Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

APPBD-LCD

LCD Application Board

Microcomputer Development Environment System

APPBD-LCD – LCD Application Board User's Manual

Published by : Renesas System Solutions Asia Pte. Ltd.

Date : June 4th, 2004, Version 2.0

Copyright(C) Renesas System Solutions Asia Pte. Ltd. All rights reserved.

Trademarks

a) General

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organizations.

b) Specific

Microsoft, MS and MS-DOS is registered trademark.

Windows and Windows NT are trademarks of Microsoft Corporation.

Pentium is a registered trademark of Intel.

i

IMPORTANT INFORMATION

- READ this user's manual before using this emulator product.
- KEEP the user's manual handy for future reference.

Do not attempt to use the product until you fully understand its mechanism.

APPBD:

Throughout this document, the term "APPBD" shall be defined as the LCD Application Board, APPBD-LCD produced only by Renesas System Solutions Asia Pte. Ltd. excludes all subsidiary products.

The user system or a host computer is not included in this definition.

Purpose of the Product:

This product is a development-supporting unit for use as a training and evaluation tool. The product must only be used for the above purpose.

Improvement Policy:

Renesas System Solutions Asia Pte. Ltd. (hereafter collectively referred to as Renesas) pursues a policy of continuing improvement in design, performance, and safety of the emulator product. Renesas reserves the right to change, wholly or partially, the specifications, design, user's manual, and other documentation at any time without notice.

Target User of the Product:

This product should only be used by those who have carefully read and thoroughly understood the information as well as restrictions contained in the user's manual. Do not attempt to use the product until you fully understand its mechanism.

It is highly recommended that first-time users. Be instructed by users that are well versed in the operation of emulator product.

LIMITED WARRANTY

Renesas warrants its products to be manufactured in accordance with published specifications and free from defects in material and/or workmanship. The foregoing warranty does not cover damage caused by fair wear and tear, abnormal store condition, incorrect use, accidental misuse, abuse, neglect, corruption, misapplication, addition or modification or by the use with other hardware or software, as the case may be, with which the product is incompatible. No warranty of fitness for a particular purpose is offered. The user assumes the entire risk of using the product. Any liability of Renesas is limited exclusively to the replacement of defective materials or workmanship.

DISCLAIMER

RENESAS MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLED, ORAL OR WRITTEN, EXCEPT AS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THEREOF, WARRANTIES AS TO MARKETABILITY, MECRCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR USE, OR AGAINST INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL RENESAS BE LIABLE FOR ANY DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE EMULATOR PRODUCT, THE USE OF ANY EMULATOR PRODUCT OR ITS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCEPT AS EXPRESSLY STATED OTHERWISE IN THIS WARRANTY, THIS EMULATOR PRODUCT IS SOLD "AS IS". AND YOU MUST ASSUME ALL RISK FOR THE USE AND RESULTS OBTAINED FROM THE EMULATOR PRODUCT.

State Law:

Some states do not allow the exclusion or limitation of implied warranty or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other rights which may varies from state to state.

The Warranty is Void in the Following Cases:

Renesas shall have no liability or legal responsibility for any problems caused by misuse, abuse, misapplication, neglect, improper handling, installation, repair or modifications of the emulator product without Renesas's prior written consent or any problems caused by the user system.

Restrictions:

1. Earthing (applies only to manual for Renesas hardware products)

This hardware is designed for use with equipment that is fully earthed.

Ensure that all equipments used are appropriately earthed.

Failure to do so could lead to danger for the operator or damaged to equipments.

2. Electrostatic Discharge Precautions (applies only to manuals for Renesas hardware products)

This hardware contains devices that are sensitive to electrostatic discharge.

Ensure appropriate precautions are observed during handling and accessing connections.

Failure to do so could result in damage to the equipment.

All Right Reserved:

This user's manual and emulator product are copyrighted and all rights are reserved by Renesas. No part of this user's manual, all or part, any be reproduced or duplicated in any form, in hardcopy or machine-readable form, by any means available without Renesas's prior written consent.

Other Important Things to Keep in Mind:

- 1. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Renesas Technology's semiconductor products. Renesas assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 2. No license is granted by implication or otherwise under any patents or other rights of any third party or Renesas.
- 3. MEDICAL APPLICATIONS: Renesas Technology's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Renesas Technology (Asia Sales company). Such use includes, but is not limited to, use in life support systems. Buyers of Renesas Technology's products are requested to notify the relevant Renesas Technology (Asia Sales offices) when planning to use the products in MEDICAL APPLICATIONS.

Figures:

Some figures in this user's manual may show items different from your actual system.

Limited Anticipation of Danger:

Renesas cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this user's manual and on the emulator product are therefore not all inclusive. Therefore, you must use the emulator product safely at your own risk.

PREFACE

About this manual

This manual explains how to setup and use the LCD Application board [APPBD-LCD] for evaluating the performance of the on-chip peripheral in the microcomputer. In the subsequent write up in this manual, the application board shall term as 'APPBD'.

Operation using the ALE300L - 3800 emulator and 38024F CPU Board also detailed in the manual.

1. Introduction

Gives an introduction about the APPBD layout, key features and specification.

2. Hardware Design

Explains the detail of hardware circuit design (block by block) in APPBD.

3. Installations

Explains how to install the hardware and configuration with different type of emulator.

4. Usage Concerns

Explains the various causes of probable malfunctions that may occur during operation and suggests countermeasures to overcome them.

5. Operating Procedures

Explains the system setup and operation flow for the APPBD.

6. Software Design

Explains the detail of software design (module by module) in APPBD.

Appendices

Appendix A - APPBD-LCD Board Layout

Appendix B - APPBD-LCD Pin Assignment table;

Appendix C - APPBD-LCD Schematic Drawings;

Appendix D - APPBD-LCD - Bill of Materials

Technical Support

The APPBD is a product for evaluation purposes only. We do NOT supply the same level of support as for the development tools, however, you may contact the sales offices for downloads and documents.

Related Manuals:

H8S, H8/300 series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual H8/38024 Series, H8/38024F-ZTAT $^{\text{TM}}$ Series Hardware Manual

Table of Contents

1.	INTROI	DUCTION	1
	1.1. OVE	ERVIEW	1
	1.2. SPE	CIFICATIONS	2
	1.3. KEY	FEATURES	2
	1.4. PAC	KAGE	
	1.4.1.	Hardware Components	
	1.4.2.	Software Components	3
2.	HARDW	VARE DESIGN	4
	2.1. Circ	CUIT DESIGN	5
	2.1.1.	Reset Circuit	
	2.1.2.	Interrupt Circuit	6
	2.1.3.	ADC Ĉircuit	
	2.1.4.	PWM Circuit	7
	2.1.5.	LCD panel Display Circuit	
	2.1.6.	Asynchronous Serial Communication Interface (SCI3)	
	2.1.7.	Infrared Remote Control Sensor Circuit	
	2.1.8.	Power Supply Circuit	11
3.	INSTAL	LATION	12
	3.1. LAB	EL OF PARTS ON APPLICATION BOARD	12
		H ALE300L EMULATOR CONNECTED	
		TH 38024F CPU BOARD CONNECTED	
4.		CONSTRAINTS	
4.			
		RARED REMOTE FUNCTION	
	4.1.1.	Causes of Malfunction	
	4.1.2.	Countermeasures	
		Os/Buzzer/Keypad	
	<i>4.2.1. 4.2.2.</i>	Causes of Malfunction	
5.	OPERA'	TING PROCEDURES	15
	5.1. OVE	RVIEW - DEMONSTRATION PROGRAM	15
	5.2. Swi	TCHES/KEYPAD	15
		RATION OVERVIEW	
		JSTRATION OF OPERATION FLOW	
	5.5. TES	T Procedures and Descriptions	18
6.	SOFTW	ARE DESIGN	19
	6.1. MAI	IN PROGRAM	19
		C & PWM function	
		PAD & SCI FUNCTION	
		ER & COUNTER FUNCTION	
		/er-Down Mode function	
	6.6. INF	RA-RED REMOTE TEST FUNCTION	24
	6.6.1.	LEARN IR Command Function	25

6.6.2.	Test IR Command Function	26
6.7. D	ESCRIPTION OF MODULES	27
6.7.1.	ApplicationDemo.c	27
6.7.2.	Intprg.c	27
6.7.3.	Applicationdemo.h	
	BLE-SHOOTING	
APPENDIX	X A APPBD – LCD BOARD LAYOUT	30
APPENDIX	X B PIN ASSIGNMENT (CON1 & CON2)	31
APPENDIX	X C SCHEMATIC DRAWINGS	33
APPENDIX	X D BILL OF MATERIALS	38

Figures & Tables

FIGURE 1.1	LCD APPLICATION BOARD [APPBD-LCD]	1
FIGURE 1.2	LCD APPLICATION BOARD [APPBD – LCD] PACKAGE	3
FIGURE 2.1	SYSTEM BLOCK DIAGRAM	4
FIGURE 2.2	RESET CIRCUIT	
FIGURE 2.3	INTERRUPT CIRCUIT	6
FIGURE 2.4	ADC INTERFACE CIRCUIT (AN0)	
FIGURE 2.5	PWM CIRCUIT	7
FIGURE 2.6	LCD PANEL DISPLAY CIRCUIT	8
FIGURE 2.7	ASYNCHRONOUS SERIAL COMMUNICATION INTERFACE	9
FIGURE 2.8	IR SENSOR CIRCUIT	10
FIGURE 2.9	POWER SUPPLY CIRCUIT	11
FIGURE 3.1	LABEL OF PARTS ON APPLICATION BOARD	12
FIGURE 3.2	CONNECTIONS TO ALE300L EMULATOR	12
FIGURE 3.3	CONNECTION TO CPU BOARD [TOP VIEW]	13
FIGURE 3.4	CONNECTION TO CPU BOARD [CROSS-SECTION VIEW]	13

1. Introduction

1.1. Overview

The LCD APPLICATION BOARD is a low-cost board designed to demonstrate the capabilities of the peripheral modules from the 8-bit microcomputer - H8/300L Super Low Power series (PROM or Flash Memory version).

This board is also accompanied with demonstration software and this software is written in ANSI 'C' language.

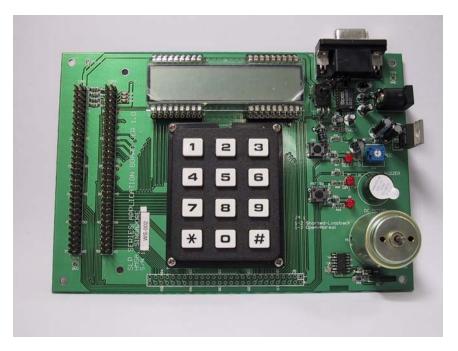


Figure 1.1 LCD Application Board [APPBD-LCD]

1.2. Specifications

The table below lists the specifications of APPBD:

Item	Specifications	
Host Machine	 □ Minimum Pentium™ or Equivalent processor PC □ Microsoft Windows 95 or later □ One Serial Port 	
Interface Software	 □ Windows based HDI for ALE300L-3800 series <u>OR</u> □ HEW2 for 38024F CPU Board 	
Supported MCUs	 □ H8/3802 Series □ H8/38024 series □ H8/38024F 	
Clock Source Selection	□ Clock input from ALE-300L □ Clock input from 38024F CPU Board	
Operating Modes	Active Mode	
Power Supply	□ External Power Supply Voltage: +5.0 VDC □ Current: 150mA (max)	
Environmental	 □ Temperature: 10°C to 50 °C □ Humidity: 30% to 85% relative humidity (no condensation) □ No corrosive gas 	

1.3. Key Features

- □ LCD Display (32 Segments X 4 COM) [This is applicable to H8/38024 only]
- □ 4x3 Matrix Keypad Input
- □ Interrupts (IRQ0)
- □ Timer
- □ Analog to Digital Converter (ADC)
- □ Synchronous Serial Communication Interface (SCI 3)
- □ Low voltage DC Motor (PWM demonstration)
- □ Buzzer
- □ Power-down Modes
- □ Interface to 38024F CPU board
- □ Interface to ALE300L H8/3800 Low-cost emulator for debugging on wide range of H8/300L SLP series microcomputers
- □ CD-ROM based documentation (User Manual and Demo program)

1.4. Package

The APPBD is supplied in a package containing the following components:

Figure 1.2 LCD Application Board [APPBD – LCD] Package

1.4.1. Hardware Components

The hardware components included in the package are listed below.

- 1 x LCD Application Board
- 1 x RS-232 Serial cable
- 1 x DC Power Input Jack free-end cable

1.4.2. Software Components

1 x CD ROM containing User's Manual, Tutorial program Source code, Schematic drawings

Before proceeding, user has to check that all the items listed in the packing list. Please contact the relevant Asia sales office of Renesas Technology if any item is missing.

2. Hardware Design

The following drawing shows the overall design of the APPBD.

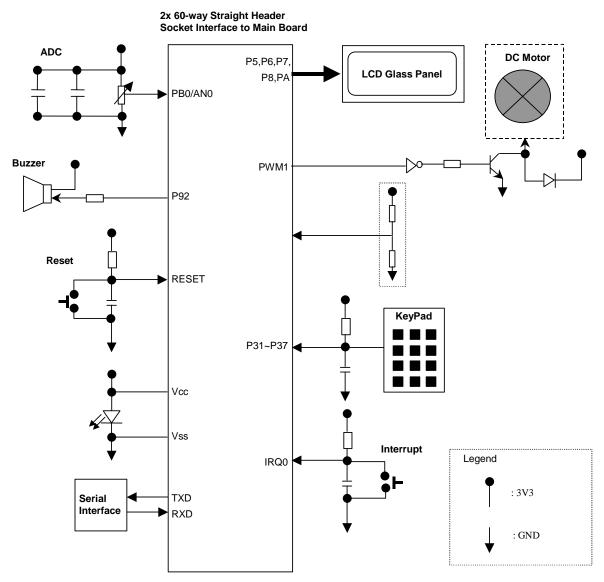


Figure 2.1 System Block Diagram

2.1. Circuit Design

The APPBD has the following circuits:

- □ Reset Circuit
- Interrupt Circuit
- □ ADC Input Circuit
- □ PWM Circuit
- □ 32-Segment x 4 COM LCD Display Circuit
- Asynchronous Serial Communication Circuit
- ☐ Infrared Remote Control Sensor Circuit
- □ Power Supply Circuit

2.1.1. Reset Circuit

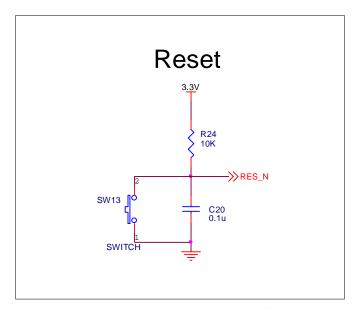


Figure 2.2 Reset Circuit

SLP device series requires an active-low signal for reset operation. Initially, the reset line is held high, when RESET (SW13) switch is pressed, the capacitor (C20) discharges through RESET switch and thus, asserting the reset line low. When the reset switch is released again, C20 charges up to +3.3V through resistor (R24).

2.1.2. Interrupt Circuit

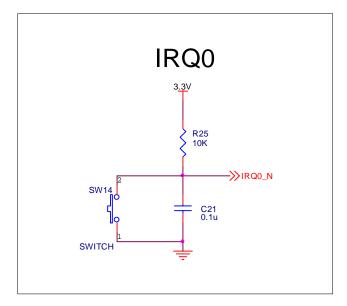


Figure 2.3 Interrupt Circuit

SLP device series requires an active low signal for IRQ0. Initially, the IRQ0 line is held high and when IRQ (SW14) switch is pressed, the capacitor (C21) discharges through IRQ0 switch asserting the IRQ0 line low. When the IRQ0 switch is released, C21 charges up to +3.3V through resistor (R25).

The APPBD demonstrates the use of IRQ0 as wake up element during the MCU power down mode.

2.1.3. ADC Circuit

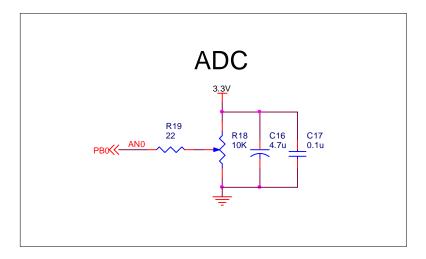


Figure 2.4 ADC Interface Circuit (AN0)

SLP device series has eight analog input channels. Only AN0 is used for the demonstration purpose. Capacitors C16 & C17 are provided to prevent low & high frequency noise. Resistor R19 is used to provide the damping effect, whereas variable potentiometer R18 is provided for the user to vary the

analogue input. The value of the input voltage is displayed on the LCD panel. Start the ADC conversation by pressing the keypad button '1' indicated in the main menu.

2.1.4. PWM Circuit

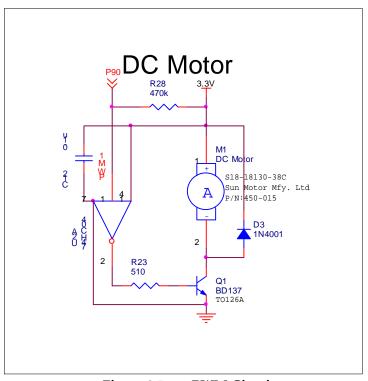


Figure 2.5 PWM Circuit

SLP device series is provided with two channels of on-chip 10-bit PWMs (Pulse Width Modulators), designated PWM1 and PWM2. Only PWM1 is used for the demonstration purpose. PWM1 is used to drive a DC motor via an INVERTER (74HC04) and NPN transistor (BD137), Diode 1N4001 is used as DC motor discharge element during power supply cut-off.

PWM1 received the converted value from the ADC, AN0 channel for controlling the spinning speed of the DC motor.

2.1.5. LCD panel Display Circuit

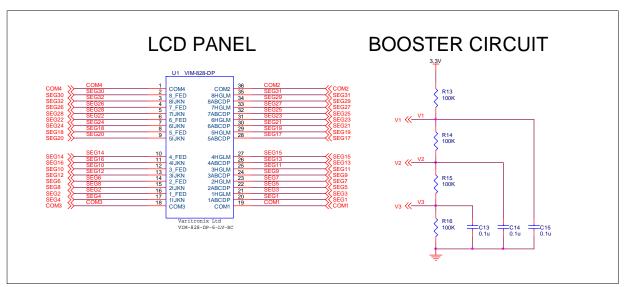


Figure 2.6 LCD panel Display Circuit

The APPBD uses 32 segments x 4 common LCD glass capable of displaying 8 characters targeted at H8/38024 series. [25 segments x 4 common for H8/3802 series] Each segment is directly connected to the output of H8/38024 device.

To turn on a particular segment, user needs to write word value to LCD RAM (H'F740 – H'F74F). When a large panel is driven, the on-chip power supply capacity may be insufficient and thus external split-resistance boosting circuit is needed. The resister value is varied from several $k\Omega$ to several $M\Omega$ depend on the LCD glass.

2.1.6. Asynchronous Serial Communication Interface (SCI3)

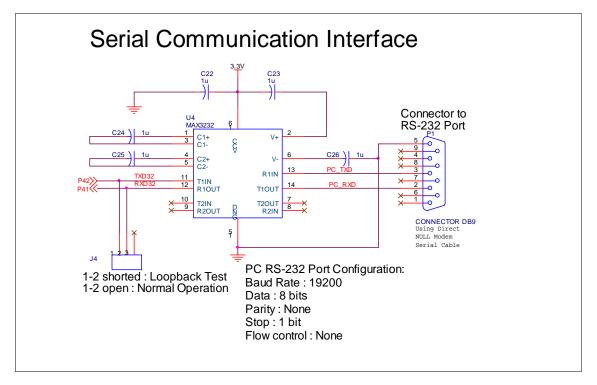


Figure 2.7 Asynchronous Serial Communication Interface

The APPBD uses SCI Channel 3 for conversion of TTL data from the microcomputer to RS-232 via RS232 transceiver (U4). Data of 8-bit character, 1 start bit, 1 stop bit and no parity bit. is sent at baud rate of 38400bps and received by looping back. The loop-back test is conducted by shorting pins 1 & 2 of J4 and the received data is then displayed on LCD panel.

The APPBD communicates with an external RS-232 interface (e.g. PC COMM1) through a DB-9 connector, and the jumper setting on J4 is ignored.

To enable the SCI port, user need to do the following step:

- 1. Open "ApplicationDemo.c" using HEW2
- 2. Edit the source code as below:

- 3. Build (click F7) to compile the "ApplicationDemo" workspace using HEW2.
- 4. Download the .abs file or .mot file in standalone mode to test the SCI function.

2.1.7. Infrared Remote Control Sensor Circuit

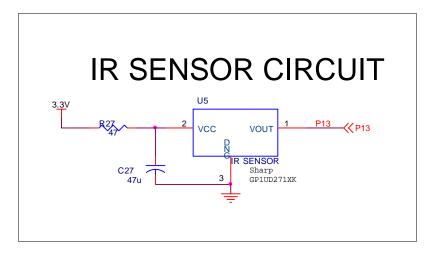


Figure 2.8 IR sensor circuit

The APPBD is equipped with one IR sensor that is able to receive the following remote signal from the following handheld remote control:

- □ Hitachi
- □ Sony
- □ Other 38KHz modulated infrared signal.

There is a possibility that environmental conditions such as noise from fluorescent light, Electromagnetic noise, Power supply line noise may affect the output even if no input transmission signal is present.

Remote control data format varies according to the type of handheld remote control used. As an example for IR application, no specific format is chosen for demonstration program. Therefore, a routine is required and used to remove the header and tail of the data stream captured.

In order to simplify the IR decoding and increase of data accuracy, user may need to add special header and tail removal function for the data stream captured.

Note:

Please [press] Remote control button as fast as possible (less than 1s) to allow the successful learning process.

2.1.8. Power Supply Circuit

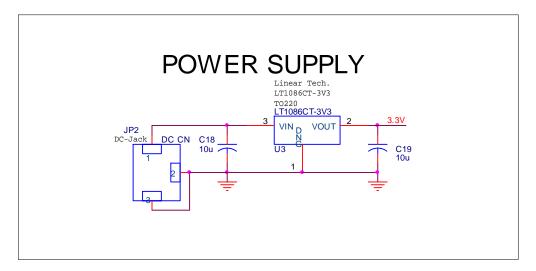


Figure 2.9 Power Supply Circuit

The APPBD works from an external DC supply (+5.0VDC $\sim +9.0$ VDC). The input voltage is internally stepped down to +3.3VDC for the demonstration operation using a voltage regulator.

Upon power on, a LED D1 (GREEN) is lit.

When the APPBD is used with either 38024F CPU board or ALE300L emulator, external DC supply must be input to the APPBD, otherwise there might be insufficient drive from the CPU board or ALE300L emulator to drive the APPBD properly.

3. Installation

Before the installation, always ensure the power is switched OFF first. The installation is allowed in any of the following configurations:

3.1. Label of Parts on Application Board

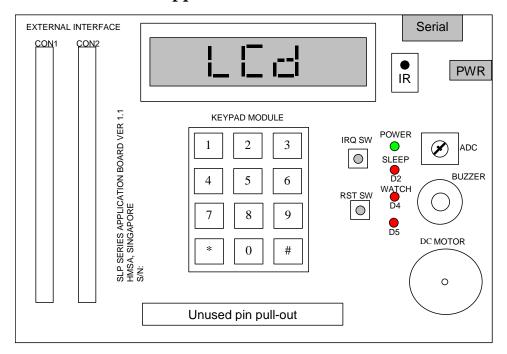


Figure 3.1 Label of Parts on Application Board

3.2. With ALE300L Emulator connected

APPBD could be connected to ALE300L emulator via two sets of 30x2pin normal-pitched (0.1") headers CON1 & CON2. A power supply of +5.0 VDC is supplied to the APPBD.

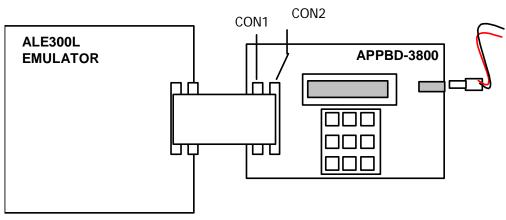


Figure 3.2 Connections to ALE300L Emulator

3.3. With 38024F CPU Board connected

APPBD could also be connected to 38024F CPU board via 30x2pin normal-pitched (0.1") headers, CON1 & CON2. A power supply of +5.0 VDC is supplied to the APPBD.

For interface with CPU board, there are jumper settings needs to be observed on the CPU board, please refer to the user manual of 38024F CPU board.

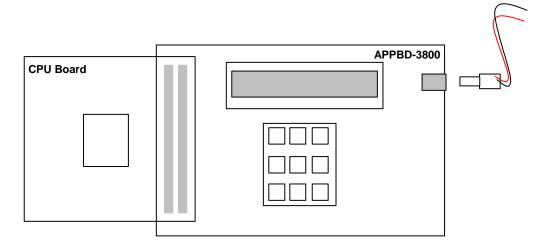


Figure 3.3 Connection to CPU board [Top View]

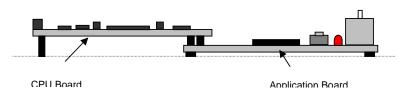


Figure 3.4 Connection to CPU Board [Cross-section view]

4. Usage Constraints

4.1. Infrared Remote function

When executing this function, users may encounter difficulty such as no recognition of the key pressed on the remote control. This is due to the remote function learning process is used to learn several brand remote control signal and algorithm used to decode all the IR protocol is difficult therefore all the IR signal come out from Remote control will be store into RAM including the Header. So please [press] Remote control button as fast as possible (less than 1s) to allow the learning process successful.

4.1.1. Causes of Malfunction

This may due to environmental conditions disturbances such as the noise from fluorescent lightings, Electromagnetic noise and Power Supply line noise. These may affect the output even if no input transmission signal is present.

4.1.2. Countermeasures

User may stick a piece of opaque black adhesive tape over the remote IC, U5 on the APPBD. This would eliminate unwanted disturbance signals.

4.2. LEDs/Buzzer/Keypad

When executing this function with a 38024F CPU board or ALE300L emulator, users may encounter the following scenarios:

- □ Unable to turn on LEDs
- Unable to turn on buzzer
- No response upon key pressed

4.2.1. Causes of Malfunction

For interface with 38024F CPU board, these may be caused by incorrect jumper settings on the CPU board. Please refer to section 2.5.4 in the user manual of CPU board.

For interface with 38024F CPU board or ALE300L emulator, there may be no power supply input is supplied into the APPBD.

4.2.2. Countermeasures

For interface with 38024F CPU board, please refer to section 2.5.4 in the user manual of CPU board. Ensure correct power supply input is supplied into the APPBD.

For interface with ALE300L emulator, please ensure correct power supply input is supplied into the APPBD.

5. Operating Procedures

5.1. Overview - Demonstration Program

The following describes the operations of the APPBD and the demonstration program. The demonstration program used is *AppDemo.ABS*.

When the APPBD is power on, the PWR [Green] LED, D1 turns on followed by the following display on the LCD glass:

- □ "0123456789* ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- □ "1.A 2.S 3.T 4.P 5.IR" [Main Menu]

The operation of APPBD is then entirely controlled by the keypad provided with the APPBD. Please refer to ALE300L emulator's user manual for detailed operating commands.

5.2. Switches/Keypad

The following table describes the individual functions of each keypad and switches used in the APPBD.

Keypad/switches	Descriptions
SW13	Reset
SW14	/IRQ0 (Interrupt)
R18	ADC variable resistor
Keypad 1	ADC & PWM
Keypad 2	Keypad & SCI
Keypad 3	Timer & Counter
Keypad 4	Power Down Mode
Keypad 5	Infrared Remote Receiver
Keypad *	ESC, Exit, Cancel
Keypad #	Enter / 'OK' (For IR menu)

5.3. Operation Overview

The demonstration program aims to demonstrate the salient features of the H8/300L Super Low Power series microcomputer. Users have the option to select to execute a particular test.

INPUTS:

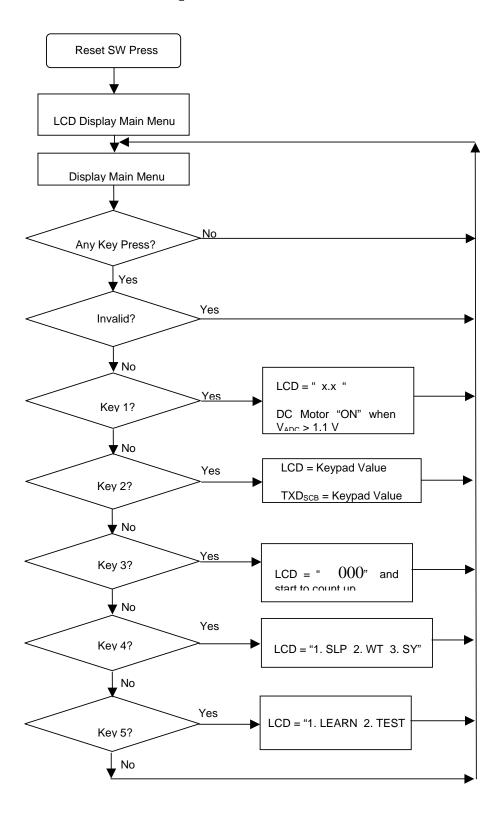
- □ 12-Button Keypad (MATRIX 4x3),
- □ One RESET switch,
- One IRQ switch,
- □ One variable resistor (ADC) and
- □ Sharp IR Detecting Unit for Remote Control

User inputs their selections using keypad, i.e. Keypad 1 for selecting ADC & PWM test, Keypad * for returning to main menu again, adjust Variable Resistor R18 to decrease or increase ADC input voltage. Some tests, such as Infrared Remote Control Receiver demo, require data input from the IR detecting Unit (U5). In addition, IRQ switches used are interrupts to wake up the MCU during power down mode.

OUTPUTS:

- □ 32-Segment x 4 COM LCD
- □ Three LEDs
- One buzzer
- DC Motor

The 32-Segment x 4 COM LCD panel is used for display purposes. They display any one of the following:


- Main Menu,
- □ Power Down Menu, InfraRed(IR) Menu
- □ Result of a test etc.

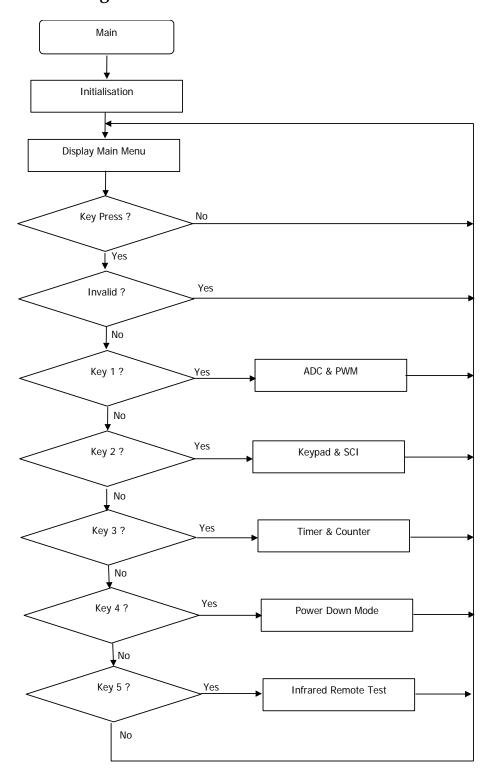
The three 3mm LEDs and one buzzer LS1 provide status information for the tests (e.g. Sleep mode, watch mode, IR receiving status, progress indicator etc.)

The DC Motor is used to demonstrate 10-bit PWM feature on the Microcomputer.

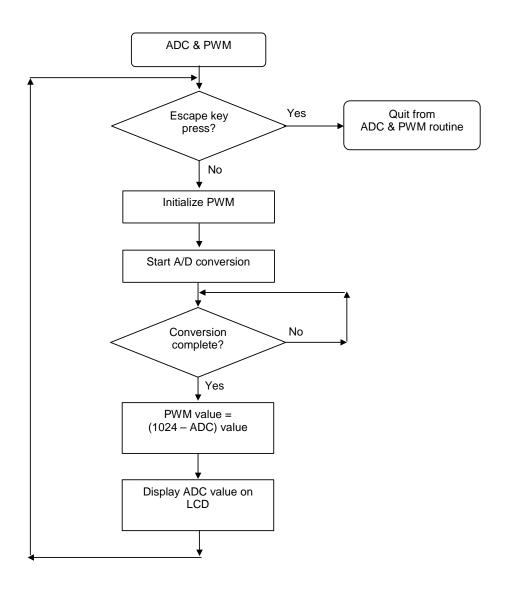
5.4. Illustration of Operation Flow

5.5. Test Procedures and Descriptions

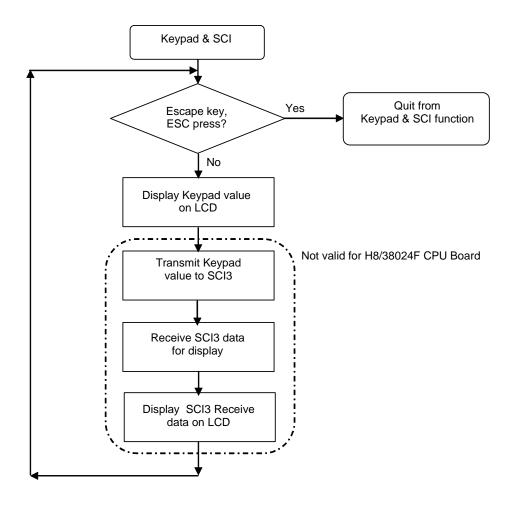
Application demonstration program is executed on the APPBD through the selection of keypad button. The demonstration program contains main menu as well as sub-menu and hence, user needs to press keypad button again to enter into the sub-menu.


No.	Demo No	Sub-demo No	Description
1	1. A (ADC & PWM)	-	ADC & PWM Test: Reading ADC (AN0) input voltage and convert to PWM value for motor driving. User can vary the analog input by adjusting the variable resistor (R18).
2	2. S (Keypad & SCI)	-	Keypad & SCI Test: LCD panel display keypad pressed, and send its ASCII value to SCI port then check for SCI receive data. Note: SCI test is only valid for ALE300L
3.	3. T (Timer & counter)	-	Timer & counter Test: LCD panel display 3 digit counter value (000-999), The counter will increment once Compare match flag Timer F turn on 10 times.
4	4. P (Power Down Mode)	 SLEEP WATCH STBY 	Power Down Mode Test: In the "Power down mode" demo, different power-down modes (Sleep, Watch and Standby) via SLEEP instruction with separate LED indicators can be selected. IRQ0 is then used to trigger MCU return to active mode.
5	5. IR (Infrared Remote Control Receiver)	1. LEARN 2. TEST	IR Remote Test: There are 2 sub-demos in IR Remote Test (IR LEARN and IR TEST). IR LEARN is used to read and decode remote control IR command then save to RAM area. IR TEST is used to test IR command learned just now whether can be recognize or not. (Only Hitachi & Sony VCR / TV Remote controller tested) * Please [press] Remote control button as fast as possible (less than 1s) to allow the learning process successful.

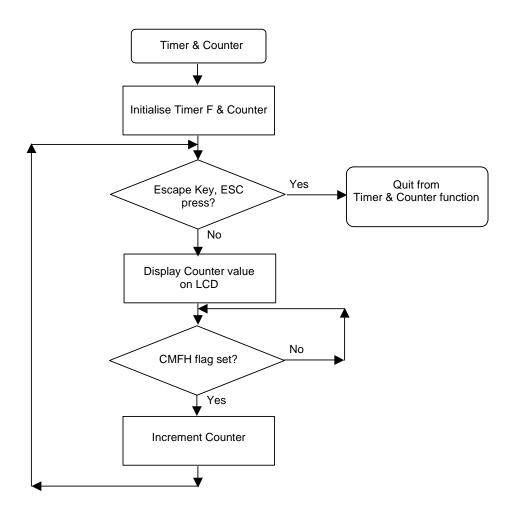
6. Software Design


Software design covers the description of the all demonstrated functions of the demonstration program.

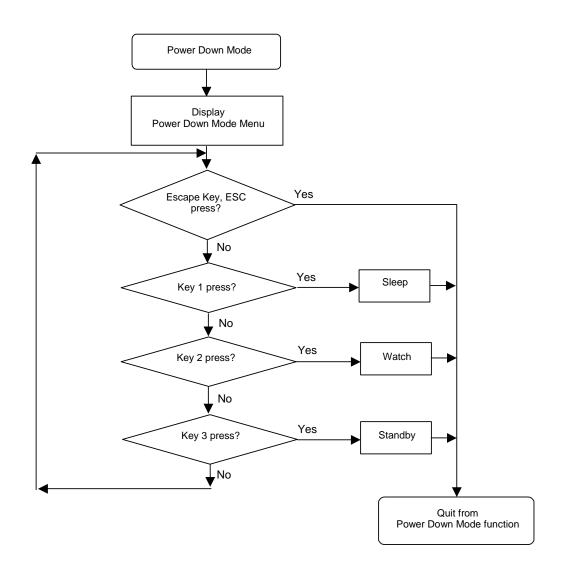
6.1. Main Program



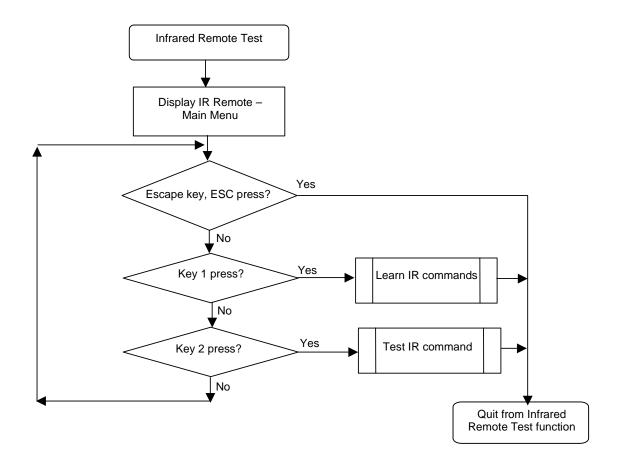
6.2. ADC & PWM function



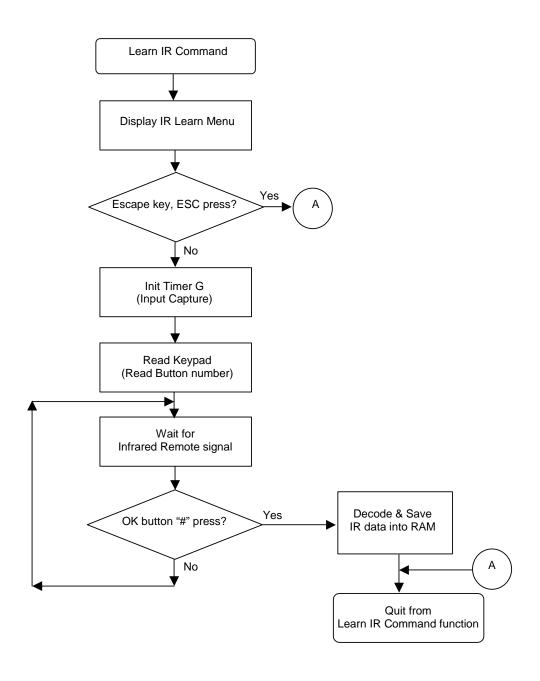
6.3. Keypad & SCI function



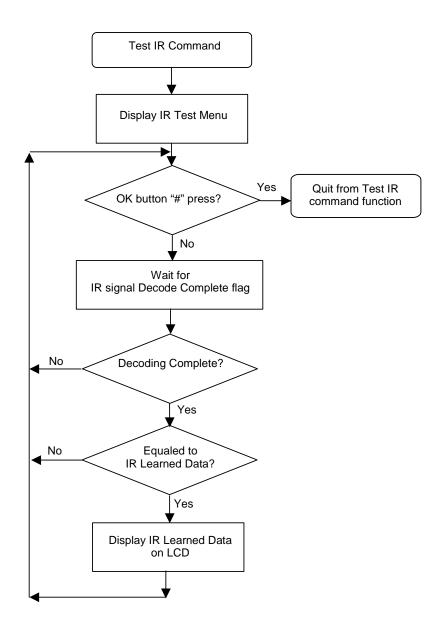
6.4. Timer & Counter function



6.5. Power-Down Mode function



6.6. Infra-Red Remote Test Function



6.6.1. LEARN IR Command Function

6.6.2. Test IR Command Function

6.7. Description of Modules

The demonstration program is generated from the Project Generator (Ver.2.1) under project type: *Application*.

The demonstration program is written to provide user with a ready code to execute in order to kick-start their learning about Renesas Technology microcomputer.

Having understood the demonstration program, user may choose to modify the code to change the performance of some of the demonstrated function. There are only two file needs to be edited by the user.

The first file is *ApplicationDemo.c* file and the next is *Intprg.c* as well as the dependencies files (*ApplicationDemo.h*).

6.7.1. ApplicationDemo.c

This file is also known as the main program of the demonstration program. It contains modules such as Hardware initialization module, Main Menu Display Module, IR Menu Display Menu module, demo selection module, etc.

6.7.2. Intprg.c

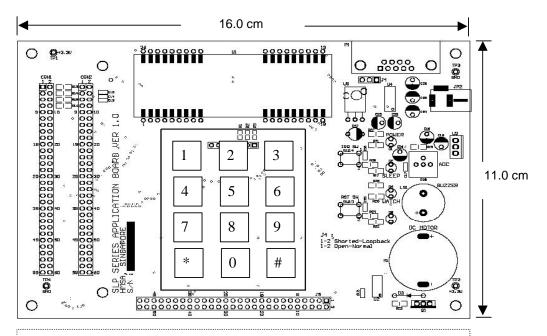
This file contains the interrupt service module for IRQ0, Timer A (IR decoding used) and Timer G (IR detection module).

6.7.3. Applicationdemo.h

This file contains all function prototype that use in *ApplicationDemo.c* file.

Note: For detailed description of the demonstrated functions, please refer to the source file - *ApplicationDemo.c* file.

7. Trouble-Shooting


Co	ommon Failures	Ac	tion	Remarks			
1.	Power LED off		Check DC input voltage (5v /9v) Check PWR LED D1	Power supply failure : measure TP2 = 3.3v? PWR LED broken			
2.	Keypad Row 4 ('*', '0', '#') not function during interface with CPUBD		Check the CPUBD JP10 1-3 short?	I/O port not enable by jumper			
3.	Keypad Row 3 ('7', '8', '9') not function during interface with CPUBD		Check the CPUBD JP10 2-4 short?	I/O port not enable by jumper			
4.	Keypad Coloum 3 ('3', '6', '9', '#') not function during interface with CPUBD		Check the CPUBD JP9 2-4 short?	I/O port not enable by jumper			
5.	Buzzer not function during interface with CPU BD		Check the CPUBD JP8 4-6 short?	I/O port not enable by jumper			
6.	LED D2 not function		Check the CPUBD JP8 3-5 short?	I/O port not enable by jumper			
7.	Motor not function		Check pin 1 of U2 (74HCT04) for PWM signal. Check pin 2 of U2 (74HCT04) for PWM signal inverted output.	Motor failure or motor driver circuit problem			
			Check pin 2 of Q1 for PWM signal Check Motor				
8.	Serial Communication Interface not function		Check J4 1-2 open? Check U4 pin 12 for serial data	RS232 serial transceiver failure, check input and output.			
9.	Infrared sensor not function		Check U5 pin 1 for output, pin 2 for 3.3V? Disturbing light noise occur when not input [try to shield IR sensor with black tape]?				

Common Failures	Action	Remarks			
10. Current Overdrawn [Current draw more than 200 mA]	☐ Identify short traces and then rework as accordingly.	Measure low resistance between Vcc with respect to the ground.			

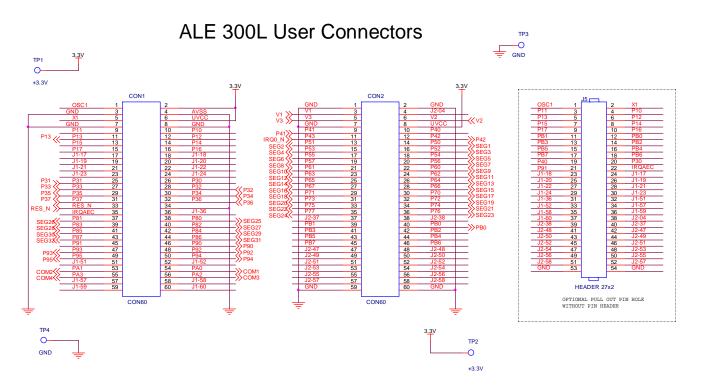
Appendix A APPBD – LCD Board Layout

Note:

- The OPTIONAL CON1 & CON2 are Straight Header Housing mounting on solder site, 0.1" @ 2x30 pins.
- Screw hole size is Dia. φ =3mm.
- The pin assignment for CON1 & CON2 is given in Appendix B.

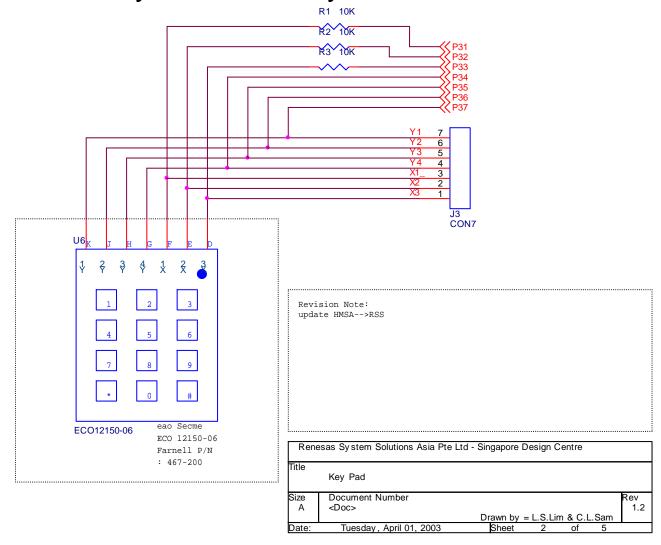
Appendix B Pin Assignment (CON1 & CON2)

	CON 1	CON 2			
Pin No.	Signal name	Pin No.	Signal name		
1	OSC1	1	GND		
2	AVCC	2	GND		
3	GND	3	V1		
4	AVSS	4	NC		
5	X1	5	V3		
6	UVCC	6	V2		
7	GND	7	GND		
8	GND	8	UVCC		
9	P11	9	P41/RXD32		
10	P10	10	P40/SCK32		
11	P13	11	P43/IRQ_N		
12	P12	12	P42/TXD32		
13	P15	13	P51/SEG2		
14	P14	14	P50/SEG1		
15	P17	15	P53/SEG4		
16	P16	16	P52/SEG3		
17	NC	17	P55/SEG6		
18	NC	18	P54/SEG5		
19	NC	19	P57/SEG8		
20	NC	20	P56/SEG7		
21	NC	21	P61/SEG10		
22	NC	22	P60/SEG9		
23	NC	23	P63/SEG12		
24	NC	24	P62/SEG11		
25	P31/TMOFL	25	P65/SEG14		
26	P30	26	P64/SEG13		
27	P33	27	P67/SEG16		
28	P32/TMOFH	28	P66/SEG15		
29	P35	29	P71/SEG18		
30	P34	30	P70/SEG17		
31	P37/AEVL	31	P73/SEG20		
32	P36/AEVH	32	P72/SEG19		
33	RES_N	33	P75/SEG22		
34	GND	34	P74/SEG21		
35	IRQAEC	35	P77/SEG24		
36	NC	36	P76/SEG23		
37	P81/SEG26	37	NC		
38	P80/SEG25	38	NC		
39	P83/SEG28	39	PB1/AN1		
40	P82/SEG27	40	PB0/AN0		



CON 1						
Pin No.	Signal name					
41	P85/SEG30					
42	P84/SEG29					
43	P87/SEG32					
44	P86/SEG31					
45	P91/PWM2					
46	P90/PWM1					
47	P93					
48	P92					
49	P95					
50	P94					
51	NC					
52	NC					
53	PA1/COM2					
54	PA0/COM1					
55	PA3/COM4					
56	PA2/COM3					
57	NC					
58	NC					
59	NC					
60	NC					

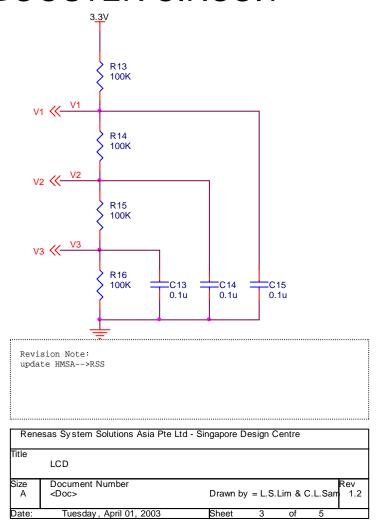
CON 2						
Pin No.	Signal name					
41	PB3/AN3					
42	PB2/AN2					
43	PB5					
44	PB4					
45	PB7					
46	PB6					
47	NC					
48	NC					
49	NC					
50	NC					
51	NC					
52	NC					
53	NC					
54	NC					
55	NC					
56	NC					
57	NC					
58	NC					
59	GND					
60	GND					

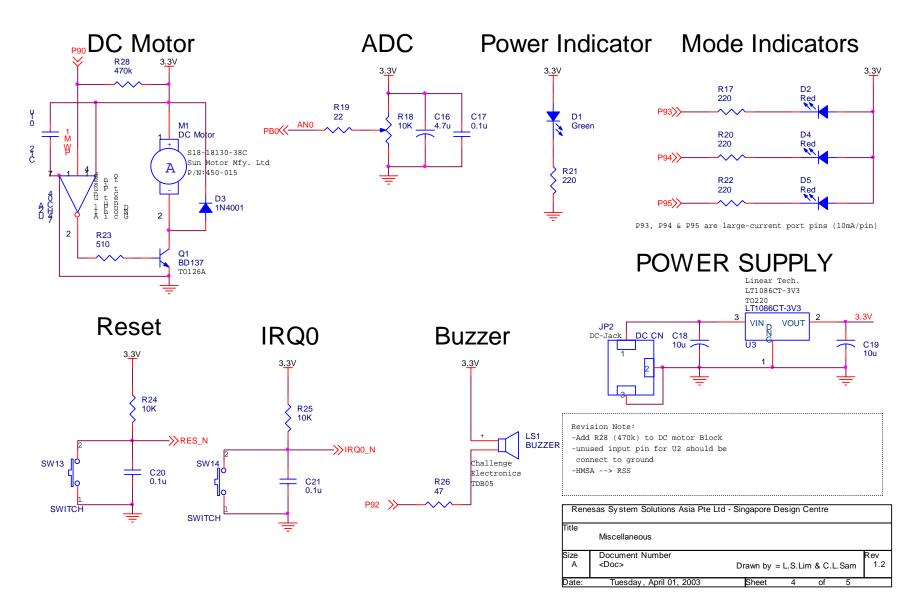

Appendix C Schematic Drawings

	Revision Note: update HMSA>RSS	
Ren	enesas System Solutions Asia Pte Ltd - Singapore Design Centre	
Title	User Connectors to ALE 300L Emulator	
Size A3		Rev 1.2
	-	
Date:	e: Tuesday, April 01, 2003 Sheet 1 of	5

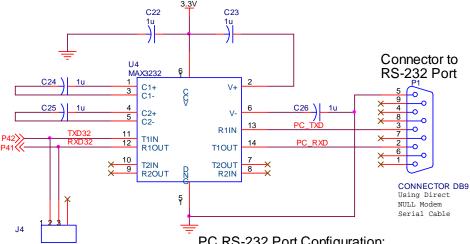


Key Pad Circuitry



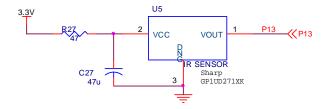

LCD PANEL

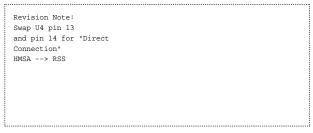
BOOSTER CIRCUIT



Serial Communication Interface

1-2 shorted : Loopback Test 1-2 open : Normal Operation


PC RS-232 Port Configuration:


Baud Rate: 19200

Data: 8 bits Parity: None Stop: 1 bit

Flow control : None

IR SENSOR CIRCUIT

Renesas System Solutions Asia Pte Ltd - Singapore Design Centre								
Title	Serial Communication Interface							
Size	Document Number					Rev		
A	<doc></doc>					1.2		
		Drawn by	' = L.S.	Lim & C	:.L.Sam			
Date:	Tuesday, April 01, 2003	Sheet	5	of	5			

Appendix D Bill of Materials

Items	Desig					P/N Code	Part Description	Qty	Package	Mfg
A) Board H	8/38024	4F App	licatio	on						
1						AA-02130-2	PCB SLP SUB Board Rev 1.1	1		any
2						BT-02017-1	Screw Pan M2.0x12mm Std Steel	4		any
3						BT-40010-1	Washer M2.0 Flat Std Steel	4		any
4						BT-41010-1	Washer M2.0 Split Lock Std Steel	4		any
5						BT-50010-1	Nut M2.0 Std Steel	12		any
6	C1	C2	СЗ	C4	C5	CA-74101-3	Capacitor SMD 0805 100nF / 50V 10%	6	0805	AVX/ any
7	C6	C7	C8	C9	C10	CA-74101-3	Capacitor SMD 0805 100nF / 50V 10%			<i>'</i>
8	C11	C12	C13	C14	C15		Capacitor SMD 0805 100nF / 50V 10%			
9	C17	C20	C21	1			Capacitor SMD 0805 100nF / 50V 10%			
10	C22	C23	C24	C25	C26		Capacitor Ele GSS-R 1uF/50V	5	thru-hole	Rubycon / any
11	C16						Capacitor Ele GSM-R 4u7F / 50V	1	thru-hole	Rubycon / any
12	C27		1				Capacitor Ele GSS-R 47uF/6V3	1	thru-hole	Rubycon / any
13	D3						Diode GP 1N4001	1	thru-hole	MIC
14	U1x4						Socket IC Turn Pin 09-Way SIL	4	thru-hole	AUK
15	J1	J2					Header Pin 0.100" 2x30-Way Gold	2	thru-hole	AUK
16	JP2						Socket DC Jack 2.1mm PCB Mt	1	thru-hole	AUK
17	P1						Connector D-Sub Female 9-Way RA	1	thru-hole	AUK
18	U1						LCD VIM 828	1	thru-hole	/ Cort
19	D1			+	1		LED 3mm Green Diffused	1	thru-hole	MIC
20	D2	D4	D5	1			LED 3mm Red Diffused	3	thru-hole	MIC
21	U5	<u> </u>					Photodiode GP1UD271XK	1	thru-hole	Sharp
22	Q1		1		1		Transistor BD137	1	thru-hole	Fairchild
23	R28						Resistor SMD 1206 1/8W 1% 470K	1	1206	any
24	R19		1	1	1		Resistor SMD 1206 1/4W 2% 22R	1	1206	any
25	R26	R27					Resistor SMD 1206 1/4W 2% 47R	2	1206	any
26	R17	R20	R21	R22			Resistor SMD 1206 1/4W 2% 220R	4	1206	any
27	R23	1120	1721	1122			Resistor SMD 1206 1/4W 2% 510R	1	1206	any
28	R1	R2	R3	R4	R5		Resistor SMD 1206 1/4W 2% 510K	2	1206	any
29	R6	R7	R8	R9	R10		Resistor SMD 1206 1/4W 2% 10K	4	1206	any
30	R11	R12	R24	R25	KIU	RT-81041-1	Resistor Trim S-T 10K GF06P2B103M	1	thru-hole	TOCOS
31		SW14		KZ3	-		Switch Tactile Round	2	thru-hole	KIE / any
32	SW 13	S 3 V V 12	+		1		Keypad 12Way 4x3 ECO 12150 06	1		ECO
32	U2						IC 74HCT04D Hex Inverter w/ TTL Input	1	thru-hole SO14	Fairchild
	U4						•			
34		_		-			IC SP3232ECT RS232 Driver /Receiver	1	SO 150	Sipex
35	U3						ICLT1086CT-3V3 Voltage Regulator 1.5A	1	TO-220	Linear Tech
36	M1						Motor 1.5-4.5 Vdc	1	thru-hole	Farnell
37	LS1				-	XS-02005-0	Buzzer 5V PCB Mt	1		Sound Tech
38			1		1		Anti-Static Bag	1		any
39							Label for Serial Number	1		any
B) Packagi	ng		_	1	1	D. A. O. COOT O	In		1	<u> </u>
40							Rubber Foot Stick On SJ5008	4		
41						BZ-00053-0	Box RSC ST-04 320"x340"x190"	1		
42	<u> </u>						Anti-Static Bag for Accessories	6		
43	<u> </u>						Bubble Foam	1		
44	<u> </u>						Checking List Form	1		
45							Label for Carton Box	1		
46							Manual in CR-ROM format w/Label & Cover	1		<u> </u>
C) Optional	Items	3								
47							Battery Cable Assembly Rev 1.0	1		
48						WL-64004-0	Supply Cable Assembly Rev1.0	1		

Renesas Technology (Asia Sales Offices)

URL: http://www.renesas.com

APPBD-LCD

