in the near area, which returns [a 2-byte type that points to 
"an int type in the near area"]", and the variable itself is allocated to the far area.

__near int i1;                          (1)
__far int i2;                           (2)
__far int *__near p1;                   (3)
__far int *__near *__far p2;            (4)
__far int func1( );                     (5)
__far int *__near func2 ( );            (6)
int (__near *__far fp1 ) ( );           (7)
__far int * (__near *__near fp2 ) ( );  (8)
__near int * (__far *__near fp3 ) ( );  (9)
__near int * (__near *__far fp4 ) ( );  (10)



R20UT3123EJ0113  Rev.1.13 Page 370 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

This notifies the compiler of an inline function.

[Function]

- The compiler inline-expands the function declared with __inline whenever possible.

- If both #pragma noinline and __inline are specified for the same function within a single translation unit, an error will 
occur.

- The conditions for the functions to be expanded inline depend on the -Oinline_level option setting.
For the effect of this option, see the "-Oinline_level" description in the "2.5.1  Compile options".

- The function declared with __inline is expanded inline at the location from which the function is called.

- If the call and definition of the specified function differ in either of the following ways, a warning message will be output 
and inline specification will be ignored.

- The numbers of parameters do not match.

- The types of the return values or parameters do not match and type conversion is not possible.
When type conversion is possible, the type is converted and then the function is expanded inline.
In this case, the type of the return value is converted to that on the caller side and the types or parameters are 
converted to those in the function definition.
Note that when the -strict_std option is specified, an error will occur even in this case.

- If the specified function satisfies any of the following conditions, inline specification will be ignored; no message will 
be output in this case.

- The function has variable arguments.

- The function calls itself during processing.

- A call is done through the address of the function to be expanded inline.

[Effect]

- The function call and the code for returning to the caller are not output and execution is accelerated.

- As the inline-expanded code is optimized as well as the code before and after the function call, the effect of opti-
mization may be improved.

- When the number of inline expansions is large, the code size may increase.

[Usage]

- Add __inline to the definition of a function.

[Example]

Specifying inline function (__inline)

extern int      gi;
__inline int    i_func(int i)
{
        return ++i;
}

void func(int j)
{
        gi = i_func(j);
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 371 of 951
Dec 01, 2023

[Caution]

- Use of __inline does not guarantee inline expansion. The compiler may stop inline expansion depending on a limita-
tion due to increased compilation time or memory usage

- When the -lang=c99 option is specified, the keyword __inline is an alias for the keyword inline; this is for compliance 
with the specification of inline for C99.



R20UT3123EJ0113  Rev.1.13 Page 372 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

This is a section address operator.

[Function]

- The start address of section-name specified with __sectop is referenced.

- The end address of section-name +1 specified with __sectop is referenced.

- The return type of __sectop( ) and __secend( ) is void __far*.

- Addition and subtraction between the value obtained by __sectop or __secend and a constant should not be used.

[Usage]

[Example]

The following shows a sample C source code.

The following shows the declarations in the assembly source code.

Section address operator (__sectop/__secend)

__sectop("section-name")
__secend("section-name")

const struct {
        void __far *rom_s;
        void __far *rom_e;
} DTBL[]={__sectop("XXX"), __secend("XXX")};

        .PUBLIC         _DTBL
        .SECTION        .const, CONST
        .ALIGN          2
_DTBL:
        .DB2    LOWW(STARTOF(XXX))                    ;Lower-order 2 bytes of rom_s
        .DB     LOW(HIGHW(STARTOF(XXX)))              ;Least significant byte rom_s
        .DB     0x00
        .DB2    LOWW(STARTOF(XXX)+SIZEOF(XXX))        ;Lower-order 2 bytes of rom_e
        .DB     LOW(HIGHW(STARTOF(XXX)+SIZEOF(XXX)))  ;Least significant byte rom_e
        .DB     0x00



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 373 of 951
Dec 01, 2023

Output object code required by hardware interrupt.

[Function]

- An interrupt vector is generated.

- A code for returning with RETI is generated with the target function definition used as a hardware interrupt handler.

- A stack or a register bank can be specified as the area for saving general registers.

- The interrupt handler definition is output to the .text or .textf section in the same way as normal function definitions. 
The section name can be changed through #pragma section.
Note however when the vector table is specified, the start address of the interrupt handler should be a location that 
can be accessed in 16-bit addressing.

- When the vector table is specified, the specification becomes __near forcibly, regardless of whether __far is specified 
explicitly or implicitly. No warning message is output.

- When the vector table is not specified, the __near or __far specification by the function takes priority, regardless of 
whether the specification is explicit or implicit.

[Effect]

- Interrupt handlers can be written in the C source level.

[Usage]

- Specify a function name and interrupt specifications through the #pragma directive.

- Write the #pragma directive before the target function definition.

The interrupt specifications can include the following.

Hardware interrupt handler (#pragma interrupt)

#pragma interrupt    [(]interrupt-handler-name[(interrupt-specification [,...])][)]

Item Format Description

Vector table 
specification

vect=address Address of the vector table where the start address of the inter-
rupt handler is to be stored.
When this setting is omitted, no vector table is generated.
Address of the vector table where the start address of the inter-
rupt handler is to be stored.
When this setting is omitted, no vector table is generated.
Address: Binary, octal, decimal, or hexadecimal constant

Only an even value within the range from 0x0 to 
0x7c can be specified

 (a value outside this range will cause an error).

Register bank 
specification

bank={RB0|RB1|RB2|RB3} Register bank for use by the interrupt handler.Note 1

Execution of the interrupt handler uses the register in the speci-
fied bank.
ES and CS are saved in the stack.
Saving and restoring of general registers are implemented by 
using the SEL instruction that switches register banks. This can 
reduce the code size.
When this setting is omitted, the general registers are saved in 
the stack.Note 2



R20UT3123EJ0113  Rev.1.13 Page 374 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Note 1. Specify a register bank that differs from the register bank that was used before the interrupt handler 
was called. If the same register bank is specified, the contents of the saved register can no longer 
be restored.

Note 2. For details of register saving during interrupt processing or the stack frame, see "9.1  Function Call 
Interface".

If a single item is used more than once in a statement, a compilation error will occur.
However, more than one vector table can be specified as long as the addresses do not overlap. [V1.06 or later]

When "vect= address" is specified, a vector table is generated.  Therefore, if a vector table is defined through Section 
definition directives in the assembly language (for example, in the startup routine), a linkage error will occur.
When "vect= address" is specified, use the .VECTOR directive to write a vector table in the assembly language 
instead of using the section definition directive.

[Restrictions]

- If an interrupt handler is called in the same way as a normal function, a compilation error will occur.

- If __inline, __callt or another #pragma is specified, a compilation error will occur.

- The parameters and return value of an interrupt handler should be declared as void (e.g., void func (void);).
If the type is not void, a compilation error will occur.

- When no register is used or no function is called in an interrupt handler, the instruction for switching register banks is 
not output even if register bank switching is specified in #pragma interrupt.
Examples of this situation include the following:

- When only the instructions that do not use registers, such as instructions that specify constant values in SFR, 
are output in the interrupt handler

[Example]

(1) When there is no function call in the interrupt handler

(a) Default setting is used
[ Input program ]

Nested inter-
rupt enable 
specification

enable={true|false} true: Enables nested interrupts at the entry to a function; that 
is, EI is generated before the codes of saving registers.
false: EI is not generated.
When enable is omitted, EI is not generated.

#pragma interrupt   func(vect=2,vect=2) // Error

#pragma interrupt   func(vect=2,vect=8) // OK

#pragma interrupt   func(vect=2)
#pragma interrupt   func(vect=8)        // OK

#include "iodefine.h"                   /*Including iodefine.h enables*/
#pragma interrupt   inter (vect=INTP0)  /*interrupt source names to be used*/
                                        /*for vect setting*/

void inter ( void ) {
        /*Interrupt processing (only AX, HL, and ES are used)*/
}

Item Format Description



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 375 of 951
Dec 01, 2023

[ Output program ]

(b) Register bank is specified
[ Input program ]

[ Output program ]

(2) When a function is called in the interrupt handler (including a call of the function declared with #pragma 
inline_asm)

(a) Default setting is used
[ Input program ]

_inter  .vector 0x0008          ;INTP0
        .section    .text, TEXT ;Assumed to be the __near specification 
                                ;because the vector table is specified
_inter:
        push    AX              ;Code for saving the general registers to be
                                ;used in the stack
        push    HL
        mov     A, ES
        push    AX

        ;Interrupt processing for the INTP0 pin
        ;(body of the function. only AX, HL, and ES are used)

        pop     AX              ;Code for restoring the general registers to be
                                ;used from the stack
        mov     ES, A
        pop     HL
        pop     AX
        reti

#pragma interrupt   inter (vect=INTP0, bank=RB1)

void inter ( void ) {
        /*Interrupt processing (ES is used but CS is not used)*/
}

_inter  .vector 0x0008          ;INTP0
        .section    .text, TEXT ;Assumed to be the __near specification 
                                ;because the vector table is specified
_inter:
        sel     RB1             ;Code for switching register banks
        mov     A, ES           ;Code for saving ES and CS registers to be 
                                ;used in the stack
        push    AX

        ;Interrupt processing for the INTP0 pin 
        ;(body of the function. ES is used but CS is not used.)

        pop     AX              ;Code for restoring ES and CS registers to be 
                                ;used from the stack
        mov     ES, A
        reti

#pragma interrupt   inter (vect=INTP0)

void inter ( void ) {
        /*Interrupt processing*/
}



R20UT3123EJ0113  Rev.1.13 Page 376 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[ Output program ]

(b) Register bank is specified
[ Input program ]

[ Output program ]

_inter  .vector 0x0008          ;INTP0
        .section    .text, TEXT ;Assumed to be the __near specification 
                                ;because the vector table is specified
_inter:
        push    AX
        push    BC
        push    DE
        push    HL
        mov     A, ES           ;Code for saving ES, CS, and all general 
                                ;registers in the stack
        mov     X, A
        mov     A, CS
        push    AX

        ;Interrupt processing for the INTP0 pin (body of the function)

        pop     AX              ;Code for restoring ES, CS, and all general 
                                ;registers from the stack
        mov     CS, A
        mov     A, X
        mov     ES, A
        pop     HL
        pop     DE
        pop     BC
        pop     AX
        reti

#pragma interrupt   inter (vect=INTP0, bank=RB1)

void inter ( void ) {
        /*Interrupt processing*/
}

_inter  .vector 0x0008          ;INTP0
        .section    .text, TEXT ;Assumed to be the __near specification 
                                ;because the vector table is specified
_inter:
        sel     RB1             ;Code for switching register banks
        mov     A, ES           ;Code for saving ES and CS registers in the 
                                ;stack
        mov     X, A
        mov     A, CS
        push    AX

        ;Interrupt processing for the INTP0 pin (body of the function)

        pop     AX              ;Code for restoring ES and CS registers in the 
                                ;stack
        mov     CS, A
        mov     A, X
        mov     ES, A
        reti



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 377 of 951
Dec 01, 2023

Output object code required by software interrupt.

[Function]

- An interrupt vector is generated.

- A code for returning with RETB is generated with the target function definition used as a software interrupt handler.

- The interrupt handler definition is output to the .text section in the same way as normal function definitions. The sec-
tion name can be changed through #pragma section.
Note that the start address of the interrupt handler should be a location that can be accessed in 16-bit addressing.

- The specification becomes __near forcibly, regardless of whether __far is specified explicitly or implicitly. 
No warning message is output.

[Effect]

- Interrupt handlers can be written in the C source level.

[Usage]

- Specify a function name and interrupt specifications through the #pragma directive.

- Write the #pragma directive before the target function definition.

The interrupt specifications can include the following.

Note 1. Specify a register bank that differs from the register bank that was used before the interrupt handler 
was called. If the same register bank is specified, the contents of the saved register can no longer 
be restored.

Note 2. For details of register saving during interrupt processing or the stack frame, see "9.1  Function Call 
Interface".

If the same item is written more than once at the same time, a compilation error will occur.

Example

Software interrupt handler (#pragma interrupt_brk)

#pragma interrupt_brk   [(]interrupt-handler-name[(interrupt-specification 
[,...])][)]

Item Format Description

Register bank 
specification

bank={RB0|RB1|RB2|RB3} Register bank for use by the interrupt handler.Note 1

Execution of the interrupt handler uses the register in the speci-
fied bank.
ES and CS are saved in the stack.
Saving and restoring of general registers are implemented by 
using the SEL instruction that switches register banks. This can 
reduce the code size.
When this setting is omitted, the general registers are saved in 
the stack.Note 2

Nested inter-
rupt enable 
specification

enable={true|false} true: Enables nested interrupts at the entry to a function; that 
is, EI is generated at the start of the interrupt handler generated 
by the compiler.
false: EI is not generated. When enable is omitted, EI is not 
generated.

#pragma interrupt_brk func(bank=RB0, bank=RB1)     //Error



R20UT3123EJ0113  Rev.1.13 Page 378 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

"#pragma interrupt_brk" generates a vector table.  Therefore, if a vector table is defined through Section definition 
directives in the assembly language (for example, in the startup routine), a linkage error will occur.
Use the .VECTOR directive to write a vector table in the assembly language instead of using the section definition 
directive.

[Restrictions]

- If an interrupt handler is called in the same way as a normal function, a compilation error will occur.

- If __inline, __callt or another #pragma is specified, a compilation error will occur.

- The parameters and return value of an interrupt handler should be declared as void (e.g., void func (void);).
If the type is not void, a compilation error will occur.

- If no register is used or no function is called in an interrupt handler, a register bank switching instruction is not output 
even though register bank switching has been specified by "#pragma interrupt".

[Example]

The output program is the same as that when #pragma interrupt is specified, except that the interrupt source is BRK and 
RETB is used in the code for returning.

Therefore, the following shows an example when there is no function call in the interrupt handler.

[ Input program ]

[ Output program ]

#pragma interrupt_brk   inter

void __near inter ( void ) {
        /*Interrupt processing (only AX, HL, and ES are used)*/
}

_inter  .vector 0x007E          ;BRK
        .SECTION    .text, TEXT
_inter:
        push    AX              ;Code for saving the general registers to be used in
                                ;the stack
        push    HL
        mov     A, ES
        push    AX

        ;Interrupt processing for the BRK instructions
        ;(body of the function. only AX, HL, and ES are used)

        pop     AX              ;Code for restoring the general registers to be used
                                ;from the stack
        mov     ES, A
        pop     HL
        pop     AX
        retb



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 379 of 951
Dec 01, 2023

This changes a section name to be output by the compiler.

[Function]

- This changes a section name to be output by the compiler.
For the section names output by the compiler and default allocation of the sections, see "6.1.1  Section name"

- This affects the declarations written after the #pragma directive.

[Effect]

- Assigning a new section name that differs from the default name to a specified set of data or functions allows this set 
of data or functions to be allocated to an address separate from that for other data or functions, and special process-
ing can be applied in section units.

[Usage]

The section name of the specified type is changed.

The section names of all types are changed.

The section names of all types are changed to their default section names.

- The characters shown below can be used in a new section name.
The beginning of a name should be a character other than 0 to 9. 
"." can be used only to specify the section type and it can be used only at the beginning. If it is used in a character 
string not at the beginning, a compilation error will occur. If "." is used when the section type is not specified, a compi-
lation error will occur.

- 0 to 9

- a to z

- A to Z

- .

- @

- _

- When the section type is text, the section name for the functions defined after the #pragma declaration is changed.
Note that the start address of the interrupt handler should be a location that can be accessed in 16-bit addressing.

- When the section type is const, data, or bss, the name of the const, data, or bss section whose entity is defined after 
the #pragma declaration is changed.

- When both a section type and a new section name are specified, a character string is appended to the section name 
according to the following rules.

- near section (.text, .const, .data, .bss)
New section name + "_n"

Changing compiler output section name (#pragma section)

#pragma section section-type new-section-name
        section-type:{text|const|data|bss}

#pragma section new-section-name

#pragma section



R20UT3123EJ0113  Rev.1.13 Page 380 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

- far section (.textf, .constf, .dataf, .bssf)
New section name + "_f"

- saddr section (.sdata, .sbss)
New section name + "_s"

- When only a new section name is specified, all section names for the program area, constant area, initialized data 
area, and uninitialized data area after the #pragma declaration are changed. In this case, each section name is cre-
ated by appending the character string of the specified new section name at the end of the current section name and 
also post-fixing _s, _n, or _f. When the current section name is post-fixed with _n or _f, it is deleted.

- When neither a section type nor a new section name are specified, all section names for the program area, constant 
area, initialized data area, and uninitialized data area after the #pragma declaration are restored to their default sec-
tion names.

- When #pragma section is specified for a function, the scope of its effectiveness is not limited to within the function but 
extends to all locations following the specification. When a change to a text section is placed within a function, the 
scope is valid from the next function. A switch table is allocated to the section of the const data which have been 
specified at the start of the given function.

[Restrictions]

- The section name for an interrupt vector table cannot be changed.

#pragma section data MyData
int __near ndata = 5;           //Generated section name : MyData_n

#pragma section bss MyBss
int __far fdata;                //Generated section name : MyBss_f

#pragma section bss MyBss
int __saddr sdata;              //Generated section name : MyBss_s

#pragma section
text MyText

#pragma section
bss MyBss

#pragma section
data MyData

#pragma section
const MyConst

void __near func() { } MyText_n

void __far func() { } MyText_f

int __near i; MyBss_n

int __far i; MyBss_f

int __saddr i; MyBss_s

int __near i = 5; MyData_n

int __far i = 5; MyData_f

int __saddr i = 5; MyData_s

const int __near i = 5; MyConst_n

const int __far i = 5; MyConst_f

#pragma section bss     XXX
int __near i;           //The section name is XXX_n
#pragma section YYY
int __far j;            //The section name is XXXYYY_f
                        //For bss, the section names change for both near and far.
                        //Therefore, XXX is added even for __far.



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 381 of 951
Dec 01, 2023

[Example]

(1) To specify section names and section types

(2) To omit section types

(3) To use both specifications with a section type and without a section type

int __near ni_1;        //.bss
int __far fi_1;         //.bssf

#pragma section bss MyBss
int __near ni_2;        //MyBss_n
int __far fi_2;         //MyBss_f

#pragma section
int __near ni_3;        //.bss
int __far fi_3;         //.bssf

#pragma section abc
int __near na;                  //Allocated to the .bssabc_n section
int __far fa;                   //Allocated to the .bssfabc_f section
int __near ni=1;                //Allocated to the .dataabc_n section
int __far fi=1;                 //Allocated to the .datafabc_f section
const int __near nc=1;          //Allocated to the .constabc_n section
const int __far fc=1;           //Allocated to the .constfabc_f section
void __near f(void)             //Allocated to the .textabc_n section
{
        na=nc;
}

#pragma section
int __near nb;                  //Allocated to the .bss section
void __near g(void)             //Allocated to the .text section
{
        nb=nc;
}

int __near ni_1;                //.bss
int __far fi_1;                 //.bssf

#pragma section bss MyBss
int __near ni_2;                //MyBss_n
int __far fi_2;                 //MyBss_f

#pragma section XXX
int __near ni_3;                //Allocated to the MyBssXXX_n section
int __far fi_3;                 //Allocated to the MyBssXXX_f section

#pragma section
int __near ni_4;                //.bss
int __far fi_5;                 //.bssf



R20UT3123EJ0113  Rev.1.13 Page 382 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

The interrupt handler for Renesas RTOS for the RL78 family can be specified.

[Function]

- Interprets the function name specified with the #pragma rtos_interrupt directive as the interrupt handler for Renesas 
RTOS for the RL78 family.

- When the vector table is specified, the address of the described function name is registered in the specified interrupt 
vector table.

- The code for the body (function definition) of an interrupt handler is output to the .text or .textf section.
The section name can be changed through #pragma section.
Note however when the vector table is specified, the start address of the interrupt handler should be a location that 
can be accessed in 16-bit addressing.

- When the vector table is specified, the specification becomes __near forcibly, regardless of whether __far is specified 
explicitly or implicitly. No warning message is output.

- When the vector table is not specified, the __near or __far specification by the function takes priority, regardless of 
whether the specification is explicit or implicit.

- The interrupt handler for RTOS generates codes in the following order.

(a) Calls kernel symbol __kernel_int_entry using call !!addr20 instruction
When the vector table is specified, the interrupt address is passed to __kernel_int_entry as an argument.
When the vector table is not specified, no argument is passed to __kernel_int_entry.

(b) Allocates the local variable area (only when there is a local variable)

(c) Executes the body of the function

(d) Releases the local variable area (only when there is a local variable)

(e) Unconditionally jumps to label _ret_int using br !!addr20 instruction

[Effect]

- The interrupt handler for RTOS can be described in the C source level.

[Usage]

- The interrupt address and function name is specified by the #pragma directive.

Note address : Binary, octal, decimal, or hexadecimal constant
Only an even value from 0 to 0x7c can be specified as the constant
(a value outside this range will cause an error).

- Write a #pragma directive before the function definition.

[Restrictions]

- If the function specified with #pragma rtos_interrupt is called in the same way as a normal function, a compilation 
error will occur.

Interrupt handler for RTOS (#pragma rtos_interrupt)

#pragma rtos_interrupt  [(]function-name[(vect=addressNote)][)]



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 383 of 951
Dec 01, 2023

- The parameters and return value of a function should be declared as void (e.g., void func (void);).
If the type is not void, a compilation error will occur.

- If an interrupt handler for RTOS is specified with __inline, __callt or another type of #pragma, a compilation error will 
occur.

- After the #pragma rtos_interrupt declaration line, a call or a definition of _kernel_int_exit or _kernel_int_entry as a 
function or a variable will generate an error.

[Example]

The following shows an example in which the vector table is specified and no function is called in an interrupt handler.

[ Input program ]

[ Output program ]

#pragma rtos_interrupt func (vect=8)
void func(void) {}

void xxx()
{
        func();                 //Error
}

#pragma rtos_interrupt func (vect=8)
void func(void) {
        _kernel_int_entry();    //Error
        _kernel_int_exit();     //Error
}

void    _kernel_int_entry(){}   //Error
void    _kernel_int_exit(){}    //Error

#include "iodefine.h"

#pragma rtos_interrupt inthdr (vect=INTP0)
volatile int g;

void inthdr(void) {
        volatile int a;
        a = 1;
        g = 1;
}

        .SECTION .textf,TEXTF
_inthdr .vector 0x0008
_inthdr:
        push    ax                      ;ax register is saved
        movw    ax, #0x0008
        call    !!__kernel_int_entry    ;Registers other than ax are saved
        push    hl                      ;The area for local variables is allocated
        onew    ax
        movw    [sp+0x00], ax
        movw    !LOWW(_g), ax
        pop     hl                      ;The area for local variables is released
        br      !!__kernel_int_exit     ;Processing is specified so that all registers
                                        ;are restored when the interrupted task 
                                        ;resumes execution



R20UT3123EJ0113  Rev.1.13 Page 384 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

The following shows an example in which the vector table is not specified and no function is called in an interrupt 
handler.

[ Input program ]

[ Output program ]

#include "iodefine.h"

#pragma rtos_interrupt inthdr
volatile int g;

void inthdr(void) {
        volatile int a;
        a = 1;
        g = 1;
}

        .SECTION .textf,TEXTF
_inthdr:
        call    !!__kernel_int_entry    ;Registers other than ax are saved
        push    hl                      ;The area for local variables is allocated
        onew    ax
        movw    [sp+0x00], ax
        movw    !LOWW(_g), ax
        pop     hl                      ;The area for local variables is released
        br      !!__kernel_int_exit     ;Processing is specified so that all registers
                                        ;are restored when the interrupted task 
                                        ;resumes execution



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 385 of 951
Dec 01, 2023

The function names specified with #pragma rtos_task are interpreted as the tasks for Renesas RTOS for the RL78 fam-
ily.

[Function]

- The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.

- A task function can be coded without arguments specified, or with only one argument of signed long type specified, 
but no return values can be specified.
An error will occur if two or more arguments are specified, an argument not of a signed long type is specified, or a 
return value is specified.

- No function exit processing is output for the task functions for RTOS.

- RTOS service call ext_tsk is called at the end of a task function for RTOS. 

- RTOS service call ext_tsk calls the corresponding internal function of the OS through the br !!addr20 instruction.  If 
ext_tsk is issued at the end of a normal function, no function exit processing is output.

- The code for the body (function definition) of a task function is output to the .text or .textf section.  The section name 
can be changed through #pragma section.

[Effect]

- The task function for RTOS can be described in the C source level.

- As no function exit processing is output, the code efficiency is improved.

[Usage]

- Specifies the function name for the following #pragma directives.

[Restrictions]

- If a task function for RTOS is specified with __inline or another type of #pragma, a compilation error will occur.

- If a task function for RTOS is called in the same way as a normal function, a compilation error will occur.

Task function for RTOS (#pragma rtos_task)

#pragma rtos_task   [(]task-function-name [ ,...][)]



R20UT3123EJ0113  Rev.1.13 Page 386 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[Example]

The following shows a sample C source code.

#pragma rtos_task       func1
#pragma rtos_task       func2
extern void ext_tsk(void);
extern void g(int *a);

void func1 ( void ) {
        int a[3];
        a[0] = 1;
        g(a);
        ext_tsk( );
}

void func2 ( signed long x ) {
        int a[3];
        a[0] = 1;
        g(a);
}

void func3 ( void ) {
        int a[3];
        a[0] = 1;
        g(a);
        ext_tsk( );
}

void func4 ( void ) {
        int a[3];
        a[0] = 1;
        g(a);
        if ( a[0] )
                ext_tsk( );
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 387 of 951
Dec 01, 2023

The following shows the assembly source output by compiler.

    .section        .textf, TEXTF
_func1 :
    subw    sp, #0x06             ;Stack is allocated
    onew    ax
    movw    [sp+0x00], ax         ;Assignment to an element of array a
    movw    ax, sp
    call    !!_g
    call    !!_ext_tsk            ;Function ext_tsk is called
    br      !!__kernel_task_exit  ;The epilogue for calling __kernel_task_exit is not
                                  ;output, which is always output by a task function
_func2 :
    subw    sp, #0x06
    onew    ax
    movw    [sp+0x00], ax         ;Assignment to an element of array a
    movw    ax, sp
    call    !!_g
    br      !!__kernel_task_exit  ;The epilogue for calling __kernel_task_exit is not
                                  ;output, which is always output by a task function
_func3 :
    subw    sp, #0x06
    onew    ax
    movw    [sp+0x00], ax         ;Assignment to an element of array a
    movw    ax, sp
    call    !!_g
    call    !!_ext_tsk            ;Function ext_tsk is called
    addw    sp, #0x06             ;The epilogue is output when #pragma rtos_task is 
                                  ;not specified
    ret
_func4 :
    subw    sp, #0x06
    onew    ax
    movw    [sp+0x00], ax         ;Assignment to an element of array a
    movw    ax, sp
    call    !!_g
    movw    ax, [sp+0x00]
    or      a, x
    bnz     $.BB@LABEL@4_2
.BB@LABEL@4_1:                    ;return
    addw    sp, #0x06             ;The epilogue is output when #pragma rtos_task is 
                                  ;not specified
    ret
.BB@LABEL@4_2:                    ;bb3
    call    !!_ext_tsk
    br      $.BB@LABEL@4_1



R20UT3123EJ0113  Rev.1.13 Page 388 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

This notifies the compiler of an inline function.

[Function]

- #pragma inline declares a function to be expanded inline.

- #pragma noinline declares a function whose inline expansion is to be stopped when the -Oinline_level option is used.

- If both #pragma inline and #pragma noinline are specified for the same function within a single translation unit, an 
error will occur.

- The #pragma inline directive should be written before the definition of the target function within the translation unit that 
includes the function definition.

- #pragma inline has the same function as keyword __inline. For details of inline expansion, see "Specifying inline 
function (__inline)".

[Usage]

- #pragma inline and #pragma noinline are declared before the target functions.

[Example]

Inline expansion of function (#pragma inline, #pragma noinline)

#pragma inline      [(]function-name [,...][)]
#pragma noinline    [(]function-name [,...][)]

extern int      gi;

#pragma inline  i_func

static int i_func(int i)
{
        return ++i;
}

void func(int j)
{
        gi = i_func(j);
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 389 of 951
Dec 01, 2023

This specifies inline expansion of a function written in the assembly language.

[Function]

- Performs inline expansion on functions coded in assembly and declared with #pragma inline_asm.

- The calling conventions for an inline function with embedded assembly are the same as for ordinary function calls.

[Usage]

- #pragma inline_asm is declared before the target functions.

[Restrictions]

- #pragma inline_asm should be specified before the definition of the function body.

- An external definition is also generated for a function specified with #pragma inline_asm.

- The compiler passes the character strings written in the functions specified with #pragma inline_asm to the assembler 
without change.

- The codes written in assembly language are processed by the preprocessor. Therefore, special care must be taken 
when the same names as the instructions or registers used in the assembly language are defined as the names of 
macros with #define. When including iodefine.h, the function written in the assembly language should be written 
before inclusion of iodefine.h.

- Assembler control instructions are not usable in assembly code for functions specified as inline_asm. In addition, only 
the directives listed below are usable. Specifying any other directive will lead to an error.

- data definition/area reservation directives (.DB/.DB2/.DB4/.DB8/.DS)

- macro directives (.MACRO/.IRP/.REPT/.LOCAL/.ENDM)

- externally defined directive (.PUBLIC) [V1.04 or later]

- In the .PUBLIC directive in the function specified with inline_asm, only the labels defined in the function specified with 
inline_asm can be used. Using any other labels will lead to errors.

When a label is written in an assembly-language function, labels having the same name are generated for the number 
of times the function is expanded inline. In this case, take any of the following actions.

- Use a local label written in the assembly language. A local label has a single name in the assembly-language code, 
but the assembler automatically converts it into separate names.
See ".LOCAL" for local labels.

- Ensure that an external label is expanded only in one location.

- When calling an assembly-language function within the current source file, define the assembly-language func-
tion as static and call it only from a single location. Do not obtain the address of the assembly-language func-
tion.

- When not calling an assembly-language function within the current source file, code the function as an external 
function.

Describing assembler instruction (#pragma inline_asm)

#pragma inline_asm  [(]function-name [,...][)]



R20UT3123EJ0113  Rev.1.13 Page 390 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[Example]

The following shows a sample C source code.

The following shows the assembly source output by compiler.

#pragma inline_asm func
void func(int x)
{
    movw !_a, ax
}

#pragma inline_asm func1
static void __near func1(void)  // When calling within the current file a function 
{                               // that includes an external label definition and is 
                                // specified with inline_asm, code it as a static 
                                // __near function.
    .PUBLIC _label1
    incw ax
_label1:
    decw ax
}

#pragma inline_asm func2
void func2(void)                // When not calling within the current file a 
{                               // function that includes an external label 
                                // definition and is specified with inline_asm,
                                // code it as an external function.
    .PUBLIC _label2
    decw ax
_label2:
    incw ax
}

void main(void){
    func(3);
    func1();                    // Calls the function that includes an external 
                                // label definition and is specified with inline_asm.
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 391 of 951
Dec 01, 2023

    .SECTION .textf,TEXTF
_func:
    .STACK _func = 4
    ._line_top inline_asm
    movw !_a, ax
    ._line_end inline_asm
    ret
_func2:
    .STACK _func2 = 4
    ._line_top inline_asm
    .PUBLIC _label2
    decw ax
_label2:
    incw ax
    ._line_end inline_asm
    ret
_main:
    .STACK _main = 4
    movw ax, #0x0003
    ._line_top inline_asm   ; Expanded code of func
    movw !_a, ax            ;
    ._line_end inline_asm   ;
    ._line_top inline_asm   ; Expanded code of func1
    .PUBLIC _label1         ;
    incw ax                 ;
_label1:                    ;
    decw ax                 ;
    ._line_end inline_asm   ;
    ret



R20UT3123EJ0113  Rev.1.13 Page 392 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

Declare #pragma address in the module in which the variable to be allocated in an absolute address is to be defined. 
Variables can be allocated to the arbitrary address.

[Function]

- The specified variable is allocated to the specified address.

[Effect]

- Variables can be allocated to desired addresses.

[Usage]

- Declare #pragma address in the module in which the variable to be allocated in an absolute address is to be defined.

Note Absolute-address : Effective address (binary, octal, decimal, or hexadecimal constant in 
C language)

[Restrictions]

- #pragma address should be specified before declaration of the target variable.  #pragma address after a variable dec-
laration has no effect (no warning is output).

- If an object that is not a variable is specified, an error will occur.

- If #pragma address is specified for a const-qualified variable, an error will occur. [V1.04 or earlier]

- If #pragma address is specified for a variable declared with an initial value, an error will occur. [V1.04 or earlier]

- If #pragma address is specified for a variable that is not a const-qualified variable and is declared with an initial value, 
an error will occur. [V1.05 or later]

- If multiple #pragma address directives are specified for a single variable, an error will occur.

- If a single address is specified for separate variables or the addresses allocated to separate variables overlap, an 
error will occur.

- When #pragma address is declared for a variable that is explicitly or implicitly specified as near and if the specified 
absolute address is not in the range from 0x0F0000 to 0x0FFFFF, a compilation error will occur. If the specified abso-
lute address is in the SFR area, a linkage error will occur. [V1.04 or earlier]

- When #pragma address is declared for a variable that is not a const-qualified variable and is explicitly or implicitly 
specified as near and if the specified absolute address is not in the range from 0x0F0000 to 0x0FFFFF, a compilation 
error will occur. If the specified absolute address is in the SFR area, a linkage error will occur. [V1.05 or later]

Absolute address allocation specification (#pragma address)

#pragma address [(]variable-name=absolute-addressNote[,...][)]

#pragma address i=0xf2000
const int       i = 0;          //Error

#pragma address i=0xf2000
int     i = 0;                  //Error

#pragma address i=0xf2000
#pragma address i=0xf2000       //Error
int     i;



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 393 of 951
Dec 01, 2023

- When the address specified for a const variable that is explicitly or implicitly specified as near is not in the mirror 
source area, a linkage error will occur. [V1.05 or later]

[Example]

The following shows a sample C source code.

Variables are declared and allocated to sections as follows in the assembly code.

The following code is output in the function.

[Remark]

- Even when #pragma address is specified, the volatile attribute is not automatically added to variables.
The -volatile option can add the volatile attribute to all static variables, including those with #pragma address.
To add the volatile attribute separately to certain variables, declare each variable with volatile appended.

- When allocating a variable to a specified address, consider alignment of the variable. Do not allocate a variable over 
a 64-Kbyte boundary.

#pragma address n_i1=0xF0000
char    __near n_i1;            //Can be compiled
#pragma address n_i2=0xEFFFF
char    __near n_i2;            //Error
#pragma address n_i3=0xEFFFF
char    n_i3;                   //Error
                                //This is because bss is set to near regardless of
                                //whether -memory_model=small or medium
#pragma address f_i=0xEFFFF
char    __far f_i;              //Can be compiled

#pragma address i=0xf3000
const   int i = 0;              //Error

#pragma address (io=0x0ffe00)

int     io;                     //io is allocated to address 0x0ffe00
func(void){
        io = 0;
}

        .PUBLIC         _io

        .SECTION        .bss, BSS
        .ORG            0xFFE00
_io:
        .DS             2

clrw    ax
movw    !LOWW(_io), ax



R20UT3123EJ0113  Rev.1.13 Page 394 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

This notifies the compiler of a variable that is to be assigned to the saddr area.

[Function]

- Initialized variables are allocated to the .sdata section. 

- Uninitialized variables are allocated to the .sbss section.

- Address reference always returns a near pointer. 

- External variables and static variables in a function are allocated to the saddr area when they are specified with 
#pragma saddr.

- #pragma saddr handles even a variable to which the __far keyword is added as if __near was specified without a 
warning being output.

[Effect]

- Instructions that access the saddr area are shorter than those accessing the normal memory area and their object 
code also becomes smaller, leading to improved execution speed.

[Usage]

- Declare #pragma saddr before the first declaration of a variable.

[Restrictions]

- If there are multiple declarations for the same variable and #pragma saddr is written at the location where the second 
or subsequent declaration takes effect, correct operation is not guaranteed.

- If another #pragma is specified, a compilation error will occur.

[Example]

[Remark]

- Difference between the __saddr keyword and #pragma saddr

- The __saddr keyword cannot be used together with the __near or __far keyword, and a compilation error will 
occur if used so.

- #pragma saddr handles even a variable to which the __near or __far keyword is added as if __saddr was spec-
ified without a warning being output.

Using saddr area (#pragma saddr)

#pragma saddr [(]variable-name[,...][)]

#pragma saddr saddr_var
extern int saddr_var;

void func(void)
{
        saddr_var = 0;
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 395 of 951
Dec 01, 2023

This notifies the compiler of a callt function.

[Function]

- A function specified with #pragma callt is called by the callt instruction.
The callt instruction enables a function whose "start address of function definition" is stored in the area (0x80 to 0xBF) 
called as the callt instruction table to be called by a shorter code than a direct function call.

- The callt function is called by the callt instruction using a label name with "@_" added to the beginning of the function 
name.
When the callt function is called at the end of a function, the callt instruction is not used to make the call in some 
cases.

- The called function is handled as a normal function in the C source program.

- The specification becomes __near, and address reference always returns a near pointer.

- The callt function is allocated to a section with the relocation attribute TEXT.

- The callt instruction table is allocated to the .callt0 section.

- #pragma callt handles even a variable to which the __far keyword is added as if __near was specified without a warn-
ing being output.

- When #pragma callt, #pragma near, or #pragma far was specified together for the same function, the #pragma direc-
tives become valid in the priority order of #pragma callt > #pragma near > #pragma far.

[Effect]

- The size of the object code becomes smaller because the function is called by a 2-byte call instruction.

[Usage]

- Declare #pragma callt before the first declaration of a function.

[Restrictions]

- If there are multiple declarations for the same variable and #pragma callt is written at the location where the second or 
subsequent declaration takes effect, correct operation is not guaranteed. #pragma callt should be written before the 
declaration.

- If a #pragma directive other than #pragma near or #pragma far is specified for the same function, a compilation error 
will occur.

- If __inline and __callt are specified in the declaration of a target function of this #pragma directive, a compilation error 
will occur.

callt function (#pragma callt)

#pragma callt [(]function-name[,...][)]



R20UT3123EJ0113  Rev.1.13 Page 396 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[Example]

[Remark]

- Difference between the __callt keyword and #pragma callt

- The __callt keyword cannot be used together with the __far keyword, and a compilation error will occur if used 
so.

- #pragma callt handles even a function to which the __far keyword is added as if __callt was specified without a 
warning being output.

#pragma callt callt_func1
extern void callt_func1(void);

void func1(void)
{
        callt_func1();
          :
}

#pragma callt callt_func2
extern void __far callt_func2(void);  // Becomes __near without a warning 
                                      // due to the effect of #pragma callt
void func2(void)
{
        callt_func2();
          :
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 397 of 951
Dec 01, 2023

This notifies the compiler of a function that is specified with __near/__far.

[Function]

- A function specified with #pragma near is called as a function specified with __near.
Address reference of a function specified with #pragma near always returns a near pointer and the function is allo-
cated to a section with the relocation attribute TEXT.
For details on __near, refer to "Specifying memory allocation area (__near /__far)".

- A function specified with #pragma far is called as a function specified with __far.
Address reference of a function specified with #pragma far always returns a far pointer and the function is allocated to 
a section with the relocation attribute TEXT.
For details on __far, refer to "Specifying memory allocation area (__near /__far)".

- A function specified with #pragma near ignores the keyword without a warning being output even for a function to 
which the __callt or __far keyword is added.
To use the function as a callt function, specify #pragma callt instead of #pragma near for the function.

- A function specified with #pragma far ignores the keyword without a warning being output even for a function to which 
the __callt or __near keyword is added.

- When #pragma callt, #pragma near, or #pragma far was specified together for the same function, the #pragma direc-
tives become valid in the priority order of #pragma callt > #pragma near > #pragma far.

[Usage]

- Declare #pragma near/#pragma far before the first declaration of a variable.

[Restrictions]

- If there are multiple declarations for the same variable and #pragma near/#pragma far is written at the location where 
the second or subsequent declaration takes effect, correct operation is not guaranteed. Declare #pragma near/
#pragma far before the first declaration.

- If a #pragma directive other than #pragma callt, #pragma near, or #pragma far is specified for the same function, a 
compilation error will occur.

- If __inline is specified in the declaration of a target function of this #pragma directive, a compilation error will occur.

near/far function (#pragma near/#pragma far) [V1.05 or later]

#pragma near [(] function-name [,...][)]
#pragma far [(] function-name [,...][)]



R20UT3123EJ0113  Rev.1.13 Page 398 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

[Example]

[Remark]

- Difference between the __near/__far keyword and #pragma near/#pragma far

- #pragma near/#pragma far can be specified for multiple functions at the same time.

- The __far keyword cannot be used together with the __callt keyword or __near keyword, and a compilation error 
will occur if used so.

- #pragma near/#pragma far invalidates the __callt/__near/__far keyword without a warning.

#pragma near func1,func3
#pragma far  func2,func3         // #pragma near takes priority for func3.

extern void func1(void);         // Becomes __near without a warning due to 
                                 // the effect of #pragma near.
extern void __near func2(void);  // Becomes __far without a warning due to 
                                 // the effect of #pragma far.
extern void __callt func3(void); // Becomes __near without a warning due to 
                                 // the effect of #pragma near.
                                 // __callt becomes invalid without a warning.

void main(void)
{
    func1( );
    func2( );
    func3( );
      :
}



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 399 of 951
Dec 01, 2023

This specifies packing of a structure.

[Function]

- Packing is performed for a structure that is declared at or after the location where #pragma pack was specified. The 
number of alignment for a structure member is set to 1.

- Packing is not performed for a structure that is declared at or after the location where #pragma unpack was specified.

- If the -pack option is specified simultaneously with #pragma unpack, #pragma unpack takes priority.

[Usage]

- Declare #pragma pack/#pragma unpack before the declaration of the structure.

[Example]

[Restrictions]

- Correct operation is not guaranteed if there is a mixture of C source files with different packing specifications for the 
same structure.

- Correct operation is not guaranteed if a structure, union, or address of those members whose alignment condition has 
been changed from two bytes to one byte by #pragma pack is passed as an argument of a standard library function.

- Correct operation is not guaranteed if the address of a structure or union member whose alignment condition has 
been changed from two bytes to one byte by #pragma pack is passed to a pointer whose type has two bytes as the 
alignment condition and indirect reference to the pointer is performed.

Structure packing (#pragma pack/#pragma unpack) [V1.05 or later]

#pragma pack
#pragma unpack

#pragma pack
struct s1 {
  char a;
  int b;    // The number of alignment is set to 1.
} st1;
#pragma unpack
struct s2 {
  char a;
  int b;    // The number of alignment is not set to 1.
} st2;



R20UT3123EJ0113  Rev.1.13 Page 400 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

This generates a code for detection of stack smashing at the entry and end of a function.

[Function]

- This allocates a 2-byte area just before the local variable area (in the direction towards address 0xFFFFF) at the entry 
to a function, and the value specified by num is stored. After that, the 2-byte area in which num was stored is checked 
for smashing at the end of the function. If smashing has occurred, the __stack_chk_fail function is called.

- The __stack_chk_fail function needs to be provided by the user.
It cannot be specified as a static function.

- A code for detection of stack smashing is not generated for a function for which #pragma no_stack_protector has 
been specified regardless of the -stack_protector option and -stack_protector_all option.

[Effect]

- Stack smashing can be detected by software.

[Usage]

- Declare #pragma stack_protector/#pragma no_stack_protector before the first declaration of a variable.

[Restrictions]

- Specify an integer from 0 to 65535 for the number to be set in num. If "= number" is omitted, the compiler automati-
cally specifies the integer value.

- If this option is used simultaneously with the -stack_protector option or -stack_protector_all option, the specification 
by #pragma stack_protector/#pragma no_stack_protector becomes valid.

- A compile error will occur when #pragma stack_protector and #pragma no_stack_protector are specified simultane-
ously for the same function within a single translation unit.

- A compile error will occur when __inline, or other #pragma directives are specified.

Generating a code for detection of stack smashing (#pragma stack_protector/#pragma 
no_stack_protector) [Professional Edition only] [V1.02 or later]

void __far __stack_chk_fail(void) {
/* Processing to be executed when the stack is smashed */
}

#pragma stack_protector [(]function-name[(num=number)][,function-name[(num=num-
ber)]][,...][)]
#pragma no_stack_protector [(]function-name[,...][)]



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 401 of 951
Dec 01, 2023

Binary constants can be written in a C source program.

[Function]

- A binary constant can be written at a location where integer constants can be written.

[Effect]

- When writing a constant in a bit string, a binary constant can be directly written without being converted into an octal 
or hexadecimal constant and the readability is improved.

[Usage]

- A binary constant is written in the following manner.

- After 0b or 0B, write a sequence of numbers 0 and 1.

- One "_" can be written between numbers.

- The value of a binary constant is calculated with 2 as the radix.

- The type of a binary constant is the same as an octal or hexadecimal constant.

[Example]

The following shows a sample C source code.

The object code output by the compiler becomes the same as shown below.

[Caution]

- If the code includes a binary constant and the -strict_std option is specified, an error will occur. [V1.06 or later]

Binary constants

0b    Binary constant
0B    Binary constant

int i1, i2, i3;

i1 = 0b00101100;
i2 = 0b0001_1000;
i3 = 0B0_1_0_1_0_1_0_1_0_1_0_1_0_1_0_1

int i1, i2, i3;

i1 = 0x2c;
i2 = 0x18;
i3 = 0x5555;



R20UT3123EJ0113  Rev.1.13 Page 402 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

4.2.7  Intrinsic functions

CC-RL provides the following "intrinsic functions". The intrinsic functions can only be called from function definitions.
The instructions that can be described as functions are as follows.

Table 4.16 Intrinsic Function

Intrinsic 
Function

Function Format

__DI Outputs a DI instruction. void __DI(void);

__EI Outputs a EI instruction. void __EI(void);

__halt Outputs a HALT instruction. void __halt(void);

__stop Outputs a STOP instruction. void __stop(void);

__brk Outputs a BRK instruction. void __brk(void);

__nop Outputs a NOP instruction. void __nop(void);

__rolb Rotates x to the left y times assuming that x has a 
size of eight bits. 
Operation is undefined for the case where the 
rotation count is greater than the size of the 
value.
If the rotation count may be greater than the size, 
mask the count to not exceed the size.

unsigned char __rolb(
    unsigned char x,
    unsigned char y
);

__rorb Rotates x to the right y times assuming that x has 
a size of eight bits. 
Operation is undefined for the case where the 
rotation count is greater than the size of the 
value.
If the rotation count may be greater than the size, 
mask the count to not exceed the size.

unsigned char __rorb(
    unsigned char x,
    unsigned char y
);

__rolw Rotates x to the left y times assuming that x has a 
size of 16 bits. 
Operation is undefined for the case where the 
rotation count is greater than the size of the 
value.
If the rotation count may be greater than the size, 
mask the count to not exceed the size.

unsigned int __rolw(
    unsigned int x,
    unsigned char y
);

__rorw Rotates x to the right y times assuming that x has 
a size of 16 bits. 
Operation is undefined for the case where the 
rotation count is greater than the size of the 
value.
If the rotation count may be greater than the size, 
mask the count to not exceed the size.

unsigned int __rorw(
    unsigned int x,
    unsigned char y
);

__mulu Executes unsigned multiplication between 
(unsigned int)x and (unsigned int)y and returns a 
16-bit result.

unsigned int __mulu(
    unsigned char x,
    unsigned char y
);

__mului Executes unsigned multiplication between 
(unsigned long)x and (unsigned long)y and 
returns a 32-bit result.

unsigned long __mului(
    unsigned int x,
    unsigned int y
);



CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 403 of 951
Dec 01, 2023

__mulsi Executes signed multiplication between (signed 
long)x and (signed long)y and returns a 32-bit 
result.

signed long __mulsi(
    signed int x,
    signed int y
);

__mulul Executes unsigned multiplication between 
(unsigned long long)x and (unsigned long long)y 
and returns a 64-bit result. When the -lang=c and 
-strict_std options are specified, this function is 
not defined as an intrinsic function.

unsigned long long __mulul(
    unsigned long x,
    unsigned long y
);

__mulsl Executes signed multiplication between (signed 
long long)x and (signed long long)y and returns a 
64-bit result. When the -lang=c and -strict_std 
options are specified, this function is not defined 
as an intrinsic function.

signed long long __mulsl(
    signed long x,
    signed long y
);

__divui Executes unsigned division between x and y and 
returns a 16-bit result.
When divisor y is 0, 0xFFFF is returned.

unsigned int __divui(
    unsigned int x,
    unsigned char y
);

__divul Executes unsigned division between x and y and 
returns a 32-bit result.
When divisor y is 0, 0xFFFFFFFF is returned.

unsigned long __divul(
    unsigned long x,
    unsigned int y
);

__remui Executes unsigned remainder operation between 
x and y and returns a 8-bit result.
When divisor y is 0, the lower-order 8 bits of divi-
dend x are returned.

unsigned char __remui(
    unsigned int x,
    unsigned char y
);

__remul Executes unsigned remainder operation between 
x and y and returns a 16-bit result.
When divisor y is 0, the lower-order 16 bits of div-
idend x are returned.

unsigned int __remul(
    unsigned long x,
    unsigned int y
);

__macui Executes unsigned multiply-accumulate opera-
tion (unsigned long) x * (unsigned long) y + z, and 
returns a 32-bit result.

unsigned long __macui(
    unsigned int x,
    unsigned int y,
    unsigned long z
);

__macsi Executes unsigned multiply-accumulate opera-
tion (signed long) x * (signed long) y + z, and 
returns a 32-bit result.

signed long __macsi(
    signed int x,
    signed int y,
    signed long z
);

__get_psw Returns the contents of PSW. unsigned char   __get_psw(void);

__set_psw Sets x to PSW. void __set_psw(unsigned char x);

__set1 The set1 instruction is used to set bit y of the 
address indicated by x to 1.
Only a constant from 0 to 7 can be specified for 
bit y and a compile error will occur when any 
other value is specified.

void __set1(
    unsigned char __near *x,
    unsigned char y
);

Intrinsic 
Function

Function Format



R20UT3123EJ0113  Rev.1.13 Page 404 of 951
Dec 01, 2023

CC-RL 4.  COMPILER LANGUAGE SPECIFICATIONS

__clr1 The clr1 instruction is used to clear bit y of the 
address indicated by x to 0.
Only a constant from 0 to 7 can be specified for 
bit y and a compile error will occur when any 
other value is specified.

void __clr1(
    unsigned char __near *x,
    unsigned char y
);

__not1 The not1 instruction (xor instruction for the saddr 
area) is used to invert bit y of the address indi-
cated by x.
Only a constant from 0 to 7 can be specified for 
bit y and a compile error will occur when any 
other value is specified.

void __not1(
    unsigned char __near *x,
    unsigned char y
);

Intrinsic 
Function

Function Format



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 405 of 951
Dec 01, 2023

5.  ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CC-RL assembler.

5.1  Description of Source

This section explains description of source, expressions, and operators.

5.1.1  Basic structure

This section explains the general structure of a source program.

(1) Section
A source program consists of blocks called sections.

Source program = A group of sections

There are two types of section; code sections and data sections.
Each section has a separate location counter. The location counter of a relocatable section holds an address rela-
tive to the start of the section, and that of an absolute section holds an absolute address in the memory space. 
Each section can be allocated to any address through the optimizing linker, but the address of an absolute section 
cannot be changed from that specified in the source program.

(2) Module
A module is the unit of source program that is processed at one time by this assembler. One module corresponds 
to an assembly source file.

5.1.2  Description

An assembly source program consists of statements.
A statement is written in one line, using the characters listed in "(1)  Character set".  An assembly language statement 

consists of a "symbol", a "mnemonic", "operands", and a "comment".

These fields are delimited by a space, a tab, a colon (:), or a semicolon (;).  The maximum number of characters in one 
line is theoretically 4294967294 (= 0xFFFFFFFE), but the memory size limits the actual maximum number of characters.

Statements can be written in a free format; as long as the order of the symbol, mnemonic, operands, and comment is 
correct, they can be written in any columns.  Note that one statement can be written within one line.

To write a symbol in the symbol field, a colon, one or more spaces, or a tab should be appended to delimit the symbol 
from the rest of the statement.  Whether colons or spaces or tabs are used, however, depends on the instruction coded by 
the mnemonic.  Before and after a colon, any number of spaces or tabs can be inserted.

When operands are necessary, they should be separated from the rest of the statement by one or more spaces or tabs.

[symbol][:]       [mnemonic]     [operand], [operand]    ;[comment]

Section 1

:
:
:

Section n



R20UT3123EJ0113  Rev.1.13 Page 406 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

To write a comment in the comment field, it should be delimited from the rest of the statement by a semicolon.  Before 
and after a semicolon, any number of spaces or tabs can be inserted.

One assembly language statement is described on one line.  There is a line feed (return) at the end of the statement.

(1) Character set
The characters that can be used in a source program (assembly language) supported by the assembler are the 
following 3 types of characters.

- Language characters

- Character data

- Comment characters

(a) Language characters
These characters are used to code instructions in the source.
The language characters are further classified by their functions as follows.

Table 5.1 Language Characters and Character Set

- The alphabetic characters (including the characters similar to alphabet) and numerals are collectively called 
alphanumeric characters.

- Reserved words and lowercase alphabetic characters specified in numeric constants are interpreted as the 
corresponding uppercase characters.  

- When lowercase alphabetic characters are used in a user-defined symbol, the uppercase and lowercase are 
distinguished for interpretation.

The following shows the usage of special characters of type 1.
If a special character of this type appears outside constant data or comment fields in a source program for a pur-
pose other than those listed below, an error will occur.

Table 5.2 Special Characters Type 1 and Usage of Characters

General Name of Subclass Character

Numerals 0 1 2 3 4 5 6 7 8 9

Alphabetic 
characters

Uppercase letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase letter a b c d e f g h i j k l m n o p q r s t u v w x y z

Characters similar to alphabet @ _ (underscore) .(period)

Special 
characters

Special character type 1 . , : ; * / + - ` < > ( ) $ = ! & # [ ] " % << >> | ^ ? ~ 

Special character type 2 \

Special character type 3 LF, CR LF, HT

Character Usage

.(period) Bit position specifier
Symbol for beginning a directive

, (comma) Delimits an operand

: (colon) Delimits a label
Extended address specification ("ES:")

; (semicolon) Beginning of comment

* Multiplication operator

/ Division operator



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 407 of 951
Dec 01, 2023

The following shows the usage of special characters of type 2.

Table 5.3 Special Characters Type 2 and Usage of Characters

+ Positive sign
Addition operator

- (hyphen) Negative sign
Subtraction operator

' (single quotation) Symbol for beginning or ending a character constant

< Relational operator
Shift operator

> Relational operator
Shift operator

( ) Specifies an operation sequence

$ Symbol for beginning a control instruction
Symbol specifying relative addressing
Character similar to alphabet

= Relational operator

! Relational operator
Beginning immediate addressing

& Bit logic operator
Logical operator

# Beginning indicates
Beginning comment (when used at the beginning of a line)

[ ] Indirect indication symbol

"(double quotation) Start and end of character string constant

% Remainder operator

| Bit logic operator
Logical operator

^ Bit logic operator

? Concatenation symbol (in macro body)

~ Bit logic operator

 (blank or tab) Field delimiter

Escape Sequence Value (ASCII) Meaning

\0 0x00 null character

\a 0x07 Alert (Warning tone)

\b 0x08 Backspace

\f 0x0C Form feed (New Page)

\n 0x0A New line (Line feed)

\r 0x0D Carriage return (Restore)

Character Usage



R20UT3123EJ0113  Rev.1.13 Page 408 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

The following shows the usage of special characters of type 3.

<1> CR LF, LF
These characters delimit lines.

<2> HT
This character moves the column position in a source program.  It is output to a list as is.

(b) Character data
Character data refers to characters used to write character constant, character string constant, and the quote-
enclosed operands of some control instructions.

Caution Character data can use all characters (including multibyte character, although the encoding 
depends on the OS).

- Uppercase and lowercase characters are distinguished.

- The following shows the handling of HT, CR LF, and LF.

Note These characters only delimit lines and they are not regarded as part of the character data.

(c) Comment characters
Comment characters are used to write comments.

Caution Comment characters and character data have the same character set.

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\\ 0x5C Backslash

\' 0x27 Single quotation

\" 0x22 Double quotation

\? 0x3F Question mark

\ooo 0 - 0377 Octal number (0 to 255 in decimal) having up to 
three digits (o indicates an octal digit)

\xhh 0x00 - 0xFF Hexadecimal number (0 to 255 in decimal) having 
up to two digits (h indicates a hexadecimal digit)

Special Character Type 3 Value Output to List

CR LF 0x0D0A

LF 0x0A

Object Output Value Output to Lis

HT 0x09 0x09 (a tab is expanded as is)

CR LF 0x0D0A 0x0D0ANote

LF 0x0A 0x0ANote

Escape Sequence Value (ASCII) Meaning



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 409 of 951
Dec 01, 2023

(2) Constants
A constant is a fixed value or data item and is also referred to as immediate data.
There are three types of constant as shown below.

- Numeric constants

- Character constants

- Character string constants

(a) Numeric constants
Integer constants can be written in binary, octal, decimal, or hexadecimal notation.
Integer constants has a width of 32 bits.  A negative value is expressed as a 2's complement.  If an integer value 
that exceeds the range of the values that can be expressed by 32 bits is specified, the assembler uses the value 
of the lower 32 bits of that integer value and continues processing (it does not output message).

The beginning of a numeric constant should be a numeral.
For example, when 10 in decimal is written in hexadecimal with "H" appended at its end, append "0" at the 
beginning and write "0AH".  If it is written as "AH", it is regarded as a symbol.

Caution Prefix notation (like 0xn...n) and suffix notation (n...nh) cannot be used together within one 
source program.
Specify the notation through the -base_number = (prefix | suffix) option.

(b) Character constants
A character constant consists of a single character enclosed by a pair of single quotation marks (' ') and indi-
cates the value of the enclosed character. 
The number of characters should be 1.
This is a 32-bit value holding the right-justified code for the specified character.  When the upper bytes are 
empty, they are filled with 0.

Example

(c) Character string constants
A character string constant is a sequence of some characters shown in "(1)  Character set" enclosed by a pair of 
quotation marks (" ") and indicates the characters themselves.

To include the double quote character in the string, write it twice in succession.

Example

Type Notation Example

Binary Append an "0b" or "0B" suffix to the number.
Append "b" or "B" at the end of the number.

0b1101, 0B1101
1101b, 1101B

Octal Append an "0" suffix to the number.
Append "o" or "O" at the end of the number.

074
074o, 074O

Decimal Simply write the number. 128

Hexadecimal Append an "0x" or "0X" suffix to the number.
Append "h" or "H" at the end of the number.

0xA6, 0XA6
6Ah, 6AH

Character Constants Evaluated Value

'A' 0x00000041

' ' (1 blank) 0x00000020

Character string Constants Evaluated Value

"ab" 0x6162

"A" 0x41

" " (1 blank) 0x20

"" None



R20UT3123EJ0113  Rev.1.13 Page 410 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

(3) Symbol
A reference to a symbol is handled as a specification of the value defined for the symbol.
The symbols allowed in this assembler are classified into the following types.

- Name
A symbol specified in the symbol field of a symbol definition directive.  This type of symbol has a value.  
The range of a value is -2147483648 to 2147483647 (0x80000000 to 0x7FFFFFFF).

- Label
A symbol written between the beginning of a line and a colon (:).  This type of symbol has an address  value.
The range of an address value is 0 to 1048575 (0x00000 to 0xFFFFF).

- External reference name
A symbol specified in the operand field of an external reference name definition directive to refer to the symbol 
defined in a module from another module.  The address value for this symbol is set to 0 at assembly and it is 
determined at linkage.
A symbol that is not defined in the module where the symbol is referenced is also regarded as an external refer-
ence name.

- Section name
A symbol specified in the symbol field of a section definition directive.
This symbol does not have a value.

- Macro name
A symbol specified in the symbol field of a macro definition directive.  It is used for reference to a macro.
This symbol does not have a value.

- Macro formal parameter name
A symbol specified in the operand field of a macro definition directive.
This symbol does not have a value.

A symbol defined using a bit position specifier is called a bit symbol.
A reference to a symbol using a bit position specifier is called a bit reference to a symbol.

The symbol field is for symbols, which are names given to addresses and data objects.  Symbols make programs 
easier to understand.

(a) Symbol types
Symbols that can be written in the symbol field are classified as shown below, depending on their purpose and 
how they are defined.

Multiple symbols cannot be written in a symbol field.  In addition, only one symbol of any one of the above types 
can be defined in a line.

Symbol Type Purpose Definition Method

Label Use this type when referring to the address 
of the label location.  
Note that the label appended to a directive 
is regarded as included in the section 
immediately before the directive

Write a symbol followed by a colon ( : ).

Name Use this type when assigning numerical 
data or an address and referring to it as a 
symbol.

Write in the symbol field of a Symbol defini-
tion directive.
Delimit the symbol field and mnemonic 
field by one or more spaces or tabs.

Section name Use this type when referring to a symbol as 
input information for the optimizing linker.

Write in the symbol field of a section defini-
tion directive.
Delimit the symbol field and mnemonic 
field by one or more spaces or tabs.

Macro name Use to name macros in source programs. Write in the symbol field of macro directive.
Delimit the symbol field and mnemonic 
field by one or more spaces or tabs.



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 411 of 951
Dec 01, 2023

(b) Conventions of symbol description
Observe the following conventions when writing symbols.

- The characters which can be used in symbols are the alphanumeric characters and special characters (@, _, 
., $).
The first character in a symbol cannot be a digit (0 to 9) or $.
To specify a symbol that includes periods for an operand of a bit manipulation instruction, enclose the symbol 
in double quotation marks.

Example: set1 !"s.y.m".7

- The maximum number of characters for a symbol is 4,294,967,294 (=0xFFFFFFFE) (theoretical value).  The 
actual number that can be used depends on the amount of memory, however.

- Reserved words cannot be used as symbols.
See "5.6  Reserved Words" for a list of reserved words.

- The same symbol cannot be defined more than once.
However, a symbol defined with the .SET directive can be redefined with the .SET directive.

- When a label is written in a symbol field, the colon ( : ) must appear immediately after the label name.
When using another type of symbol, insert a space or a tab to delimit the symbol from the mnemonic field.

Example Correct symbols

Example Incorrect symbols

Example A statement composed of a symbol only

(c) Points to note about symbols
When writing an assembler generation symbol (see "5.7  Assembler Generated Symbols".), there is a possibility 
which becomes an error by a multi-definition, don't use an assembler generation symbol.
In addition, if a section name is not specified in a section definition directive, note that the assembler automati-
cally generates a section name.  

(4) Mnemonic field
Write instruction mnemonics, directives, and macro references in the mnemonic field.
If the instruction or directive or macro reference requires an operand or operands, the mnemonic field must be 
separated from the operand field with one or more blanks or tabs.
However, if the first operand begins with "#", "$","!", "[", or "(", the statement will be assembled properly even if 
nothing exists between the mnemonic field and the first operand field.

Example Correct mnemonics

Example Incorrect mnemonics

CODE01  .CSEG               ; "CODE01" is a section name.
VAR01   .EQU    0x10        ; "VAR01" is a name.
LAB01:  .DB2    0           ; "LAB01" is a label.

1ABC    .EQU    0x3         ; The first character is a digit.s
LAB     MOV     1, r10      ; "LAB"is a label and must be separated from the 
                            ; mnemonic field by a colon ( : ).
FLAG:   .EQU    0x10        ; The colon ( : ) is not needed for names.

ABCD:                       ; ABCD is defined as a label.

MOV     A, #1

MOVA, #1      ; There is no blank between the mnemonic and operand fields.
MO V  A, #1   ; The mnemonic field contains a blank.
MOVE  A, #1   ; This is an instruction that cannot be coded in the mnemonic field.



R20UT3123EJ0113  Rev.1.13 Page 412 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

(5) Operand field
In the operand field, write operands (data) for the instructions, directives, or macro references that require them.
Some instructions and directives require no operands, while others require two or more.
When you provide two or more operands, delimit them with a comma ( , ).  Before and after a comma, any number 
of spaces or tabs can be inserted.

(6) Comment
Write a comment after a number sign (#) at the beginning of a line or after a semicolon (;) in the middle of a line
The comment field continues from the # or semicolon to the new line code at the end of the line, or to the EOF 
code of the file.
Comments make it easier to understand and maintain programs.
Comments are not processed by the assembler, and are output verbatim to assembly lists.
Characters that can be described in the comment field are those shown in "(1)  Character set".

Example

5.1.3  Expressions and operators

An expression is a SymbolNote 1, constant (Numeric constantsNote 2, Character constants) , an operator combined with 
one of the above, or a combination of operators.

Note 1. Only a name, a label, or an external reference name can be used for a symbol specified as an element of 
an expression.  For the SIZEOF and STARTOF operators, a section name can be specified.

Note 2. When a device file is read, SFR symbols and extended SFR symbols can be handled in an expression in 
the same way as constants.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and 
so forth from left to right, in the order that they occur in the expression.  The operators that can be used for a term are lim-
ited depending on the relocation attribute of the term.

The assembler supports the operators shown in "Table 5.4  Operator Types".  Operators have priority levels, which 
determine when they are applied in the calculation.  The priority order is shown in "Table 5.5  Operator Precedence Lev-
els".

The order of calculation can be changed by enclosing terms and operators in parentheses "( )".

Table 5.4 Operator Types

# This is a comment
HERE:   MOV     A, #0x0F        ;This is a comment
;
;       BEGIN LOOP HERE
;

Operator Type Operators

Arithmetic operators +, -, *, /, %, +sign, -sign

Bit logic operators ~, &, |, ^

Relational operators ==, !=, >, >=, <, <=

Logical operators &&, ||

Shift operators >>, <<

Byte separation operators HIGH, LOW

2-byte separation operators HIGHW, LOWW, MIRHW, MIRLW, SMRLW

Special operators DATAPOS, BITPOS

Section operators STARTOF, SIZEOF

Other operator ( )



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 413 of 951
Dec 01, 2023

The above operators can also be divided into unary operators, special unary operators and binary operators.

Table 5.5 Operator Precedence Levels

Expressions are operated according to the following rules.

- The order of operation is determined by the priority level of the operators.
When two operators have the same priority level, operation proceeds from left to right, except in the case of unary 
operators, where it proceeds from right to left.

- Sub-expressions in parentheses "( )" are operated before sub-expressions outside parentheses.

- Expressions are operated using 32-bit values.
When the intermediate value of an expression or a constant in an expression exceeds 32 bits during evaluation or 
when the resultant value of the constant or the expression after evaluation exceeds 32 bits, only the lower-order 32 
bits are valid.  No error will be output in this case.
Only for an expression specified as an operand for the .DB8 directive, each term is handled in 64 bits.

- Each term of an expression is handled as an unsigned integer, but in the following cases it is handled as a signed 
integer.

Multiplication, division, division/multiplication, second term of logical shift

- If the divisor is 0, an error occurs.

- Negative values are represented as two's complement.

- Relocatable terms are evaluated as 0 at the time when the source is assembled (the evaluation value is determined at 
link time).

Table 5.6 Evaluation examples

Unary operators +sign, -sign, ~, HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW, SMRLW, DATA-
POS, BITPOS, STARTOF, SIZEOF

Binary operators +, -, *, /, %, &, |, ^, ==, =, >, >=, <, <=, &&, ||, >>, <<

Priority Level Operators

Higher

Lower

1 +sign, -sign, ~, HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW, SMRLW, DATA-
POS, BITPOS, STARTOF, SIZEOF

2 *, /, %,  >>, <<

3 +, -

4 &, |, ^

5 ==, !=, >, >=, <, <=

6 &&, ||

Expression Evaluation

5 + 8 - 6 * 2 / 4 10

5 + (8 - 6) * 2 / 4 6

(5 + 8 - 6)* 2 / 4 3

2 * (0x0F - (0x0B & (0x0A | 0x0F))) 8

2 * 0x0F - 0x0B & 0x0A | 0x0F 0x0F

HIGH(-1) 0xFF

HIGH(0x0FFFF) 0xFF

2 + 4 * 5 22

(2 + 3) * 4 20



R20UT3123EJ0113  Rev.1.13 Page 414 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Note EXT: External reference names

10/4 2

0 - 1 0xFFFFFFFF

-1 > 1 1 (True)

EXTNote + 1 0

Expression Evaluation



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 415 of 951
Dec 01, 2023

5.1.4  Arithmetic operators

The following arithmetic operators are available.

Operator Overview

+ Addition of values of first and second terms.

- Subtraction of value of first and second terms.

* Multiplacation of value of first and second terms.

/ Divides the value of the 1st term of an expression by the value of its 2nd 
term and returns the integer part of the result.

% Obtains the remainder in the result of dividing the value of the 1st term of an 
expression by the value of its 2nd term.

+sign Returns the value of the term as it is.

-sign The term value 2 complement is sought.



R20UT3123EJ0113  Rev.1.13 Page 416 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Addition of values of first and second terms.

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

(1) The BR instruction causes a jump to "address assigned to START plus 6", namely,  to address "0x100 + 0x6 = 
0x106" when START label is 0x100.

+

START:  BR      !!START + 6     ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 417 of 951
Dec 01, 2023

Subtraction of value of first and second terms.

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

(1) The BR instruction causes a jump to "address assigned to BACK minus 6", namely, to address "0x100 - 0x6 = 
0xFA" when BACK label is 0x100.

-

BACK:   BR      !!BACK - 6      ; (1)



R20UT3123EJ0113  Rev.1.13 Page 418 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Multiplication of value of first and second terms.

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

(1) Execution of the MOV instruction loads a value of 6 in the A register.

*

MOV     A, #2 * 3       ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 419 of 951
Dec 01, 2023

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.
The decimal fraction part of the result will be truncated.  If the divisor (2nd term) of a division operation is 0, an error 

occurs

[Application example]

(1) Execution of the MOV instruction loads a value of 5 in the A register.

/

MOV     A, #250 / 50    ; (1)



R20UT3123EJ0113  Rev.1.13 Page 420 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.  
An error occurs if the divisor (2nd term) is 0.

[Application example]

(1) Execution of the MOV instruction loads a value of 6 in the A register.

%

MOV     A, #256 % 50    ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 421 of 951
Dec 01, 2023

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

+sign



R20UT3123EJ0113  Rev.1.13 Page 422 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

-sign



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 423 of 951
Dec 01, 2023

5.1.5  Bit logic operators

The following bit logic operators are available.

Operator Overview

~ Obtains the logical negation (NOT) by each bit.

& Obtains the logical AND operation for each bit of the first and second term 
values.

| Obtains the logical OR operation for each bit of the first and second term 
values.

^ Obtains the exclusive OR operation for each bit of the first and second term 
values.



R20UT3123EJ0113  Rev.1.13 Page 424 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the logical negation by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

[Application example]

(1) Logical negation is performed on "0x3" as follows:
This operation loads "0x0F" in the A register.

~

MOV     A, #LOW(~3)     ; (1)

NOT) 0000 0000 0000 0000

1111 1111 1111 1111

0000 0000 0000 0011

1111 1111 1111 1100



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 425 of 951
Dec 01, 2023

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its 2nd 
term on a bit-by-bit basis and returns the result.

[Application example]

(1) AND operation is performed between the two values "0x6FA" and "0x0F" as follows:
This operation loads "0xF0A" in the A register.

&

MOV     A, #0x6FA & 0x0F        ; (1)

AND) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1111

0000 0000 0000 1010

0000 0110 1111 1010



R20UT3123EJ0113  Rev.1.13 Page 426 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd 
term on a bit-by-bit basis and returns the result.

[Application example]

(1) OR operation is performed between the two values "0x0A" and "0b1101" as follows:
This operation loads "0x0F" in the A register.

|

MOV     A, #0x0A | 0b1101       ; (1)

OR) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1101

0000 0000 0000 1111

0000 0000 0000 1010



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 427 of 951
Dec 01, 2023

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term on 
a bit-by-bit basis and returns the result.

[Application example]

(1) XOR operation is performed between the two values "0x9A" and "0x9D" as follows:
This operation loads "0x07" in the A register.

^

MOV     A, #0x9A ^ 0x9D         ; (1)

XOR) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 1001 1101

0000 0000 0000 0111

0000 0000 1001 1010



R20UT3123EJ0113  Rev.1.13 Page 428 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.6  Relational operators

The following relational operators are available.

Operator Overview

== Compares whether values of first term and second term are equivalent.

!= Compares whether values of first term and second term are not equivalent.

> Compares whether value of first term is greater than value of the second.

>= Compares whether value of first term is greater than or equivalent to the 
value of the second term.

< Compares whether value of first term is smaller than value of the second.

<= Compares whether value of first term is smaller than or equivalent to the 
value of the second term.



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 429 of 951
Dec 01, 2023

Compares whether values of first term and second term are equivalent.

[Function]

Returns 1 (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 0 (False) if both 
values are not equal.

==



R20UT3123EJ0113  Rev.1.13 Page 430 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Compares whether values of first term and second term are not equivalent.

[Function]

Returns 1 (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and 0 (False) if 
both values are equal.

!=



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 431 of 951
Dec 01, 2023

Compares whether value of first term is greater than value of the second.

[Function]

Returns 1(True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 0 (False) if the 
value of the 1st term is equal to or less than the value of the 2nd term.

>



R20UT3123EJ0113  Rev.1.13 Page 432 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns 1 (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term, and 0 
(False) if the value of the 1st term is less than the value of the 2nd term.

>=



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 433 of 951
Dec 01, 2023

Compares whether value of first term is smaller than value of the second.

[Function]

Returns 1 (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 0 (False) if the 
value of the 1st term is equal to or greater than the value of the 2nd term.

<



R20UT3123EJ0113  Rev.1.13 Page 434 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns 1 (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and 0 
(False) if the value of the 1st term is greater than the value of the 2nd term.

<=



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 435 of 951
Dec 01, 2023

5.1.7  Logical operators

The following logical operators are available.

Operator Overview

&& Calculates the logical product of the logical value of the first and second 
operands.

|| Calculates the logical sum of the logical value of the first and second oper-
ands.



R20UT3123EJ0113  Rev.1.13 Page 436 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Calculates the logical product of the logical value of the first and second operands.

[Function]

Calculates the logical product of the logical value of the first and second operands.

&&



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 437 of 951
Dec 01, 2023

Calculates the logical sum of the logical value of the first and second operands.

[Function]

Calculates the logical sum of the logical value of the first and second operands.

||



R20UT3123EJ0113  Rev.1.13 Page 438 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.8  Shift operators

The following shift operators are available.

Operator Overview

>> Obtains only the right-shifted value of the first term which appears in the 
second term.

<< Obtains only the left-shifted value of the first term which appears in the sec-
ond term.



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 439 of 951
Dec 01, 2023

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified 
by the value of the 2nd term.

Zeros equivalent to the specified number of bits shifted move into the high-order bits.

If the number of shifted bits is 0, the value of the first term is returned as is.  If the number of shifted bits exceeds 31, 0 
is returned.

[Application example]

(1) The value "0x01AF" is shifted 5 bits to the right, leaving the sign bit.
"0x000D" is forwarded to AX.

>>

MOVW    AX, #0x01AF >> 5        ; (1)

0000    0000    0000    0000    0000    0001    1010    1111

0000    0000    0000    0000    0000    0000    0000    1101 0111    1

0's are inserted. For 5 bits, the right shift



R20UT3123EJ0113  Rev.1.13 Page 440 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by 
the value of the 2nd term.

Zeros equivalent to the specified number of bits shifted move into the low-order bits.
If the number of shifted bits is 0, the value of the first term is returned as is.  If the number of shifted bits exceeds 31, 0 

is returned.

[Application example]

(1) This operator shifts the value "0x21" to the left by 2 bits.
"0x84" is forwarded to A.

<<

MOV     A, #0x21 << 2           ; (1)

0000    0000    0000    0000    0000    0000    0010    0001

0000    0000    0000    0000    0000    0000    1000    010000

For 2 bits, the left shift 0's are inserted.



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 441 of 951
Dec 01, 2023

5.1.9  Byte separation operators

The following byte separation operators are available.

Operator Overview

HIGH Obtains the second byte from the least significant byte of a term

LOW Returns the low-order 8-bit value of a term



R20UT3123EJ0113  Rev.1.13 Page 442 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the second byte from the least significant byte of a term.

[Function]

Returns the value of bits 8 to 15 (the second byte from the least significant byte) among the 32 bits of a term.

[Application example]

(1) By executing a MOV instruction, this operator loads the high-order 8-bit value "0x12" of the expression "0x1234" to 
A register.

HIGH

MOV     A, #HIGH(0x1234)        ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 443 of 951
Dec 01, 2023

Returns the low-order 8-bit value of a term.

[Function]

Returns the value of the lower-order eight bits among the 32 bits of a term.

[Application example]

(1) By executing a MOV instruction, this operator loads the low-order 8-bit value "0x34" of the expression "0x1234" to 
A register.

LOW

MOV     A, #LOW(0x1234)         ; (1)



R20UT3123EJ0113  Rev.1.13 Page 444 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.10  2-byte separation operators

The following 2-byte separation operators are available.

Operator Overview

HIGHW Returns the high-order 16-bit value of a term

LOWW Returns the low-order 16-bit value of a term

MIRHW Obtains the higher-order 16 bits of the corresponding address in the mirror 
destination area when the value of the specified term is in the mirror source 
area

MIRLW Obtains the lower-order 16 bits of the corresponding address in the mirror 
destination area when the value of the specified term is in the mirror source 
area

SMRLW Adds an offset to the mirror destination to the address of a symbol, adds an 
integer value to the obtained value, and then obtains the value of the lower-
order 16 bits among the 32-bit value of the result



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 445 of 951
Dec 01, 2023

Returns the high-order 16-bit value of a term.

[Function]

Returns the value of the high-order 16 bits among the 32 bits of a term.

[Application example]

(1) By executing a MOVW instruction, this operator loads the high-order 16-bit value "0x1234" of the expression 
"0x12345678" to AX register.

HIGHW

MOVW    AX, #HIGHW(0x12345678)          ; (1)



R20UT3123EJ0113  Rev.1.13 Page 446 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Returns the low-order 16-bit value of a term.

[Function]

Returns the value of the lower-order 16 bits among the 32 bits of a term.

[Application example]

(1) By executing a MOVW instruction, this operator loads the low-order 16-bit value "0x5678" of the expression 
"0x12345678" to AX register.

LOWW

MOVW    AX, #LOWW(0x12345678)           ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 447 of 951
Dec 01, 2023

Obtains the higher-order 16 bits of the corresponding address in the mirror destination area when the value of the spec-
ified term is in the mirror source area.

[Function]

When the value of the specified term is in the mirror source area, the higher-order 16 bits among the 32 bits of the cor-
responding address in the mirror destination area are returned.

When the value of the term is outside the mirror source area and the term is an absolute term (see "5.1.14  Restrictions 
on operations"), the same value as for HIGHW is returned.  When it is a relocatable term, an error will occur at linkage.

[Application example]

(1) When the target expression (0x00001000) for operation is in the mirror source area, 0x00001000 is converted to 
the corresponding mirror destination address (0x000F9000 for an 8-bit CPU or 0x000F1000 for a 16-bit CPU) and 
the value of the higher-order 16 bits (0x000F) is loaded in the AX register by executing the MOVW instruction.

MIRHW

MOVW    AX, #MIRHW(0x00001000)          ; (1)



R20UT3123EJ0113  Rev.1.13 Page 448 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the lower-order 16 bits of the corresponding address in the mirror destination area when the value of the speci-
fied term is in the mirror source area.

[Function]

When the value of the specified term is in the mirror source area, the lower-order 16 bits among the 32 bits of the corre-
sponding address in the mirror destination area are returned.

When the value of the term is outside the mirror source area and the term is an absolute term (see "5.1.14  Restrictions 
on operations"), the same value as for LOWW is returned.  When it is a relocatable term, an error will occur at linkage.

[Application example]

(1) When the target expression (0x00001000) for operation is in the mirror source area, 0x00001000 is converted to 
the corresponding mirror destination address (0x000F9000 for an 8-bit CPU or 0x000F1000 for a 16-bit CPU) and 
the value of the lower-order 16 bits (0x9000 for an 8-bit CPU or 0x1000 for a 16-bit CPU) is loaded in the AX reg-
ister by executing the MOVW instruction.

MIRLW

MOVW    AX, #MIRLW(0x00001000)          ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 449 of 951
Dec 01, 2023

Adds an offset to the mirror destination to the address of a symbol, adds an integer value to the obtained value, and 
then obtains the value of the lower-order 16 bits among the 32-bit value of the result.

[Function]

When the specified term is an expression that adds an integer value to a relocatable symbol, only the symbol is checked 
instead of the value of the whole term.  When the symbol is in the mirror source area, the offset to the mirror destination is 
added to the address of the symbol, the specified integer value is added to the obtained value, and then the value of the 
lower-order 16 bits among the 32-bit value of the result is returned.

When the relocatable symbol is outside the mirror source area, an error will occur at linkage.  
When the term is an absolute term, the same value as for LOWW is returned.  When the term only refers to a relocat-

able symbol, the same value as for MIRLW is returned.

Only a term that takes any one of the following forms after operation by the assembler is allowed.  In other cases, errors 
will occur.  (A is an absolute symbol, R is a relocatable symbol, and C is an integer constant in the following forms.)

This is also applicable to MIRLW and MIRHW.

- SMRLW(C) : Same operation as LOWW.

- SMRLW(A) : Same operation as LOWW.

- SMRLW(R) : R is checked as to whether it is in the mirror source area.

- SMRLW(R + C) : R is checked as to whether it is in the mirror source area.

- SMRLW(R - A + C) : R is checked as to whether it is in the mirror source area.

[Application example]

GSYM is an external reference name.

(1) When the address of relocatable symbol GSYM is in the mirror source area, it is converted to the corresponding 
address in the mirror destination, 0x1000 is added to the obtained value, and then the value of the lower-order 16 
bits of the result is loaded in the AX register.

SMRLW

MOVW    AX, #SMRLW(GSYM + 0x1000)       ; (1)



R20UT3123EJ0113  Rev.1.13 Page 450 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.11  Special operators

The following special operators are available.

Operator Overview

DATAPOS Obtains the first term of a bit symbol

BITPOS Obtains the second term of a bit symbol



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 451 of 951
Dec 01, 2023

Obtains the first term of a bit symbol.

[Function]

Obtains the first term of a bit symbol.

[Application example]

(1) Execution of the MOVW instruction loads a value of 0xFE20 in the AX register.

[Caution]

No bit term (see "5.1.15  Bit position specifier") can be specified in the operand field.

DATAPOS

BITSYM  .EQU    0x0FE20.3
        MOVW    AX, #DATAPOS(BITSYM)    ; (1)



R20UT3123EJ0113  Rev.1.13 Page 452 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Obtains the second term of a bit symbol.

[Function]

Obtains the second term of a bit symbol.

[Application example]

(1) Execution of the MOVW instruction loads a value of 3 in the AX register.

[Caution]

No bit term (see "5.1.15  Bit position specifier") can be specified in the operand field.

BITPOS

BITSYM  .EQU    0x0FE20.3
        MOVW    AX, #BITPOS(BITSYM)     ; (1)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 453 of 951
Dec 01, 2023

5.1.12  Section operators

The following Section operators are available.

Operator Overview

STARTOF Returns the start address of the term section after linking.

SIZEOF Returns the size of the term section after linking.



R20UT3123EJ0113  Rev.1.13 Page 454 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Returns the start address of the section specified by the term after linking.

[Function]

Returns the start address of the term section after linking.

[Application example]

Allocates a 4-byte area, and initializes it with the start address of the default section (.text).

To allocate a 4-byte area and initialize it with the start address of the user-defined section (user_text).

To use this operator in conjunction with SIZEOF:

[Caution]

- This operator can be specified in combination with SIZEOF by using the binary operator "+".
Note, however, that it is not possible on the same line to write multiple instances of STARTOF and SIZEOF or include 
an expression other than STARTOF or SIZEOF.  The following example will cause an error.

- For an absolute section, write "_AT" + a section name with an address specified (see ".SECTION", ".CSEG", 
".DSEG", and ".ORG").

STARTOF

.DB4            STARTOF(.text)

.DB4            STARTOF(user_text)

.DB4            STARTOF(.data) + SIZEOF(.data)

.DB4            STARTOF(.data) +2

.SECTION        EX, DATA_AT     0xF2000

.DB4            STARTOF(EX_ATF2000)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 455 of 951
Dec 01, 2023

Returns the size of the term section after linking.

[Function]

Returns the size of the term section after linking.

[Application example]

Allocates a 4-byte area, and initializes it with the size of the default section (.text).

To allocate a 4-byte area and initialize it with the size of the user-defined section (user_text).

To use this operator in conjunction with STARTOF:

To specify EX_ATF2000 as the name for an absolute section.

[Caution]

- This operator can be specified in combination with SIZEOF by using the binary operator "+".
Note, however, that it is not possible on the same line to write multiple instances of STARTOF and SIZEOF or include 
an expression other than STARTOF or SIZEOF.

- For an absolute section, write "_AT" + a section name with an address specified (see ".SECTION", ".CSEG", 
".DSEG", and ".ORG").

SIZEOF

.DB4    SIZEOF(.text)

.DB4            SIZEOF(user_text)

.DB4            STARTOF(.data) + SIZEOF(.data)

.SECTION        EX, DATA_AT     0xF2000

.DB4            SIZEOF(EX_ATF2000)



R20UT3123EJ0113  Rev.1.13 Page 456 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.13  Other operator

The following operators is also available.

Operator Overview

( ) Prioritizes the calculation within ( ).



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 457 of 951
Dec 01, 2023

Prioritizes the calculation within ( ).

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.
This operator is used to change the order of precedence of other operators.
If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.

If parentheses are not used,

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.
See "Table 5.5  Operator Precedence Levels", for the order of precedence of operators.

( )

MOV     A, #(4 + 3) * 2

(4 + 3) * 2

(1)

(2)

4 + 3 * 2

(1)

(2)



R20UT3123EJ0113  Rev.1.13 Page 458 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.14  Restrictions on operations

The operation of an expression is performed by connecting terms with operator(s).  Elements that can be described as 
terms are constants, names and labels.  Each term has a relocation attribute.

Depending on the types of relocation attribute inherent in each term, operators that can work on the term are limited.  
Therefore, when describing an expression it is important to pay attention to the relocation attribute of each term constitut-
ing the expression.

(1) Operators and relocation attributes
Each term constituting an expression has a relocation attribute.
If terms are categorized by relocation attribute, they can be divided into 2 types: absolute terms and relocatable 
terms.
The following table shows the types of relocation attributes and their properties, and also the corresponding terms.

Table 5.7 Relocation Attribute Types

The following tables categorize combinations of operators and terms which can be used in expressions by reloca-
tion attribute.

Table 5.8 Combinations of Operators and Terms by Relocation Attribute

Type Property Corresponding Elements

Absolute term Term that is a value or 
constant determined at 
assembly time

- Constants

- Names for which constants are defined

Relocatable term Term with a value that is not 
determined at assembly time

- Labels

- Names for which labels are defined

- Labels defined with .EXTERN directive

- Names defined with .EXTBIT directive

- Symbols not defined in the module

Operator Type Relocation Attribute of Term

X:ABS
Y:ABS

X:ABS
Y:REL

X:REL
Y:ABS

X:REL
Y:REL

+ X A A R R

- X A A - -

~ X A A - -

HIGH X A A RNote 1 RNote 1

LOW X A A RNote 1 RNote 1

HIGHW X A A RNote 1 RNote 1

LOWW X A A RNote 1 RNote 1

MIRHW X A A RNote 2 RNote 2

MIRLW X A A RNote 2 RNote 2

SMRLW X A A RNote 2 RNote 2

DATAPOS X.Y - - - -

BITPOS X.Y - - - -

DATAPOS X A A - -

BITPOS X A A - -



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 459 of 951
Dec 01, 2023

ABS : Absolute term
REL : Relocatable term
A : Result is absolute term
R : Result is relocatable term
- : Operation not possible

Note 1. Operation is possible when X is not relocatable terms operated on by MIRHW, MIRLW, SMRLW, or 
DATAPOS.

Note 2. Operation is possible when X is not relocatable terms operated on by HIGH, LOW, HIGHW, LOWW, 
MIRHW, MIRLW, SMRLW, or DATAPOS.

(2) Nesting of operators
The HIGH, HIGHW, LOW, and LOWW operators can be specified in a nested manner.

(3) Absolute expression and relative expression
Expressions are classified into absolute and relative expressions, which are handled separately.

(a) Absolute expression
An expression indicating a constant is called an "absolute expression".  An absolute expression can be used 
when an operand is specified for an instruction or when a value etc. is specified for a directive.  An absolute 
expression usually consists of a constant or symbol.  The following format is treated as an absolute expression.

<1> Constant expression
If a reference to a previously defined symbol is specified, it is assumed that the constant of the value defined 
for the symbol has been specified.  Therefore, a defined symbol reference can be used in a constant expres-
sion.
However, a symbol that is not defined or whose value is not determined when the symbol is referenced is not 
handled as a constant expression

X + Y A R R -

X - Y A - R R

X * Y A - - -

X / Y A - - -

X % Y A - - -

X >> Y A - - -

X << Y A - - -

X & Y A - - -

X | Y A - - -

X ^ Y A - - -

X == Y A - - -

X != Y A - - -

X > Y A - - -

X >= Y A - - -

X < Y A - - -

X <= Y A - - -

X && Y A - - -

X || Y A - - -

Operator Type Relocation Attribute of Term

X:ABS
Y:ABS

X:ABS
Y:REL

X:REL
Y:ABS

X:REL
Y:REL



R20UT3123EJ0113  Rev.1.13 Page 460 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Example

<2> Symbol
The expressions related to symbols are the following ("" is either "+" or "-").

- Symbol

- Symbol  constant expression

- Symbol - symbol

- Symbol - symbol  constant expression

A "symbol" here means a symbol that is an absolute term (a name for which a constant is defined somewhere 
in the module) but that is not defined or whose value is not determined yet when it is referenced..  If a refer-
ence to a previously defined symbol is specified, it is assumed that the "constant" of the value defined for the 
symbol has been specified.

Example

(b) Relative expressions
An expression indicating an offset from a specific addressNote 1 is called a "relative expression".  A relative 
expression is used to specify an operand by an instruction or to specify a value by data definition directive.  A 
relative expression usually consists of a symbol (label and external reference name).
The following formatNote 2 is treated as an relative expression("" is either "+" or "-").

Note 1. This address is determined when the optimizing linker is executed.  Therefore, the value of this 
offset may also be determined when the optimizing linker is executed.

Note 2. It can regard an expression in the format of "-symbol + label reference", as being an expression 
in the format of "label reference - symbol," but it cannot regard an expression in the format of 
"label reference - (+symbol)" as being an expression in the format of "label reference - symbol".  
Therefore, use parentheses "( )" only in constant expressions.

- Symbol

- Symbol  constant expression

- Symbol - symbolNote

- Symbol - symbol  constant expressionNote

Note A label cannot be used as a symbol after "-", except for subtraction between labels.

When any of the specified symbols is a relocatable term, the expression is handled as a relative expression.  
Here is an example of a relative expression.

Example

SYM1    .EQU    0x10        ;Define symbol SYM1
        MOV     A, #SYM1    ;SYM1, already defined, is treated as a constant
                             expression.

        MOV     A, #SYM1        --SYM1 is an undefined symbol at this point
SYM1    .EQU    0x10            --Defines SYM1

SIZE    .EQU    0x10
        MOV     A, #label1
        MOV     A, #label1 + 0x10
        MOV     A, #label2 ? SIZE
        MOV     A, #label2 ? SIZE + 0x10



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 461 of 951
Dec 01, 2023

5.1.15  Bit position specifier

Bit access becomes possible via use of the ( . ) bit position specifier.

(1) Description Format

(2) Function
The first term specifies an address, and the second term specifies a bit position.  This makes it possible to access 
a specific bit.

(3) Explanation

- The term obtained through a bit position specifier is called a bit term, which has a bit value.

- A bit term cannot be used as a term in an expression.

- The bit position specifier is not affected by the precedence order of operators.  The left side is recognized as the 
first term and the right side is recognized as the second term.

- The following restrictions apply to the first term:

- A bit term can be used as an operand for an instruction that handles bit data (such as MOV1) (For details, see 
the user's manual of the device).

- If the first term is an absolute expression, the area must be 0x00000 to 0xFFFFF.

- External reference names can be specified.

- The following restrictions apply to the second term:

- The value of the absolute expression must be in the range from 0 to 7.  When this range is exceeded, an error 
occurs.

- External reference names cannot be specified.

(4) Operations and relocation attributes
The following table shows combinations of terms 1 and 2 by relocation attribute.

ABS : Absolute term
REL : Relocatable term
A : Result is absolute term
R : Result is relocatable term
- : Operation not possible

(5) Example

address.bit-position

Terms combination X: ABS ABS REL REL

Terms combination Y: ABS REL ABS REL

X.Y A - R -

MOV1    CY, 0xFFE20.3
AND1    CY, A.5
CLR1    P1.2
SET1    1 + 0xFFE30.3   ;Equals 0xFFE31.3 ((1 + 0xFFE30) is the first term and 3 
                        ;is the second term)
SET1    0xFFE40.4 + 2   ;Equals 0xFFE40.6 (0xFFE40 is the first term and (4 + 2) 
                        ;is the second term)



R20UT3123EJ0113  Rev.1.13 Page 462 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.16  Operand characteristics

Instructions and directives requiring one or more operands differ in the size and address range of the required operand 
values of the operands.

For example, the function of the instruction "MOV r, #byte" is to transfer the value indicated by "byte" to register "r".  
Because the register is an 8-bit register, the data size of "byte" must be 8 bits or less.

An assembly error will occur at the statement "MOV R0, 0x100", because the value of the second operand (0x100) can-
not be expressed with 8 bits.

Therefore, it is necessary to bear the following points in mind when describing operands.

- Whether the size and address range are suitable for an operand of that instruction (numeric value, name, label)

(1) Operand value sizes and address ranges
There are conditions that limit the size and address ranges of numeric values, names and labels used as instruc-
tion operands.
For instructions, the size and address range of operands are limited by the operand representation.  For direc-
tives, they are limited by the directive type.
These limiting conditions are as follows.

Table 5.9 Instruction Operand Value Ranges

Operand 
Representation

Value Range

byte 8-bit value : 0x00 to 0xFF

word word [B]
word [C]
word [BC]

- Numeric constants
0x0000 to 0xFFFF

- Labels
0xF0000 to 0xFFFFFNote 1

When a label is in the mirror source areaNote 2, the corresponding 
address in the mirror destination areaNote 2 is masked to be a 16-
bit value and this value should be within the above range

ES : word [B]
ES : word [C]
ES : word [BC]

- Numeric constants
0x0000 to 0xFFFF

- Labels
0x00000 to 0xFFFFF
The ES value is not checked for its valid range

Other than the above 16-bit value : 0x0000 to 0xFFFF

saddr 0xFFE20 to 0xFFF1FNote 3

Note that the saddr area range depends on the device

saddrp 0xFFE20 to 0xFFF1F even numbeNote 3

Note that the saddr area range depends on the device

sfr 0xFFF20 to 0xFFFFF : Special function register symbols (SFR symbolsNote 4), numeric 
constants, and symbols

sfrp 0xFFF20 to 0xFFFFE : Special function register symbols (SFR symbolsNote 4), numeric 
constants, and symbols(even values only)

addr5 0x00080 to 0x000BF (CALLT table area, even values only)



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 463 of 951
Dec 01, 2023

Note 1. The mirror destination area and the internal RAM area are the valid ranges, and the actual ranges 
of these areas are determined by referring to the device file.  When the device file is not referred to, 
the valid range is 0xF0000 to 0xFFFFF.

Note 2. The address range of the mirror source area differs depending to the device.  For details, see the 
user's manual of the device.

Note 3. The saddr area is determined by referring to the device file.  When the device file is not referred to, 
the valid range is 0xFFE20 to 0xFFF1F.

Note 4. The address range for SFR symbols is determined by referring to the device file.  When the device 
file is not referenced, SFR symbols must not be used.  The address range for SFR symbols is 
0xFFF00 to 0xFFFFF, but the address range from 0xFFF00 to 0xFFF1F is regarded as saddr even 
if an SFR symbol is used.

addr16 !addr16
(BR, CALL instruc-
tions)

0x0000 to 0xFFFF
(The range in which numeric constants and symbols can be speci-
fied is the same)

!addr16Note 5

(Other than BR, 
CALL instructions)

- Numeric constantsNote 6

0x0000 to 0xFFFF

- LabelsNote 6

0xF0000 to 0xFFFFFNote 1

When a label is in the mirror source areaNote 2, the corresponding 
address in the mirror destination areaNote 2 is masked to be a 16-
bit value and this value should be within the above rang

ES:!addr16 - Numeric constantsNote 6

0x0000 to 0xFFFF

- LabelsNote 6

0x00000 to 0xFFFFF
The ES value is not checked for its valid range

!addr16.bit - When addr16 is a numeric constant
0x0000 to 0xFFFF

- When addr16 or addr16.bit is a label
0xF0000 to 0xFFFFFNote 1

When a label is in the mirror source areaNote 2, the corresponding 
address in the mirror destination areaNote 2 is masked to be a 16-
bit value and this value should be within the above rang

ES : !addr16.bit - When addr16 is a numeric constant
0x0000 to 0xFFFF

- When addr16 or addr16.bit is a label
0x00000 to 0xFFFFF
The ES value is not checked for its valid range

addr20 $addr20 0x00000 to 0xFFFFF,  and when a branch destination is in the 
range (-0x80) to (+0x7F) from the next address after a branch 
instruction

$!addr20 0x000000 to 0xFFFFFF, and when a branch destination is in the 
range (-0x8000) to (+0x7FFF) from the next address after a branch 
instruction

!!addr20 0x00000 to 0xFFFFF

bit 3-bit value : 0 to 7

RBn n:2-bit value : 0 to 3

Operand 
Representation

Value Range



R20UT3123EJ0113  Rev.1.13 Page 464 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Note 5. When an SFR symbol or an extended SFR (2ndSFR) symbol is used as an operand, "!SFR" or 
"!2ndSFR" can be written as "!addr16" and a code for "!addr16" is generated.
The address range for extended SFR symbols is also determined by referring to the device file.

Note 6. Only an even value is allowed for an operand in a 16-bit instruction (16-bit data transfer instruction 
or 16-bit operation instruction).

The range differs between numeric constants and labels for the following reason.
When a code is generated for operand "word" or "addr16", the range of the values that can be output is 0x0000 to 
0xFFFF.  Therefore, when a numeric constant is specified as an operand, it is checked for this range.  However, 
when a label is specified as an operand, the range is determined as follows considering the meaning of each 
value.

(a) word
The actual location to be accessed is 0xF0000 to 0xFFFFF in the based addressing.  Therefore, a label is 
checked for this address range.

(b) addr16
The actual location to be accessed is 0xF0000 to 0xFFFFF except for the BR and CALL instructions.  Therefore, 
a label is checked for this address range.

Table 5.10 Value ranges of Directive Operands

(2) Sizes of operands required by instructions
Instructions can be classified into machine instructions and directives.  When they require immediate data or sym-
bols, the size of the required operand differs according to the instruction or directive.  An error occurs when source 
code specifies data that is larger than the required operand.
Evaluation of an expression is done in 32 bits, both during calculation and for the calculation result.  Therefore, 
even an overflow value is handled in 32 bits.
However, when a relocatable symbol is specified as an operand, its value cannot be determined by the assembler.  
In this case, the linker determines the value and checks its range.

(3) Symbol attribute required by instructions
Among the instructions that allow a symbol to be specified as an operand, the attribute (absolute, relocatable, or 
external reference) of symbols that can be specified differ depending on the instruction.
Reference direction for symbols can be backward reference or forward reference.

- Backward reference : A symbol referenced as an operand, which is defined in a line above (before) the name 
or label

- Forward reference : A symbol referenced as an operand, which is defined in a line below (after) the name or 
label

Directive Type Directive Value Range

Section definition .ORG 0x00000 to 0xFFFFF

.OFFSET 0x00000 to 0xFFFFF

Symbol definition .EQU 0x00000000 to 0xFFFFFFFF
For a bit symbol, the range is as follows:

Address value :0x00000 to 0xFFFFF
Bit value : 0 to 7

.SET 0x00000000 to 0xFFFFFFFF

Data definition/Area 
reservation

.DB Initial value setting: 0x00 to 0xFF

.DB2 Initial value setting: 0x0000 to 0xFFFF

.DB4 Initial value setting: 0x00000000 to 0xFFFFFFFF

.DB8 Initial value setting: 0x00000000 00000000 to 0xFFFFFFFF 
FFFFFFFF

.DS Size setting : 0x00000 to 0xFFFFF

.ALIGN Alignment condition value : 2 or a greater even number less than 231



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 465 of 951
Dec 01, 2023

<Example>

The following shows the attributes of symbols that can be specified as operands for machine-language instruc-
tions.

Table 5.11 Properties of Described Symbols as Operands

Forward : Forward reference
Backward : Backward reference
OK : Description possible
- : An error

Note 1. When a relocatable symbol is used, the optimizing linker determines its value and checks its range.

Note 2. The defined symbol specifying sfr or sfrp (sfr area where saddr and sfr are not overlapped) as an 
operand of .EQU directive is only referenced backward.  Forward reference is prohibited.

Note 3. 2nd SFR : 2nd Special Function Register

Note 4. If an SFR symbols in the saddr area has been described for an instruction in which a combination 
of sfr/sfrp changed from saddr/saddrp exists in the operand combination, a code is output as saddr/
saddrp.

Note 5. 8-bit SFR in saddr area

Note 6. 16-bit SFR in saddr area

Note 7. 8-bit SFR

Note 8. 16-bit SFR

Note 9. !SFR, !2ndSFR, and SFR can be specified only for operand !addr16 of instructions other than BR 
and CALL.

Relocation  
Attributes

Attributes Relocatable Note 1 SFR Reserved WordsNote 2

Reference 
Pattern

Backward Forward Backward Forward SFR 2ndSFRNote 3

D
es

cr
ip

tio
n 

F
or

m
at

byte OK OK OK OK - -

word OK OK OK OK - -

saddr OK OK OK OK OKNote 4,5 -

saddrp OK OK OK OK OKNote 4,6 -

sfr - - - - OKNote 4,7 -

sfrp - - - - OKNote 4,8 -

addr20 OK OK OK OK OK OK

addr16 OK OK OK OK OKNote 9 OKNote 9

addr5 OK OK OK OK - -

bit OK - - - - -

                .CSEG
L1 :
        BR      !L1
        BR      !L2
L2 :

Backward referenc

Forward reference



R20UT3123EJ0113  Rev.1.13 Page 466 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Table 5.12 Properties of Described Symbols as Operands of Directives

Forward : Forward reference
Backward : Backward reference
OK : Description possible
- : Description impossible

Note 1. When a relocatable symbol is used, the optimizing linker determines its value and checks its range.

Note 2. Only an absolute expression can be described.

Relocation Attributes Attributes Relocatable Note 1

Reference Pattern Backward Forward Backward Forward

D
ire

ct
iv

e

.ORG OK Note 2 - - -

.OFFSET OK Note 2 - - -

.EQU OK Note 2 - - -

.SET OK Note 2 - - -

.DB OK OK OK OK

.DB2 OK OK OK OK

.DB4 OK OK OK OK

.DB8 OK Note 2 - - -

.DS OK Note 2 - - -

.ALIGN OK Note 2 - - -



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 467 of 951
Dec 01, 2023

5.2  Directives

This section explains the directives.
Directives are instructions that direct all types of instructions necessary for the assembler.

5.2.1  Outline

Instructions are translated into machine language as a result of assembling, but directives are not converted into 
machine language in principle.

Directives contain the following functions mainly:

- To facilitate description of source programs

- To initialize memory and reserve memory areas

- To provide the information required for assemblers and optimizing linkers to perform their intended processing

The following table shows the types of directives.

Table 5.13 List of Directives

The following sections explain the details of each directive.
In the description format of each directive, "[ ]" indicates that the parameter in square brackets may be omitted from 

specification, and "..." indicates the repetition of description in the same format.

Type Directives

Section definition directives .SECTION, .CSEG, .DSEG, .ORG, .OFFSET

Symbol definition directives .EQU, .SET

Data definition/Area reservation directives .DB, .DB2, .DB4, .DB8, .DS, .ALIGN

External definition/External reference directives .PUBLIC, .EXTERN, .EXTBIT

Compiler output directives .LINE, .STACK, ._LINE_TOP, ._LINE_END, .VECTOR

Macro directives .MACRO, .LOCAL, .REPT, .IRP, .EXITM, .EXITMA, .ENDM

Branch directives .Bcond



R20UT3123EJ0113  Rev.1.13 Page 468 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.2  Section definition directives

A "section definition directive" is a directive that indicates the start or end of a section.
Sections are the unit of allocation in the optimizing linker.

Example

Two sections with relocation attributes SBSS and SBSS_BIT may have the same section name. Two sections with relo-
cation attributes BSS and BSS_BIT may have the same section name.

Regarding other relocation attributes, two sections with the same section name must have the same relocation attribute. 
Consequently, multiple sections with differing relocation attributes cannot be given the same section name.  If two sections 
with the same section name have different relocation attributes, an error will occur.  The contents that can be written in a 
section depend on the relocation attribute of the section.  For the details of description, see "Table 5.15  Relocation Attri-
butes".

Sections can be broken up.  In other words, sections in a single source program file with the same relocation attribute 
and section name will be processed as a single continuous section in the assembler.

If a section is broken into separate modules (assembly source files), then they are linked by the optimizing linker.
by the optimizing linker.

The start address can be specified for a section.  The section with the start address specified is an absolute section.

The following section definition directives are available.

Table 5.14 Section Definition Directives

.SECTION    SecA, TEXT
    :
.SECTION    SecB, DATA
    :
.SECTION    SecC, BSS
    :

Directive Overview

.SECTION Indicates to the assembler the start of a section

.CSEG Indicates to the assembler the starting of a code section

.DSEG Indicates to the assembler the start of a data section

.BSEG Indicates to the assembler the start of a bit section

.ORG Indicates to the assembler the start of a section at an absolute address

.OFFSET Specifies an offset from the first address of a section



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 469 of 951
Dec 01, 2023

Indicate to the assembler the start of section.

[Syntax]

ALIGN can be specified in V1.10 or later.
COMDAT can be specified in V1.12 or later.

[Function]

- The .SECTION directive indicates to the assembler the start of a section (no separation of code and data).

[Description]

- This directive defines a program or data that has a coherent set of functions in a program.
This directive is valid until another section definition directive appears.

- When an instruction that outputs a label or an object code is used at the beginning of a source program before this 
directive appears, a relocatable code section is generated as a default section.
In this case, the section name will be ".text", and the relocation attribute is set to "TEXT".

- .SECTION directive can specify the start address of a section by specifying AT, DATA_AT, BSS_AT, or BIT_AT as the 
relocation attribute in the operand field.
The section start address can also be specified through the .ORG directive.
In this case, the section name will be "the section name specified in the operand field" + "_AT" + "specified address 
(hexadecimal notation in uppercase letters without prefix (0x or 0X) or suffix (h or H)".

- The following shows the relocation attributes that can be specified.
If an attribute that is not listed below is used, an error will occur.

Table 5.15 Relocation Attributes

.SECTION

Symbol field Mnemonic field Operand field Comment field

[label:] .SECTION section-name, relocation-attribute 
[, ALIGN=absolute-expressions]
[, COMDAT=signature-name]

[; comment]

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tionNote 1

CALLT0 CALLT0 .callt0 Allocates a section between addresses 0x00080 and 
0x000BF in the code flash areaNote 2 with the start 
address set to an even address.

2

TEXT TEXT .text Allocates a section between addresses 0x000C0 
and 0x0FFFF in the code flash areaNote 2.

1

TEXTF TEXTF .textf Allocates a section between addresses 0x000C0 
and 0xEFFFF in the code flash areaNote 2.

1

TEXTF_UN
IT64KP

TEXTF_UNIT64KP .textf_uni
t64kp

Allocates a section with the start address set to an 
even address so that it does not extend across a 
boundary of 64 Kbytes - 1Note 3.

2Note 4



R20UT3123EJ0113  Rev.1.13 Page 470 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

CONST CONST .const Allocates a section in the mirror source areaNote 2 
with the start address set to an even address so that 
it does not extend across a boundary of 64 Kbytes - 
1Note 3.

2

CONSTF CONSTF .constf Allocates a section in the code flash areaNote 2 with 
the start address set to an even address so that it 
does not extend across a boundary of 64 Kbytes - 
1Note 3.

2

SDATA SDATA .sdata Allocates a section for data having initial values in 
the saddr areaNote 2 with the start address set to an 
even address.

2

SBSS SBSS .sbss Allocates a section for data having no initial values in 
the saddr areaNote 2 with the start address set to an 
even address.Note 8

2

SBSS_BIT SBSS_BIT .sbss_bit Allocates a section for bits having no initial values in 
the saddr areaNote 2 with the start address set to an 
even address. The optimizing linker links this section 
in byte units and assumes the relocation attribute as 
SBSS.Note 8 Note 9

2

DATA DATA .data Allocates a section for data having initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 2 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 3.

2

BSS BSS .bss Allocates a section for data having no initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 2 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 3.Note 8

2

BSS_BIT BSS_BIT .bss_bit Allocates a section for bits having no initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 2 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 3. The optimizing linker links 
this section in byte units and assumes the relocation 
attribute as BSS.Note 8 Note 9

2

DATAF DATAF .dataf Allocates a section for data having initial values with 
the start address set to an even address so that it 
does not extend across a boundary of 64 Kbytes - 
1Note 3.

2

BSSF BSSF .bssf Allocates a section for data having no initial values 
with the start address set to an even address so that 
it does not extend across a boundary of 64 Kbytes - 
1Note 3.

2

ATad-
dress

AT absolute- expres-
sionNote 5

None Allocates a section at a specified address. 1 (fixed)

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tionNote 1



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 471 of 951
Dec 01, 2023

Note 1. The alignment condition can be modified through the .ALIGN directive.

Note 2. For the code flash area, mirror area, RAM area, and saddr area, see the user's manual of the 
device.  For the RAM area, note that only the on-chip RAM allocated to an address range from 
0xF0000 to 0xFFFFF is supported.

Note 3. Allocation beyond a boundary of 64 Kbytes - 1 is prohibited by default.

Note 4. To guarantee correct access to 16-bit data, the alignment condition value is set to "2".

Note 5. If the specified absolute expression is illegal or its value is outside the range from 0x00000 to 
0xFFFFF, an error will occur.

Note 6. This is a special section and the section name must not be changed (the name is fixed).

Note 7. For addresses where the option byte, on-chip debugging, and security ID settings are allocated, 
see the user's manual of the device.

Note 8. The two sections with the same name and different relocation attributes SBSS and SBSS_BIT, relo-
cation attributes BSS and BSS_BIT, or relocation attributes BSS_AT and BIT_AT are processed as 
a single consecutive section in the assembler.

Note 9. The section is output to the object file with the relocation attribute of SBSS, and the optimizing 
linker allocates the section with the relocation attribute of SBSS.

Note 10. The section is output to the object file with the relocation attribute of BSS, and the optimizing linker 
allocates the section with the relocation attribute of BSS.

Note 11. The section is output to the object file with the relocation attribute of BSS_AT, and the optimizing 
linker allocates the section with the relocation attribute of BSS_AT.

- The section name setting cannot be omitted.

- The relocation attribute setting cannot be omitted.

- The following characters are usable in section names.

- Alphanumeric characters (0-9,  a-z,  A-Z)

- Special characters (@, _, .)

DATA_AT
address

DATA_AT absolute- 
expressionNote 5

None Allocates a section for data having initial values at a 
specified address.

1 (fixed)

BSS_ATa
ddress

BSS_AT absolute- 
expressionNote 5

None Allocates a section for data having no initial values at 
a specified address.Note 8

1 (fixed)

BIT_ATad
dress

BIT_AT absolute- 
expressionNote 5

None Allocates a section for bits having no initial values at 
a specified address. The optimizing linker links this 
section in byte units and assumes the relocation 
attribute as BSS_AT.Note 8 Note 11

1 (fixed)

OPT_BYTE OPT_BYTE .option_b
yteNote 6

This attribute is dedicated to the user option byte 
setting and on-chip debugging settingNote 7.

1 (fixed)

SECUR_ID SECUR_ID .security_
idNote 6

This attribute is dedicated to the security ID setting-
Note 7.
Machine-language instructions cannot be written in 
this section.

1 (fixed)

FLASH_SE
CUR_ID

FLASH_SECUR_ID .flash_se
curity_id
Note 6

This attribute is dedicated to the flash programmer 
security ID settingNote 7.
Machine-language instructions cannot be written in 
this section.

1 (fixed)

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tionNote 1



R20UT3123EJ0113  Rev.1.13 Page 472 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

- You can change the default alignment condition by specifying the ALIGN parameter. For the .ALIGN directive, speci-
fying a larger value than that specified in the ALIGN parameter results in an error. [V1.10.00 or later]

- When the COMDAT parameter is specified, only one section selected from among the sections having the same 
name and same signature is linked. [V1.12.00 or later]

[Example]

To define section ".text" having the TEXT attribute.

To define section ".data" having the DATA attribute.

To define section "EX" having the DATA_AT attribute with address 0xf2000 specified.
The section name will be set to "EX_ATF2000".

.SECTION        .text , TEXT
NOP

.SECTION        "data", DATA

.DB2            0x1

.SECTION        EX, DATA_AT     0xf2000

.DS             4



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 473 of 951
Dec 01, 2023

Indicate to the assembler the start of a code section.

[Syntax]

[Function]

- The .CSEG directive indicates to the assembler the start of a code section.

- All instructions described following the .CSEG directive belong to the code section until it comes across a section def-
inition directives.

[Description]

- This directive defines a portion that has a coherent set of functions in a program.
This directive is valid until another section definition directive appears.

- When an instruction that outputs a label or an object code is used at the beginning of a source program before this 
directive appears, a relocatable code section is generated as a default section.
In this case, the section name will be ".text", and the relocation attribute is set to "TEXT".

- .CSEG directive can specify the start address of a section by specifying AT in the operand field..
The section start address can also be specified through the .ORG directive.
In this case, the section name will be "the specified section name" + "_AT" + "specified address (hexadecimal notation 
in uppercase letters without prefix (0x or 0X) or suffix (h or H)".

- The following shows the relocation attributes that can be specified through .CSEG.

Table 5.16 Relocation Attributes of .CSEG

.CSEG

Symbol field Mnemonic field Operand field Comment field

[section-name] .CSEG [relocation-attribute] [; comment]

Relocation 
Attribute

Description For-
mat

Default 
Section 
Name

Explanation Default Value of 
Alignment Con-

ditionNote 1

CALLT0 CALLT0 .callt0 Allocates a section between addresses 0x00080 
and 0x000BF in the code flash areaNote 2 with the 
start address set to an even address.

2

TEXT TEXT .text Allocates a section between addresses 0x000C0 
and 0x0FFFF in the code flash areaNote 2 with the 
start address set to an even address.

1

TEXTF TEXTF .textf Allocates a section between addresses 0x000C0 
and 0xEFFFF in the code flash areaNote 2 with 
the start address set to an even address.

1

TEXTF_UN
IT64KP

TEXTF_UNIT64
KP

.textf_uni
t64kp

Allocates a section with the start address set to 
an even address so that it does not extend 
across a boundary of 64 Kbytes - 1Note 3.

2Note 4

CONST CONST .const Allocates a section in the mirror source areaNote 2 
with the start address set to an even address so 
that it does not extend across a boundary of 64 
Kbytes - 1Note 3.

2



R20UT3123EJ0113  Rev.1.13 Page 474 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Note 1. The alignment condition can be modified through the .ALIGN directive.

Note 2. For the code flash area, mirror area, RAM area, and saddr area, see the user's manual of the 
device.  For the RAM area, note that only the on-chip RAM allocated to an address range from 
0xF0000 to 0xFFFFF is supported.

Note 3. Allocation beyond a boundary of 64 Kbytes - 1 is prohibited by default.

Note 4. To guarantee correct access to 16-bit data, the alignment condition value is set to "2".

Note 5. If the specified absolute expression is illegal or its value is outside the range from 0x00000 to 
0xFFFFF, an error will occur.

Note 6. This is a special section and the section name must not be changed (the name is fixed).

Note 7. For addresses where the option byte, on-chip debugging, and security ID settings are allocated, 
see the user's manual of the device.

- When a section definition does not include a section name, the assembler gives a separate default section name for 
each relocation attribute.
The following shows the section names given by the assembler.

Note This is a special section and the section name must not be changed (the name is fixed).

CONSTF CONSTF .constf Allocates a section in the code flash areaNote 2 
with the start address set to an even address so 
that it does not extend across a boundary of 64 
Kbytes - 1Note 3.

2

ATad-
dress

AT absolute- 
expressionNote 5

None Allocates a section at a specified address. 1 (fixed)

OPT_BYTE OPT_BYTE .option_b
yteNote 6

This attribute is dedicated to the user option byte 
setting and on-chip debugging settingNote 7.

1 (fixed)

SECUR_ID SECUR_ID .security_
idNote 6

This attribute is dedicated to the security ID set-
tingNote 7.
Machine-language instructions cannot be written 
in this section.

1 (fixed)

FLASH_SE
CUR_ID

FLASH_SECU
R_ID

.flash_se
curity_id
Note 6

This attribute is dedicated to the flash 
programmer security ID settingNote 7.
Machine-language instructions cannot be written 
in this section.

1 (fixed)

Relocation Attribute Section Name

CALLT0 .callt

TEXT .text

TEXTF .textf

TEXTF_UNIT64KP .textf_unit64kp

CONST .const

CONSTF .constf

ATaddress .text_AT start-address

OPT_BYTE .option_byteNote

SECUR_ID .security_idNote

FLASH_SECUR_ID .flash_security_idNote

Relocation 
Attribute

Description For-
mat

Default 
Section 
Name

Explanation Default Value of 
Alignment Con-

ditionNote 1



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 475 of 951
Dec 01, 2023

A section having one of the above names has the corresponding relocation attribute shown above and no different 
relocation attribute can be assigned.

- When a section definition does not include a relocation attribute, relocation attribute "TEXT" is assumed.

- The following characters are usable in section names.

- Alphanumeric characters (0-9,  a-z,  A-Z)

- Special characters (@, _, .)

[Example]

To define section ".text" having the TEXT attribute.

To define section ".unit" having the TEXTF_UNIT64KP attribute.

To define section "EX" having the AT attribute with address 0x00200 specified.
The section name will be set to "EX_AT200".

To define a section for the option byte setting.

.text   .CSEG   TEXT
        NOP

unit    .CSEG   TEXTF_UNIT64KP
        MOV     A, !LABEL

EX      .CSEG   AT 0x00200
        .DS     2

.CSEG   OPT_BYTE

.DB     0xFF



R20UT3123EJ0113  Rev.1.13 Page 476 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Indicate to the assembler the start of a data section.

[Syntax]

[Function]

- The .DSEG directive indicates to the assembler the start of a data section.

- A memory following the .DSEG directive belongs to the data section until it comes across a section definition direc-
tives.

[Description]

- This directive defines a portion that defines data in a program.
This directive is valid until another section definition directive appears.

- DSEG directive can specify the start address of a section by specifying DATA_AT nad BSS_AT in the operand field.
The section start address can also be specified through the .ORG directive.
In this case, the section name will be "the specified section name" + "_AT" + "specified address (hexadecimal notation 
in uppercase letters without prefix (0x or 0X) or suffix (h or H)".

- The following shows the relocation attributes that can be specified through .DSEG.

Table 5.17 Relocation Attributes of .DSEG

.DSEG

Symbol field Mnemonic field Operand field Comment field

[section-name] .DSEG [relocation-attribute] [; comment]

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tionNote 1

SDATA SDATA .sdata Allocates a section for data having initial values in 
the saddr areaNote 2 with the start address set to an 
even address.

2

SBSS SBSS .sbss Allocates a section for data having no initial values in 
the saddr areaNote 2 with the start address set to an 
even address.

2

DATA DATA .data Allocates a section for data having initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 2 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 3.

2

BSS BSS .bss Allocates a section for data having no initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 2 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 3.

2

DATAF DATAF .dataf Allocates a section for data having initial values with 
the start address set to an even address so that it 
does not extend across a boundary of 64 Kbytes - 
1Note 3.

2



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 477 of 951
Dec 01, 2023

Note 1. The alignment condition can be modified through the .ALIGN directive.

Note 2. For the code flash area, mirror area, RAM area, and saddr area, see the user's manual of the 
device.  For the RAM area, note that only the on-chip RAM allocated to an address range from 
0xF0000 to 0xFFFFF is supported.

Note 3. Allocation beyond a boundary of 64 Kbytes - 1 is prohibited by default.

Note 4. If the specified absolute expression is illegal or its value is outside the range from 0x00000 to 
0xFFFFF, an error will occur.

- A directive that specifies initial values cannot be written in a section definition for data having no initial values.  If 
described, an error is output.

- When a section definition does not include a section name, the assembler gives a separate default section name for 
each relocation attribute.
The following shows the section names given by the assembler

A section having one of the above names has the corresponding relocation attribute shown above and no different 
relocation attribute can be assigned.

- When a section definition does not include a relocation attribute, relocation attribute "DATA" is assumed.

- The following characters are usable in section names.

- Alphanumeric characters (0-9,  a-z,  A-Z)

- Special characters (@, _, .)

BSSF BSSF .bssf Allocates a section for data having no initial values 
with the start address set to an even address so that 
it does not extend across a boundary of 64 Kbytes - 
1Note 3.

2

DATA_AT
address

DATA_AT absolute- 
expressionNote 4

None Allocates a section for data having initial values at a 
specified address.

1 (fixed)

BSS_ATa
ddress

BSS_AT absolute- 
expressionNote 4

None Allocates a section for data having no initial values at 
a specified address.

1 (fixed)

Relocation Attribute Section Name

SDATA .sdata

SBSS .sbss

DATA .data

BSS .bss

DATAF .dataf

BSSF .bssf

DATA_ATaddress .data_AT start-address

BSS_ATaddress .bss_AT start-address

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tionNote 1



R20UT3123EJ0113  Rev.1.13 Page 478 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]

To define section ".data" having the DATA attribute.

To define section "_S" having the SDATA attribute.

To define section "EX" having the DATA_AT attribute with address 0xff000 specified.
The section name will be set to "EX_ATFF000".

.data   .DSEG   DATA
        .DS     4

_S      .DSEG   SDATA
        .DS     4

EX      .DSEG   DATA_AT 0xff000
        .DS     2



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 479 of 951
Dec 01, 2023

Indicate to the assembler the start of a bit section.

[Syntax]

[Function]

- The .BSEG directive indicates to the assembler the start of a bit section.

- A memory following the .BSEG directive belongs to the bit section until it comes across a section definition directives.

[Description]

- This directive defines a portion that defines bit data in a program.
This directive is valid until another section definition directive appears.

- This directive can specify the start address of a section by specifying BIT_AT in the operand field.
In this case, the section name will be "the specified section name" + "_AT" + "specified address (hexadecimal notation 
in uppercase letters without prefix (0x or 0X) or suffix (h or H)".

- The following shows the relocation attributes that can be specified through .BSEG.

Table 5.18 Relocation Attributes of .BSEG

Note 1. For the code flash area, mirror area, RAM area, and saddr area, see the user's manual of the 
device.  For the RAM area, note that only the on-chip RAM allocated to an address range from 
0xF0000 to 0xFFFFF is supported.

Note 2. Allocation beyond a boundary of 64 Kbytes - 1 is prohibited by default.

.BSEG

Symbol field Mnemonic field Operand field Comment field

[section-name] .BSEG [relocation-attribute] [; comment]

Relocation 
Attribute

Description Format Default 
Section 
Name

Explanation Default 
Value of 
Align-
ment 

Condi-
tion

SBSS_BIT SBSS_BIT .sbss_bit Allocates a section for bits having no initial values in 
the saddr areaNote 1 with the start address set to an 
even address. The optimizing linker links this section 
in byte units and assumes the relocation attribute as 
SBSS.Note 4 Note 5

2

BSS_BIT BSS_BIT .bss_bit Allocates a section for bits having no initial values 
between addresses 0xF0000 and 0xFFFFF in the 
RAM areaNote 1 with the start address set to an even 
address so that it does not extend across a bound-
ary of 64 Kbytes - 1Note 2. The optimizing linker links 
this section in byte units and assumes the relocation 
attribute as BSS.Note 4 Note 6

2

BIT_ATad
dress

BIT_AT absolute- 
expressionNote 3

None Allocates a section for bits having no initial values at 
a specified address. The optimizing linker links this 
section in byte units and assumes the relocation 
attribute as BSS_AT.Note 4 Note 7

1 (fixed)



R20UT3123EJ0113  Rev.1.13 Page 480 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Note 3. If the specified absolute expression is illegal or its value is outside the range from 0x00000 to 
0xFFFFF, an error will occur.

Note 4. The two sections with the same name and different relocation attributes SBSS and SBSS_BIT, relo-
cation attributes BSS and BSS_BIT, or relocation attributes BSS_AT and BIT_AT are processed as 
a single consecutive section in the assembler.

Note 5. The section is output to the object file with the relocation attribute of SBSS, and the optimizing 
linker allocates the section with the relocation attribute of SBSS.

Note 6. The section is output to the object file with the relocation attribute of BSS, and the optimizing linker 
allocates the section with the relocation attribute of BSS.

Note 7. The section is output to the object file with the relocation attribute of BSS_AT, and the optimizing 
linker allocates the section with the relocation attribute of BSS_AT.

- The instructions that can be written in a section defined by this directive are the .DBIT, .EQU, .SET, .PUBLIC, .EXT-
BIT, and .EXTERN directives and macro calls.
An error will occur when other machine instructions or directives are written.

- When a section definition does not include a section name, the assembler gives a separate default section name for 
each relocation attribute.
The following shows the section names given by the assembler.

A section having one of the above names has the corresponding relocation attribute shown above and no different 
relocation attribute can be assigned.

- When a section definition does not include a relocation attribute, relocation attribute "SBSS_BIT" is assumed.

- The following characters are usable in section names.

- Alphanumeric characters (0-9,  a-z,  A-Z)

- Special characters (@, _, .)

[Example]

To define section ".sbss_bit" having the SBSS_BIT attribute.

To define section "_B" having the BSS_BIT attribute.

To define section "EX" having the BIT_AT attribute with address 0xffe20 specified.
The section name will be set to "EX_ATFFE20".

Relocation Attribute Section Name

SBSS_BIT .sbss_bit

BSS_BIT .bss_bit

BIT_ATaddress .bit_AT start-address

.sbss_bit  .BSEG  SBSS_BIT
sym01      .DBIT

_B      .BSEG   BSS_BIT
        .DBIT
sym02   .DBIT

EX      .BSEG   BIT_AT 0xffe20
sym03   .DBIT
        .DBIT



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 481 of 951
Dec 01, 2023

Indicate the start of a section at an absolute address to the assembler.

[Syntax]

[Function]

- Indicate the start of a section at an absolute address to the assembler.

[Description]

- The range from the .ORG directive to the line with the next section definition directive (.CSEG, .DSEG, .SECTION or 
.ORG) is regarded as a section where the code is placed at absolute addresses.

- The name of an absolute addressing section will be "the name of the section for which the .ORG directive is written 
(excluding the "_AT" and the subsequent characters for an absolute addressing section)" + "_AT" + "specified 
address (hexadecimal notation in uppercase letters without prefix (0x or 0X) or suffix (h or H)".  The relocation attri-
bute will be the same as that of the section for which .ORG is written.

- If .ORG is written prior to a section definition directive at the beginning of a file of source code, the name of the section 
will be ".text.AT" + "specified address" and the relocation attribute will be "TEXT".

- The operand value is in accordance with "(a)  Absolute expression".  If the specified absolute expression is illegal or 
its value is outside the range from 0x00000 to 0xFFFFF, an error will occur.

- The overall definition of a single section may contain multiple .ORG directives.  However, if a section definition 
already exists for the section name specified through this directive or the section address specified through this direc-
tive is in an address range where another absolute addressing section within the same module is already allocated, 
an error will occur.

[Example]

If .ORG is written immediately after a section definition directive, the section is only generated from the absolute 
address.

If the .ORG directive does not immediately follow the section definition directive, only the range of code from the .ORG 
directive is a section starting at the given absolute address.

.ORG

Symbol field Mnemonic field Operand field Comment field

.ORG absolute-expression [; comment]

        .SECTION    My_text, text
        .ORG        0x12            ;My_text.AT12 is allocated to address 0x12
LAB1:   MOV         A, !LABEL
        .ORG        0x30            ;My_text.AT30 is allocated to address 0x30
        MOV         A,!LABEL

.SECTION    "My_text", text
NOP                                 ;Allocated in My_text
.ORG        0x50
MOV         A,!LABEL                ;Allocated in My_text_AT50



R20UT3123EJ0113  Rev.1.13 Page 482 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

If .ORG is written in an absolute addressing section, the section name will be "the absolute addressing section name 
before "_AT" " + "_AT" + "specified address".

.SECTION    My_text, AT     0x20
NOP                                 ;Allocated in My_text_AT20
.ORG        0x50
MOV         A,!LABEL                ;Allocated in My_text_AT50



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 483 of 951
Dec 01, 2023

Specifies an offset from the first address of a section.

[Syntax]

[Function]

- The .OFFSET directive specifies an offset from the first address of a section that holds instruction code or data for the 
lines following the .OFFSET directive.

- After the .ORG directive, it is valid until the next section definition directive.

[Description]

- If .OFFSET is written prior to any section definition directive at the beginning of a source program, the name of the 
section will be ".text" and the relocation attribute will be "TEXT".

- The operand value is in accordance with "(a)  Absolute expression". If the specified absolute expression is illegal or its 
value is outside the range from 0x00000 to 0xFFFFF, an error will occur.

- The overall definition of a single section may contain multiple .ORG directives.  Note, however, that an error occurs 
when the specified value is smaller than that for a preceding .OFFSET directive.

- The initial value for the area between the address of this directive line and the offset address specified by this direc-
tive is "0x0".

- The .OFFSET directive cannot be used when the relocation attribute for the target section includes BSS.  If the direc-
tive is specified in this case, an error will occur.

[Example]

.OFFSET

Symbol field Mnemonic field Operand field Comment field

[label:] .OFFSET absolute-expression [; comment]

.SECTION    My_data, text

.OFFSET     0x12
MOV         A, B            ; The offset is 0x12



R20UT3123EJ0113  Rev.1.13 Page 484 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.3  Symbol definition directives

Symbol definition directives specify symbols for the data that is used when writing to source modules.  With these, the 
data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the symbols of values used in the source module to the assembler.
The following symbol definition directives are available.

Table 5.19 Symbol Definition Directives

Directive Overview

.EQU Defines a name having an absolute-expression value

.SET Defines a name having an absolute-expression value



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 485 of 951
Dec 01, 2023

Defines a name having an absolute-expression value.

[Syntax]

[Function]

Defines a name having a absolute-expression value specified by the operand field.

[Use]

- You can use this directive to define names for numerical data that can be used instead of the actual numbers in the 
operands of machine-language instructions and directives in source code.

- We recommend defining frequently used numerical values as names. Even if a given value in the source program is 
to be changed, you will only need to change the value corresponding to the name.

[Description]

- The .SET directive may be described anywhere in a source program.

- Symbols that have already been defined by using .EQU cannot be redefined.

- The name generated by the .EQU directive can be externally defined by the .PUBLIC directive.

- The following values can be specified as the operand.

- Absolute expression
The absolute expression should be in accordance with "(a)  Absolute expression".

- PSW
When PSW is specified, the value is 0xFFFFA.

An illegal operand will cause an error.

- A value between 0x00000000 and 0xFFFFFFFF can be specified as the operand, and a value between 0 and 7 can 
be specified as the bit position.

- Relocatable terms cannot be specified in the operand field.  In addition, operators that generate a relocatable term as 
a result of calculation are not allowed in the operand field.

[Example]

To specify a constant expression.

To specify a symbol.

.EQU

Symbol field Mnemonic field Operand field Comment field

name .EQU absolute-expression[.bit-position] [; comment]

name .EQU PSW[.bit-position] [; comment]

SYM1    .EQU    10
        MOV     A, #SYM1

SYM2    .EQU    0xFFE20
BSYM1   .EQU    SYM2.1
        SET1    BSYM1



R20UT3123EJ0113  Rev.1.13 Page 486 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

To specify PSW.

To specify a SFR symbol.

SYM3    .EQU    PSW
        MOV     SYM3, #10

SYM4    .EQU    P0
        MOV     SYM4, #2



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 487 of 951
Dec 01, 2023

Defines a name having an absolute-expression value.

[Syntax]

[Function]

Defines a name having a absolute-expression value specified by the operand field.

[Use]

- You can use this directive to define names for numerical data that can be used instead of the actual numbers in the 
operands of machine-language instructions and directives in source code.

- We recommend defining frequently used numerical values as names. Even if a given value in the source program is 
to be changed, you will only need to change the value corresponding to the name.

[Description]

- The .SET directive may be described anywhere in a source program.

- Each name is a redefinable name.

- The name generated by the .SET directive cannot be externally defined by the .PUBLIC directive.

- The operand value is in accordance with "(a)  Absolute expression". An illegal value will lead to an error.

- A value between 0x00000000 and 0xFFFFFFFF can be specified as an absolute expression in the operand field.

- This directive differs from the .EQU directive in that a symbol with a bit position specification cannot be defined.

- Operators that generate a relocatable term as a result of calculation are not allowed in the operand field.

[Example]

To specify a constant expression.

To specify SFR symbols.

.SET

Symbol field Mnemonic field Operand field Comment field

name .SET absolute-expression [; comment]

SYM1    .SET    10
        MOV     A, #SYM1

SYM2    .SET    P0
        MOV     SYM2, #2



R20UT3123EJ0113  Rev.1.13 Page 488 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.4  Data definition/Area reservation directives

The data definition directive defines the constant data used by the program.
The defined data value is generated as object code.
The area reservation directive allocates the area for memory used by the program.
The following data definition and partitioning directives are available.

Table 5.20 Data Definition/Area Reservation Directives

Directive Overview

.DB Initialization of byte area

.DB2 Initialization of 2-byte area

.DB4 Initialization of 4-byte area

.DB8 Initialization of 8-byte area

.DS Allocates the memory area of the number of bytes specified by operand

.DBIT Allocates a bit area of one bit

.ALIGN Aligns the value of the location counter



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 489 of 951
Dec 01, 2023

Initialization of byte area.

[Syntax]

[Function]

- The .DB directive tells the assembler to initialize a byte area.

[Description]

- The .DB directive tells the assembler to initialize byte area..

(a) Expression
The value of an expression must be 1 byte of data.  Therefore, the value of the operand must be in the range of 
0x0 to 0xFF.  The assembler checks the lower-order 24 bits of the result of an operation and outputs an error 
message if the value is not within the range from 0x0 to 0xFF.
An expression may include a relocatable symbol or reference to an external name.

(b) Character string constants
If an operand is surrounded by corresponding double quotes ("), then it is assumed to be a string constant.
If a character string constant is specified as the operand, a required number of bytes are allocated.

- If the relocation attribute of the section containing the .DB directive is "BSS", then an error is output because initial 
values cannot be specified.

[Example]

.DB

Symbol field Mnemonic field Operand field Comment field

[label:] .DB {expression|"Character string con-
stants"}[, ... ]

[; comment]

        .DSEG   DATA
LABEL:  .DB     10      ; 1-byte area is initialized by 10
        .DB     "ABC"   ; 3-byte area is initialized by 
                        ; character string "ABC" (0x41, 0x42, 0x43)



R20UT3123EJ0113  Rev.1.13 Page 490 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Initialization of 2-byte area.

[Syntax]

[Function]

- The .DB2 directive tells the assembler to initialize 2-byte area.

[Description]

- The .DB2 directive tells the assembler to initialize 2-byte area.
The value of an expression must be 2 bytes of data.  Therefore, the value of the operand must be in the range of 
0x0000 to 0xFFFF.  The assembler checks the lower-order 24 bits of the result of an operation and outputs an error 
message if the value is not within the range from 0x0000 to 0xFFFF.
An expression may include a relocatable symbol or reference to an external name.

- Character string constants cannot be specified in the operand field.

- If the relocation attribute of the section containing the .DB2 directive is "BSS", then an error is output  because initial 
values cannot be specified.

[Example]

.DB2

Symbol field Mnemonic field Operand field Comment field

[label:] .DB2 expression[, ... ] [; comment]

        .DSEG   DATA
LABEL:  .DB2    0x1234  ; 2-byte area is initialized by 0x34, 0x12



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 491 of 951
Dec 01, 2023

Initialization of 4-byte area.

[Syntax]

[Function]

- The .DB4 directive tells the assembler to initialize 4-byte area.

[Description]

- The .DB4 directive tells the assembler to initialize 4-byte area.
The value of an expression must be 4-byte data.  Therefore, the value of the operand must be in the range of 0x0 to 
0xFFFFFFFF.  If the value exceeds 4-byte data, the assembler will use only lower 4-byte value as valid data.
An expression that includes a relocatable symbol or external reference name may be described.

- Character string constants cannot be specified in the operand field.

- If the relocation attribute of the section containing the .DB4 directive is  "BSS", then an error is output because initial 
values cannot be specified.

[Example]

.DB4

Symbol field Mnemonic field Operand field Comment field

[label:] .DB4 expression[, ... ] [; comment]

        .DSEG   DATA
LABEL:  .DB4    0x12345678  ; 4-byte area is initialized by 0x78, 0x56, 0x34, 0x12



R20UT3123EJ0113  Rev.1.13 Page 492 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Initialization of 8-byte area.

[Syntax]

[Function]

- The .DB8 directive tells the assembler to initialize 8-byte area.

[Description]

- The .DB8 directive tells the assembler to initialize 8-byte area..
The value of an absolute-expression must be 8-byte data.  Therefore, the value of the operand must be in the range 
of 0x00000000 00000000 to 0xFFFFFFFF FFFFFFFF.  If the value exceeds 8-byte data, the assembler will use only 
lower 8-byte value as valid data.

- An expression that conforms to "(a)  Absolute expression" can be specified as the operand.
However, the .DB8 directive handles each term in 64 bits.  Therefore, a name (32 bits) defined through the .EQU 
directive cannot be used as a negative value in the .DB8 directive.

- Character string constants cannot be specified in the operand field.

- If the relocation attribute of the section is "BSS", then an error is output because the .DB8 directive cannot be 
described.

[Example]

.DB8

Symbol field Mnemonic field Operand field Comment field

[label:] .DB8 absolute-expression[, ... ] [; comment]

        .DSEG   DATA
LABEL:  .DB8    0x1234567890ABCDEF  ; 8-byte area is initialized by 
                                    ; 0xEF, 0xCD, 0xAB, 0x90, 0x78, 0x56, 0x34, 0x12



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 493 of 951
Dec 01, 2023

Allocates the memory area of the number of bytes specified by operand.

[Syntax]

[Function]

- Allocates an area for the number of bytes specified in the operand.

[Description]

- For a section for data having no initial values, allocates an area for the number of bytes specified in the operand. For 
other sections, allocates an area for the number of bytes specified in the operand and initializes it with 0.
Note, however, that no area will be allocated if the specified number of bytes is 0.

- An expression that conforms to "(a)  Absolute expression" can be specified as the area size.

- If the specified size is illegal or exceeds the range from 0x00000 to 0xFFFFF, an error will be output.

- When a label is specified, it is defined as a symbol whose value is the start address of the allocated area.

[Example]

.DS

Symbol field Mnemonic field Operand field Comment field

[label:] .DS absolute-expression [; comment]

        .DSEG   DATA
AREA1:  .DS     4      ; 4-byte area is allocated and initialized with 0
        .DSEG   BSS
AREA2:  .DS     8      ; 8-byte area is allocated



R20UT3123EJ0113  Rev.1.13 Page 494 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Allocates a bit area of one bit.

[Syntax]

[Function]

- Allocates a bit area of one bit.

[Description]

- This directive can be written in only a bit section.

- This directive is used to allocate a bit area of one bit in a bit section.

- The contents of the allocated bit area are undefined.

- When a name is written in the symbol field, it will be defined as a bit symbol which has an address and bit location as 
its value.

[Example]

.DBIT

Symbol field Mnemonic field Operand field Comment field

[name] .DBIT [; comment]

        .BSEG
BSYM1   .DBIT   ; Bit area of one bit is allocated
        .DBIT   ; Bit area of one bit is allocated
BSYM2   .DBIT   ; Bit area of one bit is allocated
        .CSEG
        SET1    BSYM1
        CLR1    BSYM2



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 495 of 951
Dec 01, 2023

Aligns the value of the location counter.

[Syntax]

[Function]

- Aligns the value of the location counter.

[Description]

- Aligns the value of the location counter for the current section, specified by the previously specified section definition 
directive under the alignment condition specified by the operand.  The area created to align the location counter value 
is filled with 0 (However, except the section with the relocation attribute includes BSS).

- Specify an even number of 2 or more, but less than 231, as the alignment condition.  Otherwise, the CC-RL outputs 
the error message.

- This directive just aligns the value of the location counter for the current section within the module in which this direc-
tive is used.  It does not align the address after sections are allocated through the optimizing linker.

[Example]

.ALIGN

Symbol field Mnemonic field Operand field Comment field

[label:] .ALIGN alignment-condition [; comment]

        .CSEG   TEXT
        .DS     1       ;OFFSET 0x0
        .ALIGN  2       ;OFFSET 0x2 ;1-byte padding
LABEL:                  ;OFFSET 0x2 ;If the beginning of the section is placed at an 
                        ;odd address during allocation through the optimizing linker,
                        ;the alignment condition value is not set to 2.
                        ;(When the start address is 0x1, this code is placed at 0x3.)

        .SECTION  D1, DATA
        .DB       1
        .ALIGN    4
        .DB       2
        .ALIGN    6
        .DB       3
        ; Since the alignment condition of a section is the least common multiple
        ; of the alignment conditions included in the section, the alignment condition
        ; of section D1 is 12.



R20UT3123EJ0113  Rev.1.13 Page 496 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.5  External definition/External reference directives 

External definition, external reference directives clarify associations when referring to symbols defined by other mod-
ules.

This is thought to be in cases when one program is written that divides module 1 and module 2.  In cases when you 
want to refer to a symbol defined in module 2 in module 1, there is nothing declared in either module and and so the sym-
bol cannot be used.  Due to this, there is a need to display "I want to use" or "I don't want to use" in respective modules.

An "I want to refer to a symbol defined in another module" external reference declaration is made in module 1.  At the 
same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.
External definition, external reference directives are used to to form this relationship and the following instructions are 

available.

Table 5.21 External Definition/External Reference Directives

Directive Overview

.PUBLIC Declares to the optimizing linker that the symbol described in the operand 
field is a symbol to be referenced from another module

.EXTERN Declares to the optimizing linker that a symbol in another module is to be 
referenced in this module

.EXTBIT Declares to the optimizing linker that a bit symbol in another module is to be 
referenced in this module

.WEAK [V1.11 or later] Declares to the optimizing linker that the symbol described in the operand 
field is a symbol to be referenced from another module



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 497 of 951
Dec 01, 2023

Declares to the optimizing linker that the symbol described in the operand field is a symbol to be referenced from 
another module.

[Syntax]

[Function]

- The .PUBLIC directive declares to the optimizing linker that the symbol described in the operand field is a symbol to 
be referenced from another module.

[Use]

- When defining a symbol to be referenced from another module, the .PUBLIC directive must be used to declare the 
symbol as an external definition.

[Description]

- When the symbol(s) to be described in the operand field isn't defined within the same module, a warning is output.  
The symbol name is output in the error message.
When the symbol(s) isn't defined in any module, it will cause an error during linking.

- The following symbols cannot be used as the operand of the .PUBLIC directive:

(a) Symbol defined with the .SET directive

(b) Section name

(c) Macro name

[Example]

.PUBLIC

Symbol field Mnemonic field Operand field Comment field

[label:] .PUBLIC symbol-name [; comment]

         .PUBLIC  PSYM01
         .PUBLIC  PSYM02
PSYM01:  .DB      0x10
PSYM02:
         MOV      A, #0x4D



R20UT3123EJ0113  Rev.1.13 Page 498 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Declares to the optimizing linker that a symbol in another module is to be referenced in this module.

[Syntax]

[Function]

- The .EXTERN directive declares to the optimizing linker that a symbol in another module is to be referenced in this 
module.

[Description]

- The symbol specified in the operand field can be referenced in the current module.

- The following cannot be written as an operand.

(a) Symbol defined with the .SET directive

(b) Section name

(c) Macro name

- No error is output even if a symbol declared with the .EXTERN directive is not referenced in the given module.

- The .EXTERN directive may be described anywhere in a source program.

[Example]

Referring program

Defining program

.EXTERN

Symbol field Mnemonic field Operand field Comment field

[label:] .EXTERN symbol-name [; comment]

         .EXTERN  PSYM01
         .EXTERN  PSYM02
         MOV      A, ES:!PSYM01
         BR       !PSYM02

         .PUBLIC  PSYM01
         .PUBLIC  PSYM02
PSYM01:  .DB      0x10
PSYM02:  MOV      A, #0x4D



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 499 of 951
Dec 01, 2023

Declares to the optimizing linker that a bit symbol in another module is to be referenced in this module.

[Syntax]

[Function]

- The .EXTBIT directive declares to the optimizing linker that a bit symbol in another module is to be referenced in this 
module.

[Description]

- The bit symbol specified in the operand field can be referenced in the current module.

- The following cannot be written as an operand.

(a) Symbol defined with the .SET directive

(b) Section name

(c) Macro name

- No error is output even if a bit symbol declared with the .EXTBIT directive is not referenced in the given module.

- The .EXTBIT directive may be described anywhere in a source program.

[Example]

.EXTBIT

Symbol field Mnemonic field Operand field Comment field

[label:] .EXTBIT symbol-name [; comment]

      .EXTBIT  EBIT01
      .EXTBIT  EBIT02
      MOV1     EBIT01, CY
      AND1     CY, EBIT02



R20UT3123EJ0113  Rev.1.13 Page 500 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Declares to the optimizing linker that the symbol described in the operand field is a symbol to be referenced from 
another module

[Syntax]

[Function]

- The .WEAK directive declares to the optimizing linker that the symbol described in the operand field is a symbol to be 
referenced from another module.

[Description]

- The .WEAK directive declares to the optimizing linker that the symbol described in the operand field is a symbol to be 
referenced from another module.

- The differences between the .WEAK directive and the .PUBLIC directive are as follows:

- If symbols with the same name exist in different modules, specifying the .PUBLIC directive for each of these 
symbols will cause an error during linking.

- If symbols with the same name exist in different modules, specifying the .PUBLIC directive for one of these sym-
bols and specifying the .WEAK directive for others does not cause an error. In this case, the module specified by 
the .PUBLIC directive will be linked.

- The .WEAK directive may be described anywhere in a source program.

- The following cannot be written as an operand:

(a) Symbol defined with the .SET directive

(b) Section name

(c) Macro name

.WEAK [V1.11 or later]

Symbol field Mnemonic field Operand field Comment field

[label:] .WEAK symbol-name [; comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 501 of 951
Dec 01, 2023

5.2.6  Compiler output directives

Compiler output directives inform the assembler of information output by the compiler, such as compiler debugging 
information.

The following compiler output directives are available.

Table 5.22 Compiler Output Directives

Directive Overview

.LINE Line-number information from the C source program

.STACK Defines the amount of stack usage for a symbol

._LINE_TOP Information specified by the compiler #pragma inline_asm statement

._LINE_END Information specified by the compiler #pragma inline_asm statement

.VECTOR Generates a interrupt vector table

.ALIAS [V1.11.00 or later] Sets information about a symbol

.TYPE [V1.11.00 or later] Sets information about a symbol



R20UT3123EJ0113  Rev.1.13 Page 502 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Line-number information from the C source program.

[Syntax]

[Function]

- The .LINE directive is compiler debugging information.

[Description]

- Modifies the line numbers and filenames referenced during debugging.

- The line numbers and filenames in the source program are not updated between the first .LINE directive and the next 
one.

- If the filename is omitted, then only the line number is changed.

[Caution]

- The information handled by the .LINE directive is the line-number information of the C source program that the com-
piler outputs.  The user must not use this directive.

.LINE

Symbol field Mnemonic field Operand field Comment field

.LINE ["file-name",] line-number [; comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 503 of 951
Dec 01, 2023

Defines the amount of stack usage for a symbol.

[Syntax]

[Function]

- The .STACK directive is compiler debugging information.

[Description]

- This defines the amount of stack usage  for a symbol.

- The amount of stack usage for a symbol can only be defined once, and subsequent definitions are ignored.

- The amount of stack usage can only be a multiple of 2 within the range of 0x0000 to 0xFFFE.

- The information handled by the .STACK directive is the function information of the C source program that the compiler 
outputs.

.STACK

Symbol field Mnemonic field Operand field Comment field

.STACK symbol-name=absolute-expression [; comment]



R20UT3123EJ0113  Rev.1.13 Page 504 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Information specified by the compiler #pragma inline_asm statement.

[Syntax]

[Function]

- The ._LINE_TOP directive is the information specified by the compiler #pragma inline_asm statement.

[Description]

- This is the #pragma inline_asm statement information of the C source program that the compiler outputs.

- The ._LINE_TOP directive indicates the start of the instructions for a function which has been specified as inline_asm.

[Caution]

- Assembler control instructions are not usable in assembly code for functions specified as inline_asm.  In addition, 
only the directives listed below are usable.  Specifying any other directive will lead to an error.

- data definition/area reservation directives (.DB/.DB2/.DB4/.DB8/.DS)

- macro directives (.MACRO/.IRP/.REPT/.LOCAL/.ENDM)

- externally defined directive (.PUBLIC) [V1.04 or later]

- In the .PUBLIC directive in the function specified with inline_asm, only the labels defined in the function specified with 
inline_asm can be used. Using any other labels will lead to errors.

- The information handled by the ._LINE_TOP directive is the line-number information of the C source program that the 
compiler outputs.  The user must not use this directive.

._LINE_TOP

Symbol field Mnemonic field Operand field Comment field

._LINE_TOP inline_asm [; comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 505 of 951
Dec 01, 2023

Information specified by the compiler #pragma inline_asm statement.

[Syntax]

[Function]

- The ._LINE_END directive is the information specified by the compiler #pragma inline_asm statement.

[Description]

- This is the #pragma inline_asm statement information of the C source program that the compiler outputs.

- The ._LINE_END directive indicates the end of the instructions for a function which has been specified as inline_asm.

[Caution]

- Assembler control instructions are not usable in assembly code for functions specified as inline_asm.  In addition, 
only the directives listed below are usable.  Specifying any other directive will lead to an error.

- data definition/area reservation directives (.DB/.DB2/.DB4/.DB8/.DS)

- macro directives (.MACRO/.IRP/.REPT/.LOCAL/.ENDMl)

- externally defined directive (.PUBLIC) [V1.04 or later]

- In the .PUBLIC directive in the function specified with inline_asm, only the labels defined in the function specified with 
inline_asm can be used. Using any other labels will lead to errors.

- The information handled by the ._LINE_END directive is the line-number information of the C source program that the 
compiler outputs.  The user must not use this directive.

._LINE_END

Symbol field Mnemonic field Operand field Comment field

._LINE_END inline_asm [; comment]



R20UT3123EJ0113  Rev.1.13 Page 506 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

The .VECTOR directive generates an interrupt vector table.

[Syntax]

[Function]

- The .VECTOR directive generates an interrupt vector table.

[Description]

- Specifies a vector table allocation address for an interrupt function.

- The symbol name should be the label of the destination of a branch to be executed when an interrupt occurs.

- An even address between 0x00000 and 0x0007E can be specified as the vector table allocation address.  If a value 
outside this range is specified, an error will occur.

- Multiple addresses can be specified for a function.

- The information handled by the .VECTOR directive is the vector table information output by the compiler for #pragma 
interrupt specified in the C source program.  When this directive is included in the code (#pragma interrupt is specified 
in the C source program), this directive should be used instead of a section definition directive to define a vector table 
in the assembly source program such as in the startup routine.

- When both the vector tables specified through the .VECTOR directive and those specified through the section defini-
tion directive are used together, the optimizing linker outputs an error.

[Example]

To specify multiple addresses (0x00008 and 0x0000a) for interrupt function intfunc.

To specify multiple addresses (0x00020, 0x00022, 0x00024, 0x00026 and 0x00028) for interrupt function intfunc2.

.VECTOR

Symbol field Mnemonic field Operand field Comment field

symbol-name .VECTOR Vector-table-allocation-address [; comment]

_intfunc        .VECTOR 0x00008
_intfunc        .VECTOR 0x0000a
.SECTION        .text, TEXT
_intfunc:

ADDR            .SET    0x00020
                .REPT   5
_intfunc2       .VECTOR ADDR
ADDR            .SET    ADDR + 2
                .ENDM
.SECTION        .text, TEXT
_intfunc2:



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 507 of 951
Dec 01, 2023

The .ALIAS directive sets information about a symbol.

[Syntax]

[Description]

- This directive generates an alias of the symbol.

- The generated alias can be specified in the .PUBLIC directive.

- If a label name that does not exist in any module is specified for the symbol name, an error will occur.

- This directive must be described after the definition of the symbol specified by the symbol name on the operand.

[Example]

To allow only the alias symA to be referenced from outside the module, specify as follows.

.ALIAS [V1.11.00 or later]

Symbol field Mnemonic field Operand field Comment field

.ALIAS alias, symbol-name [; comment]

symB:
.PUBLIC symA
.ALIAS symA, symB

SECTION=
SYMBOL ADDR SIZE INFO COUNTS OPT

 symA
   00000120 0 none ,g 0
 symB
   00000120 0 none ,l 0



R20UT3123EJ0113  Rev.1.13 Page 508 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

The .TYPE directive sets information about a symbol.

[Syntax]

[Description]

- This directive specifies the type and size information of the symbol.

- "FUNCTION" or "OBJECT" can be specified for the symbol type.

- If a label name that does not exist in any file is specified for the symbol name, an error will occur.

[Example]

The set information can be viewed in the link map.

.TYPE [V1.11.00 or later]

Symbol field Mnemonic field Operand field Comment field

.TYPE symbol-name, symbol-type, size-
specification

[; comment]

.TYPE symA, FUNCTION, 8
symA:

SYMBOL ADDR SIZE INFO COUNTS OPT
  symA
   00000000 8 func ,l 0



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 509 of 951
Dec 01, 2023

5.2.7  Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.  
This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of 
instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.
The following macro directives are available.

Table 5.23 Macro Directives

Directive Overview

.MACRO Defines a set of statements written between the .MACRO and .ENDM direc-
tives as a macro having the name specified in the symbol field

.LOCAL Defines the specified symbol name as a local symbol that is valid only within 
the macro body where it is defined

.REPT Tells the assembler to repeatedly expand a series of statements described 
between .REPT directive and the .ENDM directive the number of times 
equivalent to the value of the absolute-expression specified in the operand 
field.

.IRP Tells the assembler to repeatedly expand a series of statements described 
between .IRP directive and the .ENDM directive the number of times equiv-
alent to the number of actual parameters while replacing the formal parame-
ter with the actual parameters (from the left, the order) specified in the 
operand field.

.EXITM This directive skips the repetitive assembly of the .IRP and .REPT directives 
enclosing this directive at the innermost position.

.EXITMA This directive skips the repetitive assembly of the irp and .REPT directives 
enclosing this directive at the outermost position.

.ENDM Instructs the assembler to terminate the execution of a series of statements 
defined as the functions of the macro.



R20UT3123EJ0113  Rev.1.13 Page 510 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Defines a set of statements written between the .MACRO and .ENDM directives as a macro having the name specified 
in the symbol field.

[Syntax]

[Function]

- Defines a set of statements (called "a macro body") written between the .MACRO and .ENDM directives as a macro 
having the name specified in the symbol field.
When this macro name is referenced (called "a macro call"), it is handled as the macro body corresponding to the 
macro name written at that location (called "a macro expansion").

[Description]

- If there is no .ENDM directive corresponding to a .MACRO directive within the same file, the CCRL outputs a mes-
sage.
For example, if only .MACRO or .ENDM exists in an include file, an error will occur.

- The maximum number of formal parameters depends on the usable amount of memory.

- If a macro call includes excess arguments, a warning will be output.

- If a macro is called before it has been defined, the compiler outputs an error.

- If a currently defined macro is called in a macro body, the CC-RL outputs the error message.

- If there are multiple formal parameters having the same name, an error will occur.

- Numeric constants or Symbol can be specified as an argument in a macro call; if another type of argument is speci-
fied, an error will be output.

- A line of a sentence can be designated in the macro-body.  Such as operand can't designate the part of the sentence.

[Example]

.MACRO

Symbol field Mnemonic field Operand field Comment field

name .MACRO
   :
Macro body
   :

[formal-parameter[, ... ]] [; comment]

ADMAC  .MACRO  PARA1, PARA2  ; Macro definition
       MOV     A, #PARA1
       ADD     A, #PARA2
       .ENDM
       
       ADMAC  0x10, 0x20     ; Macro call



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 511 of 951
Dec 01, 2023

Defines the specified symbol name as a local symbol that is valid only within the macro body where it is defined.

[Syntax]

[Function]

- Defines the specified symbol name as a local symbol that is valid only within the macro body where it is defined.

[Description]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a dou-
ble definition error for the symbol.
By using the .LOCAL directive, you can reference (or call) a macro, which defines symbol(s) within the macro body, 
more than once.

- The maximum number of symbol names depends on the usable amount of memory.

- The .LOCAL directive can only be used within a macro definition or in "#pragma inline_asm" in a C source program.

- The .LOCAL directive should be used before the symbol specified in the operand field is referenced.  Using this direc-
tive at the beginning of a macro body is recommended.

- All symbol names defined through the .LOCAL directive within a module should be different.  A single name cannot be 
assigned to multiple local symbols used in each macro body.

- A symbol defined through the .LOCAL directive cannot be referenced from outside of the macro.

- Reserved words cannot be defined as symbols.  When the same symbol as a user-defined symbol is specified, the 
definition through the .LOCAL directive takes priority.

- If a symbol having the same name as a formal parameter for a macro definition is defined as a local symbol in the def-
inition of the macro through the .LOCAL directive, an error will occur.

[Example]

The expansion is as follows.

.LOCAL

Symbol field Mnemonic field Operand field Comment field

[label:] .LOCAL symbol-name[, ... ] [; comment]

m1      .MACRO  par
        .LOCAL  AA, BB
AA:     .DB4    AA
BB:     .DB4    par
        .ENDM
m1      10
m1      20

.LL00000000:    .DB4    .LL00000000

.LL00000001:    .DB4    10

.LL00000002:    .DB4    .LL00000002

.LL00000003:    .DB4    20



R20UT3123EJ0113  Rev.1.13 Page 512 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Tells the assembler to repeatedly expand a series of statements described between this directive and the .ENDM direc-
tive the number of times equivalent to the value of the absolute-expression specified in the operand field.

[Syntax]

[Function]

- The .REPT directive tells the assembler to repeatedly expand a series of statements described between this directive 
and the .ENDM directive (called the REPT-ENDM block) the number of times equivalent to the value of the absolute-
expression specified in the operand field.

[Description]

- If no corresponding .ENDM directive is found for a .REPT directive in the same file, an error will occur

- If the result of evaluating the absolute-expression is negative, the CC-RL outputs the message.

[Example]

The code is expanded as shown below after assembling.

.REPT

Symbol field Mnemonic field Operand field Comment field

[label:] .REPT
   :
.ENDM

absolute-expression [; comment]

[; comment]

    .REPT    3
    INC      B
    DEC      C
    .ENDM

    INC      B
    DEC      C
    INC      B
    DEC      C
    INC      B
    DEC      C



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 513 of 951
Dec 01, 2023

Tells the assembler to repeatedly expand a series of statements described between .IRP directive and the .ENDM direc-
tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the 
actual parameters (from the left, the order) specified in the operand field.

[Syntax]

[Function]

- The .IRP directive tells the assembler to repeatedly expand a series of statements described between this directive 
and the .ENDM directive (called the IRP-ENDM block) the number of times equivalent to the number of actual param-
eters while replacing the formal parameter with the actual parameters (from the left, the order) specified in the oper-
and field.

[Description]

- If no corresponding .ENDM directive is found for an .IRP directive within a single file, an error will occur.

- The maximum number of arguments depends on the usable amount of memory.

[Example]

The code is expanded as shown below after assembling.

.IRP

Symbol field Mnemonic field Operand field Comment field

[label:] .IRP
  :

formal-parameter[ actual-parame-
ter[, ... ]] 

[; comment]

    .IRP    PAR 0x10, 0x20, 0x30
    ADD     A, #PAR
    MOV     [DE], A
    .ENDM

    ADD     A, #0x10
    MOV     [DE], A
    ADD     A, #0x20
    MOV     [DE], A
    ADD     A, #0x30
    MOV     [DE], A



R20UT3123EJ0113  Rev.1.13 Page 514 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

.EXITM directive skips the repetitive assembly of the .REPT and .IRP directives enclosing this directive at the innermost 
position.

[Syntax]

[Function]

- .EXITM directive skips the repetitive assembly of the .REPT and .IRP directives enclosing this directive assembly of 
the innermost .REPT and .IPR directives enclosing this directive.

[Description]

- If .EXITM directive is not enclosed by .REPT and .IRP directives, the CC-RL outputs the message.

- The conditional assembly control instructions enclosing the .EXITM directive cannot be written between the .EXITM 
directive and .ENDM directive. ([V1.01 only])

[Example]

The code is expanded as shown below after assembling.

.EXITM

Symbol field Mnemonic field Operand field Comment field

.EXITM [; comment]

    .REPT   3
    .REPT   2
    INC     B
    .EXITM
    .ENDM
    DEC     C
    .ENDM

    INC     B
    DEC     C
    INC     B
    DEC     C
    INC     B
    DEC     C



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 515 of 951
Dec 01, 2023

The .EXITMA directive skips the repetitive assembly of the outermost .REPT and .IRP directives enclosing this directive.

[Syntax]

[Function]

- The .EXITMA directive skips the repetitive assembly of the outermost .REPT and .IRP directives enclosing this direc-
tive.

[Description]

- If .EXITMA directive is not enclosed by .REPT and .IRP directives, the CC-RL outputs the message.

- The conditional assembly control instructions enclosing the .EXITMA directive cannot be written between the 
.EXITMA directive and .ENDM directive. ([V1.01 only])

[Example]

The code is expanded as shown below after assembling.

.EXITMA

Symbol field Mnemonic field Operand field Comment field

.EXITMA [; comment]

    .REPT   3
    .REPT   2
    INC     B
    .EXITMA
    .ENDM
    DEC     C
    .ENDM

    INC     B



R20UT3123EJ0113  Rev.1.13 Page 516 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Syntax]

[Function]

- The .ENDM directive instructs the assembler to terminate the execution of a series of statements defined as the func-
tions of the macro.

[Description]

- If the .MACRO, .REPT, or .IRP directive corresponding to .ENDM directive does not exist, the CC-RL outputs the 
message then stops assembling.

[Example]

.MACRO - .ENDM

.REPT - .ENDM

.IRP - .ENDM

.ENDM

Symbol field Mnemonic field Operand field Comment field

.ENDM [; comment]

ADMAC  .MACRO   PARA1, PARA2
       MOV      A, #PARA1
       ADD      A, #PARA2
       .ENDM

      .REPT     3
      INC       B
      DEC       C
      .ENDM

      .IRP      PAR 0x10, 0x20, 0x30
      ADD       A, #PAR
      MOV       [DE], A
      .ENDM



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 517 of 951
Dec 01, 2023

5.2.8  Branch directives

Branch directives are generated by the compiler and expanded into instructions by the assembler.
The following branch directives are available.

Table 5.24 Branch Directives

Directive Overview

.Bcond The assembler expands a .Bcond directive into instructions



R20UT3123EJ0113  Rev.1.13 Page 518 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

The assembler expands a .Bcond directive into instructions

Remark .BT, .BF, .BC, .BNC, .BZ, .BNZ, .BH, and .BNH are collectively called .Bcond.

[Syntax]

- In the above syntax, .BC, .BNC, .BZ, .BNZ, .BH, and .BNH can be specified as .Bcond.
A label can be specified in the form of !LABEL, $!LABEL, or !!LABEL.

- In the above syntax, .BT, and .BF can be specified as .Bcond.
A label can be specified in the form of !LABEL, $!LABEL, or !!LABEL.

- In the above syntax, .BC, .BNC, .BZ, .BNZ, .BH, and .BNH can be specified as .Bcond.
For label1 and label2, the following combinations are allowed.

- In the above syntax, .BT, and .BF can be specified as .Bcond.
For label1 and label2, the following combinations are allowed.

.Bcond

Symbol field Mnemonic field Operand field Comment field

.Bcond label [; comment]

Symbol field Mnemonic field Operand field Comment field

.Bcond bit-term, label [; comment]

Symbol field Mnemonic field Operand field Comment field

.Bcond label1, label2 [; comment]

Label1 Label2

!LABEL1 $LABEL2

!LABEL1 !LABEL2

$!LABEL1 $LABEL2

$!LABEL1 $!LABEL2

$!LABEL1 !!LABEL2

!!LABEL1 $LABEL2

!!LABEL1 $!LABEL2

!!LABEL1 !!LABEL2

Symbol field Mnemonic field Operand field Comment field

.Bcond bit-term, label1, label2 [; comment]

Label1 Label2

!LABEL1 !LABEL2

$!LABEL1 $!LABEL2

$!LABEL1 !!LABEL2



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 519 of 951
Dec 01, 2023

[Function]

- The assembler expands a .Bcond directive into instructions.

- The .Bcond directive is provided to be output by the compiler; the user must not use this directive.

[Description]

- .Bcond directives are generated by the compiler, and the assembler expands them as follows.
Ncond indicates a condition opposite to cond.

!!LABEL1 $!LABEL2

!!LABEL1 !!LABEL2

Before Expansion After Expansion

.Bcond          label         SKNcond
        BR      label

.Bcond          bit-term         BNcond  bit-term, $temp
        BR      label
temp:

.Bcond          label1, label2         SKNcond
        BR      label1
        BR      label2

.Bcond          bit-term, label1, label2         Bcond   bit-term, $temp
        BR      label2
temp:
        BR      label1

Label1 Label2



R20UT3123EJ0113  Rev.1.13 Page 520 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.9  Machine-Language Instruction Set

The following instructions are not included in the RL78 instruction set but the compiler replaces them with available 
instructions. If any instruction that is included in neither the following list nor the instruction set, an error will occur.

Before Instruction Operand is Replaced After Instruction Operand is Replaced

MOV   [DE],#byte MOV   [DE+0],#byte

MOV   [HL],#byte MOV   [HL+0],#byte

MOV   ES:[DE],#byte MOV   ES:[DE+0],#byte

MOV   ES:[HL],#byte MOV   ES:[HL+0],#byte

MOVS  [HL],X MOVS  [HL+0],X

MOVS  ES:[HL],X MOVS  ES:[HL+0],X

CMPS  X,[HL] CMPS  X,[HL+0]

CMPS  X,ES:[HL] CMPS  X,ES:[HL+0]

ADDW  AX,[HL] ADDW  AX,[HL+0]

ADDW  AX,ES:[HL] ADDW  AX,ES:[HL+0]

SUBW  AX,[HL] SUBW  AX,[HL+0]

SUBW  AX,ES:[HL] SUBW  AX,ES:[HL+0]

CMPW  AX,[HL] CMPW  AX,[HL+0]

CMPW  AX,ES:[HL] CMPW  AX,ES:[HL+0]

INC   [HL] INC   [HL+0]

INC   ES:[HL] INC   ES:[HL+0]

DEC   [HL] DEC   [HL+0]

DEC   ES:[HL] DEC   ES:[HL+0]

INCW  [HL] INCW  [HL+0]

INCW  ES:[HL] INCW  ES:[HL+0]

DECW  [HL] DECW  [HL+0]

DECW  ES:[HL] DECW  ES:[HL+0]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 521 of 951
Dec 01, 2023

5.3  Control Instructions

Control instructions provide instructions for assembler operation.

5.3.1  Outline

Control instructions provide detailed instructions for assembler operation and so are written in the source.
Control instruction categories are displayed below.

Table 5.25 Control Instruction List

As with directives, control instructions are specified in the source.

Control Instruction Type Control Instruction

File input control instructions INCLUDE, BINCLUDE

Mirror source area reference control instruc-
tions

MIRROR

Assembler control instructions NOWARNING, WARNING

Conditional assembly control instructions IFDEF, IFNDEF, IF, IFN, ELSEIF, ELSEIFN, ELSE, ENDIF



R20UT3123EJ0113  Rev.1.13 Page 522 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.3.2  File input control instructions

Using the file input control instruction, the CC-RL can input an assembly source file or binary file to a specified position.
The following file input control instructions are available.

Table 5.26 File Input Control Instructions

Control Instruction Overview

INCLUDE Inputs an assembly language source file

BINCLUDE Inputs a binary file



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 523 of 951
Dec 01, 2023

Inputs an assembly language source file.

[Syntax]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning on 
a specified line in the source program for assembly.

[Description]

- The search pass of an INCLUDE file can be specified with the option (-I).

- The assembler searches INCLUDE file read paths in the following sequence:

(a) Folder specified by the option (-I)

(b) Folder in which the source file exists

(c) Currently folder

- The INCLUDE file can do nesting (the term "nesting" here refers to the specification of one or more other INCLUDE 
files in an INCLUDE file).

- The maximum nesting level for include files is 4,294,967,294 (=0xFFFFFFFE) (theoretical value).  The actual number 
that can be used depends on the amount of memory, however.

- If the specified INCLUDE file cannot be opened, the CC-RL outputs the message and stops assembling.

- If an include file contains a block from start to finish, such as a section definition directive, macro definition directive, 
or conditional assembly control instruction, then it must be closed with the corresponding code. If there is no corre-
sponding code or it is not closed, then an error will occur.

INCLUDE

[]$[]INCLUDE[](file-name)[][;comment]]
[]$[]INCLUDE[]"file-name"[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 524 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Inputs a binary file.

[Syntax]

[Function]

- Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at the 
position of this control instruction. 

[Description]

- This control instruction handles the entire contents of the binary files.

- The specified binary file is searched for in the same order as for the $INCLUDE control instruction.

- If the specified binary file cannot be opened, the CC-RL outputs the message and stops assembling.

BINCLUDE

[]$[]BINCLUDE[](file-name)[][;comment]]
[]$[]BINCLUDE[]"file-name"[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 525 of 951
Dec 01, 2023

5.3.3  Mirror source area reference control instructions

Using the mirror source area reference control instruction enables reference to external reference names in the sections 
allocated at mirror source area addresses.

The following mirror source area reference control instructions are available.

Table 5.27 Mirror Source Area Reference Control Instructions

Control Instruction Overview

MIRROR Declares that an external reference name is allocated to the mirror source 
area



R20UT3123EJ0113  Rev.1.13 Page 526 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Declares that an external reference name is allocated to the mirror source area.

[Syntax]

[Function]

- Assumes that the specified external reference name is allocated to the mirror source area and generates an instruc-
tion to refer to the data.

[Description]

- This control instruction is used to reference the external reference name that is allocated to the mirror source area.

MIRROR

[]$[]MIRROR[]external reference-name[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 527 of 951
Dec 01, 2023

5.3.4  Assembler control instructions

The assembler control instruction can be used to control the processing performed by the assembler.
The following assembler control instructions are available.

Table 5.28 Assembler Control Instructions

Control Instruction Overview

NOWARNING Does not output warning messages

WARNING Output warning messages



R20UT3123EJ0113  Rev.1.13 Page 528 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Does not output warning messages.

[Syntax]

[Function]

- This control instruction suppresses outputting warning messages for this control instruction and the subsequent 
instructions.

NOWARNING

[]$[]NOWARNING[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 529 of 951
Dec 01, 2023

Output warning messages.

[Syntax]

[Function]

- This control instruction outputs warning messages for this control instruction and the subsequent instructions (cancels 
the NOWARNING specification).

WARNING

[]$[]WARNING[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 530 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.3.5  Conditional assembly control instructions

Using conditional assembly control instruction, the CC-RL can control the range of assembly according to the result of 
evaluating a conditional expression.

The following conditional assembly control instructions are available.

Table 5.29 Conditional Assembly Control Instructions

The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE) 
(theoretical value).  The actual number that can be used depends on the amount of memory, however.

Control Instruction Overview

IFDEF Control based on symbol (assembly performed when the symbol is defined)

IFNDEF Control based on symbol (assembly performed when the symbol is not 
defined)

IF Control based on absolute expression (assembly performed when the value 
is true)

IFN Control based on absolute expression (assembly performed when the value 
is false)

ELSEIF Control based on absolute expression (assembly performed when the value 
is true)

ELSEIFN Control based on absolute expression (assembly performed when the value 
is false)

ELSE Control based on absolute expression/symbol

ENDIF End of control range



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 531 of 951
Dec 01, 2023

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

[Function]

- If the symbol specified by the switch name is defined

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

- If the symbol specified by the switch name is not defined
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

[Description]

- The rules of describing switch names are the same as the conventions of symbol description "(3)  Symbol".

- The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE) 
(theoretical value).  The actual number that can be used depends on the amount of memory, however.

IFDEF

[]$[]IFDEFswitch-name[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 532 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

[Function]

- If the symbol specified by the switch name is defined
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the symbol specified by the switch name is not defined

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

[Description]

- The rules of describing switch names are the same as the conventions of symbol description "(3)  Symbol".

- The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE) 
(theoretical value).  The actual number that can be used depends on the amount of memory, however.

IFNDEF

[]$[]IFNDEFswitch-name[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 533 of 951
Dec 01, 2023

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

[Description]

- The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE) 
(theoretical value).  The actual number that can be used depends on the amount of memory, however.

IF

[]$[]IFabsolute-expression[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 534 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (0).
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

[Description]

- The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE) 
(theoretical value).  The actual number that can be used depends on the amount of memory, however.

IFN

[]$[]IFNabsolute-expression[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 535 of 951
Dec 01, 2023

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

ELSEIF

[]$[]ELSEIFabsolute-expression[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 536 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (0).
Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist, assembles 
the block enclosed within this control instruction and the corresponding control instruction.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed within this 
control instruction and the corresponding ENDIF control instruction.

ELSEIFN

[]$[]ELSEIFNabsolute-expression[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 537 of 951
Dec 01, 2023

Control based on absolute expression/symbol.

[Syntax]

[Function]

- If the specified switch name is not defined by the IFDEF control instruction, if the absolute expression of the IF, or 
ELSEIF control instruction is evaluated as being false (= 0), or if the absolute expression of the IFN, or ELSEIFN con-
trol instruction is evaluated as being true (0), assembles the arrangement of statements (block) enclosed within this 
control instruction and the corresponding ENDIF control instruction.

ELSE

[]$[]ELSE[][;comment]



R20UT3123EJ0113  Rev.1.13 Page 538 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

End of control range.

[Syntax]

[Function]

Indicates the end of the control range of a conditional assembly control instruction.

ENDIF

[]$[]ENDIF[][;comment]



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 539 of 951
Dec 01, 2023

5.4  Macro

This section explains how to use macros.
This is very convenient function to describe serial instruction group for number of times in the program.

5.4.1  Outline

This macro function is very convenient function to describe serial instruction group for number of times in the program.
Macro function is the function that is deployed at the location where serial instruction group defined as macro body is 

referred by macros as per .MACRO, .ENDM directives.
Macro differs from subroutine as it is used to improve description of the source.
Macro and subroutine has features respectively as follows.  Use them effectively according to the respective purposes.

- Subroutine
Process required many times in program is described as one subroutine.  Subroutine is converted in machine lan-
guage only once by assembler.
Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described only 
in subroutine reference.  Consequently, memory of program can be used effectively by using subroutine.
It is possible to draw structure of program by executing subroutine for process collected serially in program (Because 
program is structured, entire program structure can be easily understood as well setting of the program also becomes 
easy.).

- Macro
Basic function of macro is to replace instruction group.
Serial instruction group defined as macro body by .MACRO, .ENDM directives are deployed in that location at the 
time of referring macro.  Assembler deploys macro/body that detects macro reference and converts the instruction 
group to machine language while replacing temporary parameter of macro/body to actual parameter at the time of ref-
erence.
Macro can describe a parameter.
For example, when process sequence is the same but data described in operand is different, macro is defined by 
assigning temporary parameter in that data.  When referring the macro, by describing macro name and actual param-
eter, handling of various instruction groups whose dercription is different in some parts only is possible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and reducing 
memory size.

5.4.2  Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern.  A macro is defined by the 
user.  A macro is defined as follows.  The macro body is enclosed by ".MACRO" and ".ENDM".

If the following description is made after the above definition has been made, the macro is replaced by a code that "adds 
0x10 and 0x20".

In other words, the macro is expanded into the following codes.

ADDINT8 .MACRO  PARA1, PARA2  ;The following two statements constitute the macro body.
        MOV     A, #PARA1
        ADD     A, #PARA2
        .ENDM

ADDINT8 0x10, 0x20

MOV     A, #0x10
ADD     A, #0x20



R20UT3123EJ0113  Rev.1.13 Page 540 of 951
Dec 01, 2023

CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

5.4.3  Nesting macro definitions

A .MACRO directive cannot be written between a .MACRO, .REPT, or .IRP directive and its corresponding .ENDM 
directive.

5.4.4  Nesting macro references

The maximum nesting level of macro references is theoretically 4,294,967,294 (= 0xFFFFFFFE), but the memory size 
limits the actual maximum level.

5.4.5  Macro operator

This section describes the concatenation symbols "?", which are used to link strings in macros.

- The concatenation "?" concatenates one character or one character string to another within a macro body.
At macro expansion, the character or character string on the left of the concatenation is concatenated to the character 
or character string on the right of the sign.  The "?" itself disappears after concatenating the strings.

- The symbols before and after the concatenation symbol "?" in the symbols of a macro definition can be recognized as 
formal parameters or local symbols, and concatenation symbols can also be used as delimiter symbols.  At macro 
expansion, formal parameters or local symbols before and after "?" in the symbols are evaluated before they are con-
catenated in the symbols.

- Cautions

- The character "?" can only be used as a concatenation symbol in a macro definition.

- The "?" in a character string and comment is simply handled as data.

5.4.6  Error processing

Errors regarding the correspondence between the .MACRO, .REPT, or .IRP directive and the .ENDM directive are out-
put in the following cases.

- If no corresponding .ENDM directive is found for a .MACRO, .REPT, or .IRP directive until the end of the source pro-
gram, an error will be output at the end of the source program.

- If no corresponding .MACRO, .REPT, or .IRP directive is found for an .ENDM directive, an error will be output.

- If an error is found in the line where a .MACRO directive is defined, the line will be ignored and processing will con-
tinue.  Therefore, the macro name will not be defined and if the macro name is referenced, an error will be output.

5.5  Using SFR Symbols and Extended SFR Symbols

When a device file is read, SFR symbols and extended SFR symbols can be used in the assembly source code.
For the SFR symbols and extended SFR symbols that can be used in the assembly source code, see the user's manual 

of the device.
SFR symbols and extended SFR symbols are handled in the same way as constants (addresses of the specified SFRs), 

but note the following.

- Uppercase and lowercase letters are not distinguished for SFR symbols and extended SFR symbols.

- SFR symbols and extended SFR symbols, which are abbreviations for SFR and extended SFR names and not actu-
ally symbols, cannot be defined as symbols in program code.

- "!" needs to be at the beginning of an extended SFR symbol in an instruction operand.
"!" can be omitted when the assembler transition support option (-convert_asm) is specified.

See also the descriptions of sfr, sfrp, and addr16 in "5.1.16  Operand characteristics".



CC-RL 5.  ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 541 of 951
Dec 01, 2023

5.6  Reserved Words

The assembler has reserved words.  Reserved word cannot be used in name, label, section name, macro name.  If a 
reserved word is specified, the CC-RL outputs the message.  Reserved word doesn't distinguish between uppercase and 
lowercase.

The reserved words are as follows.

- Instructions (such as add, sub, and mov)

- Directives

- Control instructions

- Register names, Internal register name

5.7  Assembler Generated Symbols

The following is a list of symbols generated by the assembler for use in internal processing.
Symbols with the same names as the symbols below cannot be used.
The assembler does not output object files for symbols starting with a period ("."), treating these as symbols for internal 

processing.

Table 5.30 Assembler Generated Symbols

Symbol Name Explanation

.LL00000000 to .LLFFFFFFFF .LOCAL directive generation local symbols

.text_ATstart-address .CSEG directive generation section name

.data_ATstart-address .DSEG directive generation section name

.bss_ATstart-address

.bit_ATstart-address .BSEG directive generation section name

section-name_ATstart-address .ORG directive generation section name

.BR_TEMP@n Label for branch instruction expansion

.LMn_n
(n : 0 to 4294967294 )

Assembler debugging information symbol
(start or end of section or function)

- Example : .LM0_1

.Gn
(n : 0 to 4294967294 )

Assembler debugging information symbol
(start or end of .debug_info, line, frame, or loc)

.Garn
(n : 0 to 4294967294 )

Assembler debugging information symbol
(start or end of .debug_pubnames section)

.Gpun
(n : 0 to 4294967294 )

Assembler debugging information symbol
(start or end of .debug_aranges section)

@$IMM_constant value Local symbol indicating a constant value [V1.02 or later]



R20UT3123EJ0113  Rev.1.13 Page 542 of 951
Dec 01, 2023

CC-RL 6.  SECTION SPECIFICATIONS

6.  SECTION SPECIFICATIONS

In an embedded application such as allocating program code from certain address or allocating by division, it is neces-
sary to pay attention in the memory allocation.

To implement the memory allocation as expected, program code or data allocation information should be specified in 
optimizing linker.

Sections which are units for memory allocation are described in this chapter.

6.1  Sections

A section is the basic unit making up programs (area to which programs or data are allocated).  For example, program 
code is allocated to a text-attribute section and variables that have initial values are allocated to a data-attribute section.  
In other words, different types of information are allocated to different sections.

Section names can be specified within source file.  In C language, they can be specified using a #pragma section direc-
tive and in assembly language they can be specified using section definition directives.  

Even if the #pragma directive is not used to specify a section, however, allocation by the compiler to a particular section 
may already be set as the default setting in the program code or data (variables).

6.1.1  Section name

The following table lists the names, relocation attribute of these reserved sections.

Table 6.1 Reserved Sections

Default Section Name Relocation Attribute Description

.callt0 CALLT0 Section for the table to call the callt function

.text TEXT Section for code (allocated to the near area)

.textf TEXTF Section for code (allocated to the far area)

.textf_unit64kp TEXTF_UNIT64KP Section for code (section is allocated so that the start address 
is an even address and the section does not exceed the (64 
Kbytes - 1) boundary)

.const CONST ROM data (allocated to the near area) (within the mirror area)

.constf CONSTF ROM data (allocated to the far area)

.data DATA Section for near initialized data (with initial value)

.dataf DATAF Section for far initialized data (with initial value)

.sdata SDATA Section for initialized data (with initial value, variable allocated 
to saddr)

.bss BSS Section for data area (without initial value, allocated to the near 
area)

.bssf BSSF Section for data area (without initial value, allocated to the far 
area)

.sbss SBSS Section for data area (without initial value, variable allocated to 
saddr)

.option_byte OPT_BYTE Dedicated section for user option byte and on-chip debugging 
specification

.security_id SECUR_ID Dedicated section for security ID specification

.flash_security_id FLASH_SECUR_ID Section specific for flash programmer security ID specification



CC-RL 6.  SECTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 543 of 951
Dec 01, 2023

6.1.2  Section concatenation

The optimizing linker (hereafter abbreviated "rlink") concatenates identical sections in the input relocatable files, and 
allocates them to the address specified by the -start option.

Remark See "-STARt" for details of -start option.

(1) Section allocation via the -start option

(a) Sections in different files with the same name are concatenated and allocated in the order of file input.

(b) Sections with the same name but different alignments are concatenated after alignment adjustment.  The align-
ment is adjusted to that of the section with the largest alignment.

.vect<vector table 
address>

AT Interrupt vector table
If the -split_vect option is specified, a section is generated 
based on ".vect<vector table address>". The vector table 
address is in hexadecimal notation.

Default Section Name Relocation Attribute Description

[file1.obj] [file2.obj] [file3.obj]

Linkage specification option

Section .C

Section .A

Section .B

Section .D

Section .A

Section .C

Section .B

input file1.obj file2.obj file3.obj
start .A,.B/1000, .C,.D/8000

file2.Section .D

file1.Section .C

file3.Section .C

file3.Section .B

file2.Section .A

file1.Section .B

file1.Section .A
0x1000

0x8000



R20UT3123EJ0113  Rev.1.13 Page 544 of 951
Dec 01, 2023

CC-RL 6.  SECTION SPECIFICATIONS

(c) If sections with the same name include both absolute-address format and relative-address format, then the sec-
tions with relative-address format are concatenated after the sections with absolute-address format.

(d) The rules for ordering of concatenation for sections with the same name are indicated below, highest priority to 
lowest.

- Order in which input files are specified via the input option or on the command line

- Order in which user libraries are specified via the library option and order of modules input in the library

- Order in which system libraries are specified via the library option and order of modules input in the library

- Order in which environment variable (HLNK_LIBRARY1 to 3) libraries are specified and order of modules 
input in the library

[file1.obj] [file2.obj]

Linkage specification option

Section .A
(align=2, size=0x6D)

Section .A
(align=4,size=0x100)

input file1.obj file2.obj
start .A/1000

file2.Section .A

file1.Section .A
0x1000

0x1070

align=4
Size=0x170

[file1.obj] [file2.obj]

Linkage specification option

Section .A
(align=4, size=0x100)

Section .A
(size=0x6D .ORG 01000H)

input file1.obj file2.obj

file1.Section .A

file2.Section .A
0x1000

0x1070

Section with absolute-address format
Size=0x170



CC-RL 6.  SECTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 545 of 951
Dec 01, 2023

[file2.obj] [usr2.libj]

Section .A Module 3 (Section .A)

0x1000

Module 4 (Section .A)

[syslib2.lib]

Module 7 (Section .A)

Module 8 (Section .A)

[file1.obj] [usr1.lib]

Section .A Module 1 (Section .A)

Module 2 (Section .A)

[syslib1.lib]

Module 5 (Section .A)

Module 6 (Section .A)

Linkage specification option

input   file1.obj file2.obj
library syslib1.lib usr1.lib
start   .A/1000

Environment variable

HLNK_LIBRARY1=syslib2.lib
HLNK_LIBRARY2=usr2.lib

Module 2.Section .A

file2.Section .A

Module 1.Section .A

file1.Section .A

Module 5.Section .A

Module 6.Section .A

Module 7.Section .A

Module 8.Section .A

Module 4.Section .A

Module 3.Section .A



R20UT3123EJ0113  Rev.1.13 Page 546 of 951
Dec 01, 2023

CC-RL 6.  SECTION SPECIFICATIONS

6.2  Special Symbol

The optimizing linker generates symbols indicating the start and end of each output section during linkage or generates 
symbols by specifying options.

6.2.1  Symbols generated regardless of option specifications

The optimizing linker generates symbols indicating the start and end of a section, such as, .data and .sdata.
Start symbol: __ssection-name
End symbol: __esection-name

For example, the symbol names of the start symbol and end symbol of the .data section become __s.data and __e.data, 
respectively. Note that a symbol will not be generated when the defined symbol name is the same with a symbol gener-
ated by the optimizing linker.

6.2.2  Symbols generated by option specifications

The optimizing linker generates the following symbols using option specifications.

Table 6.2 Symbols generated by option specifications

Option Symbol Name Explanation

-hide $CNCL_n
n : 1 - 4294967295

Example) $CNCL_1

The local symbol name in the output file is changed to $CNCL_n.

-user_opt_byte
-ocdbg

.option_byte The section name ".option_byte" is generated when the device file 
is specified with the section name ".option_byte" not existing in the 
source file. Note that the user option byte value and control value 
for on-chip debugging operation are set in the above section.

-security_id .security_id The section name ".security_id" is generated when the device file 
is specified with the section name ".security_id" not existing in the 
source file. Note that the security ID value are set in the above 
section.

-device __STACK_ADDR_START
__STACK_ADDR_END

A consecutive area not used in the RAM area acquired from the 
device file is searched for and the following values are set to 
__STACK_ADDR_START and __STACK_ADDR_END.
  __STACK_ADDR_START: Maximum address of the area + 1
  __STACK_ADDR_END: Minimum address of the area

However, if the -SELF, -SELFW, -OCDTR, -OCDTRW, -OCDHPI, 
or -OCDHPIW option is specified, the area is set from the RAM 
area excluding the saddr area.

__RAM_ADDR_START
__RAM_ADDR_END

The RAM area is acquired from the device file, and the following 
values are set to __RAM_ADDR_START and 
__RAM_ADDR_END.
  __RAM_ADDR_START: Start address of RAM area
  __RAM_ADDR_END: End address of RAM area + 1

-debug_monitor .monitor1
.monitor2

When the device file is specified while section names ".monitor1" 
and ".monitor2" do not exist in the source file, section names 
".monitor1" and ".monitor2" are generated.

-rrm .rrm [V1.13 or later] If section name ".rrm" does not exist in the source 
file, section name ".rrm" is generated.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 547 of 951
Dec 01, 2023

7.  LIBRARY FUNCTION SPECIFICATIONS

This chapter describes the library functions provided in the CC-RL.

7.1  Supplied Libraries

The CC-RL provides the following libraries.

Table 7.1 Supplied Libraries

In order to pass the far pointer to a standard library function that has a variable pointer as a parameter, the user has to 
call the function for the far variable pointer whose function name starts with "_COM_". Note that when the -far_rom option 
is specified, the function macros of the header file are valid and the function for the far variable pointer is automatically 
called.

7.2  Rule for Naming Libraries

When the standard library is used in an application, include the related header files to use the library function.
The runtime library function is a routine that is automatically called by the CC-RL when a floating-point operation or inte-

ger operation is performed.
Refer these libraries using the optimizing linker option (-library).  The type of library files used in a single project must be 

unified.

The rule for naming libraries is given below.
[V1.03 or later]
Since malloc library functions used for normal usage have different facilities from those used for the security facility, they 

become different libraries from the other standard libraries. The malloc libraries are common for RL78-S1, RL78-S2, and 
RL78-S3. 

Supplied Libraries Library Name Outline

Standard library

[V1.03 or later]
(except for calloc, 
free, malloc, and 
realloc)

rl78nm4s.lib
rl78nm4s99.lib [V1.07 or later]

For an 8-bit or 16-bit CPU without extended instructions and 
arithmetic units

rl78cm4s.lib
rl78cm4s99.lib [V1.07 or later]

For a 16-bit CPU using division/multiplication and multiply-
accumulate units

rl78em4s.lib
rl78em8s.lib
rl78em4s99.lib [V1.07 or later]
rl78em8s99.lib [V1.07 or later]

For a 16-bit CPU using division/multiplication extended 
instructions

[V1.03 or later]
Standard library
(calloc, free, mal-
loc, realloc)

malloc_n.lib malloc library for normal usage

malloc_s.lib malloc library for security facility
[Professional Edition only]

Runtime library rl78nm4r.lib For an 8-bit or 16-bit CPU without extended instructions and 
arithmetic units

rl78cm4r.lib For a 16-bit CPU using division/multiplication and multiply-
accumulate units

rl78em4r.lib
rl78em8r.lib

For a 16-bit CPU using division/multiplication extended 
instructions

Startup routine cstart.asm Startup routine

rl78<muldiv><memory_model><float><standard/runtime><lang>.lib
malloc_<secure>.lib  (malloc library) [V1.03 or later]



R20UT3123EJ0113  Rev.1.13 Page 548 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

<muldiv>
n : Without extended instructions and arithmetic units (for RL78-S1 core/RL78-S2 core)
c : Using division/multiplication and multiply-accumulate units (for RL78-S2 core)
e : Using division/multiplication extended instructions (for RL78-S3 core)

<memory_model>
m : Small model or medium model

<float>
4 : Single-precision floating-point number
8 : Double-precision floating-point number (supported only in devices with division/multiplication extended instruc-
tions)

<standard/runtime>
s : Standard library
r : Runtime library

<secure>
n: For normal usage
s: For security facility [Professional Edition only]

<lang>
None: For C90
99: For C99 [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 549 of 951
Dec 01, 2023

7.3  Allocation Area of Libraries and Startup Routine

The sections for code of the library functions can be allocated to all areas. The startup routine can be allocated to only 
addresses 0x00000 to 0x0FFFF.

7.4  Header Files

The list of header files required for using the libraries of the CC-RL are listed below.
The macro definitions and function/variable declarations are described in each file.

Table 7.2 Header Files

Section Name Relocation Attribute Description

.RLIB TEXTF Section for code of runtime libraries

.SLIB TEXTF Section for code of standard libraries

.data

.bss

.constf

DATA
BSS
CONSTF

Section for data of standard libraries

.text TEXT Startup routine

File Name Outline

assert.h Header file for program diagnostics

ctype.h Header file for character conversion and classification

errno.h Header file for reporting error condition

float.h Header file for floating-point representation and floating-point operation

inttypes.h
(C99 only)
 [V1.07 or later]

Header file for format conversion of integer types

iso646.h
(C99 only)
 [V1.06 or later]

Header file for alternative spellings of macro names

limits.h Header file for quantitative limiting of integers

math.h Header file for mathematical calculation

setjmp.h Header file for non-local jump

stdarg.h Header file for supporting functions having variable arguments

stdbool.h
(C99 only)
 [V1.06 or later]

Header file for logical types and values

stddef.h Header file for common definitions

stdint.h Header file for integer type of the specified width

stdio.h Header file for standard I/O

stdlib.h Header file for general utilities

string.h Header file for memory manipulation and character string manipulation

_h_c_lib.h Header file for initialization



R20UT3123EJ0113  Rev.1.13 Page 550 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5  Library Function

This section explains Library Function.
When specifications differ between C90 and C99, (C90) is written for C90 library functions and (C99) is written for C99 

library functions. [V1.07 or later]

When using a standard or mathematical library, the header file must be included.
When the -far_rom option is specified, in order to match the interface of the near/far attribute of the pointer, macro 

replacement is performed for the functions in the header file and then the function for the far variable pointer is called.
When one of the parameters is a pointer, the far pointer is used fixedly for format specification of the standard I/O func-

tions and token division of the string operation functions.  All other cases are dependent on the memory model and -
far_rom option.

If the far pointer is passed as a parameter when small model or medium model is specified, the function for the far vari-
able pointer is called.

In order to use a mathematical function of the float type when double-precision is specified, call a mathematical function 
for the float type, in which "f" is appended to the end of the function name.

7.5.1  Program diagnostic functions

Program diagnostic functions are as follows

Table 7.3 Program Diagnostic Function

Function/Macro Name Outline

assert Adds diagnostic features to the program



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 551 of 951
Dec 01, 2023

Adds diagnostic features to the program.

[Classification]

Standard library

[Syntax]

#include <asssert.h>
void    assert(int expression);

[Description]

Adds diagnostic features to the program.
If expression is true, ends processing without returning a value.  If expression is false, it outputs diagnostic information 

to the standard error file in the format defined by the compiler, and then calls the abort function.
The diagnostic information includes the program text of the parameters, the name of the source file, and the line number 

of the source.
When -lang=c99 is specified, the function name is also included in the diagnostic information. [V1.06 or later]

If you wish to disable the assert macro, include a #define NDEBUG statement before assert.h is loaded.

assert



R20UT3123EJ0113  Rev.1.13 Page 552 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.2  Character operation functions

Character operation functions are as follows.

Table 7.4 Character operation Functions

Function Name Outline

isalnum Identification of ASCII letter or numeral

isalpha Identification of ASCII letter

isascii Identification of ASCII code

isblank [V1.07 or later] Identification of space or tab (C99)

iscntrl Identification of control character

isdigit Identification of decimal number

isgraph Identification of display character other than space

islower Identification of lower-case character

isprint Identification of display character

ispunct Identification of delimiter character

isspace Identification of space/tab/carriage return/line feed/vertical tab/page feed

isupper Identification of upper-case character

isxdigit Identification of hexadecimal number

toascii Judges if a character is an ASCII code

tolower Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

toupper Conversion from lower-case to upper-case (not converted if argument is not in lower-case)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 553 of 951
Dec 01, 2023

Identification of ASCII letter or numeral

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isalnum(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isalnum



R20UT3123EJ0113  Rev.1.13 Page 554 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of ASCII letter

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isalpha(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isalpha



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 555 of 951
Dec 01, 2023

Identification of ASCII code

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isascii(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isascii



R20UT3123EJ0113  Rev.1.13 Page 556 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of space or tab

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far isblank(int c); (C99)

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true). If the result is false, 0 is returned.

isblank [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 557 of 951
Dec 01, 2023

Identification of control character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       iscntrl(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

iscntrl



R20UT3123EJ0113  Rev.1.13 Page 558 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of decimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isdigit(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isdigit



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 559 of 951
Dec 01, 2023

Identification of display character other than space

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isgraph(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isgraph



R20UT3123EJ0113  Rev.1.13 Page 560 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of lower-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       islower(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

islower



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 561 of 951
Dec 01, 2023

Identification of display character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isprint(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isprint



R20UT3123EJ0113  Rev.1.13 Page 562 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of delimiter character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       ispunct(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

ispunct



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 563 of 951
Dec 01, 2023

Identification of space/tab/carriage return/line feed/vertical tab/page feed

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isspace(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isspace



R20UT3123EJ0113  Rev.1.13 Page 564 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Identification of upper-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isupper(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isupper



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 565 of 951
Dec 01, 2023

Identification of hexadecimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       isxdigit(int c);

[Return value]

This function returns a value other than 0 if the value of argument c matches the respective description (i.e., if the result 
is true).  If the result is false, 0 is returned.

isxdigit



R20UT3123EJ0113  Rev.1.13 Page 566 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion to ASCII code

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       toascii(int c);

[Return value]

Returns the value of c with its lower seven bits masked.

[Description]

This function converts the value of c into the ASCII code. Bits (bits 7 to 15) other than the ASCII code range (bits 0 to 6) 
are set to 0.

toascii



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 567 of 951
Dec 01, 2023

Conversion from upper-case to lower-case

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.

[Description]

This function is a macro that converts uppercase characters into the corresponding lowercase characters and leaves 
the other characters unchanged.

tolower



R20UT3123EJ0113  Rev.1.13 Page 568 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion from lower-case to upper-case

[Classification]

Standard library

[Syntax]

#include <ctype.h>
int __far       toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.

[Description]

This function is a macro that converts lowercase characters into the corresponding uppercase characters and leaves 
the other characters unchanged.

toupper



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 569 of 951
Dec 01, 2023

7.5.3  Functions for greatest-width integer types

The functions for greatest-width integer types are as follows.

Table 7.5 Functions for Greatest-Width Integer Types

Function Name Outline

imaxabs [V1.07 or later] Output of absolute value (intmax_t type) (C99)

imaxdiv [V1.07 or later] Division (intmax_t type) (C99)

strtoimax [V1.07 or later] Conversion of character string to integer (intmax_t type) and storing pointer to last char-
acter string (C99)

strtoumax [V1.07 or later] Conversion of character string to integer (uintmax_t type) and storing pointer to last 
character string (C99)



R20UT3123EJ0113  Rev.1.13 Page 570 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtains the absolute value (intmax_t type).

[Classification]

Standard library

[Syntax]

#include <inttypes.h>
intmax_t __far imaxabs(intmax_t j); (C99)

[Return value]

Returns the absolute value of j (size of j), | j |. If the input value of imaxabs is the smallest negative value, the same 
value is returned.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is 
not negative, the result is j.

imaxabs [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 571 of 951
Dec 01, 2023

Performs division of intmax_t type to obtain the quotient and remainder

[Classification]

Standard library

[Syntax]

#include <inttypes.h>
imaxdiv_t __far imaxdiv(intmax_t numer, intmax_t denom); (C99)

[Return value]

The structure holding the result of the division is returned. When divided by 0, -1 is set as quotient quot and numer is set 
as remainder rem.

[Description]

This function is used to divide a value of intmax_t type.
This function calculates the quotient (quot) and remainder (rem) resulting from dividing numerator numer by denomina-

tor denom, and stores these two integers as the members of the following structure imaxdiv_t.

When the value cannot be divided, the quotient of the result becomes an integer that is closest to the algebraical quo-
tient and has a smaller absolute value than it.

imaxdiv [V1.07 or later]

typedef struct {
    intmax_t quot;
    intmax_t rem;
} imaxdiv_t;



R20UT3123EJ0113  Rev.1.13 Page 572 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Converts a character string to an integer (intmax_t type) and stores the pointer to the last character string.

[Classification]

Standard library

[Syntax]

#include <inttypes.h>
intmax_t __far strtoimax(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); (C99)
intmax_t __far _COM_strtoimax_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int base); (C99)

[Return value]

If the partial character string has been converted, the converted value is returned. If the character string could not be 
converted, 0 is returned.

If an overflow occurs, this function returns INTMAX_MAX or INTMAX_MIN and sets macro ERANGE to global variable 
errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into an intmax_t-type representa-
tion. If base is 0, the string is interpreted as the C radix representation. If base is in the range from 2 to 36, the string is 
interpreted as a radix. When endptr is not a null pointer, the pointer to the remaining strings that were not converted is set 
in endptr.

strtoimax [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 573 of 951
Dec 01, 2023

Converts a character string to an integer (uintmax_t type) and stores the pointer to the last character string.

[Classification]

Standard library

[Syntax]

#include <inttypes.h>
uintmax_t __far strtoumax(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); (C99)
uintmax_t __far _COM_strtoumax_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int base); (C99)

[Return value]

If the partial character string has been converted, the converted value is returned. If the character string could not be 
converted, 0 is returned.

If an overflow occurs, this function returns UINTMAX_MAX and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a uintmax_t-type representa-
tion. If base is 0, the string is interpreted as the C radix representation. If base is in the range from 2 to 36, the string is 
interpreted as a radix. When endptr is not a null pointer, the pointer to the remaining strings that were not converted is set 
in endptr.

strtoumax [V1.07 or later]



R20UT3123EJ0113  Rev.1.13 Page 574 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.4  Mathematical functions

Mathematical functions are as follows.

Table 7.6 Mathematical Functions

Function/Macro Name Outline

fpclassify [V1.08 or later] Classifies a floating-point number as NaN, infinite, normal, subnormal or zero (C99)

isfinite [V1.08 or later] Determines whether a floating-point number has a finite value (zero, subnormal, or 
normal) (C99)

isinf [V1.08 or later] Determines whether a floating-point number is an infinity (C99)

isnan [V1.08 or later] Determines whether a floating-point number is a NaN (C99)

isnormal [V1.08 or later] Determines whether a floating-point number is normal (neither zero, subnormal, infi-
nite, nor NaN) (C99)

signbit [V1.08 or later] Determines whether the sign of a floating-point number is negative (C99)

acos Arc cosine

acosf Arc cosine

acosl [V1.08 or later] Arc cosine (C99)

asin Arc sine

asinf Arc sine

asinl [V1.08 or later] Arc sine (C99)

atan Arc tangent

atanf Arc tangent

atanl [V1.08 or later] Arc tangent (C99)

atan2 Arc tangent (y / x)

atan2f Arc tangent (y / x)

atan2l [V1.08 or later] Arc tangent (y / x) (C99)

cos Cosine

cosf Cosine

cosl [V1.08 or later] Cosine (C99)

sin Sine

sinf Sine

sinl [V1.08 or later] Sine (C99)

tan Tangent

tanf Tangent

tanl [V1.08 or later] Tangent (C99)

acosh [V1.08 or later] Arc hyperbolic cosine (C99)

acoshf [V1.08 or later] Arc hyperbolic cosine (C99)

acoshl [V1.08 or later] Arc hyperbolic cosine (C99)

asinh [V1.08 or later] Arc hyperbolic sine (C99)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 575 of 951
Dec 01, 2023

asinhf [V1.08 or later] Arc hyperbolic sine (C99)

asinhl [V1.08 or later] Arc hyperbolic sine (C99)

atanh [V1.08 or later] Arc hyperbolic tangent (C99)

atanhf [V1.08 or later] Arc hyperbolic tangent (C99)

atanhl [V1.08 or later] Arc hyperbolic tangent (C99)

cosh Hyperbolic cosine

coshf Hyperbolic cosine

coshl [V1.08 or later] Hyperbolic cosine (C99)

sinh Hyperbolic sine

sinhf Hyperbolic sine

sinhl [V1.08 or later] Hyperbolic sine (C99)

tanh Hyperbolic tangent

tanhf Hyperbolic tangent

tanhl [V1.08 or later] Hyperbolic tangent (C99)

exp Exponent function (natural logarithm)

expf Exponent function (natural logarithm)

expl [V1.08 or later] Exponent function (natural logarithm) (C99)

frexp Break a floating-point number into a normalized fraction and an integral power of 2

frexpf Break a floating-point number into a normalized fraction and an integral power of 2

frexpl [V1.08 or later] Break a floating-point number into a normalized fraction and an integral power of 2 
(C99)

ldexp Multiply a floating-point number by an integral power of 2

ldexpf Multiply a floating-point number by an integral power of 2

ldexpl [V1.08 or later] Multiply a floating-point number by an integral power of 2 (C99)

log Logarithmic function (natural logarithm)

logf Logarithmic function (natural logarithm)

logl [V1.08 or later] Logarithmic function (natural logarithm) (C99)

log10 Logarithmic function (base = 10)

log10f Logarithmic function (base = 10)

log10l [V1.08 or later] Logarithmic function (base = 10) (C99)

log1p [V1.08 or later] Natural logarithm of 1 plus the argument (C99)

log1pf [V1.08 or later] Natural logarithm of 1 plus the argument (C99)

log1pl [V1.08 or later] Natural logarithm of 1 plus the argument (C99)

modf Break a floating-point number into integral and fractional parts

modff Break a floating-point number into integral and fractional parts

modfl [V1.08 or later] Break a floating-point number into integral and fractional parts (C99)

Function/Macro Name Outline



R20UT3123EJ0113  Rev.1.13 Page 576 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

scalbn [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

scalbnf [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

scalbnl [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

scalbln [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

scalblnf [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

scalblnl [V1.09 or later] Multiply a floating-point number by an integral power of FLT_RADIX (C99)

fabs Absolute value function

fabsf Absolute value function

fabsl [V1.08 or later] Absolute value function (C99)

pow Power function

powf Power function

powl [V1.08 or later] Power function (C99)

sqrt Square root function

sqrtf Square root function

sqrtl [V1.08 or later] Square root function (C99)

ceil The smallest integer value not less than a floating-point number

ceilf The smallest integer value not less than a floating-point number

ceill [V1.08 or later] The smallest integer value not less than a floating-point number (C99)

floor The largest integer value not greater than a floating-point number

floorf The largest integer value not greater than a floating-point number

floorl [V1.08 or later] The largest integer value not greater than a floating-point number (C99)

nearbyint [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

nearbyintf [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

nearbyintl [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

rint [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

rintf [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

rintl [V1.09 or later] Rounding to an integer value in floating-point format according to the current round-
ing direction (C99)

lrint [V1.09 or later] Rounding to a long type integer value according to the current rounding direction 
(C99)

lrintf [V1.09 or later] Rounding to a long type integer value according to the current rounding direction 
(C99)

lrintl [V1.09 or later] Rounding to a long type integer value according to the current rounding direction 
(C99)

Function/Macro Name Outline



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 577 of 951
Dec 01, 2023

llrint [V1.09 or later] Rounding to a long long type integer value according to the current rounding direc-
tion (C99)

llrintf [V1.09 or later] Rounding to a long long type integer value according to the current rounding direc-
tion (C99)

llrintl [V1.09 or later] Rounding to a long long type integer value according to the current rounding direc-
tion (C99)

round [V1.09 or later] Rounding to integer value in floating-point format (C99)

roundf [V1.09 or later] Rounding to integer value in floating-point format (C99)

roundl [V1.09 or later] Rounding to integer value in floating-point format (C99)

lround [V1.09 or later] Rounding to a long type integer value (C99)

lroundf [V1.09 or later] Rounding to a long type integer value (C99)

lroundl [V1.09 or later] Rounding to a long type integer value (C99)

llround [V1.09 or later] Rounding to a long long type integer value (C99)

llroundf [V1.09 or later] Rounding to a long long type integer value (C99)

llroundl [V1.09 or later] Rounding to a long long type integer value (C99)

trunc [V1.09 or later] Rounding to truncated integer value (C99)

truncf [V1.09 or later] Rounding to truncated integer value (C99)

truncl [V1.09 or later] Rounding to truncated integer value (C99)

fmod Remainder function

fmodf Remainder function

fmodl [V1.08 or later] Remainder function (C99)

copysign [V1.09 or later] Generates a value consisting of the given absolute value and sign (C99)

copysignf [V1.09 or later] Generates a value consisting of the given absolute value and sign (C99)

copysignl [V1.09 or later] Generates a value consisting of the given absolute value and sign (C99)

nan [V1.09 or later] Convert character string to NaN (C99)

nanf [V1.09 or later] Convert character string to NaN (C99)

nanl [V1.09 or later] Convert character string to NaN (C99)

fdim [V1.09 or later] Calculation of the positive difference (C99)

fdimf [V1.09 or later] Calculation of the positive difference (C99)

fdiml [V1.09 or later] Calculation of the positive difference (C99)

fmax [V1.09 or later] Obtaing the greater value (C99)

fmaxf [V1.09 or later] Obtaing the greater value (C99)

fmaxl [V1.09 or later] Obtaing the greater value (C99)

fmin [V1.09 or later] Obtaing the smaller value (C99)

fminf [V1.09 or later] Obtaing the smaller value (C99)

fminl [V1.09 or later] Obtaing the smaller value (C99)

Function/Macro Name Outline



R20UT3123EJ0113  Rev.1.13 Page 578 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

isgreater [V1.09 or later] Determining whether the first argument is greater than the second argument (C99)

isgreaterequal [V1.09 or later] Determining whether the first argument is equal to or greater than the second argu-
ment (C99)

isless [V1.09 or later] Determining whether the first argument is smaller than the second argument (C99)

islessequal [V1.09 or later] Determining whether the first argument is equal to or smaller than the second argu-
ment (C99)

islessgreater [V1.09 or later] Determining whether the first argument is smaller or greater than the second argu-
ment (C99)

isunordered [V1.09 or later] Determining whether the arguments are not ordered (C99)

Function/Macro Name Outline



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 579 of 951
Dec 01, 2023

Classifies its argument value as NaN, infinite, normal, subnormal or zero.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int fpclassify(real-floating x); (C99)

[Return value]

If the value of the argument is NaN, FP_NAN is returned.
If the value of the argument is infinite, FP_INFINITE is returned.
If the value of the argument is a normal number, FP_NORMAL is returned.
If the value of the argument is a subnormal number, FP_SUBNORMAL is returned.
If the value of the argument is 0, FP_ZERO is returned.
For the value returned by each macro, refer to math.h.

[Description]

This macro classifies its argument value as NaN, infinite, normal, subnormal or zero.
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

fpclassify [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 580 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Determines whether its argument has a finite value (zero, subnormal, or normal).

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isfinite(real-floating x); (C99) 

[Return value]

If the argument is finite (0, subnormal number, or normal number), a value other than 0 is returned.
If the argument is infinite or NaN, 0 is returned.

[Description]

This macro determines whether its argument has a finite value (zero, subnormal, or normal).
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

isfinite [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 581 of 951
Dec 01, 2023

Determines whether its argument value is an infinity.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isinf(real-floating x); (C99)

[Return value]

If the argument is positive or negative infinite, a value other than 0 is returned.
In other cases, 0 is returned.

[Description]

This macro determines whether its argument value is an infinity (positive or negative).
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

isinf [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 582 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Determines whether its argument value is a NaN.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isnan(real-floating x); (C99)

[Return value]

If the argument is NaN, a value other than 0 is returned.
In other cases, 0 is returned.

[Description]

This macro determines whether its argument value is a NaN.
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

isnan [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 583 of 951
Dec 01, 2023

Determines whether its argument value is normal (neither zero, subnormal, infinite, nor NaN).

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isnormal(real-floating x); (C99)

[Return value]

If the argument is a normal number, a value other than 0 is returned.
If the argument is 0, a subnormal number, infinite, or NaN, 0 is returned.

[Description]

This macro determines whether its argument value is normal (neither zero, subnormal, infinite, nor NaN).
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

isnormal [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 584 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Determines whether the sign of its argument value is negative.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int signbit(real-floating x); (C99)

[Return value]

If the sign of the argument is negative, a value other than 0 is returned.
If the sign of the argument is positive, 0 is returned.

[Description]

This macro determines whether the sign of its argument value is negative.
If a type other than the floating-point type is passed to the argument, correct operation is not guaranteed.

signbit [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 585 of 951
Dec 01, 2023

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   acos(double x);

[Return value]

Returns the arc cosine of x.  The returned value is in radian and in a range of [0, .
If x is not between [-1, 1], acos returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc cosine of x.  Specify x as, -1<= x <= 1.

acos



R20UT3123EJ0113  Rev.1.13 Page 586 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   acosf(float x);

[Return value]

Returns the arc cosine of x.  The returned value is in radian and in a range of [0, .
If x is not between [-1, 1], acosf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc cosine of x.  Specify x as, -1<= x <= 1.

acosf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 587 of 951
Dec 01, 2023

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far acosl(long double x); (C99)

[Return value]

Returns the arc cosine of x.  The returned value is in radian and in a range of [0, .
If x is not between [-1, 1], acosl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc cosine of x.  Specify x as, -1<= x <= 1.

acosl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 588 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   asin(double x);

[Return value]

Returns the arc sine (arcsine) of x.  The returned value is in radian and in a range of [- / 2, / 2].
If x is not between [-1, 1], asin returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x.  Specify x as, -1 <= x <= 1.

asin



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 589 of 951
Dec 01, 2023

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   asinf(float x);

[Return value]

Returns the arc sine (arcsine) of x.  The returned value is in radian and in a range of [- / 2, / 2].
If x is not between [-1, 1], asinf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x.  Specify x as, -1 <= x <= 1.

asinf



R20UT3123EJ0113  Rev.1.13 Page 590 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far asinl(long double x); (C99)

[Return value]

Returns the arc sine (arcsine) of x.  The returned value is in radian and in a range of [- / 2, / 2].
If x is not between [-1, 1], asinl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x.  Specify x as, -1 <= x <= 1.

asinl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 591 of 951
Dec 01, 2023

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   atan(double x);

[Return value]

Returns the arc tangent (arctangent) of x.  The returned value is in radian and in a range of [-/ 2, / 2].
When x is Not-a-Number, this function returns Not-a-Number and sets macro EDOM to global variable errno.
When x is -0, this function returns -0.
If the solution is a denormal number,  atan sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent (arctangent) of x.

atan



R20UT3123EJ0113  Rev.1.13 Page 592 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   atanf(float x);

[Return value]

Returns the arc tangent (arctangent) of x.  The returned value is in radian and in a range of [-/ 2, / 2].
When x is Not-a-Number, this function returns Not-a-Number and sets macro EDOM to global variable errno.
When x is -0, this function returns -0.
If the solution is a denormal number,  atanf sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent (arctangent) of x.

atanf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 593 of 951
Dec 01, 2023

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far atanl(long double x); (C99)

[Return value]

Returns the arc tangent (arctangent) of x.  The returned value is in radian and in a range of [-/ 2, / 2].
When x is Not-a-Number, this function returns Not-a-Number and sets macro EDOM to global variable errno.
When x is -0, this function returns -0.
If the solution is a denormal number,  atanl sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent (arctangent) of x.

atanl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 594 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   atan2(double y, double x);

[Return value]

Returns the arc tangent (arctangent) of y / x.  The returned value is in radian and in a range of [-, ].
When either x or y is Not-a-Number, x and y are both 0, or x and y are both , this function returns Not-a-Number and 

sets macro EDOM to global variable errno.
If the solution is a denormal number or has disappeared and became 0, atan2 sets macro ERANGE to global variable 

errno.

[Description]

This function calculates the arc tangent of y / x.  At this time, the quadrant of the return value is determined based on the 
sign of both arguments.

atan2



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 595 of 951
Dec 01, 2023

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   atan2f(float y, float x);

[Return value]

Returns the arc tangent (arctangent) of y / x.  The returned value is in radian and in a range of [-, ].
When either x or y is Not-a-Number, x and y are both 0, or x and y are both , this function returns Not-a-Number and 

sets macro EDOM to global variable errno.
If the solution is a denormal number or has disappeared and became 0, atan2f sets macro ERANGE to global variable 

errno.

[Description]

This function calculates the arc tangent of y / x.  At this time, the quadrant of the return value is determined based on the 
sign of both arguments.

atan2f



R20UT3123EJ0113  Rev.1.13 Page 596 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far atan2l(long double y, long double x); (C99)

[Return value]

Returns the arc tangent (arctangent) of y / x.  The returned value is in radian and in a range of [-, ].
When either x or y is Not-a-Number, x and y are both 0, or x and y are both , this function returns Not-a-Number and 

sets macro EDOM to global variable errno.
If the solution is a denormal number or has disappeared and became 0, atan2l sets macro ERANGE to global variable 

errno.

[Description]

This function calculates the arc tangent of y / x.  At this time, the quadrant of the return value is determined based on the 
sign of both arguments.

atan2l [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 597 of 951
Dec 01, 2023

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   cos(double x);

[Return value]

Returns the cosine of x.
If x is Not-a-Number or , cos returns Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number,  cos sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

cos



R20UT3123EJ0113  Rev.1.13 Page 598 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   cosf(float x);

[Return value]

Returns the cosine of x.
If x is Not-a-Number or , cosf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number,  cosf sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

cosf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 599 of 951
Dec 01, 2023

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far cosl(long double x); (C99)

[Return value]

Returns the cosine of x.
If x is Not-a-Number or , cosl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number,  cosl sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

cosl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 600 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   sin(double x);

[Return value]

Returns the sine of x.
If x is Not-a-Number or , sin returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number,  sin sets macro ERANGE to global variable errno.

[Description]

This function calculates the sine of x.  Specify the angle in radian.

sin



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 601 of 951
Dec 01, 2023

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   sinf(float x);

[Return value]

Returns the sine of x.
If x is Not-a-Number or , sinf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, sinf sets macro ERANGE to global variable errno.

[Description]

This function calculates the sine of x.  Specify the angle in radian.

sinf



R20UT3123EJ0113  Rev.1.13 Page 602 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far sinl(long double x); (C99)

[Return value]

Returns the sine of x.
If x is Not-a-Number or , sinl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, sinl sets macro ERANGE to global variable errno.

[Description]

This function calculates the sine of x.  Specify the angle in radian.

sinl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 603 of 951
Dec 01, 2023

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   tan(double x);

[Return value]

Returns the tangent of x.
If x is Not-a-Number or , tan returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, tan sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

tan



R20UT3123EJ0113  Rev.1.13 Page 604 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   tanf(float x);

[Return value]

Returns the tangent of x.
If x is Not-a-Number or , tanf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, tanf sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

tanf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 605 of 951
Dec 01, 2023

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far tanl(long double x); (C99)

[Return value]

Returns the tangent of x.
If x is Not-a-Number or , tanl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If the solution is a denormal number, tanl sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x.  Specify the angle in radian.

tanl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 606 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far acosh(double x); (C99)

[Return value]

Returns the arc hyperbolic cosine of x.
If x is smaller than 1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc hyperbolic cosine of x. Specify the angle in radian.

acosh [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 607 of 951
Dec 01, 2023

Arc hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far acoshf(float x); (C99)

[Return value]

Returns the arc hyperbolic cosine of x.
If x is smaller than 1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc hyperbolic cosine of x. Specify the angle in radian.

acoshf [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 608 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far acoshl(long double x); (C99)

[Return value]

Returns the arc hyperbolic cosine of x.
If x is smaller than 1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the arc hyperbolic cosine of x. Specify the angle in radian.

acoshl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 609 of 951
Dec 01, 2023

Arc hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far asinh(double x); (C99)

[Return value]

Returns the arc hyperbolic sine of x.

[Description]

This function calculates the arc hyperbolic sine of x. Specify the angle in radian.

asinh [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 610 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far asinhf(float x); (C99)

[Return value]

Returns the arc hyperbolic sine of x.

[Description]

This function calculates the arc hyperbolic sine of x. Specify the angle in radian.

asinhf [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 611 of 951
Dec 01, 2023

Arc hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far asinhl(long double x); (C99)

[Return value]

Returns the arc hyperbolic sine of x.

[Description]

This function calculates the arc hyperbolic sine of x. Specify the angle in radian.

asinhl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 612 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far atanh(double x); (C99)

[Return value]

Returns the arc hyperbolic tangent of x.
If x is not inside the range [-1, +1], returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VAL and sets macro ERANGE to global variable errno.
If x is 1, returns HUGE_VAL and sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc hyperbolic tangent of x. Specify the angle in radian.

atanh [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 613 of 951
Dec 01, 2023

Arc hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far atanhf(float x); (C99)

[Return value]

Returns the arc hyperbolic tangent of x.
If x is not inside the range [-1, +1], returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VALF and sets macro ERANGE to global variable errno.
If x is 1, returns HUGE_VALF and sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc hyperbolic tangent of x. Specify the angle in radian.

atanhf [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 614 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Arc hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far atanhl(long double x); (C99)

[Return value]

Returns the arc hyperbolic tangent of x.
If x is not inside the range [-1, +1], returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VALL and sets macro ERANGE to global variable errno.
If x is 1, returns HUGE_VALL and sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc hyperbolic tangent of x. Specify the angle in radian.

atanhl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 615 of 951
Dec 01, 2023

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   cosh(double x);

[Return value]

Returns the hyperbolic cosine of x.
cosh returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x + e -x) / 2

cosh



R20UT3123EJ0113  Rev.1.13 Page 616 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   coshf(float x);

[Return value]

Returns the hyperbolic cosine of x.
coshf returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x + e -x) / 2

coshf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 617 of 951
Dec 01, 2023

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far coshl(long double x); (C99)

[Return value]

Returns the hyperbolic cosine of x.
coshl returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x + e -x) / 2

coshl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 618 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   sinh(double x);

[Return value]

Returns the hyperbolic sine of x.
sinh returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x - e -x) / 2

sinh



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 619 of 951
Dec 01, 2023

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   sinhf(float x);

[Return value]

Returns the hyperbolic sine of x.
sinhf returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x - e -x) / 2

sinhf



R20UT3123EJ0113  Rev.1.13 Page 620 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far sinhl(long double x); (C99)

[Return value]

Returns the hyperbolic sine of x.
sinhl returns  and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x.  Specify the angle in radian.  The definition expression is as follows.

(e x - e -x) / 2

sinhl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 621 of 951
Dec 01, 2023

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   tanh(double x);

[Return value]

Returns the hyperbolic tangent of x.
If the solution is a denormal number,  tanh sets macro ERANGE to global variable errno.

[Description]

This function calculates the hyperbolic tangent of x.  Specify the angle in radian.  The definition expression is as follows.

sinh (x) / cosh (x)

tanh



R20UT3123EJ0113  Rev.1.13 Page 622 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   tanhf(float x);

[Return value]

Returns the hyperbolic tangent of x.
If the solution is a denormal number,  tanhf sets macro ERANGE to global variable errno.

[Description]

This function calculates the hyperbolic tangent of x.  Specify the angle in radian.  The definition expression is as follows.

sinhf (x) / coshf (x)

tanhf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 623 of 951
Dec 01, 2023

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far tanhl(long double x); (C99)

[Return value]

Returns the hyperbolic tangent of x.
If the solution is a denormal number,  tanhl sets macro ERANGE to global variable errno.

[Description]

This function calculates the hyperbolic tangent of x.  Specify the angle in radian.  The definition expression is as follows.

sinhl (x) / coshl (x)

tanhl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 624 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain an exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   exp(double x);

[Return value]

Returns the xth power of e.
exp returns 0 or an denormal number if an underflow occurs, and sets macro ERANGE to global variable errno.
If an overflow occurs, exp returns  and sets macro ERANGE to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

exp



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 625 of 951
Dec 01, 2023

Obtain an exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   expf(float x);

[Return value]

Returns the xth power of e.
expf returns 0 or an denormal number if an underflow occurs, and sets macro ERANGE to global variable errno.
If an overflow occurs, expf returns  and sets macro ERANGE to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

expf



R20UT3123EJ0113  Rev.1.13 Page 626 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain an exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far expl(long double x); (C99)

[Return value]

Returns the xth power of e.
expl returns 0 or an denormal number if an underflow occurs, and sets macro ERANGE to global variable errno.
If an overflow occurs, expl returns  and sets macro ERANGE to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

expl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 627 of 951
Dec 01, 2023

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   frexp(double val, int *exp);

[Return value]

Returns the mantissa of val.  The value to be returned ranges between [1 / 2, 1) or is 0.
frexp sets 0 to *exp and returns 0 if val is 0.
If val is a Not-a-Number (NaN) or , frexp returns a Not-a-Number (NaN) and sets  0 to *exp and macro EDOM to 

global variable errno.

[Description]

Divides a floating-point number into a normalized number and an integral power of 2.  The integral power of 2 is stored 
in *exp.

This function expresses val of double type as mantissa m and the pth power of 2.  The resulting mantissa m is 0.5 <= | 
m | < 1.0, unless val is zero.  p is stored in *exp.  m and p are calculated so that val = m * 2 p.

frexp



R20UT3123EJ0113  Rev.1.13 Page 628 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   frexpf(float val, int *exp);

[Return value]

Returns the mantissa of val.  The value to be returned ranges between [1 / 2, 1) or is 0.
frexpf sets 0 to *exp and returns 0 if val is 0.
If val is a Not-a-Number (NaN) or , frexpf returns a Not-a-Number (NaN) and sets  0 to *exp and macro EDOM to 

global variable errno.

[Description]

Divides a floating-point number into a normalized number and an integral power of 2.  The integral power of 2 is stored 
in *exp.

This function expresses val of float type as mantissa m and the pth power of 2.  The resulting mantissa m is 0.5 <= | m | 
< 1.0, unless val is zero.  p is stored in *exp.  m and p are calculated so that val = m * 2 p.

frexpf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 629 of 951
Dec 01, 2023

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far frexpl(long double val, int *exp); (C99)

[Return value]

Returns the mantissa of val.  The value to be returned ranges between [1 / 2, 1) or is 0.
frexpl sets 0 to *exp and returns 0 if val is 0.
If val is a Not-a-Number (NaN) or , frexpl returns a Not-a-Number (NaN) and sets  0 to *exp and macro EDOM to 

global variable errno.

[Description]

Divides a floating-point number into a normalized number and an integral power of 2.  The integral power of 2 is stored 
in *exp.

This function expresses val of long double type as mantissa m and the pth power of 2.  The resulting mantissa m is 0.5 
<= | m | < 1.0, unless val is zero.  p is stored in *exp.  m and p are calculated so that val = m * 2 p.

frexpl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 630 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Multiply a floating-point number and an integral power of 2

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   ldexp(double val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.
When val is a Not-a-Number (NaN), ldexp returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing ldexp, it sets macro ERANGE to global variable errno.  If an 

underflow occurs, ldexp returns an denormal number.  If an overflow occurs, it returns .

[Description]

Multiply a floating-point number and an integral power of 2.

ldexp



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 631 of 951
Dec 01, 2023

Multiply a floating-point number and an integral power of 2

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   ldexpf(float val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.
When val is a Not-a-Number (NaN), ldexpf returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing ldexpf, it sets macro ERANGE to global variable errno.  If an 

underflow occurs, ldexpf returns an denormal number.  If an overflow occurs, it returns .

[Description]

Multiply a floating-point number and an integral power of 2.

ldexpf



R20UT3123EJ0113  Rev.1.13 Page 632 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Multiply a floating-point number and an integral power of 2

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far ldexpl(long double val, int exp); (C99)

[Return value]

Returns the value calculated byval x 2 exp.
When val is a Not-a-Number (NaN), ldexpl returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing ldexpl, it sets macro ERANGE to global variable errno.  If an 

underflow occurs, ldexpl returns an denormal number.  If an overflow occurs, it returns .

[Description]

Multiply a floating-point number and an integral power of 2.

ldexpl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 633 of 951
Dec 01, 2023

Obtain the natural logarithm

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   log(double x);

[Return value]

Returns the natural logarithm of x.
log returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

log



R20UT3123EJ0113  Rev.1.13 Page 634 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain the natural logarithm

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   logf(float x);

[Return value]

Returns the natural logarithm of x.
logf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

logf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 635 of 951
Dec 01, 2023

Obtain the natural logarithm

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far logl(long double x); (C99)

[Return value]

Returns the natural logarithm of x.
logl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

logl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 636 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain the logarithm with a base of 10

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far    log10(double x);

[Return value]

Returns the logarithm of x with base 10.
log10 returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10.

log10



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 637 of 951
Dec 01, 2023

Obtain the logarithm with a base of 10

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   log10f(float x);

[Return value]

Returns the logarithm of x with base 10.
log10f returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10.

log10f



R20UT3123EJ0113  Rev.1.13 Page 638 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain the logarithm with a base of 10

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far log10l(long double x); (C99)

[Return value]

Returns the logarithm of x with base 10.
log10l returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is negative.
If x is zero, it returns - and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10.

log10l [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 639 of 951
Dec 01, 2023

Natural logarithm of 1 plus the argument

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far log1p(double x); (C99)

[Return value]

Returns the natural logarithm of 1 plus x.
If x is smaller than -1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VAL and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of 1 plus x.

log1p [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 640 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Natural logarithm of 1 plus the argument

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far log1pf(float x); (C99)

[Return value]

Returns the natural logarithm of 1 plus x.
If x is smaller than -1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VALF and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of 1 plus x.

log1pf [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 641 of 951
Dec 01, 2023

Natural logarithm of 1 plus the argument

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far log1pl(long double x); (C99)

[Return value]

Returns the natural logarithm of 1 plus x.
If x is smaller than -1, returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is -1, returns -HUGE_VALL and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of 1 plus x.

log1pl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 642 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   modf(double val, double *iptr);

[Return value]

Returns a signed decimal part.  The sign of the result is the same as the sign of val.
When val is , this function returns 0 and sets  to iptr and macro EDOM to global variable errno.
When val is Not-a-Number, this function returns Not-a-Number and sets Not-a-Number to iptr and macro EDOM to 

global variable errno.

[Description]

This function divides val into integer and decimal parts, and stores the integer part in *iptr.  The sign of the integer and 
decimal parts is the same as the sign of val.

modf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 643 of 951
Dec 01, 2023

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   modff(float val, float *iptr);

[Return value]

Returns a signed decimal part.  The sign of the result is the same as the sign of val.
When val is , this function returns 0 and sets  to iptr and macro EDOM to global variable errno.
When val is Not-a-Number, this function returns Not-a-Number and sets Not-a-Number to iptr and macro EDOM to 

global variable errno.

[Description]

This function divides val into integer and decimal parts, and stores the integer part in *iptr.  The sign of the integer and 
decimal parts is the same as the sign of val.

modff



R20UT3123EJ0113  Rev.1.13 Page 644 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far modfl(long double val, long double *iptr); (C99)

[Return value]

Returns a signed decimal part.  The sign of the result is the same as the sign of val.
When val is , this function returns 0 and sets  to iptr and macro EDOM to global variable errno.
When val is Not-a-Number, this function returns Not-a-Number and sets Not-a-Number to iptr and macro EDOM to 

global variable errno.

[Description]

This function divides val into integer and decimal parts, and stores the integer part in *iptr.  The sign of the integer and 
decimal parts is the same as the sign of val.

modfl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 645 of 951
Dec 01, 2023

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far scalbn(double x, int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalbn returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If an underflow or overflow occurs as a result of executing scalbn, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalbn returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalbn [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 646 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far scalbnf(float x, int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalbnf returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing scalbnf, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalbnf returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalbnf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 647 of 951
Dec 01, 2023

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far scalbnl(long double x, int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalbnl returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing scalbnl, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalbnl returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalbnl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 648 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far scalbln(double x, long int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalbln returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing scalbln, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalbln returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalbln [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 649 of 951
Dec 01, 2023

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far scalblnf(float x, long int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalblnf returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing scalblnf, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalblnf returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalblnf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 650 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Multiply a floating-point number by an integral power of FLT_RADIX.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far scalblnl(long double x, long int n); (C99)

[Return value]

Returns the value calculated by x x FLT_RADIXn.
When x is a Not-a-Number (NaN), scalblnl returns a Not-a-Number (NaN) and sets macro EDOM to global variable 

errno.
If an underflow or overflow occurs as a result of executing scalblnl, it sets macro ERANGE to global variable errno. If an 

underflow occurs, scalblnl returns an denormal number. If an overflow occurs, it returns ∞ . 

[Description]

Multiply a floating-point number by an integral power of FLT_RADIX.

scalblnl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 651 of 951
Dec 01, 2023

Calculates the absolute value

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   fabs(double x);

[Return value]

Returns the absolute value (size) of x.
If x is , fabs returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), fabs returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the absolute value (size) of x.

fabs



R20UT3123EJ0113  Rev.1.13 Page 652 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the absolute value

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   fabsf(float x);

[Return value]

Returns the absolute value (size) of x.
If x is , fabsf returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), fabsf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the absolute value (size) of x.

fabsf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 653 of 951
Dec 01, 2023

Calculates the absolute value

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far fabsl(long double x); (C99)

[Return value]

Returns the absolute value (size) of x.
If x is , fabsl returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), fabsl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the absolute value (size) of x.

fabsl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 654 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the yth power of x.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   pow(double x, double y);

[Return value]

Returns the yth power of x.
If x < 0 and y is a non-integer or if x = 0 and y <= 0, pow returns a Not-a-Number (NaN) and sets the macro EDOM for 

the global variable errno.
If an overflow occurs, pow returns  and sets the macro ERANGE for errno.
If an underflow occurs, pow returns a denormal number and sets the macro ERANGE for errno.

[Description]

This function calculates the yth power of x.

pow



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 655 of 951
Dec 01, 2023

Calculates the yth power of x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   powf(float x, float y);

[Return value]

Returns the yth power of x.
If x < 0 and y is a non-integer or if x = 0 and y <= 0, powf returns a Not-a-Number (NaN) and sets the macro EDOM for 

the global variable errno.
If an overflow occurs, powf returns  and sets the macro ERANGE for errno.
If an underflow occurs, powf returns a denormal number and sets the macro ERANGE for errno.

[Description]

This function calculates the yth power of x.

powf



R20UT3123EJ0113  Rev.1.13 Page 656 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the yth power of x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far powl(long double x, long double y); (C99)

[Return value]

Returns the yth power of x.
If x < 0 and y is a non-integer or if x = 0 and y <= 0, powl returns a Not-a-Number (NaN) and sets the macro EDOM for 

the global variable errno.
If an overflow occurs, powl returns  and sets the macro ERANGE for errno.
If an underflow occurs, powl returns a denormal number and sets the macro ERANGE for errno.

[Description]

This function calculates the yth power of x.

powl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 657 of 951
Dec 01, 2023

Calculates the square root

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   sqrt(double x);

[Return value]

Returns the square root of x.
sqrt returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is a negative number.

[Description]

This function calculates the square root of x.

sqrt



R20UT3123EJ0113  Rev.1.13 Page 658 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the square root

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   sqrtf(float x);

[Return value]

Returns the square root of x.
sqrtf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is a negative number.

[Description]

This function calculates the square root of x.

sqrtf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 659 of 951
Dec 01, 2023

Calculates the square root

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far sqrtl(long double x); (C99)

[Return value]

Returns the square root of x.
sqrtl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno if x is a negative number.

[Description]

This function calculates the square root of x.

sqrtl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 660 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the minimum integer value greater than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   ceil(double x);

[Return value]

Returns the minimum integer greater than x and x.
If x is , ceil returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), ceil returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the minimum integer value greater than x and x.

ceil



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 661 of 951
Dec 01, 2023

Calculates the minimum integer value greater than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   ceilf(float x);

[Return value]

Returns the minimum integer greater than x and x.
If x is , ceilf returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), ceilf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the minimum integer value greater than x and x.

ceilf



R20UT3123EJ0113  Rev.1.13 Page 662 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the minimum integer value greater than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far ceill(long double x); (C99)

[Return value]

Returns the minimum integer greater than x and x.
If x is , ceill returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), ceill returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the minimum integer value greater than x and x.

ceill [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 663 of 951
Dec 01, 2023

Calculates the maximum integer value less than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   floor(double x);

[Return value]

Returns the maximum integer value less than x and x.
If x is , floor returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), floor returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the maximum integer value less than x and x.

floor



R20UT3123EJ0113  Rev.1.13 Page 664 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculates the maximum integer value less than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   floorf(float x);

[Return value]

Returns the maximum integer value less than x and x.
If x is , floorf returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), floorf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the maximum integer value less than x and x.

floorf



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 665 of 951
Dec 01, 2023

Calculates the maximum integer value less than x and x

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far floorl(long double x); (C99)

[Return value]

Returns the maximum integer value less than x and x.
If x is , floorl returns  and sets macro ERANGE to global variable errno.
If x is a Not-a-Number(NaN), floorl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the maximum integer value less than x and x.

floorl [V1.08 or later]



R20UT3123EJ0113  Rev.1.13 Page 666 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far nearbyint(double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

nearbyint [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 667 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far nearbyintf(float x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

nearbyintf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 668 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far nearbyintl(long double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

nearbyintl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 669 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far rint(double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction. An 
"inexact" floating-point exception is not generated.

rint [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 670 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far rintf(float x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction. An 
"inexact" floating-point exception is not generated.

rintf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 671 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far rintl(long double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to an integer value in a floating-point format according to the rounding direction. An 
"inexact" floating-point exception is not generated.

rintl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 672 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lrint(double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

lrint [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 673 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lrintf(float x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

lrintf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 674 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lrintl(long double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

lrintl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 675 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llrint(double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

llrint [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 676 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llrintf(float x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

llrintf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 677 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llrintl(long double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction.

llrintl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 678 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far round(double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

round  [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 679 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far roundf(float x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

roundf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 680 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far roundl(long double x); (C99)

[Return value]

Returns a rounded value.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

roundl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 681 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lround(double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

lround [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 682 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lroundf(float x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

lroundf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 683 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long int __far lroundl(long double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

lroundl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 684 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llround(double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

llround [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 685 of 951
Dec 01, 2023

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llroundf(float x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

llroundf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 686 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument to an integer value in a floating-point format according to the rounding direction.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long long int __far llroundl(long double x); (C99)

[Return value]

Returns a rounded value. If the rounded value cannot be represented in the return type, this function returns 0 and 
specifies the macro ERANGE for global variable errno.

[Description]

This function rounds the argument to the integer value in a floating-point format according to the rounding direction, with 
halfway cases rounded away from 0.

llroundl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 687 of 951
Dec 01, 2023

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far trunc(double x); (C99)

[Return value]

Returns a truncated integer value.

[Description]

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

trunc [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 688 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far truncf(float x); (C99)

[Return value]

Returns a truncated integer value.

[Description]

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

truncf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 689 of 951
Dec 01, 2023

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far truncl(long double x); (C99)

[Return value]

Returns a truncated integer value.

[Description]

This function rounds the argument by truncating the decimal part to form an integer value in a floating-point format.

truncl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 690 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculate the remainder

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double  __far   fmod(double x, double y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
If x or y is a Not-a-Number (NaN) , fmod returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is  or y is zero, fmod returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is not  or y is , fmod returns x and sets macro EDOM to global variable errno.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y.  In other words, the 
value of "x - i * y" for integer i is calculated when y is not 0. The result has the same sign as that of x, and the absolute 
value is smaller than that of y.

fmod



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 691 of 951
Dec 01, 2023

Calculate the remainder

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float   __far   fmodf(float x, float y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
If x or y is a Not-a-Number (NaN) , fmodf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is  or y is zero, fmodf returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is not  or y is , fmodf returns x and sets macro EDOM to global variable errno.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y.  In other words, the 
value of "x - i * y" for integer i is calculated when y is not 0. The result has the same sign as that of x, and the absolute 
value is smaller than that of y.

fmodf



R20UT3123EJ0113  Rev.1.13 Page 692 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Calculate the remainder

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far fmodl(long double x, long double y); (C99)

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.
If x or y is a Not-a-Number (NaN) , fmodl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is  or y is zero, fmodl returns a Not-a-Number (NaN) and sets macro EDOM to global variable errno.
If x is not  or y is , fmodl returns x and sets macro EDOM to global variable errno.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y.  In other words, the 
value of "x - i * y" for integer i is calculated when y is not 0. The result has the same sign as that of x, and the absolute 
value is smaller than that of y.

fmodl [V1.08 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 693 of 951
Dec 01, 2023

This function generates a value that has the absolute value of x and the sign of y.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far copysign(double x, double y); (C99)

[Return value]

Returns a value that has the absolute value of x and the sign of y.

[Description]

This function generates a value that has the absolute value of x and the sign of y.

copysign [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 694 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function generates a value that has the absolute value of x and the sign of y.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far copysignf(float x, float y); (C99)

[Return value]

Returns a value that has the absolute value of x and the sign of y.

[Description]

This function generates a value that has the absolute value of x and the sign of y.

copysignf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 695 of 951
Dec 01, 2023

This function generates a value that has the absolute value of x and the sign of y.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far copysignl(long double x, long double y); (C99)

[Return value]

Returns a value that has the absolute value of x and the sign of y.

[Description]

This function generates a value that has the absolute value of x and the sign of y.

copysignl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 696 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Returns a Not-a-Number (NaN).

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far nan(const char __far *tagp); (C99)

[Return value]

Returns a Not-a-Number (NaN).

[Description]

This function is equivalent to strtod("NAN(n character string)", (char __near * __near *)NULL).

nan [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 697 of 951
Dec 01, 2023

Returns a Not-a-Number (NaN).

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far nanf(const char __far *tagp); (C99)

[Return value]

Returns a Not-a-Number (NaN).

[Description]

This function is equivalent to strtof("NAN(n character string)", (char __near * __near *)NULL).

nanf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 698 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Returns a Not-a-Number (NaN).

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far nanl(const char __far *tagp); (C99)

[Return value]

Returns a Not-a-Number (NaN).

[Description]

This function is equivalent to strtold("NAN(n character string)", (char __near * __near *)NULL).

nanl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 699 of 951
Dec 01, 2023

This function determines the positive difference between two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far fdim(double x, double y); (C99)

[Return value]

Returns 'x - y' for 'x > y' and +0 for 'x <= y'. Returns a NaN when x or y is a NaN.

[Description]

This function determines the positive difference between two arguments.

fdim [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 700 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines the positive difference between two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far fdimf(float x, float y); (C99)

[Return value]

Returns 'x - y' for 'x > y' and +0 for 'x <= y'. Returns a NaN when x or y is a NaN.

[Description]

This function determines the positive difference between two arguments.

fdimf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 701 of 951
Dec 01, 2023

This function determines the positive difference between two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far fdiml(long double x, long double y); (C99)

[Return value]

Returns 'x - y' for 'x > y' and +0 for 'x <= y'. Returns a NaN when x or y is a NaN.

[Description]

This function determines the positive difference between two arguments.

fdiml [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 702 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines the larger value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far fmax(double x, double y); (C99)

[Return value]

Returns the larger value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the larger value of two arguments.

fmax [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 703 of 951
Dec 01, 2023

This function determines the larger value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far fmaxf(float x, float y); (C99)

[Return value]

Returns the larger value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the larger value of two arguments.

fmaxf [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 704 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines the larger value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far fmaxl(long double x, long double y); (C99)

[Return value]

Returns the larger value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the larger value of two arguments.

fmaxl [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 705 of 951
Dec 01, 2023

This function determines the smaller value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
double __far fmin(double x, double y); (C99)

[Return value]

Returns the smaller value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the smaller value of two arguments.

fmin [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 706 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines the smaller value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
float __far fminf(float x, float y); (C99)

[Return value]

Returns the smaller value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the smaller value of two arguments.

fminf [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 707 of 951
Dec 01, 2023

This function determines the smaller value of two arguments.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
long double __far fminl(long double x, long double y); (C99)

[Return value]

Returns the smaller value of two arguments. If one argument is a NaN and the other is not, the latter is returned.

[Description]

This function determines the smaller value of two arguments.

fminl [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 708 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines whether the first argument is greater than the second argument.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isgreater(real-floating x, real-floating y); (C99)

[Return value]

Returns the result of '(x) > (y)'.

[Description]

This function determines whether the first argument is greater than the second argument.

isgreater [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 709 of 951
Dec 01, 2023

This function determines whether the first argument is greater than or equal to the second argument.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isgreaterequal(real-floating x, real-floating y); (C99)

[Return value]

Returns the result of '(x) >= (y)'.

[Description]

This function determines whether the first argument is greater than or equal to the second argument.

isgreaterequal [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 710 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines whether the first argument is less than the second argument.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isless(real-floating x, real-floating y); (C99)

[Return value]

Returns the result of '(x) < (y)'.

[Description]

This function determines whether the first argument is less than the second argument.

isless [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 711 of 951
Dec 01, 2023

This function determines whether the first argument is less than or equal to the second argument.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int islessequal(real-floating x, real-floating y); (C99)

[Return value]

Returns the result of '(x) <= (y)'.

[Description]

This function determines whether the first argument is less than or equal to the second argument.

islessequal [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 712 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

This function determines whether the first argument is less than or greater than the second argument.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int islessgreater(real-floating x, real-floating y); (C99)

[Return value]

Returns the result of '(x) > (y) || (x) < (y)'.

[Description]

This function determines whether the first argument is less than or greater than the second argument.

islessgreater [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 713 of 951
Dec 01, 2023

This function determines whether the arguments are unordered.

[Classification]

Mathematical library

[Syntax]

#include <math.h>
int isunordered(real-floating x, real-floating y); (C99)

[Return value]

Returns 1 when the arguments are unordered and 0 otherwise.

[Description]

This function determines whether the arguments are unordered.

isunordered [V1.09 or later]



R20UT3123EJ0113  Rev.1.13 Page 714 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.5  Non-local jump functions

Non-local jump functions are as follows.

Table 7.7 Non-Local Jump Functions

Function/Macro Name Outline

setjmp Save the environment in which a function call was made

longjmp Restore the environment in which a function call was made



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 715 of 951
Dec 01, 2023

Save the environment in which a function call was made

[Classification]

Standard library

[Syntax]

#include <setjmp.h>
typedef int     __near  jmp_buf[3];
int     __far   setjmp(jmp_buf env);

[Return value]

Calling setjmp returns 0. When longjmp is used for a non-local jump, the return value is in the second parameter, val.  
However, 1 is returned if val is 0.

[Description]

This function sets env as the destination for a non-local jump. In addition, the environment in which setjmp was run is 
saved to env.

[Caution]

Do not call the setjmp function indirectly using a pointer.

setjmp



R20UT3123EJ0113  Rev.1.13 Page 716 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Restore the environment in which a function call was made

[Classification]

Standard library

[Syntax]

#include <setjmp.h>
typedef int     __near  jmp_buf[3];
void    __far   longjmp(jmp_buf env, int val);

[Description]

This function performs a non-local jump to the place immediately after setjmp using env saved by setjmp.

longjmp



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 717 of 951
Dec 01, 2023

7.5.6  Variable arguments of functions

Variable arguments of functions are as follows.

Table 7.8 Variable Arguments of Functions

Function/Macro Name Outline

va_start Initialization of variable for scanning argument list

va_arg Moving variable for scanning argument list

va_copy [V1.09 or later] Copying variable for scanning argument list (C99)

va_end End of scanning argument list



R20UT3123EJ0113  Rev.1.13 Page 718 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Initialization of variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
typedef char    __near  *va_list;
void    va_start(va_list ap, last-named-argument);

[Description]

This function initializes variable ap so that it indicates the beginning (argument next to last-named-argument) of the list 
of the variable arguments.

To define function func having a variable arguments in a portable form, the following format is used.

Remark arg-declarations is an argument list with the last-named-argument declared at the end.  ", ..." that follows 
indicates a list of the variable arguments.  va_listis the type of the variable (ap in the above example) 
used to scan the argument list.

va_start

#include    <stdarg.h>

void func(arg-declarations, ...) {
        va_list ap;
        type    argN;

        va_start(ap, last-named-argument);
        argN = va_arg(ap, type);
        va_end(ap);
}



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 719 of 951
Dec 01, 2023

Moving variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
typedef char    __near  *va_list;
type    va_arg(va_list ap, type);

[Description]

This function returns the argument indicated by variable ap, and advances variable ap to indicate the next argument.  
For the type of va_arg, specify the type converted when the argument is passed to the function.  Although a different type 
can be specified for each argument, stipulate "which type of argument is passed" according to the conventions between 
the called function and calling function.

Since a variable argument is converted according to default argument promotions, the type after conversion should be 
specified.  If the argument is a pointer with a constant value, a cast must be attached to the argument to clearly show that 
it is a pointer.  For details on default argument promotions, see "(7)  Default argument promotions".

In addition, the "number of arguments that are actually passed" is determined according to the conventions between the 
called function and calling function.

va_arg



R20UT3123EJ0113  Rev.1.13 Page 720 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Copying variable for scanning argument list.

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
typedef char __near *va_list;
void va_copy(va_list dest, va_list src); (C99)

[Description]

This function initializes parameter dest as a copy of parameter src.

va_copy [V1.09 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 721 of 951
Dec 01, 2023

End of scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>
typedef char    __near  *va_list;
void    va_end(va_list ap);

[Description]

This function indicates the end of scanning the argument list.  By enclosing va_arg between va_start and va_end, scan-
ning the list can be repeated.

va_end



R20UT3123EJ0113  Rev.1.13 Page 722 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.7  Standard I/O functions

Standard I/O functions are as follows.

Table 7.9 Standard I/O Functions

Specifications are implemented, so that in each function, input from stdin is performed through the getchar function and 
output to stdout is performed through the putchar function.

To change stdin and stdout, replace the getchar function and putchar function, respectively.
Output to stderr in the perror function is the same as output to stdout, and so it is performed through the putchar func-

tion.  Note that replacing the putchar function will also change stderr.  To change the output destination of stderr to some-
thing other than stdout, replace the perror function

Function/Macro Name Outline

printf Write text in specified format to SFR

scanf Read  text in specified format from SFR

snprintf [V1.07 or later] Write text in specified format to array (C99)

sprintf Write text in specified format to array

sscanf Read text in specified format from character string

vprintf Write text in specified format to SFR

vscanf [V1.08 or later] Read text in specified format from SFR (C99)

vsnprintf [V1.07 or later] Write text in specified format to array (C99)

vsprintf Write text in specified format to array

vsscanf [V1.08 or later] Read text in specified format from character string (C99)

getchar Read one character from SFR

gets Read character string from SFR

putchar Write one character to SFR

puts Write character string to SFR

perror Error processing



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 723 of 951
Dec 01, 2023

Write text in specified format to SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far printf(const char __far *format, ...); (C99)
int __far printf(const char __far * restrict format, ...); (C99) [V1.07 or later]
int __far printf_tiny(const char __far *format, ...);（C90）
int __far printf_tiny(const char __far * restrict format, ...); (C99) [V1.07 or later]

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

This function converts the arguments following format to match the output format, and outputs them to SFR using the 
putchar function.  The conversion method in this case complies with the format specified by the string indicated by format.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

printf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



R20UT3123EJ0113  Rev.1.13 Page 724 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99) [V1.07 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99) [V1.07 or later]
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99) [V1.07 or later]
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99) [V1.07 or later]
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries. [V1.07 or later]

# The result is to be converted into an alternative format.  For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 725 of 951
Dec 01, 2023

printf_tiny is a simplified version of printf.
When macro __PRINTF_TINY__ is defined before the -D option or stdio.h is included, the function call of printf is 

replaced with printf_tiny. The following restrictions apply to conversion specifications of printf_tiny.

(1) Flag
-, +, or space cannot be specified.

(2) Field width
A negative field width "*" cannot be specified.

(3) Precision
Cannot be specified.

(4) Size
ll, j, z, t, or L cannot be specified.

(5) Type specification character
f, F, e, E, g, or G cannot be specified.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99) [V1.07 or later]

e, E Convert a double type (float type in a single-precision function) argument to [-]d.ddddedd for-
mat, which has one digit before the decimal point (not 0 if the argument is not 0) and the number 
of digits after the decimal point is equal to the precision.  The E conversion specification gener-
ates a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.

p Output the value of the pointer.  The pointer must always be the far pointer.  When passing a con-
stant, add a cast to the argument to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



R20UT3123EJ0113  Rev.1.13 Page 726 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 727 of 951
Dec 01, 2023

Read text in specified format from SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far  scanf(const char __far *format, ...); (C90)
int __far  scanf(const char __far * restrict format, ...); (C99) [V1.08 or later]

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned.
The return value does not include scanned fields that were not stored.
If an attempt is made to read to the end of the file, the return value is EOF.  If no field was stored, the return value is 0.

[Description]

This function converts the input from SFR which uses the getchar function and assigns the conversion result to the 
object indicated by the argument following format.  The conversion method used here complies with the format specified 
by the string indicated by format.  If an input character which conflicts with the directive terminates conversion, that con-
flicting input character will be discarded.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives, and the directives in the format are executed in sequence.  If there is no 
input character or execution of a directive fails due to an incorrect input, processing is terminated.

The format consists of the following three types of directives:

Each conversion specification starts with "%".  The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses assignment of the input field.

scanf

One or more Space characters Space ( ), tab (\t), or new-line (\n).
Reading of input data is executed up to immediately before the first non-white-
space character (this character is left but not read) or until reading can no longer be 
performed.

Ordinary characters All ASCII characters other than "%".
Reading is executed by reading the next character.

Conversion specification Fetches 0 or more arguments and directs the conversion.



R20UT3123EJ0113  Rev.1.13 Page 728 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

(2) field width
This is a positive decimal integer that defines the maximum field width.  When 0 is specified, there are no regula-
tions.
It specifies the maximum number of characters that are read before the input field is converted.  If the input field is 
smaller than this field width, scanf reads all the characters in the field and then proceeds to the next field and its 
conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent 
to the field width is read, the characters up to the white space or the character that cannot be converted are read 
and stored.  Then, scanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
If there is no specification, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to an int or 
unsigned int argument.  Furthermore, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer 
to a float argument, and an n type specification is forcibly applied to an int pointer.
When hh is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a signed 
char or unsigned char argument. hh also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a signed char argu-
ment. (C99) [V1.08 or later]
When h is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a short int or 
unsigned short int argument. h also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a short int argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long or 
unsigned long argument.  When l is specified, a following f, F, e, E, g, or G type specification is forcibly applied to 
a pointer to a double argument, and an n type specification is forcibly applied to a long pointer.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long long or 
unsigned long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long 
pointer.
When j is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a intmax_t or 
uintmax_t argument, and an n type specification is forcibly applied to an intmax_t pointer. (C99) [V1.08 or later]
When z is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a size_t or 
signed int argument, and an n type specification is forcibly applied to an signed int pointer. (C99) [V1.08 or later]
When t is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a ptrdiff_t or 
unsigned int argument, and an n type specification is forcibly applied to an ptrdiff_t pointer. (C99) [V1.08 or later]
When L is specified, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer to a long double 
argument.  However, the double type and long double type have the same format in this compiler.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

d Read a decimal integer into the corresponding argument.  The corresponding type is in accor-
dance with the size character.

i Read a decimal, octal, or hexadecimal integer into the corresponding argument.  The corre-
sponding type is in accordance with the size character.

o Read an octal integer into the corresponding argument.  The corresponding type is in accordance 
with the size character.

u Read an unsigned decimal integer into the corresponding argument.  The corresponding type is 
in accordance with the size character.

x, X Read a hexadecimal integer into the corresponding argument.  The corresponding type is in 
accordance with the size character.

e, f, g, E, F, 
G

Read a floating-point number, infinite value, or Not-a-Number (NaN) into the corresponding argu-
ment.  The corresponding type is in accordance with the size character.

s Read a string into a given array.  The corresponding argument should be "char __far arg[ ]".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 729 of 951
Dec 01, 2023

F conversion can only be specified for C99 libraries.

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-
ing general format.

[ + | - ] ddddd [ . ] ddd [ E | e [ + | - ] ddd ]

However, the portions enclosed by [ ] in the above format are arbitrarily selected, and ddd indicates a decimal 
digit.

[Caution]

- scanf may stop scanning a specific field before the normal end-of-field character is reached or may stop completely.

- scanf stops scanning and storing a field and moves to the next field under the following conditions.

- The substitution suppression character (*) appears after "%" in the format specification, and the input field at 
that point has been scanned but not stored.

- A field width (positive decimal integer) specification character was read.

- The character to be read next cannot be converted according to the conversion specification (for example, if Z is 
read when the specification is a decimal number).

- The next character in the input field does not appear in the search set (or appears in the complement search 
set).

[ ] Read a non-empty string into the memory area starting with argument arg.  This area must be 
large enough to accommodate the string and the null character (\0) that is automatically 
appended to indicate the end of the string.  The corresponding argument should be "char *arg".
The character pattern enclosed by [ ] can be used in place of the type specification character s.  
The character pattern is a character set that defines the search set of the characters constituting 
the input field of sscanf.  If the first character within [ ] is "^", the search set is complemented, and 
all ASCII characters other than the characters within [ ] are included.  In addition, a range specifi-
cation feature that can be used as a shortcut is also available.  For example, %[0-9] matches all 
decimal numbers.  In this set, "-" cannot be specified as the first or last character.  The character 
preceding "-" must be less in lexical sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

c Scan one character.  The corresponding argument should be "char __far *arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

p Store the pointer that was scanned.  The corresponding argument should be "void __far **arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

n Input data is not read.  The number of characters that have been read so far is written to the cor-
responding parameter.
Even though the %n directive is executed, the number of input items that are returned when the 
function ends is not increased.  The corresponding type is in accordance with the size character.

% Match the character "%".  No conversion or assignment is performed.  The conversion specifica-
tion is "%%".



R20UT3123EJ0113  Rev.1.13 Page 730 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

If scanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the next 
character has not yet been read, and this character is used as the first character of the next field or the first character 
for the read operation to be executed after the input.

- scanf ends under the following conditions:

- The next character in the input field does not match the corresponding ordinary character in the string to be con-
verted.

- The next character in the input field is EOF.

- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make sure 
that the same list of characters does not appear in the input.  sscanf scans matching characters but does not store 
them.  If there was a mismatch, the first character that does not match remains in the input as if it were not read.

[Restrictions]

a or A conversion and hexadecimal floating-point numbers are not supported.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 731 of 951
Dec 01, 2023

Write text in specified format to array

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far snprintf(char __far * restrict s, size_t n, const char __far * restrict format, ...); (C99)

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

This function converts the arguments following format into the output format and writes them into the array indicated by 
s. The conversion method in this case complies with the format specified by the string indicated by format. When n is 0, no 
text is written and s may be a null pointer. In other cases, output characters subsequent to the (n-1)th character are dis-
carded without being written to the array and the null character is written after the character string that was actually written 
to the array. When copying is executed between objects whose areas overlap, correct operation is not guaranteed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format. If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

snprintf [V1.07 or later]

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



R20UT3123EJ0113  Rev.1.13 Page 732 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99)
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99)
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99)
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99)
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries.

# The result is to be converted into an alternative format.  For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 733 of 951
Dec 01, 2023

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99)

e, E Convert a double type (float type in a single-precision function) argument to [-]d.ddddedd for-
mat, which has one digit before the decimal point (not 0 if the argument is not 0) and the number 
of digits after the decimal point is equal to the precision.  The E conversion specification gener-
ates a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99)

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99)

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.

p Output the value of the pointer.  The pointer must always be the far pointer.  When passing a con-
stant, add a cast to the argument to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



R20UT3123EJ0113  Rev.1.13 Page 734 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Write text in specified format to array

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far sprintf(char __far *s, const char __far *format, ...); (C90)
int __far sprintf(char __far * restrict s, const char __far * restrict format, ...); (C99) [V1.07 or later]
int __far sprintf_tiny(char __far *s, const char __far *format, ...); (C90)
int __far sprintf_tiny(char __far * restrict s, const char __far * restrict format, ...); (C99) [V1.07 or later]

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

This function converts the arguments following format into the output format and writes them into the array indicated by 
s.  The conversion method in this case complies with the format specified by the string indicated by format.  When copying 
is executed between objects whose areas overlap, correct operation is not guaranteed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format. If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

sprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 735 of 951
Dec 01, 2023

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99) [V1.07 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99) [V1.07 or later]
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99) [V1.07 or later]
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99) [V1.07 or later]
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries. [V1.07 or later]

# The result is to be converted into an alternative format.  For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



R20UT3123EJ0113  Rev.1.13 Page 736 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

sprintf_tiny is a simplified version of sprintf.
When macro __PRINTF_TINY__ is defined before the -D option or stdio.h is included, the function call of sprintf is 

replaced with sprintf_tiny. The following restrictions apply to conversion specifications of sprintf_tiny.

(1) Flag
-, +, or space cannot be specified.

(2) Field width
A negative field width "*" cannot be specified.

(3) Precision
Cannot be specified.

(4) Size
ll, j, z, t, or L cannot be specified.

(5) Type specification character
f, F, e, E, g, or G cannot be specified.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99) [V1.07 or later]

e, E Convert a double type (float type in a single-precision function) argument to [-]d.ddddedd for-
mat, which has one digit before the decimal point (not 0 if the argument is not 0) and the number 
of digits after the decimal point is equal to the precision.  The E conversion specification gener-
ates a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.

p Output the value of the pointer.  The pointer must always be the far pointer.  When passing a con-
stant, add a cast to the argument to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 737 of 951
Dec 01, 2023

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.



R20UT3123EJ0113  Rev.1.13 Page 738 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Read text in specified format from character string

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far  sscanf(const char __far *s, const char __far *format, ...); (C90)
int __far  sscanf(const char __far * restrict s, const char __far * restrict format, ...); (C99) [V1.08 or later]

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned.  The return 
value does not include scanned fields that were not stored.

If an attempt is made to read to the end of the file, the return value is EOF.
If no field was stored, the return value is 0.

[Description]

This function converts the input from the string indicated by s, and assigns the conversion result to the object indicated 
by the argument following format.  The conversion method in this case complies with the format specified by the string 
indicated by format.  When copying is executed between objects whose areas overlap, correct operation is not guaran-
teed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format. If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives, and the directives in the format are executed in sequence. If there is no 
input character or execution of a directive fails due to an incorrect input, processing is terminated.

The format consists of the following three types of directives:

Each conversion specification starts with "%".  The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses assignment of the input field.

sscanf

One or more Space characters Space ( ), tab (\t), or new-line (\n).
Reading of input data is executed up to immediately before the first non-white-
space character (this character is left but not read) or until reading can no longer be 
performed.

Ordinary characters All ASCII characters other than "%".
Reading is executed by reading the next character.

Conversion specification Fetches 0 or more arguments and directs the conversion.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 739 of 951
Dec 01, 2023

(2) field width
This is a positive decimal integer that defines the maximum field width.  When 0 is specified, there are no regula-
tions.
It specifies the maximum number of characters that are read before the input field is converted.  If the input field is 
smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next field and its 
conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent 
to the field width is read, the characters up to the white space or the character that cannot be converted are read 
and stored.  Then, sscanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
If there is no specification, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to an int or 
unsigned int argument.  Furthermore, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer 
to a float argument, and an n type specification is forcibly applied to an int pointer.
When hh is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a signed 
char or unsigned char argument. hh also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a signed char argu-
ment. (C99) [V1.08 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a short int or 
unsigned short int argument.  When h is specified, a following f, F, e, E, g, or G type specification is forcibly applied 
to a pointer to a float argument, and an n type specification is forcibly applied to a short int pointer.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long or 
unsigned long argument.   When l is specified, a following f, F, e, E, g, or G type specification is forcibly applied to 
a pointer to a double argument, and an n type specification is forcibly applied to a long pointer.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long long or 
unsigned long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long 
pointer.
When j is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a intmax_t or 
uintmax_t argument, and an n type specification is forcibly applied to an intmax_t pointer. (C99) [V1.08 or later]
When z is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a size_t or 
signed int argument, and an n type specification is forcibly applied to an signed int pointer. (C99) [V1.08 or later]
When t is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a ptrdiff_t or 
unsigned int argument, and an n type specification is forcibly applied to an ptrdiff_t pointer. (C99) [V1.08 or later]
When L is specified, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer to a long double 
argument.  However, the double type and long double type have the same format in this compiler.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

d Read a decimal integer into the corresponding argument.  The corresponding type is in accor-
dance with the size character.

i Read a decimal, octal, or hexadecimal integer into the corresponding argument.  The corre-
sponding type is in accordance with the size character.

o Read an octal integer into the corresponding argument.  The corresponding type is in accordance 
with the size character.

u Read an unsigned decimal integer into the corresponding argument.  The corresponding type is 
in accordance with the size character.

x, X Read a hexadecimal integer into the corresponding argument.  The corresponding type is in 
accordance with the size character.

e, f, g, E, F, 
G

Read a floating-point number, infinite value, or Not-a-Number (NaN) into the corresponding argu-
ment.  The corresponding type is in accordance with the size character.

s Read a string into a given array.  The corresponding argument should be "char __far arg[ ]".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer. Correct operation is not guaranteed when a null pointer is 
passed.



R20UT3123EJ0113  Rev.1.13 Page 740 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

F conversion can only be specified for C99 libraries.

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-
ing general format.

[ + | - ] ddddd [ . ] ddd [ E | e [ + | - ] ddd ]

However, the portions enclosed by [ ] in the above format are arbitrarily selected, and ddd indicates a decimal 
digit.

[Caution]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop completely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.

- The substitution suppression character (*) appears after "%" in the format specification, and the input field at 
that point has been scanned but not stored.

- A field width (positive decimal integer) specification character was read.

- The character to be read next cannot be converted according to the conversion specification (for example, if Z is 
read when the specification is a decimal number).

- The next character in the input field does not appear in the search set (or appears in the complement search 
set).

[ ] Read a non-empty string into the memory area starting with argument arg.  This area must be 
large enough to accommodate the string and the null character (\0) that is automatically 
appended to indicate the end of the string.  The corresponding argument should be "char *arg".
The character pattern enclosed by [ ] can be used in place of the type specification character s.  
The character pattern is a character set that defines the search set of the characters constituting 
the input field of sscanf.  If the first character within [ ] is "^", the search set is complemented, and 
all ASCII characters other than the characters within [ ] are included.  In addition, a range specifi-
cation feature that can be used as a shortcut is also available.  For example, %[0-9] matches all 
decimal numbers.  In this set, "-" cannot be specified as the first or last character.  The character 
preceding "-" must be less in lexical sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

c Scan one character.  The corresponding argument should be "char __far *arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

p Store the pointer that was scanned.  The corresponding argument should be "void __far **arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

n Input data is not read.  The number of characters that have been read so far is written to the cor-
responding parameter.
Even though the %n directive is executed, the number of input items that are returned when the 
function ends is not increased.  The corresponding type is in accordance with the size character.

% Match the character "%".  No conversion or assignment is performed.  The conversion specifica-
tion is "%%".



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 741 of 951
Dec 01, 2023

If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the next 
character has not yet been read, and this character is used as the first character of the next field or the first character 
for the read operation to be executed after the input.

- sscanf ends under the following conditions:

- The next character in the input field does not match the corresponding ordinary character in the string to be con-
verted.

- The next character in the input field is EOF.

- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make sure 
that the same list of characters does not appear in the input.  sscanf scans matching characters but does not store 
them.  If there was a mismatch, the first character that does not match remains in the input as if it were not read.

[Restrictions]

a or A conversion and hexadecimal floating-point numbers are not supported.



R20UT3123EJ0113  Rev.1.13 Page 742 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Write text in specified format to SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far vprintf(const char __far *format, va_list arg); (C90)
int __far vprintf(const char __far * restrict format, va_list arg); (C99) [V1.07 or later]

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

From among the parameter sequence, this function outputs the parameter indicated by pointer arg to SFR, using the 
putchar function.  The conversion method used here complies with the format specified by the string indicated by format.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

vprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 743 of 951
Dec 01, 2023

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99) [V1.07 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99) [V1.07 or later]
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99) [V1.07 or later]
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99) [V1.07 or later]
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries. [V1.07 or later]

# The result is to be converted into an alternative format.  For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



R20UT3123EJ0113  Rev.1.13 Page 744 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99) [V1.07 or later]

e, E Convert a double type (float type in a single-precision function) argument to [-]d.ddddedd for-
mat, which has one digit before the decimal point (not 0 if the argument is not 0) and the number 
of digits after the decimal point is equal to the precision.  The E conversion specification gener-
ates a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer . Correct operation is not guaranteed when a null pointer is 
passed.

p The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 745 of 951
Dec 01, 2023

Read text in specified format from SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far  vscanf(const char __far * restrict format, va_list arg); (C99) [V1.08 or later]

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned.
The return value does not include scanned fields that were not stored.
If an attempt is made to read to the end of the file, the return value is EOF.  If no field was stored, the return value is 0.

[Description]

This function converts the input from SFR which uses the getchar function and assigns the conversion result to the 
parameter indicated by pointer arg among the parameter sequence.  The conversion method used here complies with the 
format specified by the string indicated by format.  If an input character which conflicts with the directive terminates con-
version, that conflicting input character will be discarded.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives, and the directives in the format are executed in sequence.  If there is no 
input character or execution of a directive fails due to an incorrect input, processing is terminated.

The format consists of the following three types of directives:

Each conversion specification starts with "%".  The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses assignment of the input field.

vscanf [V1.08 or later]

One or more Space characters Space ( ), tab (\t), or new-line (\n).
Reading of input data is executed up to immediately before the first non-white-
space character (this character is left but not read) or until reading can no longer be 
performed.

Ordinary characters All ASCII characters other than "%".
Reading is executed by reading the next character.

Conversion specification Fetches 0 or more arguments and directs the conversion.



R20UT3123EJ0113  Rev.1.13 Page 746 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

(2) field width
This is a positive decimal integer that defines the maximum field width.  When 0 is specified, there are no regula-
tions.
It specifies the maximum number of characters that are read before the input field is converted.  If the input field is 
smaller than this field width, scanf reads all the characters in the field and then proceeds to the next field and its 
conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent 
to the field width is read, the characters up to the white space or the character that cannot be converted are read 
and stored.  Then, scanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
If there is no specification, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to an int or 
unsigned int argument.  Furthermore, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer 
to a float argument, and an n type specification is forcibly applied to an int pointer.
When hh is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a signed 
char or unsigned char argument. hh also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a signed char argu-
ment. (C99) [V1.08 or later]
When h is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a short int or 
unsigned short int argument. h also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a short int argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long or 
unsigned long argument.  When l is specified, a following f, F, e, E, g, or G type specification is forcibly applied to 
a pointer to a double argument, and an n type specification is forcibly applied to a long pointer.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long long or 
unsigned long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long 
pointer.
When j is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a intmax_t or 
uintmax_t argument, and an n type specification is forcibly applied to an intmax_t pointer. (C99) [V1.08 or later]
When z is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a size_t or 
signed int argument, and an n type specification is forcibly applied to an signed int pointer. (C99) [V1.08 or later]
When t is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a ptrdiff_t or 
unsigned int argument, and an n type specification is forcibly applied to an ptrdiff_t pointer. (C99) [V1.08 or later]
When L is specified, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer to a long double 
argument.  However, the double type and long double type have the same format in this compiler.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

d Read a decimal integer into the corresponding argument.  The corresponding type is in accor-
dance with the size character.

i Read a decimal, octal, or hexadecimal integer into the corresponding argument.  The corre-
sponding type is in accordance with the size character.

o Read an octal integer into the corresponding argument.  The corresponding type is in accordance 
with the size character.

u Read an unsigned decimal integer into the corresponding argument.  The corresponding type is 
in accordance with the size character.

x, X Read a hexadecimal integer into the corresponding argument.  The corresponding type is in 
accordance with the size character.

e, f, g, E, F, 
G

Read a floating-point number, infinite value, or Not-a-Number (NaN) into the corresponding argu-
ment.  The corresponding type is in accordance with the size character.

s Read a string into a given array.  The corresponding argument should be "char __far arg[ ]".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 747 of 951
Dec 01, 2023

F conversion can only be specified for C99 libraries.

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-
ing general format.

[ + | - ] ddddd [ . ] ddd [ E | e [ + | - ] ddd ]

However, the portions enclosed by [ ] in the above format are arbitrarily selected, and ddd indicates a decimal 
digit.

[Caution]

- scanf may stop scanning a specific field before the normal end-of-field character is reached or may stop completely.

- scanf stops scanning and storing a field and moves to the next field under the following conditions.

- The substitution suppression character (*) appears after "%" in the format specification, and the input field at 
that point has been scanned but not stored.

- A field width (positive decimal integer) specification character was read.

- The character to be read next cannot be converted according to the conversion specification (for example, if Z is 
read when the specification is a decimal number).

- The next character in the input field does not appear in the search set (or appears in the complement search 
set).

[ ] Read a non-empty string into the memory area starting with argument arg.  This area must be 
large enough to accommodate the string and the null character (\0) that is automatically 
appended to indicate the end of the string.  The corresponding argument should be "char *arg".
The character pattern enclosed by [ ] can be used in place of the type specification character s.  
The character pattern is a character set that defines the search set of the characters constituting 
the input field of sscanf.  If the first character within [ ] is "^", the search set is complemented, and 
all ASCII characters other than the characters within [ ] are included.  In addition, a range specifi-
cation feature that can be used as a shortcut is also available.  For example, %[0-9] matches all 
decimal numbers.  In this set, "-" cannot be specified as the first or last character.  The character 
preceding "-" must be less in lexical sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

c Scan one character.  The corresponding argument should be "char __far *arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

p Store the pointer that was scanned.  The corresponding argument should be "void __far **arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

n Input data is not read.  The number of characters that have been read so far is written to the cor-
responding parameter.
Even though the %n directive is executed, the number of input items that are returned when the 
function ends is not increased.  The corresponding type is in accordance with the size character.

% Match the character "%".  No conversion or assignment is performed.  The conversion specifica-
tion is "%%".



R20UT3123EJ0113  Rev.1.13 Page 748 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

If scanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the next 
character has not yet been read, and this character is used as the first character of the next field or the first character 
for the read operation to be executed after the input.

- scanf ends under the following conditions:

- The next character in the input field does not match the corresponding ordinary character in the string to be con-
verted.

- The next character in the input field is EOF.

- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make sure 
that the same list of characters does not appear in the input.  sscanf scans matching characters but does not store 
them.  If there was a mismatch, the first character that does not match remains in the input as if it were not read.

[Restrictions]

a or A conversion and hexadecimal floating-point numbers are not supported.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 749 of 951
Dec 01, 2023

Write text in specified format to array

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far vsnprintf(char __far * restrict s, size_t n, const char __far * restrict format, va_list arg); (C99)

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

From among the parameter sequence, this function writes the parameter indicated by pointer arg to the array indicated 
by s. The conversion method in this case complies with the format specified by the string indicated by format. When n is 0, 
no text is written and s may be a null pointer. In other cases, output characters subsequent to the (n-1)th character are dis-
carded without being written to the array and the null character is written after the character string that was actually written 
to the array. When copying is executed between objects whose areas overlap, correct operation is not guaranteed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

vsnprintf [V1.07 or later]

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



R20UT3123EJ0113  Rev.1.13 Page 750 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99)
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99)
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99)
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99)
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries.

# The result is to be converted into an alternative format. For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 751 of 951
Dec 01, 2023

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99)

e, E Convert a double type (float type in a single-precision function)argument to [-]d.ddddedd format, 
which has one digit before the decimal point (not 0 if the argument is not 0) and the number of 
digits after the decimal point is equal to the precision.  The E conversion specification generates 
a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99)

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99)

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.

p Output the value of the pointer.  The pointer must always be the far pointer.  When passing a con-
stant, add a cast to the argument to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



R20UT3123EJ0113  Rev.1.13 Page 752 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Write text in specified format to array

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far vsprintf(char __far *s, const char __far *format, va_list arg); (C90)
int __far vsprintf(char __far * restrict s, const char __far * restrict format, va_list arg); (C99) [V1.07 or later]

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.
Returns EOF(-1) if a write error has occurred.

[Description]

From among the parameter sequence, this function writes the parameter indicated by pointer arg to the string indicated 
by s.  The conversion method in this case complies with the format specified by the string indicated by format.  When 
copying is executed between objects whose areas overlap, correct operation is not guaranteed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format.  If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives.  The format will be output without change except for a conversion specifica-
tion starting with %.  The conversion specification fetches the 0 or more subsequent arguments, converts them, and then 
outputs them.

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).  
The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag
Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.
The flag characters and their meanings are as follows:

vsprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if 
this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result 
of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated 
a character, a space (" ") will be appended to the beginning of result of the conversion.  If both the 
space flag and + flag appear, the space flag is ignored.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 753 of 951
Dec 01, 2023

Note Normally, a decimal point appears only when a digit follows it.

(2) field width
This is an optional minimum field width.
If the converted value is smaller than this field width, the left side is filled with spaces (if the left justification flag 
explained above is assigned, the right side will be filled with spaces).  This field width takes the form of "*" or a 
decimal integer.  If "*" is specified, an int type argument is used as the field width.  A negative field width is not sup-
ported.  If an attempt is made to specify a negative field width, it is interpreted as a minus (-) flag appended to the 
beginning of a positive field width.

(3) precision
For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.  
For e, f, E, or F conversion, it is the number of digits to appear after the decimal point.  For g or G conversion, it is 
the maximum number of significant digits.  For s conversion, it is the maximum number of bytes.
The precision takes the form of "*" or "." followed by a decimal integer.  If "*" is specified, an int type argument is 
used as the precision.  If a negative precision is specified, it is treated as if the precision were omitted.  If only "." is 
specified, the precision is assumed to be 0.  If the precision appears together with a conversion specification other 
than the above, the operation is undefined.

(4) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
When hh is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a signed char or unsigned 
char argument. hh also causes a following n type specification to be forcibly applied to a pointer to a signed char 
argument. (C99) [V1.07 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short int or unsigned 
short int argument.  h is also causes a following n type specification to be forcibly applied to a pointer to short 
argument.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long 
argument.  l is also causes a following n type specification to be forcibly applied to a pointer to long argument.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long or unsigned 
long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer.
When j is specified, a following d, i, o, u, x, or X type specification is forcibly applied to an intmax_t or uintmax_t 
argument. j also causes a following n type specification to be forcibly applied to a pointer to an intmax_t argument. 
(C99) [V1.07 or later]
When z is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a size_t or signed int argu-
ment. z also causes a following n type specification to be forcibly applied to a pointer to a signed int argument. 
(C99) [V1.07 or later]
When t is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a ptrdiff_t or unsigned int 
argument. t also causes a following n type specification to be forcibly applied to a pointer to a ptrdiff_t argument. 
(C99) [V1.07 or later]
When L is specified, a following e, E, f, F, g, or G type specification is forcibly applied to a long double argument.  
However, since the double type and long double type have the same format in this compiler, the specification has 
no effect.

(5) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.
F conversion can only be specified for C99 libraries. [V1.07 or later]

# The result is to be converted into an alternative format. For o conversion, the precision is 
increased so that the first digit of the conversion result is 0.  For x or X conversion, 0x or 0X is 
appended to the beginning of a non-zero conversion result.  For e, f, g, E, F, or G conversion, a 
decimal point "." is added to the conversion result even if no digits follow the decimal pointNote.  
For g or G conversion, trailing zeros will not be removed from the conversion result.  The opera-
tion is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, F, G, or X conversion, zeros are added following the specification of the 
sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored.
For d, i, o, u, x, or X conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

d, i Convert an int type argument to a signed decimal number.



R20UT3123EJ0113  Rev.1.13 Page 754 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

[Restrictions]

a conversion or A conversion of the C99 standard is not supported.

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or 
unsigned hexadecimal notation (x or X) with dddd format.  For x conversion, the letters abcdef 
are used.  For X conversion, the letters ABCDEF are used.

f, F Convert a double type (float type in a single-precision function) argument to decimal notation of 
the form [-]dddd.dddd.
The format used for converting a double-type argument that indicates infinity is [-]inf for f conver-
sion and [-]INF for F conversion. The format used for converting a double-type argument that 
indicates NaN is [-]nan for f conversion and [-]NAN for F conversion. (C99) [V1.07 or later]

e, E Convert a double type (float type in a single-precision function)argument to [-]d.ddddedd format, 
which has one digit before the decimal point (not 0 if the argument is not 0) and the number of 
digits after the decimal point is equal to the precision.  The E conversion specification generates 
a number in which the exponent part starts with "E" instead of "e".
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

g, G Convert a double type (float type in a single-precision function) argument to e (E for a G conver-
sion specification) or f format, with the number of digits in the mantissa specified for the precision.  
Trailing zeros of the conversion result are excluded from the fractional part.  The decimal point 
appears only when it is followed by a digit.
The format for converting a double-type argument that indicates infinity or NaN is the same as the 
f conversion or F conversion specifier. (C99) [V1.07 or later]

c Convert an int type argument to unsigned char type and output the characters of the conversion 
result.

s The argument must be a pointer pointing to a character type array.  Characters from this array are 
output up until the null character (\0) indicating termination (the null character (\0) itself is not 
included).
If the precision is specified, no more than the specified number of characters will be output.  If the 
precision is not specified or if the precision is greater than the size of this array, make sure that 
this array includes the null character (\0).
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.  Correct operation is not guaranteed when a null pointer is 
passed.

p Output the value of the pointer.  The pointer must always be the far pointer.  When passing a con-
stant, add a cast to the argument to clearly show that it is a pointer.

n Store the number of characters that were output in the same object.  A pointer to int type is used 
as the argument.

% Output the character "%".  No argument is converted.  The conversion specification is "%%".



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 755 of 951
Dec 01, 2023

Read text in specified format from character string

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far  vsscanf(const char __far * restrict s, const char __far * restrict format, va_list arg); (C99) [V1.08 or later]

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned.  The return 
value does not include scanned fields that were not stored.

If an attempt is made to read to the end of the file, the return value is EOF.
If no field was stored, the return value is 0.

[Description]

This function converts the input from the string indicated by s and assigns the conversion result to the parameter indi-
cated by pointer arg among the parameter sequence.  The conversion method in this case complies with the format spec-
ified by the string indicated by format.  When copying is executed between objects whose areas overlap, correct operation 
is not guaranteed.

Correct operation is not guaranteed if there is not enough arguments to satisfy the format. If the format becomes full 
even though arguments are still left, the extra arguments are merely evaluated and they will be ignored.

The format consists of 0 or more directives, and the directives in the format are executed in sequence. If there is no 
input character or execution of a directive fails due to an incorrect input, processing is terminated.

The format consists of the following three types of directives:

Each conversion specification starts with "%".  The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character
The assignment suppression character "*" suppresses assignment of the input field.

vsscanf [V1.08 or later]

One or more Space characters Space ( ), tab (\t), or new-line (\n).
Reading of input data is executed up to immediately before the first non-white-
space character (this character is left but not read) or until reading can no longer be 
performed.

Ordinary characters All ASCII characters other than "%".
Reading is executed by reading the next character.

Conversion specification Fetches 0 or more arguments and directs the conversion.



R20UT3123EJ0113  Rev.1.13 Page 756 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

(2) field width
This is a positive decimal integer that defines the maximum field width.  When 0 is specified, there are no regula-
tions.
It specifies the maximum number of characters that are read before the input field is converted.  If the input field is 
smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next field and its 
conversion specification.
If a space character or a character that cannot be converted is found before the number of characters equivalent 
to the field width is read, the characters up to the white space or the character that cannot be converted are read 
and stored.  Then, sscanf proceeds to the next conversion specification.

(3) size
This is an arbitrary optional size character hh, h, l, ll, j, z, t, or L, which changes the default method for interpreting 
the data type of the corresponding argument.
If there is no specification, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to an int or 
unsigned int argument.  Furthermore, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer 
to a float argument, and an n type specification is forcibly applied to an int pointer.
When hh is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a signed 
char or unsigned char argument. hh also causes a following f, F, e, E, g, or G type specification to be applied to a 
pointer to a float argument and a following n type specification to be applied to a pointer to a signed char argu-
ment. (C99) [V1.08 or later]
When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a short int or 
unsigned short int argument.  When h is specified, a following f, F, e, E, g, or G type specification is forcibly applied 
to a pointer to a float argument, and an n type specification is forcibly applied to a short int pointer.
When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long or 
unsigned long argument.   When l is specified, a following f, F, e, E, g, or G type specification is forcibly applied to 
a pointer to a double argument, and an n type specification is forcibly applied to a long pointer.
When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a pointer to a long long or 
unsigned long long argument.  Furthermore, for ll, a following n type specification is forcibly applied to a long long 
pointer.
When j is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a intmax_t or 
uintmax_t argument, and an n type specification is forcibly applied to an intmax_t pointer. (C99) [V1.08 or later]
When z is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a size_t or 
signed int argument, and an n type specification is forcibly applied to an signed int pointer. (C99) [V1.08 or later]
When t is specified, a following d, i, o, n, u, x, or X type specification is forcibly applied to a pointer to a ptrdiff_t or 
unsigned int argument, and an n type specification is forcibly applied to an ptrdiff_t pointer. (C99) [V1.08 or later]
When L is specified, a following f, F, e, E, g, or G type specification is forcibly applied to a pointer to a long double 
argument.  However, the double type and long double type have the same format in this compiler.

(4) type specification character
These are characters that specify the type of conversion that is to be applied.
The characters that specify conversion types and their meanings are as follows.

d Read a decimal integer into the corresponding argument.  The corresponding type is in accor-
dance with the size character.

i Read a decimal, octal, or hexadecimal integer into the corresponding argument.  The corre-
sponding type is in accordance with the size character.

o Read an octal integer into the corresponding argument.  The corresponding type is in accordance 
with the size character.

u Read an unsigned decimal integer into the corresponding argument.  The corresponding type is 
in accordance with the size character.

x, X Read a hexadecimal integer into the corresponding argument.  The corresponding type is in 
accordance with the size character.

e, f, g, E, F, 
G

Read a floating-point number, infinite value, or Not-a-Number (NaN) into the corresponding argu-
ment.  The corresponding type is in accordance with the size character.

s Read a string into a given array.  The corresponding argument should be "char __far arg[ ]".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer. Correct operation is not guaranteed when a null pointer is 
passed.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 757 of 951
Dec 01, 2023

F conversion can only be specified for C99 libraries.

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-
ing general format.

[ + | - ] ddddd [ . ] ddd [ E | e [ + | - ] ddd ]

However, the portions enclosed by [ ] in the above format are arbitrarily selected, and ddd indicates a decimal 
digit.

[Caution]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop completely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.

- The substitution suppression character (*) appears after "%" in the format specification, and the input field at 
that point has been scanned but not stored.

- A field width (positive decimal integer) specification character was read.

- The character to be read next cannot be converted according to the conversion specification (for example, if Z is 
read when the specification is a decimal number).

- The next character in the input field does not appear in the search set (or appears in the complement search 
set).

[ ] Read a non-empty string into the memory area starting with argument arg.  This area must be 
large enough to accommodate the string and the null character (\0) that is automatically 
appended to indicate the end of the string.  The corresponding argument should be "char *arg".
The character pattern enclosed by [ ] can be used in place of the type specification character s.  
The character pattern is a character set that defines the search set of the characters constituting 
the input field of sscanf.  If the first character within [ ] is "^", the search set is complemented, and 
all ASCII characters other than the characters within [ ] are included.  In addition, a range specifi-
cation feature that can be used as a shortcut is also available.  For example, %[0-9] matches all 
decimal numbers.  In this set, "-" cannot be specified as the first or last character.  The character 
preceding "-" must be less in lexical sequence than the succeeding character.

- %[abcd]
Matches character strings that include only a, b, c, and d.

- %[^abcd]
Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]
Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]
Matches z, -, and a (this is not considered a range specification).

c Scan one character.  The corresponding argument should be "char __far *arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

p Store the pointer that was scanned.  The corresponding argument should be "void __far **arg".
The pointer must always be the far pointer.  When passing a constant, add a cast to the argument 
to clearly show that it is a pointer.

n Input data is not read.  The number of characters that have been read so far is written to the cor-
responding parameter.
Even though the %n directive is executed, the number of input items that are returned when the 
function ends is not increased.  The corresponding type is in accordance with the size character.

% Match the character "%".  No conversion or assignment is performed.  The conversion specifica-
tion is "%%".



R20UT3123EJ0113  Rev.1.13 Page 758 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the next 
character has not yet been read, and this character is used as the first character of the next field or the first character 
for the read operation to be executed after the input.

- sscanf ends under the following conditions:

- The next character in the input field does not match the corresponding ordinary character in the string to be con-
verted.

- The next character in the input field is EOF.

- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make sure 
that the same list of characters does not appear in the input.  sscanf scans matching characters but does not store 
them.  If there was a mismatch, the first character that does not match remains in the input as if it were not read.

[Restrictions]

a or A conversion and hexadecimal floating-point numbers are not supported.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 759 of 951
Dec 01, 2023

Read characters from SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far   getchar(void);

[Return value]

Returns the value read from SFR.

[Description]

This function reads a single character from P0 which is SFR.  An error check is not performed for reading.

[Caution]

- To change stdin, replace this function.

getchar



R20UT3123EJ0113  Rev.1.13 Page 760 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Read character string from SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
char    __near  *__far  gets(char __near *s);
char    __far   *__far  _COM_gets_f(char __far *s);

[Return value]

s is returned.
If the end of a file is detected but not a single character has been read into the array, the contents of the array are left 

without change and the null pointer is returned.

[Description]

This function reads a character string from SFR using the getchar function and stores the read data into the string indi-
cated by s.

When the end of the file is detected or when a new-line character is read, reading of characters is terminated, the read 
new-line character is discarded, and finally a null character is written immediately after the character that was last stored in 
the array.

gets



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 761 of 951
Dec 01, 2023

Write characters to SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int __far   putchar(int c);

[Return value]

The character c is returned.

[Description]

This function writes character c to P0 which is SFR.  An error check is not performed for writing.

[Caution]

- To change stdout, replace this function.  Note that replacing the putchar function will also change stderr.  To change 
the output destination of stderr to something other than stdout, replace the perror function.

putchar



R20UT3123EJ0113  Rev.1.13 Page 762 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Write character string to SFR

[Classification]

Standard library

[Syntax]

#include <stdio.h>
int     __far  puts(const char __near *s);
int     __far   _COM_puts_f(const char __far *s);

[Return value]

0 is returned.
When the putchar function returns -1, this function returns -1.

[Description]

This function writes string s to SFR using the putchar function.  The end-of-string null character is not write, but a new-
line character is written in its place.

puts



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 763 of 951
Dec 01, 2023

Generate the error message

[Classification]

Standard library

[Syntax]

#include <stdio.h>
void    __far   perror(const char __near *s);
void    __far   p_COM_error_f(const char __far *s);

[Description]

This function outputs to stderr the error message that corresponds to global variable errno.
stderr which is the same as stdout becomes P0 which is SFR.  It is output to SFR using the putchar function.
The message that is output is as follows.

s_fix is as follows.

[Caution]

- Note that replacing the putchar function will also change stderr.  To change the output destination of stderr to some-
thing other than stdout, replace the perror function.

perror

When s is not NULL printf("%s:%s\n", s, s_fix);

When s is NULL printf("%s\n", s_fix);

When errno is 0 "No error"

When errno is EDOM "EDOM error"

When errno is ERANGE "ERANGE error"

Otherwise "Unknown error"



R20UT3123EJ0113  Rev.1.13 Page 764 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.8  General utility functions

General utility functions are as follows.

Table 7.10 General Utility Functions

Function/Macro Name Outline

atof Conversion of character string to floating-point number (double type)

atoff Conversion of character string to floating-point number (float type)

atoi Conversion of character string to integer (int type)

atol Conversion of character string to integer (long int type)

atoll [V1.07 or later] Conversion of character string to integer (long long int type) (C99)

strtod Conversion of character string to floating-point number (double type) (storing pointer to last 
character string

strtof Conversion of character string to floating-point number (float type) (storing pointer to last 
character string

strtold [V1.07 or later] Conversion of character string to floating-point number (long double type) (storing pointer 
to last character string) (C99)

strtol Conversion of character string to integer (long int type) and storing pointer to last character 
string

strtoll [V1.07 or later] Conversion of character string to integer (long long int type) and storing pointer to last 
character string (C99)

strtoul Conversion of character string to integer (unsigned long int type) and storing pointer to last 
character string

strtoull [V1.07 or later] Conversion of character string to integer (unsigned long long int type) and storing pointer to 
last character string (C99)

rand Pseudorandom number sequence generation

srand Setting of type of pseudorandom number sequence

calloc [V1.02 or later] Allocates dynamic memory that is initialized by 0.

free [V1.02 or later] Releases dynamic memory

malloc [V1.02 or later] Allocates dynamic memory

realloc [V1.02 or later] Re-allocates dynamic memory

abort Terminates the program

bsearch Binary search

qsort Sort

abs Output absolute value (int type)

div Division (int type)

labs Output absolute value (long type)

ldiv Division (long type)

llabs [V1.07 or later] Output absolute value (long long type) (C99)

lldiv [V1.07 or later] Division (long long type) (C99)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 765 of 951
Dec 01, 2023

Conversion of character string to floating-point number (double type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
double  __far   atof(const char __near *nptr);
double  __far   _COM_atof_f(const char __far *nptr);

[Return value]

If the partial character string has been converted, the resultant value is returned.  If the character string could not be 
converted, 0 is returned.

If an overflow occurs, atof returns  and sets macro ERANGE to global variable errno.
If an underflow occurs, atof returns 0 and sets macro ERANGE to global variable errno.

[Description]

This function converts the first portion of the character string indicated by nptr into a float type representation.

atof



R20UT3123EJ0113  Rev.1.13 Page 766 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to floating-point number (float type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
float   __far   atoff(const char __near *nptr);
float   __far   _COM_atoff_f(const char __far *nptr);

[Return value]

If the partial character string has been converted, the resultant value is returned.  If the character string could not be 
converted, 0 is returned.

If an overflow occurs, atoff returns  and sets macro ERANGE to global variable errno.
If an underflow occurs, atoff returns 0 and sets macro ERANGE to global variable errno.

[Description]

This function converts the first portion of the character string indicated by nptr into a float type representation.

atoff



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 767 of 951
Dec 01, 2023

Conversion of character string to integer (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int __far   atoi(const char __near *nptr);
int __far   _COM_atoi_f(const char __far *nptr);

[Return value]

Returns the converted value if the partial character string could be converted.  If it could not, 0 is returned.
If an overflow occurs, atoi returns INT_MAX for a positive value and INT_MIN for a negative value, and sets macro 

ERANGE to global variable errno.

[Description]

This function converts the first part of the character string indicated by nptr into an int type in the decimal representation.

atoi



R20UT3123EJ0113  Rev.1.13 Page 768 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to integer (long int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long int    __far   atol(const char __near *nptr);
long int    __far   _COM_atol_f(const char __far *nptr);

[Return value]

Returns the converted value if the partial character string could be converted.  If it could not, 0 is returned.
If an overflow occurs, atol returns LONG_MAX for a positive value and LONG_MIN for a negative value, and sets macro 

ERANGE to global variable errno.

[Description]

This function converts the first part of the character string indicated by nptr into a long int type in the decimal represen-
tation.

atol



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 769 of 951
Dec 01, 2023

Conversion of character string to integer (long long int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long int __far atoll(const char __near *nptr); (C99)
long long int __far _COM_atoll_f(const char __far *nptr); (C99)

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, this function returns LLONG_MAX for a positive value and LLONG_MIN for a negative value, and 

sets macro ERANGE to global variable errno.

[Description]

This function converts the first part of the character string indicated by nptr into a long long int type in the decimal repre-
sentation.

atoll [V1.07 or later]



R20UT3123EJ0113  Rev.1.13 Page 770 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to flonptrating-point number (double type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
double __far strtod(const char __near *nptr, char __near * __near *endptr); (C90)
double __far strtod(const char __near * restrict nptr, char __near * __near * restrict endptr); (C99) [V1.07 or later]
double __far _COM_strtod_ff(const char __far *nptr, char __far * __far *endptr); (C90)
double __far _COM_strtod_ff(const char __far * restrict nptr, char __far * __far * restrict endptr); (C99) [V1.07 or later]

[Return value]

If the partial character string has been converted, the resultant value is returned.  If the character string could not be 
converted, 0 is returned.

If an overflow occurs , strtod returns  and sets macro ERANGE to global variable errno.
If an underflow occurs, strtod returns 0 and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a double-type representation. 
When endptr is not the null pointer, the pointer to the remaining strings that were not converted is set to endptr.

[Restrictions]

Hexadecimal floating-point numbers are not supported in a recognizable format of a string that is subject to the conver-
sion method specified in the C99 standard.

strtod



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 771 of 951
Dec 01, 2023

Conversion of character string to flonptrating-point number (float type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
float __far strtof(const char __near *nptr, char __near * __near *endptr); (C90)
float __far strtof(const char __near * restrict nptr, char __near * __near * restrict endptr); (C99) [V1.07 or later]
float __far _COM_strtof_ff(const char __far *nptr, char __far * __far *endptr); (C90)
float __far _COM_strtof_ff(const char __far * restrict nptr, char __far * __far * restrict endptr); (C99) [V1.07 or later]

[Return value]

If the partial character string has been converted, the resultant value is returned.  If the character string could not be 
converted, 0 is returned.

If an overflow occurs, strtof returns  and sets macro ERANGE to global variable errno.
If an underflow occurs, strtof returns 0 and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a float-type representation. 
When endptr is not the null pointer, the pointer to the remaining strings that were not converted is set to endptr.

[Restrictions]

Hexadecimal floating-point numbers are not supported in a recognizable format of a string that is subject to the conver-
sion method specified in the C99 standard.

strtof



R20UT3123EJ0113  Rev.1.13 Page 772 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to floating-point number (long double type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long double __far strtold(const char __near * restrict nptr, char __near * __near * restrict endptr); (C99)
long double __far _COM_strtold_ff(const char __far * restrict nptr, char __far * __far * restrict endptr); (C99)

[Return value]

If the partial character string has been converted, the converted value is returned. If the character string could not be 
converted, 0 is returned.

If an overflow occurs, this function returns  and sets macro ERANGE to global variable errno.
If an underflow occurs, this function returns 0 and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a long double-type representa-
tion. When endptr is not a null pointer, the pointer to the remaining strings that were not converted is set in endptr.

[Restrictions]

Hexadecimal floating-point numbers are not supported in a recognizable format of a string that is subject to the conver-
sion method specified in the C99 standard.

strtold [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 773 of 951
Dec 01, 2023

Conversion of character string to integer (long int type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long int __far strtol(const char __near *nptr, char __near * __near *endptr, int base); (C90)
long int __far strtol(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); (C99) [V1.07 or 

later]
long int __far _COM_strtol_ff(const char __far *nptr, char __far * __far *endptr, int base); (C90)
long int __far _COM_strtol_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int base); (C99) [V1.07 

or later]

[Return value]

Returns the converted value if the partial character string could be converted.  If it could not, 0 is returned.
If an overflow occurs, strtol returns LONG_MAX or LONG_MIN and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a long int-type representation.  
If base is 0, the value is interpreted as the C radix representation.   If base is between the range of 2 and 36, the value is 
interpreted as a radix.  When endptr is not the null pointer, the pointer to the remaining strings that were not converted is 
set to endptr.

strtol



R20UT3123EJ0113  Rev.1.13 Page 774 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to integer (long long int type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long int __far strtoll(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); (C99)
long long int __far _COM_strtoll_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int base); (C99)

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, this function returns LLONG_MAX or LLONG_MIN and sets macro ERANGE to global variable 

errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into a long long int-type representa-
tion. If base is 0, the value is interpreted as the C radix representation. If base is in the range from 2 to 36, the value is 
interpreted as a radix. When endptr is not a null pointer, the pointer to the remaining strings that were not converted is set 
in endptr.

strtoll [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 775 of 951
Dec 01, 2023

Conversion of character string to integer (unsigned long int type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
unsigned long int __far strtoul(const char __near *nptr, char __near * __near *endptr, int base); (C90)
unsigned long int __far strtoul(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); (C99) 

[V1.07 or later]
unsigned long int __far _COM_strtoul_ff(const char __far *nptr, char __far * __far *endptr, int base); (C90)
unsigned long int __far _COM_strtoul_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int base); 

(C99) [V1.07 or later]

[Return value]

Returns the converted value if the partial character string could be converted.  If it could not, 0 is returned.
If an overflow occurs, strtoul returns ULONG_MAX and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into an unsigned long int-type rep-
resentation.  If base is 0, the value is interpreted as the C radix representation.   If base is between the range of 2 and 36, 
the value is interpreted as a radix.  When endptr is not the null pointer, the pointer to the remaining strings that were not 
converted is set to endptr.

strtoul



R20UT3123EJ0113  Rev.1.13 Page 776 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Conversion of character string to integer (unsigned long long int type) and storing pointer to last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
unsigned long long int __far strtoull(const char __near * restrict nptr, char __near * __near * restrict endptr, int base); 

(C99)
unsigned long long int __far _COM_strtoull_ff(const char __far * restrict nptr, char __far * __far * restrict endptr, int 

base); (C99)

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.
If an overflow occurs, this function returns ULLONG_MAX and sets macro ERANGE to global variable errno.

[Description]

This function skips 0 or more columns of white-space characters (character which makes the isspace function true) from 
the start of the string indicated by nptr, and converts the string from the next character into an unsigned long long int-type 
representation. If base is 0, the value is interpreted as the C radix representation. If base is in the range from 2 to 36, the 
value is interpreted as a radix. When endptr is not a null pointer, the pointer to the remaining strings that were not con-
verted is set in endptr.

strtoull [V1.07 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 777 of 951
Dec 01, 2023

Pseudorandom number sequence generation

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int __far   rand(void);

[Return value]

Random numbers are returned.

[Description]

This function returns a random number that is greater than or equal to zero and less than or equal to RAND_MAX 
(0x7FFF).

rand



R20UT3123EJ0113  Rev.1.13 Page 778 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Setting of type of pseudorandom number sequence

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __far  srand(unsigned int seed);

[Description]

This function assigns seed as the new pseudo random number sequence seed to be used by the rand call that follows.  
If srand is called using the same seed value, the same numbers in the same order will appear for the random numbers 
that are obtained by rand.  If rand is executed without executing srand, the results will be the same as when srand(1) was 
first executed.

srand



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 779 of 951
Dec 01, 2023

Allocates memory that has been initialized by zero.

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __near * __far calloc(size_t nmemb, size_t size);

[Return value]

Upon succeeding to allocate an area, the pointer to that area is returned.
If nmemb or size is 0 or the area could not be allocated, a null pointer is returned.

[Description]

This function allocates an area whose size is specified by size and the number of elements in an array is specified by 
nmemb and then initializes that area by 0.

[Professional Edition only] [V1.03 or later]
When using a malloc library for the security facility, the __heap_chk_fail function is called when one of the following 

operations is performed. 

- The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- After calloc, malloc, or realloc, a value is written to an address outside the allocated area (within two bytes before and 
after the allocated area) and the pointer to that area is passed to free or realloc.

The __heap_chk_fail function needs to be defined by the user and it describes the processing to be executed when an 
error occurs in management of dynamic memory.

Note the following points when defining the __heap_chk_fail function.

- The __heap_chk_fail function should be a far function whose return value and parameter type should be the void 
type.
void __far __heap_chk_fail(void);

- Do not define the __heap_chk_fail function as static.

- Corruption of heap memory area should not be detected recursively in the __heap_chk_fail function.

The calloc, malloc, and realloc functions for the security facility allocate four extra bytes before and after each allocated 
area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap memory area 
than with the usual functions.

[Caution]

The default size of the heap memory area is 0x100 bytes.
To change the heap memory area, define the _REL_sysheap array and set the array size in the _REL_sizeof_sysheap 

variable.

calloc [V1.02 or later]

[Example of setting the heap memory area]
#include <stddef.h>
#define SIZEOF_HEAP  0x200
char _REL_sysheap[SIZEOF_HEAP];
size_t _REL_sizeof_sysheap = SIZEOF_HEAP;



R20UT3123EJ0113  Rev.1.13 Page 780 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Remark The _REL_sysheap array should be allocated to an even address.



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 781 of 951
Dec 01, 2023

Releases memory.

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __far free(void __near *ptr);

[Description]

This function releases the area indicated by ptr. If ptr is a null pointer, no processing is performed. In addition to that, if 
ptr is not an area allocated by calloc, malloc, or realloc, or ptr has already been released by free or realloc, operation is not 
guaranteed.

[Professional Edition only] [V1.03 or later]
When using a malloc library for the security facility, the __heap_chk_fail function is called when one of the following 

operations is performed. 

- The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- After calloc, malloc, or realloc, a value is written to an address outside the allocated area (within two bytes before and 
after the allocated area) and the pointer to that area is passed to free or realloc.

The __heap_chk_fail function needs to be defined by the user and it describes the processing to be executed when an 
error occurs in management of dynamic memory.

Note the following points when defining the __heap_chk_fail function.

- The __heap_chk_fail function should be a far function whose return value and parameter type should be the void 
type.
void __far __heap_chk_fail(void);

- Do not define the __heap_chk_fail function as static.

- Corruption of heap memory area should not be detected recursively in the __heap_chk_fail function.

The calloc, malloc, and realloc functions for the security facility allocate four extra bytes before and after each allocated 
area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap memory area 
than with the usual functions.

free [V1.02 or later]



R20UT3123EJ0113  Rev.1.13 Page 782 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Allocates memory.

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __near * __far malloc(size_t size);

[Return value]

Upon succeeding to allocate an area, the pointer to that area is returned.
If size is 0 or the area could not be allocated, a null pointer is returned.

[Description]

This function allocates an area whose size is specified by size. The area is not initialized.

[Professional Edition only] [V1.03 or later]
When using a malloc library for the security facility, the __heap_chk_fail function is called when one of the following 

operations is performed. 

- The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- After calloc, malloc, or realloc, a value is written to an address outside the allocated area (within two bytes before and 
after the allocated area) and the pointer to that area is passed to free or realloc.

The __heap_chk_fail function needs to be defined by the user and it describes the processing to be executed when an 
error occurs in management of dynamic memory.

Note the following points when defining the __heap_chk_fail function.

- The __heap_chk_fail function should be a far function whose return value and parameter type should be the void 
type.
void __far __heap_chk_fail(void);

- Do not define the __heap_chk_fail function as static.

- Corruption of heap memory area should not be detected recursively in the __heap_chk_fail function.

The calloc, malloc, and realloc functions for the security facility allocate four extra bytes before and after each allocated 
area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap memory area 
than with the usual functions.

[Caution]

The default size of the heap memory area is 0x100 bytes.
To change the heap memory area, define the _REL_sysheap array and set the array size in the _REL_sizeof_sysheap 

variable.

malloc [V1.02 or later]

[Example of setting the heap memory area]
#include <stddef.h>
#define SIZEOF_HEAP  0x200
char _REL_sysheap[SIZEOF_HEAP];
size_t _REL_sizeof_sysheap = SIZEOF_HEAP;



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 783 of 951
Dec 01, 2023

Remark The _REL_sysheap array should be allocated to an even address.



R20UT3123EJ0113  Rev.1.13 Page 784 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Re-allocates memory.

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __near * __far realloc(void __near *ptr, size_t size);

[Return value]

Upon succeeding to allocate an area, the pointer to that area is returned.
If size is 0 or the area could not be allocated, a null pointer is returned.

[Description]

This function changes the area indicated by ptr to the size specified by size.
The size before re-allocation and the contents of the area up to the smaller value of size do not change.
If the size is increased, the area for the increased part is not initialized.
If ptr is a null pointer, operation is the same as that for "malloc (size)".
If ptr is not a null pointer and size is 0, operation is the same as that for "free (ptr)".
In addition to that, if ptr is not an area allocated by calloc, malloc, or realloc, or ptr has already been released by free or 

realloc, operation is not guaranteed.

[Professional Edition only] [V1.03 or later]
When using a malloc library for the security facility, the __heap_chk_fail function is called when one of the following 

operations is performed. 

- The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- After calloc, malloc, or realloc, a value is written to an address outside the allocated area (within two bytes before and 
after the allocated area) and the pointer to that area is passed to free or realloc.

The __heap_chk_fail function needs to be defined by the user and it describes the processing to be executed when an 
error occurs in management of dynamic memory.

Note the following points when defining the __heap_chk_fail function.

- The __heap_chk_fail function should be a far function whose return value and parameter type should be the void 
type.
void __far __heap_chk_fail(void);

- Do not define the __heap_chk_fail function as static.

- Corruption of heap memory area should not be detected recursively in the __heap_chk_fail function.

The calloc, malloc, and realloc functions for the security facility allocate four extra bytes before and after each allocated 
area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap memory area 
than with the usual functions.

[Caution]

The default size of the heap memory area is 0x100 bytes.
To change the heap memory area, define the _REL_sysheap array and set the array size in the _REL_sizeof_sysheap 

variable.

realloc [V1.02 or later]



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 785 of 951
Dec 01, 2023

Remark The _REL_sysheap array should be allocated to an even address.

[Example of setting the heap memory area]
#include <stddef.h>
#define SIZEOF_HEAP  0x200
char _REL_sysheap[SIZEOF_HEAP];
size_t _REL_sizeof_sysheap = SIZEOF_HEAP;



R20UT3123EJ0113  Rev.1.13 Page 786 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Terminates the program

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __fat  abort(void);

[Description]

Calling abort terminates the program.  Control does not return to the calling function.

abort



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 787 of 951
Dec 01, 2023

Search for a value from among arranged arrays.

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __near * __far bsearch(const void __near *key, const void __near *base, size_t nmemb, size_t size, int (__far 

*compar)(const void __near *, const void __near *));
void __far * __far  _COM_bsearch_f(const void __far *key, const void __far *base, size_t nmemb,, size_t size, int (__far 

*compar)(const void __far *, const void __far *));

[Return value]

A pointer to the element in the array that coincides with key is returned.  If there are two or more elements that coincide 
with key, the one that has been found first is indicated.  If there are not elements that coincide with key, a null pointer is 
returned.

[Description]

This function searches an element that coincides with key from an array starting with base by means of binary search.  
nmemb is the number of elements of the array.  size is the size of each element.

The compare function indicated by compar is called with the pointer to object key as the first parameter and the pointer 
to array elements as the second parameter.  As a result, if the first parameter is smaller than the second parameter, a neg-
ative value is returned.  If the two parameters are equal, 0 is returned.  If the first parameter is greater than the second 
parameter, a positive value is returned.  The array must be arranged in the ascending order in respect to the compare 
function indicated by compar (last argument).

bsearch



R20UT3123EJ0113  Rev.1.13 Page 788 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Sorts the array

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
void __far  qsort(void __near *base, size_t nmemb, size_t size, int (__far *compar)(const void __near *, const void 

__near *));
void __far  _COM_qsort_f(void __far *base, size_t nmemb, size_t size, int (__far *compar)(const void __far *, const void 

__far *));

[Description]

This function sorts the array pointed to by base into ascending order in relation to the comparison function pointed to by 
compar.  nmemb is the number of array elements, and size is the size of each element.  The comparison function pointed 
to by compar is the same as the one described for bsearch.

If two elements are equal, their order when they are aligned in the array cannot be guaranteed.

qsort



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 789 of 951
Dec 01, 2023

Obtain absolute value (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
int __far   abs(int j);

[Return value]

Returns the absolute value of j (size of j), | j |. If the input value of abs is the smallest negative value, the same value is 
returned.

[Description]

This function obtains the absolute value of j (size of j), | j |.  If j is a negative number, the result is the reversal of j.  If j is 
not negative, the result is j.

abs



R20UT3123EJ0113  Rev.1.13 Page 790 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Perform division of int type to obtain the quotient and remainder

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
div_t __far div(int numer, int denom);

[Return value]

The structure holding the result of the division is returned.  When divided by 0, -1 is set as quotient quot and numer is 
set as remainder rem.

[Description]

This function is used to divide a value of int type.
This function calculates the quotient (quot) and remainder (rem) resulting from dividing numerator numer by denomina-

tor denom, and stores these two integers as the members of the following structure div_t.

When the value cannot be divided, the quotient of the result becomes an integer that is closest to the algebraical quo-
tient and has a smaller absolute value than it.

div

typedef struct {
        int quot;
        int rem;
} div_t;



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 791 of 951
Dec 01, 2023

Obtain absolute value (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long int __far  labs(long int j);

[Return value]

Returns the absolute value of j (size of j), | j |. If the input value of labs is the smallest negative value, the same value is 
returned.

[Description]

This function obtains the absolute value of j (size of j), | j |.  If j is a negative number, the result is the reversal of j.  If j is 
not negative, the result is j.  This function is the same as abs, but uses long type instead of int type, and the return value is 
also of long type.

labs



R20UT3123EJ0113  Rev.1.13 Page 792 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Perform division of long type to obtain the quotient and remainder

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
ldiv_t  ldiv(long numer, long denom);

[Return value]

The structure holding the result of the division is returned.  When divided by 0, -1 is set as quotient quot and numer is 
set as remainder rem.

[Description]

This function is used to divide a value of long type.
This function calculates the quotient (quot) and remainder (rem) resulting from dividing numerator numer by denomina-

tor denom, and stores these two integers as the members of the following structure div_t.

When the value cannot be divided, the quotient of the result becomes an integer that is closest to the algebraical quo-
tient and has a smaller absolute value than it.

ldiv

typedef struct {
        long int    quot;
        long int    rem;
} ldiv_t;



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 793 of 951
Dec 01, 2023

Obtain absolute value (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
long long int __far llabs(long long int j); (C99)

[Return value]

Returns the absolute value of j (size of j), | j |. If the input value of llabs is the smallest negative value, the same value is 
returned.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is 
not negative, the result is j.

llabs [V1.07 or later]



R20UT3123EJ0113  Rev.1.13 Page 794 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Perform division of long long type to obtain the quotient and remainder

[Classification]

Standard library

[Syntax]

#include <stdlib.h>
lldiv_t __far lldiv(long long int numer, long long int denom); (C99)

[Return value]

The structure holding the result of the division is returned. When divided by 0, -1 is set as quotient quot and numer is set 
as remainder rem.

[Description]

This function is used to divide a value of long long type.
This function calculates the quotient (quot) and remainder (rem) resulting from dividing numerator numer by denomina-

tor denom, and stores these two integers as the members of the following structure lldiv_t.

When the value cannot be divided, the quotient of the result becomes an integer that is closest to the algebraical quo-
tient and has a smaller absolute value than it.

lldiv [V1.07 or later]

typedef struct {
    long long int quot;
    long long int rem;
} lldiv_t;



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 795 of 951
Dec 01, 2023

7.5.9  Character string operation functions

Character string operation functions are as follows.

Table 7.11 Character String Operation Functions

Function/Macro Name Outline

memcpy Memory copy

memmove Memory move

strcpy Character string copy

strncpy Character string copy (with number of characters specified)

strcat Character string concatenation

strncat Character string concatenation (with number of characters specified)

memcmp Memory comparison

strcmp Character string comparison

strncmp Character string comparison (with number of characters specified)

memchr Memory search

strchr Character string search (start position of specified character)

strcspn Character string search (maximum length not including specified character)

strpbrk Character string search (start position)

strrchr Character string search (end position)

strspn Character string search (maximum length including specified character)

strstr Character string search (start position of specified character string)

strtok Token division

memset Initialization of an object

strerror Obtain error message corresponding to error number

strlen Length of character string



R20UT3123EJ0113  Rev.1.13 Page 796 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Object copy

[Classification]

Standard library

[Syntax]

#include <string.h>
void __near * __far memcpy(void __near *s1, const void __near *s2, size_t n); (C90)
void __near * __far memcpy(void __near * restrict s1, const void __near * restrict s2, size_t n); (C99) [V1.07 or later]
void __far * __far _COM_memcpy_ff(void __far *s1, const void __far *s2, size_t n); (C90)
void __far * __far _COM_memcpy_ff(void __far * restrict s1, const void __far * restrict s2, size_t n); (C99) [V1.07 or 

later]

[Return value]

Returns the value of s1.

[Description]

This function copies the n number of characters from a object indicated by s2 to a object indicated by s1.
The operation is undefined if the copy source and copy destination areas overlap.

[Caution]

The memcpy function may be internally called by CC-RL and is included in the runtime library. Do not create a user 
function having the name memcpy.

memcpy



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 797 of 951
Dec 01, 2023

Object copy

[Classification]

Standard library

[Syntax]

#include <string.h>
void __near * __far memmove(void __near *s1, void __near *s2, size_t n);
void __far * __far  _COM_memmove_ff(void __far *s1, void __far *s2, size_t n);

[Return value]

Returns the value of s1.

[Description]

This function copies the n number of characters from a memory area indicated by s2 to a memory area indicated by s1.
Copying can be performed correctly even when the copy source area overlaps with the copy destination area.

memmove



R20UT3123EJ0113  Rev.1.13 Page 798 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Character string copy

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strcpy(char __near *s1, const char __near *s2); (C90)
char __near * __far strcpy(char __near * restrict s1, const char __near * restrict s2); (C99) [V1.07 or later]
char __far * __far _COM_strcpy_ff(char __far *s1, const char __far *s2); (C90)
char __far * __far _COM_strcpy_ff(char __far * restrict s1, const char __far * restrict s2); (C99) [V1.07 or later]

[Return value]

Returns the value of s1.

[Description]

This function copies the character string indicated by s2 (terminating null character is included) to the array indicated by 
s1.

The operation is undefined if the copy source and copy destination areas overlap.

strcpy



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 799 of 951
Dec 01, 2023

Character string copy with number of characters specified

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strncpy(char __near *s1, const char __near *s2, size_t n); (C90)
char __near * __far strncpy(char __near * restrict s1, const char __near * restrict s2, size_t n); (C99) [V1.07 or later]
char __far * __far _COM_strncpy_ff(char __far *s1, const char __far *s2, size_t n); (C90)
char __far * __far _COM_strncpy_ff(char __far * restrict s1, const char __far * restrict s2, size_t n); (C99) [V1.07 or later]

[Return value]

Returns the value of s1.

[Description]

This function copies up to n characters (null character and string following the null character are not appended) from the 
array indicated by s2 to the array indicated by s1.  If the array indicate by s2 is shorter than n characters, null characters 
(\0) are appended to the duplication in the array indicated by s1, until all n characters are written.  If the array indicated by 
s2 is equal to or greater than n characters, null characters are not appended.

The operation is undefined if the copy source and copy destination areas overlap.

strncpy



R20UT3123EJ0113  Rev.1.13 Page 800 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Character string concatenation

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strcat(char __near *s1, const char __near *s2); (C90)
char __near * __far strcat(char __near * restrict s1, const char __near * restrict s2); (C99) [V1.07 or later]
char __far * __far _COM_strcat_ff(char __far *s1, const char __far *s2); (C90)
char __far * __far _COM_strcat_ff(char __far * restrict s1, const char __far * restrict s2); (C99) [V1.07 or later]

[Return value]

Returns the value of s1.

[Description]

This function concatenates the duplication of the character string indicated by s2 to the end of the character string indi-
cated by s1, including the null character (\0).  The first character of s2 overwrites the null character (\0) at the end of s1.

The operation is undefined if the copy source and copy destination areas overlap.

strcat



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 801 of 951
Dec 01, 2023

Character string concatenation with number of characters specified

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strncat(char __near *s1, const char __near *s2, size_t n); (C90)
char __near * __far strncat(char __near * restrict s1, const char __near * restrict s2, size_t n); (C99) [V1.07 or later]
char __far * __far _COM_strncat_ff(char __far *s1, const char __far *s2, size_t n); (C90)
char __far * __far _COM_strncat_ff(char __far * restrict s1, const char __far * restrict s2, size_t n); (C99) [V1.07 or later]

[Return value]

Returns the value of s1.

[Description]

This function concatenates up to n characters (null character and string following the null character are not appended) 
to the end of the character string indicated by s1, starting from the beginning of the array indicated by s2.  The null charac-
ter (\0) at the end of s1 is written over the first character of s2.  The null character indicating termination (\0) is always 
added to this result.

The operation is undefined if the copy source and copy destination areas overlap.

[Caution]

Because the null character (\0) is always appended when strncat is used, if copying is limited by the number of n argu-
ments, the number of characters appended to s1 is n + 1.

strncat



R20UT3123EJ0113  Rev.1.13 Page 802 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Object comparison

[Classification]

Standard library

[Syntax]

#include <string.h>
int __far   memcmp(const void __near *s1, const void __near *s2, size_t n);
int __far   _COM_memcmp_ff(const void __far *s1, const void __far *s2, size_t n);

[Return value]

An value greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is greater 
than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

memcmp



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 803 of 951
Dec 01, 2023

Character string comparison

[Classification]

Standard library

[Syntax]

#include <string.h>
int __far   strcmp(const char __near *s1, const char __near *s2);
int __far   _COM_strcmp_ff(const char __far *s1, const char __far *s2);

[Return value]

Returns an value greater than, equal to, or less than 0, depending on whether the character string indicated by s1 is 
greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares the character string indicated by s1 with the character string indicated by s2.

strcmp



R20UT3123EJ0113  Rev.1.13 Page 804 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Character string comparison with number of characters specified

[Classification]

Standard library

[Syntax]

#include <string.h>
int __far   strncmp(const char __near *s1, const char __near *s2, size_t n);
int __far   _COM_strncmp_ff(const char __far *s1, const char __far *s2, size_t n);

[Return value]

Returns an value greater than, equal to, or less than 0, depending on whether the array indicated by s1 is greater than, 
equal to, or less than the array indicated by s2.

[Description]

This function compares up to n characters of the array indicated by s1 with characters of the array indicated by s2 
(string following the null character is not compared).

strncmp



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 805 of 951
Dec 01, 2023

Character search from object

[Classification]

Standard library

[Syntax]

#include <string.h>
void __near * __far memchr(const void __near *s, int c, size_t n);
void __far * __far  _COM_memchr_f(const void __far *s, int c, size_t n);

[Return value]

If c is found, a pointer indicating this character is returned.  If c is not found, the null pointer is returned.

[Description]

This function obtains the position at which character c appears first in the first n number of characters in an object indi-
cated by s.

memchr



R20UT3123EJ0113  Rev.1.13 Page 806 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Search for a character from the start of the string

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strchr(const char __near *s, int c);
char __far * __far  _COM_strchr_f(const char __far *s, int c);

[Return value]

Returns a pointer indicating the character that has been found.  If c does not appear in this character string, the null 
pointer is returned.

[Description]

This function obtains the position at which a character the same as c appears in the character string indicated by s.  The 
null character (\0) indicating termination is regarded as part of this character string.

strchr



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 807 of 951
Dec 01, 2023

Obtain the length of the start portion that does not include the specified character string among the strings

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t __fat    strcspn(const char __near *s1, const char __near *s2);
size_t __fat    _COM_strcspn_ff(const char __far *s1, const char __far *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the length of the maximum and first portion consisting of characters missing from the character 
string indicated by s2 (except the null character (\0) at the end) in the character string indicated by s1.

strcspn



R20UT3123EJ0113  Rev.1.13 Page 808 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Search for any specified character in the string

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strpbrk(const char __near *s1, const char __near *s2);
char __far * __far  _COM_strpbrk_ff(const char __far *s1, const char __far *s2);

[Return value]

Returns the pointer to the character searched for.  If any of the characters from s2 does not appear in s1, the null pointer 
is returned.

[Description]

This function obtains the position in the character string indicated by s1 at which any of the characters in the character 
string indicated by s2 (except the null character (\0)) appears first.

strpbrk



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 809 of 951
Dec 01, 2023

Character search from end position of character string

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strrchr(const char __near *s, int c);
char __far * __far  _COM_strrchr_f(const char __far *s, int c);

[Return value]

Returns a pointer indicating character that has been found.  If c does not appear in this character string, the null pointer 
is returned.

[Description]

This function obtains the position at which c appears last in the character string indicated by s.  The null character (\0) 
indicating termination is regarded as part of this character string.

strrchr



R20UT3123EJ0113  Rev.1.13 Page 810 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain the length of the start portion that includes the specified character string among the strings

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t __far    strspn(const char __near *s1, const char __near *s2);
size_t __far    _COM_strspn_ff(const char __far *s1, const char __far *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the maximum and first length of the portion consisting of only the characters (except the null char-
acter (\0)) in the character string indicated by s2, in the character string indicated by s1.

strspn



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 811 of 951
Dec 01, 2023

Character string search from character string

[Classification]

Standard library

[Syntax]

#include <string.h>
char __near * __far strstr(const char __near *s1, const char __near *s2);
char __far * __far  _COM_strstr_ff(const char __far *s1, const char __far *s2);

[Return value]

Returns the pointer indicating the character string that has been found.  If character string indicated by s2 is not found, 
the null pointer is returned.  If s2 indicates a character string with a length of 0, s1 is returned.

[Description]

This function obtains the position of the portion (except the null character (\0)) that first coincides with the character 
string indicated by s2, in the character string indicated by s1.

strstr



R20UT3123EJ0113  Rev.1.13 Page 812 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Token division

[Classification]

Standard library

[Syntax]

#include <string.h>
char __far * __far strtok(char __far *s1, const char __far *s2); (C90)
char __far * __far strtok(char __far * restrict s1, const char __far * restrict s2); (C99) [V1.07 or later]

[Return value]

Returns a pointer to a token.  If a token does not exist, the null pointer is returned.

[Description]

This function divides the character string indicated by s1 into strings of tokens by delimiting the character string with a 
character in the character string indicated by s2.  If this function is called first, s1 is used as the first argument.  Then, call-
ing with the null pointer as the first argument continues.  The delimiting character string indicated by s2 can differ on each 
call.

On the first call, the character string indicated by s is searched for the first character not included in the delimiting char-
acter string indicated by s2.  If such a character is not found, a token does not exist in the character string indicated by s1, 
and strtok returns the null pointer.  If a character is found, that character is the beginning of the first token.

After that, strtok searches from the position of that character for a character included in the delimiting character string at 
that time.  If such a character is not found, the token is expanded to the end of the character string indicated by s1, and the 
subsequent search returns the null pointer.  If a character is found, the subsequent character is overwritten by the null 
character (\0) indicating the termination of the token.  strtok saves the pointer indicating the subsequent character.  The 
next search for a token starts from there.

In the second or subsequent call with the null pointer as the first argument, the search starts from where the retained 
pointer indicates.  If the null pointer is used as the value of the first argument, a code that is not reentrancy is returned.

strtok



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 813 of 951
Dec 01, 2023

Initialization with the specified character from the start of an object for the specified number of characters

[Classification]

Standard library

[Syntax]

#include <string.h>
void __near * __far memset(const void __near *s, int c, size_t n);
void __far * __far  _COM_memset_f(const void __far *s, int c, size_t n);

[Return value]

Returns the value of s.

[Description]

This function copies the value of c to the first n character of an object indicated by s.

[Caution]

The memset function may be internally called by CC-RL and is included in the runtime library. Do not create a user func-
tion having the name memset.

memset



R20UT3123EJ0113  Rev.1.13 Page 814 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Obtain error message corresponding to error number

[Classification]

Standard library

[Syntax]

#include <string.h>
char __far * __far  strerror(int errnum);

[Return value]

Returns the pointer to the string of the error message corresponding to errnum.
If there is no corresponding error message, the null pointer is returned.

[Description]

Obtain error message corresponding to error number errnum.  The error message should not be changed from the 
application program.

strerror



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 815 of 951
Dec 01, 2023

Length of character string

[Classification]

Standard library

[Syntax]

#include <string.h>
size_t __far    strlen(const char __near *s);
size_t __far    _COM_strlen_f(const char __far *s);

[Return value]

Returns the number of characters existing before the null character (\0) indicating termination.

[Description]

This function obtains the length of the character string indicated by s.

strlen



R20UT3123EJ0113  Rev.1.13 Page 816 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.5.10  Initialization functions

Initialization functions are as follows.

Table 7.12 Initialization Function

Function/Macro Name Outline

hdwinit Initialization of peripheral devices immediately after the CPU reset

stkinit Initialization of stack area



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 817 of 951
Dec 01, 2023

Initialization of peripheral devices immediately after the CPU reset.

[Classification]

Other library

[Syntax]

#include <_h_c_lib.h>
void __far      hdwinit(void);

[Description]

This function performs initialization of peripheral devices immediately after the CPU reset.
This is called from inside the startup routine.
The function included in the library is a dummy routine that performs no actions; code a function in accordance with your 

system.

hdwinit



R20UT3123EJ0113  Rev.1.13 Page 818 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

Initialization of stack area

[Classification]

Other library

[Syntax]

#include <_h_c_lib.h>
void __far     stkinit(void __near * stackbss);

[Description]

This function performs initialization of stack area.
This is called from inside the startup routine.
The lower 16 bits of the start address for the stack area are passed to the parameter.
When parity error detection by reading uninitialized RAM is not performed, this function does not have to be called.

stkinit



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 819 of 951
Dec 01, 2023

7.5.11  Runtime libraries

Runtime libraries are as follows.

Table 7.13 Runtime Libraries

Function Name Outline

_COM_fadd float type addition

_COM_dadd double type (double precision) addition

_COM_fsub float type subtraction

_COM_dsub double type (double precision) subtraction

_COM_imul int type multiplication

_COM_lmul long type multiplication

_COM_llmul long long type multiplication

_COM_fmul float type multiplication

_COM_dmul double type  (double precision) multiplication

_COM_mulsi signed int type multiplication (result is signed long type)

_COM_mului unsigned int type multiplication (result is unsigned long type)

_COM_mulsl signed long type multiplication (result is signed long long type)

_COM_mulul unsigned long type multiplication (result is unsigned long long type)

_COM_scdiv signed char type division

_COM_ucdiv unsigned char type division

_COM_sidiv signed int type division

_COM_uidiv unsigned int type division

_COM_sldiv signed long type division

_COM_uldiv unsigned long type division

_COM_slldiv signed long long type division

_COM_ulldiv unsigned long long type division

_COM_fdiv float type division

_COM_ddiv double type  (double precision) division

_COM_divui unsigned int type division (divisor is unsigned char type)

_COM_divul unsigned long type division (divisor is unsigned int type)

_COM_screm signed char type remainder operation

_COM_ucrem unsigned char type remainder operation

_COM_sirem signed int type remainder operation

_COM_uirem unsigned int type remainder operation

_COM_slrem signed long type remainder operation

_COM_ulrem unsigned long type remainder operation

_COM_sllrem signed long long type remainder operation



R20UT3123EJ0113  Rev.1.13 Page 820 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

_COM_ullrem unsigned long long type remainder operation

_COM_remui unsigned int type remainder operation (divisor is unsigned char type)

_COM_remul unsigned long type remainder operation (divisor is unsigned int type)

_COM_macsi signed int type multiply-accumulate operation (operation result is signed long type)

_COM_macui unsigned int type multiply-accumulate operation (operation result is unsigned long type)

_COM_lshl long type left-shift

_COM_llshl long long type left-shift

_COM_lshr long type logical right-shift

_COM_llshr long long type logical right-shift

_COM_lsar long type arithmetic right-shift

_COM_llsar long long type arithmetic right-shift

_COM_feq float type comparison (==)

_COM_deq double type  (double precision) comparison (==)

_COM_fne float type comparison (!=)

_COM_dne double type  (double precision) comparison (!=)

_COM_fge float type comparison (>=)

_COM_dge double type  (double precision) comparison (>=)

_COM_flt float type comparison (<)

_COM_dlt double type  (double precision) comparison (<)

_COM_fle float type comparison (<=)

_COM_dle double type  (double precision) comparison (<=)

_COM_fgt float type comparison (>)

_COM_dgt double type  (double precision) comparison (>)

_COM_funordered float type NaN test

_COM_dunordered double type  (double precision) NaN  test

_COM_sltof Type conversion from signed long type to float type

_COM_sltod Type conversion from signed long type to double type  (double precision)

_COM_ultof Type conversion from unsigned long type to float type

_COM_ultod Type conversion from unsigned long type to double type  (double precision)

_COM_slltof Type conversion from signed long long type to float type

_COM_slltod Type conversion from signed long long type to double type  (double precision)

_COM_ulltof Type conversion from unsigned long long type to float type

_COM_ulltod Type conversion from unsigned long long type to double type  (double precision)

_COM_ftosl Type conversion from float type to signed long type

_COM_ftoul Type conversion from float type to unsigned long type

Function Name Outline



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 821 of 951
Dec 01, 2023

7.6  Interrupt Disabled Time, Use of Data Sections, and Reentrancy

This section explains the interrupt disabled time and reentrancy of each function in the library.

7.6.1  Standard library

The interrupt disabled time, use of the initialized data section (.data), use of the uninitialized data section (.bss), and the 
reentrancy of each function in the standard library are shown in the following.

The interrupt disabled time is displayed, starting from the left, for the case of not using division/multiplication and multi-
ply-accumulate units, the case of using division/multiplication and multiply-accumulate units, the case of using division/
multiplication extended instructions (single precision), and the case of using division/multiplication extended instructions 
(double precision). A single numerical value is common for all libraries.

_COM_ftosll Type conversion from float type to signed long long type

_COM_ftoull Type conversion from float type to unsigned long long type

_COM_dtosl Type conversion from double type  (double precision) to signed long type

_COM_dtoul Type conversion from double type  (double precision) to unsigned long type

_COM_dtosll Type conversion from double type  (double precision) to signed long long type

_COM_dtoull Type conversion from double type  (double precision) to unsigned long long type

_COM_ftod Type conversion from float type to double type  (double precision)

_COM_dtof Type conversion from double type  (double precision) to float type

__control_flow_integ
rity [Professional Edi-
tion only] [V1.06 or 
later]

Checks for indirect function calls.

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)

assert 0 X X O

isalnum 0 X X O

isalpha 0 X X O

isascii 0 X X O

isblank [V1.07 or later] 0 X X O (C99)

iscntrl 0 X X O

isdigit 0 X X O

isgraph 0 X X O

islower 0 X X O

isprint 0 X X O

ispunct 0 X X O

isspace 0 X X O

isupper 0 X X O

isxdigit 0 X X O

Function Name Outline



R20UT3123EJ0113  Rev.1.13 Page 822 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

toascii 0 X X O

tolower 0 X X O

toupper 0 X X O

imaxabs [V1.07 or later] 0 X X O (C99)

imaxdiv [V1.07 or later] 0/42/0/0 X X O (C99)

strtoimax [V1.07 or later] 0/43/0/0 O X X errno (C99)

_COM_strtoimax_ff [V1.07 or 
later]

0/43/0/0 O X X errno (C99)

strtoumax [V1.07 or later] 0/43/0/0 O X X errno (C99)

_COM_strtoumax_ff [V1.07 
or later]

0/43/0/0 O X X errno (C99)

fpclassify [V1.08 or later] 0 X X O (C99)

isfinite [V1.08 or later] 0 X X O (C99)

isinf [V1.08 or later] 0 X X O (C99)

isnan [V1.08 or later] 0 X X O (C99)

isnormal [V1.08 or later] 0 X X O (C99)

signbit [V1.08 or later] 0 X X O (C99)

acos 0/41/0/0 O X X errno

acosf 0/41/0/0 O X X errno

acosl [V1.08 or later] 0/41/0/0 O X X errno (C99)

asin 0/41/0/0 O X X errno

asinf 0/41/0/0 O X X errno

asinl [V1.08 or later] 0/41/0/0 O X X errno (C99)

atan 0/41/0/0 O X X errno

atanf 0/41/0/0 O X X errno

atanl [V1.08 or later] 0/41/0/0 O X X errno (C99)

atan2 0/41/0/0 O X X errno

atan2f 0/41/0/0 O X X errno

atan2l [V1.08 or later] 0/41/0/0 O X X errno (C99)

cos 0/14/0/0 O X X errno

cosf 0/14/0/0 O X X errno

cosl [V1.08 or later] 0/14/0/0 O X X errno (C99)

sin 0/14/0/0 O X X errno

sinf 0/14/0/0 O X X errno

sinl [V1.08 or later] 0/14/0/0 O X X errno (C99)

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 823 of 951
Dec 01, 2023

tan 0/41/0/0 O X X errno

tanf 0/41/0/0 O X X errno

tanl [V1.08 or later] 0/41/0/0 O X X errno (C99)

acosh [V1.08 or later] 0/41/0/0 O X X errno (C99)

acoshf [V1.08 or later] 0/41/0/0 O X X errno (C99)

acoshl [V1.08 or later] 0/41/0/0 O X X errno (C99)

asinh [V1.08 or later] 0/41/0/0 O X O (C99)

asinhf [V1.08 or later] 0/41/0/0 O X O (C99)

asinhl [V1.08 or later] 0/41/0/0 O X O (C99)

atanh [V1.08 or later] 0/41/0/0 O X X errno (C99)

atanhf [V1.08 or later] 0/41/0/0 O X X errno (C99)

atanhl [V1.08 or later] 0/41/0/0 O X X errno (C99)

cosh 0/41/0/0 O X X errno

coshf 0/41/0/0 O X X errno

coshl [V1.08 or later] 0/41/0/0 O X X errno (C99)

sinh 0/41/0/0 O X X errno

sinhf 0/41/0/0 O X X errno

sinhl [V1.08 or later] 0/41/0/0 O X X errno (C99)

tanh 0/41/0/0 O X X errno

tanhf 0/41/0/0 O X X errno

tanhl [V1.08 or later] 0/41/0/0 O X X errno (C99)

exp 0/41/0/0 O X X errno

expf 0/41/0/0 O X X errno

expl [V1.08 or later] 0/41/0/0 O X X errno (C99)

frexp 0/14/0/0 O X X errno

frexpf 0/14/0/0 O X X errno

frexpl [V1.08 or later] 0/14/0/0 O X X errno (C99)

ldexp 0/14/0/0 O X X errno

ldexpf 0/14/0/0 O X X errno

ldexpl [V1.08 or later] 0/14/0/0 O X X errno (C99)

log 0/14/0/0 O X X errno

logf 0/14/0/0 O X X errno

logl [V1.08 or later] 0/14/0/0 O X X errno (C99)

log10 0/14/0/0 O X X errno

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



R20UT3123EJ0113  Rev.1.13 Page 824 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

log10f 0/14/0/0 O X X errno

log10l [V1.08 or later] 0/14/0/0 O X X errno (C99)

log1p [V1.08 or later] 0/41/0/0 O X X errno (C99)

log1pf [V1.08 or later] 0/41/0/0 O X X errno (C99)

log1pl [V1.08 or later] 0/41/0/0 O X X errno (C99)

modf 0 O X X errno

modff 0 O X X errno

modfl [V1.08 or later] 0 O X X errno (C99)

scalbn [V1.09 or later] 0/14/0/0 O X X errno (C99)

scalbnf [V1.09 or later] 0/14/0/0 O X X errno (C99)

scalbnl [V1.09 or later] 0/14/0/0 O X X errno (C99)

scalbln [V1.09 or later] 0/14/0/0 O X X errno (C99)

scalblnf [V1.09 or later] 0/14/0/0 O X X errno (C99)

scalblnl [V1.09 or later] 0/14/0/0 O X X errno (C99)

fabs 0 O X X errno

fabsf 0 O X X errno

fabsl [V1.08 or later] 0 O X X errno (C99)

pow 0/41/0/0 O X X errno

powf 0/41/0/0 O X X errno

powl [V1.08 or later] 0/41/0/0 O X X errno (C99)

sqrt 0/24/0/0 O X X errno

sqrtf 0/24/0/0 O X X errno

sqrtl [V1.08 or later] 0/24/0/0 O X X errno (C99)

ceil 0 O X X errno

ceilf 0 O X X errno

ceill [V1.08 or later] 0 O X X errno (C99)

floor 0 O X X errno

floorf 0 O X X errno

floorl [V1.08 or later] 0 O X X errno (C99)

nearbyint [V1.09 or later] 0 X X O (C99)

nearbyintf [V1.09 or later] 0 X X O (C99)

nearbyintl [V1.09 or later] 0 X X O (C99)

rint [V1.09 or later] 0 X X O (C99)

rintf [V1.09 or later] 0 X X O (C99)

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 825 of 951
Dec 01, 2023

rintl [V1.09 or later] 0 X X O (C99)

lrint [V1.09 or later] 0 X X X errno (C99)

lrintf [V1.09 or later] 0 X X X errno (C99)

lrintl [V1.09 or later] 0 X X X errno (C99)

llrint [V1.09 or later] 0 X X X errno (C99)

llrintf [V1.09 or later] 0 X X X errno (C99)

llrintl [V1.09 or later] 0 X X X errno (C99)

round [V1.09 or later] 0 X X O (C99)

roundf [V1.09 or later] 0 X X O (C99)

roundl [V1.09 or later] 0 X X O (C99)

lround [V1.09 or later] 0 X X X errno (C99)

lroundf [V1.09 or later] 0 X X X errno (C99)

lroundl [V1.09 or later] 0 X X X errno (C99)

llround [V1.09 or later] 0 X X X errno (C99)

llroundf [V1.09 or later] 0 X X X errno (C99)

llroundl [V1.09 or later] 0 X X X errno (C99)

trunc [V1.09 or later] 0 X X O (C99)

truncf [V1.09 or later] 0 X X O (C99)

truncl [V1.09 or later] 0 X X O (C99)

fmod 0/14/0/0 O X X errno

fmodf 0/14/0/0 O X X errno

fmodl [V1.08 or later] 0/14/0/0 O X X errno (C99)

copysign [V1.09 or later] 0 X X O (C99)

copysignf [V1.09 or later] 0 X X O (C99)

copysignl [V1.09 or later] 0 X X O (C99)

nan [V1.09 or later] 0 X X O (C99)

nanf [V1.09 or later] 0 X X O (C99)

nanl [V1.09 or later] 0 X X O (C99)

fdim [V1.09 or later] 0 X X O (C99)

fdimf [V1.09 or later] 0 X X O (C99)

fdiml [V1.09 or later] 0 X X O (C99)

fmax [V1.09 or later] 0 X X O (C99)

fmaxf [V1.09 or later] 0 X X O (C99)

fmaxl [V1.09 or later] 0 X X O (C99)

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



R20UT3123EJ0113  Rev.1.13 Page 826 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

fmin [V1.09 or later] 0 X X O (C99)

fminf [V1.09 or later] 0 X X O (C99)

fminl [V1.09 or later] 0 X X O (C99)

isgreater [V1.09 or later] 0 X X O (C99)

isgreaterequal [V1.09 or later] 0 X X O (C99)

isless [V1.09 or later] 0 X X O (C99)

islessequal [V1.09 or later] 0 X X O (C99)

islessgreater [V1.09 or later] 0 X X O (C99)

isunordered [V1.09 or later] 0 X X O (C99)

setjmp 0 X X  When the pointer reference desti-
nation is updated

longjmp 0 X X X SP

va_start 0 X X O

va_arg 0 X X O

va_copy [V1.09 or later] 0 X X O (C99)

va_end 0 X X O

printf 0/43/0/0 X O X stdout, Internal management data

scanf 0/41/0/0 O X X stdin

snprintf [V1.07 or later] 0/43/0/0 X O X Internal management data (C99)

sprintf 0/43/0/0 X O X Internal management data

sscanf 0/41/0/0 X O  When the pointer reference desti-
nation is updated

vprintf 0/43/0/0 X O X stdout,Internal management data

vscanf [V1.08 or later] 0/41/0/0 O X X stdin (C99)

vsnprintf [V1.07 or later] 0/43/0/0 X O X Internal management data (C99)

vsprintf 0/43/0/0 X O X Internal management data

vsscanf [V1.08 or later] 0/41/0/0 O X  When the pointer reference desti-
nation is updated (C99)

getchar 0 X X X stdin

gets 0 X X X stdin

_COM_gets_f 0 X X X stdin

putchar 0 X X X stdout

puts 0 X X X stdout

_COM_puts_f 0 X X X stdout

perror 0 O X X errno

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 827 of 951
Dec 01, 2023

_COM_perror_f 0 O X X errno

atof 0/41/0/0 O X X errno

_COM_atof_f 0/41/0/0 O X X errno

atoff 0/41/0/0 O X X errno

_COM_atoff_f 0/41/0/0 O X X errno

atoi 0/40/0/0 O X X errno

_COM_atoi_f 0/40/0/0 O X X errno

atol 0/40/0/0 O X X errno

_COM_atol_f 0/40/0/0 O X X errno

atoll [V1.07 or later] 0/43/0/0 O X X errno (C99)

_COM_atoll_f [V1.07 or later] 0/43/0/0 O X X errno (C99)

strtod 0/41/0/0 O X X errno

_COM_strtod_ff 0/41/0/0 O X X errno

strtof 0/41/0/0 O X X errno

_COM_strtof_ff 0/41/0/0 O X X errno

strtold [V1.07 or later] 0/41/0/0 O X X errno (C99)

_COM_strtold_ff [V1.07 or 
later]

0/41/0/0 O X X errno (C99)

strtol 0/40/0/0 O X X errno

_COM_strtol_ff 0/40/0/0 O X X errno

strtoll [V1.07 or later] 0/43/0/0 O X X errno (C99)

_COM_strtoll_ff [V1.07 or 
later]

0/43/0/0 O X X errno (C99)

strtoul 0/40/0/0 O X X errno

_COM_strtoul_ff 0/40/0/0 O X X errno

strtoull [V1.07 or later] 0/43/0/0 O X X errno (C99)

_COM_strtoull_ff [V1.07 or 
later]

0/43/0/0 O X X errno (C99)

rand 0/24/0/0 O X X seed

srand 0 O X X seed

calloc [V1.02 or later] 0 O O X Internal management data

free [V1.02 or later] 0 O O X Internal management data

malloc [V1.02 or later] 0 O O X Internal management data

realloc [V1.02 or later] 0 O O X Internal management data

abort 0 X X - Processing is not returned

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



R20UT3123EJ0113  Rev.1.13 Page 828 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

bsearch 0 X X  When the pointer reference desti-
nation is updated

_COM_bsearch_f 0 X X  When the pointer reference desti-
nation is updated

qsort 0/40/0/0 X X  When the pointer reference desti-
nation is updated

_COM_qsort_f 0/40/0/0 X X  When the pointer reference desti-
nation is updated

abs 0 X X O

div 0/39/0/0 X X O

labs 0 X X O

ldiv 0/45/0/0 X X O

llabs [V1.07 or later] 0 X X O (C99)

lldiv [V1.07 or later] 0/42/0/0 X X O (C99)

memcpy 0 X X  When the pointer reference desti-
nation is updated

_COM_memcpy_f 0 X X  When the pointer reference desti-
nation is updated

memmove 0 X X  When the pointer reference desti-
nation is updated

_COM_memmove_ff 0 X X  When the pointer reference desti-
nation is updated

strcpy 0 X X  When the pointer reference desti-
nation is updated

_COM_strcpy_ff 0 X X  When the pointer reference desti-
nation is updated

strncpy 0 X X  When the pointer reference desti-
nation is updated

_COM_strncpy_ff 0 X X  When the pointer reference desti-
nation is updated

strcat 0 X X  When the pointer reference desti-
nation is updated

_COM_strcat_ff 0 X X  When the pointer reference desti-
nation is updated

strncat 0 X X  When the pointer reference desti-
nation is updated

_COM_strncat_ff 0 X X  When the pointer reference desti-
nation is updated

memcmp 0 X X  When the pointer reference desti-
nation is updated

_COM_memcmp_ff 0 X X  When the pointer reference desti-
nation is updated

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 829 of 951
Dec 01, 2023

strcmp 0 X X  When the pointer reference desti-
nation is updated

_COM_strcmp_ff 0 X X  When the pointer reference desti-
nation is updated

strncmp 0 X X  When the pointer reference desti-
nation is updated

_COM_strncmp_ff 0 X X  When the pointer reference desti-
nation is updated

memchr 0 X X  When the pointer reference desti-
nation is updated

_COM_memchr_f 0 X X  When the pointer reference desti-
nation is updated

strchr 0 X X  When the pointer reference desti-
nation is updated

_COM_strchr_f 0 X X  When the pointer reference desti-
nation is updated

strcspn 0 X X  When the pointer reference desti-
nation is updated

_COM_strcspn_ff 0 X X  When the pointer reference desti-
nation is updated

strpbrk 0 X X  When the pointer reference desti-
nation is updated

_COM_strpbrk_ff 0 X X  When the pointer reference desti-
nation is updated

strrchr 0 X X  When the pointer reference desti-
nation is updated

_COM_strrchr_f 0 X X  When the pointer reference desti-
nation is updated

strspn 0 X X  When the pointer reference desti-
nation is updated

_COM_strspn_ff 0 X X  When the pointer reference desti-
nation is updated

strstr 0 X X  When the pointer reference desti-
nation is updated

_COM_strstr_ff 0 X X  When the pointer reference desti-
nation is updated

strtok 0 X O X Internal management data

memset 0 X X  When the pointer reference desti-
nation is updated

_COM_memset_f 0 X X  When the pointer reference desti-
nation is updated

strerror 0 X X O

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



R20UT3123EJ0113  Rev.1.13 Page 830 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

7.6.2  Runtime library

The interrupt disabled time, use of the initialized data section (.data), use of the uninitialized data section (.bss), and the 
reentrancy of each function in the runtime library are shown in the following.

The interrupt disabled time is displayed, starting from the left, for the case of not using division/multiplication and multi-
ply-accumulate units, the case of using division/multiplication and multiply-accumulate units, the case of using division/
multiplication extended instructions (single precision), and the case of using division/multiplication extended instructions 
(double precision). A single numerical value is common for all libraries.

strlen 0 X X  When the pointer reference desti-
nation is updated

_COM_strlen_f 0 X X  When the pointer reference desti-
nation is updated

hdwinit 0 X X X Initializing process

stkinit 0 X X X Initializing process

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)

_COM_fadd 0 X X O

_COM_dadd 0 X X O

_COM_fsub 0 X X O

_COM_dsub 0 X X O

_COM_imul 0 X X O

_COM_lmul 0/24/0/0 X X O

_COM_llmul 0/24/0/0 X X O

_COM_fmul 0/14/0/0 X X O

_COM_dmul 0/14/0/0 X X O

_COM_mulsi 0/14/0/0 X X O

_COM_mului 0/14/0/0 X X O

_COM_mulsl 0/14/0/0 X X O

_COM_mulul 0/14/0/0 X X O

_COM_scdiv 0/38/0/0 X X O

_COM_ucdiv 0/38/0/0 X X O

_COM_sidiv 0/38/0/0 X X O

_COM_uidiv 0/38/0/0 X X O

_COM_sldiv 0/40/0/0 X X O

_COM_uldiv 0/40/0/0 X X O

_COM_slldiv 0/43/0/0 X X O

_COM_ulldiv 0/43/0/0 X X O

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 831 of 951
Dec 01, 2023

_COM_fdiv 0/41/0/0 X X O

_COM_ddiv 0 X X O

_COM_divui 0/39/0/0 X X O

_COM_divul 0/40/0/0 X X O

_COM_screm 0/38/0/0 X X O

_COM_ucrem 0/38/0/0 X X O

_COM_sirem 0/38/0/0 X X O

_COM_uirem 0/38/0/0 X X O

_COM_slrem 0/40/0/0 X X O

_COM_ulrem 0/40/0/0 X X O

_COM_sllrem 0/42/0/0 X X O

_COM_ullrem 0/42/0/0 X X O

_COM_remui 0/39/0/0 X X O

_COM_remul 0/39/0/0 X X O

_COM_macsi 0/19/16/16 X X O

_COM_macui 0/19/16/16 X X O

_COM_lshl 0 X X O

_COM_llshl 0 X X O

_COM_lshr 0 X X O

_COM_llshr 0 X X O

_COM_lsar 0 X X O

_COM_llsar 0 X X O

_COM_feq 0 X X O

_COM_deq 0 X X O

_COM_fne 0 X X O

_COM_dne 0 X X O

_COM_fge 0 X X O

_COM_dge 0 X X O

_COM_flt 0 X X O

_COM_dlt 0 X X O

_COM_fle 0 X X O

_COM_dle 0 X X O

_COM_fgt 0 X X O

_COM_dgt 0 X X O

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



R20UT3123EJ0113  Rev.1.13 Page 832 of 951
Dec 01, 2023

CC-RL 7.  LIBRARY FUNCTION SPECIFICATIONS

_COM_funordered 0 X X O

_COM_dunordered 0 X X O

_COM_sltof 0 X X O

_COM_sltod 0 X X O

_COM_ultof 0 X X O

_COM_ultod 0 X X O

_COM_slltof 0 X X O

_COM_slltod 0 X X O

_COM_ulltof 0 X X O

_COM_ulltod 0 X X O

_COM_ftosl 0 X X O

_COM_ftoul 0 X X O

_COM_ftosll 0 X X O

_COM_ftoull 0 X X O

_COM_dtosl 0 X X O

_COM_dtoul 0 X X O

_COM_dtosll 0 X X O

_COM_dtoull 0 X X O

_COM_ftod 0 X X O

_COM_dtof 0 X X O

__control_flow_integrity 
[Professional Edition 
only] [V1.06 or later]

0 X X O

Function Name Interrupt 
Disabled 

Time

Use of 
.data

Use of 
.bss

Reen-
trancy

Remark
(non-reentrancy source)



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 833 of 951
Dec 01, 2023

8.  STARTUP

This chapter explains the startup.

8.1  Outline

The startup processing is used to initialize a section for embedding the user application described with the C language 
to the system or start the main function.

In order to execute a created program, a startup routine appropriate for that program has to be created.

8.2  Startup Routine

Startup routine is the routine that is to be executed after microcontroller is reset and before the execution of main func-
tion.  Basically, it carries out the initialization after system is reset.

Here describes the following:

- Reset vector table setting

- Register bank setting

- Mirror area setting

- Stack area allocation, stack pointer setting, and stack area initialization

- Initialization of peripheral I/O registers required before main function execution

- Initialization of RAM area section

- Startup of main function

- Creation of termination routine

- Startup of the RL78-S1 core

Some processes are unnecessary depending on the system, and they can be omitted.
Note however that these processes basically need to be written with assembler instructions.

8.2.1  Reset vector table setting

The processing for when a reset (reset input) has been entered is written.  In the RL78, upon receiving a reset, a branch 
is made to the address stored in the address (reset address) that has been determined by the device setting.  Therefore, 
the start address of the startup routine should be set to the reset address.  The code will be as follows.

The start of the startup routine is written as shown below.

The label of the start of the startup routine is set as "_start" in the example, but another name does not make any differ-
ence.

8.2.2  Register bank setting

Since the register bank is initialized to RB0 at a reset, set the register bank as follows only when desiring to set the work 
register to a register bank other than RB0.

This processing cannot be written for the RL78-S1 core because it does not have the SEL instruction.

_start  .VECTOR 0

.SECTION        .text, TEXT
_start:

SEL     RB1



R20UT3123EJ0113  Rev.1.13 Page 834 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

8.2.3  Mirror area setting

Since the value of the processor mode control register (PMC) cannot be changed in the RL78-S1 core, this setting is not 
required.  As the PMC value becomes 0 at a reset in the RL78-S2 core or RL78-S3 core, this setting should be made only 
when the MAA bit value of PMC is to be changed.

For details on the mirror area, PMC, and MAA, see the user's manual of the device.

8.2.4  Stack area allocation, stack pointer setting, and stack area initialization

The start (__STACK_ADDR_END) and end (__STACK_ADDR_START) of the stack area are determined by the linker. 
Since the CC-RL stack area is extended in the direction of address 0x0, set the end (__STACK_ADDR_START) of the 
stack area used by the system to the stack pointer.  For __STACK_ADDR_START and __STACK_ADDR_END, see "6.2.2  
Symbols generated by option specifications".

To set the SP in the startup routine, write the code as follows.

Next, initialize the stack area.  The start (__STACK_ADDR_END) of the stack area is passed as an argument.  To detect 
parity errors in response to reading from non-initialized RAM areas, enable the processing for initializing the stack area. If 
you do not intend to detect parity errors in response to reading from non-initialized RAM areas or the device does not sup-
port this facility, the stack area does not need to be initialized. In such cases, comment out the code for initializing the 
stack area.

8.2.5  Initialization of peripheral I/O registers required before main function execution

Initialize the peripheral I/O registers which must be set in order to execute the startup routine.
Registers can be set by just writing assembler instructions.  They can also be set by branching from the startup routine 

to a C language function and make the settings from within that C language function.  For example, write the following 
instruction in the startup routine when creating the C language function "void hdwinit(void)" and calling it from the startup 
routine.

8.2.6  Initialization of RAM area section

Copy initial values to "data attribute" areas which are areas with initial values and clear "bss attribute" areas which are 
areas without initial values to 0.  This processing is not required when there is no area that needs to be initialized before 
program execution.

First, instruct generation of initial value data with the -rom option of the optimizing linker, and define the RAM area sec-
tion to where data is to be copied.  For details, see "8.4  Creating ROM Images".

The defined RAM area section is written to the startup routine as follows.

ONEB    !PMC

MOVW    SP,#LOWW(__STACK_ADDR_START)

MOVW    AX,#LOWW(__STACK_ADDR_END)
CALL    !!_stkinit

CALL    !!_hdwinit

.SECTION        .dataR, DATA

.SECTION        .sdataR, DATA



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 835 of 951
Dec 01, 2023

Next, in the startup routine, write a code to initialize the bss attribute areas.
When initializing sections .bss and .sbss to 0, the code will be as follows.

Then, in the startup routine, write a code to copy data attribute areas to the RAM area section.
When copying sections .data and .sdata to .dataR and .sdataR, respectively, the code will be as follows.  Note that the 

copy routine does not support a section that exceeds the 64-Kbyte boundary.

Write a program for zero-initializing the RAM area section and copying sections in the C language, and this program can 
be called from the startup routine.

        ; clear external variables which doesn't have initial value (near)
        MOVW    HL,#LOWW(STARTOF(.bss))
        MOVW    AX,#LOWW(STARTOF(.bss) + SIZEOF(.bss))
        BR      $.L2_BSS
.L1_BSS:
        MOV     [HL+0],#0
        INCW    HL
.L2_BSS:
        CMPW    AX,HL
        BNZ     $.L1_BSS

        ; clear saddr variables which doesn't have initial value
        MOVW    HL,#LOWW(STARTOF(.sbss))
        MOVW    AX,#LOWW(STARTOF(.sbss) + SIZEOF(.sbss))
        BR      $.L2_SBSS
.L1_SBSS:
        MOV     [HL+0],#0
        INCW    HL
.L2_SBSS:
        CMPW    AX,HL
        BNZ     $.L1_SBSS

        ; copy external variables having initial value (near)
        MOV     ES,#HIGHW(STARTOF(.data))
        MOVW    BC,#LOWW(SIZEOF(.data))
        BR      $.L2_DATA
.L1_DATA:
        DECW    BC
        MOV     A,ES:LOWW(STARTOF(.data))[BC]
        MOV     LOWW(STARTOF(.dataR))[BC],A
.L2_DATA:
        CLRW    AX
        CMPW    AX,BC
        BNZ     $.L1_DATA

        ; copy saddr variables having initial value
        MOV     ES,#HIGHW(STARTOF(.sdata))
        MOVW    BC,#LOWW(SIZEOF(.sdata))
        BR      $.L2_SDATA
.L1_SDATA:
        DECW    BC
        MOV     A,ES:LOWW(STARTOF(.sdata))[BC]
        MOV     LOWW(STARTOF(.sdataR))[BC],A
.L2_SDATA:
        CLRW    AX
        CMPW    AX,BC
        BNZ     $.L1_SDATA

        ; initializing RAM section
        CALL    !!_INITSCT_RL



R20UT3123EJ0113  Rev.1.13 Page 836 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

A C language example of a function for initializing the RAM area section is given below.

#define BSEC_MAX        2           /*Number of BSS sections to be initialized to 0*/
#define DSEC_MAX        2           /*Number of DATA sections to be copied*/

const struct bsec_t {
        char __near *ram_sectop;        /*Start address of section*/
        char __near *ram_secend;        /*End address + 1 of section*/
} bsec_table[BSEC_MAX] = {
        {(char __near *)__sectop(".bss"),
         (char __near *)__secend(".bss")},
        {(char __near *)__sectop(".sbss"),
         (char __near *)__secend(".sbss")}};

const struct dsec_t {
        char __far *rom_sectop;         /*Start address of copy source section*/
        char __far *rom_secend;         /*End address + 1 of copy source section*/
        char __near *ram_sectop;        /*Start address of copy destination section*/
} dsec_table[DSEC_MAX] = {
        {__sectop(".data"),
         __secend(".data"),
         (char __near *)__sectop(".dataR")},
        {__sectop(".sdata"),
         __secend(".sdata"),
         (char __near *)__sectop(".sdataR")}};

void INITSCT_RL(void)
{
        unsigned int i;
        char __far *rom_p;
        char __near *ram_p;

        for (i = 0; i < BSEC_MAX; i++) {
                ram_p = bsec_table[i].ram_sectop;
                for ( ; ram_p != bsec_table[i].ram_secend; ram_p++) {
                        *ram_p = 0;
                }
        }
        for (i = 0; i < DSEC_MAX; i++) {
                rom_p = dsec_table[i].rom_sectop;
                ram_p = dsec_table[i].ram_sectop;
                for ( ; rom_p != dsec_table[i].rom_secend; rom_p++, ram_p++) {
                        *ram_p = *rom_p;
                }
        }
}



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 837 of 951
Dec 01, 2023

8.2.6.1  Initialization of RAM area sections by using an initialization table [V1.12 or later]

In V1.12 or later, a table with the information required for initializing RAM area sections can be embedded in an 
executable file by specifying -ram_init_table_section for the linker.

Each record (row) of the table corresponds to the sections to be initialized and has the following fields.

For details, see the description of the link option -ram_init_table_section.

To initialize the RAM by using the table generated by the liker, use the following code instead of the initialization codes 
for the bss attribute areas and data attribute areas described above.

Size Section with initial value Section without initial value End record

Field 1 4 bytes Start address of initial value 
data

Section start address 0

Field 2 2 bytes Section size Section size 0

Field 3 2 bytes Section start address Section start address 0

> rlink a.obj b.obj -form=absolute -output=a.abs -rom=.data=.dataR
  -rom=.sdata=.sdataR -ram_init_table_section

  MOVW DE, #LOWW(STARTOF(.ram_init_table))
  MOV A, #LOW(HIGHW(STARTOF(.ram_init_table)))
  PUSH AX
  PUSH DE
  
.TABLE_LOOP:
  MOV A, [SP+0x03]
  MOV ES, A
  MOVW AX, [SP+0x00]
  MOVW DE, AX
  
  CLRB B
  
  # src_lo
  CALL $!.GET_RAM_INIT_RECORD
  PUSH AX
  
  # src_hi
  CALL $!.GET_RAM_INIT_RECORD
  PUSH AX
  
  # size
  CALL $!.GET_RAM_INIT_RECORD
  PUSH AX
  
  # dest
  CALL $!.GET_RAM_INIT_RECORD
  PUSH AX
  
  CMP0 B
  BZ $.RETURN
  
  MOVW AX, DE
  MOVW [SP+0x08], AX
  MOV A, ES
  MOV [SP+0x0B], A
  



R20UT3123EJ0113  Rev.1.13 Page 838 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

  # dest
  POP DE
  # size
  POP BC
  # src_hi
  POP AX
  MOV A, X
  MOV ES, A
  # src_lo
  POP HL
  
  MOVW AX, DE
  CMPW AX, HL
  BNZ $.COPY
  MOV A, ES
  CMP A, #0xF
  BNZ $.COPY
  
.CLEAR:
  MOVW AX, BC
  OR A, X
  BZ $.TABLE_LOOP
  DECW BC
  CLRB A
  MOV [DE], A
  INCW DE
  BR $.CLEAR
  
.COPY:
  MOVW AX, BC
  OR A, X
  BZ $.TABLE_LOOP
  DECW BC
  MOV A, ES:[HL]
  MOV [DE], A
  INCW HL
  INCW DE
  BR $.COPY
  
.RETURN:
  ADDW SP, #0x0C
  RET
  
.GET_RAM_INIT_RECORD:
  MOVW AX, ES:[DE]
  MOVW HL, AX
  
  OR A, X
  OR B, A
  
  MOVW AX, DE
  ADDW AX, #0x0002
  MOVW DE, AX
  MOV A, ES
  ADDC A, #0
  MOV ES, A
  
  MOVW AX, HL
  RET



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 839 of 951
Dec 01, 2023

It is also possible to create an initialization function in C language, and call it in the startup routine. However, take care 
not to initialize the stack area.

Write as follows in the startup routine:

Initialization function:

CALL !!_ram_init

typedef unsigned char __far * src_ptr;
typedef unsigned short src_len;
typedef unsigned char __near * dest_ptr;
 struct table {
 src_ptr src;
 src_len len;
 dest_ptr dest;
};
typedef struct table __far * table_ptr;

void ram_init(void)
{
 table_ptr record;
 for(record = __sectop(".ram_init_table"); ; record++)
 {
  src_ptr src = record->src;
  src_len len = record->len;
  dest_ptr dest = record->dest;

  if(src == 0 && len == 0 && dest == 0) /* END OF RECORD */
   break;

  if(src == dest)
  {
   /* RAM CLEAR */
   while(len--)
   {
    *dest = 0;
    dest++;
   }
  }
  else
  {
   /* ROM -> RAM COPY */
   while(len--)
   {
    *dest = *src;
    src++;
    dest++;
   }
  }
 }
}



R20UT3123EJ0113  Rev.1.13 Page 840 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

8.2.7  Startup of main function

The main function is called when all processings that need to be performed by the startup routine have finished.
Write the following instruction to call the main function.

8.2.8  Creation of termination routine

To go into an infinite loop without processing anything, write the code as follows.

8.2.9  Startup of the RL78-S1 core

In the startup of the RL78-S1 core with a small ROM/RAM area, the entire RAM is initialized instead of initializing the 
stack area or bss attribute areas, from the point of code efficiency.  The start address (__RAM_ADDR_START) and end 
address (RAM_ADDR_END) of RAM are determined by the linker. For __RAM_ADDR_START and __RAM_ADDR_END, 
see "6.2.2  Symbols generated by option specifications".

8.3  Coding Example

The following is an example of startup routine.

Table 8.1 Examples of startup routine

CALL    !!_main

_exit:
        BR      $_exit

        ;--------------------------------------------------
        ; initializing RAM
        ;--------------------------------------------------
        MOVW    HL,#LOWW(__RAM_ADDR_START)
        MOVW    AX,#LOWW(__RAM_ADDR_END)
        BR      $.L2_RAM
.L1_RAM:
        MOV     [HL+0],#0
        INCW    HL
.L2_RAM:
        CMPW    AX,HL
        BNZ     $.L1_RAM

; Copyright (C) 2014 Renesas Electronics Corporation
; RENESAS ELECTRONICS CONFIDENTIAL AND PROPRIETARY.
; This program must be used solely for the purpose for which
; it was furnished by Renesas Electronics Corporation. No part of this
; program may be reproduced or disclosed to others, in any
; form, without the prior written permission of Renesas Electronics
; Corporation.

; NOTE : THIS IS A TYPICAL EXAMPLE

        .public _start
        .public _exit

;-----------------------------------------------------------------------------
; RAM section
;-----------------------------------------------------------------------------
.SECTION        .dataR, DATA
.SECTION        .sdataR, DATA



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 841 of 951
Dec 01, 2023

;-----------------------------------------------------------------------------
; RESET vector
;-----------------------------------------------------------------------------
_start  .VECTOR 0
;-----------------------------------------------------------------------------
; startup
;-----------------------------------------------------------------------------
.SECTION        .text, TEXT
_start:
        ;--------------------------------------------------
        ; setting the stack pointer
        ;--------------------------------------------------
        MOVW    SP,#LOWW(__STACK_ADDR_START)

        ;--------------------------------------------------
        ; initializing stack area
        ;--------------------------------------------------
        MOVW    AX,#LOWW(__STACK_ADDR_END)
        CALL    !!_stkinit

        ;--------------------------------------------------
        ; hardware initialization
        ;--------------------------------------------------
        CALL    !!_hdwinit
$IFNDEF __USE_RAM_INIT_TABLE

        ;--------------------------------------------------
        ; initializing BSS
        ;--------------------------------------------------
        ; clear external variables which doesn't have initial value (near)
        MOVW    HL,#LOWW(STARTOF(.bss))
        MOVW    AX,#LOWW(STARTOF(.bss) + SIZEOF(.bss))
        BR      $.L2_BSS
.L1_BSS:
        MOV     [HL+0],#0
        INCW    HL
.L2_BSS:
        CMPW    AX,HL
        BNZ     $.L1_BSS

        ; clear saddr variables which doesn't have initial value
        MOVW    HL,#LOWW(STARTOF(.sbss))
        MOVW    AX,#LOWW(STARTOF(.sbss) + SIZEOF(.sbss))
        BR      $.L2_SBSS
.L1_SBSS:
        MOV     [HL+0],#0
        INCW    HL
.L2_SBSS:
        CMPW    AX,HL
        BNZ     $.L1_SBSS

        ;--------------------------------------------------
        ; ROM data copy
        ;--------------------------------------------------
        ; copy external variables having initial value (near)
        MOV     ES,#HIGHW(STARTOF(.data))
        MOVW    BC,#LOWW(SIZEOF(.data))
        BR      $.L2_DATA



R20UT3123EJ0113  Rev.1.13 Page 842 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

.L1_DATA:
        DECW    BC
        MOV     A,ES:LOWW(STARTOF(.data))[BC]
        MOV     LOWW(STARTOF(.dataR))[BC],A
.L2_DATA:
        CLRW    AX
        CMPW    AX,BC
        BNZ     $.L1_DATA
        ; copy saddr variables having initial value
        MOV     ES,#HIGHW(STARTOF(.sdata))
        MOVW    BC,#LOWW(SIZEOF(.sdata))
        BR      $.L2_SDATA
.L1_SDATA:
        DECW    BC
        MOV     A,ES:LOWW(STARTOF(.sdata))[BC]
        MOV     LOWW(STARTOF(.sdataR))[BC],A
.L2_SDATA:
        CLRW    AX
        CMPW    AX,BC
        BNZ     $.L1_SDATA

$ELSE
        MOVW DE, #LOWW(STARTOF(.ram_init_table))
        MOV A, #LOW(HIGHW(STARTOF(.ram_init_table)))
        
        CALL $!_ram_init

$ENDIF

        ;--------------------------------------------------
        ; call main function
        ;--------------------------------------------------
        CALL    !!_main          ; main();

        ;--------------------------------------------------
        ; call exit function
        ;--------------------------------------------------
        CLRW    AX               ; exit(0);
_exit:
        BR      $_exit

$IFDEF __USE_RAM_INIT_TABLE
# A,DE: FAR ADDRESS
_ram_init:
        PUSH AX
        PUSH DE
        
.TABLE_LOOP:
        MOV A, [SP+0x03]
        MOV ES, A
        MOVW AX, [SP+0x00]
        MOVW DE, AX
        
        CLRB B
        
        # src_lo
        CALL $!.GET_RAM_INIT_RECORD
        PUSH AX
        



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 843 of 951
Dec 01, 2023

        # src_hi
        CALL $!.GET_RAM_INIT_RECORD
        PUSH AX
        
        # size
        CALL $!.GET_RAM_INIT_RECORD
        PUSH AX
        
        # dest
        CALL $!.GET_RAM_INIT_RECORD
        PUSH AX
        
        CMP0 B
        BZ $.RETURN
        
        MOVW AX, DE
        MOVW [SP+0x08], AX
        MOV A, ES
        MOV [SP+0x0B], A
        
        # dest
        POP DE
        # size
        POP BC
        # src_hi
        POP AX
        MOV A, X
        MOV ES, A
        # src_lo
        POP HL
        
        MOVW AX, DE
        CMPW AX, HL
        BNZ $.COPY
        MOV A, ES
        CMP A, #0xF
        BNZ $.COPY
        
.CLEAR:
        MOVW AX, BC
        OR A, X
        BZ $.TABLE_LOOP
        DECW BC
        CLRB A
        MOV [DE], A
        INCW DE
        BR $.CLEAR
        
.COPY:
        MOVW AX, BC
        OR A, X
        BZ $.TABLE_LOOP
        DECW BC
        MOV A, ES:[HL]
        MOV [DE], A
        INCW HL
        INCW DE
        BR $.COPY
        



R20UT3123EJ0113  Rev.1.13 Page 844 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

The const attribute is not written in the startup routine for a device without the mirror area. [V1.02 or later]

.RETURN:
        ADDW SP, #0x0C
        RET
        
.GET_RAM_INIT_RECORD:
        MOVW AX, ES:[DE]
        MOVW HL, AX
        
        OR A, X
        OR B, A
        
        MOVW AX, DE
        ADDW AX, #0x0002
        MOVW DE, AX
        MOV A, ES
        ADDC A, #0
        MOV ES, A
        
        MOVW AX, HL
        RET
        
$ENDIF

;-----------------------------------------------------------------------------
; section
;-----------------------------------------------------------------------------
.SECTION .RLIB, TEXTF
.L_section_RLIB:
.SECTION .SLIB, TEXTF
.L_section_SLIB:
.SECTION .textf, TEXTF
.L_section_textf:
.SECTION .const, CONST          ; Only for a device with the mirror area
.L_section_const:               ; Only for a device with the mirror area
.SECTION .constf, CONSTF
.L_section_constf:
.SECTION .data, DATA
.L_section_data:
.SECTION .sdata, SDATA
.L_section_sdata:
.SECTION .bss, BSS
.L_section_bss:
.SECTION .sbss, SBSS
.L_section_sbss:



CC-RL 8.  STARTUP

R20UT3123EJ0113  Rev.1.13 Page 845 of 951
Dec 01, 2023

8.4  Creating ROM Images

This section gives an outline of the creation of ROM images that are required for embedded applications.
External and static variables defined in applications are allocated to sections in RAM. If these variables have been ini-

tialized, their initial values must be present in RAM when the corresponding application is started.
On the other hand, values in RAM are undefined when the hardware is started up or following a reset. For this reason, 

the initial values of variables need to have been stored in RAM by the time an application is started after the hardware has 
been reset.

CC-RL allows the creation of a ROM image that defines how the program code and initial values are allocated to ROM. 
When the program is run, the initial values in the ROM image are copied to RAM within the startup routine. This initializes 
the RAM.

Program code in ROM may also have to be placed in RAM in the case of self-programming code. Copying of the pro-
gram code to RAM is to be done within the startup routine in the same manner as the copying of initial values.

When data are to be copied from ROM to RAM, use the -rom option of the optimizing linker.

When the function to automatically allocate sections is not specified in the linker, the addresses of the initial-value sec-
tion and destination section need to be specified by the -start option.  When the function to automatically allocate sections 
is specified in the linker, addresses do not have to be specified by the -start option.

It is assumed that the user program contains sections .text, .textf, .RLIB, .SLIB, .const, .constf, .data, .sdata, .stack_bss, 
.bss, and .sbss.  When locating .text at address 0x100, .const at address 0x2000, reallocation attribute DATA and BSS 
sections at address 0xfe000, reallocation attribute SDATA and SBSS sections at address 0xffe20 at program execution, 
the code will be as follows.

The section names .dataR and .sdataR to which data is to be copied can be different names but they need to match the 
code in the startup routine.  At program execution, data is copied from .data to .dataR and from .sdata to .sdataR, and .bss 
and .sbss are initialized before they are used.

An image of this operation is shown below.

-rom=name of the initial-value section=name of the destination section

-start=section-name[,section-name]/destination-address

-start=.text/100
-start=.const,.RLIB,.SLIB,.textf,.constf,.data,.sdata/2000
-start=.dataR,.bss,.stack_bss/FE000
-start=.sdataR,.sbss/FFE20
-rom=.data=.dataR,.sdata=.sdataR



R20UT3123EJ0113  Rev.1.13 Page 846 of 951
Dec 01, 2023

CC-RL 8.  STARTUP

Figure 8.1 Image before and after Copying

.SLIB

.RLIB

.constf

.const

.sdata

.data

.text

.textf

Before Copying

.SLIB

.RLIB

.constf

.const

.sbss

.sdataR

.bss

.dataR

.sdata

.data

.text

.textf

After Copying

0x00100

0x02000

0xfe000

0xffe20

0x00100

0x02000



CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 847 of 951
Dec 01, 2023

9.  FUNCTION CALL INTERFACE SPECIFICATIONS

This chapter explains how the CC-RL handles arguments when a function is called.

9.1  Function Call Interface

This section describes the points to be considered in writing an assembly source program when functions in a C source 
program are called in the assembly source program or vice versa.

9.1.1  General registers and ES/CS registers whose values are guaranteed

This section describes the registers that are guaranteed to have the same values before and after function calls or 
interrupts, and the registers that are not guaranteed so.

Table 9.1 Relationship between register types and conditions

9.1.1.1  General registers AX, BC, DE, and HL

This specification does not guarantee that each of the general registers AX, BC, DE, and HL has the same value before 
and after function calls.

Only the general registers that belong to the register bank being used are guaranteed to have the same values before 
and after interrupts. The following two methods can be used to guarantee the values.

- Using a stack area
Save the register value in a stack area when an interrupt occurs, and restore the value from the stack area when the 
interrupt ends. This method is also used for registers other than general registers described later.

- Using the register bank changing function
The register bank specification function of the #pragma directives for interrupt allows you to effectively save and 
restore general register values by changing the register bank without using a stack area.
The following describes the cautions about using register bank switching. If these cautions are not observed, the 
register values are not guaranteed to be the same before and after interrupts.

- Do not change the register bank within an interrupt handler without using the #pragma directives for interrupt.

- Do not return from within an interrupt handler by using any method other than the return statement.

- Do not change to the same register bank as the interrupt source.
If nested interrupts are used, the first interrupt source and all interrupt handlers up to the return to the source 
must use different register banks.

9.1.1.2  ES and CS registers

Each of the ES and CS registers are not guaranteed to have the same value before and after function calls. 
These registers are guaranteed to have the same values before and after interrupts.

Register type Are the Register Values Guaranteed to 
Be the Same Before and After Function 
Calls?

Are the Register Values Guaranteed to 
Be the Same Before and After Interrupts?

General registers 
AX, BC, DE, and HL

No Yes

ES and CS registers No Yes

PSW and PC registers No Yes

MACR register Yes Yes

Other registers No No



R20UT3123EJ0113  Rev.1.13 Page 848 of 951
Dec 01, 2023

CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

9.1.1.3  PSW and PC registers

Each of the PSW and PC registers are not guaranteed to have the same value before and after function calls.
These registers are guaranteed to have the same values before and after interrupts. Note that the values are automati-

cally saved by hardware when an interrupt occurs. These values are restored by an interrupt end instruction. Therefore, 
there is no need to explicitly save or restore a value within an interrupt handler.

9.1.1.4  MACR register

The MACR register is guaranteed to have the same value before and after function calls.
This register is also guaranteed to have the same value before and after interrupts.
However, if the -use_mach=not_use compile option is specified (default state in V1.10 or earlier), the compiler genera-

tion code does not useNote or manage the MACR register. To use the MACR register, you must manage it voluntarily within 
the program.

Note In this case, some intrinsic functions use the MACR register and rewrite its value.

9.1.1.5  Other registers

Registers other than the above are not guaranteed to have the same value before and after function calls or interrupts.

9.1.2  Passing arguments

(1) Registers used for passing arguments
The registers used for passing arguments are AX, BC, and DE.

(2) Target for argument allocation, argument type, and size change
The targets for allocating arguments, argument types, and how to change the size are shown below.
Changes can be accepted only for those described below.

Caution 1. For the variable size or default argument promotions, see "(7)  Default argument promotions".

Caution 2. The argument immediately before a variable argument is handled as "when the function prototype 
can be referenced and the parameter type can be referenced".

(3) Register allocation of arguments
Arguments are allocated to registers as follows.

- A target to be allocated to registers is an argument whose size is 4 bytes or less.
Note that when an argument of the structure type or union type is to be allocated to registers, the included pad-
ding will also be allocated to registers.

- When the argument is a structure or union, all members are allocated either to registers or in the stack.

- For a far pointer, the lower three bytes are allocated to registers.
The page number part (= upper four bits of the 20-bit far address) of a far pointer is stored in the lower four bits 
of a register to which the upper one byte among the three bytes will be allocated.
For example, when allocating a far pointer to registers A-DE, the page number part is stored in the lower four 
bits of register A.

Argument Class Target for Argument 
Allocation

Argument Type and Size Change

When the function prototype can 
be referenced and the parameter 
type can be referenced

Register or stack When allocating a far pointer argument to reg-
isters, it is allocated to registers for three 
bytes.

When the function prototype can 
be referenced but the parameter 
type cannot be referenced (= vari-
able argument)

Stack Argument type conforms to default argument 
promotions.

When the function prototype can-
not be referenced

Register or stack Argument type conforms to default argument 
promotions.
When allocating a far pointer argument to reg-
isters as the result of default argument promo-
tions, it is allocated to registers for three bytes.



CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 849 of 951
Dec 01, 2023

- Register allocation is processed in the order from the first argument to the last argument (from left to right in the 
source program), and allocates each argument to the register with the highest priority among available regis-
ters.  If there are no available registers, arguments are allocated in the stack.  The priorities of the registers are 
shown below.

"-" in this table is a symbol to associate 8-bit or 16-bit registers to other 16-bit registers.
Each argument is allocated to registers so that the descending order of addresses (from upper address to lower 
address) for the bytes composing the argument matches the register specification order (from left to right) 
shown in the above table.

Example 1. When calling to a function declared as "void foo (char p1, short p2, char p3)", p1 is allocated to 
register A, p2 is allocated to register BC, and p3 is allocated to register X.

Example 2. When structure-type argument S shown below is allocated to registers, c1 is allocated to register 
X and s2 is allocated to register BC. Padding is allocated to register A.

Example 3. When calling to a function declared as "void foo (long x)", the upper 2 bytes of x are allocated to 
register BC and the lower 2 bytes are allocated to register AX.

Example 4. When structure-type argument S3 shown below is allocated to registers, the highest byte is allo-
cated to register C, the next one byte is allocated to register A, and the lowest byte is allocated to 
register X.

Caution 1. 8-byte data, such as long long type data or double type data in the program to which option -
dbl_size=8 is specified, is allocated in the stack

Caution 2. A structure or union of five bytes or more is allocated in the stack while a structure or union of 4 
bytes or less is a target for being allocated to registers.

(4) Stack allocation of arguments
Arguments are allocated in the stack as follows.

- Arguments to be passed by the stack are allocated in little endian mode and aligned at the 2-byte boundary.

- The order for allocating the arguments to be passed by the stack is that the more the argument is on the left side 
in the argument sequence, the address is smaller.

- The arguments to be passed by the stack are sequentially allocated in the stack except for the 1-byte padding 
which can be inserted between arguments.

- Each argument is allocated in the stack so that the descending order of addresses (from upper address to lower 
address) for the bytes composing the argument matches the descending order of addresses (from upper 
address to lower address) in the stack.

- For a far pointer, the lower three bytes are allocated to a 4-byte area in the stack. The value of the highest one 
byte of the 4 bytes is undefined. The page number part (= upper four bits of the 20-bit far address) of a far 
pointer is stored in the lower four bits of the second upper byte in the 4-byte area.

Caution For the method of stack allocation, see section "9.1.4  Stack frame".

Argument Size Priority of Register to which Argument is Allocated (left side has the highest priority)

1-byte A, X, C, B, E, D

2-byte AX, BC, DE

3-byte C-AX, X-BC, E-BC, X-DE, B-DE

4-byte far pointer: A-DE, X-DE, C-DE, B-DE,X-BC
Other than far pointer: BC-AX, DE-BC

struct {
        char    c1;
        short   s2;
} S;

struct{
        char    a[3];
} S3;



R20UT3123EJ0113  Rev.1.13 Page 850 of 951
Dec 01, 2023

CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

- The arguments to be allocated to the stack are as follows.

- Argument whose size is between one byte and 4 bytes and is not allocated to registers

- Argument whose size is five bytes or more

- Variable argument

Example When calling to a function declared as "void foo (long long x)" and assuming that sp indicates the 
value of stack pointer immediately before the call site of the function, the highest one byte of x is 
allocated to the location indicated by sp + 7, each byte is allocated to sp + 6, sp + 5, sp + 4, sp + 3, 
sp + 2, and sp + 1 in the descending order of addresses, and the lowest byte is allocated to the 
location indicated by sp + 0.

9.1.3  Return value

(1) Registers used for passing of return values
The registers used for passing of return values are AX, BC, and DE.

(2) Allocation of return values and pointers to return values to registers
Return values and pointers to return values are allocated to registers as follows.

- For a return value with a size of five bytes or more, the pointer to the return value is set to the first parameter as 
a near pointer.
This means that the passing conventions for the first parameter are applied to the return value. In accordance 
with this, the passing conventions for (n + 1)-th parameter are applied to n-th parameter (n = 1, ..., N) which is 
specified in the program
For the details of description, see "9.1.2  Passing arguments".

- A return value whose size is 4 bytes or less is allocated to registers.

- For the method of allocating a far pointer to registers, see section "9.1.2  Passing arguments".

- A 4-byte structure or union whose only member is a far pointer is considered to be other than a far pointer.

- The conventions for allocating a return value of 4 bytes or less to registers are given in the following table.

"-" in this table is a symbol to associate 8-bit or 16-bit registers to other 16-bit registers.
Each return value is allocated to registers so that the descending order of addresses (from upper address to 
lower address) for the bytes composing the return value matches the register specification order (from left to 
right) shown in the above table.

Caution Structures or unions of 4 bytes or less are targets to be allocated to registers.

9.1.4  Stack frame

(1) Value to be set to stack pointer
An address which is a multiple of 2 is set to the stack pointer (SP).

(2) Allocation and deallocation of stack frame
The stack pointer always points to the lowest address of the stack frame. Therefore, values stored in areas with 
smaller addresses than the SP address are not guaranteed.
A stack area allocated by the caller function when the function is called is deallocated by the caller function on 
returning from the function call. Accordingly, the SP indicates the return address storage area at the entrance and 
exit of the callee function.

Return Value Size Register to which Argument is Allocated

1-byte A

2-byte AX

3-byte C-AX

4-byte far pointer: A-DE
Other than far pointer: BC-AX



CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3123EJ0113  Rev.1.13 Page 851 of 951
Dec 01, 2023

(3) Structure of the stack frame
Below is shown the stack frame of functions f and g from the perspective of function f (Callee function), when func-
tion f is called by function g (Caller function).

Figure 9.1 Contents of Stack Frame

Below is the area that function f can reference and set.

(a) Area for allocating parameters received by function f
This is an area for setting parameters that are not allocated to registers. The data set in this area is aligned to 
the 2-byte boundary. When all parameters are allocated to registers, the size of this area becomes 0.

(b) Area for storing the return address
This is an area for allocating the return address. The size of this area is fixed to 4 bytes, and the address is set 
as a far address.
The value of the upper one byte of the 4 bytes is undefined.

(c) Area for storing local variables of function f
This is a stack area used by function f to store local variables.

(d) Area for allocating arguments to be passed to the function called from function f
This is an area for setting arguments to be allocated to the stack when function f calls another function. If all 
arguments required for the function call are allocated to registers, the size of this area becomes 0.

9.2  Calling of Assembly Language Routine from C Language

This section explains the points to be noted when calling an assembler function from a C function.

(1) Identifier
If external names, such as functions and external variables, are described in the C source, the CC-RL adds them 
prefix "_" (underscore) in the assembly program.

Table 9.2 Identifier

Add prefix "_" to the identifier when defining functions and external variables with the assembler and remove "_" 
when referencing them from a C function.

(2) Stack frame
The CC-RL generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of 
the stack frame.  Therefore, the address area lower than the address indicated by SP can be freely used in the 

C Assembly Program

func1 ( ) _func1

High Address
(Toward address 0xFFFFF)

Low Address
(Toward address 0)

Area for allocating parameters received 
by function f

Area for storing the return address

Area for storing local variables of function f

Area for allocating arguments to be passed 
to the function called from function f

(a)

(b)

(c)

(d)



R20UT3123EJ0113  Rev.1.13 Page 852 of 951
Dec 01, 2023

CC-RL 9.  FUNCTION CALL INTERFACE SPECIFICATIONS

assembler function after branching from a C function to an assembler function.  Conversely, if the contents of the 
higher address area are changed, the area used by a C function may be lost and the subsequent operation cannot 
be guaranteed.  To avoid this, change SP at the beginning of the assembler function before using the stack.
At this time, furthermore, make sure that the value of SP becomes equal both at the beginning and the end of the 
assembler function.
Registers can be used freely in assembler functions (register values do not have to be saved before usage and 
restored after usage).

(3) Return address passed to C function
The CC-RL generates codes on the assumption that the return address of a function is stored at the top of the 
stack.  When execution branches to an assembler function, the return address of the function is stored at the top 
of the stack.  Execute the ret instruction to return to a C function.

(4) Prototype declaration of assembler function
In the CC-RL, a prototype declaration is necessary for functions called from a C function. Make a correct prototype 
declaration even for assembler functions.

9.3  Calling of C Language Routine from Assembly Language

This section explains the points to be noted when calling a C function from an assembler function.

(1) Stack frame
The CC-RL generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of 
the stack frame.  Therefore, set SP so that it indicates the higher address of an unused area of the stack area 
before branching from an assembler function to a C function.  This is because the stack frame is allocated towards 
the lower addresses.

(2) Register
The CC-RL does not guarantee that registers have the same values before and after a C function is called, except 
for some registers. Therefore, do not leave a value that must be retained assigned to a register.

(3) Return address returned to assembler function
The CC-RL generates codes on the assumption that the return address of a function is stored at the top of the 
stack.  When branching to a C function in an assembly program, the return address of the function must be stored 
at the top of the stack.
Generally, use a call instruction for branching to C functions, which makes the return address of the function 
stored at the top of the stack.

9.4  Reference of Argument Defined by Other Language

The method of referring to the variable defined by the assembly language on the C language is shown below.

Example Programming of C Language

The CC-RL assembler performs as follows.

extern  char    c;
extern  int     i;

void subf() {
        c = 'A';
        i = 4;
}

        .PUBLIC _i
        .PUBLIC _c
        .SECTION        .data, DATA
_i:
        .DB4    0x0
_c:
        .DB     0x0



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 853 of 951
Dec 01, 2023

10.  MESSAGE

This chapter describes message that CC-RL outputs.

10.1  General

This section describes internal error message, error message, fatal error message, information message and warning 
message that CC-RL outputs.

10.2  Message Formats

This section describes the output formats of messages.
The output formats of messages are as follows.

(1) When the file name and line number are included

(2) When the file name and line number are not included

Remark Following contents are output as the continued character string.
Message Types : 1 alphabetic character
Message Numbers : 5 digits

10.3  Message Types

This section describes the message types displayed by CC-RL.
The message types (1 alphabetic character) are as follows.

Table 10.1 Message Type

10.4  Message Numbers

This section describes the message numbers displayed by CC-RL.
The message numbers when the CC-RL is executed are 5 digits number output following number (05). 

10.5  Messages

This section describes the messages displayed by CC-RL.

file-name (line-number) : message-type 05 message-number : message

message-type 05 message-number : message

Message Type Description

C Internal error : Processing is aborted.
No object codes are generated.

E Error : Processing is aborted if a set number of errors occur.
No object codes are generated.

F Fatal error : Processing is aborted.
No object codes are generated.

M Information : Processing continues.
Object codes are generated.

W Warning : Processing continues.
Object codes are generated (They might not be what the user intended).



R20UT3123EJ0113  Rev.1.13 Page 854 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

10.5.1  Internal errors

Table 10.2 Internal Errors

C05nnnnn [Message] Internal error (information).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0511200 [Message] Internal error(error-information).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0519996 [Message] Out of memory.

[Explanation] The amount of data input (source file name and specified options) to the ccrl 
command is too large.

[Action by User] Divide the data input to the ccrl command, and then perform startup several times.

C0519997 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0520000 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0529000 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530001 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530002 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530003 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530004 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530005 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530006 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0550802 [Message] Internal error(action type of icode strage).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0550804 [Message] Internal error(section name ptr not found(string)).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0550805 [Message] Internal error(section list ptr not found(string)).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0550806 [Message] Internal error(current section ptr not found(string)).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 855 of 951
Dec 01, 2023

C0550808 [Message] Internal error(string).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0551800 [Message] Internal error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0564000 [Message] Internal error : ("internal error number") "file line number" / "comment"

[Explanation] An internal error occurred during processing by the optimizing linker.

[Action by User] Make a note of the internal error number, file name, line number, and comment in 
the message, and contact the support department of the vendor. 

C0564001 [Message] Internal error

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0580013 [Message] internal error. unexpected syntax error message.

[Action by User] Contact your vendor or Renesas Electronics.

C0580014 [Message] internal error. section "%s" is not found.

[Action by User] Contact your vendor or Renesas Electronics.

C0580015 [Message] internal error. function for "%s" is not found.

[Action by User] Contact your vendor or Renesas Electronics.

C0580016 [Message] internal error. additional bytes are invalid "%s".

[Action by User] Contact your vendor or Renesas Electronics.

C0580900 [Message] internal error. undefined message for "%s".

[Action by User] Contact your vendor or Renesas Electronics.

C0580901 [Message] internal error. failed to set signal handler.

[Action by User] Contact your vendor or Renesas Electronics.

C0580902 [Message] internal error. invalid memory access.

[Action by User] Contact your vendor or Renesas Electronics.

C0580903 [Message] internal error. invalid instruction execution.

[Action by User] Contact your vendor or Renesas Electronics.

C0580904 [Message] internal error. abnormal termination.

[Action by User] Contact your vendor or Renesas Electronics.

C0580905 [Message] internal error. illegal operation.

[Action by User] Contact your vendor or Renesas Electronics.

C0580906 [Message] internal error. unexpected signal received.

[Action by User] Contact your vendor or Renesas Electronics.

C0580907 [Message] internal error. unknown message type "%s".

[Action by User] Contact your vendor or Renesas Electronics.

C0590001 [Message] Internal error

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.



R20UT3123EJ0113  Rev.1.13 Page 856 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

10.5.2  Errors

Table 10.3 Errors

E0511101 [Message] "path" specified by the "character string" option is a folder. Specify an input file.

E0511102 [Message] The file "file" specified by the "character string" option is not found.

E0511103 [Message] "path" specified by the "character string" option is a folder. Specify an output file.

E0511104 [Message] The output folder "folder" specified by the "character string" option is not found.

E0511107 [Message] "path" specified by the "character string" option is not found.

[Explanation] "path" (file-name or folder) specified in the "character string" option was not found.

E0511108 [Message] The "character string" option is not recognized.

E0511109 [Message] The "character string" option can not have an argument.

E0511110 [Message] The "character string" option requires an argument.

[Explanation] The "character string" option requires an argument.  Specify the argument.

E0511113 [Message] Invalid argument for the "character string" option.

E0511114 [Message] Invalid argument for the "-Ocharacter string" option.

E0511115 [Message] The "-Ocharacter string" option is invalid.

E0511116 [Message] The "-Ocharacter string" option is not recognized.

E0511117 [Message] Invalid parameter for the "character string" option.

E0511121 [Message] Multiple source files are not allowed when both the "-o" option and the "character 
string" option are specified.

E0511124 [Message] The "-cpu" option must be specified.

E0511129 [Message] Command file "file" is read more than once.

E0511130 [Message] Command file "file" cannot be read.

E0511131 [Message] Syntax error in command file "file".

E0511133 [Message] The parameter for the "character string" option must be a folder when multiple 
source files are specified.

E0511134 [Message] Input file "file" is not found.

E0511135 [Message] "path" specified as an input file is a folder.

E0511145 [Message] "character string2" specified in the "character string1" option is not available.

E0511150 [Message] The "character string1" option and the "character string2" option are inconsistent.

E0511152 [Message] The "character string1" option needs the "character string2" option.

E0511154 [Message] Component file "file name" for the compiler package name is not found. Reinstall 
the compiler package name.

E0511177 [Message] "character string" is specified more than once.

E0511178 [Message] "character string" option is unavailable because the license of version Professional 
edition is not found. Please consider purchasing the product of Professional edi-
tion.

E0511182 [Message] File access error.(information)



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 857 of 951
Dec 01, 2023

E0520001 [Message] Last line of file ends without a newline.

[Action by User] The last line in the file does not end with a line break.  Add a line break.

E0520005 [Message] Could not open source file "file name".

E0520006 [Message] Comment unclosed at end of file.

[Action by User] There is an unclosed comment at the end of the file.  Make sure that there are no 
unclosed comments.

E0520007 [Message] Unrecognized token.

[Action by User] Unknown token.  Check the indicated location.

E0520008 [Message] Missing closing quote.

[Action by User] The string is missing a closing quotation mark.  Make sure that there are no 
unclosed quotation mark.

E0520010 [Message] "#" not expected here.

[Explanation] There is a "#" character in an invalid location.

E0520011 [Message] Unrecognized preprocessing directive.

E0520012 [Message] Parsing restarts here after previous syntax error.

E0520013 [Message] Expected a file name.

E0520014 [Message] Extra text after expected end of preprocessing directive.

[Action by User] The iodefine.h file is generated when a project is created in an integrated develop-
ment environment.
Since the interrupt request names are defined in this file, iodefine.h should be 
included before #pragma directives if the interrupt request names have been writ-
ten. Note that file inclusion can also be specified by the -preinclude option of the 
compiler.

E0520017 [Message] Expected a "]".

E0520018 [Message] Expected a ")".

E0520019 [Message] Extra text after expected end of number.

E0520020 [Message] Identifier "character string" is undefined.

[Action by User] The iodefine.h file is generated when a project is created in an integrated develop-
ment environment.
When a reserved word of SFR is used, this file must be included.
PSW cannot be accessed directly. To manipulate PSW, use the intrinsic function 
__get_psw or __set_psw. To perform bit access, use the type defined in iodefine.h.

E0520022 [Message] Invalid hexadecimal number.

E0520023 [Message] Integer constant is too large.

E0520024 [Message] Invalid octal digit.

[Explanation] Invalid hexadecimal number.  Hexadecimal numbers cannot contain '8' or '9'.

E0520025 [Message] Quoted string should contain at least one character.

E0520026 [Message] Too many characters in character constant.

E0520027 [Message] Character value is out of range.

E0520028 [Message] Expression must have a constant value.

E0520029 [Message] Expected an expression.



R20UT3123EJ0113  Rev.1.13 Page 858 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0520030 [Message] Floating constant is out of range.

E0520031 [Message] Expression must have integral type.

E0520032 [Message] Expression must have arithmetic type.

E0520033 [Message] Expected a line number

[Explanation] The line number after the "#line" statement does not exist.

E0520034 [Message] Invalid line number

[Explanation] The line number after the "#line" statement is invalid.

E0520036 [Message] The #if for this directive is missing.

E0520037 [Message] The #endif for this directive is missing.

E0520038 [Message] Directive is not allowed -- an #else has already appeared.

[Explanation] This directive is invalid because there is already an "#else" statement.

E0520039 [Message] Division by zero.

E0520040 [Message] Expected an identifier.

E0520041 [Message] Expression must have arithmetic or pointer type.

E0520042 [Message] Operand types are incompatible ("type1" and "type2").

E0520044 [Message] Expression must have pointer type.

E0520045 [Message] #undef may not be used on this predefined name.

E0520046 [Message] "macro" is predefined; attempted redefinition ignored.

[Explanation] The macro "macro" is predefined.  It cannot be redefined.

E0520047 [Message] Incompatible redefinition of macro "macro" (declared at line number).

[Explanation] The redefinition of macro "macro" is not compatible with the definition at line num-
ber.

E0520049 [Message] Duplicate macro parameter name.

E0520050 [Message] "##" may not be first in a macro definition.

E0520051 [Message] "##" may not be last in a macro definition.

E0520052 [Message] Expected a macro parameter name.

E0520053 [Message] Expected a ":".

E0520054 [Message] Too few arguments in macro invocation.

E0520055 [Message] Too many arguments in macro invocation.

E0520056 [Message] Operand of sizeof may not be a function.

E0520057 [Message] This operator is not allowed in a constant expression.

E0520058 [Message] This operator is not allowed in a preprocessing expression.

E0520059 [Message] Function call is not allowed in a constant expression.

E0520060 [Message] This operator is not allowed in an integral constant expression.

E0520061 [Message] Integer operation result is out of range.

E0520062 [Message] Shift count is negative.

E0520063 [Message] Shift count is too large.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 859 of 951
Dec 01, 2023

E0520064 [Message] Declaration does not declare anything.

E0520065 [Message] Expected a ";".

[Action by User] The iodefine.h file is generated when a project is created in an integrated develop-
ment environment.
When a reserved word of SFR is used, this file must be included.
PSW cannot be accessed directly. To manipulate PSW, use the intrinsic function 
__get_psw or __set_psw. To perform bit access, use the type defined in iodefine.h.

E0520066 [Message] Enumeration value is out of "int" range.

E0520067 [Message] Expected a "}".

E0520069 [Message] Integer conversion resulted in truncation.

E0520070 [Message] Incomplete type is not allowed.

E0520071 [Message] Operand of sizeof may not be a bit field.

E0520075 [Message] Operand of "*" must be a pointer.

E0520077 [Message] This declaration has no storage class or type specifier.

E0520078 [Message] A parameter declaration may not have an initializer.

E0520079 [Message] Expected a type specifier.

E0520080 [Message] A storage class may not be specified here.

E0520081 [Message] More than one storage class may not be specified.

[Explanation] Multiple storage class areas have been specified.  Only one storage class area can 
be specified.

E0520083 [Message] Type qualifier specified more than once.

[Explanation] Multiple type qualifiers have been specified.  It is not possible to specify more than 
one type qualifier.

E0520084 [Message] Invalid combination of type specifiers.

E0520085 [Message] Invalid storage class for a parameter.

E0520086 [Message] Invalid storage class for a function.

E0520087 [Message] A type specifier may not be used here.

E0520088 [Message] Array of functions is not allowed.

E0520089 [Message] Array of void is not allowed.

E0520090 [Message] Function returning function is not allowed.

E0520091 [Message] Function returning array is not allowed.

E0520092 [Message] Identifier-list parameters may only be used in a function definition.

E0520093 [Message] Function type may not come from a typedef.

E0520094 [Message] The size of an array must be greater than zero.

E0520095 [Message] Array is too large.

E0520097 [Message] A function may not return a value of this type.

E0520098 [Message] An array may not have elements of this type.

E0520099 [Message] A declaration here must declare a parameter.

E0520100 [Message] Duplicate parameter name.



R20UT3123EJ0113  Rev.1.13 Page 860 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0520101 [Message] "symbol" has already been declared in the current scope.

E0520102 [Message] Forward declaration of enum type is nonstandard.

E0520104 [Message] Struct or union is too large.

E0520105 [Message] Invalid size for bit field.

E0520106 [Message] Invalid type for a bit field.

E0520107 [Message] Zero-length bit field must be unnamed.

E0520109 [Message] Expression must have (pointer-to-) function type.

E0520110 [Message] Expected either a definition or a tag name.

E0520112 [Message] Expected "while".

E0520114 [Message] Type "symbol" was referenced but not defined.

E0520115 [Message] A continue statement may only be used within a loop.

E0520116 [Message] A break statement may only be used within a loop or switch.

E0520117 [Message] Non-void "function name" should return a value.

E0520118 [Message] A void function may not return a value.

E0520119 [Message] Cast to type "type" is not allowed.

E0520120 [Message] Return value type does not match the function type.

E0520121 [Message] A case label may only be used within a switch.

E0520122 [Message] A default label may only be used within a switch.

E0520124 [Message] default label has already appeared in this switch.

E0520125 [Message] Expected a "(".

E0520127 [Message] Expected a statement.

E0520129 [Message] A block-scope function may only have extern storage class.

E0520130 [Message] Expected a "{".

E0520132 [Message] Expression must have pointer-to-struct-or-union type.

E0520134 [Message] Expected a field name.

E0520136 [Message] Type "symbol" has no field "field".

E0520137 [Message] Expression must be a modifiable lvalue.

E0520138 [Message] Taking the address of a register variable is not allowed.

E0520139 [Message] Taking the address of a bit field is not allowed.

E0520140 [Message] Too many arguments in function call.

E0520141 [Message] Unnamed prototyped parameters not allowed when body is present.

E0520142 [Message] Expression must have pointer-to-object type.

E0520144 [Message] A value of type "type1" cannot be used to initialize an entity of type "type2".

E0520145 [Message] Type "symbol" may not be initialized.

E0520146 [Message] Too many initializer values.

E0520147 [Message] Declaration is incompatible with "declaration" (declared at line number).



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 861 of 951
Dec 01, 2023

E0520148 [Message] Tyep "symbol" has already been initialized.

E0520149 [Message] A global-scope declaration may not have this storage class.

E0520151 [Message] A typedef name may not be redeclared as a parameter.

E0520154 [Message] Expression must have struct or union type.

E0520158 [Message] Expression must be an lvalue or a function designator.

E0520159 [Message] Declaration is incompatible with previous "declaration" (declared at line number).

E0520165 [Message] Too few arguments in function call.

E0520166 [Message] Invalid floating constant.

E0520167 [Message] Argument of type "type1" is incompatible with parameter of type "type2".

E0520168 [Message] A function type is not allowed here.

E0520169 [Message] Expected a declaration.

E0520171 [Message] Invalid type conversion.

E0520172 [Message] External/internal linkage conflict with previous declaration.

E0520173 [Message] Floating-point value does not fit in required integral type.

E0520175 [Message] Subscript out of range.

E0520179 [Message] Right operand of "%" is zero.

E0520183 [Message] Type of cast must be integral.

E0520184 [Message] Type of cast must be arithmetic or pointer.

E0520221 [Message] Floating-point value does not fit in required floating-point type.

E0520222 [Message] Floating-point operation result is out of range.

E0520223 [Message] Function xxx declared implicitly.

E0520228 [Message] Trailing comma is nonstandard.

[Explanation] A trailing comma is not standard.

E0520235 [Message] Variable any-string was declared with a never-completed type.

E0520238 [Message] Invalid specifier on a parameter.

E0520240 [Message] Duplicate specifier in declaration.

E0520247 [Message] Type "symbol" has already been defined.

E0520253 [Message] Expected a ",".

E0520254 [Message] Type name is not allowed.

E0520256 [Message] Invalid redeclaration of type name "type".

[Explanation] Type name "type" was redeclared illegally.

E0520260 [Message] Explicit type is missing ("int" assumed).

E0520267 [Message] Old-style parameter list (anachronism).

E0520268 [Message] Declaration may not appear after executable statement in block.

E0520274 [Message] Improperly terminated macro invocation.

E0520284 [Message] NULL reference is not allowed.



R20UT3123EJ0113  Rev.1.13 Page 862 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0520296 [Message] Invalid use of non-lvalue array.

E0520301 [Message] typedef name has already been declared (with same type).

E0520313 [Message] Type qualifier is not allowed on this function.

E0520325 [Message] inline specifier allowed on function declarations only.

E0520340 [Message] Value copied to temporary, reference to temporary used.

E0520375 [Message] Declaration requires a typedef name.

E0520393 [Message] Pointer to incomplete class type is not allowed.

E0520401 [Message] Destructor for base class type is not virtual.

E0520404 [Message] Function "main" may not be declared inline.

E0520409 [Message] Type "symbol" returns incomplete type "type".

E0520411 [Message] A parameter is not allowed.

E0520445 [Message] name1 is not used in declaring the parameter types of "name2".

E0520450 [Message] The type "long long" is nonstandard.

E0520451 [Message] Omission of "class" is nonstandard.

E0520460 [Message] declaration of xxx hides function parameter.

E0520469 [Message] Tag kind of xxx is incompatible with declaration of "symbol".

E0520490 [Message] name cannot be instantiated -- it has been explicitly specialized.

E0520494 [Message] Declaring a void parameter list with a typedef is nonstandard.

E0520513 [Message] A value of type "type1" cannot be assigned to an entity of type "type2".

E0520520 [Message] Initialization with "{...}" expected for aggregate object.

E0520521 [Message] Pointer-to-member selection class types are incompatible (type1 and type2).

E0520525 [Message] A dependent statement may not be a declaration.

[Explanation] Cannot write declaration due to lack of "{" character after "if()" statement.

E0520526 [Message] A parameter may not have void type.

E0520545 [Message] Use of a local type to declare a function.

E0520560 [Message] symbol is reserved for future use as a keyword.

E0520561 [Message] Invalid macro definition: 

E0520562 [Message] Invalid macro undefinition: 

E0520606 [Message] This pragma must immediately precede a declaration.

E0520607 [Message] This pragma must immediately precede a statement.

E0520608 [Message] This pragma must immediately precede a declaration or statement.

E0520609 [Message] This kind of pragma may not be used here.

E0520618 [Message] struct or union declares no named members.

E0520619 [Message] Nonstandard unnamed field.

E0520643 [Message] "restrict" is not allowed.

E0520644 [Message] A pointer or reference to function type may not be qualified by "restrict".



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 863 of 951
Dec 01, 2023

E0520654 [Message] Declaration modifiers are incompatible with previous declaration.

E0520655 [Message] The modifier NAME is not allowed on this declaration.

E0520660 [Message] Invalid packing alignment value.

E0520676 [Message] Using out-of-scope declaration of type "symbol" (declared at line number).

E0520702 [Message] Expected an "=".

E0520705 [Message] Default template arguments are not allowed for function templates.

E0520731 [Message] Array with incomplete element type is nonstandard.

E0520732 [Message] Allocation operator may not be declared in a namespace.

E0520733 [Message] Deallocation operator may not be declared in a namespace.

E0520744 [Message] Incompatible memory attributes specified.

E0520747 [Message] Memory attribute specified more than once.

E0520749 [Message] A type qualifier is not allowed.

E0520757 [Message] NAME is not a type name.

E0520761 [Message] typename may only be used within a template.

E0520765 [Message] Nonstandard character at start of object-like macro definition.

E0520766 [Message] Exception specification for virtual name1 is incompatible with that of overridden 
name2.

E0520767 [Message] Conversion from pointer to smaller integer.

E0520768 [Message] Exception specification for implicitly declared virtual name1 is incompatible with 
that of overridden name2.

E0520784 [Message] A storage class is not allowed in a friend declaration.

E0520793 [Message] Explicit specialization of %n must precede its first use.

E0520811 [Message] const name requires an initializer -- class type has no explicitly declared default 
constructor.

E0520816 [Message] In a function definition a type qualifier on a "void" return type is not allowed.

E0520833 [Message] Pointer or reference to incomplete type is not allowed.

E0520845 [Message] This partial specialization would have been used to instantiate name.

E0520846 [Message] This partial specialization would have made the instantiation of name ambiguous.

E0520852 [Message] Expression must be a pointer to a complete object type.

E0520858 [Message] name is a pure virtual function.

E0520859 [Message] Pure virtual name has no overrider.

E0520861 [Message] Invalid character in input line.

E0520862 [Message] Function returns incomplete type "type".

E0520870 [Message] Invalid multibyte character sequence.

E0520886 [Message] Invalid suffix on integral constant.

[Explanation] The integer constant has an invalid suffix.

E0520935 [Message] Typedef may not be specified here.



R20UT3123EJ0113  Rev.1.13 Page 864 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0520938 [Message] Return type "int" omitted in declaration of function "main".

E0520940 [Message] Missing return statement at end of non-void type "symbol".

E0520946 [Message] Name following "template" must be a template.

E0520951 [Message] Return type of function "main" must be "int".

E0520953 [Message] A default template argument cannot be specified on the declaration of a member of 
a class template outside of its class.

E0520961 [Message] Use of a type with no linkage to declare a variable with linkage.

E0520962 [Message] Use of a type with no linkage to declare a function.

E0520965 [Message] Incorrectly formed universal character name.

E0520966 [Message] Universal character name specifies an invalid character.

E0520967 [Message] A universal character name cannot designate a character in the basic character 
set.

E0520968 [Message] This universal character is not allowed in an identifier.

E0520969 [Message] The identifier __VA_ARGS__ can only appear in the replacement lists of variadic 
macros.

E0520976 [Message] A compound literal is not allowed in an integral constant expression.

E0520977 [Message] A compound literal of type NAME is not allowed.

E0520983 [Message] typedef name has already been declared (with similar type).

E0520992 [Message] Invalid macro definition:.

E0520993 [Message] Subtraction of pointer types "type1" and "type2" is nonstandard.

E0521012 [Message] A using-declaration may not name a constructor or destructor.

E0521029 [Message] Type containing an unknown-size array is not allowed.

E0521030 [Message] A variable with static storage duration cannot be defined within an inline function.

E0521031 [Message] An entity with internal linkage cannot be referenced within an inline function with 
external linkage.

E0521036 [Message] The reserved identifier "symbol" may only be used inside a function.

E0521037 [Message] This universal character cannot begin an identifierl.

E0521038 [Message] Expected a string literal.

E0521039 [Message] Unrecognized STDC pragma.

E0521040 [Message] Expected "ON", "OFF", or "DEFAULT".

E0521041 [Message] A STDC pragma may only appear between declarations in the global scope or 
before any statements or declarations in a block scope.

E0521045 [Message] Invalid designator kind.

E0521048 [Message] Conversion between real and imaginary yields zero.

E0521049 [Message] An initializer cannot be specified for a flexible array member.

E0521051 [Message] Standard requires that NAME be given a type by a subsequent declaration ("int" 
assumed).

E0521052 [Message] A definition is required for inline NAME.

E0521055 [Message] Types cannot be declared in anonymous unions.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 865 of 951
Dec 01, 2023

E0521056 [Message] Returning pointer to local variable.

E0521057 [Message] Returning pointer to local temporary.

E0521062 [Message] The other declaration is %p.

E0521072 [Message] A declaration cannot have a label.

E0521139 [Message] The "template" keyword used for syntactic disambiguation may only be used within 
a template.

E0521144 [Message] Storage class must be auto or register.

E0521158 [Message] void return type cannot be qualified.

E0521203 [Message] Parameter parameter may not be redeclared in a catch clause of function try block.

E0521206 [Message] "template" must be followed by an identifier.

E0521273 [Message] Alignment-of operator applied to incomplete type.

E0521313 [Message] Hexadecimal floating-point constants are not allowed.

E0521319 [Message] Fixed-point operation result is out of range.

E0521348 [Message] Declaration hides "symbol".

E0521352 [Message] Expected "SAT" or "DEFAULT".

E0521381 [Message] Carriage return character in source line outside of comment or character/string lit-
eral.

[Explanation] Carriage return character (\r) in source line outside of comment or character/string 
literal.

E0521420 [Message] Some enumerator values cannot be represented by the integral type underlying the 
enum type.

E0521537 [Message] Unrecognized calling convention xxx must be one of:

E0521539 [Message] Option "--uliterals" can be used only when compiling C.

E0521578 [Message] case label value has already appeared in this switch at line number.

E0521582 [Message] The option to list macro definitions may not be specified when compiling more than 
one translation unit.

E0521584 [Message] Parentheses around a string initializer are nonstandard.

E0521603 [Message] Variable of incomplete type "variable" cannot be placed into the section.

E0521604 [Message] Illegal section attribute.

E0521605 [Message] Illegal #pragma character string syntax.

E0521606 [Message] "function" has already been placed into another section.

[Explanation] A "#pragma text" has already been specified for function "function".  It cannot be 
put into a different section.

E0521608 [Message] #pragma asm is not allowed outside of function.

E0521609 [Message] The #pragma endasm for this #pragma asm is missing.

E0521610 [Message] The #pragma asm for this #pragma endasm is missing.

E0521612 [Message] Duplicate interrupt hander for "request".

E0521613 [Message] Interrupt request name "request" not supported.

E0521614 [Message] Duplicate #pragma interrupt for this function.



R20UT3123EJ0113  Rev.1.13 Page 866 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0521615 [Message] Duplicate #pragma smart_correct for this function "function".

[Explanation] A "#pragma smart_correct" has already been specified for function "function".

E0521616 [Message] Type "symbol" has already been placed into another section (declared as extern).

E0521617 [Message] Type "symbol" has already been placed into another section.

E0521618 [Message] Type "symbol" has already been declared with #pragma section.

E0521621 [Message] Cannot write I/O register "register name".

E0521622 [Message] Cannot read I/O register "register name".

E0521623 [Message] Cannot use expanded specification. Device must be specified.

E0521625 [Message] Cannot set interrupt level for "request".

E0521626 [Message] Specification character string is specified for function "function name", previously 
specified #pragma inline is ignored.

E0521627 [Message] Function for #pragma smart_correct is same.

E0521628 [Message] Function for #pragma smart_correct "function" is undefined.

E0521630 [Message] Could not close symbol file "file name".

E0521633 [Message] Section name is not specified.

E0521635 [Message] "variable name" has already been placed into "section name" section in symbol file. 
The latter is ignored.

E0521636 [Message] "variable name" has already been placed into "section name" section in symbol file. 
#pragma is ignored.

E0521637 [Message] Illegal binary digit.

E0521638 [Message] First argument for special function name()must be integer constant.

E0521639 [Message] Function "function name" specified as "direct" can not be allocated in text.

E0521640 [Message] Function allocated in text can not be specified #pragma interrupt with "direct".

E0521641 [Message] FE level interrupt not supported.

E0521642 [Message] Cannnot give a name for "attribute" section.

E0521643 [Message] "direct" cannot be specified for plural interrupt.

E0521644 [Message] Reduced exception handler option of device is available. Address of the handler-
maybe overlaps.

E0521647 [Message] character string is not allowed here.

E0521648 [Message] Cannot call type function "function name".

E0521649 [Message] White space is required between the macro name NAME and its replacement text.

E0521650 [Message] type "symbol name" has already been declared with other #pragma pic/nopic.

[Explanation] There is a "#pragma pin/nopic" specification in conflict with type "symbol name".

E0523003 [Message] Expected a section name string.

E0523004 [Message] expected a section name

[Explanation] There is no character string for the section name or an unusable character is used.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 867 of 951
Dec 01, 2023

E0523005 [Message] Invalid pragma declaration

[Explanation] Write the #pragma syntax in accord with the correct format.

[Action by User] The iodefine.h file is generated when a project is created in an integrated develop-
ment environment.
Since the interrupt request names are defined in this file, iodefine.h should be 
included in a C source file which uses the interrupt request names.
The description format of interrupt functions differ in CA78K0R and CC-RL. CC-RL 
provides the -convert_cc option to aid porting from CA78K0R to CC-RL. Using this 
option allows some of the descriptions made in the CA78K0R format to be handled 
by CC-RL.

E0523006 [Message] "symbol name" has already been specified by other pragma

[Explanation] Two or more #pragma directives have been specified for one symbol, and such 
specification is not allowed.

E0523007 [Message] Pragma may not be specified after definition

[Explanation] The #pragma directive precedes definition of the target symbol.

E0523008 [Message] Invalid kind of pragma is specified to this symbol

[Explanation] The given type of #pragma directive is not specifiable for the symbol.

E0523014 [Message] Invalid binary digit.

E0523018 [Message] a member qualified with near or far is declared

[Explanation] __near or __far cannot be specified for a member when defining a structure or 
union.

E0523038 [Message] A struct/union/class has different pack specifications.

E0523044 [Message] Illegal section naming.

E0523048 [Message] Illegal reference to interrupt function.

E0523061 [Message] Argument is incompatible with formal parameter of intrinsic function.

E0523062 [Message] Return value type does not match the intrinsic function type.

E0523065 [Message] Cannot assign address constant to initializer for bitfield

[Action by User] Do not write an address constant as the initial value of the bit field.

E0523067 [Message] Type nest is too deep

[Explanation] Nesting of the declarator is too deep.

[Action by User] Do not write nesting that exceeds the limit of the implementation.

E0523074 [Message] "function name" cannot be used with #pragma rtos_interrupt

[Explanation] #pragma rtos_interrupt cannot be specified for "function name".

E0523075 [Message] Combination of address and near/far attribute is incorrect

[Explanation] The address specified by #pragma address is a location conflicting with the attri-
butes of __near and __far which are specified as variables.

E0523077 [Message] Called function should have prototype.

E0523078 [Message] xxx cannot be used in CC-RL.

E0523087 [Message] Illegal reference to "function name"

E0532002 [Message] Exception exception has occurred at compile time.



R20UT3123EJ0113  Rev.1.13 Page 868 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0541004 [Message] Addition/subtraction of __sectop/__secend and a constant are not allowed.

E0541240 [Message] Illegal naming of section "section name".

E0541854 [Message] Illegal address was specified with #pragma address.

[Explanation] The same address is specified for different variables.

E0550200 [Message] Illegal alignment value.

[Action by User] Check the alignment condition specification.

E0550201 [Message] Illegal character.

[Action by User] Check the character.

E0550202 [Message] Illegal expression.

[Action by User] Check the expression.

E0550203 [Message] Illegal expression (string).

[Action by User] Check the expression element.

E0550208 [Message] Illegal expression (labels in different sections).

[Action by User] Check the expression.

E0550209 [Message] Illegal expression (labels must be defined).

[Action by User] Check the expression.

E0550212 [Message] Symbol already defined as label.

[Action by User] Check the symbol name.

E0550213 [Message] Label identifier redefined.

[Action by User] Check the label name.

E0550214 [Message] identifier redefined.

[Action by User] Check the label name.

E0550217 [Message] Illegal operand (cannot use bit I/O register).

[Action by User] Check the internal peripheral I/O register.

E0550220 [Message] Illegal operand (identifier is reserved word).

[Action by User] Check the operand.

E0550221 [Message] Illegal operand (label - label).

[Action by User] Check the expression.

E0550225 [Message] Illegal operand (must be evaluated positive or zero).

[Action by User] Check the expression.

E0550226 [Message] Illegal operand (must be even displacement).

[Action by User] Check the displacement.

E0550228 [Message] Illegal operand (must be register).

[Action by User] Check the operand.

E0550229 [Message] Illegal operand (needs base register).

[Action by User] Check the operand.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 869 of 951
Dec 01, 2023

E0550230 [Message] Illegal operand (range error in displacement).

[Action by User] Check the displacement.

E0550231 [Message] Illegal operand (range error in immediate).

[Action by User] Check the immediate.

E0550232 [Message] Illegal operand (.local parameter).

[Action by User] Check the parameter.

E0550234 [Message] Illegal operand (macro parameter).

[Action by User] Check the parameter.

E0550235 [Message] Illegal operand (macro name).

[Action by User] Check "macro name".

E0550236 [Message] Illegal operand (macro argument).

[Action by User] Check the parameter.

E0550237 [Message] Illegal operand (.irp argument).

[Action by User] Check the argument.

E0550238 [Message] Illegal operand (.irp parameter).

[Action by User] Check the parameter.

E0550242 [Message] Illegal operand (label is already defined on section).

[Action by User] Check the label.

E0550244 [Message] Illegal origin value (value).

[Action by User] Check the value.

E0550245 [Message] identifier is reserved word.

[Action by User] Check the code.

E0550246 [Message] Illegal section.

[Action by User] Check the code.

E0550247 [Message] Illegal size value.

[Action by User] Check the specification.

E0550248 [Message] Illegal symbol reference (symbol).

[Action by User] Check the symbol.

E0550249 [Message] Illegal syntax.

[Action by User] Check the code.

E0550250 [Message] Illegal syntax string.

[Action by User] Check the code.

E0550260 [Message] Token too long.

[Explanation] Token too long.  The boundary value is 4,294,967,294.

[Action by User] Check the token length.



R20UT3123EJ0113  Rev.1.13 Page 870 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0550271 [Message] "string1" conflicts with previously specified "string2".

[Explanation] "string1" conflicts with previously specified "string2". Check the description of the 
source.
Note: "align=0" means that align is not specified in the .section directive.

E0550272 [Message] "string" required.

[Action by User] Add the specification of "string" to the relevant line.

E0550601 [Message] "path-name" specified by the "character string" option is a folder.  Specify an input 
file.

E0550602 [Message] The file "file-name" specified by the "character string" option is not found.

[Action by User] Check if the file exists.

E0550603 [Message] "path-name" specified by the "character string" option is a folder. Specify an output 
file.

E0550604 [Message] The output folder "folder-name" specified by the "character string" option is not 
found.

E0550605 [Message] "string2" specified by the "string1" option is a file. Specify a folder.

E0550606 [Message] The folder "string2" specified by the "string1" option is not found.

E0550607 [Message] "path-name" specified by the "character string" option is not found.

[Explanation] "path-name" (file or folder name) specified by the "character string" option was not 
found.

E0550608 [Message] The "character string" option is not recognized.

E0550609 [Message] The "character string" option can not have an argument.

E0550610 [Message] The "character string" option requires an argument.

E0550611 [Message] The "character string" option can not have an argument.

E0550612 [Message] The "character string" option requires an argument.

[Explanation] The "character string" option requires an argument.

[Action by User] Specify an argument.

E0550613 [Message] Invalid argument for the "character string" option.

E0550617 [Message] Invalid argument for the "character string" option.

E0550624 [Message] The "-cpu" option must be specified.

E0550625 [Message] Cannot find device file.

E0550629 [Message] Command file "file-name" is read more than once.

E0550630 [Message] Command file "file-name" can not be read.

E0550631 [Message] Syntax error in command file "file-name".

E0550632 [Message] Failed to create temporary folder.

E0550633 [Message] The argument for the "string" option must be a folder when multiple source files are 
specified.

E0550637 [Message] Failed to delete a temporary folder "folder-name".

E0550638 [Message] Failed to open an input file "file-name".

E0550639 [Message] Failed to open an output file "file-name".



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 871 of 951
Dec 01, 2023

E0550640 [Message] Failed to close an input file "file-name".

E0550641 [Message] Failed to write an output file "file-name".

E0550645 [Message] "character string2" specified in the "character string1" option is not available.

E0550647 [Message] The "string" option is specified more than once. The latter is valid.

E0550649 [Message] The "string2" option is ignored when the "string1" option and the "string2" option 
are inconsistent.

E0550701 [Message] Failed to delete a temporary file "file-name".

E0551200 [Message] Syntax error.

[Explanation] There is an error in the assembly source code.

[Action by User] Check the assembly source code.

E0551202 [Message] Illegal register.

[Explanation] There is a register that cannot be specified as an operand.

[Action by User] Check which registers can be specified as operands.

E0551203 [Message] Relocatable symbol is not allowed.

[Explanation] There is a relocatable symbol at a location not allowed.

[Action by User] Check the description format of the respective location.

E0551204 [Message] Illegal operands.

[Explanation] An illegal operand is specified.

[Action by User] Check the formats that can be specified as operands.

E0551205 [Message] Illegal string.

[Explanation] There is an error in the string.

[Action by User] Check if there are errors in the string.

E0551206 [Message] "$" is not allowed.

[Explanation] There is "$" where it is not allowed.

[Action by User] Check that there is no "$" where it is not allowed.

E0551207 [Message] "string" is not allowed.

[Action by User] Check the description format of the respective location.

E0551208 [Message] Illegal operation ("op").

[Explanation] There is an error in the description of "op" operation.

[Action by User] Check the description of "op" operation.

E0551209 [Message] Illegal 1st operand in bit position specifier.

[Action by User] Check the description of the 1st operand of the bit position specifier.

E0551210 [Message] Byte separation operator for bit reference is not allowed.

[Action by User] Apply the separation operator to the 1st operand for bit reference.

E0551211 [Message] Only bit symbols are allowed.

[Action by User] Check that there are only bit symbols.



R20UT3123EJ0113  Rev.1.13 Page 872 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0551212 [Message] Illegal bit position specifier.

[Action by User] Check the description of the bit position specifier.

E0551213 [Message] Operand or right parenthesis is missing.

[Explanation] Either a right parenthesis is missing or there is no expression to be targeted by the 
operator.

[Action by User] Check that there is a right parenthesis to match each left parenthesis or there is an 
expression to be targeted by the operator.

E0551214 [Message] Illegal operation ("op").

[Action by User] Check the format of the op operator.

E0551215 [Message] Illegal label reference.

[Action by User] Check the description of the label.

E0551218 [Message] Illegal expression (-label).

[Explanation] An expression of the (-label) format is not allowed.

[Action by User] Check the expression.

E0551219 [Message] Illegal label reference.

[Explanation] Operation or reference of a label is invalid.

[Action by User] Check the Operation or reference of a label.

E0551220 [Message] Undefined symbol is not allowed.

[Explanation] There is an undefined symbol where it is not allowed.

[Action by User] Check the symbol definition.

E0551221 [Message] Section name is not allowed.

[Explanation] There is a section name where it is not allowed.

[Action by User] Check which section names are allowed.

E0551222 [Message] Illegal character.

[Explanation] Failed to read characters.

[Action by User] Check the code.

E0551223 [Message] Closing single quotation mark is missing.

[Explanation] A single quotation (') is not closed.

[Action by User] Check the single quotation (') is not closed.

E0551224 [Message] Illegal string.

[Explanation] Failed to read strings.

[Action by User] Check the code.

E0551225 [Message] Closing double quotation mark is missing.

[Explanation] A double quotation (") is not closed.

[Action by User] Check if the double quotation (") is closed.

E0551226 [Message] Illegal string in expression.

[Explanation] There is a string in the middle of an expression.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 873 of 951
Dec 01, 2023

E0551227 [Message] '?' is not allowed.

[Explanation] '?' is not handled as an alphanumeric character.  It cannot be used in a symbol 
name.

E0551228 [Message] Numeric description does not match -base_number option.

E0551229 [Message] Invalid binary number.

[Action by User] Check if the binary notation is correct.

E0551230 [Message] Invalid octal number.

[Action by User] Check if the octal notation is correct.

E0551231 [Message] Invalid decimal number.

[Action by User] Check if the decimal notation is correct.

E0551232 [Message] Invalid hexadecimal number.

[Action by User] Check if the hexadecimal notation is correct.

E0551233 [Message] Too many operands.

[Action by User] Specify operands for the correct number.

E0551234 [Message] Closing bracket is missing.

[Explanation] There is no right bracket.

E0551236 [Message] Illegal tilde operation.

[Explanation] There is an error in the description of the tilde.

E0551301 [Message] Bit number should be in the range 0-7.

E0551302 [Message] Specified address is out of saddr area.

[Explanation] The value specified for the operand is outside of the saddr area.

E0551303 [Message] Specified address is out of SFR area.

[Explanation] The value specified for the operand is outside of the sfr area.

E0551304 [Message] Specified address is out of callt table area.

[Explanation] The value specified for the operand is outside of the callt table area.

E0551305 [Message] Specified value is out of 8-bit integer.

[Explanation] The value specified for the operand exceeds the 8-bit width.

E0551306 [Message] Specified value is out of 16-bit integer.

[Explanation] The value specified for the operand exceeds the 16-bit width.

E0551307 [Message] Specified value is out of 20-bit integer.

[Explanation] The value specified for the operand exceeds the 20-bit width.

E0551308 [Message] Specified value is out of 32-bit integer.

[Explanation] The value specified for the operand exceeds the 32-bit width.

E0551309 [Message] Odd number is not allowed.

E0551310 [Message] Only "1" is allowed.

E0551311 [Message] Specified value is out of range 1-7.

E0551312 [Message] Specified value is out of range 1-15.



R20UT3123EJ0113  Rev.1.13 Page 874 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0551313 [Message] "reg" is not allowed.

[Explanation] Register reg is not allowed here.

[Action by User] Check which operands are allowed.

E0551314 [Message] Only HL register is allowed.

E0551315 [Message] Only ES register is allowed.

E0551316 [Message] Only SFR register is allowed.

[Explanation] There is an illegal SFR or a control register.

E0551317 [Message] Forward reference of SFR is not allowed.

E0551401 [Message] Illegal operand "operand".

[Explanation] There is an error in the description of the operand.

[Action by User] Check the description of the operand.

E0551402 [Message] Illegal instruction.

[Explanation] The instruction type is illegal.

E0551403 [Message] Illegal operand of .DB8 directive.

[Explanation] A separation operator cannot be set for the operand of the .DB8 pseudo instruc-
tion.

[Action by User] Check if the .DB8 operand is described correctly.

E0551404 [Message] Illegal address description of .VECTOR directive.

[Action by User] Check if the address of the .VECTOR pseudo instruction is specified correctly.

E0551405 [Message] Illegal $MIRROR declaration.

[Explanation] $MIRROR cannot be specified for the symbol.

[Action by User] Check whether the $MIRROR pseudo instruction specifies an external reference 
name.

E0551406 [Message] Any symbol name starting with a period must not be used for "directive".

E0551501 [Message] Multiple source files are not allowed when the "-output" option is specified.

E0562000 [Message] Invalid option : "option"

[Explanation] option is not supported.

E0562001 [Message] Option "option" cannot be specified on command line

[Explanation] option cannot be specified on the command line.

[Explanation] Specify this option in a subcommand file.

E0562002 [Message] Input option cannot be specified on command line

[Explanation] The input option was specified on the command line.

[Action by User] Input file specification on the command line should be made without the input 
option.

E0562003 [Message] Subcommand option cannot be specified in subcommand file

[Explanation] The -subcommand option was specified in a subcommand file. The -subcommand 
option cannot be nested.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 875 of 951
Dec 01, 2023

E0562004 [Message] Option "option1" cannot be combined with option "option2"

[Explanation] option1 and option2 cannot be specified simultaneously.

E0562005 [Message] Option "option" cannot be specified while processing "process"

[Explanation] option cannot be specified for process.

E0562006 [Message] Option "option1" is ineffective without option "option2"

[Explanation] option1 requires option2 be specified.

E0562010 [Message] Option "option" requires parameter

[Explanation] option requires a parameter to be specified.

E0562011 [Message] Invalid parameter specified in option "option" : "parameter"

[Explanation] An invalid parameter was specified for option.

E0562012 [Message] Invalid number specified in option "option" : "value"

[Explanation] An invalid value was specified for option.

[Action by User] Check the range of valid values.

E0562013 [Message] Invalid address value specified in option "option" : "address"

[Explanation] The address address specified in option is invalid.

[Action by User] A hexadecimal address between 0 and FFFFFFFF should be specified.

E0562014 [Message] Illegal symbol/section name specified in "option" : "name"

[Explanation] The section or symbol name specified in option uses an illegal character.

E0562016 [Message] Invalid alignment value specified in option "option" : "alignment value"

[Explanation] The alignment value specified in option is invalid.

[Action by User] 1, 2, 4, 8, 16, or 32 should be specified.

E0562020 [Message] Duplicate file specified in option "option" : "file"

[Explanation] The same file was specified twice in option.

E0562022 [Message] Address ranges overlap in option "option" : "address range"

[Explanation] Address ranges address range specified in option overlap.

E0562100 [Message] Invalid address specified in cpu option : "address"

[Explanation] An address was specified with the -cpu option that cannot be specified for a cpu.

E0562101 [Message] Invalid address specified in option "option" : "address"

[Explanation] The address specified in option exceeds the address range that can be specified 
by the cpu or the range specified by the cpu option.

E0562110 [Message] Section size of second parameter in rom option is not 0 : "section"

[Explanation] The second parameter in the -rom option specifies "section" with non-zero size.

E0562111 [Message] Absolute section cannot be specified in "option" option : "section"

[Explanation] An absolute address section was specified in option.

E0562114 [Message] The generated duplicate section name "section" is confused

[Explanation] A section with the same name section appeared more than once and could not be 
processed.



R20UT3123EJ0113  Rev.1.13 Page 876 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0562120 [Message] Library "file" without module name specified as input file

[Explanation] A library file without a module name was specified as the input file.

E0562121 [Message] Input file is not library file : "file(module)"

[Explanation] The file specified by file (module) as the input file is not a library file.

E0562130 [Message] Cannot find file specified in option "option" : "file"

[Explanation] The file specified in option could not be found.

E0562131 [Message] Cannot find module specified in option "option" : "module"

[Explanation] The module specified in option could not be found.

E0562132 [Message] Cannot find "name" specified in option "option" 

[Explanation] The symbol or section specified in option does not exist.

E0562133 [Message] Cannot find defined symbol "name" in option "option"

[Explanation] The externally defined symbol specified in option does not exist.

E0562134 [Message] Reserved section name "section"

[Explanation] " section" is the reservation name used by a linker.

[Action by User] Check if the section name is correct.

E0562135 [Message] [V1.06 or earlier]
Interrupt number "vector table address" has invalid interrupt jump address : "sym-
bol"
[V1.07 or later]
Interrupt table address "vector table address" has invalid interrupt jump address : 
"symbol"

[Explanation] "symbol" cannot be specified as an interrupt function.

[Action by User] Check the description of the option and source file.

E0562140 [Message] Symbol/section "name" redefined in option "option"

[Explanation] The symbol or section specified in option has already been defined.

E0562141 [Message] Module "module" redefined in option "option"

[Explanation] The module specified in option has already been defined.

E0562142 [Message] [V1.06 or earlier]
Interrupt number "vector table address" of "section" has multiple definition
[V1.07 or later]
Interrupt table address "vector table address" of "section" has multiple definition

[Explanation] Vector number definition was made multiple times in vector table section. Only one 
address can be specified for a vector number.

[Action by User] Check and correct the code in the source file.

E0562200 [Message] Illegal object file : "file"

[Explanation] A format other than ELF format was input.

[Action by User] Since CA78K0R and CC-RL have different object file formats, an object file created 
in CA78K0R cannot be linked by CC-RL. If an object file of CA78K0R has been 
used, recreate an object file specifically for CC-RL and link that file.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 877 of 951
Dec 01, 2023

E0562201 [Message] Illegal library file : "file"

[Explanation] file is not a library file.

[Action by User] Check whether a library file of CA78K0R has been specified. Since CA78K0R and 
CC-RL have different object file formats, a library file created in CA78K0R cannot 
be linked by CC-RL. Recreate a library file specifically for CC-RL and link that file.

E0562204 [Message] Unsupported device file : "file"

[Explanation] "file" cannot be read as the device file.

[Action by User] Check the device file.

E0562210 [Message] Invalid input file type specified for option "option" : "file(type)"

[Explanation] When specifying option, a file (type) that cannot be processed was input.

E0562211 [Message] Invalid input file type specified while processing "process" : "file(type)"

[Explanation] A file (type) that cannot be processed was input during processing process.

E0562212 [Message] "option" cannot be specified for inter-module optimization information in "file"

[Explanation] The option option cannot be used because file includes inter-module optimization 
information.

[Action by User] Do not specify the goptimize option at compilation or assembly.

E0562220 [Message] Illegal mode type "mode type" in "file"

[Explanation] A file with a different mode type was input.

E0562221 [Message] Section type mismatch : "section"

[Explanation] Sections with the same name but different attributes (whether initial values present 
or not) were input.

E0562224 [Message] Section type (relocation attribute) mismatch : "section"

[Explanation] Sections with the same name but different relocation attributes were specified.

E0562225 [Message] Device file mismatch "device file" in "input file"

[Explanation] An object file created using a different device file is attempted to be linked or the 
device file used when creating an object file does not match the device file speci-
fied by the -device option.

E0562300 [Message] Duplicate symbol "symbol" in "file"

[Explanation] There are duplicate occurrences of symbol.

E0562301 [Message] Duplicate module "module" in "file"

[Explanation] There are duplicate occurrences of module.

E0562310 [Message] Undefined external symbol "symbol" referenced in "file"

[Explanation] An undefined symbol symbol was referenced in file.

E0562311 [Message] Section "section1" cannot refer to overlaid section : "section2-symbol"

[Explanation] A symbol defined in section1 was referenced in section2 that is allocated to the 
same address as section1 overlaid.

[Action by User] section1 and section2 must not be allocated to the same address.



R20UT3123EJ0113  Rev.1.13 Page 878 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0562320 [Message] Section address overflowed out of range : "section"

[Explanation] The address of section exceeds the usable address range.

[Action by User] Check the allocation address and size of the section.

E0562321 [Message] Section "section1" overlaps section "section2"

[Explanation] The addresses of section1 and section2 overlap.

[Action by User] Change the address specified by the start option.

E0562325 [Message] Section "section" steps over the border of "border"

[Explanation] section is allocated to extend across border.

E0562330 [Message] Relocation size overflow : "file"-"section"-"offset

[Explanation] The result of the relocation operation exceeded the relocation size. Possible 
causes include inaccessibility of a branch destination, and referencing of a symbol 
which must be located at a specific address.

[Action by User] Ensure that the referenced symbol at the offset position of section in the source list 
is placed at the correct position.

E0562332 [Message] Relocation value is odd number : "file"-"section"-"offset"

[Explanation] The result of the relocation operation is an odd number.

[Action by User] Check for problems in calculation of the position at offset in section in the source 
list.

E0562340 [Message] Symbol name "file"-"section"-"symbol" is too long

[Explanation] The length of "symbol" in "section" exceeds the assembler translation limit.

[Action by User] To output a symbol address file, use a symbol name that is no longer than the 
assembler translation limit.

E0562350 [Message] Section "section" cannot be placed on the "area".

[Explanation] When the -self option is specified, a "section" cannot be allocated to "area".

E0562351 [Message] Section "section" cannot be placed on the "area".

[Explanation] When the -ocdtr option is specified, a "section" cannot be allocated to "area".

E0562352 [Message] Section "section" cannot be placed on the "area".

[Explanation] When the -ocdhpi option is specified, a "section" cannot be allocated to "area".

E0562353 [Message] Section "section" address overflowed out of range "area".

[Explanation] When the -selfw option is specified, a "section" cannot be allocated to extend 
across "area".

E0562354 [Message] Section "section" address overflowed out of range "area".

[Explanation] When the -ocdtrw option is specified, a "section" cannot be allocated to extend 
across "area".

E0562355 [Message] Section "section" address overflowed out of range "area".

[Explanation] When the -ocdhpiw option is specified, a "section" cannot be allocated to extend 
across "area".

E0562360 [Message] CRC result cannot be placed on the "area".

[Explanation] When the -self option is specified, the CRC result cannot be placed in "area".



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 879 of 951
Dec 01, 2023

E0562361 [Message] CRC result cannot be placed on the "area".

[Explanation] When the -ocdtr option is specified, the CRC result cannot be placed in "area".

E0562362 [Message] CRC result cannot be placed on the "area".

[Explanation] When the -ocdhpi option is specified, the CRC result cannot be placed in "area".

E0562363 [Message] CRC result address overflowed out of range "area".

[Explanation] When the -selfw option is specified, the CRC result cannot be placed to extend 
across "area".

E0562364 [Message] CRC result address overflowed out of range "area".

[Explanation] When the -ocdtrw option is specified, the CRC result cannot be placed to extend 
across "area".

E0562365 [Message] CRC result address overflowed out of range "area".

[Explanation] When the -ocdhpiw option is specified, the CRC result cannot be placed to extend 
across "area".

E0562410 [Message] Address value specified by map file differs from one after linkage as to "symbol"

[Explanation] The address of symbol differs between the address within the external symbol allo-
cation information file used at compilation and the address after linkage.

[Action by User] Check (1) to (3) below.

(1) Do not change the program before or after the map option specification at 
compilation.

(2) rlink optimization may cause the sequence of the symbols after the map 
option specification at compilation to differ from that before the map option. 
Disable the map option at compilation or disable the rlink option for optimi-
zation.

(3) When the tbr option or #pragma tbr is used, optimization by the compiler 
may delete symbols after the map option specification at compilation. Dis-
able the map option at compilation or disable the tbr option or #pragma tbr.

E0562411 [Message] Map file in "file" conflicts with that in another file

[Explanation] Different external symbol allocation information files were used by the input files at 
compilation.

E0562412 [Message] Cannot open file : "file"

[Explanation] file (external symbol allocation information file) cannot be opened.

[Action by User] Check whether the file name and access rights are correct.

E0562413 [Message] Cannot close file : "file"

[Explanation] file (external symbol allocation information file) cannot be closed. There may be 
insufficient disk space.

E0562414 [Message] Cannot read file : "file"

[Explanation] file (external symbol allocation information file) cannot be read. There may be 
insufficient disk space.

E0562415 [Message] Illegal map file : "file"

[Explanation] file (external symbol allocation information file) has an illegal format.

[Action by User] Check whether the file name is correct.



R20UT3123EJ0113  Rev.1.13 Page 880 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0562416 [Message] Order of functions specified by map file differs from one after linkage as to "function 
name"

[Explanation] The sequences of a function function name and those of other functions are differ-
ent between the information within the external symbol allocation information file 
used at compilation and the location after linkage. The address of static within the 
function may be different between the external symbol allocation information file 
and the result after linkage.

E0562417 [Message] Map file is not the newest version : "file name"

[Explanation] The external symbol allocation information file is not the latest version.

E0562420 [Message] "file1" overlap address "file2" : "address"

[Explanation] The address specified for file1 is the same as that specified for file2.

E0562600 [Message] Library "library" requires "licence edition"

[Explanation] The "library" requires the "edition" edition.

E0580001 [Message] "SMSG%s" cannot be specified as dst.

[Explanation] Values cannot be written to SMSG0 or SMSG15.

[Action by User] Specify an operand other than SMSG0 or SMSG15.

E0580002 [Message] "%s" is out of range (%d-%d).

[Explanation] The value of the operand is outside the specifiable range.

[Action by User] Check the value of the operand.

E0580003 [Message] label cannot be specified as memory operand.

[Explanation] A label cannot be written in the offset of a memory operand.

[Action by User] Check the code for the operand.

E0580004 [Message] branch destination is out of program area.

[Explanation] The branch destination of a branch instruction is outside the program.

[Action by User] Check the branch distance from the branch instruction.

E0580005 [Message] invalid address format.

[Action by User] Specify only a numeric value or label for $addr.

E0580006 [Message] unknown label "%s".

[Explanation] The branch destination label of the branch instruction cannot be found.

[Action by User] Check the code for the operand.

E0580007 [Message] expecting "%s".

[Explanation] There is an error in the syntax.

[Action by User] Check the code.

E0580008 [Message] unexpected "%s".

[Explanation] There is an error in the syntax.

[Action by User] Check the code.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 881 of 951
Dec 01, 2023

E0580009 [Message] "%s" is already defined.

[Explanation] The label is defined multiple times.

[Action by User] Check the label name.

E0580010 [Message] illegal operation ("%s").

[Explanation] There is an error in the expression.

[Action by User] Check the code.

E0580011 [Message] machine instructions cannot exceed 32 instructions.

[Explanation] The program has more than 32 instructions.

[Action by User] Reduce the program’s size.

E0580012 [Message] illegal symbol ("%s").

[Explanation] An illegal character was used in the symbol name.

[Action by User] Check the symbol name.

E0580017 [Message] suffix and prefix cannot be specified together.

[Explanation] There is an error in the hexadecimal notation.

[Action by User] Only one of prefix and suffix in hexadecimal can be specified.

E0580100 [Message] specify .SECTION directive.

[Action by User] Write the .SECTION directive at the beginning of the program.

E0580104 [Message] "%s" is already defined.

[Explanation] A macro with the same name has already been defined.

[Action by User] Check the macro name.

E0580105 [Message] illegal macro argument.

[Explanation] There is an error in the syntax.

[Action by User] Check the code.

E0580106 [Message] actual argument of macro is not matched.

[Explanation] The number of actual parameters in a macro reference does not match the number 
of formal parameters.

[Action by User] Check the code.

E0580200 [Message] illegal syntax.

[Explanation] There is an error in the syntax.

[Action by User] Check the code.

E0580201 [Message] include file cannot nest over 4294967294 times.

[Explanation] The level of nesting in the $include control directives has exceeded the limit.

E0580202 [Message] condition assembly directive cannot nest over 4294967294 times.

[Explanation] The level of nesting in the $ifdef control directives has exceeded the limit.

E0580203 [Message] unexpected directive "%s".

[Explanation] There is no $if or $ifdef control directive corresponding to "%s".



R20UT3123EJ0113  Rev.1.13 Page 882 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

E0580204 [Message] expecting directive "%s".

[Explanation] There is no $endif control directive corresponding to "%s".

E0580300 [Message] "%s" is unrecognized.

[Explanation] An illegal option name was present.

[Action by User] Check the option specification.

E0580301 [Message] specify the "-o" option.

[Action by User] Specify the -o option.

E0580302 [Message] "%s" option requires an argument.

[Action by User] Specify a parameter for the option.

E0580303 [Message] invalid argument for the "%s" option.

[Explanation] The parameter specification in the option is illegal.

[Action by User] Check the option specification.

E0580305 [Message] "%s" specified in the "%s" option is invalid name.

[Explanation] The symbol name specified for a -D or -U option is illegal.

[Action by User] Check the specification of the -D or -U option.

E0580307 [Message] cannot open subcommand file "%s".

[Explanation] Opening the subcommand file was not possible.

[Action by User] Check the state of the subcommand file.

E0580308 [Message] cannot read subcommand file "%s".

[Explanation] The subcommand file was not readable.

[Action by User] Check the state of the subcommand file.

E0580309 [Message] subcommand file "%s" is read more than once.

[Explanation] A subcommand file with the same name was specified more than once.

[Action by User] Check the subcommand file specifications.

E0580310 [Message] missing double quotation.

[Explanation] Double-quotation marks were missing.

[Action by User] Check the code.

E0580311 [Message] specify the input file.

[Action by User] Specify an input file.

E0580312 [Message] too many input files.

[Action by User] Only one input file specification should be made.

E0580313 [Message] the file "%s" specified by the "%s" option is a folder.

[Explanation] The specified output file is a folder.

[Action by User] Check the option specification for the output file.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 883 of 951
Dec 01, 2023

E0580314 [Message] the output folder "%s" specified by the "%s" option is not found.

[Explanation] The output folder was not found.

[Action by User] Check the option specification for the output file.

E0580315 [Message] cannot open input file "%s".

[Explanation] Opening the input file was not possible.

[Action by User] Check the state of the input file.

E0580316 [Message] cannot read input file "%s".

[Explanation] The input file was not readable.

[Action by User] Check the state of the input file.

E0580317 [Message] cannot open output file "%s".

[Explanation] Opening the output file was not possible.

[Action by User] Check the state of the output file.

E0580318 [Message] cannot write output file "%s".

[Explanation] Attempted writing to the output file failed.

[Action by User] Check the state of the output file.



R20UT3123EJ0113  Rev.1.13 Page 884 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

10.5.3  Fatal errors

Table 10.4 Fatal Errors

F0520003 [Message] #include file "file" includes itself.

[Explanation] #include file "file" includes itself. Correct the error.

F0520004 [Message] Out of memory.

[Action by User] Out of memory.  Close other applications, and perform the compile again.

F0520005 [Message] Could not open source file "file".

F0520013 [Message] Expected a file name.

F0520035 [Message] #error directive: character string

[Explanation] There is an "#error" directive in the source file.

F0520143 [Message] Program too large or complicated to compile.

F0520163 [Message] Could not open temporary file xxx.

F0520164 [Message] Name of directory for temporary files is too long (xxx).

F0520182 [Message] Could not open source file xxx (no directories in search list).

F0520189 [Message] Error while writing "file" file.

F0520563 [Message] Invalid preprocessor output file.

F0520564 [Message] Cannot open preprocessor output file.

F0520571 [Message] Invalid option: option

F0520642 [Message] Cannot build temporary file name.

F0520920 [Message] Cannot open output file: xxx

F0523029 [Message] Cannot open rule file

[Explanation] The file specified in the -misra2004="file name" or -misra2012="file name" option 
cannot be opened.

F0523030 [Message] Incorrect description "file name" in rule file

[Explanation] The file specified in the -misra2004="file name" or -misra2012="file name" option 
includes illegal code.

F0523031 [Message] Rule "rule number" is unsupported

[Explanation] The number of a rule that is not supported was specified.

F0523061 [Message] argument is incompatible with formal parameter of intrinsic function

F0523062 [Message] return value type does not match the intrinsic function

F0523088 [Message] Bit position is out of range.

F0530320 [Message] Duplicate symbol "symbol name".

F0530800 [Message] Type of symbol "symbol-name" differs between files.

F0530808 [Message] Alignment of variable "variable-name" differs between files.

F0530810 [Message] #pragma directive for symbol "symbol-name" differs between files.

F0531003 [Message] The function "function" specified by the "option" option is not exist.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 885 of 951
Dec 01, 2023

F0533015 [Message] Symbol table overflow.

[Explanation] The number of symbols generated by the compiler exceeded the limit.

F0533021 [Message] Out of memory.

[Explanation] Memory is insufficient.

[Action by User] Close other applications and recompile the program.

F0533300 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0533301 [Message] Cannot close an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be closed.

F0533302 [Message] Cannot read an intermediate file.

[Explanation] An error occurred during reading of a temporary file.

F0533303 [Message] Cannot write to an intermediate file.

[Explanation] An error occurred during writing of a temporary file.

F0533306 [Message] Compilation was interrupted.

[Explanation] During compilation, an interrupt due to entry of the Cntl + C key combination was 
detected.

F0533330 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0540027 [Message] Cannot read file "file-name".

F0540204 [Message] Illegal stack access.

[Explanation] Attempted usage of the stack by a function has exceeded 64K bytes.

F0540300 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0540301 [Message] Cannot close an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be closed.

F0540302 [Message] Cannot read an intermediate file.

[Explanation] An error occurred during reading of a temporary file.

F0540303 [Message] Cannot write to an intermediate file.

[Explanation] An error occurred during writing of a temporary file.

F0540400 [Message] Different parameters are set for the same #pramga "identifier".

F0550503 [Message] Cannot open file file.

[Action by User] Check the file.

F0550504 [Message] Illegal section kind.

[Action by User] Check the section type specification.

F0550505 [Message] Memory allocation fault.

[Action by User] Check free memory.



R20UT3123EJ0113  Rev.1.13 Page 886 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

F0550506 [Message] Memory allocation fault (string).

[Action by User] Check free memory.

F0550507 [Message] Overflow error (string).

[Explanation] Ran out of working space while processing the expression.  Change it to a simpler 
expression.

[Action by User] Check the expression.

F0550508 [Message] identifier undefined.

[Action by User] Check the identifier.

F0550509 [Message] Illegal pseudo(string) found.

[Action by User] Check the directive.

F0550510 [Message] string unexpected.

[Action by User] Check the directive.

F0550511 [Message] string unmatched.

[Action by User] Check the conditional assembly control instruction.

F0550512 [Message] $if, $ifn, etc. too deeply nested.

[Explanation] 4294967294 or more levels of nesting have been used in the conditional assembly 
control instruction.

[Action by User] Check the nesting.

F0550513 [Message] Unexpected EOF in string.

[Explanation] There is no .endm directive corresponding to string directive.

[Action by User] Check the directive.

F0550514 [Message] Argument table overflow.

[Explanation] 4294967294 or more actual parameters have been used.

[Action by User] Check the actual arguments.

F0550516 [Message] Local symbol value overflow.

[Explanation] The number of symbols generated automatically via the .local directive exceeds 
the maximum limit (4294967294).

[Action by User] Check the directive.

F0550526 [Message] Devicefile version mismatch, cannot use version version.

[Action by User] Check the device file.

F0550531 [Message] Too many symbols.

[Explanation] The maximum number of symbols that can be included in a single file has been 
exceeded.  The maximum number of symbols that can be included is 4294967294, 
including symbols registered internally by the assembler.

F0550532 [Message] Illegal object file (string).

[Explanation] A file system-dependent error occurred while generating a linkable object file.

[Action by User] Check the file system.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 887 of 951
Dec 01, 2023

F0550534 [Message] Too many instructions of one file.

[Explanation] The maximum number of instructions for one file has been exceeded.  The maxi-
mum is 10,000,000.

[Action by User] Check the number of instructions.

F0550537 [Message] Section(section) address overflowed out of range.

[Explanation] The address of the absolute address section is beyond 0xffffffff.

[Action by User] When you use .org to specify an absolute address for a section, the final instruction 
within the section must be allocated to an address up to 0xffffffff.

F0550538 [Message] Section(section1) overlaps section(section2).

[Explanation] The address range allocated to an absolute address section overlaps with the 
address range allocated to another section.

[Action by User] Check the address specified with .org.

F0550539 [Message] Relocation entry overflow.

[Explanation] There are 16777216 or more symbols that have been registered and referenced.

[Action by User] Check the number of symbols.

F0550540 [Message] Cannot read file file.

[Explanation] Illegal file, or file size is too long.

[Action by User] Check the file.

F0551601 [Message] Illegal device information specified by "source".

F0551604 [Message] -mirror_source=1 option is not allowed for RL78-S1 core.

F0551605 [Message] -mirror_region option is not allowed when -dev option is specified.

F0551606 [Message] -mirror_region option is not allowed when -mirror_source=common option is speci-
fied.

F0551607 [Message] Invalid value is specified as MIRROR area.

F0551608 [Message] Specify addresses.

F0551609 [Message] Unreasonable include file nesting.

[Explanation] The nesting level of the include is too deep or the function is recursively including 
itself.

[Action by User] Review the include file.

F0551610 [Message] Unreasonable macro nesting.

[Explanation] The nesting level of the macro call is too deep or the function is recursively calling 
itself.

[Action by User] Review the macro definition.

F0563000 [Message] No input file

[Explanation] There is no input file.

F0563001 [Message] No module in library

[Explanation] There are no modules in the library.

F0563002 [Message] Option "option1" is ineffective without option "option2"

[Explanation] The option option1 requires that the option option2 be specified.



R20UT3123EJ0113  Rev.1.13 Page 888 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

F0563003 [Message] Illegal file format "file"

[Explanation] file has a file format that cannot be used.

F0563004 [Message] Invalid inter-module optimization information type in "file"

[Explanation] The "file" contains an unsupported inter-module optimization information type.

[Action by User] Check if the compiler and assembler versions are correct.

F0563006 [Message] Option "option" cannot be combined with library

[Explanation] Option "option" cannot be specified together with the library created through the 
compiler. Check that the correct library file and option are specified.

F0563010 [Message] No mirror region information

[Explanation] The allocation address information of the mirror region is not specified.

[Action by User] Check if the -far_rom, -mirror_region, or -dev option is correct

F0563020 [Message] No cpu information in input files

[Explanation] The CPU type cannot be identified from the input file.

[Action by User] Check that the binary file is specified with the -binary option and the .obj or .rel files 
to be linked together exist.

F0563100 [Message] Section address overflow out of range : "section"

[Explanation] The address of section exceeded the area available.

[Action by User] Change the address specified by the start option.
For details of the address space, see the user's manual of the device.

F0563102 [Message] Section contents overlap in absolute section "section" in "file"

[Explanation] Data addresses overlap within an absolute address section.

[Action by User] Modify the source program.

F0563103 [Message] Section size overflow : "section"

[Explanation] Section "section" has exceeded the usable size.

F0563110 [Message] Illegal cpu type "cpu type" in "file"

[Explanation] A file with a different cpu type was input.

F0563111 [Message] Illegal encode type "endian type" in "file"

[Explanation] A file with a different endian type was input.

F0563112 [Message] Invalid relocation type in "file"

[Explanation] There is an unsupported relocation type in file.

[Action by User] Ensure the compiler and assembler versions are correct.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 889 of 951
Dec 01, 2023

F0563113 [Message] Illegal mode type "mode" in "file"

[Explanation] A "mode" file that cannot be mixed is input.

[Action by User] Check if the compiler and assembler options and the device file are correct.
When you use CS+ to create a project for the RL78-S2 core microcontroller, the 
project is generated based on the assumption that the division/multiplication and 
multiply-accumulate unit is to be used. When creating a project with CS+ for a 
microcontroller that does not have the division/multiplication and multiply-accumu-
late unit, open the [Common Options] tabbed page on the Property panel of the 
build tool and select "Not use(-use_mda=not_use)" for the [Use arithmetic unit] set-
ting.

F0563114 [Message] Illegal cpu type "CPU type" in device file "file"

[Explanation] "CPU type" is different.

[Action by User] Check if the device file is correct.

F0563115 [Message] Cpu type in "file" is not supported

[Explanation] The CPU type specified in "file" is not supported. Check if the input file is correct.

F0563121 [Message] Illegal type of the section : "section" in "file"

[Explanation] "section" type is different.

[Action by User] Check the section specification of a source file.

F0563122 [Message] Illegal attribute of the section : "section" in "file"

[Explanation] "section" type is different.

[Action by User] Check the section specification of a source file.

F0563123 [Message] Gap is within the limits of the section : "section"

[Explanation] "section" cannot be allocated.

[Action by User] Check the source file.

F0563124 [Message] Illegal alignment of the section : "section" in "file"

[Explanation] "section" cannot be allocated by section alignment.

[Action by User] Check the source file.

F0563125 [Message] Illegal kind of the section : "section" in "file"

[Explanation] "section" type is different.

[Action by User] Check the section specification of a source file.

F0563130 [Message] Range "range" in "file" conflicts with that in another file

[Explanation] A file which has a different memory area for "range" is input.

[Action by User] Check if the compiler and assembler options are correct.

F0563140 [Message] No "area" area information in input device file

[Explanation] The device file does not contain the "area" information.

[Action by User] Check if the device file is correct.

F0563150 [Message] Multiple files cannot be specified while processing "process"

[Explanation] Multiple files cannot be specified for the process processing.

[Action by User] Check the file specifications.



R20UT3123EJ0113  Rev.1.13 Page 890 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

F0563200 [Message] Too many sections

[Explanation] The number of sections exceeded the translation limit. It may be possible to elimi-
nate this problem by specifying multiple file output.

F0563201 [Message] Too many symbols

[Explanation] The number of symbols exceeded the translation limit. It may be possible to elimi-
nate this problem by specifying multiple file output.

F0563202 [Message] Too many modules

[Explanation] The number of modules exceeded the translation limit.

[Action by User] Divide the library.

F0563203 [Message] Reserved module name "rlink_generates"

[Explanation] rlink_generates_** (** is a value from 01 to 99) is a reserved name used by the 
optimizing linkage editor. It is used as an .obj or .rel file name or a module name 
within a library.

[Action by User] Modify the name if it is used as a file name or a module name within a library.

F0563204 [Message] Reserved section name "$sss_fetch"

[Explanation] sss_fetch** (sss is any string, and ** is a value from 01 to 99) is a reserved name 
used by the optimizing linkage editor.

[Action by User] Change the symbol name or section name.

F0563300 [Message] Cannot open file : "file"

[Explanation] file cannot be opened.

[Action by User] Check whether the file name and access rights are correct.

F0563301 [Message] Cannot close file : "file"

[Explanation] file cannot be closed. There may be insufficient disk space.

F0563302 [Message] Cannot write file : "file"

[Explanation] Writing to file is not possible. There may be insufficient disk space.

F0563303 [Message] Cannot read file : "file"

[Explanation] file cannot be read. An empty file may have been input, or there may be insufficient 
disk space.

F0563310 [Message] Cannot open temporary file

[Explanation] A temporary file cannot be opened.

[Action by User] Check to ensure the HLNK_TMP specification is correct, or there may be insuffi-
cient disk space.

F0563314 [Message] Cannot delete temporary file

[Explanation] A temporary file cannot be deleted. There may be insufficient disk space.

F0563320 [Message] Memory overflow

[Explanation] There is no more space in the usable memory within the optimizing linker.

[Action by User] Increase the amount of memory available.

F0563410 [Message] Interrupt by user

[Explanation] An interrupt generated by (Ctrl) + C keys from a standard input terminal was 
detected.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 891 of 951
Dec 01, 2023

F0563430 [Message] The total section size exceeded the limit of the evaluation version of version. 
Please consider purchasing the product. [V1.11 or earlier]

F0563431 [Message] Incorrect device type, object file mismatch.

[Explanation] An unsupported CPU type was input.

[Action by User] Check the execution file of the linker and the file specified by the option.

F0563600 [Message] Option "option" requires parameter

[Explanation] Parameters have to be specified in option.

F0563601 [Message] Invalid parameter specified in option "option" : "parameter"

[Explanation] An invalid parameter was specified in option.

F0563602 [Message] "character string" option requires "edition".

[Explanation] The "character string" option requires the edition parameter.

F0580101 [Message] section name is not specified in the .SECTION directive.

[Action by User] Specify a section name in the .SECTION directive.

F0580102 [Message] "%s" is already specified.

[Explanation] A section with the same name has already been defined.

[Action by User] Check the section name.

F0580103 [Message] cannot specify a section name in the .PSECTION directive.

[Action by User] Do not write a section name in the .PSECTION directive.

F0580399 [Message] too many errors.

[Explanation] Processing was aborted because there were too many errors.

F0593000 [Message] ‘-cpu’ option is specified twice

[Explanation] The -cpu option is specified more than once. Make sure that the specification is 
valid.

F0593021 [Message] Memory overflow

[Explanation] Memory is insufficient. Close other applications, and generate the library again.

F0593300 [Message] Cannot open internal file

[Explanation] The internal file cannot be opened.

F0593302 [Message] Cannot input internal file

[Explanation] An attempt to read the internal file failed.

F0593303 [Message] Cannot output internal file

[Explanation] An attempt to write to the internal file failed.

F0593305 [Message] Invalid command parameter "option-name"

[Explanation] Invalid specification of "option-name"

F0593320 [Message] Command parameter buffer overflow

[Explanation] Internal buffer is insufficient.

F0593321 [Message] Illegal environment variable

[Explanation] Environment settings are specified incorrectly. Review the settings.



R20UT3123EJ0113  Rev.1.13 Page 892 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

F0593322 [Message] Lacking cpu specification

[Explanation] The -cpu option is not specified. Check the setting.

F0593324 [Message] Cannot open subcommand file "subcommand-file-name"

[Explanation] "subcommand-file-name" cannot be opened.

F0593325 [Message] Cannot close subcommand file

[Explanation] The subcommand file cannot be closed.

F0593326 [Message] Cannot input subcommand file

[Explanation] An attempt to read the subcommand file failed.

F0593327 [Message] Cannot get compiler version

[Explanation] The compiler version cannot be acquired.

F0593328 [Message] Cannot find archive file

[Explanation] The component file for the CC-RL is not found. Reinstall the CC-RL.

F0593329 [Message] Cannot find compiler program

[Explanation] The component file for the CC-RL is not found. Reinstall the CC-RL.

F0593330 [Message] The "option-name-1" option and the "option-name-2" option are inconsistent

[Explanation] The specifications of "option-name-1" and "option-name-2" are inconsistent. Check 
the specifications.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 893 of 951
Dec 01, 2023

10.5.4  Information

Table 10.5 Informations

M0523028 [Message] Rule rule number : description

[Explanation] Violation of a MISRA-C:2004 rule (indicated by the rule number and description) 
was detected.

M0523086 [Message] Rule rule number : description

[Explanation] Violation of a MISRA-C:2012 rule (indicated by the rule number and description) 
was detected.

M0560004 [Message] "file"-"symbol" deleted by optimization

[Explanation] As a result of symbol_delete optimization, the symbol named symbol in file was 
deleted.

M0560005 [Message] The offset value from the symbol location has been changed by optimization "file"-
"section"-"symbol offset"

[Explanation] As a result of the size being changed by optimization within the range of symbol   
offset, the offset value was changed.  Check that this does not cause a problem.  
To disable changing of the offset value, cancel the specification of the goptimize 
option on assembly of file.

M0560100 [Message] No inter-module optimization information in "file"

[Explanation] No inter-module optimization information was found in file. Inter-module optimiza-
tion is not performed on file. To perform inter-module optimization, specify the gop-
timize option on compiling and assembly. 

M0560101 [Message] No stack information in "file"

[Explanation] No stack information was found in file. file may be an assembler output file. The 
contents of the file will not be in the stack information file output by the optimizing 
linker.

M0560400 [Message] Unused symbol "file"-"symbol"

[Explanation] The symbol named symbol in file is not used.

M0560500 [Message] Generated CRC code at "address"

[Explanation] CRC code was generated at address.

M0560700 [Message] Section address overflow out of range : "section"

[Explanation] The address of "section" is beyond the allowable address range.



R20UT3123EJ0113  Rev.1.13 Page 894 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

10.5.5  Warnings

Table 10.6 Warnings

W0511105 [Message] "path" specified by the "character string" option is a file. Specify a folder.

W0511106 [Message] The folder "folder" specified by the "character string" option is not found.

W0511123 [Message] The "character string2" option is ignored when the "character string1" option is 
specified at the same time.

W0511146 [Message] "symbol name" specified in the "character string" option is not allowed for a prepro-
cessor macro.

W0511147 [Message] The "character string" option is specified more than once. The latter is valid.

W0511149 [Message] The "character string2" option is ignored when the "character string1" option and 
the "character string2" option are inconsistent.

W0511151 [Message] The "character string2" option is ignored when the "character string1" option is not 
specified.

W0511153 [Message] Optimization itemoptions were cleared when "-Ocharacter string" option is speci-
fied. Optimization itemoptions need to specify after "-Ocharacter string" option.

W0511164 [Message] Duplicate file name. "file-name".

W0511180 [Message] The evaluation period of version has expired.

W0511181 [Message] Error in the Internal information in the file.(information)

W0511183 [Message] License manager is not installed.

[Action by User] The license manager is not installed. Install the correct license manager.

W0511184 [Message] The "-g" option is effective because the "string" option is specified.

[Action by User] Explicitly specify the "-g" option to suppress output of this message.

W0511185 [Message] The trial period for the features of the Professional edition expires in number days. 
Please consider purchasing the product of Professional edition.

W0511186 [Message] The evaluation period for the option "character string" of "version" is valid for the 
remaining "N" days. After that, it will be implicitly changed to "-Olite". Please con-
sider purchasing the product to continue using "character string".

W0511187 [Message] The evaluation period for the option "character string" of "version" has expired. It is 
implicitly changed to "-Olite". Please consider purchasing the product to continue 
using "character string". By explicitly specifying "-Olite" for "-Onothing", this warn-
ing message disappears.

W0520009 [Message] Nested comment is not allowed.

[Action by User] Eliminate nesting.

W0520011 [Message] Unrecognized preprocessing directive.

W0520012 [Message] Parsing restarts here after previous syntax error.

W0520021 [Message] Type qualifiers are meaningless in this declaration.

[Explanation] Type qualifiers are meaningless in this declaration.  Ignored.

W0520026 [Message] Too many characters in character constant.

[Explanation] Too many characters in character constant.  Character constants cannot contain 
more than one character.

W0520027 [Message] Character value is out of range.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 895 of 951
Dec 01, 2023

W0520038 [Message] Directive is not allowed -- an #else has already appeared.

[Explanation] Since there is a preceding #else, this directive is illegal.

W0520039 [Message] Division by zero.

W0520042 [Message] Operand types are incompatible ("type1" and "type2").

W0520055 [Message] Too many arguments in macro invocation.

W0520061 [Message] Integer operation result is out of range.

W0520062 [Message] Shift count is negative.

[Explanation] Shift count is negative.  The behavior will be undefined.

W0520063 [Message] Shift count is too large.

W0520064 [Message] Declaration does not declare anything.

W0520068 [Message] Integer conversion resulted in a change of sign.

W0520069 [Message] Integer conversion resulted in truncation.

W0520070 [Message] Incomplete type is not allowed.

W0520076 [Message] Argument to macro is empty.

W0520077 [Message] This declaration has no storage class or type specifier.

W0520082 [Message] Storage class is not first.

[Explanation] Storage class is not first.  Specify the declaration of the storage class first.

W0520083 [Message] Type qualifier specified more than once.

W0520099 [Message] A declaration here must declare a parameter.

W0520108 [Message] Signed bit field of length 1.

W0520111 [Message] Statement is unreachable.

W0520117 [Message] Non-void "function name" should return a value.

W0520127 [Message] Expected a statement.

W0520128 [Message] Loop is not reachable from preceding code.

W0520138 [Message] Taking the address of a register variable is not allowed.

W0520140 [Message] Too many arguments in function call.

W0520152 [Message] Conversion of nonzero integer to pointer.

W0520159 [Message] Declaration is incompatible with previous "declaration" (declared at line number).

W0520161 [Message] Unrecognized #pragma.

W0520165 [Message] Too few arguments in function call.

W0520167 [Message] Argument of type "type1" is incompatible with parameter of type "type2".

W0520170 [Message] Pointer points outside of underlying object.

W0520171 [Message] Invalid type conversion

[Explanation] Invalid type conversion

W0520172 [Message] External/internal linkage conflict with previous declaration.

W0520173 [Message] Floating-point value does not fit in required integral type.



R20UT3123EJ0113  Rev.1.13 Page 896 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

W0520174 [Message] Expression has no effect.

[Explanation] Expression has no effect.  It is invalid.

W0520175 [Message] Subscript out of range.

W0520177 [Message] Type "symbol" was declared but never referenced.

W0520179 [Message] Right operand of "%" is zero.

W0520180 [Message] Argument is incompatible with formal parameter.

W0520186 [Message] Pointless comparison of unsigned integer with zero.

W0520187 [Message] Use of "=" where "==" may have been intended.

W0520188 [Message] Enumerated type mixed with another type.

W0520191 [Message] Type qualifier is meaningless on cast type.

W0520192 [Message] Unrecognized character escape sequence.

W0520221 [Message] Floating-point value does not fit in required floating-point type.

W0520222 [Message] Floating-point operation result is out of range.

W0520223 [Message] Function xxx declared implicitly.

W0520229 [Message] Bit field cannot contain all values of the enumerated type.

W0520231 [Message] Declaration is not visible outside of function.

W0520236 [Message] Controlling expression is constant.

W0520240 [Message] Duplicate specifier in declaration.

W0520257 [Message] Const "symbol" requires an initializer.

W0520260 [Message] Explicit type is missing ("int" assumed).

W0520301 [Message] typedef name has already been declared (with same type).

W0520375 [Message] Declaration requires a typedef name.

W0520494 [Message] Declaring a void parameter list with a typedef is nonstandard.

W0520513 [Message] A value of type "type1" cannot be assigned to an entity of type "type2".

W0520520 [Message] Initialization with "{...}" expected for aggregate object.

W0520546 [Message] Transfer of control bypasses initialization of: type "symbol" (declared at line num-
ber).

W0520549 [Message] Type "symbol" is used before its value is set.

W0520550 [Message] Type "symbol" was set but never used.

W0520606 [Message] This pragma must immediately precede a declaration.

W0520609 [Message] This kind of pragma may not be used here.

W0520618 [Message] struct or union declares no named members.

W0520676 [Message] Using out-of-scope declaration of type "symbol" (declared at line number).

W0520767 [Message] Conversion from pointer to smaller integer.

W0520815 [Message] Type qualifier on return type is meaningless.

W0520819 [Message] "..." is not allowed.

W0520867 [Message] Declaration of "size_t" does not match the expected type "type".



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 897 of 951
Dec 01, 2023

W0520870 [Message] Invalid multibyte character sequence.

W0520902 [Message] Type qualifier ignored.

W0520940 [Message] Missing return statement at end of non-void "symbol".

W0520951 [Message] Return type of function "main" must be "int".

W0520966 [Message] Universal character name specifies an invalid character.

W0520967 [Message] A universal character name cannot designate a character in the basic character 
set.

W0520968 [Message] This universal character is not allowed in an identifier.

W0520993 [Message] Subtraction of pointer types "type name1" and "type name2" is nonstandard.

W0521000 [Message] A storage class may not be specified here.

W0521037 [Message] This universal character cannot begin an identifier.

W0521039 [Message] Unrecognized STDC pragma.

W0521040 [Message] Expected "ON", "OFF", or "DEFAULT".

W0521046 [Message] Floating-point value cannot be represented exactly.

W0521051 [Message] Standard requires that NAME be given a type by a subsequent declaration ("int" 
assumed).

W0521053 [Message] Conversion from integer to smaller pointer.

W0521056 [Message] Returning pointer to local variable.

W0521057 [Message] Returning pointer to local temporary.

W0521072 [Message] A declaration cannot have a label.

W0521222 [Message] Invalid error number.

W0521223 [Message] Invalid error tag.

W0521224 [Message] Expected an error number or error tag.

W0521297 [Message] Constant is too large for long long; given unsigned long long type (nonstandard).

W0521422 [Message] Multicharacter character literal (potential portability problem).

W0521644 [Message] Definition at end of file not followed by a semicolon or a declarator.

[Explanation] The declaration at the end of the file lacked a semicolon to indicate its termination.

W0521649 [Message] White space is required between the macro name "macro name" and its replace-
ment text

[Action by User] Insert a space between the macro name and the text to be replaced.

W0523018 [Message] A member qualified with near or far is declared.

W0523037 [Message] #pragma section ignored

[Explanation] An unavailable section type is used.

W0523061 [Message] argument is incompatible with formal parameter of intrinsic function

W0523062 [Message] return value type does not match the intrinsic function



R20UT3123EJ0113  Rev.1.13 Page 898 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

W0523076 [Message] Function declarations should have prototype.

[Explanation] The function is declared in a different format from the prototype. A function declara-
tion in a format different from the prototype may degrade the efficiency when pass-
ing a near pointer as an argument.

W0523077 [Message] Called function should have prototype.

[Explanation] This function call uses a function type without a prototype. When the defining func-
tion has a prototype, a mismatch may occur in passing of arguments.
The call being made via the function pointer means that there is no prototype for 
the function pointer type.

W0523079 [Message] The function cannot be used in CC-RL. Ignored.

[Explanation] Not supported by the transition support function.

W0523080 [Message] Required to follow the CC-RL format.

W0523081 [Message] Converted to a function of the CC-RL

W0523082 [Message] Pointer to the object of even alignment holds the odd address

W0523083 [Message] Combination of odd address and the type is incorrect

W0523084 [Message] "iodefine.h" should be included

W0523085 [Message] Address of packed member.

W0530809 [Message] const qualifier for variable "variable-name" differs between files.

W0530811 [Message] Type of symbol "symbol-name" differs between files.

W0533003 [Message] Shift count(value) is out of range.

W0533004 [Message] Result of comparison is always character string.

W0533005 [Message] Division by zero.

W0550001 [Message] Too many arguments.

[Action by User] Check the actual arguments.

W0550005 [Message] Illegal "option" option's symbol "symbol", ignored.

[Action by User] Check the option specification symbols.

W0550010 [Message] Illegal displacement.

[Explanation] Illegal displacement in inst instruction.
Only the effective lower-order digits will be recognized as being specified, and the 
assembly will continue.

[Action by User] Check the displacement value.

W0550011 [Message] Illegal operand (range error in immediate).

[Explanation] Illegal operand (range error in immediate).
Only the effective lower-order digits will be recognized as being specified, and the 
assembly will continue.

[Action by User] Check the immediate  value.

W0550012 [Message] Operand overflow.

[Explanation] Operand overflow.
Only the effective lower-order digits will be recognized as being specified, and the 
assembly will continue.

[Action by User] Check the operand value.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 899 of 951
Dec 01, 2023

W0550013 [Message] register used as register.

[Action by User] Check the register specification.

W0550019 [Message] Illegal operand (immediate must be multiple of string).

[Explanation] Illegal operand (immediate must be multiple of string).
The number is rounded down, and assembly continues.

[Action by User] Check the operand value.

W0561000 [Message] Option "option" ignored

[Explanation] The option named option is invalid, and is ignored.

W0561001 [Message] Option "option1" is ineffective without option "option2"

[Explanation] option1 needs specifying option2. option1 is ignored.

W0561002 [Message] Option "option1" cannot be combined with option "option2"

[Explanation] option1 and option2 cannot be specified simultaneously. option1 is ignored.

W0561003 [Message] Divided output file cannot be combined with option "option"

[Explanation] option and the option to divide the output file cannot be specified simultaneously. 
option is ignored. The first input file name is used as the output file name.

W0561004 [Message] Fatal level message cannot be changed to other level : "option"

[Explanation] The level of an fatal error message cannot be changed. The specification of option 
is ignored. Only errors at the information/warning/error level can be changed with 
the change_message option.

W0561005 [Message] Subcommand file terminated with end option instead of exit option

[Explanation] There is no processing specification following the end option. Processing is done 
with the exit option assumed.

W0561006 [Message] Options following exit option ignored

[Explanation] All options following the exit option is ignored.

W0561007 [Message] Duplicate option : "option"

[Explanation] Duplicate specifications of option were found. Only the last specification is effec-
tive.

W0561008 [Message] Option "option" is effective only in cpu type "CPU type"

[Explanation] option is effective only in CPU type. option is ignored.

W0561010 [Message] Duplicate file specified in option "option" : "file name"

[Explanation] option was used to specify the same file twice. The second specification is ignored.

W0561011 [Message] Duplicate module specified in option "option" : "module"

[Explanation] option was used to specify the same module twice. The second specification is 
ignored.

W0561012 [Message] Duplicate symbol/section specified in option "option" : "name"

[Explanation] option was used to specify the same symbol name or section name twice. The sec-
ond specification is ignored.

W0561013 [Message] Duplicate number specified in option "option" : "number"

[Explanation] option was used to specify the same error number. Only the last specification is 
effective.



R20UT3123EJ0113  Rev.1.13 Page 900 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

W0561014 [Message] License manager is not installed

[Explanation] The license manager is not installed. Install the correct license manager.

W0561015 [Message] Invalid parameter specified in option "option" : "parameter"

[Explanation] An invalid parameter was specified by "option". The "parameter" specification will 
be ignored.

W0561016 [Message] The evaluation version of version is valid for the remaining number days. After that, 
link size limit (64 Kbyte) will be applied. Please consider purchasing the product.

W0561017 [Message] Paid license of "version" is not found, and the evaluation period has expired. 
Please consider purchasing the product.

W0561018 [Message] The evaluation period of "version" is valid for the remaining "N" days. After that, 
functional limit will be applied. Please consider purchasing the product.

W0561100 [Message] Cannot find "name" specified in option "option"

[Explanation] The symbol name or section name specified in option cannot be found. name 
specification is ignored.

 W0561101 [Message] "name" in option "option" conflicts between symbol and section

[Explanation] name specified by option exists as both a section name and as a symbol name.
Rename is performed for the symbol name only in this case.

W0561102 [Message] Symbol "symbol" redefined in option "option"

[Explanation] The symbol specified by option has already been defined. Processing is continued 
without any change.

W0561103 [Message] Invalid address value specified in option "option" : "address"

[Explanation] address specified by option is invalid. address specification is ignored.

W0561104 [Message] Invalid section specified in option "option" : "section"

[Explanation] An invalid section is specified in option.

[Action by User] Confirm the following:

(1) The "-output" option does not accept specification of a section that has no 
initial value.

(2) The "-jump_entries_for_pic" option accepts specification of only a code 
section and no other sections.

W0561120 [Message] Section address is not assigned to "section"

[Explanation] section has no addresses specified for it. section will be located at the rearmost 
address.

[Action by User] Specify the address of the section using the rlink option "-start".

W0561121 [Message] Address cannot be assigned to absolute section "section" in start option

[Explanation] section is an absolute address section. An address assigned to an absolute 
address section is ignored.

W0561122 [Message] Section address in start option is incompatible with alignment : "section"

[Explanation] The address of section specified by the start option conflicts with memory bound-
ary alignment requirements. The section address is modified to conform to bound-
ary alignment.

W0561123 [Message] Section "section" is placed on the "area"

[Explanation] When the -selfw option is specified, the section is allocated to area.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 901 of 951
Dec 01, 2023

W0561124 [Message] Section "section" is placed on the "area"

[Explanation] When the -ocdtrw option is specified, the section is allocated to area.

W0561125 [Message] Section "section" is placed on the "area"

[Explanation] When the -ocdhpiw option is specified, the section is allocated to area.

W0561126 [Message] CRC result is placed on the "area"

[Explanation] When the -selfw option is specified, the CRC result is placed in area.

W0561127 [Message] CRC result is placed on the "area"

[Explanation] When the -ocdtrw option is specified, the CRC result is placed in area.

W0561128 [Message] CRC result is placed on the "area"

[Explanation] When the -ocdhpiw option is specified, the CRC result is placed in area.

W0561130 [Message] Section attribute mismatch in rom option : "section1","section2"

[Explanation] The attributes and boundary alignment of section1 and section2 specified by the 
rom option are different. The larger value is effective as the boundary alignment of 
section2.

W0561140 [Message] Load address overflowed out of record-type in option "option"

[Explanation] A record type smaller than the address value was specified. The range exceeding 
the specified record type has been output as different record type.

W0561141 [Message] Cannot fill unused area from "address" with the specified value

[Explanation] Specified data cannot be output to addresses higher than address because the 
unused area size is not a multiple of the value specified by the space option.

W0561142 [Message] Cannot find symbol which is a pair of "symbol"

[Explanation] The symbol which is a pair of symbol indicating the range of the empty area could 
not be found.

W0561143 [Message] Address start address-end address cannot be placed on flash memory area.

[Explanation] The range of "start address-end address" is not in the flash memory area, and 
there is data that cannot be written by a flash programmer.

W0561150 [Message] Sections in "option" option have no symbol

[Explanation] The section specified in option does not have an externally defined symbol.

W0561160 [Message] Undefined external symbol "symbol"

[Explanation] An undefined external symbol symbol was referenced.

W0561181 [Message] Fail to write "type of output code"

[Explanation] Failed to write type of output code to the output file.
The output file may not contain the address to which type of output code should be 
output.
Type of output code:
When failed to write CRC code :  "CRC Code"

W0561182 [Message] Cannot generate vector table section "section"

[Explanation] The input file contains vector table section. The optimizing linker does not create 
section automatically.



R20UT3123EJ0113  Rev.1.13 Page 902 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

W0561183 [Message] [V1.06 or earlier]
Interrupt number "vector table address" of "section" is defined in input file 
[V1.07 or later]
Interrupt table address "vector table address" of "section" is defined in input file

[Explanation] The vector number specified by the VECTN option is defined in the input file.
Processing is continued with priority given on the definition in the input file.

W0561184 [Message] [V1.06 or earlier]
Interrupt number "vector table address" of "section" is defined
[V1.07 or later]
Interrupt table address "vector table address" of "section" is defined

[Explanation] The vector number in the -debug_monitor option has already been defined in the 
input file or -vectn option. 
Continue processing with priority given to the specification of the -debug_monitor 
option.

W0561191 [Message] Area of "FIX" is within the range of the area specified by "cpu=<attribute>" 
:"<start>-<end>"

[Explanation] In the cpu option, the address range of <start>-<end> specified for FIX overlapped 
with that specified for another memory type. The setting for FIX is valid.

W0561193 [Message] Section "section name" specified in option "option" is ignored 

[Explanation] option specified for the section newly created due to -cpu=stride is invalid.

[Action by User] Do not specify option for the newly created section.

W0561195 [Message] Read only data memory domains differ in "file"

[Explanation] "file" with a different memory model is input.

[Action by User] Check if the compiler options are correct.

W0561200 [Message] Backed up file "file1" into "file2"

[Explanation] Input file file1 was overwritten. A backup copy of the data in the previous version of 
file1 was saved in file2.

W0561300 [Message] Option "option" is ineffective without debug information

[Explanation] There is no debugging information in the input files. The "option" has been ignored.

[Action by User] Check whether the relevant option was specified at compilation or assembly.

W0561301 [Message] No inter-module optimization information in input files

[Explanation] No inter-module optimization information is present in the input files. The optimize 
option has been ignored.

[Action by User] Check whether the goptimize option was specified at compilation or assembly.

W0561302 [Message] No stack information in input files

[Explanation] No stack information is present in the input files. The stack option is ignored. If all 
input files are assembler output files, the stack option is ignored.

W0561305 [Message] Entry address in "file" conflicts : "address" 

[Explanation] Multiple files with different entry point addresses are input.

W0561310 [Message] "section" in "file" is not supported in this tool

[Explanation] An unsupported section was present in file. section has been ignored.



CC-RL 10.  MESSAGE

R20UT3123EJ0113  Rev.1.13 Page 903 of 951
Dec 01, 2023

W0561311 [Message] Invalid debug information format in "file"

[Explanation] Debugging information in file is not dwarf2. The debugging information has been 
deleted.

W0561320 [Message] Duplicate symbol "symbol" in "file"

[Explanation] The symbol named symbol is duplicated. The symbol in the first file input is given 
priority.

W0561322 [Message] Section alignment mismatch : "section"

[Explanation] Sections with the same name but different boundary alignments were input. Only 
the largest boundary alignment specification is effective.

W0561323 [Message] Section attribute mismatch : "section"

[Explanation] Sections with the same name but different attributes were input. If they are an 
absolute section and relative section, the section is treated as an absolute section. 
If the read/write attributes mismatch, both are allowed.

W0561324 [Message] Symbol size mismatch : "symbol" in "file"

[Explanation] Common symbols or defined symbols with different sizes were input. A defined 
symbol is given priority. In the case of two common symbols, the symbol in the first 
file input is given priority.

W0561325 [Message] Symbol attribute mismatch : "symbol" : "file"

[Explanation] The attribute of symbol in file does not match the attribute of the same-name sym-
bol in other files.

[Action by User] Check the symbol.

W0561326 [Message] Reserved symbol "symbol"is defined in "file"

[Explanation]  Reserved symbol name symbol is defined in file.

W0561328 [Message] Section "section" border mismatch in "file"

[Explanation] The attribute of the allocation border of section of file differs from the others.

W0561329 [Message] Devided option "start" at beginning of Section "section"

[Explanation] Since it is possible that the 64-K or (64K-1) byte boundary may be exceeded by 
optimization, the -start option specification is split at the start of section.

W0561331 [Message] Section alignment is not adjusted : "section"

[Explanation] Sections with the same name but different boundary alignment values were input. 
Only the largest boundary alignment specification is effective. The alignment condi-
tion at input may not be satisfied.

W0561402 [Message] Parentheses specified in option "start" with optimization

[Explanation] Optimization is not available when parentheses "( )" are specified in the start 
option. Optimization has been disabled.

W0561410 [Message] Cannot optimize "file"-"section" due to multi label relocation operation

[Explanation] A section having multiple label relocation operations cannot be optimized. Section 
section in file has not been optimized.

W0561520 [Message] "user option byte/control value for the on-chip debug" in "section" created by 
device file

W0561521 [Message] Cannot generate section "section"

[Action by User] Check the option during compiling and the section specification of a source file.



R20UT3123EJ0113  Rev.1.13 Page 904 of 951
Dec 01, 2023

CC-RL 10.  MESSAGE

W0561531 [Message] Option "option" ignored because Device file with "tag" is required

[Action by User] Check the device file.

W0580304 [Message] "%s" option is specified more than once. The latter is valid.

[Explanation] The same option was specified more than once.

[Action by User] The last specification will be valid.

W0580306 [Message] the folder "%s" specified by the "-I" option is not found.

[Explanation] The folder specified for the -I option was not found.

[Action by User] Check the specification of the -I option.

W0591300 [Message] Command parameter specified twice "option-name"

[Explanation] The option that can be specified only once is specified more than once. Check the 
option you want to enable.

W0591301 [Message] "option-name" option ignored

[Explanation] The specification of "option-name" is ignored.



CC-RL 11.  CAUTIONS

R20UT3123EJ0113  Rev.1.13 Page 905 of 951
Dec 01, 2023

11.  CAUTIONS

This chapter explains the points to be noted when using the CC-RL.

11.1  Cautions Regarding Compiler

This section explains the cautions regarding the compiler.

11.1.1  Indirect reference of pointer

When an odd value is set to the pointer which points to a type with a 2-byte alignment condition, indirect reference to 
that pointer results in invalid operation.

This is because, at indirect reference of a pointer, the compiler should use an instruction suitable for the alignment con-
dition of the type that pointer points to.

Example

11.1.2  Register access via pointer

When a register used in the generated code of the compiler is accessed via a pointer, invalid operation may occur.
This is because the compiler generates codes on the assumption that a register in use will not be accessed via a 

pointer.
When the following registers are accessed via a pointer, program operation cannot be guaranteed.

- General registers belonging to a register bank that may be used

- SP

- PSW

- CS

- ES

- PMC

Example

11.1.3  Function calling

When a function in a file is called, if the definition of that function is not in the file or the function definition is included but 
the function is called before that function definition, it is recommended to declare the prototype of the function before the 
function is called.

This is because if the type of the parameters is unknown at the function call, there is a possibility that the compiler will 
call the function as a different type from the parameter type in the function definitionNote, and the execution result of the 
program will be invalid.

Note An arithmetic type smaller than the int type or unsigned int type is treated as the int type, or the unsigned 
int type when it cannot be represented with the int type, and the float type is treated as the double type.
For others, see "(7)  Default argument promotions".

Example 1. Program with an incorrect execution result

int __near * volatile x;
int func(void){
        x = (int __near *)0xfaa1;
        return *x;                  //Since the compiler outputs an instruction 
                                    //suitable for the 2-byte alignment condition to 
                                    //*x, *x references the data pointed to by 0xfaa0 
                                    //when the code is executed
}

*(int __near *)0xfef8 = 7;      //Since 0xffef8 is the address of register AX in bank 
                                //0, operation of a program including this 
                                //description and also using bank 0 is not guaranteed



R20UT3123EJ0113  Rev.1.13 Page 906 of 951
Dec 01, 2023

CC-RL 11.  CAUTIONS

Example 2. Program with a correct execution result

If compiler option "-refs_without_declaration" is specified, whether there is a function declaration can be checked.
If a function without a prototype is called, an error will occur.

11.1.4  Data flash area

The CC-RL does not output code to the data flash area.
Use assembler code for access to the data flash area.
In case of writing codes in C language, use 8-bit data to access the area.

11.1.5  Function definitions in K&R format (formal parameters of _Bool type)

When the function definition that includes a _Bool-type parameter is written in the K&R format, an assembly code that 
assigns the argument value to the _Bool-type parameter without change is generated.  Therefore, if the _Bool-type 
argument has a value other than 0 or 1, a value which is neither 0 nor 1 will be set to the parameter.

Example

AAA.c:
        void func(char a, char b);  //The two paramters receive their values from 
                                    //registers A and X
BBB.c:
        extern void func();         //Not a prototype declaration because the 
                                    //parameter types are not described
        void main (void)
        {
                char    x=1, y=1;
                func(x, y);         //After x and y are each extended to the int type 
                                    //and allocated to registers AX and BC, the 
        }                           //function call is made

AAA.c:
        void func(char a, char b);          //The two paramters receive their values 
                                            //from registers A and X
BBB.c:
        extern void func(char a, char b);   //Prototype declaration
        void main (void)
        {
                char    x=1, y=1;
                func(x, y);                 //After the two parameters are allocated 
        }                                   //to registers A and X, the function call 
                                            //is made

void sub();
signed char c;
void func(void) {
        sub(2);
}

void sub(b)                     // 2 is set to parameter b.
_Bool b;
{
        if (b == 0 || b == 1) {
                c = b;
        } else {
                c = -1;         // -1 is set to c.
        }
}



CC-RL 11.  CAUTIONS

R20UT3123EJ0113  Rev.1.13 Page 907 of 951
Dec 01, 2023

(Workaround)
Write the function definition including a _Bool-type parameter and the function declaration in the function prototype 

format.

11.1.6  MISRA2004 check (rule number 10.1)

Unnecessary message may be output for statements with enumerated-type variables, return statements with 
enumerated-type return values, or statements with enumerators in a file satisfying the following conditions (1), (2), and (3).

(1) Option -signed_char is not specified and enumerated-type definitions whose range of enumerator value is within a 
range of 0 to 255 are included,
  or
option -signed_char is specified and enumerated-type definitions whose range of enumerator value is within a 
range of -128 to 255 are included.

(2) Statements with enumerated-type variables, return statements with enumerated-type return values, or statements 
with enumerators are included.

(3) MISRA check option against rule 10.1 is specified.

Example

(Workaround)
Cast enumerators to enumerated type.

11.1.7  Extended language specifications which needs the device file

A device file must be specified when the following functions are used.

void sub(_Bool);                // Function prototype
signed char c;
void func(void) {
        sub(2);
}

void sub(_Bool b)               // Function prototype
{
        if (b == 0 || b == 1) {
                c = b;
        } else {
                c = -1;
        }
}

typedef enum E { E1 = 0, E2, E3 } etype;
etype func( void );
etype evar;
etype func(void)
{
        evar = E1;                      // Message against rule 10.1 is output.
        return E1;                      // Message against rule 10.1 is output.
}

typedef enum E { E1 = 0, E2, E3 } etype;
etype func( void );
etype evar;
etype func(void)
{
        evar = (etype)E1;               // Cast enumerator E1 to etype
        return (etype)E1;               // Cast enumerator E1 to etype
}



R20UT3123EJ0113  Rev.1.13 Page 908 of 951
Dec 01, 2023

CC-RL 11.  CAUTIONS

- #pragma callt or __callt

- #pragma saddr or __saddr

- const variable with the __near attribute
If a device file is not specified, there is a possibility that an incorrect code will be generated.

11.1.8  Controlling the Output of Bit Manipulation Instructions [V1.04 or later]

To output bit manipulation instructions without using intrinsic functions, satisfy all conditions shown below.

(a) A constant value is assigned.

(b) The value is assigned to a single-bit bit field of the char/unsigned char/signed char/_Bool type in the near area.

(c) The bit field where the value is assigned is qualified with volatile.

For a variable qualified with volatile, the compiler does not output a bit manipulation instruction when a value is assigned 
to the variable or when the variable is read unless the other conditions are satisfied. For a variable that is not qualified with 
volatile, the compiler outputs a bit manipulation instruction according to the specified optimization settings.

Example

11.2  Cautions Regarding Library and Startup

This section explains the cautions regarding the library and startup.

11.2.1  Setting of Processor Mode Control Register (PMC)

PMC should be set only once at initial setting. Rewriting PMC other than at initial setting is prohibited.

11.2.2  Label whose value is determined by the linker

When the following labels used at startup are defined, operation becomes erroneous. Since the optimizing linker will 
determine these labels, definitions are unnecessary.

__STACK_ADDR_START, __STACK_ADDR_END, __RAM_ADDR_START, __RAM_ADDR_END

11.2.3  Options necessary at assembling the startup file

When startup is directly assembled without intervening the compiler driver, specify the following options.
-define=__RENESAS_VERSION__=0x01000000    ; When CC-RL V1.00 is used
-define=__RENESAS_VERSION__=0x01010000    ; When CC-RL V1.01 is used

11.2.4  Usage Restriction of Standard Library Function Name

Among the functions included in the standard library, the following function names must not be described as user vari-
able names or user function names in the program.

This is because these are normally included in the runtime library which needs to be linked.

- memcpy, memset

volatile struct {
  unsigned char bit0:1;
  unsigned int  bit1:1;
} data;

void func(void) {
  data.bit0 = 1;  /* A bit manipulation instruction is output. */
  data.bit1 = 1;  /* No bit manipulation instruction is output. */
}



CC-RL 11.  CAUTIONS

R20UT3123EJ0113  Rev.1.13 Page 909 of 951
Dec 01, 2023

11.2.5  Error in standard library functions

- If the number of digits of floating-point numbers is high in printf, sprintf, vprintf, vsprintf, scanf, sscanf, atof, atoff, 
strtod, or strtof, the error is enlarged.

- If the absolute value of an exponential is high in pow, the error is enlarged.

11.2.6  Definition of comparison functions bsearch and qsort in K&R format

When the definition of comparison function bsearch or qsort is written in the K&R format, the caller side of comparison 
function bsearch or qsort passes the argument as a near pointer but the defining side of the comparison function gener-
ates an assembler code in which the formal parameter is received as a far pointer. Therefore, the program will not operate 
correctly.

Example

(Workaround)
Write the definition and declaration of comparison function bsearch or qsort in the function prototype format.

11.2.7  Initialization of Stack Area at Startup [V1.07 or earlier]

The processing for initializing the stack area is commented out.To perform parity error detection by reading uninitialized 
RAM, enable the processing for initializing the stack area.

#include <stdlib.h>
int table[5] = {0, 1, 2, 3, 4}, key = 3, *ret;
int compare();
void func(void) {
        ret = bsearch(&key, table, 5, sizeof(int), compare);
}
int compare(i, j)
int *i, *j;
{
        if (*i > *j) {
                return 1;
        }
        else if (*i < *j) {
                return -1;
        }
        return 0;
}

#include <stdlib.h>
int table[5] = {0, 1, 2, 3, 4}, key = 3, *ret;
int compare(int *, int *);      // Function prototype

void func(void) {
        ret = bsearch(&key, table, 5, sizeof(int), compare);
}

int compare(int *i, int *j)     // Function prototype
{
        if (*i > *j) {
                return 1;
        }
        else if (*i < *j) {
                return -1;
        }
        return 0;
}



R20UT3123EJ0113  Rev.1.13 Page 910 of 951
Dec 01, 2023

CC-RL 11.  CAUTIONS

11.2.8  Specifying standard library functions when C99 standard is specified by an individ-
ual option

When calling standard library functions complying with the C99 standard from a source program based on the C99 stan-
dard with the C99 standard specified individually by the -lang option, use a link option to specify usage of the standard 
library functions for the C99 standard.

11.3  Cautions Regarding Assembler

This section explains the cautions regarding the assembler.

11.3.1  Assembler driver

When multiple input files are specified for the assembler driver (asrl), execution may be terminated abnormally.

11.3.2  .DB8 directive

Forward reference in a .DB8 directive is prohibited, no error occurs even when a .DB8 directive is forward referenced. 
Define the symbol before it is a .DB8 directive in order to prevent forward reference.

Example

11.3.3  Bit symbols

- When a symbol that was defined with a bit position specifier in an .EQU directive is forward referenced, no error 
occurs but the result is not correct. Define the bit symbol before it is referenced in order to prevent forward reference.

Example

- Operation between bit symbols does not cause an error but the result is not correct.  Do not write code for operation 
between bit symbols.

Example

11.3.4  .ALIGN directive

Even if an .ALIGN directive is written in an absolute section (section whose start address is specified), ALIGN becomes 
invalid.

Example

        .DB8    SYM1            ; Forward reference is prohibited
SYM1    .EQU    0x12345         ; Define the symbol after it is a .DB8 directive

SYM2    .EQU    0x12345         ; Define the symbol before it is a .DB8 directive
        .DB8    SYM2            ; Backward reference can be described.

OFFSET   CODE                  NO  SOURCE STATEMENT
00000000                        1
00000000 22220007               2        .DB4    BSYM
00000004                        3  BSYM  .EQU    0x2222.7

OFFSET   CODE                  NO  SOURCE STATEMENT
00000000                        1
00000000                        2
00000000                        3  BSYM1 .EQU    0x2222.5
00000000                        4  BSYM2 .EQU    0x3333.7
00000000                        5
00000000 11110002               6        .DB4    BSYM2 - BSYM1



CC-RL 11.  CAUTIONS

R20UT3123EJ0113  Rev.1.13 Page 911 of 951
Dec 01, 2023

11.3.5  Separation operators

[V1.01 only]
When a separation operator is applied to a relocatable term, though only the parameters enclosed in parentheses ( ) 

should be subject to operation under normal conditions, the value (including a symbol) following the parentheses ( ) will 
also be included in the operation target.

The relevant separation operators are as follows:

- HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW, SMRLW

Example

[V1.02 or later]
When a nested separation operator is applied to a relocatable term and addition and subtraction between the separation 

operator and constant are written, though only the parameters enclosed in parentheses ( ) should be subject to operation 
under normal conditions, operation will be performed with the constant in parentheses ( ) written after the parentheses ( ). 
The relevant separation operators are as follows:

- HIGH,LOW,HIGHW,LOWW,MIRHW,MIRLW,SMRLW

Example

11.3.6  Predefined macro enabled in an assembly source file

When invoking the assembler via the compile driver, predefined macro __RENESAS_VERSION__ is enabled in an 
assembly source file.

The macro is enabled in an assembly source file even when "-U __RENESAS_VERSION__" is specified.

 To disable the macro in an assembly source file, perform either of the followings.

- Specify "-asmopt=-undefine=__RENESAS_VERSION__".

- Invoke the assembler directly.

11.3.7  An option depending on the order of specification of options

Option "-no_warning" has no effect if the order of specification of options is inappropriate.

Example "-no_warning" has no effect in the following case.
-define=xxxx -undefine=xxxx -no_warning=50649

To suppress a warning message, perform either of the followings.

- When the assember is invoked via the compile driver,

- specify compile option "-no_warning_num=50649", or

- specify "-asmopt=-no_warning=50649" before other options.

- When the assembler is invoked directly,

- specify "-no_warning" before the other options.

Example "-no_warning" has an effect in the following case.
-no_warning=50649 -define=xxxx -undefine=xxxx

        .CSEG TEXT
        .ORG    0x1
        .ALIGN 2        ; Invalid
_LABEL:

_L:
        mov A, !HIGH(_L) + 0x44         ; Interpreted as "!HIGH(_L+0x44)"

_L:
        mov A, !HIGH(LOWW(_L+0x44)+0x55)  ; Interpreted as "!HIGH(LOWW(_L+0x44)+0x55"



R20UT3123EJ0113  Rev.1.13 Page 912 of 951
Dec 01, 2023

CC-RL 11.  CAUTIONS

11.4  Cautions Regarding Linker

This section explains the cautions regarding the linker.

11.4.1  -strip option

Multiple input files cannot be specified with the strip option. Specify one file at a time.

11.4.2  -memory option

When all of the following conditions are satisfied, execution may be terminated abnormally. Do not specify the -mem-
ory=low option.

- The -memory=low option has been specified at linkage.

- The -nooptimize option has not been specified at linkage.

(Workaround)
Do not specify the -memory=low option.

11.4.3  Overwrite of variable/function information file

After the variable/function information file that was output by the -vfinfo option specification is edited, specifying the 
same file name in the -vfinfo option at the second linkage will overwrite the variable/function information file.

Save the edited variable/function information file under another name, do not specify the -vfinfo option after the file has 
been edited, or change the output file name of the -vfinfo option.

11.4.4  Allocation of sections

When the section automatic allocation option (-auto_section_layout) is not specified, a section is not automatically allo-
cated to the area (address range) corresponding to the relocation attribute specified by the .SECTION, .CSEG, or .DSEG 
directive.  Allocation that avoids exceeding the (64K-1) byte boundary is also not carried out.
Specify a suitable address for allocating each section using the -start option of the linker.

11.4.5  Variable/function information file that may cause a compile error

When -vfinfo option is specified at link time for a program containing global functions with __inline keyword, and then the 
program is compiled with the generated variable/function information file, a compile error may occur.

That happens when variable/function information file contains "#prgma __callt" directive for the above function.

To avoid an error, perform either of the followings.

- Edit the variable/function information file and comment out or remove the #pragma directive for the function.

- Remove __inline keyword.

- Do not specify -vfinfo option.

11.4.6  Error output regarding an address not in the saddr access range

When the -dev option is specified, an error will be output for an address outside of the saddr access range. However, an 
error will not be output when the -dev option is not specified.

Example >ccrl -cpu=S3 file.asm -lnkopt=-start=.text/100,.bss/f9f34

        mov     a,!sym
        mov     a,sym   ; When the -dev option is specified, an error will be output.

        .section .bss, bss
sym:    .DS     (1)



CC-RL 11.  CAUTIONS

R20UT3123EJ0113  Rev.1.13 Page 913 of 951
Dec 01, 2023

11.4.7  Version of Compiler Package

When using an optimizing linker, use one provided with the same compiler package used to generate all object files, 
relocatable files, and library files that are to be input. An optimizing linker provided with a newer compiler package can also 
be used.

When using standard library functions and runtime library functions, use those provided with the same compiler pack-
age as the optimizing linker in use.



R20UT3123EJ0113  Rev.1.13 Page 914 of 951
Dec 01, 2023

CC-RL A.  QUICK GUIDE

A.  QUICK GUIDE

This chapter explains the programming method and how to use the extended language specifications for more efficient 
use of the CC-RL.

A.1  Variables (C Language)

This section explains variables (C language).

A.1.1  Allocating to sections accessible with short instructions

The CC-RL provides an attribute among far, near, or saddr to variables or constants, and allocates them to areas with 
the same names as their attributes; far area, near area, or saddr area.

Since the size of instructions to access variables or constants in these area becomes smaller in this order, the code size 
can be reduced by specifying the near attribute (or saddr attribute) for variables or constants and then allocating them to 
the near area (or saddr area).

As the size of the area also becomes smaller in this order, it is necessary to prioritize which area to allocate each vari-
able for a large total size of variables or constants.

The specification method of each attribute, each area, and its allocation method are described in detail in the following.

(1) Methods for specifying the attribute for variables or constants
Options or keywords are used to specify the attribute for variables or constants.
The following four specification methods are available and the priority gets higher in this order.
For details, see each option or keyword and "2.6.6  Relationship with near and far".

(a) -cpu option
The default attribute for variables or constants is always the near attribute.

(b) -memory_model option
The default attribute for variables or constants is always the near attribute.

(c)  -far_rom option
The ROM data has far attribute by default.

(d) __near/__far/_saddr keyword
A variable has the attribute specified by each keyword.

Example 1. When the -far_rom option is not specified

Example 2. When the -far_rom option is specified

long                x;      //near attribute
long __near         y;      //near attribute
long __far          z;      //far attribute
const int           c;      //near attribute
const int __near    d;      //near attribute
const int __far     e;      //far attribute
char __saddr        s;      //saddr attribute

long                x;      //near attribute
long __near         y;      //near attribute
long __far          z;      //far attribute
const int           c;      //far attribute
const int __near    d;      //near attribute
const int __far     e;      //far attribute
char __saddr        s;      //saddr attribute



CC-RL A.  QUICK GUIDE

R20UT3123EJ0113  Rev.1.13 Page 915 of 951
Dec 01, 2023

(2) Priority for allocating variables or constants to each area
In general, if variables with higher static reference counts are allocated to an area accessible with a small size of 
instructions, the code size of the entire program gets smaller.
However, an area accessible with a small size of instructions needs to be used efficiently because the size of the 
area is also small.
Therefore, it is necessary to maximize the reduction efficiency for one byte of the area, namely, it is preferable to 
allocate variables whose value obtained by dividing the static reference count of the variable with the variable size 
is larger to an area accessible with a smaller size of instructions.
Accordingly, the priority is conceived as follows

Here, the static reference count of the variable indicates the reference count in the object code, and this will differ 
from the reference count in the C source program.
In the RL78, instructions for variable reference have only a 1-byte or 2-byte access width.  Thus, for example, two 
instructions are needed to reference a 4-byte variable.
Therefore, one reference to a 4-byte variable in a C source program corresponds to two references in the object 
code.
The reference count in the object code can be shown by specifying -show=reference option to linker.

(3) Area
The areas placing variables or constants is divided into three, based on the address range.
The far area is the entire area including the saddr area or near area.

(a) saddr area
The area from addresses 0xFFE20 to 0xFFF1F is called the saddr area.
The saddr-attribute variables located in this address range are accessed by instructions with the smallest size.
The saddr area includes some of the special function registers (SFRs) and all general-purpose registers.
Variables cannot be allocated to the SFRs or general-purpose registers.

(b) near area
The area from addresses 0xF0000 to 0xFFE1F is called the near area.
This area includes internal RAM, mirror region, and data flash memory.
The near-attribute variables located in this address range are accessed by instructions with the second smallest 
size after the saddr area.
The near area also includes the extended special function registers (2nd SFRs).
Variables cannot be allocated to the 2nd SFRs.

(c) far area
The entire area including the saddr area or near area is called the far area.
This area includes RAM other than internal RAM and the constant area in code flash memory other than the mir-
ror region.
The far-attribute variables located in this address range are accessed by instructions with the largest size.

(4) Method for allocating variables or constants to each area
Variables or constants are allocated to each area by using link options to specify the allocation address of the sec-
tion including each variable or constant.

Example 1. The default sections for the allocation of saddr variables are .sbss and .sdata.
.sbss is the section for the allocation of saddr-attribute variables without initial values and .sdata is 
the section for the allocation of saddr-attribute variables with initial values.
When you create a ROM image, allocate the .sdata section to a desired address and give an appro-
priate name, .sdataR in the example below, to the destination section for transfer in RAM in the 
case of the transfer of data from the .sdata section to RAM.

Priority = static reference count of the variable / size of the variable

-rom=.sdata=.sdataR
-start=.sdata/5000
-start=.sbss,.sdataR/ffe20



R20UT3123EJ0113  Rev.1.13 Page 916 of 951
Dec 01, 2023

CC-RL A.  QUICK GUIDE

Example 2. The default sections for allocation to the near area are .bss, .data and .const.
.bss is the section for the allocation of near-attribute variables without initial values and .data is the 
section for the allocation of near-attribute variables with initial values.
When you create a ROM image, allocate the .data section to a desired address and give an appro-
priate name, .dataR in the example below, for the destination section for transfer in RAM in the 
case of the transfer of data from the .data section to RAM.

Example 3. The default sections allocated to the far area are .bssf, .dataf and .constf.
.bssf or .dataf is normally not used when only internal RAM is to be used as RAM.
.constf is a section for allocating constants with far attribute.
.constf is allocated to code flash memory.

A.1.2  Defining variables for use during both ordinary and interrupt processing

Specify volatile qualifier to the variables that are to be used during both ordinary and interrupt processing.
When a variable is defined with the volatile qualifier, the variable is not optimized.  The reference to the volatile variables 

is compiled to the code which always read the value from memory, and the assignment to the volatile variables is compiled 
to the code which always write the value to memory.  The access order, access width, and access count of volatile vari-
ables are not changed.  A variable for which volatile is not specified may be assigned to a register as a result of optimiza-
tion and the code that loads the variable from the memory may be deleted.  When the same value is assigned twice to a 
variable for which volatile is not specified, the latter assignment instruction may be deleted as a result of optimization 
because it is interpreted as a redundant instruction.

Example 1. Example of source and output code image when volatile is not specified
If variables a and b are not specified with the volatile quantifier, they may be assigned to registers, and 
may be optimized.

-rom=.data=.dataR
-start=.const/2000
-start=.data/4000
-start=.bss,.dataR/fe000

-start=.constf/6000

int a;
int b;
void func(void){
    if(a <= 0){
        b++;
    } else {
        b+=2;
    }
    b++;
}

_func:
        movw    ax, !LOWW(_a)
        xor     a, #0x80
        cmpw    ax, #0x8001
        movw    ax, !LOWW(_b)
        bnc     $.BB@LABEL@1_3
.BB@LABEL@1_1:          ; bb1
        incw    ax
.BB@LABEL@1_2:          ; bb9
        incw    ax
        movw    !LOWW(_b), ax
        ret
.BB@LABEL@1_3:          ; bb3
        incw    ax
        br      $.BB@LABEL@1_1



CC-RL A.  QUICK GUIDE

R20UT3123EJ0113  Rev.1.13 Page 917 of 951
Dec 01, 2023

Example 2. Source and output code when volatile has been specified
If the volatile qualifier is specified for variables a and b, the output code is such that the values of these 
variables are always read from and written to memory when values are assigned to them.
When volatile is specified, the code size increases compared with when volatile is not specified because 
the memory has to be read and written.

A.1.3  Defining const pointer

The pointer is interpreted differently depending on the "const" specified location.

- const char *p;
This indicates that the object (*p) which pointer p points to cannot be rewritten.
The pointer itself (p) can be rewritten.
Therefore each statement in the following example is judged as written in the comment and the pointer itself is allo-
cated to RAM (.data etc.).

- char *const p;
This indicates that the pointer itself (p) cannot be rewritten.
The object (*p) which pointer p points to can be rewritten.
Therefore each statement in the following example is judged as written in the comment and the pointer itself is allo-
cated to ROM (.const/.constf).

- const char *const p;
This indicates that neither the pointer itself(p) and the object (*p) which pointer p points to can be rewritten.
Therefore each statement in the following example is judged as written in the comment and the pointer itself is allo-
cated to ROM (.const/.constf)).

volatile int a;
volatile int b;
void func(void){
    if(a <= 0){
        b++;
    } else {
        b+=2;
    }
    b++;
}

_func:
        movw    ax, !LOWW(_a)
        xor     a, #0x80
        cmpw    ax, #0x8001
        bnc     $.BB@LABEL@1_2
.BB@LABEL@1_1:          ; bb1
        onew    ax
        br      $.BB@LABEL@1_3
.BB@LABEL@1_2:          ; bb3
        movw    ax, #0x0002
.BB@LABEL@1_3:          ; bb3
        addw    ax, !LOWW(_b)
.BB@LABEL@1_4:          ; bb9
        movw    !LOWW(_b), ax
        incw    !LOWW(_b)
        ret

*p = 0;     /*error*/
p = 0;      /*correct*/

*p = 0;     /*correct*/
p = 0;      /*error*/

*p = 0;     /*error*/
p = 0;      /*error*/



R20UT3123EJ0113  Rev.1.13 Page 918 of 951
Dec 01, 2023

CC-RL A.  QUICK GUIDE

A.2  Functions

This section explains functions.

A.2.1  Changing area allocation

To change a section name in the program area, use the #pragma section directive as shown below.

When a text-attribute section is created by #pragma section directive, the resulting section name becomes the "section 
name" in the directive appended with "_n"  for a near section and the one appended with "_f" for a far section.

For a case in which section type "text" is omitted in the directive or a case in which there are both directives with section 
type and without it, see "Changing compiler output section name (#pragma section)".

Specify the start address of the section with the -start option, as follows.

Specify the address as a base-16 number. If the address is not specified, it will be assigned from address 0.
The -start option is a link option.  For details, see "-STARt option".

A.2.2  Embedding assembler instructions

With the CC-RL assembler instructions can be described in the following formats within C source programs.  This treats 
the function itself as assembler instruction, and performs inline expansion at the call site.

- #pragma directive

For details, see "Describing assembler instruction (#pragma inline_asm)".

#pragma section text  "section name"

-start=Mytext_n/1000

#pragma inline_asm func
static int func(int a, int b) {
        /*Assembler instruction*/
}



CC-RL A.  QUICK GUIDE

R20UT3123EJ0113  Rev.1.13 Page 919 of 951
Dec 01, 2023

A.2.3  Executing a program in RAM

A program allocated in ROM can be transferred to RAM and executed in RAM.
The attribute of the program to be transferred should be the far attribute.
The default text section with a far attribute is .textf.
If not the whole but only part of the .textf section is to be executed from RAM, use #pragma section to change the sec-

tion name and specify that section name for the -rom option. After having been transferred from ROM to RAM, the section 
can be executed from RAM.

Example If an interrupt occurs, f1 and f2 are transferred to RAM and executed in RAM.

- File : ram.c

- Link option

#include "iodefine.h"
#pragma section text    ram_text

__far void f1(char) {...}
__far int f2(int) {...;f1(x);...}

#pragma section
#pragma interrupt       inthandler (vect=INTP0)

void inthandler(void){
    /*Program is transferred from the ram_text_f section to the ram_text_fR section*/
        unsigned char __far *dst, *src;
        src = __sectop("ram_text_f");
        dst = __sectop("ram_text_fR");
        while (src < __secend("ram_text_f")) {
                *dst++ = *src++;  
        }
    /*Call the program that was transferred to RAM*/
        f2(1);
}

-rom=ram_text_f=ram_text_fR
-start=ram_text_f/3000
-start=ram_text_fR/ff000



R20UT3123EJ0113  Rev.1.13 Page 920 of 951
Dec 01, 2023

CC-RL A.  QUICK GUIDE

A.3  Variables (Assembly Language)

This section explains variables (Assembly language).

A.3.1  Defining variables with no initial values

Use the .DS directive in a section with no initial value to allocate area for a variable with no initial value.

In order that it may be referenced from other files as well, it is necessary to declare the label with the .PUBLIC directive.

Example Defining variables with no initial values

A.3.2  Defining variable with initial values

To allocate a variable area with a default value, use the .DB directives/.DB2 directives/.DB4 directives in the section with 
the default value.

See "8.4  Creating ROM Images" for variable with initial values.

- 1-byte values

- 2-byte values

- 4-byte values

In order that it may be referenced from other files as well, it is necessary to declare the label with the .PUBLIC directive.

[label:]        .DS     size

.PUBLIC Symbol name

        .DSEG   sbss
        .PUBLIC _val0       ;Sets _val0 as able to be referenced from other files
        .PUBLIC _val1       ;Sets _val1 as able to be referenced from other files
        .PUBLIC _val2       ;Sets _val2 as able to be referenced from other files
        .ALIGN  2           ;Aligns _val0 to 2 bytes
_val0:
        .DS     4           ;Allocates 4 bytes of area for val0
_val1:
        .DS     2           ;Allocates 2 bytes of area for val1
_val2:
        .DS     1           ;Allocates 1 byte of area for val2

[label:]        .DB value

[label:]        .DB2 value

[label:]        .DB4 value

.PUBLIC Symbol name



CC-RL A.  QUICK GUIDE

R20UT3123EJ0113  Rev.1.13 Page 921 of 951
Dec 01, 2023

Example Defining variable with initial values

A.3.3  Defining const data

To define a const, use the .DB directives/.DB2 directives/.DB4 directives within the .const or .constf section.

- 1-byte values

- 2-byte values

- 4-byte values

Example Defining const data

        .DSEG   sdata
        .PUBLIC _val0       ;Sets _val0 as able to be referenced from other files
        .PUBLIC _val1       ;Sets _val1 as able to be referenced from other files
        .PUBLIC _val2       ;Sets _val2 as able to be referenced from other files
        .ALIGN  2           ;Aligns _val0 to 2 bytes
_val0:
        .DB4    100         ;Allocates a 4-byte area for _val0, and stores 100 in it
_val1:
        .DB2    10          ;Allocates a 2-byte area for _val1, and stores 10 in it
_val2:
        .DB     1           ;Allocates a 1-byte area for _val2, and stores 1 in it

[label:]        .DB value

[label:]        .DB2 value

[label:]        .DB4 value

        .CSEG   const
        .PUBLIC _p          ;Sets _p as able to be referenced from other files
        .ALIGN  2           ;Aligns _val0 to 2 bytes
_p:
        .DB2    10          ;Allocates a 2-byte area for _p, and stores 10 in it



C - 1

Revision Record

Rev. Date Description

Page Summary

1.00 Aug 01, 2014 - First Edition issued

1.01 Feb 01, 2015 396, 
397, 
and 

others

The relocation attributes of the assembler SBSS_BIT, BSS_BIT, and BIT_AT are 
added.

405, 
406, 
and 

others

The assembler directive .BSEG is added.

420, 
and 

others

The assembler directive .DBIT is added.

132 The following description is supported as the assembler transition support function.
No BSEG relocation attribute, BSEG UNIT, BSEG AT, and DBIT

133 Multiple operands can be written using the following directives of the assembler tran-
sition support function in order to enhance transition support.
DB, DW, DG

133 Writing of "$INCLUDE(" (followed immediately by a space (hereafter referred to as 
)) is supported in order to enhance transition support.
"$INCLUDE(  a.inc)" is the same meaning as "$INCLUDE(a.inc)".

272 The following macro is added in the assembler.
__RENESAS_VERSION__: 0xXXYYZZ00 when the version is V.XX.YY.ZZ

471 .SLIB and .RLIB, which are sections for code of the standard libraries and runtime 
libraries, are added.

544, 
546, 
551, 
553

The following library functions and macros are added.
printf_tiny, sprintf_tiny, __PRINTF_TINY__

516, 
517

Processing of NaN in library functions ldexp and ldexpf is changed as follows:
When the input argument is a Not-a-Number (NaN), the NaN is returned and macro 
EDOM is set to global variable errno.

272 The following macros are added.
__CNV_CA78K0R__, __CNV_NC30__, __CNV_IAR__, __BASE_FILE__
The following macro is corrected so that it is valid only when the -ansi option is spec-
ified.
__STDC_VERSION__

272 The errors in the descriptions of the following macros are corrected.
No value is set. -> Decimal constant 1
__RENESAS__, __RL78__, __RL78_S1__, __RL78_S2__, __RL78_S3__,
__RL78_SMALL__, __RL78_MEDIUM__, __CCRL__, __CCRL, __DBL4,
__DBL8, __SCHAR, __UCHAR, __SBIT, __UBIT, __FAR_ROM__

277 A variadic macro is enabled.

291, 
292, 
and 

others

Keyword __callt is added.



C - 2

1.01 Feb 01, 2015 326, 
327

#pragma callt is added.

325 #pragma saddr is added.

328, 
305, 
314, 
323

Binary constants can be written in a C language syntax or the following #pragma 
directives.
#pragma interrupt (the vect parameter)
#pragma rtos_interrupt (the vect parameter)
#pragma address (address)

330 Embedded functions __get_psw and __set_psw are added.

314, 
and 

others

The vect specification of #pragma rtos_interrupt is changed to an omittable writing 
method, and the specifications when vect has not been specified are added.

305, 
309, 
314

The specifications of #pragma interrupt and #pragma rtos_interrupt are changed.
- When vect is specified, the interrupt handler is forced to have the __near attribute.
- When vect is not specified, the __near or __far attribute of the interrupt handler is 
not changed.

The specifications of #pragma interrupt_brk are changed.
- The interrupt handler is forced to have the __near attribute.

283 The error in the explanation regarding the allocation method of the bit field is cor-
rected.

311 The specification is changed so that "." (dot) can be used at the beginning of a 
changed section only when the section type is specified in #pragma section.

309 Descriptions on generation of the DI instruction are deleted from the explanation 
regarding the nested interrupt enable specification of #pragma interrupt_brk.

77, 
264

gb2312 is changed to gbk in a multibyte character of the C language and the specifi-
cation format of the -character_set option.

24, 
71

The compile option -pack is added.

25, 
92 

-103

The compile option -convert_cc is added.

24,
 79,
 81,
82

The following compile options are made usable in the Professional Edition.
-misra2004, -ignore_files_misra, -check_language_extension

748 The error in the restriction on using the standard library function name is corrected.

176 The link option -VFINFO is added.

194 The link option -AUTO_SECTION_LAYOUT is added.

195 The link option -DEBUG_MONITOR is added.

196 The link option -RRM is added.

197 The link option -SELF is added.

198 The link option -SELFW is added.

199 The link option -OCDTR is added.

Rev. Date Description

Page Summary



C - 3

1.01 Feb 01, 2015 200 The link option -OCDTRW is added.

201 The link option -OCDHPI is added.

202 The link option -OCDHPIW is added.

205 The link option -CHECK_DEVICE is added.

206 The link option -CHECK_64K_ONLY is added.

207 The link option -NO_CHECK_SECTION_LAYOUT is added.

179, 
180

A change is made so that the information on the structure and union members is out-
put to the link map file when the link option -show=struct is specified.

469 The following symbols which are generated when a link option is specified are 
added.
__STACK_ADDR_START, __STACK_ADDR_END, __RAM_ADDR_START,
__RAM_ADDR_END, .monitor1, .monitor2

721 A warning will be output if possible when an odd address is indirectly referenced by 
a type of two bytes or more.

621 The specifications for setting the stack area at startup are changed.

744 20 cautions are added.

321, 
322

Examples are added to #pragma inline_asm.

438, 
439

[Detailed description] of the .EXITM and .EXITMA directives is changed.

415, 
416, 
and 

others

Examples are added to assembly language specifications.

1.02 Sep 14, 2015 23,
34,
and 

others

The compile option -g_line is added.

24,
65,
and 

others

The compile option -stack_protector/-stack_protector_all is added.

25,
80,
and 

others

The compile option -misra2012 is added.

25 MISRA-C: 2012 rules are added to the descriptions of -ignore_files_misra and 
-check_language_extension.

56 same_code is added to optimization items.

82 A description regarding MISRA-C: 2012 rules is added to [Caution].

83 -misra2012 is added.

85 MISRA-C: 2012 rules are added.

86 MISRA-C: 2012 rules are added.

Rev. Date Description

Page Summary



C - 4

1.02 Sep 14, 2015 149,
185,
and 

others

The link option -SYmbol_forbid is added.

156 [Restrictions] is added.

174 [Syntax] and [Description] of -CRc are changed.

186 [Syntax], [Description], and [Remark] of -Optimize are changed.

236 The location of the description of -misra2004 is changed.

237 The combination of -misra2004 and –misra2012 is added to the combinations of 
options with conflicting features.

278 unsigned long long int is added to the types of integer constants.

292,
293,
and 

others

#pragma stack_protector and #pragma no_stack_protector are added.

429 The contents of symbols that cannot be written as operands are changed.

430 The description regarding operands is changed.

431 The description regarding operands is changed.

435 .EXITM and .EXITMA are deleted from macro directives.

439 The maximum number of formal parameters and the description regarding a macro 
call are changed.

440 [Description] is changed.

441 The description on the case where there is no arrangement of statements (block) is 
deleted.

442 [Description] is changed.

443 [Description] is changed.

444 [Description] is changed.

451 [Description] is changed.

469 "@$IMM_constant value" is added to assembler generated symbols.

574 The following library functions are added.
calloc, free, malloc, realloc

636 The example of the startup routine is changed.

651 [Action by User] is added to E0520014.

651 [Action by User] is added to E0520020.

675 [Action by User] is added to E0523005.

695 [Action by User] is added to E0562200.

696 [Action by User] is added to E0562201.

697 [Action by User] is added to E0562320.

Rev. Date Description

Page Summary



C - 5

1.02 Sep 14, 2015 705 [Message] and [Explanation] are added to F0523029.

705 [Explanation] of F0523030 is changed.

716 [Action by User] is added to F0563113.

722 M0523086 is added.

725 [Action by User] is added to W0511179.

757 The note regarding the K&R format is changed.

761 The note regarding the separation operator is changed.

1.03 Jul 01, 2016 55,
56

pipeline is added to optimization items.

73 [Detailed description] is changed.

83,
84

The following MISRA-C:2012 rules are added.
2.6 2.7 9.2 9.3 12.1 12.3 12.4 14.4 15.1 15.2 15.3 15.4 15.5 15.6 15.7
16.1 16.2 16.3 16.4 16.5 16.6 16.7 17.1 17.7 18.4 18.5 19.2 20.1 20.2
20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14

174 [Detailed description] is changed.

210 [Remark] is changed.

237 -Opipeline is added.

334 [Restrictions] is changed.

337 Embedded functions __set1, __clr1, and __not1 are added.

476,
477

The contents of [V1.03 or later] are added.

587 [Description] is changed.

589 [Description] is changed.

590 [Description] is changed.

591 [Description] is changed.

653,
and 

others

Unnecessary messages are deleted.

730 W0520171 is added.

1.04 Dec 01, 2016 13 The description of "License" is changed.

13 "Standard and Professional Editions" is added.

13 "Free Evaluation Editions" is added.

20,
21

The description is changed.

55 [Detailed description] is changed.

58,
59

[Example of use] is changed.

76 [Detailed description] is changed.

Rev. Date Description

Page Summary



C - 6

1.04 Dec 01, 2016 86,
87

The following MISRA-C:2012 rules are added.
2.2 3.2 5.1 5.6 5.7 5.8 5.9 8.3 8.9 9.1 12.2
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10

184 [Remark] is changed.

186 [Detailed description] is changed.

271 The description is changed.

273,
and 

others

The descriptions of the following implementation-defined items are changed.
4.1.3 (1), (4), (6), (7), (9), (12), (14), (16), (36), (37), (38), (39)

285 The description is changed.

298 The #pragma directives are added.

332 [Restrictions] is changed.

333,
334

[Example] is changed.

336 [Restrictions] is changed.

442 [Caution] is changed.

443 [Caution] is changed.

444 [Description] is changed.

456 "Machine-Language Instruction Set" is added.

594 [Description] is changed.

596 [Description] is changed.

597 [Description] is changed.

599 [Description] is changed.

609 [Caution] is added.

626 [Caution] is added.

634-
642

The description is changed.

644,
645

The description is changed.

664 E0520020 is changed.

666 E0520065 is changed.

698 E0551406 is added.

721 Unnecessary messages are deleted.

728 F0563006 is added.

729 F0563020 is changed.

729 F0563115 is added.

736 M0560700 is added.

Rev. Date Description

Page Summary



C - 7

1.04 Dec 01, 2016 746 Unnecessary messages are deleted.

753 W0561014 is added.

772 "Controlling the Output of Bit Manipulation Instructions" is added.

773 "Initialization of Stack Area at Startup" is added.

781 The description is changed.

1.05 Jun 01, 2017 13 The description of "Standard and Professional Editions" is changed.

25,
68,
77

The compile option -insert_nop_with_label is added.

63 [Detailed description] is changed.

72 [Detailed description] is changed.

87 [Specification format] is changed.

87,
88

The following MISRA-C:2012 rules are added.
12.5 13.2 13.5 17.5 17.8 21.13 21.15 21.16

148 [Detailed description] is changed.

149 [Detailed description] is changed.

153,
164,
171

The link option -END_RECORD is added.

160 [Detailed description] is changed.

166 Table 2.9 is changed.

179 [Example of use] is changed.

187,
188

[Specification format] and [Detailed description] are changed.

188 [Remark] is changed.

191 [Detailed description] is changed.

192 [Remark] is changed.

207 [Detailed description] is changed.

217 [Remark] is changed.

224 [Remark] is added.

250,
252,
253

The description of "Link map information" is changed.

273,
274

The description of "Outputting the variable/function information file" is changed.

274 The description of "How to use variable/function information file" is changed.

284,
302,
303

The description of "#pragma directive" is changed.

Rev. Date Description

Page Summary



C - 8

1.05 Jun 01, 2017 303,
344,
345

"near/far function (#pragma near/#pragma far)" is added.

303,
346

"Structure packing (#pragma pack/#pragma unpack)" is added.

310 "Relationship with keywords and #pragma" is changed.

336 [Restrictions] is changed.

339,
340

[Restrictions] is changed.

342 [Function] and [Restrictions] are changed.

347 [Usage] is changed.

435 [Syntax] and [Description] are changed.

436 [Syntax] is changed.

437 [Syntax] is changed.

438 [Syntax] is changed.

641-
644

The following Interrupt Disabled Time are changed.
acos, acosf, asin, asinf, atan, atanf, atan2, atan2f, tan, tanf,
cosh, coshf, sinh, sinhf, tanh, tanhf, exp, expf, pow, powf,
sqrt, sqrtf, scanf, sscanf, atof, _COM_atof_f, atoff, _COM_atoff_f,
strtod, _COM_strtod_ff, strtof, _COM_strtof_ff

647 The Interrupt Disabled Time of _COM_fdiv is changed.

667,
668,
723,
732,
740,
744

The following messages are added.
C0511200, C0519996, C0519997, C0550802, C0550804, 
C0550805, C0550806, C0550808, C0551800, C0564001, 
F0563103, W0511184, W0511185, W0523120, W0561015, W0561016

670,
702,
715,
722,
743,
744

The following messages are changed.
E0511200, E0551309, F0523073, F0563006, W0561004, W0561017

744 Unnecessary messages are deleted.

767 "Error output regarding an address not in the saddr access range" is added.

1.06 Dec 01, 2017 11,13 The C99 standard is supported.

11 The section of "Limits" is deleted.

24,
41,
42,
255,
298-
304,
309,
331

The -lang compile option is added.

Rev. Date Description

Page Summary



C - 9

1.06 Dec 01, 2017 25,
64,
66,
255

The -change_message compile option is added.

25,
71,

80-82,
255

The -control_flow_integrity compile option is added.

26,
84,
85,
255,
256,
287,
289,
298-
304,
309,
312,
324,
328,
330,
361

The -strict_std compile option is added.

26,
105,
118,
255

The -unaligned_pointer_for_ca78k0r compile option is added.

55 The contents of [Detailed description] of the -far_rom compile option are changed.

57 The contents of [Detailed description] of the -O compile option are changed.

65 The descriptions of [Specification format] and [Detailed description] of the 
-no_warning_num compile option are changed.

92 The description of [Caution] of the -misra2004 compile option is changed.

93,
94

The following MISRA-C:2012 rules are added.

106,
107

The contents of [Detailed description] of the -convert_cc compile option are 
changed.

115 The description of the operation of #pragma pack when the -convert_cc=iar compile 
option is specified is changed.

155 The description of [Specification format] of the -warning assemble option is changed.

156 The description of [Specification format] of the -no_warning assemble option is 
changed.

160,
171,
173,
174,
181,
186

The -FIX_RECORD_LENGTH_AND_ALIGN link option is added.

Rev. Date Description

Page Summary



C - 10

1.06 Dec 01, 2017 160,
171,
173,
197

The -CFI link option is added.

160,
171,
173,
198

The -CFI_ADD_Func link option is added.

160,
171,
173,
199

The -CFI_IGNORE_Module link option is added.

167 The description of [Restrictions] of the -Binary link option is changed.

173,
185

The specifiable condition of the -BYte_count link option is changed.

202,
203,
261,
267

CFI is added to the parameter of the -SHow link option.

208 The description of [Caution] is added to the -Absolute_forbid link option.

296 The description of "Predefined macro names" in "Implementation dependent items" 
is changed.

303 The section of "Option to process in strict accordance with ANSI standard" is 
deleted.

313-
314

The section of "Macro" is added.

334 The description of [Usage] of "Hardware interrupt handler (#pragma interrupt)" is 
changed.

349 The description of control instructions and directives of the assembler is added to 
[Restrictions] in "Describing assembler instruction (#pragma inline_asm)".

505 The following header files are added.
inttypes.h, iso646.h, and stdbool.h

654,
662

The description of the __control_flow_integrity function is added.

709,
730,
747

The following messages are added.
E0523087, F0563602, and W0561331

719-
721,
726-
729,
732,
734,
744-
747

The following messages are changed.
E0562311, E0562340, E0562350, E0562351, E0562352, E0562353, 
E0562354, E0562355, E0562360, E0562361, E0562362, E0562363, 
E0562364, E0562365, E0562417, F0563004, F0563102, F0563123, 
F0563124, F0563431, M0560005, W0520062, W0561130, W0561184, 
W0561325, and W0561531

Rev. Date Description

Page Summary



C - 11

1.06 Dec 01, 2017 681 The following internal error messages are deleted.
C0560901, C0560903, C0560904, C0560905, C0560906, C0560907, 
C0592xxx, C0592100, and C0592200

682,
709,
716-
721

The following error messages are deleted.
E0511120, E0544003, E0544240, E0544854, E0560601, E0560602, 
E0560603, E0560604, E0560605, E0560606, E0560607, E0560608, 
E0560609, E0560610, E0560611, E0560612, E0560613, E0560614, 
E0560615, E0560616, E0560617, E0560618, E0560619, E0560620, 
E0560621, E0560622, E0560623, E0560624, E0560637, E0560638, 
E0560641, E0560660, E0562015, E0562017, E0562021, E0562112, 
E0562113, E0562143, E0562203, E0562222, E0562223, E0562323, 
E0562324, E0562331, E0562366, E0562400, E0562402, E0562403, 
E0562404, E0562405, E0562406, E0562407, E0562408, E0572000, 
E0572200, E0572500, E0572501, E0572502, E0573005, E0573007, 
E0573008, E0573009, E0573300, E0573303, E0573310, E0573320, 
E0592001, E0592002, E0592003, E0592004, E0592005, E0592006, 
E0592007, E0592008, E0592010, E0592013, E0592015, E0592016, 
E0592018, E0592019, E0592020, E0592101, E0592102, E0592201, 
E0593002, E0593003, E0593004, E0594000, E0594001, and E0594002

724,
726,
728-
730

The following fatal error messages are deleted.
F0542001, F0542002, F0544302, F0544802, F0560001, F0560002, 
F0560003, F0560004, F0560005, F0560006, F0560007, F0560008, 
F0560009, F0560010, F0560011, F0560012, F0560013, F0560101, 
F0560102, F0560103, F0560104, F0560105, F0560106, F0560107, 
F0560108, F0560109, F0560110, F0560112, F0560113, F0560114, 
F0560115, F0560201, F0560202, F0560203, F0560204, F0560208, 
F0560209, F0560210, F0560213, F0560215, F0560216, F0560217, 
F0560218, F0560219, F0560220, F0560301, F0560302, F0560303, 
F0560304, F0560306, F0560307, F0560309, F0560310, F0560311, 
F0560404, F0560405, F0560407, F0560409, F0560411, F0560414, 
F0560415, F0560417, F0560419, F0560421, F0560423, F0560424, 
F0560502, F0560503, F0560627, F0560629, F0560630, F0560631, 
F0560633, F0560634, F0560635, F0560636, F0560649, F0560650, 
F0560652, F0560657, F0560658, F0560661, F0560662, F0560701, 
F0560705, F0560707, F0560708, F0560712, F0561001, F0561002, 
F0561003, F0561004, F0561005, F0561006, F0561007, F0561008, 
F0561009, F0561010, F0561011, F0561012, F0561013, F0561014, 
F0561015, F0561016, F0561019, F0562001, F0562002, F0562003, 
F0562004, F0562005, F0562006, F0562007, F0562008, F0562009, 
F0562014, F0562028, F0563120, F0563311, F0563312, F0563313, 
F0563400, F0563420, F0578200, F0578201, F0578202, F0578203, 
F0578204, F0578205, F0578206, F0578207, F0578208, F0578209, 
F0578210, F0578212, F0578213, F0578214, F0578215, F0578216, 
F0578217, F0578218, F0578219, F0578220, F0578221, F0593113, 
F0593114, F0595001, F0595002, F0595003, and F0595004

732 The following information messages are deleted.
M0560001, M0560002, M0560102, M0560103, M0560300, M0560510, 
M0560511, M0560512, M0560600, M0592150, M0592151, M0592152, 
M0592153, M0592154, M0592155, M0592156, M0592157, M0592250, 
M0592251, M0592252, M0592253, M0592270, M0592280, M0592281, 
M0592282, M0594201, M0594202, and M0594203

Rev. Date Description

Page Summary



C - 12

1.06 Dec 01, 2017 742,
744-
747

The following warning messages are deleted.
W0542101, W0544001, W0544002, W0560111, W0560116, W0560205, 
W0560206, W0560207, W0560212, W0560214, W0560305, W0560308, 
W0560312, W0560313, W0560314, W0560315, W0560316, W0560401, 
W0560402, W0560403, W0560406, W0560408, W0560410, W0560412, 
W0560413, W0560416, W0560418, W0560420, W0560422, W0560501, 
W0560625, W0560628, W0560639, W0560640, W0560642, W0560643, 
W0560644, W0560645, W0560647, W0560651, W0560653, W0560654, 
W0560655, W0560656, W0560659, W0560702, W0560706, W0560709, 
W0560710, W0560711, W0561110, W0561180, W0561190, W0561192, 
W0561194, W0561304, W0561321, W0561327, W0561420, W0561430, 
W0561500, W0561501, W0561502, W0561510, W0562010, W0562011, 
W0562012, W0562013, W0562015, W0562016, W0562017, W0562018, 
W0562019, W0562020, W0562021, W0562022, W0562023, W0562024, 
W0562025, W0562026, W0562027, W0571600, W0578306, W0578307, 
W0578308, W0578309, W0578310, W0578311, W0578315, W0578322, 
W0592009, W0592011, W0592012, W0592017, W0592103, W0592104, 
W0592105, W0594100, W0594101, W0594102, W0594103, W0594104, 
W0594105, W0594106, W0594107, W0594110, W0594111, W0594112, 
W0594113, W0594114, W0594115, W0594116, W0594117, W0594118, 
W0594119, W0594124, W0594125, W0594126, W0594127, W0594128, 
W0594129, W0594130, W0594131, W0594132, W0594133, W0594134, 
W0594135, W0594140, W0594150, W0594151, W0594160, W0594161, 
W0594162, W0594163, W0594164, W0594165, and W0594166

751 The description of "Controlling the Output of Bit Manipulation Instructions" is 
changed.

757 The description of "Allocating to sections accessible with short instructions" is 
changed.

1.07 Jun 01, 2018 19 The description of "Specification format" is changed.

42 The descriptions of [Remark] is added to the -lang compile option.

52 The descriptions of [Detailed description] of the -preprocess compile option is 
changed.

65 The descriptions of [Specification format] of the -no_warning_num compile option is 
changed.

66 The descriptions of [Specification format] of the -change_message compile option is 
changed.

95 The descriptions of [Detailed description] of the -ignore_files_misra compile option is 
changed.

96 The descriptions of [Detailed description] of the -check_language_extension compile 
option is changed.

155 The descriptions of [Specification format] of the -warning assemble option is 
changed.

156 The descriptions of [Specification format] of the -no_warning assemble option is 
changed.

160,
171,
194

The -SPLIT_VECT link option is added.

Rev. Date Description

Page Summary



C - 13

1.07 Jun 01, 2018 162,
227,
232

The -CHECK_OUTPUT_ROM_AREA link option is added.

164 The descriptions of [Specification format] of the -Input link option is changed.

167 The descriptions of [Specification format] of the -Binary link option is changed.

169 The descriptions of [Specification format] of the -DEFine link option is changed.

172-
174

The descriptions of [Specification format], [Detailed description], and [Remark] of the 
-FOrm link option are changed.

177 The descriptions of [Specification format] of the -RECord link option is changed.

178 The descriptions of [Specification format] of the -END_RECORD link option is 
changed.

180 The descriptions of [Specification format], [Detailed description], and [Remark] of the 
-OUtput link option are changed.

183 The descriptions of [Specification format] of the -NOMessage link option is changed.

188,
189,
191

The descriptions of [Specification format], [Detailed description], and [Remark] of the 
-CRc link option are changed.

193 The descriptions of [Specification format] and [Detailed description] of the -VECTN 
link option are changed.

198 The descriptions of [Specification format] of the -CFI_ADD_Func link option is 
changed.

199 The descriptions of [Specification format], [Detailed description], and [Example of 
use] of the -CFI_IGNORE_Module link option are changed.

211 The descriptions of [Specification format] of the -STARt link option is changed.

228 The descriptions of [Specification format] of the -CPu link option is changed.

243 The descriptions of [Specification format] and [Remark] of the -REName link option 
are changed.

244 The descriptions of [Specification format] of the -DELete link option is changed.

245 The descriptions of [Specification format] of the -REPlace link option is changed.

248 The descriptions of [Specification format] of the -CHange_message link option is 
changed.

324 The descriptions of [Function] of "Specifying memory allocation area (__near /__far)" 
is changed.

342 The descriptions of [Caution] of "Changing compiler output section name (#pragma 
section)" is changed.

353 The descriptions of [Restrictions] of "Absolute address allocation specification 
(#pragma address)" is changed.

449 The descriptions of [Description] of the .DB directive is changed.

450 The descriptions of [Description] of the .DB2 directive is changed.

499 Table 6.1 is changed.

Rev. Date Description

Page Summary



C - 14

1.07 Jun 01, 2018 504 The following libraries are added.
rl78nm4s99.lib, rl78cm4s99.lib, rl78em4s99.lib, and rl78em8s99.lib

504,
505

The description of "Rule for Naming Libraries" is changed.

507 The description of "Library Function" is changed.

508 The descriptions of [Description] of the assert function is changed.

509,
513

The isblank function is added.

526-
530

The section of "Functions for greatest-width integer types" is added.

584,
593-
595

The snprintf function is added.

584,
607-
609

The vsnprintf function is added.

584 The descriptions of "Outline" of sprintf and vsprintf are changed.

585-
588

The descriptions of [Syntax] and [Description] of the printf function are changed.
[Restrictions] is added.

590,
592

The descriptions of [Description] of the scanf function is changed.
[Restrictions] is added.

596-
599

The descriptions of outline, [Syntax], and [Description] of the sprintf function are 
changed.
[Restrictions] is added.

601,
603

The descriptions of [Description] of the sscanf function is changed.
[Restrictions] is added.

604-
606

The descriptions of [Syntax] and [Description] of the vprintf function are changed.
[Restrictions] is added.

610-
612

The descriptions of outline, [Syntax], and [Description] of the vsprintf function are 
changed.
[Restrictions] is added.

618,
623

The atoll function is added.

618,
626

The strtold function is added.

618,
628

The strtoll function is added.

618,
630

The strtoull function is added.

618,
647

The llabs function is added.

618,
648

The lldiv function is added.

Rev. Date Description

Page Summary



C - 15

1.07 Jun 01, 2018 624 The descriptions of [Syntax] of the strtod function is changed.
[Restrictions] is added.

625 The descriptions of [Syntax] of the strtof function is changed.
[Restrictions] is added.

627 The descriptions of [Syntax] of the strtol function is changed.

629 The descriptions of [Syntax] of the strtoul function is changed.

643 The descriptions of [Return value] of the abs function is changed.

645 The descriptions of [Return value] of the labs function is changed.

650 The descriptions of [Syntax] of the memcpy function is changed.

652 The descriptions of [Syntax] of the strcpy function is changed.

653 The descriptions of [Syntax] of the strncpy function is changed.

654 The descriptions of [Syntax] of the strcat function is changed.

655 The descriptions of [Syntax] of the strncat function is changed.

666 The descriptions of [Syntax] of the strtok function is changed.

675-
679

The following functions are added.
isblank, imaxabs, imaxdiv, strtoimax, _COM_strtoimax_ff, strtoumax,
_COM_strtoumax_ff, snprintf, vsnprintf, atoll, _COM_atoll_f, strtold,
_COM_strtold_ff, strtoll, _COM_strtoll_ff, strtoull, _COM_strtoull_ff,
llabs, and lldiv

703,
706-
710,
713,
714,
728,
737-
741,
744

The following messages are added.
E0511177, E0511182, E0520069, E0520117, E0520175, E0520223,
E0520655, E0520744, E0520747, E0523003, E0523014, E0523038,
E0523044, E0523048, E0523077, E0523078, F0520571, F0523088,
W0511181, W0511183, W0520159, W0520221, W0520222, W0520240,
W0520606, W0520609, W0520819, W0520966, W0520967, W0520968,
W0521037, W0521039, W0521040, W0523018, W0523085, and W0561143

709-
711,
713,
723,
739,
740,
744

The following messages are changed.
E0520643, E0520757, E0520977, E0521051, E0521052, E0521649,
E0562135, E0562142, W0520257, W0520940, W0521051, W0561183,
and W0561184

701 C0510000 is deleted.

Rev. Date Description

Page Summary



C - 16

1.07 Jun 01, 2018 703,
704,
706-
710

The following error messages are deleted.
E0511111, E0511112, E0511118, E0511119, E0511122, E0511125,
E0511126, E0511127, E0511132, E0511136, E0511137, E0511138,
E0511139, E0511140, E0511141, E0511142, E0511148, E0511155,
E0511157, E0511158, E0511159, E0511160, E0511161, E0511167,
E0511173, E0511175, E0511176, E0511200, E0512001, E0520002,
E0520079, E0520096, E0520103, E0520123, E0520126, E0520131,
E0520133, E0520135, E0520150, E0520153, E0520157, E0520160,
E0520194, E0520195, E0520196, E0520220, E0520227, E0520230,
E0520239, E0520241, E0520242, E0520243, E0520244, E0520245,
E0520246, E0520248, E0520249, E0520250, E0520251, E0520252,
E0520255, E0520257, E0520258, E0520259, E0520262, E0520263,
E0520264, E0520265, E0520266, E0520269, E0520276, E0520277,
E0520278, E0520279, E0520280, E0520281, E0520282, E0520283,
E0520285, E0520286, E0520287, E0520288, E0520289, E0520290,
E0520291, E0520292, E0520293, E0520294, E0520297, E0520298,
E0520299, E0520300, E0520302, E0520304, E0520305, E0520306,
E0520307, E0520308, E0520309, E0520310, E0520311, E0520312,
E0520314, E0520315, E0520316, E0520317, E0520318, E0520319,
E0520320, E0520321, E0520322, E0520323, E0520326, E0520327,
E0520328, E0520329, E0520330, E0520332, E0520333, E0520334,
E0520335, E0520336, E0520337, E0520338, E0520339, E0520341,
E0520342, E0520343, E0520344, E0520345, E0520346, E0520347,
E0520348, E0520349, E0520350, E0520351, E0520352, E0520353,
E0520354, E0520356, E0520357, E0520358, E0520359, E0520360,
E0520363, E0520364, E0520365, E0520366, E0520367, E0520369,
E0520371, E0520372, E0520373, E0520378, E0520380, E0520384,
E0520386, E0520389, E0520390, E0520391, E0520392, E0520394,
E0520397, E0520403, E0520405, E0520407, E0520408, E0520410,
E0520412, E0520413, E0520415, E0520416, E0520417, E0520418,
E0520424, E0520427, E0520429, E0520432, E0520433, E0520434,
E0520435, E0520436, E0520437, E0520438, E0520439, E0520440,
E0520441, E0520442, E0520443, E0520449, E0520452, E0520456,
E0520457, E0520458, E0520459, E0520461, E0520463, E0520464,
E0520466, E0520467, E0520468, E0520470, E0520471, E0520473,
E0520475, E0520476, E0520477, E0520478, E0520481, E0520484,
E0520485, E0520486, E0520487, E0520489, E0520493, E0520496,
E0520498, E0520500, E0520501, E0520502, E0520503, E0520504,
E0520505, E0520506, E0520507, E0520508, E0520510, E0520511,
E0520515, E0520516, E0520517, E0520518, E0520519, E0520529,
E0520530, E0520531, E0520532, E0520536, E0520540, E0520543,
E0520544, E0520546, E0520548, E0520551, E0520555, E0520556,
E0520558, E0520559, E0520598, E0520599, E0520601, E0520603,
E0520604, E0520605, E0520612, E0520615, E0520616, E0520620,
E0520647, E0520651, E0520656, E0520658, E0520661, E0520663,
E0520664, E0520665, E0520666, E0520667, E0520668, E0520669,
E0520670, E0520673, E0520674, E0520691, E0520692, E0520693,
E0520694, E0520695, E0520696, E0520697, E0520698, E0520701,
E0520703, E0520704, E0520706, E0520707, E0520709, E0520710,
E0520711, E0520717, E0520718, E0520719, E0520724, E0520725,
E0520726, E0520727, E0520728, E0520730, E0520734, E0520735,
E0520742, E0520750, E0520751, E0520752, E0520753, E0520754,
E0520755, E0520756, E0520758, E0520759, E0520769, E0520771,
E0520772, E0520773, E0520774, E0520775, E0520776, E0520779,
E0520782, E0520785, E0520786, E0520787, E0520788, E0520789,
E0520790, E0520791, E0520792, E0520795, E0520799, E0520800,
E0520801, E0520803, E0520804, E0520805, E0520807, E0520808,
E0520809, E0520810, E0520812, E0520817, E0520818, and E0520819

Rev. Date Description

Page Summary



C - 17

1.07 Jun 01, 2018 710-
714

The following error messages are deleted.
E0520822, E0520824, E0520827, E0520828, E0520832, E0520834,
E0520835, E0520840, E0520841, E0520842, E0520844, E0520847,
E0520848, E0520849, E0520850, E0520851, E0520854, E0520855,
E0520857, E0520864, E0520865, E0520868, E0520871, E0520872,
E0520873, E0520875, E0520876, E0520877, E0520878, E0520879,
E0520880, E0520881, E0520882, E0520885, E0520890, E0520891,
E0520892, E0520893, E0520894, E0520896, E0520898, E0520901,
E0520915, E0520916, E0520928, E0520929, E0520930, E0520934,
E0520937, E0520939, E0520948, E0520952, E0520954, E0520955,
E0520956, E0520960, E0520963, E0520964, E0520971, E0520972,
E0520975, E0520978, E0520979, E0520980, E0520982, E0520985,
E0520987, E0520988, E0520989, E0520990, E0520994, E0520995,
E0520996, E0520998, E0520999, E0521001, E0521006, E0521007,
E0521009, E0521010, E0521011, E0521013, E0521014, E0521015,
E0521017, E0521018, E0521019, E0521020, E0521021, E0521022,
E0521023, E0521032, E0521034, E0521035, E0521042, E0521043,
E0521044, E0521047, E0521054, E0521061, E0521065, E0521066,
E0521067, E0521075, E0521076, E0521081, E0521086, E0521087,
E0521088, E0521089, E0521146, E0521161, E0521163, E0521201,
E0521204, E0521212, E0521227, E0521229, E0521230, E0521254,
E0521255, E0521280, E0521282, E0521291, E0521292, E0521295,
E0521303, E0521304, E0521311, E0521312, E0521315, E0521317,
E0521318, E0521320, E0521321, E0521322, E0521323, E0521324,
E0521325, E0521326, E0521327, E0521344, E0521345, E0521349,
E0521350, E0521351, E0521355, E0521365, E0521372, E0521380,
E0521382, E0521398, E0521403, E0521404, E0521405, E0521424,
E0521425, E0521436, E0521437, E0521441, E0521442, E0521445,
E0521534, E0521535, E0521536, E0521542, E0521543, E0521557,
E0521558, E0521574, E0521576, E0521577, E0521583, E0521586,
E0521587, E0521588, E0521589, E0521590, E0521593, E0521596,
E0521597, E0521598, E0521602, E0521619, E0521620, E0521624,
E0521629, E0521631, E0521632, E0521634, E0521645, E0521646,
E0523042, E0523057, E0523058, E0523059, E0523066, E0523069,
E0523070, E0523071, and E0523072

728 The following fatal error messages are deleted.
F0511128, F0512003, F0520016, F0520190, F0520219, F0520542,
F0520583, F0520584, F0520641, F0520869, F0520919, F0520926,
F0521083, F0521151, F0521335, F0521336, F0521337, F0521338,
F0523054, F0523055, F0523056, F0523073, F0523300, F0523301,
and F0523302

736 The following information messages are deleted.
M0520009, M0520018, M0520111, M0520128, M0520174, M0520193,
M0520237, M0520261, M0520324, M0520381, M0520399, M0520400,
M0520479, M0520487, M0520534, M0520535, M0520549, M0520618,
M0520652, M0520678, M0520679, M0520815, M0520831, M0520863,
M0520866, M0520949, M0521348, M0521353, M0521380, M0521381,
M0523009, and M0523033,

Rev. Date Description

Page Summary



C - 18

1.07 Jun 01, 2018 737-
741

The following warning messages are deleted.
W0511143, W0511144, W0511156, W0511166, W0511168, W0511169,
W0511170, W0511171, W0511172, W0511179, W0519999, W0520001,
W0520014, W0520019, W0520045, W0520046, W0520047, W0520054,
W0520066, W0520085, W0520086, W0520101, W0520118, W0520139,
W0520144, W0520147, W0520157, W0520171, W0520181, W0520185,
W0520224, W0520225, W0520226, W0520232, W0520262, W0520280,
W0520284, W0520296, W0520300, W0520326, W0520335, W0520368,
W0520370, W0520377, W0520381, W0520382, W0520414, W0520430,
W0520497, W0520512, W0520514, W0520522, W0520523, W0520533,
W0520541, W0520552, W0520553, W0520554, W0520611, W0520614,
W0520617, W0520650, W0520657, W0520662, W0520691, W0520692,
W0520708, W0520720, W0520722, W0520723, W0520737, W0520748,
W0520760, W0520780, W0520783, W0520794, W0520802, W0520806,
W0520812, W0520825, W0520826, W0520829, W0520830, W0520831,
W0520836, W0520837, W0520912, W0520925, W0520936, W0520941,
W0520942, W0520948, W0520959, W0520961, W0520962, W0520970,
W0520973, W0520984, W0520991, W0520997, W0521028, W0521030,
W0521050, W0521055, W0521105, W0521145, W0521163, W0521192,
W0521193, W0521194, W0521197, W0521211, W0521213, W0521218,
W0531235, W0521273, W0521285, W0521290, W0521294, W0521296,
W0521301, W0521302, W0521307, W0521308, W0521310, W0521316,
W0521319, W0521342, W0521346, W0521361, W0521373, W0521374,
W0521375, W0521386, W0521396, W0521400, W0521420, W0521427,
W0521433, W0521443, W0521444, W0521546, W0521547, W0521548,
W0521551, W0521553, W0521561, W0521564, W0521565, W0521566,
W0521570, W0521607, W0521611, W0521632, W0521635, W0521636,
W0521651, W0523042, W0523060, W0523063, W0523064, and W0523120

752 The section of "Specifying standard library functions when C99 standard is specified 
by an individual option" is added.

755 The section of "Version of Compiler Package" is added.

1.08 Dec 01, 2018 14 The description of "Optimizing linker" is changed.

26,
90,
97,
259

The -misra_intermodule compile option is added.

63 [Detailed description] of the -goptimize compile option is changed.

75 [Detailed description] of the -switch compile option is changed.

93 The following MISRA-C:2012 rules are added.
8.5 8.6

137 [Detailed description] of the -goptimize assemble option is changed.

163,
239,
246

The -LIB_REName link option is added.

171 [Remark] of the -ENTry link option is changed.

174 Table 2.9 is changed.

203 [Detailed description] of the -SHow link option is changed.

204 [Remark] of the -SHow link option is changed.

244 [Remark] of the -MEMory link option is changed.

Rev. Date Description

Page Summary



C - 19

1.08 Dec 01, 2018 245 [Detailed description] and [Remark] of the -REName link option are changed.

254 [Remark] of the -Total_size link option is changed.

291-
307

The configuration of "Basic Language Specifications" was reviewed.

315-
322

The configuration of "Extended Language Specifications" was reviewed.

538,
541,
732

The fpclassify function is added.

538,
542,
732

The isfinite function is added.

538,
543,
732

The isinf function is added.

538,
544,
732

The isnan function is added.

538,
545,
732

The isnormal function is added.

538,
546,
732

The signbit function is added.

538,
549,
732

The acosl function is added.

538,
552,
732

The asinl function is added.

538,
555,
732

The atanl function is added.

538,
558,
732

The atan2l function is added.

538,
561,
732

The cosl function is added.

538,
564,
732

The sinl function is added.

538,
567,
733

The tanl function is added.

Rev. Date Description

Page Summary



C - 20

1.08 Dec 01, 2018 538,
568,
733

The acosh function is added.

538,
569,
733

The acoshf function is added.

538,
570,
733

The acoshl function is added.

538,
571,
733

The asinh function is added.

539,
572,
733

The asinhf function is added.

539,
573,
733

The asinhl function is added.

539,
574,
733

The atanh function is added.

539,
575,
733

The atanhf function is added.

539,
576,
733

The atanhl function is added.

539,
579,
733

The coshl function is added.

539,
582,
733

The sinhl function is added.

539,
585,
733

The tanhl function is added.

539,
588,
733

The expl function is added.

539,
591,
733

The frexpl function is added.

539,
594,
733

The ldexpl function is added.

539,
597,
733

The logl function is added.

Rev. Date Description

Page Summary



C - 21

1.08 Dec 01, 2018 539,
600,
734

The log10l function is added.

539,
601,
734

The log1p function is added.

539,
602,
734

The log1pf function is added.

539,
603,
734

The log1pl function is added.

539,
606,
734

The modfl function is added.

540,
609,
734

The fabsl function is added.

540,
612,
734

The powl function is added.

540,
615,
734

The sqrtl function is added.

540,
618,
734

The ceill function is added.

540,
621,
734

The floorl function is added.

540,
624,
734

The fmodl function is added.

553 [Description] of the atan function is changed.

554 [Description] of the atanf function is changed.

584 [Description] of the tanhf function is changed.

632,
655-
658,
735

The vscanf function is added.

632,
665-
668,
735

The vsscanf function is added.

637-
640

[Syntax], [Description] and [Restrictions] of the scanf function are changed.

Rev. Date Description

Page Summary



C - 22

1.08 Dec 01, 2018 648-
651

[Syntax], [Description] and [Restrictions] of the sscanf function are changed.

734 "Interrupt Disabled Time" of the sqrt function is changed.

734 "Interrupt Disabled Time" of the sqrtf function is changed.

738 "Use of .data" and "Use of .bss" of the strtok function are changed.

743 The descriptions in "Stack area allocation, stack pointer setting, and stack area ini-
tialization" is changed.

749,
750

"ROMization" is deleted and "Creating ROM Images" is added.

759,
764,
785,
796

The following messages are added.
C0520000, C0529000, E0520079, E0562600, W0520070

782,
801

The following messages are changed.
E0562320, W0561101

785 E0562500 is deleted.

809 The descriptions in "Initialization of Stack Area at Startup" is changed.

815,
816

The descriptions in "Method for allocating variables or constants to each area" is 
changed.

819 The descriptions in "Executing a program in RAM" is changed.

1.09 Nov 01, 2019 11 The description of "Copyrights" is changed.

87 "Interpretation when omitted" of the -nest_comment compile option is changed.

92 The following MISRA-C:2012 rules are added.
8.13 14.2 14.3

159,
163,
171,
174,
244

The -ALLOW_DUPLICATE_MODULE_NAME link option is added.

291-
295

The description of "Implementation-defined behavior of C90" is changed.

300,
301

(71) and (72) are changed.

348,
349

The descriptions in "Changing compiler output section name (#pragma section)" is 
changed.

Rev. Date Description

Page Summary



C - 23

1.09 Nov 01, 2019 540-
542,
609-
614,
630-
653,
657-
677,
681,
684,
788-
790

The following functions are added.
scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl, nearbyint, nearbyintf,
nearbyintl, rint, rintf, rintl, lrint, lrintf, lrintl, llrint, llrintf,
llrintl, round, roundf, roundl, lround, lroundf, lroundl, llround, llroundf,
llroundl, trunc, truncf, truncl, copysign, copysignf, copysignl, nan, nanf,
nanl, fdim, fdimf, fdiml, fmax, fmaxf, fmaxl, fmin, fminf, fminl, isgreater,
isgreaterequal, isless, islessequal, islessgreater, isunordered, va_copy

Rev. Date Description

Page Summary



C - 24

1.10 Nov 01, 2020 Front 
cover

The target CPU cores are added.

16 The tool usage information file is added to Table 2.1.

23,
50

The description and [Detailed description] for the -preinclude compile option are 
changed.

24,
71,
79,
80

The -stuff compile option is added.

58,
59

The following optimization items are added:
branch_chaining, align

72 [Specification format] and [Detailed description] of the -dbl_size compile option is 
changed.

166,
243,
259

The -VERBOSE link option is added.

220 [Detailed description] for the -USER_OPT_BYTE link option is changed.

264 The following options are added to the section "Specifying multiple times of options":
-Obranch_chaining, -Oalign

328 The format specification for the #pragma directive in Table 4.15 is changed.

330,
331

[Usage], [Restrictions], and [Remark] in "Using saddr area (__saddr)" are changed.

352 [Usage] in "Changing compiler output section name" is changed.

375,
376
and

others

Wording "embedded function" is changed to "intrinsic function".

375,
376

The "Function" descriptions for the following intrinsic functions in Table 4.16 are 
changed:
__mulu, __mului, __mulsi, __mulul, __mulsl

375-
377

The format of the function declarations in the Table 4.16 is changed to ANSI-C.

442,
444

[Specification format] and [Detailed description] of the .SECTION directive are 
changed.

821,
836,
846-
849,
857,
860,
868,
869

The following messages are added:
C0580013, C0580014, C0580015, C0580016, C0580900, C0580901, C0580902, 
C0580903, C0580904, C0580905, C0580906, C0580907, E0550271, E0580001, 
E0580002, E0580003, E0580004, E0580005, E0580006, E0580007, E0580008, 
E0580009, E0580010, E0580011, E0580012, E0580017, E0580100, E0580104,  
E0580105, E0580106, E0580200, E0580201, E0580202, E0580203, E0580204, 
E0580300, E0580301, E0580302, E0580303, E0580305, E0580307, E0580308, 
E0580309, E0580310, E0580311, E0580312, E0580313, E0580314, E0580315, 
E0580316, E0580317, E0580318, F0580101, F0580102, F0580103, F0580399,  
W0520171, W0580304, W0580306

Rev. Date Description

Page Summary



C - 25

1.11 Nov 01, 2021 11 The description of "GENERAL" is changed.

18 The description of "Specification format" in "Command line operation" is changed.

49 [Detailed description] of the -I compile option is changed.

57 The descriptions of the inline_size optimization item is changed.

144 [Detailed description] of the -include assemble option is changed.

211 [Detailed description] of the -Optimize link option is changed.

223 [Detailed description] of the -SECURITY_ID link option is changed.

329 The description of "#pragma directive" is changed.

381,
385

$ is added to symbols and the description of "Conventions of symbol description" is 
changed.

470,
474

.WEAK directive is added.

475,
481

.ALIAS directive is added.

475,
482

.TYPE directive is added.

821 An error in the example is corrected in "Reference of Argument Defined by Other 
Language".

825,
860,
862,
868

The following messages are changed:
E0511178, F0563430, W0511180, W0511185, W0561016, W0561017

829,
865

Errors in the following messages are corrected:
E0520137, W0521053

839 The following message is added:
E0550272

876 Errors are corrected in "Controlling the Output of Bit Manipulation Instructions [V1.04 
or later]".

Rev. Date Description

Page Summary



C - 26

1.12 Dec 01, 2022 11 The description in "Copyrights" is changed.

15 The C++ source file is added in Table 2.1.

18 The description in "Command line operation" is changed.

23,
39

The description of the -use_mda compile option and its information in [Specification 
format] and [Detailed description] are changed, and [Caution] is added.

23,
41

The description of the -lang compile option and its information in [Specification 
format], [Detailed description], and [Remark] are changed.

49 [Detailed description] for the -I compile option is changed.

56,
57,
59,
60

[Specification format], [Detailed description] and [Example of use] for the -O compile 
option are changed.

141 [Detailed description] for the -define assemble option is changed.

163,
176,
206,
207

The -RAM_INIT_TABLE_SECTION link option is added.

164,
219,
226

The -SECURITY_OPT_BYTE link option is added.

164,
219,
229,
230

The -FLASH_SECURITY_ID link option is added.

164,
219,
232-
234

The -SPLIT_SECTION link option is added.

164,
219,
235-
237

The -STRIDE_DSP_MEMORY_AREA link option is added.

165,
219,
246

The -DSP_MEMORY_AREA link option is added.

194,
196

[Detailed description] and [Example of use] for the -CRc link option are changed.

214 [Detailed description] for the -Optimize link option is changed.

225 [Detailed description] for the -OCDBG link option is changed.

Rev. Date Description

Page Summary



C - 27

1.12 Dec 01, 2022 227 [Detailed description] for the -SECURITY_ID ink option is changed.

238 [Detailed description] for the -DEBUG_MONITOR link option is changed.

278,
279

Information about specification of multiple options is changed.

287 FLASH_SECUR_ID is added as a relocation attribute.

355 The description in "Comparison with pointers" in "Specifying memory allocation area 
(__near /__far)" is changed.

456,
458,
459

[Syntax] and [Description] for the .SECTION directive are changed.

461 [Description] for the .CSEG directive is changed.

529 The following section is added in Table 6.1.
.flash_security_id

824-
826

"Initialization of RAM area sections by using an initialization table [V1.12 or later]" is 
added.

828-
831

Table 8.1 is changed.

871,
886

The following messages are changed:
F0520571 and W0561017

880,
886

The following messages are added:
W0511186, W0511187, and W0561018

1.13 Dec 01, 2023 11 The description of "Copyrights" is changed.

13-
15,
and 

others

The description of the library generator is added.

18,
19

The description of "Command line operation" is changed.

21,
280-
290

"Library generator options [V1.13.00 or later]" is added.

22,
37,
40

The -use_mach compile option is added.

22,
44

The description of the -P compile option and its [Detailed description] and [Example 
of use] are changed.

24,
87

The classification of compile options is changed.

100 [Remark] is added to the -misra_intermodule compile option.

165,
214,
220

The -ALLOW_OPTIMIZE_ENTRY_BLOCK link option is added.

Rev. Date Description

Page Summary



C - 28

1.13 Dec 01, 2023 185 [Detailed description] of the -Rom link option is changed.

193 [Detailed description] of the -PADDING link option is changed.

195 [Detailed description] of the -CRc link option is changed.

238 [Example of use] of the -STRIDE_DSP_MEMORY_AREA link option is changed.

240 [Example of use] of the -DEBUG_MONITOR link option is changed.

241 [Detailed description] and [Remark] of the -RRM link option are changed.

371 [Caution] in "Specifying inline function (__inline)" is changed.

373,
374

[Usage] in "Hardware interrupt handler (#pragma interrupt)" is changed.

377 [Usage] in "Software interrupt handler (#pragma interrupt_brk)" is changed.

403 In Table 4.16, the "Function" column for the following intrinsic functions is changed:
__mulul and __mulsl

542 The "Description" column in Table 6.1 is changed.

543 Note of Table 6.1 is deleted.

546 The -rrm option is added in Table 6.2.

547 The title of Chapter 7 is changed.

549 In Table 7.2, the "Outline" column for inttypes.h is changed.

715 [Caution] is added in "setjmp".

847,
848

The contents of "General registers and ES/CS registers whose values are 
guaranteed" are changed.

848 "System registers whose values are guaranteed" is deleted.

850 The description of "Return value" is changed.

852 The description of "Register" in "Calling of C Language Routine from Assembly 
Language" is changed.

854 The following message is changed:
C0519996

855,
875,
891,
892,
904

The following messages are added:
C0590001, E0562114, F0593000, F0593021, F0593300, F0593302, F0593303, 
F0593305, F0593320, F0593321, F0593322, F0593324, F0593325, F0593326, 
F0593327, F0593328, F0593329, F0593330, W0591300, and W0591301

Rev. Date Description

Page Summary



CC-RL User's Manual

Publication Date: Rev.1.00 Aug 01, 2014
                           Rev.1.13 Dec 01, 2023

Published by: Renesas Electronics Corporation



CC-RL

R20UT3123EJ0113


	1. GENERAL
	1.1 Outline
	1.2 Special Features
	1.3 Copyrights
	1.4 License
	1.5 Standard and Professional Editions
	1.6 Free Evaluation Editions

	2. COMMAND REFERENCE
	2.1 Overview
	2.2 I/O Files
	2.3 Environment Variable
	2.4 Method for Manipulating
	2.4.1 Command line operation
	2.4.2 Subcommand file usage

	2.5 Option
	2.5.1 Compile options
	Version/help display specification
	-V
	-help

	Output file specification
	-o
	-obj_path
	-asm_path
	-prep_path

	Source debugging control
	-g
	-g_line [V1.02 or later]

	Device specification relation
	-cpu
	-use_mda
	-use_mach [V1.11.00 or later]

	Language standard specification
	-lang [V1.06 or later]

	Processing interrupt specification
	-P
	-S
	-c

	Preprocessor control
	-D
	-U
	-I
	-preinclude
	-preprocess

	Memory model
	-memory_model
	-far_rom

	Optimization
	-O
	-goptimize

	Error output control
	-no_warning_num
	-change_message [V1.06 or later]
	-error_file

	Additional information output
	-cref
	-pass_source

	Code generation changing
	-dbl_size
	-signed_char
	-signed_bitfield
	-switch
	-volatile
	-merge_string
	-pack
	-stuff [V1.10 or later]
	-stack_protector/-stack_protector_all [Professional Edition only] [V1.02 or later]
	-control_flow_integrity [Professional Edition only] [V1.06 or later]
	-insert_nop_with_label [V1.05 or later]

	Extensions
	-strict_std [V1.06 or later] / -ansi [V1.05 or earlier]
	-refs_without_declaration
	-large_variable
	-nest_comment
	-character_set

	MISRA check
	-misra2004 [Professional Edition only]
	-misra2012 [Professional Edition only] [V1.02 or later]
	-ignore_files_misra [Professional Edition only]
	-check_language_extension [Professional Edition only]
	-misra_intermodule [Professional Edition only] [V1.08 or later]

	Subcommand file specification
	-subcommand

	Assembler and linker control
	-asmopt
	-lnkopt
	-asmcmd
	-lnkcmd
	-dev

	Compiler transition support
	-convert_cc
	-unaligned_pointer_for_ca78k0r [V1.06 or later]


	2.5.2 951Assemble options
	Version/help display specification
	-V
	-help

	Output file specification
	-output
	-obj_path
	-prn_path

	Source debugging control
	-debug

	Device specification control
	-dev
	-cpu
	-mirror_source
	-mirror_region

	Optimization
	-goptimize

	Symbol definition specification
	-define
	-undefine

	Include file reading path specification
	-include

	Input file control
	-character_set
	-base_number

	Assembler transition support
	-convert_asm

	Error message file output specification
	-error_file

	Warning message output control
	-warning
	-no_warning

	Subcommand file specification
	@


	2.5.3 Link options
	Input control
	-Input
	-LIBrary
	-Binary
	-DEFine
	-ENTry
	-ALLOW_DUPLICATE_MODULE_NAME [V1.09 or later]

	Output control
	-FOrm
	-DEBug
	-NODEBug
	-RECord
	-END_RECORD [V1.05 or later]
	-ROm
	-OUtput
	-SPace
	-Message
	-NOMessage
	-MSg_unused
	-BYte_count
	-FIX_RECORD_LENGTH_AND_ALIGN [V1.06 or later]
	-PADDING
	-CRc
	-VECT
	-VECTN
	-SPLIT_VECT [V1.07 or later]
	-VFINFO
	-CFI [Professional Edition only] [V1.06 or later]
	-CFI_ADD_Func [Professional Edition only] [V1.06 or later]
	-CFI_IGNORE_Module [Professional Edition only] [V1.06 or later]
	-RAM_INIT_TABLE_SECTION [V1.12 or later]

	List output
	-LISt
	-SHow

	Optimization
	-Optimize
	-NOOptimize
	-SEction_forbid
	-Absolute_forbid
	-SYmbol_forbid [V1.02 or later]
	-ALLOW_OPTIMIZE_ENTRY_BLOCK [V1.13 or later]

	Section specification
	-STARt
	-FSymbol
	-USER_OPT_BYTE
	-OCDBG
	-SECURITY_OPT_BYTE [V1.12 or later]
	-SECURITY_ID
	-FLASH_SECURITY_ID [V1.12 or later]
	-AUTO_SECTION_LAYOUT
	-SPLIT_SECTION [V1.12 or later]
	-STRIDE_DSP_MEMORY_AREA [V1.12 or later]
	-DEBUG_MONITOR
	-RRM
	-SELF
	-SELFW
	-OCDTR
	-OCDTRW
	-OCDHPI
	-OCDHPIW
	-DSP_MEMORY_AREA [V1.12 or later]

	Verify specification
	-CPu
	-CHECK_DEVICE
	-CHECK_64K_ONLY
	-NO_CHECK_SECTION_LAYOUT
	-CHECK_OUTPUT_ROM_AREA [V1.07 or later]

	Subcommand file specification
	-SUbcommand

	Microcontroller specification
	-DEVICE

	Other
	-S9
	-STACk
	-COmpress
	-NOCOmpress
	-MEMory
	-REName
	-LIB_REName [V1.08 or later]
	-DELete
	-REPlace
	-EXTract
	-STRip
	-CHange_message
	-Hide
	-Total_size
	-VERBOSE [V1.10 or later]
	-LOgo
	-NOLOgo
	-END
	-EXIt


	2.5.4 Library generator options [V1.13.00 or later]
	Library generation control
	-head
	-lang
	-secure_malloc [Professional Edition only]

	Output control
	-output

	Other
	-logo / -nologo
	-subcommand



	2.6 Specifying Multiple Options
	2.6.1 Specifying multiple times of options
	2.6.2 Priority of options
	2.6.3 Combinations of options with conflicting features
	2.6.4 Dependence between options
	2.6.5 Relationship with #pragma directives
	2.6.6 Relationship with near and far


	3. OUTPUT FILES
	3.1 Assemble List File
	3.1.1 Structure of the assemble list
	3.1.2 Assemble list information
	3.1.3 Section list information
	3.1.4 Command line information

	3.2 Link Map File
	3.2.1 Structure of link map
	3.2.2 Header information
	3.2.3 Option information
	3.2.4 Error information
	3.2.5 Link map information
	3.2.6 Total section size
	3.2.7 Symbol information
	3.2.8 Contents of the function list
	3.2.9 Cross reference information
	3.2.10 Vector table address information
	3.2.11 CRC information

	3.3 Link Map File (When Objects Are Combined)
	3.3.1 Structure of link map
	3.3.2 Header information
	3.3.3 Option information
	3.3.4 Error information
	3.3.5 Entry information
	3.3.6 Combined address information
	3.3.7 Address overlap information

	3.4 Library List File
	3.4.1 Structure of the library list
	3.4.2 Option information
	3.4.3 Error information
	3.4.4 Library information
	3.4.5 Module, section, and symbol information within the library

	3.5 Intel HEX File
	3.5.1 Structure of the Intel HEX file
	3.5.2 Start linear address record
	3.5.3 Extended linear address record
	3.5.4 Start segment address record
	3.5.5 Extended segment address record
	3.5.6 Data record
	3.5.7 End of file record

	3.6 Motorola S-record File
	3.6.1 Structure of the Motorola S-record file
	3.6.2 S0 record
	3.6.3 S1 record
	3.6.4 S2 record
	3.6.5 S3 record
	3.6.6 S7 record
	3.6.7 S8 record
	3.6.8 S9 record

	3.7 Variable/Function Information File
	3.7.1 Outputting the variable/function information file
	3.7.2 How to use variable/function information file


	4. COMPILER LANGUAGE SPECIFICATIONS
	4.1 Basic Language Specifications
	4.1.1 Implementation-defined behavior of C90
	4.1.2 Implementation-defined behavior of C99
	4.1.3 Internal representation and value area of data
	4.1.4 Allocation conditions for data and function
	4.1.5 Static variable initialization
	4.1.5.1 Initialization by address calculation
	4.1.5.2 Casting far address to near address and then converting to far address


	4.2 Extended Language Specifications
	4.2.1 Reserved words
	4.2.2 Macro
	4.2.3 C99 language specifications supported in conjunction with C90
	4.2.4 #pragma directive
	4.2.5 Binary constants
	4.2.6 Using extended language specifications
	Using saddr area (__saddr)
	callt function (__callt)
	Specifying memory allocation area (__near /__far)
	Specifying inline function (__inline)
	Section address operator (__sectop/__secend)
	Hardware interrupt handler (#pragma interrupt)
	Software interrupt handler (#pragma interrupt_brk)
	Changing compiler output section name (#pragma section)
	Interrupt handler for RTOS (#pragma rtos_interrupt)
	Task function for RTOS (#pragma rtos_task)
	Inline expansion of function (#pragma inline, #pragma noinline)
	Describing assembler instruction (#pragma inline_asm)
	Absolute address allocation specification (#pragma address)
	Using saddr area (#pragma saddr)
	callt function (#pragma callt)
	near/far function (#pragma near/#pragma far) [V1.05 or later]
	Structure packing (#pragma pack/#pragma unpack) [V1.05 or later]
	Generating a code for detection of stack smashing (#pragma stack_protector/#pragma no_stack_protector) [Professional Edition only] [V1.02 or later]
	Binary constants

	4.2.7 Intrinsic functions


	5. ASSEMBLY LANGUAGE SPECIFICATIONS
	5.1 Description of Source
	5.1.1 Basic structure
	5.1.2 Description
	5.1.3 Expressions and operators
	5.1.4 Arithmetic operators
	+
	-
	*
	/
	%
	+sign
	-sign

	5.1.5 Bit logic operators
	~
	&
	|
	^

	5.1.6 Relational operators
	==
	!=
	>
	>=
	<
	<=

	5.1.7 Logical operators
	&&
	||

	5.1.8 Shift operators
	>>
	<<

	5.1.9 Byte separation operators
	HIGH
	LOW

	5.1.10 2-byte separation operators
	HIGHW
	LOWW
	MIRHW
	MIRLW
	SMRLW

	5.1.11 Special operators
	DATAPOS
	BITPOS

	5.1.12 Section operators
	STARTOF
	SIZEOF

	5.1.13 Other operator
	( )

	5.1.14 Restrictions on operations
	5.1.15 Bit position specifier
	5.1.16 Operand characteristics

	5.2 Directives
	5.2.1 Outline
	5.2.2 Section definition directives
	.SECTION
	.CSEG
	.DSEG
	.BSEG
	.ORG
	.OFFSET

	5.2.3 Symbol definition directives
	.EQU
	.SET

	5.2.4 Data definition/Area reservation directives
	.DB
	.DB2
	.DB4
	.DB8
	.DS
	.DBIT
	.ALIGN

	5.2.5 External definition/External reference directives
	.PUBLIC
	.EXTERN
	.EXTBIT
	.WEAK [V1.11 or later]

	5.2.6 Compiler output directives
	.LINE
	.STACK
	._LINE_TOP
	._LINE_END
	.VECTOR
	.ALIAS [V1.11.00 or later]
	.TYPE [V1.11.00 or later]

	5.2.7 Macro directives
	.MACRO
	.LOCAL
	.REPT
	.IRP
	.EXITM
	.EXITMA
	.ENDM

	5.2.8 Branch directives
	.Bcond

	5.2.9 Machine-Language Instruction Set

	5.3 Control Instructions
	5.3.1 Outline
	5.3.2 File input control instructions
	INCLUDE
	BINCLUDE

	5.3.3 Mirror source area reference control instructions
	MIRROR

	5.3.4 Assembler control instructions
	NOWARNING
	WARNING

	5.3.5 Conditional assembly control instructions
	IFDEF
	IFNDEF
	IF
	IFN
	ELSEIF
	ELSEIFN
	ELSE
	ENDIF


	5.4 Macro
	5.4.1 Outline
	5.4.2 Usage of macro
	5.4.3 Nesting macro definitions
	5.4.4 Nesting macro references
	5.4.5 Macro operator
	5.4.6 Error processing

	5.5 Using SFR Symbols and Extended SFR Symbols
	5.6 Reserved Words
	5.7 Assembler Generated Symbols

	6. SECTION SPECIFICATIONS
	6.1 Sections
	6.1.1 Section name
	6.1.2 Section concatenation

	6.2 Special Symbol
	6.2.1 Symbols generated regardless of option specifications
	6.2.2 Symbols generated by option specifications


	7. LIBRARY FUNCTION SPECIFICATIONS
	7.1 Supplied Libraries
	7.2 Rule for Naming Libraries
	7.3 Allocation Area of Libraries and Startup Routine
	7.4 Header Files
	7.5 Library Function
	7.5.1 Program diagnostic functions
	assert

	7.5.2 Character operation functions
	isalnum
	isalpha
	isascii
	isblank [V1.07 or later]
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	toascii
	tolower
	toupper

	7.5.3 Functions for greatest-width integer types
	imaxabs [V1.07 or later]
	imaxdiv [V1.07 or later]
	strtoimax [V1.07 or later]
	strtoumax [V1.07 or later]

	7.5.4 Mathematical functions
	fpclassify [V1.08 or later]
	isfinite [V1.08 or later]
	isinf [V1.08 or later]
	isnan [V1.08 or later]
	isnormal [V1.08 or later]
	signbit [V1.08 or later]
	acos
	acosf
	acosl [V1.08 or later]
	asin
	asinf
	asinl [V1.08 or later]
	atan
	atanf
	atanl [V1.08 or later]
	atan2
	atan2f
	atan2l [V1.08 or later]
	cos
	cosf
	cosl [V1.08 or later]
	sin
	sinf
	sinl [V1.08 or later]
	tan
	tanf
	tanl [V1.08 or later]
	acosh [V1.08 or later]
	acoshf [V1.08 or later]
	acoshl [V1.08 or later]
	asinh [V1.08 or later]
	asinhf [V1.08 or later]
	asinhl [V1.08 or later]
	atanh [V1.08 or later]
	atanhf [V1.08 or later]
	atanhl [V1.08 or later]
	cosh
	coshf
	coshl [V1.08 or later]
	sinh
	sinhf
	sinhl [V1.08 or later]
	tanh
	tanhf
	tanhl [V1.08 or later]
	exp
	expf
	expl [V1.08 or later]
	frexp
	frexpf
	frexpl [V1.08 or later]
	ldexp
	ldexpf
	ldexpl [V1.08 or later]
	log
	logf
	logl [V1.08 or later]
	log10
	log10f
	log10l [V1.08 or later]
	log1p [V1.08 or later]
	log1pf [V1.08 or later]
	log1pl [V1.08 or later]
	modf
	modff
	modfl [V1.08 or later]
	scalbn [V1.09 or later]
	scalbnf [V1.09 or later]
	scalbnl [V1.09 or later]
	scalbln [V1.09 or later]
	scalblnf [V1.09 or later]
	scalblnl [V1.09 or later]
	fabs
	fabsf
	fabsl [V1.08 or later]
	pow
	powf
	powl [V1.08 or later]
	sqrt
	sqrtf
	sqrtl [V1.08 or later]
	ceil
	ceilf
	ceill [V1.08 or later]
	floor
	floorf
	floorl [V1.08 or later]
	nearbyint [V1.09 or later]
	nearbyintf [V1.09 or later]
	nearbyintl [V1.09 or later]
	rint [V1.09 or later]
	rintf [V1.09 or later]
	rintl [V1.09 or later]
	lrint [V1.09 or later]
	lrintf [V1.09 or later]
	lrintl [V1.09 or later]
	llrint [V1.09 or later]
	llrintf [V1.09 or later]
	llrintl [V1.09 or later]
	round [V1.09 or later]
	roundf [V1.09 or later]
	roundl [V1.09 or later]
	lround [V1.09 or later]
	lroundf [V1.09 or later]
	lroundl [V1.09 or later]
	llround [V1.09 or later]
	llroundf [V1.09 or later]
	llroundl [V1.09 or later]
	trunc [V1.09 or later]
	truncf [V1.09 or later]
	truncl [V1.09 or later]
	fmod
	fmodf
	fmodl [V1.08 or later]
	copysign [V1.09 or later]
	copysignf [V1.09 or later]
	copysignl [V1.09 or later]
	nan [V1.09 or later]
	nanf [V1.09 or later]
	nanl [V1.09 or later]
	fdim [V1.09 or later]
	fdimf [V1.09 or later]
	fdiml [V1.09 or later]
	fmax [V1.09 or later]
	fmaxf [V1.09 or later]
	fmaxl [V1.09 or later]
	fmin [V1.09 or later]
	fminf [V1.09 or later]
	fminl [V1.09 or later]
	isgreater [V1.09 or later]
	isgreaterequal [V1.09 or later]
	isless [V1.09 or later]
	islessequal [V1.09 or later]
	islessgreater [V1.09 or later]
	isunordered [V1.09 or later]

	7.5.5 Non-local jump functions
	setjmp
	longjmp

	7.5.6 Variable arguments of functions
	va_start
	va_arg
	va_copy [V1.09 or later]
	va_end

	7.5.7 Standard I/O functions
	printf
	scanf
	snprintf [V1.07 or later]
	sprintf
	sscanf
	vprintf
	vscanf [V1.08 or later]
	vsnprintf [V1.07 or later]
	vsprintf
	vsscanf [V1.08 or later]
	getchar
	gets
	putchar
	puts
	perror

	7.5.8 General utility functions
	atof
	atoff
	atoi
	atol
	atoll [V1.07 or later]
	strtod
	strtof
	strtold [V1.07 or later]
	strtol
	strtoll [V1.07 or later]
	strtoul
	strtoull [V1.07 or later]
	rand
	srand
	calloc [V1.02 or later]
	free [V1.02 or later]
	malloc [V1.02 or later]
	realloc [V1.02 or later]
	abort
	bsearch
	qsort
	abs
	div
	labs
	ldiv
	llabs [V1.07 or later]
	lldiv [V1.07 or later]

	7.5.9 Character string operation functions
	memcpy
	memmove
	strcpy
	strncpy
	strcat
	strncat
	memcmp
	strcmp
	strncmp
	memchr
	strchr
	strcspn
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	memset
	strerror
	strlen

	7.5.10 Initialization functions
	hdwinit
	stkinit

	7.5.11 Runtime libraries

	7.6 Interrupt Disabled Time, Use of Data Sections, and Reentrancy
	7.6.1 Standard library
	7.6.2 Runtime library


	8. STARTUP
	8.1 Outline
	8.2 Startup Routine
	8.2.1 Reset vector table setting
	8.2.2 Register bank setting
	8.2.3 Mirror area setting
	8.2.4 Stack area allocation, stack pointer setting, and stack area initialization
	8.2.5 Initialization of peripheral I/O registers required before main function execution
	8.2.6 Initialization of RAM area section
	8.2.6.1 Initialization of RAM area sections by using an initialization table [V1.12 or later]

	8.2.7 Startup of main function
	8.2.8 Creation of termination routine
	8.2.9 Startup of the RL78-S1 core

	8.3 Coding Example
	8.4 Creating ROM Images

	9. FUNCTION CALL INTERFACE SPECIFICATIONS
	9.1 Function Call Interface
	9.1.1 General registers and ES/CS registers whose values are guaranteed
	9.1.1.1 General registers AX, BC, DE, and HL
	9.1.1.2 ES and CS registers
	9.1.1.3 PSW and PC registers
	9.1.1.4 MACR register
	9.1.1.5 Other registers

	9.1.2 Passing arguments
	9.1.3 Return value
	9.1.4 Stack frame

	9.2 Calling of Assembly Language Routine from C Language
	9.3 Calling of C Language Routine from Assembly Language
	9.4 Reference of Argument Defined by Other Language

	10. MESSAGE
	10.1 General
	10.2 Message Formats
	10.3 Message Types
	10.4 Message Numbers
	10.5 Messages
	10.5.1 Internal errors
	10.5.2 Errors
	10.5.3 Fatal errors
	10.5.4 Information
	10.5.5 Warnings


	11. CAUTIONS
	11.1 Cautions Regarding Compiler
	11.1.1 Indirect reference of pointer
	11.1.2 Register access via pointer
	11.1.3 Function calling
	11.1.4 Data flash area
	11.1.5 Function definitions in K&R format (formal parameters of _Bool type)
	11.1.6 MISRA2004 check (rule number 10.1)
	11.1.7 Extended language specifications which needs the device file
	11.1.8 Controlling the Output of Bit Manipulation Instructions [V1.04 or later]

	11.2 Cautions Regarding Library and Startup
	11.2.1 Setting of Processor Mode Control Register (PMC)
	11.2.2 Label whose value is determined by the linker
	11.2.3 Options necessary at assembling the startup file
	11.2.4 Usage Restriction of Standard Library Function Name
	11.2.5 Error in standard library functions
	11.2.6 Definition of comparison functions bsearch and qsort in K&R format
	11.2.7 Initialization of Stack Area at Startup [V1.07 or earlier]
	11.2.8 Specifying standard library functions when C99 standard is specified by an individual option

	11.3 Cautions Regarding Assembler
	11.3.1 Assembler driver
	11.3.2 .DB8 directive
	11.3.3 Bit symbols
	11.3.4 .ALIGN directive
	11.3.5 Separation operators
	11.3.6 Predefined macro enabled in an assembly source file
	11.3.7 An option depending on the order of specification of options

	11.4 Cautions Regarding Linker
	11.4.1 -strip option
	11.4.2 -memory option
	11.4.3 Overwrite of variable/function information file
	11.4.4 Allocation of sections
	11.4.5 Variable/function information file that may cause a compile error
	11.4.6 Error output regarding an address not in the saddr access range
	11.4.7 Version of Compiler Package


	A. QUICK GUIDE
	A.1 Variables (C Language)
	A.1.1 Allocating to sections accessible with short instructions
	A.1.2 Defining variables for use during both ordinary and interrupt processing
	A.1.3 Defining const pointer

	A.2 Functions
	A.2.1 Changing area allocation
	A.2.2 Embedding assembler instructions
	A.2.3 Executing a program in RAM

	A.3 Variables (Assembly Language)
	A.3.1 Defining variables with no initial values
	A.3.2 Defining variable with initial values
	A.3.3 Defining const data


	Revision Record

