Introduction

The changing computer performance landscape has brought about the need for flexible power solutions. Peripheral performance continues to increase as higher speed bus interfaces are made available. Router designs continue to grow in complexity as on-board processors perform more functions within a limited board space while continuing to increase the speed of data transfer. This places higher power density requirements on the DC/DC converters which supply them.

Intersil's Endura™ multi-phase controllers (HIP63xx and ISL65xx) and synchronous-rectified buck MOSFET drivers (HIP66xx and ISL66xx) are suitable for the interleaved DC/DC buck converter implementation, as shown in Figure 1, and provide superior performance solutions with their space economical MLFP packages.

FIGURE 1. MULTI-PHASE INTERLEAVED BUCK CONVERTER

This application note first gives a brief introduction of Intersil's four-phase controller ISL6558 and synchronousrectified driver ISL6609. A summary of the ISL6558 and ISL6609 based design follows. The experimental results for a low-profile 5V-to-1.35V@30A, 500 kHz , and 90% efficiency converter in two-phase operation using the interleaved approach and with their space economical MLFP package ICs are discussed. The evaluation board can be pushed up to 80A in four-phase operation, or modified for 12 V input applications by replacing the input capacitors with higher voltage rating capacitors. Term Definitions, Reference, Schematics, Bill of Materials, and Layout are included at the end of this application note.

Intersil's ISL6558 and ISL6609

The ISL6558 controller, coupled with ISL6609 singlechannel driver ICs, forms the basic building blocks for applications which demand high current, rapid load transient response, and high efficiency performance at high switching frequency within a limited board area and height.

The ISL6558 regulates output voltage and balances load currents for two to four synchronous-rectified buck converter channels; its internal structure is shown in Figure 2. The internal 0.8 V reference allows output voltage selection down to that level with a 1% system accuracy over temperature. The current-channel balance loop provides good thermal balance among all phases. Output voltage droop or active voltage positioning is optional. Overvoltage and overcurrent monitors and protection functions of the IC provide a safe environment for the microprocessor or other load. The controller is available in a 16-lead SOIC package and a $5 \times 5 \mathrm{~mm}^{2} 20$-lead MLFP package with some space savings. For more detailed descriptions of the ISL6558 functionality, refer to the device datasheet [1].

The ISL6609 is a 5 V driver IC capable of delivering up to 4A of gate current for rapidly switching both MOSFETs in a synchronous-rectified bridge; its internal structure is shown in Figure 2. It is especially designed for voltage regulators that require high efficiency performance at high switching frequency within a limited board space. The ISL6609 accepts a single logic input to control both upper and lower MOSFETs. Its Tri-State ${ }^{\circledR}$ feature, working together with Intersil's Multi-Phase PWM controllers, helps prevent a negative transient on the output voltage when the output is being shut down. This eliminates the Schottky diode that is used in some systems for protecting the microprocessor from reversed-output-voltage damage. Furthermore, adaptive shoot-through protection is implemented on both switching edges to provide optimal dead time and minimize conduction losses. Bootstrap circuitry permits greater enhancement of the upper MOSFET. The driver is available in a 8-lead SOIC package and a space economical $3 \times 3 \mathrm{~mm}^{2}$ 8 -lead MLFP package. For a more detailed description of the ISL6609, refer to the device data sheet [2].

ISL6609

FIGURE 2. SIMPLIFIED ISL6558 AND ISL6609 INTERNAL STRUCTURE

Summary of Design

Table 1 summarizes the specifications of a power converter for mid-range router applications. The ISL6558 and ISL6609 based evaluation board has been designed to meet these criteria.

TABLE 1. ISL6558EVAL2 SPECIFICATIONS

PARAMETER	CONDITION	MIN	TYP	MAX
Input Voltage	VIN	4.5 V	5 V	5.5 V
Output Regulation	$\begin{aligned} & 0.1 \% \text { R16 } \\ & \text { and R19 } \end{aligned}$	1.336	1.35	1.365
Transient Regulation	$\begin{aligned} & \text { 6.5A Step } \\ & 200 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} \text { Vo- } \\ 20 \mathrm{mV} \end{gathered}$		$\begin{gathered} \mathrm{Vo}+ \\ 20 \mathrm{mV} \end{gathered}$
Continuous Load	$25^{\circ} \mathrm{C}$ with 200LFM		30A	
Transient Slew Rate			200A/us	
Over Current	$25^{\circ} \mathrm{C}$ with 200LFM		43A	
Minimum Airflow			0 LFM	
Channel Switching Frequency			500 kHz	
Efficiency	$\begin{aligned} & 25^{\circ} \mathrm{C} \text { with } \\ & 200 \mathrm{LFM} \end{aligned}$		89.7\%	
	$25^{\circ} \mathrm{C}$ with No Airflow		89.3\%	
Undervoltage Rising Threshold			0.92Vo	
Undervoltage Falling Threshold			0.9Vo	
Overvoltage Threshold			1.15Vo	

Table 2 shows the calculation results of critical design parameters for the reference design, a two-phase interleaved DC/DC buck converter.

TABLE 2. CRITICAL DESIGN PARAMETERS

PARAMETER	CONDITIONS	VALUE	UNIT
DUTY CYCLE AND SWITCHING FREQUENCY			
D	$\mathrm{V}_{\mathrm{IN}}=5, \mathrm{Vo}=1.35$	28.3	\%
Fsw	$\mathrm{RT}=51.1 \mathrm{k} \Omega$ (measured)	500	kHz
INPUT INDUCTOR AND CAPACITORS			
Cin (min)	$\mathrm{lo}=30 \mathrm{~A}, \mathrm{~N}=2, \Delta \mathrm{~V}_{\text {IN }}, \mathrm{CAP}=20 \mathrm{mV}$	180	$\mu \mathrm{F}$
$I_{\text {IN,RMS }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{lo}=30 \mathrm{~A}$	7.63	A
Lin (min)	$\mathrm{Cin}=180 \mu \mathrm{Fx} 3, \mathrm{dlin} / \mathrm{dt}=0.1 \mathrm{~A} / \mu \mathrm{s}$	300	nH
OUTPUT CAPACITORS			
$\mathrm{Co}(\mathrm{min})$	$\mathrm{f}_{\mathrm{C}}=\mathrm{Fsw} / 5=100 \mathrm{kHz}, \mathrm{f}($ lstep $)=20 \mathrm{mV}$	517	$\mu \mathrm{F}$
$\mathrm{lo}_{\text {RMS }}$	Lo(lo) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	1.34	A
ESR(max)	Istep $=6.5 \mathrm{~A}, \mathrm{f}($ step $)=20 \mathrm{mV}$	3.07	$\mathrm{m} \Omega$

TABLE 2. CRITICAL DESIGN PARAMETERS (Continued)

PARAMETER	CONDITIONS	VALUE	UNIT
OUTPUT INDUCTORS (ASSUMING EQUAL DISTRIBUTION AMONG OUTPUT INDUCTORS)			
${ }_{\text {LLo,PP }}$	Lo (Io) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	6.88	A
lpp	$\mathrm{Lo}(\mathrm{lo})=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~N}=2$	4.65	A
${ }^{\text {Lo, Peak }}$	Lo (lo) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	18.44	A
ILo,RMS	Lo (lo) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	15.13	A
UPPER FETs			
$\mathrm{l}_{\text {Q1,RMS }}$	Lo(lo) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	8.48	A
LOWER FETs			
$\mathrm{l}_{\mathrm{Q1}, \mathrm{RMS}}$	Lo (lo) $=0.3 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	13.04	A

Table 3 summarizes a rough power dissipation analysis for the referenced design.

TABLE 3. FULL-LOAD POWER DISSIPATION BUDGET

ELEMENTS	POWER DISSIPATION AT 30A LOAD		
	4.5V	5.0V	5.5 V
CALCULATION CONDITIONS			
Switching Frequency	500 kHz		
Per-Channel Output Inductor	$0.3 \mu \mathrm{H}$ at Full load		
Number of Active Channels	$N=2$		
PER-CHANNEL LOSSES (xN)			
Upper FETs Conduction	0.395W	0.356W	0.323W
Upper FETs Switching	0.461W	0.516W	0.572W
Lower FETs Conduction	0.333W	0.328W	0.340W
Lower FETs Body-diode Conduction	0.233W	0.232W	0.231W
Output Inductor Copper	0.123 W	0.123W	0.123W
Output Inductor Core (Estimated)	0.036W	0.0 .036 W	0.036W
Per-Channel Driver	0.305W	0.375W	0.454W
OTHERS (x1)			
Input Inductors Copper	0.055 W	0.044W	0.037W
Input Inductors Core	Negligible		
Input Capacitors	$0.273 W$	0.287W	0.291W
Output Capacitors	0.0035W	0.0048W	0.0061 W
Controller	0.078W	0.078W	0.078W
PCB Copper	0.196W	0.184W	0.176W
Miscounted and Error	0.32W	0.28W	0.29W
TOTAL	4.655W	4.688W	4.737W

Experimental Results

The ISL6558EVAL2 evaluation board as configured is capable of 30A continuous load current and handling $200 \mathrm{~A} / \mu \mathrm{s}$ or higher speed load transients. The evaluation board meets the design specifications indicated in Table 1. Table 4 summarizes the equipment that was used for the performance evaluation.

TABLE 4. EQUIPMENT LIST

Equipment	EQUIPMENT DESCRIPTIONS
Boards Used	ISL6558EVAL2 Rev. A, \#1 and \#2
Power Supplies	1. Hewlett Packard 6653A, 35V, 15A. S/N: $3621 \mathrm{~A}-03425$
Oscilloscope	LeCroy LT364L. S/N: 01106
Multimeters	Fluke 8050A. S/N: 2466115 \& 3200834
Load	1. Chroma 63103. S/N: 631030002967 2. Chroma 63103. S/N: 631030003051
Current Probe Amplifier	LeCroy AP015. SN: 3293
Fan	POPST-MOOREN TYP 4600X (4098547)

ISL6558EVAL2 OPERATION AND MODIFICATION TIPS

- Apply the input voltage (VIN) prior to the control voltage VCC5 (5 V). This sequencing results in initializing the ISL6609 driver before the ISL6558 starts, and retains the soft-start interval. Vice versa, the ISL6558 could produce maximum duty cycle PWM drive signal, which results in an overcurrent or overvoltage trip due to lack of soft-start. The evaluation board is configured to power up from a single 5 V supply, and it eliminates the problem discussed above.
- SW1 is used to engage or remove the load transient generator.
- Droop option is not selected in the reference design since the required load transient step is not greater than 50% of the full load. In another word, the droop only helps reduce the number of output capacitors and still retains the same transient performance when the load transient step is greater than 50% of full load.
- For 3-phase operation, add the current sense resistor R17 and place JP4 to ON position (away from TP8). The compensation gain (R11) should be scaled by $2 / 3$ for system stability with a reasonable phase margin.
- For 4-phase operation, add the current sense resistors R2 \& R17 and place JP4 \&JP2 to ON position (away from TP8 and TP5). The compensation gain (R11) should be scaled by $1 / 2$ for system stability with a reasonable phase margin.
- Use R25, R26, R28, and R29 to program the load transient speed. The higher values these resistors, the slower the transient.
- If there is sufficient airflow, use a single LPAK Hitachi HAT1264 for the upper FET and two SO-8 Siliconix Si4842DYs for the lower FETs in each channel; but it comes with the penalty of 1% lower efficiency, as shown in Table 5. Note that the current sense resistors (R2 and R17) need to be adjusted to get a proper over current setpoint.
- For 12 V input operation, the jumper JP1 should be removed to prevent the controller and drivers from overvoltage damage. A 5 V supply is required to power up the controller and the drivers; the diode D1 is to protect both the drivers and controller from reversed-bias damage. The 12 V supply should be applied prior to the 5 V ; otherwise, the output voltage will lack soft-start and cause an over overcurrent or overvoltage at the output. Furthermore, the input capacitors should be replaced with higher voltage rating (16 V or above) capacitors. In addition, the compensation gain (R11) should be scaled by $5 / 12$ for system stability with a reasonable phase margin.
- Any change of the output filter will require the compensation network to change for an optimum transient response. If very lower ESR capacitors are used at the output, a type III compensation network is required to boost up the phase for a better transient performance.
- The feedback resistor (R19) can cause some delay in the soft-start interval, as discussed in the ISL6557A data sheet section SOFT-START [3]. It should not be a very high impedance resistor.

EFFICIENCY

The efficiency data, as plotted in Figure 3, are taken with a PAPST-MOTOREN TYP 4600X fan turned on 8" away from the input end of the evaluation board at room temperature (approximate 200LFM). This figure shows that the converter operates less efficiently at high line and low-to-medium load since the switching loss is the dominant portion of the total losses in that operating condition. As the load increases, the dominant conduction losses help cut down the difference.

FIGURE 3. EFFICIENCY AT 500kHz AND 200LFM

Figure 4 shows the efficiency for various frequencies and airflow conditions.

FIGURE 4. EFFICIENCY FOR VARIOUS FREQUENCY AND AIRFLOW AT $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Different combinations of upper and lower MOSFETs have been evaluated at $\mathrm{Vin}=5 \mathrm{~V}$ and Fsw $=500 \mathrm{kHz}$ with 200LFM airflow, as shown in Table 5. The last combination with one Hitachi HAT2164 upper FET and two Siliconix Si4842DY lower FETs provides high efficiency and good thermal performance with some space and cost reduction.

TABLE 5. EFFICIENCY WITH DIFF. UPPER \& LOWER MOSFETS

$\#$	UPPER FET	LOWER FET	EFFICIENCY
1	HAT2168 $\times 2$	HAT2164 $\times 2$	89.85%
2	HAT2168 $\times 1$	HAT2164 $\times 2$	87.94%
3	HAT2168 $\times 2$	Si4842DY $\times 2$	89.50%
4	HAT2164 $\times 1$	Si4842DY $\times 2$	88.90%

OUTPUT SOFT-START AND TURN-OFF

As the control voltage VCC5 reaches the POR rising threshold (4.38 V nominal) of the ISL6558, the FS/EN pin is released from ground; the output begins a monotonic rise comprised of 2048 digital steps, as shown in Figure 4. At the end of the soft-start interval, the PGOOD signal transitions to indicate the output voltage is within specification.

FIGURE 5. SOFT-START WAVEFORMS

As shown in Figure 6, the converter is disabled when the control voltage (VCC5) is pulled below the POR falling threshold (3.88 V nominal) of the ISL6558. The PGOOD signal falls low indicating the output voltage is out of regulation. The ISL6609 enters Tri-State® and holds both upper and lower drive signals low. The L-C resonant tank is broken and cannot cause negative ringing at the output since the lower FETs are turned off, blocking any negative current.

FIGURE 6. TURN-OFF WAVEFORMS

TRANSIENT RESPONSES

A transient load generator is populated on the board to evaluate the response of the converter at high-speed load transients. Current setting of the generator provides about 6.5A load step with 160A/ $\mu \mathrm{s}$ on the rising edge and 210A/ $\mu \mathrm{s}$ on the falling edge without output droop configuration.

The input current rises/falls at a speed limited by the input inductor and capacitors during step-up/step-down transients. Figure 7 shows a very low ramping up speed ($0.02 \mathrm{~A} / \mu \mathrm{s}$) of the input current at the load transient condition. This is due to a large effective input inductance seen by the converter. The effective input inductance is the sum of the on-board input inductance and the inductance of the long source leads of the bench power supply.

The transient performance at different operating conditions has been summarized in Table 6. Little difference is noted for various line and load conditions. Note that the ripple portion has been included.

TABLE 6. TRANSIENT RESPONSE (6.5A STEP)

INPUT VOLTAGE/LOAD CURRENT	STEP-UP/DOWN
$4.5 \mathrm{~V} / 0 \mathrm{~A}$	$21.9 \mathrm{mV} / 21.9 \mathrm{mV}$
$4.5 \mathrm{~V} / 25 \mathrm{~A}$	$21.9 \mathrm{mV} / 21.9 \mathrm{mV}$
$5.0 \mathrm{~V} / 0 \mathrm{~A}$	$21.9 \mathrm{mV} / 23.1 \mathrm{mV}$
$5.0 \mathrm{~V} / 25 \mathrm{~A}$	$22.5 \mathrm{mV} / 21.9 \mathrm{mV}$
$5.5 \mathrm{~V} / 0 \mathrm{~A}$	$21.9 \mathrm{mV} / 21.2 \mathrm{mV}$
$5.5 \mathrm{~V} / 25 \mathrm{~A}$	$23.8 \mathrm{mV} / 24.4 \mathrm{mV}$

FIGURE 7. TRANSIENT RESPONSE AT NO LOAD ($\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$)

FIGURE 8. STEP-UP TRANSIENTS AT NO LOAD ($\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$)

FIGURE 9. STEP-DOWN TRANSIENTS AT NO LOAD $\left(\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}\right)$

FIGURE 10. TRANSIENT RESPONSE AT 25A ($\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$)

FIGURE 11. STEP-UP TRANSIENTS AT $25 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V}\right)$

FIGURE 12. STEP-DOWN TRANSIENTS AT 25A ($\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$)

OVER CURRENT AND SHORT CIRCUIT

When the converter is momentarily shorted or overloaded, as shown in Figure 13, the converter enters hiccup mode with a narrow duty cycle and long switching period. PGOOD stays low during the overcurrent period; it indicates the output voltage is within regulation limits after the short is removed and the output completes a soft-start interval.

As shown in Figure 14, the converter can sustain a permanent short circuit remaining in hiccup mode with a frequency of 185 Hz . The average load current and the average power dissipation in each power component are reduced significantly; thus, the converter can stay at a short without causing any permanent damage or thermal issues.

FIGURE 13. OVER-LOADED OUTPUT WAVEFORMS

FIGURE 14. SHORT-CIRCUIT WAVEFORMS

OVERVOLTAGE SHUTDOWN

With the COMP pin momentarily tied to a 4 V voltage source with respect to the ground, the error voltage jumps high and the duty cycle increases. Thus, the output voltage rises up immediately until it reaches the overvoltage threshold setting the OV latch and triggers the PWM outputs low. PGOOD is pulled low indicating output out of regulation, as shown in Figure 15.

FIGURE 15. OVERVOLTAGE WAVEFORMS

Conclusion

The superior performance of Intersil's ISL6558 four-phase controller, coupled with Intersil's ISL6609 driver, has been demonstrated in the low-profile reference design of a 40 W , 500 kHz interleaved DC/DC buck converter. An ultra high efficiency of 90% at 1.35 V output and 30 A full load has been achieved.

The extensive experimental results give users a better understanding of the operation of the converter, the ISL6558 four-phase PWM controller, and the ISL6609 synchronousrectified driver.

Term Definitions

Cin	Input Capacitance
Co	Output Capacitance
D	Ratio of ON Interval of Upper FET to SingleChannel Switching Period, Duty Cycle
$\Delta \mathrm{V}_{\text {IN,CAP }}$	Allowable Input Voltage Ripple Contributed by the Input Capacitors
ESR	Overall ESR of Output Capacitors
f_{c}	System Closed-Loop Bandwidth
Fsw	Per-Channel Switching Frequency
1 N	Input Current
İN,RMs	RMS Current thru Input Capacitors
lo	Current thru Each-Channel Inductor
LLo, PEAK	Peak Current thru Each-Channel Inductor
ILo,PP	Ripple Current thru Each-Channel Inductor
ILo,RMS	RMS Current thru Each-Channel Inductor
IPP	Overall Ripdple Current thru Output Capacitors
lo	Output Load Current
$\mathrm{l}_{\mathrm{Q1,RMS}}$	RMS Current thru Upper FET, Q1
$\mathrm{I}_{\text {Q2,RMS }}$	RMS Current thru Upper FET, Q2
Istep	Load Transient Step
Lin	Input Inductor
Lo	Inductance of Each-Channel Inductor
N	Number of Active Channels
Po	Output Power
η	Output Efficiency
V_{IN}	Input Voltage
Vo	Output Voltage

References

Intersil documents are available on the web at http://www.intersil.com.
[1] Intersil's ISL6558 Data Sheet.
[2] Intersil's ISL6609 Data Sheet.
[3] Intersil's ISL6557A Data Sheet

Appendix

1. Schematics of Reference Design and Load Transient Generator
2. Bill of Materials and Layout of Evaluation Board.

Bleed the current from the boot
resistor (10k) at shutdown mode; it can be removed for it can be removed for resistive load.

Bill of Materials

QUANTITY	REFERENCE	DESCRIPTION	PACKAGE	VENDOR	PART NO.
1	CR1	Dual LED		PANASONIC	LN2162C13-(TR)
0	C1, C25	$22 \mu \mathrm{~F}$	SM/C_1206		DNP
0	C2, C3	$680 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{AVX}, \mathrm{TPS}$ III, TPSV687M006R0035	CAP_7361	AVX	DNP
3	C4, C5, C6	$180 \mu \mathrm{~F}, 6.3 \mathrm{~V}$	CAP_TECAP	PANASONIC	EEFUE0J181XR
0	C7, C8, C9	$180 \mu \mathrm{~F}, 6.3 \mathrm{~V}$	CAP_TECAP	PANASONIC	DNP
1	C10	100 μ, 16V	PTH	Panasonic	ECA1CHG101
10	$\begin{aligned} & \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 15, \mathrm{C} 17, \mathrm{C} 21, \\ & \mathrm{C} 24, \mathrm{C} 27, \mathrm{C} 28, \mathrm{C} 79, \mathrm{C} 89 \end{aligned}$	1μ	SM/C_1206	Various	6.3V, X5R
0	C13, C16, C22, C23, C26	DNP	SM/C_0603		DNP
1	C18	$0.1 \mu \mathrm{~F}$	SM/C_0805	Various	25V, X7R
1	C20	10n	SM/C_0603	Various	25V, X7R
3	C35, C36, C37	$390 \mu \mathrm{~F}, 2 \mathrm{~V}, 10 \mathrm{~m} \Omega$	CAP_TECAP	PANASONIC	EEFUE0D391XR
0	$\begin{gathered} \text { C30-C34, C38, C39, C40, } \\ \text { C41, C42, C45-C57 } \end{gathered}$	DNP	CAP_TECAP		DNP
26	$\begin{gathered} \text { C14, C19, C62-C65, C71, } \\ \text { C73-C75, C80-C88, } \\ \text { C91-C97 } \end{gathered}$	$22 \mu \mathrm{~F}$	SM/C_1206	Various	6.3V, X5R
0	C59-61, C66, C67-C70, C72, C76-C78, C98-C99	DNP	SM/C_1206		DNP
1	C90	$10 \mu \mathrm{~F}$	SM/C_1206	Various	6.3V, X5R
2	D2, D1	MBR0530T1	SOD123	On Semiconductor	MBR0530T1
2	D3, D4	BAV99LT1	SOT23	Various	BAV99
2	JP3, JP1	2-pin Header	TP\2P	Berg	68000-236
2	JP2, JP4	3-pin Header	TP13P	Berg	68000-236
3		Shunt for JP1, JP2 and JP4		Berg	71363-102
1	J1	VIN	BINDING/POST	Johnson Components	111-0702-001
1	J2	5 V BIAS	BINDING/POST	Johnson Components	111-0702-001
1	J3	GND	BINDING/POST	Johnson Components	111-0703-001
1	J4	12 V BIAS	BINDING/POST	Johnson Components	111-0707-001
1	J5	VOUT	BINDING/POST	Burndy	KPA8CTP
1	J6	GND	BINDING/POST	Burndy	KPA8CTP
4	L1, L2,L3, L4, L5	300nH	SMT	Panasonic	ETQP2H0R3BFA
8	$\begin{gathered} \text { Q1, Q2, Q5, Q6, } \\ \text { Q10, Q11, Q14, Q15 } \end{gathered}$	$9.4 \mathrm{~m} \Omega, 30 \mathrm{~V}$	LFPAK	HITACHI	HAT2168H
8	Q3, Q4, Q8, Q9, Q12, Q13, Q16, Q17	$4.4 \mathrm{~m} \Omega, 30 \mathrm{~V}$	LFPAK	HITACHI	HAT2164H
2	Q20, Q7	2N7002	SOT23	On Semiconductor	2N7002LT1
2	Q18, Q19	HUF76129D3S	DPAK	Fairchild	HUF76129D3S
0	R1, R9, R10, R20	10k	SM/R_0805	Various	DNP
2	R7, R12	909	SM/R_0805	Various	1\%
0	R2, R17	909	SM/R_0805	Various	DNP
5	R3, R8, R13, R18, R24	0	SM/R_0603	Various	1\%

Bill of Materials (Continued)

QUANTITY	REFERENCE	DESCRIPTION	PACKAGE	VENDOR	PART NO.
2	R4, R6	1k	SM/R_0805	Various	1\%
3	R5, R27, R30	10k	SM/R_0603	Various	1\%
1	R11	6.04k	SM/R_0603	Various	1\%
1	R14	51.1K	SM/R_0603	Various	1\%
2	R22, R15	22.1 k	SM/R_0603	Various	1\%
1	R16	750 (only 1\% on board)	SM/R_0603	Various	0.1\%
1	R19	499 (only 1\% on board)	SM/R_0603	Various	0.1\%
1	R21	750	SM/R_0603	Various	1\%
1	R23	499	SM/R_0603	Various	1\%
2	R25, R28	3.01	SM/R_0603	Various	1\%
2	R26, R29	10	SM/R_0603	Various	1\%
1	R31	46.4 k	SM/R_0603	Various	1\%
2	R32, R35	0.1	SM/R_2512	Panasonic	1\%
2	R33, R36	DNP	SM/R_2512	Various	DNP
1	R34	1k	SM/R_0603	Various	1\%
1	SW1	DPST SWITCH		Grayhill	76SB02
1	TP1	VIN	TP	Keystone	5002
1	TP2	PHASE 4	TP	Keystone	5002
1	TP3	GND	TP	Keystone	5002
1	TP4	PHASE 1	TP	Keystone	5002
1	TP5	PGOOD	TP	Keystone	5002
1	TP6	COMP	TP	Keystone	5002
1	TP7	PHASE 2	TP	Keystone	5002
1	TP8	PHASE 3	TP	Keystone	5002
1	TP9	VOUT	PROBE-SOCKET	Tektronics	1314353-00
1	TP10	VOUT	TP	Keystone	5002
1	TP11	LOAD CURRENT	PROBE-SOCKET	Tektronics	1314353-00
4	U1, U2, U4, U5	ISL6609CR	MLFP8_3X3	Intersil	ISL6609CR
1	U3	ISL6558IR	MLFP20_5X5	Intersil	ISL6558IR
1	U6	HIP2100IB	SOIC8	Intersil	HIP2100
4	R37-R40	499k	SM/R_0603	Various	1\%
0	C100, R41	DNP	SM/R_0603	Various	DNP

FIGURE 16. TOP LAYER SILK SCREEN

FIGURE 17. BOTTOM LAYER SILK SCREEN

FIGURE 18. TOP LAYER COMPONENT SIDE

FIGURE 19. LAYER 2

FIGURE 20. LAYER 3

FIGURE 21. LAYER 4

FIGURE 22. LAYER 5

FIGURE 23. BOTTOM LAYER COMPONENT SIDE

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel. +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
Tel + +1-905-237-2004 8309 Richmond Hill, Ontario Canada L4C 9T3
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: \(+44-1628-651-804\)
Renesas Electronics Europe \(\mathbf{G m b H}\)
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No. 27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301 , Tower A Central To
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel. +86-21-2226-0888, rax: +86-21-2226-099
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13 F , No. 363 Fu Shing North Road, Tai
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel. \(+65-6213-0200\), Fax: \(+65-6213-0300\)
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No. \(777 \mathrm{C}, 100\) Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
```

