ZSSC3154 Functional Description

Contents

1.	Cont	rol Logic		4				
	1.1	Genera	al Description	4				
	1.2	CMC D	Description	4				
	1.3	Genera	al Working Modes	4				
		1.3.1	Normal Operation Mode (NOM)	4				
		1.3.2	Command Mode (CM)	5				
		1.3.3	Diagnostic Mode (DM)	7				
		1.3.4	Failsafe Tasks and Error Codes	7				
2.	Signa	al Conditi	ioning	10				
	2.1	1 A/D Conversion						
	2.2	Bridge	Sensor Signal Conditioning Formula	11				
	2.3	Temper	rature Signal Conditioning Formula					
	2.4	Half-Bri	idge Signal Conditioning Formula	12				
	2.5	Fitting (Conditioning Result to Analog Output					
	2.6	Digital I	Filter Function for Analog Output	14				
	2.7	Analog	Output Signal Range and Limitation					
3.	Analog Output							
	3.1	1 Analog Output Modes						
	3.2	.2 Power-On Diagnostic Output						
	3.3	3 Sequential Analog Output Mode						
4.	Serial Digital Interfaces							
	4.1	4.1 General Description						
		4.1.1	Command Structure					
		4.1.2	Addressing					
		4.1.3	Read-Request					
		4.1.4	Communication Verification					
		4.1.5	Communication Protocol Selection					
	4.2	Digital (Output					
	4.3	3 I2C Protocol						
	4.4	One-W	/ire Communication (OWI)					
		4.4.1	Properties and Parameters					
		4.4.2	OWI Startup Window					
		4.4.3	OWI Protocol					
5.	Interface Commands							
	5.1	Command Set						
	5.2	Command Processing						
	5.3	Digital (Output Data in Command Mode					

	5.4	Detailed Description for Particular Commands						
		5.4.1	Acquisition of Raw Measurement Data with START_AD_CNT [62] _{HEX}	36				
		5.4.2	Oscillator Frequency Adjustment with ADJ_OSC_ACQ [50] _{HEX} and ADJ_OSC_WRI [65 data] _{HEX}	37				
6.	EEPROM and RAM							
	6.1	6.1 Programming the EEPROM						
	6.2	.2 EEPROM and RAM Contents						
	6.3	.3 Traceability Information						
	6.4	Configura	ation Words	42				
			/ Signature					
	6.6	EEPRON	/ Write Locking	47				
7.	Gloss	ary		48				
8.	у	49						

List of Figures

Figure 1.1	Measurement Cycle	6
Figure 1.2	Measurement Cycle Modes of Digital Serial Communication	7
Figure 2.1	Accessible Output Signal Range and Limitation	15
Figure 3.1	Power-On Diagnostic Output Wave with the DFBH Pin Open	
Figure 3.2	Power-On Diagnostic Output Wave with Pin DFBH Connected to VSSA	
Figure 3.3	Sequential Analog Output with the DFBH Pin Open	19
Figure 3.4	Sequential Analog Output with the DFBH Pin Connected to VSSA	19
Figure 4.1	I2C Read Request during NOM	
Figure 4.2	I2C or OWI Read Request in Temporary DM	
Figure 4.3	I2C or OWI Read Request after Detecting an Error (Steady DM)	
Figure 4.4	I2C or OWI Read Request Answering a Command (CM)	
Figure 4.5	Principles of I2C Protocol Write Operation I2C	
Figure 4.6	Write Operation I2C	
Figure 4.7	Read Operation I2C - (Data Request)	
Figure 4.8	Timing I2C Protocol	
Figure 4.9	Block Schematic of an OWI Connection	
Figure 4.10	OWI and Actively Driven AOUT1-Starting OWI Communication with a Stop Condition	
Figure 4.11	OWI Write Operation	
Figure 4.12	OWI Read Operation	
Figure 4.13	OWI Protocol Timing	

List of Tables

Error Detection Functionality and Error Codes	7
Timing I2C Protocol	24
OWI Interface Basic Parameters	25
OWI Interface Signal Parameters	29
Command Set	30
Digital Output Data Resulting from Processed Commands	36
A/D Conversion Response Resulting from START_AD_CNT Command	
EEPROM and RAM Contents	
Configuration Word CFGAFE2	43
•	
Configuration Word CFGAPP2	44
Configuration Word CFGSF	45
C Source Code Signature Generation	46
	Timing I2C Protocol

1. Control Logic

1.1 General Description

The control logic of the ZSSC3154 consists of the calibration microcontroller (CMC), the module control logic of the analog-to-digital converter (ADC) and the serial digital interface. The configuration of the various modes of the device is done by programming settings in EEPROM.

The CMC controls the measurement cycle and performs the calculations for sensor signal conditioning. This eliminates the gain deviation, the offset, the temperature deviation, and the non-linearity of the pre-amplified and A/D converted sensor signal. The A/D conversion is executed as a continuous measurement cycle. The conditioning calculation by the CMC is performed in parallel with the A/D conversion.

The ZSSC3154 communicates with an external microcontroller, especially for calibration purposes, via a serial digital interface. A communication protocol according to the I2C standard is supported. Additionally IDT's ZACwire[™] interface is implemented for one-wire communication (OWI). These serial interfaces are used for the calibration of the sensor system consisting of a transducer and the ZSSC3154. The serial interface provides the read out of the results of sensor signal conditioning as digital values during the calibration. The internal processing of received interface commands is done by the CMC. As a consequence, the measurement cycle is interrupted if a command is received. Only the read out of data is controlled by the serial interface itself, and this does not interrupt the CMC.

1.2 CMC Description

The calibration microcontroller (CMC) is especially adapted to the tasks connected with the signal conditioning.

These are the main features:

- The microcontroller uses 16-bit processing width and is programmed via ROM.
- A watchdog timer controls the proper operation of the microcontroller.
- Constants/coefficients for the conditioning calculation are stored in the EEPROM. The EEPROM is mirrored to the RAM after power-on or after re-initialization from EEPROM by sending a specific command to the serial interface.
- Parity is checked continuously during every read from RAM. If incorrect data is detected, the Diagnostic Mode is activated (an error code is written to the serial digital output, and the analog output is set to the diagnostic level).

1.3 General Working Modes

ZSSC3154 supports three different working modes:

- Normal Operation Mode (NOM)
- Command Mode (CM)
- Diagnostic Mode (DM)

1.3.1 Normal Operation Mode (NOM)

The Normal Operation Mode (NOM) is the recommended working mode for applications. After power-on, the ZSSC3154 completes an initialization routine during which the EEPROM is mirrored to RAM and the contents are checked against a stored signature. If enabled, a ROM signature check is processed (see Table 6.6). If any error is detected, the Diagnostic Mode is activated. Otherwise the configuration of the ZSSC3154 is set, the serial digital interfaces are enabled, and NOM is started.

In NOM, the continuous measurement cycle and conditioning calculations are processed. The signal conditioning results generate the analog output at pins AOUT1 and AOUT2. The measurement cycle covers one or two main signals. The differential bridge sensor signal is always available. In addition, a temperature sensor signal or the half-bridge signal can be measured. Various analog output modes are available (refer to section 3.1).

Provided that the EEPROM is programmed correctly, NOM runs without sending any command to the digital serial interface. Readout of the conditioning results via the digital serial interface (I2C) is possible. This does not interrupt the continuous processing of the signal conditioning routine.

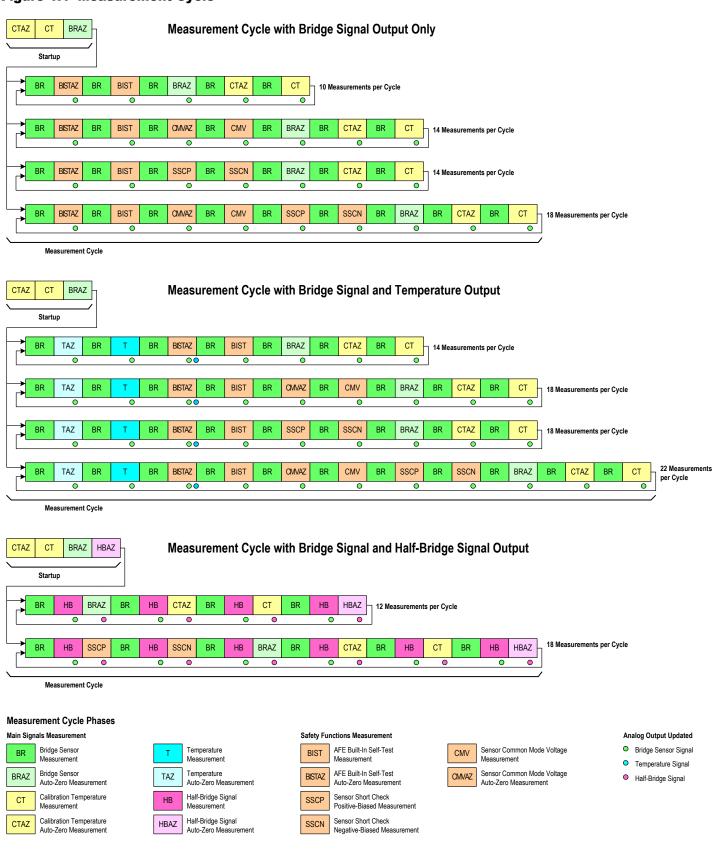
After power-on, a startup window is opened for one-wire communication (OWI) via the AOUT1 pin. During the startup window, the output levels at the AOUT1 pin depend on the selected OWI mode and the configured analog output mode (see section 4.4). To activate the Command Mode (CM) for end-of-line configuration and calibration, send the START_CM command via OWI communication during the startup window (refer to the data sheet for timing specifications for the startup window). In CM, NOM is stopped and the ZSSC3154 waits for further commands.

The ZSSC3154 provides two analog voltage outputs at the AOUT1 and AOUT2 pins. The bridge sensor signal is always output at the AOUT1 pin. For the compensation of temperature dependent deviations via conditioning calculations, a calibration temperature is measured.

At the AOUT2 pin, there are several options for the output mode (see section 3), which can be configured in EEPROM. A separate temperature measurement is available for the output of a conditioned temperature signal. A half-bridge measurement is available for validating the main bridge sensor signal.

The measurement cycle is adapted to the selected measurement and safety tasks configured in EEPROM CFGAPP2:AOUT2MD and CFGSF, respectively. The measurement cycle is reduced to the minimum necessary measurement phases (see Figure 1.1). All measured signals are auto-zero compensated to eliminate offsets resulting from the selected measurement channel.

1.3.2 Command Mode (CM)


The Command Mode (CM) is the working mode that is used for calibration data acquisition and access to the internal RAM and EEPROM of the ZSSC3154. The CM start command START_CM aborts the running NOM, so the measurement cycle stops. The ZSSC3154 changes to CM only after receiving the START_CM command by digital serial communication (I2C or OWI). This protects the ZSSC3154 against interruption of processing the NOM (continuous signal conditioning mode) and/or unintentional changes of configuration. In CM, the full set of commands is supported (see section 5.1).

Starting CM via I2C communication (SCL and SDA pins) is possible at any time. If starting CM via one-wire communication (AOUT1 pin), the START_CM command must be transmitted during the startup window.

If the ZSSC3154 receives a command other than START_CM in NOM, it is not valid. It is ignored, and no interrupt to the continuous measurement cycle is generated.

In CM, the full command set is enabled for processing. During processing of a received command, the digital serial interfaces are disabled; no further commands are recognized. After finishing the processing, the CMC waits for further commands or processes requested measurement loops continuously. EEPROM programming is only enabled after receiving the EEP_WRITE_EN command.

Figure 1.1 Measurement Cycle

Figure 1.2 Modes of Digital Serial Communication

1.3.3 Diagnostic Mode (DM)

The ZSSC3154 detects various failures. When a failure is detected, Diagnostic Mode (DM) is activated. DM is indicated by setting both output pins AOUT1 and AOUT2 to the diagnostic fault band. The level of diagnostic output is configured by the DFBH pin. If the DFBH pin is open, the output is set to Diagnostic Fault Band Low (DFBL). If pin DFBH is connected to VSSA, output is set to Diagnostic Fault Band High (DFBH).

When using digital serial communication protocols (I2C or OWI) to read out conditioning results data, the error status is indicated by two bits in every data word.

DM generates a significant error code that can be read using the command GET_ERR_STATUS.

OWI communication is enabled during DM. Because the analog output pin AOUT1 is driven to the diagnostic range, the AOUT1 pin must be overwritten when starting OWI communication. The communication master must provide driving capability (AOUT1 current limitation: < 20mA).

Note that many of the error detection features can be enabled/disabled by configuration word CFGSF (refer to section 6.4).

There are three options for Diagnostic Mode:

- Steady Diagnostic Mode. In steady DM, the measurement cycle is stopped and failure notification is activated.
 If enabled by the configuration bit CFGSF:DMRES, a reset after the timeout of a watchdog is executed.
- Temporary Diagnostic Mode. There is a failure counting sequence that can result in a temporary DM. DM is activated after two
 consecutively detected failure events and is deactivated after a failure counter counts down if the failure condition is no longer detected.
 The measurement cycle is continuously processed during temporary DM.
- Power and Ground Loss. Power and ground loss cases are signaled by setting the analog output pins to high-impedance states. The
 output levels are determined by the external loads.

1.3.4 Failsafe Tasks and Error Codes

Table 1.1 Error Detection Functionality and Error Codes

Failsafe Task	Description	Error Code	Activation	Messaging Time	Action
Oscillator Fail Detection	Oscillator is observed generating clock pulses by an asynchronous timing logic.	-	-	< 200µs	Temporary DM
EEPROM Signature	Checks signature of RAM mirror against signature stored in EEPROM.	6600 _{HEX}	-	Startup	
ROM Signature	Checks CMC ROM signature. Note that this check potentially increases startup time by 10ms.	6500 _{HEX}	CFGSF: CHKROM	Startup	Steady DM
EEPROM Multiple-Bit Error	Detection of non-correctable multiple-bit error per 16-bit word.	6440 _{HEX}	-	Startup	

Failsafe Task	Description	Error Code	Activation	Messaging Time	Action			
Arithmetic Check	Functional check of arithmetic unit.	6480 _{HEX}	-	One measurement cycle	Stoody DM			
Register Parity	Permanent parity check of configuration registers.	6410 _{HEX}	-	Immediate	Steady DM or Reset after			
RAM Parity	Parity check at every RAM access.	6404 _{HEX}	-	Immediate	Watchdog Timeout			
Watchdog	Watchdog timeout during start routine (65536 clocks if CFGAFE:ADCSLOW=0; 131072 clocks if ADCSLOW=1; refer to Table 6.2) or measurement cycle ($2 \times$ conversion cycle time).	6402 _{HEX}	_	Startup, 2 or 3 measurement times	(enabled by CFGSF: DMRES)			
BCC	Broken chip check.	AA00 _{HEX}	CFGSF: CHKBCC					
TSC	Temperature sensor check: Detection of overdriving the analog front-end during temperature measurement.	C900 _{HEX}	CFGSF: CHKTSC					
SAC	Sensor aging check.	A880 _{HEX}	CFGSF: CHKSAC		Temporary DM			
SCC	Sensor connection check.	A840 _{HEX}	CFGSF: CHKSCC					
SSC	Sensor short check.	A820 _{HEX}	CFGSF: CHKSSC	Two measurement cycles				
AFEBIST	Analog front-end (AFE) built-in self-test; not executed if half-bridge signal measurement is configured.	A810 _{HEX}	AFEBISTMIN / AFEBISTMAX					
МССН	Main channel check – high: Detection of positive overdriving of the analog front-end during bridge measurement.	A808 _{HEX}	CFGSF: CHKMCCH					
MCCL	Main channel check – low: Detection of negative overdriving of the analog front-end during bridge measurement.	A804 _{HEX}	CFGSF: CHKMCCL					
Power or Ground Loss	Power or ground loss detection.	_	_	< 5ms	Reset			

Note: Error codes can be bit-wise masked. Bit [15] (MSB) is even parity. Bits [14:13] are error status flags. Error status is 1 (Temporary DM), 2 (Temporary DM, Temperature Fail), or 3 (Steady DM).

If the error status is 0 but the error code at bits [12:0] is set, this means that the indicated error was temporarily detected during normal operation but is currently not active anymore.

Note that the reset after the watchdog timeout clears any error codes that were previously generated.

1.3.4.1 Broken Chip Check (BCC)

The BCC detects damage and fractions of the silicon chip and its passivation caused by the production and assembly process. The check can be applied by the GET_BCC_STATUS command during the calibration process or cyclically in the measurement cycle during NOM.

1.3.4.2 Temperature Sensor Check (TSC)

The temperature sensor check detects whether the ADC dynamic range has been exceeded during the temperature measurement. The temperature signal raw value is checked to determine if it is less than 128 or greater than $(2^{14} - 128)$.

This can result from various causes: the external temperature sensor is disconnected; the analog temperature input channel is not sufficiently calibrated or defective; or the temperature signal is out of targeted range.

1.3.4.3 Bridge Sensor Aging Check (SAC)

The sensor aging check detects long-term altering of the bridge sensor resistors that would result in a shift of the calibrated output characteristics. The SAC evaluates the common mode voltage of the sensor bridge once per measurement cycle if enabled. The measurement result is checked for compliance with programmed limits (CMVMIN / CMVMAX).

1.3.4.4 Bridge Sensor Connection Check (SCC)

The sensor connection check monitors the connection of the bridge sensor at the VBP and VBN pins. An internally determined current is applied to the sensor, and the resulting differential input signal is evaluated once per measurement cycle if enabled.

The following failures are detected by SCC:

- High-resistive sensor bridge elements (e.g., a diaphragm rapture)
- Connection loss at the pins VBP, VBN, VBR_T or VBR_B
- Short between pins VBP or VBN and pins VBR_T or VBR_B
- Enabling the SCC High Capacitor Mode (CFGSF:CHKSCCHIC; see Table 6.6) is recommended in applications with a high capacitive load greater than 1nF up to 10nF at the input pins VBP and VBN.

1.3.4.5 Bridge Sensor Short Check (SSC)

The sensor short check detects a short between the bridge sensor input pins VBP and VBN (connections less than 50Ω nominal). An internally determined current is applied to the sensor in both directions, resulting in differential input signals, which are evaluated once per measurement cycle if enabled. If a short occurs, the input signal difference of both is less than an internally determined limit.

1.3.4.6 Analog Front-End Built-In Self-Test (AFEBIST)

The analog front-end (AFE) built-in self-test detects whether the AFE (the programmable amplifier and the A/D converter) is functioning correctly. Adjusted to the configured analog gain, an internally generated analog input signal is measured via the main channel. The measurement result is checked against programmed limits (AFEBISTMIN / AFEBISTMAX; see Table 6.1).

Note that limits must be calibrated if AFEBIST is used. AFEBIST adds two further measurement phases to the measurement cycle. AFEBIST and the half-bridge measurement validate the same measurement channel. Hence AFEBIST is measured if and only if the half-bridge measurement is not enabled. AFEBIST validation can be disabled by setting the limits AFEBISTMIN / AFEBISTMAX to 0_{HEX} and 3FFF_{HEX}, respectively.

1.3.4.7 Main Channel Check (MCCH/MCCL)

The main channel check detects whether the ADC dynamic range has been exceeded during the bridge measurement. The bridge signal raw value is checked to determine if the value is less than 128 or greater than $(2^{14} - 128)$. This can result from various causes: the bridge sensor is disconnected; the main input channel is defective or not sufficiently calibrated; or the bridge signal is out of targeted range.

The main channel check distinguishes between positive (MCCH) and negative (MCCL) overdrive to allow tailored overdrive handling at the bridge channel.

1.3.4.8 Power and Ground Loss

The detection of a power or ground loss is indicated by pulling the analog outputs AOUT1 and AOUT2 to the Diagnostic Fault Band. The level of the diagnostic output depends on the lost node and load connection to ground or supply. In such cases, the ZSSC3154 is inactive and the specified leakage current in combination with the load resistor guarantees reaching DFBH or DFBL.

2. Signal Conditioning

2.1 A/D Conversion

During NOM, the analog preconditioned sensor signal is continuously converted from analog to digital. The A/D conversion is performed with a 14-bit resolution r_{ADC} for all measurements in the measurement cycle (e.g., bridge sensor signal, temperature, half-bridge, auto-zero, etc.). The A/D conversion is configurable regarding the inherent range shift r_{ADC} for the bridge sensor signal and half-bridge signal measurement. All resulting digital raw values are determined by the following equations:

Analog differential input voltage to A/D conversion (V_{ADC_DIFF})

$$V_{ADC}_{DIFF} = a_{IN} * V_{IN}_{DIFF} + a_{XZC} * V_{XZC}$$

Where

$V_{\text{IN}_\text{DIFF}}$	Differential input voltage to analog front-end
V _{XZC}	Extended zero compensation voltage (programmable via CFGAFE:BRXZC and CFGAFE2:HBXZC; see section 6.4)
a _{IN}	Gain of analog front-end
a _{XZC}	Gain for extended zero compensation voltage
V _{ADC_DIFF}	Differential input voltage to ADC

Digital raw A/D conversion result (ZADC)

$$Z_{ADC} = 2^{r_{ADC}} * \left(\frac{V_{ADC_DIFF} + V_{OFF}}{V_{ADC_REF}} + r_{S_{ADC}} \right)$$
(2)

Where

Voff	Residual offset voltage of analog front-end (which is eliminated by auto-zero compensation)
$V_{\text{ADC}_\text{REF}}$	ADC reference voltage (ratiometric reference for measurement)
r _{ADC}	Resolution of A/D conversion (14-bit)
rs _{ADC}	Range shift of A/D conversion (bridge or half-bridge: 1/2, 1/4, 1/8, 1/16; temperature: 1/2)

Auto-zero value (Z_{AZ})

$$Z_{AZ} = 2^{r_{ADC}} * \left(\frac{V_{OFF}}{V_{ADC} _ REF} + r_{S_{ADC}} \right)$$
(3)

Auto-zero corrected raw A/D conversion result (Z_{CORR})

$$Z_{CORR} = Z_{ADC} - Z_{AZ} = 2^{r_{ADC}} * \frac{V_{ADC} _ DIFF}{V_{ADC} _ REF}$$
(4)

(1)

2.2 Bridge Sensor Signal Conditioning Formula

The digital raw value Z_{BR,CORR} for the measured bridge sensor signal is processed with a conditioning formula to remove offset and temperature dependency and to compensate nonlinearity up to 3rd order. The signal conditioning equation is processed by the CMC and is defined as follows:

Range definition of inputs (ZBR,CORR and ZCT,CORR)

$$Z_{\text{BR,CORR}} \in \left[-2^{r_{\text{ADC}}}; 2^{r_{\text{ADC}}} \right)$$

$$Z_{\text{CT,CORR}} \in \left[-2^{r_{\text{ADC}}-1}; 2^{r_{\text{ADC}}-1} \right)$$
(5)
(6)

Where

r _{ADC}	Resolution of A/D conversion(14-bit)
Z _{BR,CORR}	Raw A/D conversion result for bridge sensor signal (auto-zero compensated)
Z _{CT CORR}	Raw A/D conversion result for calibration temperature (auto-zero compensated)

In the following conditioning formulas, equation (7) compensates the offset and fits the gain including its temperature dependence. The nonlinearity for the intermediate result Y is then corrected in equation (8). The result of these equations is a non-negative value BR for measured bridge sensor signal in the range [0; 1).

Note that the conditioning coefficients c_i are positive or negative values in two's complement.

Bridge signal conditioning equations

$$Y = \frac{Z_{BR,CORR} + c_0 + 2^{-(r_{ADC}-1)} * c_4 * Z_{CT,CORR} + 2^{-2(r_{ADC}-1)} * c_5 * Z_{CT,CORR}^2}{c_1 + 2^{-(r_{ADC}-1)} * c_6 * Z_{CT,CORR} + 2^{-2(r_{ADC}-1)} * c_7 * Z_{CT,CORR}^2} \qquad Y \in [0;1)$$
(7)

$$BR = Y * \left(1 - 2^{-15} * c_2 - 2^{-15} * c_3\right) + 2^{-15} * c_2 * Y^2 + 2^{-15} * c_3 * Y^3 \qquad BR \in [0;1)$$
(8)

Where

Conditioning coefficients stored in EEPROM registers 00_{HEX} to 07_{HEX} :

 $c_i \in$ [-2^{15}; 2^{15}), two's complement.

- c₀ Bridge offset
- c1 Bridge gain
- c₂ Non-linearity correction 2nd order
- c₃ Non-linearity correction 3rd order
- c4 Temperature coefficient bridge offset 1st order
- c5 Temperature coefficient bridge offset 2nd order
- c₆ Temperature coefficient gain 1st order
- c7 Temperature coefficient gain 2nd order

2.3 Temperature Signal Conditioning Formula

The temperature measurement is enabled by selecting the appropriate analog output mode for the AOUT2 pin (CFGAPP2:AOUT2MD; see Table 6.5). The digital raw value $Z_{T,CORR}$ for the measured temperature is processed with a conditioning formula to remove offset and to compensate nonlinearity up to 2nd order. The signal conditioning equation is processed by the CMC and is defined as follows:

Range definition of input (Z_{T,CORR}):

$$Z_{T,CORR} \in \left[-2^{r_{ADC}-1}; 2^{r_{ADC}-1}\right]$$

Where

r_{ADC} Resolution of A/D conversion (14-bit)

Z_{T,CORR} Raw A/D conversion result for temperature (auto-zero compensated)

In the following temperature conditioning formulas, equation (10) compensates the offset and fits the gain. The nonlinearity for the intermediate result Y_T is then corrected in equation (11). The result of these equations is a non-negative value T for measured temperature in the range [0; 1).

Note that the conditioning coefficients t_i are positive or negative values in two's complement format.

Temperature signal conditioning equations

$$Y_{T} = \frac{Z_{T,CORR} + t_{0}}{t_{1}} \qquad Y_{T} \in [0;1)$$
(10)

$$T = Y_T * (1 - 2^{-15} * t_2) + 2^{-15} * t_2 * Y_T^2 \qquad T \in [0;1)$$
(11)

Where

Conditioning coefficients stored in EEPROM registers 08_{HEX} to 0A_{HEX} when temperature measurement is selected:

 $t_i \in$ [-2¹⁵; 2¹⁵), two's complement.

- to Temperature offset
- t₁ Temperature gain
- t₂ Temperature non-linearity correction 2nd order

2.4 Half-Bridge Signal Conditioning Formula

The half-bridge signal measurement is enabled by selecting the appropriate analog output mode for the AOUT2 pin (CFGAPP2:AOUT2MD; see Table 6.5). The digital raw value $Z_{HB,CORR}$ for the measured half-bridge signal is processed with a conditioning formula to remove offset and temperature dependency and to compensate nonlinearity up to 2^{nd} order. The signal conditioning equation is processed by the CMC and is defined as follows:

(9)

Range definition of input (ZHB,CORR and ZCT,CORR):

$$Z_{HB,CORR} \in \left[-2^{r_{ADC}}; 2^{r_{ADC}}\right)$$
(12)

$$Z_{CT,CORR} \in \left[-2^{r_{ADC}-1}; 2^{r_{ADC}-1}\right)$$

Where

 r_{ADC}
 Resolution of A/D conversion (14-bit)

 Z_{HB,CORR}
 Raw A/D conversion result for half-bridge sensor signal (auto-zero compensated)

 Z_{CT.CORR}
 Raw A/D conversion result for calibration temperature (auto-zero compensated)

In the following conditioning formulas, equation (14) compensates the offset and fits the gain including its temperature dependence. The nonlinearity for the intermediate result Y_{HB} is then corrected in equation (15). The result of these equations is a non-negative value HB for the measured half-bridge signal in the range [0; 1).

Note that the conditioning coefficients h_i are positive or negative values in two's complement format.

Half-bridge signal conditioning equations:

$$Y_{HB} = \frac{Z_{HB,CORR} + h_0 + 2^{-(r_{ADC}-1)} * h_4 * Z_{CT,CORR} + 2^{-2(r_{ADC}-1)} * h_5 * Z_{CT,CORR}^2}{h_1 + 2^{-(r_{ADC}-1)} * h_6 * Z_{CT,CORR} + 2^{-2(r_{ADC}-1)} * h_7 * Z_{CT,CORR}^2}$$

$$Y_{HB} \in [0;1)$$
(14)

$$HB = Y_{HB} * \left(1 - 2^{-15} * h_2\right) + 2^{-15} * h_2 * Y_{HB}^2 \qquad HB \in [0;1)$$
(15)

Where

Conditioning coefficients stored in EEPROM registers 08_{HEX} to 0E_{HEX} when half-bridge measurement is selected:

- $h_i \in$ [-2¹⁵; 2¹⁵), two's complement.
- h₀ Half-bridge offset
- h1 Half-bridge gain
- h₂ Half-bridge non-linearity correction 2nd order
- h₄ Temperature coefficient half-bridge offset 1st order
- h₅ Temperature coefficient half-bridge offset 2nd order
- h₆ Temperature coefficient half-bridge gain 1st order
- h7 Temperature coefficient half-bridge gain 2nd order

2.5 Fitting Conditioning Result to Analog Output

The analog output is generated by a 5632-step D/A converter. This guarantees 12-bit analog output resolution for a typical output range of 10-to-90% VDDA or larger. For the calibration of the conditioning coefficients, the target output values must be fitted to that DAC resolution.

The fitting factor is 0.6875 = $\begin{pmatrix} 5632\\ 2^{13} \end{pmatrix}$ and is applied to the normalized target values BR, T, HB \in [0; 1).

Note that this fitting is supported by the ZSSC3154 Evaluation Kit Software, which can be freely downloaded from IDT's web site (<u>www.IDT.com/ZSSC3154KIT</u>), but fitting is not part of the *RBIC1.DLL*, which is available on request for use with customer proprietary software.

(13)

2.6 Digital Filter Function for Analog Output

The ZSSC3154 offers digital (averaging) low-pass filters for the two analog output signals at pins AOUT1 and AOUT2. The output signal and mode at the AOUT2 pin are configured by EEPROM CFGAPP2:AOUT2MD (see section 6.4 and Table 6.5).

In NOM, the conditioned bridge sensor signal is always continually output at the AOUT1 pin. The AOUT1 output value is filtered with the integrating coefficient LPFAVRGBR and the differential coefficient LPFDIFFBR (see Table 6.1)

If the AOUT2 pin is configured to output a function of the bridge sensor signal, the AOUT2 output value is calculated with the conditioned and filtered bridge sensor value that is output at the AOUT1 pin.

If the AOUT2 pin is configured to output the temperature signal, the AOUT2 output value is filtered with the integrating coefficient LPFAVRGT and the differential coefficient LPFDIFFT.

If the AOUT2 pin is configured to output the half-bridge signal or a function of this signal, the AOUT2 output value is filtered with the integrating coefficient LPFAVRGHB and the differential coefficient LPFDIFFHB.

If the half-bridge sensor signal is output at the AOUT2 pin for validating the analog output of the bridge sensor signal at the AOUT1 pin, using equal filter coefficients is recommended.

The filter function is implemented as follows:

Digital Filter Function (SOUT,0 and SOUT,i)

$$S_{OUT,0} = S_0 \tag{16}$$

$$S_{OUT,i} = S_{OUT,i-1} + (S_i - S_{OUT,i-1}) * \frac{LPFDIFF + 1}{2^{LPFAVRG}} \qquad i > 0$$
(17)

with LPFAVRG, LPFDIFF
$$\in$$
 [0;7] and S_{OUT,i} \in [0;1)

Where

Si	Conditioned signal output result (refer to sections 2.2 through 2.4)
S _{OUT,i}	Filtered signal output result
LPFAVRG	Averaging filter coefficient
LPFDIFF	Differential filter coefficient

The result of the filter function is a non-negative value S_{OUT} in the range [0; 1) which is used for continuously updating the analog output value during the measurement cycle.

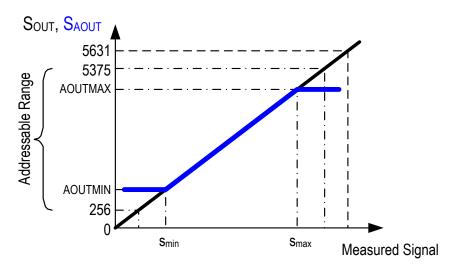
Note that filtering is not applicable if CFGAPP:ADCMD is set to 11_{BIN} (7-bit) (see Table 6.2).

Note that setting the coefficients LPFAVRG and LPFDIFF to 0 disables the filter function.

Important: For proper function, ensure that the factor $\frac{LPFDIFF+1}{2^{LPFAVRG}}$ never becomes larger than 2!

Note that the readout of measurement values in NOM via I2C delivers conditioned but unfiltered result values S_i.

2.7 Analog Output Signal Range and Limitation


The filtered conditioning results S_{OUT} for the measured bridge signal, the temperature signal, or the half-bridge signal are output at the analog output pins AOUT1 and AOUT2 with a resolution greater than 12 bits. The analog output voltage is generated using a resistor-string DAC with 5632 steps, of which 5120 steps (256 to 5375) can be addressed. As a result, an adjustable range from 5% to 95% of the supply voltage is guaranteed, including all possible tolerances.

Setting the analog output outside the allowed range (for example via the SET_AOUTx command) will result in entering the diagnostic mode (DM) and setting the output to the DFB (Diagnostic Fault Band) level.

The ZSSC3154 offers an output limitation function for the analog output S_{OUT} that clips the output signal with the configurable limits AOUTMINx and AOUTMAXx as illustrated in Figure 2.1. These output minimum and maximum limits (13-bit accuracy) are defined in EEPROM with separate settings for the bridge, temperature, and half-bridge signal limits (see Table 6.1).

Note that these limit-setting registers (0F_{HEX} through 12_{HEX}) are shared with the digital filter configuration (the 3 LSBs).

Analog Output Limitation (SAOUT)

 $S_{AOUT} (S_{OUT} > AOUTMAX) = AOUTMAX$ (18)

 $S_{AOUT} \left(S_{OUT} \in \left[AOUTMAX; AOUTMIN \right] \right) = S_{OUT}$ (19)

 $S_{AOUT} (S_{OUT} < AOUTMIN) = AOUTMIN$ (20)

with AOUTMIN, AOUTMAX
$$\in$$
 [256;5375]
= $[100_{HEX}; 14FF_{HEX}]$ (21)

Where

Sout	Conditioned and filtered signal output result (refer to section 2.6)
SAOUT	Clipped analog output result
AOUTMIN	Lower analog output limit
AOUTMAX	Upper analog output limit

The analog output voltage V_{AOUT} is ratiometric to the power supply (V_{VDDE} - V_{VSSE}) and can be calculated using the following formula.

Analog Output Voltage (VAOUT)

$$V_{AOUT} = (V_{VDDE} - V_{VSSE}) * \frac{S_{AOUT}}{5632}$$
(22)

Where

S_{AOUT} Conditioned, filtered and clipped signal output result

V_{AOUT} Analog output voltage

V_{VDDE}, V_{VSSE} Voltages at VDDE and VSSE pins

Note that the readout of measured values in NOM via I2C delivers conditioned but unfiltered and unclipped values for S.

Note that if the output is a function *f* of the bridge sensor signal via AOUT2 $(1 - BR, \frac{1}{2} * BR, \text{ or } \frac{1}{2} * (1 - BR))$, which can be configured by CFGAPP2:AOUT2MD, the function is applied to the conditioned, filtered, and clipped bridge signal BR_{AOUT}. The resulting clipping limits for *f*(BR) at AOUT2 are consequently *f*(AOUTMINBR) and *f*(AOUTMAXBR).

3. Analog Output

3.1 Analog Output Modes

The ZSSC3154 provides two analog voltage outputs at the pins AOUT1 and AOUT2.

In NOM, the conditioned bridge sensor signal is continually output at the AOUT1 pin.

At the AOUT2 pin, several output modes are supported that are configured by EEPROM CFGAPP2:AOUT2MD:

- Continual output of the conditioned temperature signal

The selected temperature sensor is configured with CFGAPP:TS. It is possible to select the same sensor as is used for calibration temperature or to select a different temperature sensor (see Table 6.4).

- Continual output of the conditioned half-bridge signal

The half-bridge sensor signal can be used to validate the bridge sensor signal output at the AOUT1 pin (see Table 6.5). If the filter function is used for the bridge sensor signal, setting the coefficients for filtering the half-bridge signal to the same value is recommended. Note, that validating the main signal channel by the half-bridge sensor signal disables the analog front-end BIST functionality (AFEBIST, see Table 1.1 and Figure 1.1).

• Continual output of a function of bridge sensor signal

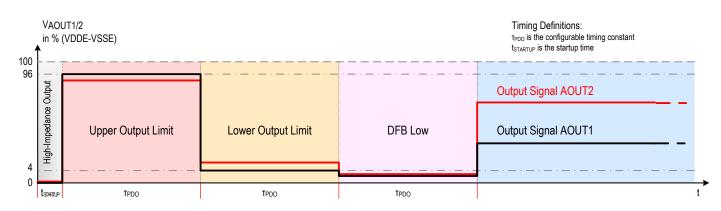
Output of a function of the bridge sensor signal can be used to validate the bridge sensor signal output at the AOUT1 pin. Several functions are available and are calculated from the conditioned and filtered bridge sensor output value (see Table 6.5).

- Sequential Analog Output Mode (SEQAOUT)

If the Sequential Analog Output Mode (SEQAOUT) is enabled, a configurable, continuous sequence is output on the AOUT2 pin (see Table 6.5 for the settings and section 3.3 for the order). The running sequence begins with the bridge signal or a function of the bridge signal; the Diagnostic Fault Band level driven by the DFBH pin; the inverted DFB level; and then the temperature or the half-bridge sensor. This allows validating the bridge sensor signal output at the AOUT1 pin. The Diagnostic Fault Band levels can be checked to ensure proper failure messaging.

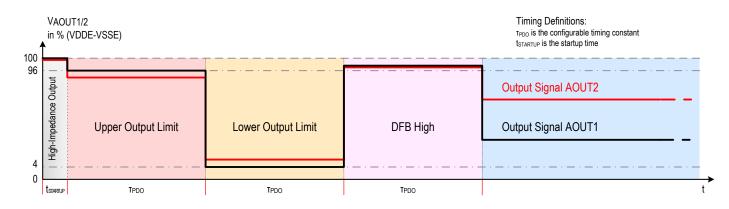
3.2 Power-On Diagnostic Output

The ZSSC3154 provides a Power-On Diagnostic Output (PDO) wave. If enabled by EEPROM CFGSF:PDOENA, after power-on, the analog outputs at AOUT1 and AOUT2 run a one-time sequence of the upper and lower output limits followed by the diagnostic fault band output level (see Figure 3.1 and Figure 3.2). This can be used to check the operability of the chip and its output levels.


The upper and lower output limits are programmed in EEPROM independently for both output pins.

The diagnostic fault band output level depends on the DFBH pin. If the DFBH pin is open, both output pins AOUT1 and AOUT2 switch to the lower diagnostic fault band. If the DFBH pin is connected to VSSA, both output pins switch to the higher diagnostic fault band. Use the appropriate configuration for the user's application according to output pin loads.

Enabling the sequential analog output (SEQAOUT) for the AOUT2 pin with CFGAPP2:AOUT2MD disables PDO independently of control bit CFGSF:PDOENA.

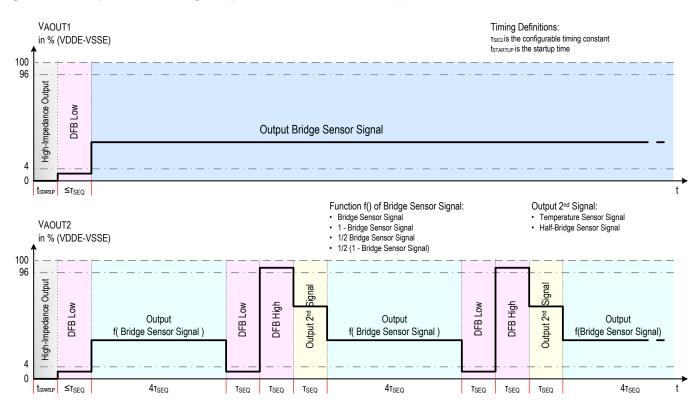

If PDO is enabled, the startup window for one-wire communication via the AOUT1 pin is open during the two phases for the upper and lower output limits.

The duration τ_{PDO} of each phase in the PDO sequence is 160ms (nominal) at f_{OSC} = 2.6MHz. This timing can be shortened by setting the divider CFGAPP:TIMEDIV.

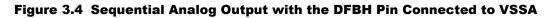
Figure 3.1 Power-On Diagnostic Output Wave with the DFBH Pin Open

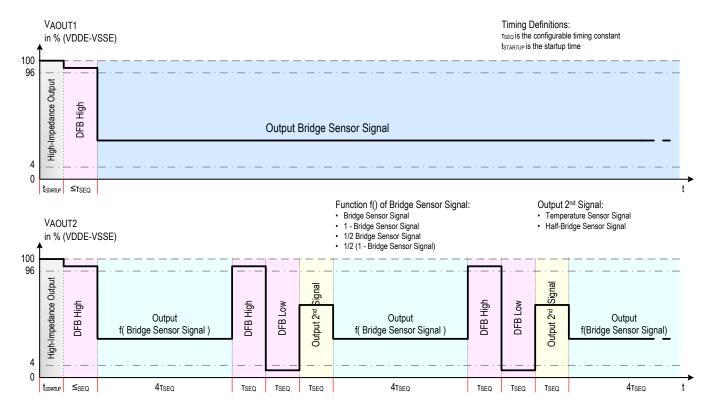
3.3 Sequential Analog Output Mode

The ZSSC3154 can provide the Sequential Analog Output Mode (SEQAOUT) at the AOUT2 pin if enabled by EEPROM CFAPP2:AOUT2MD. In this mode, the analog output at AOUT2 continuously runs a sequence of the bridge sensor signal followed by both diagnostic fault band output levels and by a 2nd configurable output signal (see Figure 3.3 and Figure 3.4). At the AOUT1 pin, the bridge sensor signal is continuously output.


The output of the diagnostic fault band levels can be used to check operability and proper failure messaging of the chip and to synchronize for evaluating both output signals. The actively driven diagnostic fault band level must be configured by connecting the DFBH pin to VSSA or by leaving it open. This actively driven diagnostic fault band level is output first in the SEQAOUT sequence; the reverse level follows.

The bridge sensor signal output in the SEQAOUT sequence can be manipulated by several functions selectable by CFGAPP2:AOUT2MD. This supports validating the bridge sensor signal output at pin AOUT1.


A half-bridge signal is selectable as the second signal output in the SEQAOUT sequence, which can also be used to validate bridge sensor signal.


Alternately the temperature signal can be selected as the second signal output. Depending on the selected temperature sensor (see Table 6.4, bits 5:3), this can be the sensor output used for calibration, which provides temperature compensation of the bridge sensor signal, or another temperature sensor.

The timing constant τ_{SEQ} , which determines duration of the individual phases in the SEQAOUT sequence, is 37ms (nominal) at f_{OSC}=2.6MHz. This timing can be shortened by setting the divider CFGAPP:TIMEDIV.

Figure 3.3 Sequential Analog Output with the DFBH Pin Open

4. Serial Digital Interfaces

4.1 General Description

The ZSSC3154 includes a serial digital I2C interface and a ZACwire[™] interface for one-wire communication (OWI). The digital interfaces allow programming the EEPROM to configure the application mode for the ZSSC3154 and to calibrate the conditioning equations. It also provides the readout of the conditioning results as a digital value. The ZSSC3154 always functions as a slave.

I2C access to the ZSSC3154 is available in all operation modes independent of the programmed configuration. The I2C interface is enabled after power-on and a short initialization phase. In Normal Operation Mode (NOM), the result values for the bridge sensor signal and for the temperature or the half-bridge signal can be read out.

To access the ZSSC3154 by using OWI communication, the START_CM command must be transmitted in the startup window after power-on. For OWI communication, there are two possible startup window modes selectable by the CFGAPP2:OWIMD bit: with simultaneous analog output or without analog output during the startup window. The duration of the startup window depends on the selected analog output mode (refer to section 4.4.2). In NOM after the startup window, OWI communication is not applicable.

Transmitting the command START_CM enables the Command Mode (CM). In CM, either communication protocol can be used; all commands are available to process calibration. EEPROM write access via I2C is always available in CM. The EEPROM lock bit only affects EEPROM write access via OWI communication (refer to section 6.6).

In Diagnostic Mode (DM), both communication protocols can be used to read an error code to identify the error source. A non-configured device, identified by a non-consistent EEPROM signature, starts up in DM. Because the analog output pin AOUT1 is driven to the diagnostic range in DM, the analog output must be overwritten when starting communication using OWI communication. Starting CM from DM by transmitting the START_CM command is possible by using I2C or OWI communication.

In CM and DM, an alternating use of communication protocols is permitted.

4.1.1 Command Structure

A command consists of a device address byte and a command byte. Some commands (e.g. writing data into EEPROM) also include two data bytes. The command structure is independent from the communication protocol used. Refer to section 1.3 for details of working modes and section 5 for command descriptions.

4.1.2 Addressing

Addressing is supported by I2C and OWI communication protocol. Every slave connected to the master responds to a defined address. After generating the start condition, the master sends the address byte containing a 7-bit address followed by a data direction bit (R/W). A '0' indicates a transmission from master to slave (WRITE); a '1' indicates a data request (READ). The addressed slave answers with an acknowledge bit (I2C only). All other slaves connected to the master ignore this communication.

The ZSSC3154 always responds to its general ZSSC3154 slave address, which is 28_{HEX} (7-bit). Via EEPROM programming, it is possible to allocate and activate an additional unique slave address within the range 20_{HEX} to $2F_{HEX}$ to the ZSSC3154. In this case, the device recognizes communication on both addresses, on the general one and on the additional one.

4.1.3 Read-Request

There are two general types of requests for reading data from the ZSSC3154:

Digital read out: Continuously reading the conditioned result in NOM via I2C communication only

During the measurement cycle, the ZSSC3154 transfers the conditioned results for the bridge sensor signal and for the temperature or halfbridge signal (as configured by CFGAPP2:AOUT2MD[bit 13] in register 16_{HEX} ; see Table 6.5) into the output registers of the I2C interface. These data will be sent if the master generates a read-request via I2C. The active measurement cycle is not interrupted by this.

 Calibration and/or configuration tasks via I2C or via OWI communication: Reading internal data (e.g., EEPROM content) or acquired measurement data in CM

To read internal and/or measurement data from the ZSSC3154 in CM, usually a specific command must be sent to transfer this data into the output registers of the digital interfaces. Thereafter the data will be sent if the master generates a read-request.

4.1.4 Communication Verification

In Normal Operation Mode (NOM) 16-bit data words are protected by even parity on the MSB (see section 4.2).

In Command Mode (CM) a read request is answered by the return of the data present in the digital interface output registers (2 bytes). Next a check sum is sent (1 byte) followed by the command which is answered (refer to section 4.2). The check sum and the returned command allow the verification of received data by the master. For details and exceptions, also see Table 5.2.

4.1.5 Communication Protocol Selection

Both available protocols, I2C and OWI, can be active simultaneously, but only one interface can be used at a time.

An OWI communication access is also possible if OWI communication is enabled and analog output is active at the same time (i.e. during the startup window, in Diagnostic Mode, or in Command Mode after START_CYCL commands). For this, the active output AOUT1 must be overwritten by the communication master, so generating a stop condition before starting the communication is recommended to guarantee a defined start of communication (refer to Figure 4.10).

4.2 Digital Output

A read request is answered by transmitting data from the digital interface output registers.

During the continuous measurement cycle (NOM, Temporary DM), the digital output via the I2C interface sends the 13-bit bridge sensor value and 13-bit temperature or half-bridge value (configured by the 16_{HEX} register CFGAPP2:AOUT2MD[bit 13], see Table 6.5), depending on the configured analog output mode. The diagnostic status (ERR) is included with 2 bits per 16-bit word. The MSB carries an even-parity (PAR). The data is updated continuously when a new conditioned value is calculated.

Figure 4.1 I2C Read Request during NOM

					Bridge Sen	isor Signal	Temperature or Half-Bridge Signal				
Byte	Device Address	High Byte		gh Byte	Low Byte	Hi		gh Byte	Low Byte		
	Address	R/W	PAR	ERR	Bridge signal (conditioned 13-bit value)			ERR	Half-	nperature or Bridge signal ned 13-bit value)	
Value	28 _{HEX}	1	Ρ	00 _{bin}	MSB	LSB	Ρ	00 _{bin}	MSB		LSB

During Temporary Diagnostic Mode (refer to section 1.3.3), the 2-bit diagnostic status ERR is set to 01_{BIN} for bridge sensor and main channel related failures and set to 10_{BIN} for temperature sensor related failures.

Figure 4.2 I2C or OWI Read Request in Temporary DM

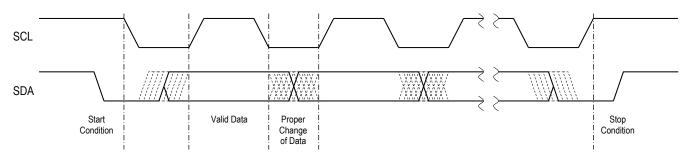
					Bridge Ser	nsor Signal		Temperature or Half-Bridge Signal			
Byte	Device Address			Hig	jh Byte	Low Byte		Hig	ıh Byte	Low Byte	
	Address	R/W	PAR	ERR	Possibly invalid Bridge signal (conditioned 13-bit value)		PAR	ERR	Possibly invalid Temperature or Half-Bridge signal (conditioned 13-bit valu		
Value	28 _{HEX}	1	Ρ	01 _{віл} / 10 _{віл}	MSB	LSB	Ρ	01 _{віN} / 10 _{віN}			LSB

During Steady Diagnostic Mode (DM), i.e., when a permanent failure has been detected, the diagnostic status ERR is set to 11_{BIN}. An error code is also transmitted to identify the failure source.

				Error Code					Error Code			
Byte	Device Address		High Byte			Low Byte		High Byte Low By				
	Address	R/W	PAR	ERR		Error code	PAR	ERR	E	Error Code		
Value	28 _{HEX}	1	Ρ	11 _{BIN}	MSB	LSB	Ρ	11 _{BIN}	MSB		LSB	

Figure 4.3 I2C or OWI Read Request after Detecting an Error (Steady DM)

In Command Mode (CM) a 2-byte answer is generated for every received command. A 1-byte check sum is added followed by the command that is being answered. The check sum and the command echo allow verification of received data by the master. For details and exceptions, refer to section 5.3.


Figure 4.4 I2C or OWI Read Request Answering a Command (CM)

			Ans	wer	Verification				
Byte	Device Address		High Byte	Low Byte	Hi	gh Byte	Lo	ow Byte	
	Address	R/W	Response	Ch	eck Sum	Com	mand Echo		
Value	28 _{HEX}	1	MSB	LSB	MSB	LSB	MSB	LSB	

4.3 I2C Protocol

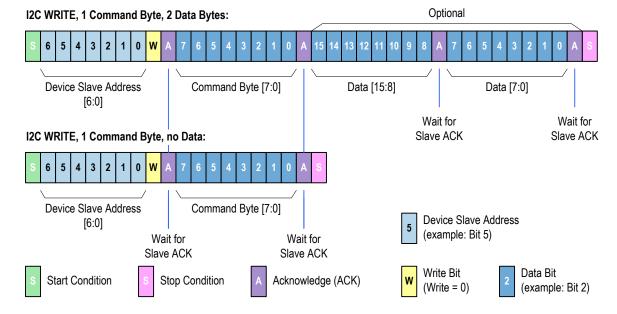
For I2C communication, a data line (SDA) and a clock line (SCL) are required as illustrated in Figure 4.5.

Figure 4.5 Principles of I2C Protocol

The I2C communication and protocol used are defined as follows:

- Idle period: When the bus is inactive, SDA and SCL are pulled-up to supply voltage VDDA.
- Start condition: A high-to-low transition on SDA while SCL is at the high level indicates a start condition. Every command must be initiated by a start condition sent by a master. A master can always generate a start condition.
- Stop condition: A low-to-high transition on SDA while SCL is at the high level indicates a stop condition. A command must be closed by
 a stop condition for the ZSSC3154 to start processing the command routine. The ZSSC3154 changes to inactive interface mode during
 processing of internal command routines started by a previously sent command.
- Valid data: Data is transmitted in bytes starting with the most significant bit (MSB). Each byte transmitted is followed by an acknowledge bit. Transmitted bits are valid if after a start condition, SDA maintains a constant level during a high period of SCL. The SDA level must change only when the clock signal at SCL is low.

Acknowledge: An acknowledge after a transmitted byte is required. The master must generate an acknowledge-related clock pulse. The
receiver (slave or master) pulls-down the SDA line during the acknowledge clock pulse. If no acknowledge is generated by the receiver, a
transmitting slave will remain inactive. A transmitting master can abort the transmission by generating a stop condition and can then
repeat the command.


A receiving master must signal the end of transfer to the transmitting slave by not generating an acknowledge bit and by transmitting a subsequent stop condition.

- Write operation: During transmission from master to slave (WRITE), the device address byte is followed by a command byte and depending on the transmitted command, up to 2 optional data bytes. The internal microcontroller evaluates the received command and processes the related routine. See Figure 4.6.
- Read operation: After a data request from master to slave by sending a device address byte including a set-data-direction bit of 1, the slave answers by sending data from the interface output registers. The master must generate the transmission clock on SCL, acknowledges after each data byte (except after the last one), and then the stop condition. See Figure 4.7.

A data request is answered by the interface module itself and consequently does not interrupt the current process of the internal microcontroller.

The data in the output registers is sent continuously until a missed acknowledge occurs or a stop condition is detected. After transmitting all available data, the slave starts repeating the data.

During operation, measurement cycle data is continuously updated with conditioning results. To get other data from the slave (e.g., EEPROM content) a specific command must be sent before the data request to initiate the transfer of this data to the interface output registers. This command does interrupt the current process of the internal microcontroller, e.g. the active measurement cycle.

Figure 4.6 Write Operation I2C

Figure 4.7 Read Operation I2C – (Data Request)

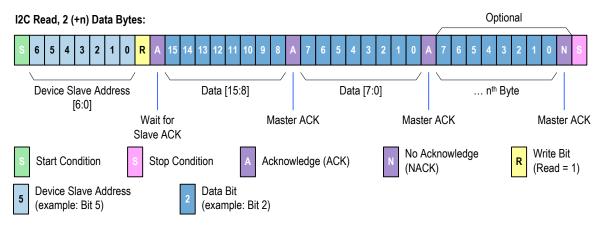
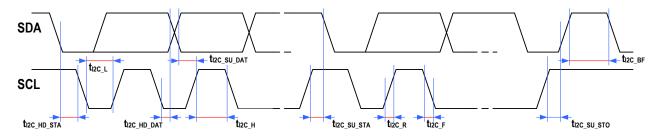



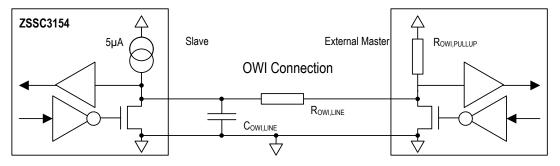
Figure 4.8 Timing I2C Protocol

Table 4.1	Fiming I2C	Protocol
-----------	------------	----------

No.	Parameter	Symbol	Min	Typical	Max	Unit	Conditions
1	SCL clock frequency	f _{SCL}			400	kHz	f _{OSC} ≥ 2MHz
2	Bus free time between start and stop condition	t _{I2C_BF}	1.3			μs	
3	Hold time start condition	t _{I2C_HD_STA}	0.6			μs	
4	Setup time repeated start condition	t _{I2C_SU_STA}	0.6			μs	
5	Low period SCL/SDA	t _{I2C_L}	1.3			μs	
6	High period SCL/SDA	t _{I2C_H}	0.6			μs	
7	Data hold time	t _{I2C_HD_DAT}	0			μs	
8	Data setup time	t _{I2C_SU_DAT}	0.1			μs	
9	Rise time SCL/SDA	t _{I2C_R}			0.3	μs	
10	Fall time SCL/SDA	t _{I2C_F}			0.3	μs	
11	Setup time stop condition	t _{I2C_SU_STO}	0.6			μs	
12	Noise interception SDA/SCL	t _{I2C_NI}			50	ns	Spike suppression

4.4 One-Wire Communication (OWI)

The ZSSC3154 utilizes a ZACwire[™] interface, a digital interface concept for one-wire communication (OWI). It combines a simple and easy protocol adaptation with cost-saving pin sharing. The OWI communication principle is derived from the I2C protocol, so becoming familiar with the I2C protocol is recommended for an understanding of OWI communication.


Both the analog voltage output for normal operation and the one-wire digital interface for calibration use the same pin AOUT1. This enables "end of line" calibration; no additional pins are required to digitally calibrate a finished assembly.

4.4.1 Properties and Parameters

The ZSSC3154 functions as an OWI slave. An external master must control the communication by transmitting commands or data requests. Figure 4.9 explains the physical OWI connection in principle. Note that pulling up the OWI connection line must be done externally. There is no guarantee for using the ZSSC3154 internal pull-up. In addition, it might be necessary to implement a master push-pull driver to overwrite an analog output voltage at pin AOUT1 (I_{OUT,max} = 20mA).

OWI communication is self-locking (synchronizing) on the master's communication speed in the range of the defined OWI bit time, which is guaranteed for the ZSSC3154's clock frequency in the range of 2 to 3MHz.

Figure 4.9 Block Schematic of an OWI Connection

Table 4.2 OWI Interface Basic Parameters

Note: Also see Table 4.3 for additional specifications related to signal conditions and bit definitions.

No.	Parameter	Symbol		Unit	Conditions
1	OWI bit time	t _{owi,BIT}	0.04 to 4	ms	$t_{OWI,BIT} = 10 * R_{OWI,PULLUP} * C_{OWI,LINE}$ Guaranteed for $f_{OSC} = 2$ to 3 MHz.
2	Pull-up resistance master	R _{OWI,PULLUP}	3.3 (typical)	kΩ	
3	OWI line resistance	R owi,Line	< 0.01	Rowi, pullup	
4	OWI load capacitance	$C_{\text{OWI,LOAD}}$	50 (typical)	nF	Total OWI line load.
5	Voltage level LOW	V _{OWI,L}	0.2	VDDA	Min VDDA is 4.2V @ 4.5V VDDE
6	Voltage level HIGH	V _{OWI,H}	0.75	VDDA	Max VDDA is 5.5V @ 5.5V VDDE

4.4.2 OWI Startup Window

OWI communication must be started via the start command START_CM [72 74]_{HEX} sent to the AOUT1 pin within a time window (nominal 200ms) after power-on. If this OWI startup window expires without the ZSSC3154 receiving a valid start command, OWI access is disabled.

The OWI startup window is activated immediately after initialization (nominal 5ms).

OWI startup window is affected by several EEPROM configuration bits:

CFGAPP2:OWIMD → OWI startup window mode

Analog voltage output starts after expiration of the OWI startup window (nominal 200ms). If CFGAPP2:OWIMD is set to 1, analog voltage output starts immediately after power-on, simultaneously with the OWI startup window. If CFGAPP2:OWIMD is set to 1, the OWI window is shortened to 50ms (nominal) and the OWI master must overwrite the active analog voltage output on the AOUT1 pin to send the start command START_CM if OWI communication is needed.

CFGSF:PDOENA → Power-on Diagnostic Output

If the Power-on Diagnostic Output (PDO) is activated, a diagnostic sequence of the output limits and the diagnostic fault band (DFB) level is sent after power-on. The OWI startup window occurs simultaneously during the two PDO phases for the upper and lower analog output limits, so the startup window is 320ms (nominal) at $f_{OSC} = 2.6$ MHz. (Refer to section 3.2 for further details on the timing).

CFGAPP2:AOUT2MD → Sequential Analog Output Mode (SEQAOUT) at AOUT2

When Sequential Analog Output Mode (SEQAOUT; see AOUT2MD in Table 6.5) is enabled, the OWI startup window is activated immediately after initialization and remains open until the beginning of the first occurrence of the Second Analog Signal on the AOUT2 pin (refer to section 3.3).

Note: Enabling SEQAOUT disables the Power-On Diagnostic Output (PDO) regardless of the setting for the control bit CFGSF:PDOENA.

In Command Mode (CM), OWI communication is always possible. After commands requesting an analog output at pin AOUT1, the OWI master must overwrite the analog voltage output for further communication.

In Diagnostic Mode (DM), OWI communication is also possible. If the pin AOUT1 is driven to Diagnostic Fault Band Low (DFBL), again the OWI master must overwrite this voltage level for communication. Note that an unconfigured ZSSC3154 with an invalid EEPROM signature always starts in DM.

4.4.3 OWI Protocol

OWI communication is always initiated by a master. Transmission starts with an address byte including a read/write bit to define the direction of the following byte transfer.

The OWI protocol is defined as follows:

Idle Period

During inactivity of the bus, the OWI communication line is pulled-up to supply voltage V_{VDDE} by an external resistor.

Start Condition

When the OWI communication line is in idle mode, a low pulse with a minimum width of $10\mu s^{1}$ and then a return to high indicates a start condition. Every command must be initiated by a start condition sent by a master. A master can generate a start condition only when the OWI line is in idle mode.

Stop Condition

A constant level at the OWI line (no transition from low to high or from high to low) for at least twice the period of the last transmitted valid bit indicates a stop condition. Without considering the last bit-time (secure stop condition), a stop condition is generated with a constant level at the OWI line for at least 20ms.

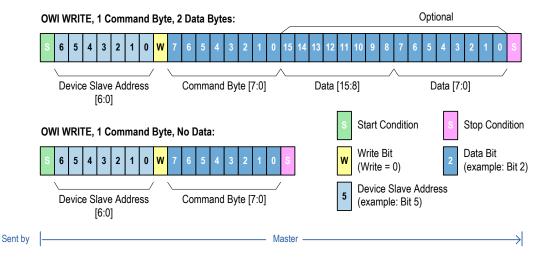

¹ 10 μ s is the minimum t_{OWL_START} that guarantees the OWI start condition in the range of f_{OSC} = 2 to 3 MHz.

The master finishes a transmission by changing back to the high level (idle mode). Every command (refer to the subsequent "Write Operation" section) must be closed by a stop condition to start the processing of the command. The master must interrupt a sending slave after it has completed a data request (refer to the subsequent "Read Operation" section) by clamping the OWI line to the low level for generating a stop condition.

In the case of an active analog voltage output at pin AOUT1, the output level must be overwritten by the OWI master. For example, this can occur if the OWI communication is started in the OWI startup window with a simultaneous analog voltage output. To ensure correct communication, first generate a stop condition (see Figure 4.10) before sending the first command (e.g., START_CM). After the ZSSC3154 receives this first command, the analog output is disabled and OWI communication functions without sending additional sequences for this purpose.

Figure 4.10 OWI and Actively Driven AOUT1—Starting OWI Communication with a Stop Condition

Note: Bit times shown here are examples based on a given force.

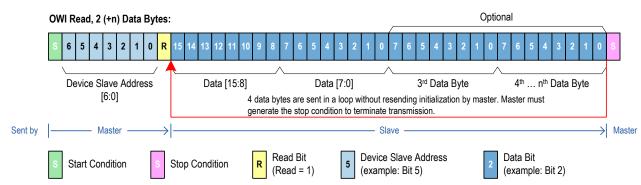

Valid Data

Data is transmitted in bytes (8 bits) starting with the most significant bit (MSB). Transmitted bits are recognized after a start condition at every transition from low to high at the OWI line. The value of the transmitted bit depends on the duty ratio between the high phase and high/low period (bit period, t_{OWI,BIT} in Figure 4.13). A duty ratio greater than 1/8 and less than 3/8 is detected as '0', a duty ratio greater than 5/8 and less than 7/8 is detected as '1'. The bit period of consecutive bits must not change by more than a factor of 2 because the stop condition is detected in this case.

Write Operation

During transmission from master to slave (WRITE), the address byte including a set data direction bit (0 for WRITE) is followed by a command byte and, depending on the transmitted command, by an optional 2 data bytes. The internal microcontroller evaluates the received command and processes the requested routine. Figure 4.11 illustrates the writing of a command with two data bytes and a command without data bytes. A detailed description of the command set is given in section 5.1.

Figure 4.11 OWI Write Operation


Read Operation

After a data request from the master to the slave via sending an address byte including a set data direction bit (1 for READ), the slave answers by sending data from the interface output registers. The slave generates the data bits with a bit period equal to the last received bit (R bit). The master must generate a stop condition after receiving the requested data. (See Figure 4.12.)

A data request is answered by the interface module itself and consequently does not interrupt the current process of the internal microcontroller.

To get certain data from the slave (e.g. EEPROM content), the appropriate command must be sent before the data request to initiate the transfer of this data into the interface output registers. This command does interrupt the current operation of the internal microcontroller and consequently also an active measurement cycle.

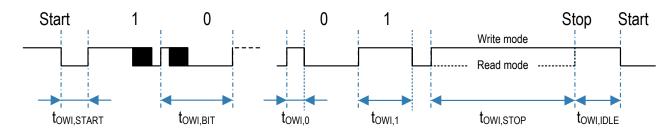

The data in the output registers is sent continuously until a stop condition is detected, after transmitting all available data, the slave starts repeating the data. Note that during the active measurement cycle, data is continuously updated with conditioned results.

Figure 4.12 OWI Read Operation

OWI protocol timing and parameters are specified in Figure 4.13 and in Table 4.3.

Figure 4.13 OWI Protocol Timing

Table 4.3 OWI Interface Signal Parameters

Note: Also see Table 4.2 for basic OWI interface parameters.

No.	Parameter	Symbol	Min	Typical	Max	Unit	Conditions
1	Bus free time	t _{OWI,IDLE}	25			μs	Between stop and start conditions
2	Hold time start condition	t _{owi,start}	10			μs	
3	Bit time ¹	t _{owi,BIT}	25		8000	μs	Min: f _{OSC} = 3.2MHz, max: f _{OSC} = 2MHz
4	Duty ratio bit '0'	t _{OWI,0}	0.125	0.25	0.375	t _{owi,BIT}	
5	Duty ratio bit '1'	t _{OWI,1}	0.625	0.75	0.875	t _{owi,BIT}	
6	Hold time stop condition	towi,stop	2.0	1.0		t _{owi,BIT}	Depends on the bit time of the last valid transmitted bit
7	Bit time deviation	t _{owi,BIT,DEV}	0.55	1.0	1.5	t _{owi,BIT}	Current bit time to previous bit time

¹ This bit time range is achievable with different frequency adjustments for minimum and maximum values (see section 5.4.2). OWI communication functions independently of frequency adjustment with a bit time in the range specified in Table 4.2.

5. Interface Commands

5.1 Command Set

All commands are available for I2C and OWI communication, but only in Command Mode (CM). CM is initiated by sending the command START_CM [72 74]_{HEX}.

Every received command is answered. The response consists of 2 bytes for the requested data or a validation code, 1-byte check sum, and 1-byte command echo. See Table 5.1 for exceptions (also refer to section 5.2).

EEPROM programming must be enabled first by sending the EEP_WRITE_EN command [6C F7 42]_{HEX}.

Table 5.1 Command Set

Note: See table notes at the end of the table. Refer to Table 5.2 for a summary of responses to commands.

Command	Data	Command	Notes	Processing Time @ fosc = 2.6MHz
01 _{HEX}		START_CYC_EEP	Start measurement cycle including initialization from EEPROM or RAM.	500µs
02 _{HEX}		START_CYC_RAM	Analog output mode as configured. Note that selected analog output mode influences startup time.	500μ8
03нех		START_CYC_EEP_OW	Start measurement cycle including initialization from EEPROM or RAM. OWI communication remains enabled during the measurement	
04 _{HEX}		START_CYC_RAM_OWI	cycle. No analog output is generated at AOUT1. Return conditioned but unfiltered conversion result values via OWI if requested.	500µs
			Analog output mode at AOUT2 as configured.	
			Note that selected analog output mode influences startup time.	
10 _{HEX} to 27 _{HEX}		READ_RAM	Read data from RAM addresses 00_{HEX} through 17_{HEX} .	100µs
30 _{нех} to 4B _{HEX}		READ_EEP	Read data from EEPROM addresses 00_{HEX} through $1B_{HEX}$.	100µs
50 _{HEX}		ADJ_OSC_ACQ	Use this command with OWI communication only!	100µs
			Acquire frequency ratio (fosc / fowi) where	
			f _{OSC} is the frequency of internal oscillator f _{OWI} is the OWI communication frequency	
			Use this for adjusting the internal oscillator frequency via CFGAPP2:OSCADJ (refer to section 5.4.2).	
			Returns CF50 _{HEX} if command is received via I2C.	
51 _{HEX}		START_AD_BIST	Start cyclic A/D conversion for analog front-end BIST (internally generated differential input voltage).	500µs
52 _{HEX}		START_AD_BIST_AZC	Start cyclic A/D conversion for analog front-end BIST (internally generated differential input voltage) including auto-zero.	500µs
53 _{HEX}		START_AD_SAC	Start cyclic A/D conversion for Sensor Aging Check (bridge common mode voltage measurement).	500µs

Command	Data	Command	Notes	Processing Time @ f _{osc} = 2.6MHz
54 _{HEX}		START_AD_SAC_AZC	Start cyclic A/D conversion for Sensor Aging Check (bridge common mode voltage measurement) including auto-zero.	500µs
56 _{HEX}		RD_AD_CNT_1	Read result values of START_AD_CNT command: Read 1 st result value (bridge or half-bridge) and 2 nd result value (calibration temperature) Also see RD_AD_CNT_2.	100µs
57 _{HEX}		RD_AD_CNT_2	Read result values of START_AD_CNT command: Read 3 rd result value (half-bridge or temperature, or 00 _{HEX} 'if only two input channels were selected) and check sum (inverted sum of all 3 result values). Also see RD_AD_CNT_1.	100µs
58 _{HEX}		GET_ERR_STATUS	Read and reset error code.	100µs
5A _{HEX}		GET_SENS_STATUS	Evaluate status information from Sensor Connection and Sensor Short Checks. Returns C35A _{HEX} if check passed. Returns CF5A _{HEX} if check failed. Read resulting error code with command GET_ERR_STAT to distinguish the root causes if check failed. Error code is reset before check.	3 * A/D conversion time
5B _{HEX}		GET_BCC_STATUS	Evaluate status information from Broken Chip Check. Returns C35B _{HEX} if check passed. Returns CF5B _{HEX} if check failed.	100µs
5C _{HEX}		OUT_VDDB0	Output analog supply voltages at pin AOUT1: $OUT_VDDB0 \rightarrow 10\% VDDB (\pm 5\%)$	
5D _{HEX}		OUT_VDDB1	OUT_VDDB1 \rightarrow 90% VDDB (±5%) OUT_VDD \rightarrow 100% VDD (±5%)	100.00
5E _{HEX}		OUT_VDD	OUT_VDDA \rightarrow 50% VDDA (±5%) Returns C35x _{HEX} if command is processed.	100µs
$5F_{\text{HEX}}$		OUT_VDDA	Reset this output mode by command SET_AOUT1 [60] _{HEX} or by commands START_CYC_* [0*] _{HEX} .	
60 _{HEX}	2 bytes	SET_AOUT1	Set the analog output AOUT1 (DAC) to value defined by data bytes. Important note: If the data byte is outside the valid range of 0100_{HEX} to $14FF_{\text{HEX}}$, the ZSSC3154 will enter DM and output the DFB (Diagnostic Fault Band) level. The AOUT1 pin goes into tri-state during the command processing.	100µs

Command	Data	Command	Notes	Processing Time @ f _{osc} = 2.6MHz
61 _{HEX}	2 bytes	SET_AOUT2	Set the analog output AOUT2 (DAC) to value defined by data bytes. Important note: If the data byte is outside the valid range of 0100_{HEX} to $14FF_{\text{HEX}}$, the ZSSC3154 will enter DM and output the DFB (Diagnostic Fault Band) level. The AOUT2 pin goes into tri-state during the command processing.	100µs
62 _{HEX}	2 bytes	START_AD_CNT	Process <n> times A/D conversion for main input signals including auto-zero compensation (refer to section 5.4.1).data[15:13] is digital Low Pass Filter averaging coefficient with range [0; 7] for the selected measurement (see section 2.6).data[12:11] selects the measured input channels:00_{BIN}Bridge and Calibration Temperature01_{BIN}Half-Bridge and Calibration Temperature10_{BIN}Bridge, Calibration Temperature, and Temperature11_{BIN}Bridge, Calibration Temperature, and Half-Bridgedata[10:0] is the number <n> of measurements to process.Responses with the two most-recent result values (Bridge or Half-Bridge, Calibration Temperature) while processing measurement.Returns C362_{HEX} if measurement is finished.Final measurement results can be read out using RD_AD_CNT_1 or RD_AD_CNT_2 commands or stored to EEPROM using STORE2_AD_CNT or STORE3_AD_CNT commands.</br></n></n>	100µs + (4*n OR 6*n) * A/D conversion time depending on the number of measurands
63 _{HEX}	2 bytes	STORE2_AD_CNT	$\label{eq:witherworkset} \begin{array}{l} \mbox{Write two result values (Bridge or Half-Bridge, Calibration Temperature) of START_AD_CNT to EEPROM addresses to . \\ \mbox{Refer to section 5.4.1 for details.} \\ \mbox{Returns C363}_{\text{HEX}} \mbox{ if command is processed.} \\ \mbox{Returns CF00}_{\text{HEX}} \mbox{ if EEPROM programming is disabled.} \end{array}$	2 * 12.5ms
64 _{HEX}	2 bytes	STORE3_AD_CNT	Write three result values (Bridge, Calibration Temperature, and Temperature or Half-Bridge) of START_AD_CNT to EEPROM addresses <data> to <data+2>. Refer to section 5.4.1 for details. Returns C364_{HEX} if command is processed. Returns CF00_{HEX} if EEPROM programming is disabled.</data+2></data>	3 * 12.5ms

Command	Data	Command	Notes	Processing Time @ fosc = 2.6MHz		
65 _{HEX}	2 bytes	ADJ_OSC_WRI	Write to RAM and activate Oscillator Adjust value CFGAPP2:OSCADJ and Spread Spectrum enable CFGAPP2:OSCSS (see Table 6.5).	100µs		
			Returns complete new configuration word CFGAPP2.			
6C _{HEX}	2 bytes	EEP_WRITE_EN	Enable data write to EEPROM.	100µs		
			To be sent with data F742 _{HEX} .			
			Other data disables EEPROM write.			
			Returns C36C _{HEX} if EEPROM programming is enabled.			
			Returns CF6C _{HEX} if EEPROM programming is disabled.			
6D _{HEX}	2 bytes	CHECK_EEP	Calculate and return EEPROM signature.	250µs		
			Low data byte is start address; high data byte is end address of evaluated area.			
			Use [6D 17 00] for reading EEPROM signature of stored configuration.			
72 _{HEX}	1 byte	START_CM	Start Command Mode. To be sent with data 74 _{HEX} .	100µs		
			Returns C372 _{HEX} if Command Mode is enabled.			
80 _{HEX} to 97 _{HEX}	2 bytes	WRITE_RAM	Write data to RAM addresses 00 _{HEX} through 17 _{HEX} .	100µs		
A0 _{HEX} to	2 bytes	WRITE_EEP	Write data to EEPROM addresses 00 _{HEX} through 1A _{HEX} .	12.5ms		
BA _{HEX}			Note that there is no write access to IDT word at address $1B_{\text{HEX}}$.			
			Returns CF00 _{HEX} if EEPROM programming is disabled.			
C0 _{HEX}		COPY_EEP2RAM	Copy content of EEPROM address 00 _{HEX} through 17 _{HEX} to RAM.	200µs		
			Restores EEPROM configuration in RAM.			
			Does not process EEPROM signature check.			
			Returns C3C0 _{HEX} if command is processed.			
$C3_{\text{HEX}}$		COPY_RAM2EEP	Copy content of RAM address 00 _{HEX} through 17 _{HEX} to EEPROM.	230ms		
			Generates EEPROM signature; writes it to address 18_{HEX} .			
			Returns C3C3 _{HEX} if copy is successfully processed.			
			Returns CFC3 _{HEX} if copy failed.			
			Returns CF00 _{HEX} if EEPROM programming is disabled.			

Command	Data	Command		No	otes		Processing Time @ f _{osc} = 2.6MHz
C4 _{HEX}		LOAD_RAM_STD	Load RAM with defa	ault contents	from ROM.		200µs
			Returns C3C4 _{HEX} if processed.	cessfully			
			Returns CFC4 _{HEX} if	load failed.			
			RAM Conte	nts with De	fault Values from F	ROM	
			C ₀	4000 _{HEX}	Upper Limit BIST	$FFFF_{HEX}$	
			C1	$7 \text{FFF}_{\text{HEX}}$	Lower Limit CMV	0000 _{HEX}	
			C 2	0000 _{HEX}	Upper Limit CMV	FFFF _{HEX}	
			C 3	0000 _{HEX}	Lower Limit BR	0800 _{HEX}	
			C 4	0000 _{HEX}	Upper Limit BR	A7F8 _{HEX}	
			C 5	0000 _{HEX}	Lower Limit T	0800 _{HEX}	
			C 6	0000 _{HEX}	Upper Limit T	A7F8 _{HEX}	
			C7	0000 _{HEX}	CFGAFE	0220 _{HEX}	
			to	1800 _{HEX}	CFGAFE2	0026 _{HEX}	
			t ₁	$7FFF_{HEX}$	CFGAPP	0000 _{HEX}	
			t ₂	0000 _{HEX}	CFGAPP2	0018 _{HEX}	
			Lower Limit BIST	0000 _{HEX}	CFGSF	4000 _{HEX}	
C9 _{HEX}		GEN_EEP_SIGN	Calculate and return address 18 _{HEX} . Returns CF00 _{HEX} if		-		12.7ms
CA _{HEX}		GET_RAM_SIGN	Calculate and return	n RAM signa	ature.		250µs
CE _{HEX}		GET_ROM_STATUS	Check ROM Diagno	ostic Status.			10ms
			Returns C3CE _{HEX} if Returns CFCE _{HEX} if				
CF _{HEX}		GET_REVISION	Get Hardware and I	ROM Revisi	on.		100µs

All Dx commands are used for the calibration process and write raw conversion result values to the digital output registers. No analog output is generated. OWI communication remains enabled during the measurement cycle.

Note: For the D0 to D7, DC, and DD commands, the processing time with $f_{OSC} = 2.6$ MHz is 100µs plus the A/D conversion time. The processing time is 2 times this value for the D8 to DB and DE commands.

Note: Enabling the A/D converter clock divider (i.e., bit CFGAFE: ADCSLOW is set to 1) doubles only the A/D conversion time.

Command	Command	Notes		
D0 _{HEX}	START_AD_P	Start cyclic A/D conversion at bridge sensor channel.		
D1 _{HEX}	START_AD_CT	Start cyclic A/D conversion at calibration temperature channel.		
D2 _{HEX}	START_AD_T	Start cyclic A/D conversion at temperature channel.		

Command	Command	Notes		
D3 _{HEX}	START_AD_HB	Start cyclic A/D conversion at half-bridge channel.		
D4 _{HEX}	START_AD_PAZ	Start cyclic A/D conversion for auto-zero at bridge sensor channel.		
D5 _{HEX}	START_AD_CTAZ	Start cyclic A/D conversion for auto-zero at calibration temperature channel.		
D6 _{HEX}	START_AD_TAZ	Start cyclic A/D conversion for auto-zero at temperature channel.		
D7 _{HEX}	START_AD_HBAZ	Start cyclic A/D conversion for auto-zero at half-bridge channel.		
D8 _{HEX}	START_AD_P_AZC	Start cyclic A/D conversion at bridge sensor channel including auto-zero.		
D9 _{HEX})	START_AD_CT_AZC	Start cyclic A/D conversion at calibration temperature channel including auto-zero.		
DA _{HEX}	START_AD_T_AZC	Start cyclic A/D conversion at temperature channel including auto-zero.		
DB _{HEX}	START_AD_HB_AZC	Start cyclic A/D conversion at half-bridge channel including auto-zero.		
DCHEX	START_AD_SSCP	Start cyclic A/D conversion for positively biased Sensor Short Check.		
DD _{HEX}	START_AD_SSCN	Start cyclic A/D conversion for negatively biased Sensor Short Check.		
DE _{HEX}	START_AD_SSCP-SSCN	Start cyclic A/D conversion for positively biased Sensor Short Check minus negatively biased Sensor Short Check.		

5.2 Command Processing

All implemented commands are available for both protocols – I2C and OWI. If Command Mode (CM) is active, a received valid command interrupts the internal microcontroller (CMC) and starts a routine processing the received command. During this processing time, the interfaces are disabled and transmitted commands are ignored. The processing time depends on the internal system clock frequency. A command always returns data (e.g., register contents, acquired measurement data) to interface output registers, which can be read by a read request.

5.3 Digital Output Data in Command Mode

Digital output data in CM consists of two 16-bit words that can be read by an I2C or OWI read request. Content of data words depends on the previously received command.

	Output Data Word 1		Output Data Word 2		
Mode/ Commands	High Byte	Low Byte	High Byte	Low Byte	
Commands with data response	Requested data		Check sum *	Processed command	
Commands without data	Success code [C3 command] _{HEX} Reject code [CF command] _{HEX}		Check sum *	Processed command	
response					
Unknown commands	Reject code [CF 00] _{HEX}		Check sum *	Received command	
START_CYC [01] _{HEX} , [02] _{HEX}	Conditioned values, error status and parity as transmitted in NOM (see Figure 4.1) or in DM (see Figure 4.2 or Figure 4.3)				
START_AD_CNT [62] _{HEX} during measurement	1 st measured raw value (Bridge or Half-Bridge)		2 nd measured raw value (Calibration Temperature)		
RD_AD_CNT_1 [56] _{HEX}			2 nd measured raw value from START_AD_CNT command (Calibration Temperature)		
RD_AD_CNT_2 [57] _{HEX}	3 rd measured raw value from START_AD_CNT co (Temperature or Half-Brid		Check sum for all three measured raw values from START_AD_CNT command *		

 Table 5.2 Digital Output Data Resulting from Processed Commands

* The check sum for the two-byte digital output word is calculated with following formula:

Check sum = FF_{HEX} – (HighByte_{1st_word} + LowByte_{1st_word})_{8LSB}.

5.4 Detailed Description for Particular Commands

5.4.1 Acquisition of Raw Measurement Data with START_AD_CNT [62]_{HEX}

The START_AD_CNT [62]_{HEX} command is used for synchronized raw data acquisition during the calibration process (snapshot mode). Especially for mass calibration, it enables a raw data snapshot for all attached devices under temperature drift and pressure leakage conditions.

The command START_AD_CNT transmits two data bytes containing the following parameters:

• data[15:13] is the digital Low Pass Filter averaging coefficient LPAVRG for all measured values.

$$X_{OUT,i} = X_{OUT,i-1} + \frac{(X_i - X_{OUT,i-1})}{2^{AVRG}} \qquad i > 0, \quad AVRG \in [0;7)$$
(23)

- data[12:11] specifies the input channels to measure. Use appropriate selections for measuring the application-relevant input channels (see Table 5.3).
- data[10:0] is the A/D conversion cycle count to be processed. Recommended value is at least (2^{AVRG} + 8).

The A/D conversion is done cyclically over all selected input channels including adjustment for auto-zero for the selected channel. While measuring, the most recent result values for the bridge or half-bridge followed by the calibration temperature measurement can be read out by read request. No analog output is generated. OWI communication remains enabled during the measurement cycle. When finishing the A/D conversion cycles, the read request delivers the success code C362_{HEX}.

The commands RD_AD_CNT_1 [56]_{HEX} and RD_AD_CNT_2 [57]_{HEX} read the final result values of the A/D conversion initiated by the START AD CNT command. RD AD CNT 1 reads the first value and second value. RD AD CNT 2 reads the third value, if available, and a check sum calculated over all 3 values. If only two input channels were selected by START_AD_CNT, the third value is set to zero.

The check sum for the three values is calculated by [FFF_{HEX} – (Σ (Result Values))_{16LSB}].

Alternatively, the final 2 or 3 A/D conversion result values of START AD CNT can be stored in EEPROM with commands STORE2 AD CNT (63_{HEX}) or STORE3_AD_CNT (64_{HEX}), respectively. This can be done without prior reading of the values. The STORE*_AD_CNT command is transmitted with 2 data bytes that contain the EEPROM start address for storage. EEPROM programming must be enabled before sending STORE*_AD_CNT. Note that these commands need a processing time of 2 or 3 EEPROM programming cycles. For mass calibration, this enables data collection in the on-chip EEPROM and one-pass calibration as post-process.

		_CNT [62] _{HEX} nile Measuring		
	RD_AD_CNT_1 [56] _{HEX} Response	RD_AD_CNT_2 [57] _{HEX} Response
Selected Input Channel	High 16-Bit Word	Low 16-Bit Word	High 16-Bit Word	Low 16-Bit Word
Bridge and Calibration Temperature data[12:11] = 00 _{BIN}	Bridge	Calibration Temperature	Zero	Check Sum
Half-Bridge and Calibration Temperature data[12:11] = 01 _{BIN}	Half-Bridge	Calibration Temperature	Zero	Check Sum
Bridge, Calibration Temperature, and Temperature data[12:11] = 10 _{BIN}	Bridge	Calibration Temperature	Temperature	Check Sum
		İ	İ	

Table 5.3 A/D Conversion Response Resulting from START AD CNT Command

5.4.2 Oscillator Frequency Adjustment with ADJ_OSC_ACQ [50]_{Hex} and ADJ_OSC_WRI [65 data]_{Hex}

Bridge

ADJ OSC x commands are used to adjust the frequency of the internal oscillator. This frequency is adjustable in the range of 1.5MHz to 3MHz. It has a directly proportional effect on the A/D conversion time and on the timing of the Sequential Analog Output Mode (SEQAOUT) if enabled at the AOUT2 pin. The internal oscillator frequency can be adjusted by CFGAPP2:OSCADJ (refer to section 6.4 and Table 6.5). The frequency is adjusted by steps with one step equal to approximately -125kHz (frequency is decreased if CFGAPP2:OSCADJ is increased).

Calibration

Temperature

Half-Bridge

The ADJ OSC ACQ command is sent first. This command functions ONLY with one-wire communication (OWI). It returns a value that represents the ratio f_{OSC}/f_{OWI} of the internal oscillator frequency to the OWI communication frequency. After sending an ADJ OSC x command, the frequency ratio can be read with an I2C or OWI READ request (see Figure 4.4).

The communication frequency four is known, so the current internal oscillator frequency fosc can be calculated. Note that the resolution of the frequency measurement is better when a lower OWI communication frequency is used. The required adjustment of CFGAPP2:OSCADJ to reach the target frequency can be calculated from the ratio fosc/fowl and the adjustment increment of -125kHz/step. The ADJ_OSC_WRI command is used to write CFGAPP2:OSCADJ to RAM and to activate the new adjustment. The command returns the complete configuration word CFGAPP2 (all other configuration bits retain their value).

Refer to the ZSSC3154 Application Note—Oscillator Frequency Adjustment for details and example code for an easy and accurate adjustment of the internal frequency during end-of-line calibration.

Bridge, Calibration Temperature, and Half-Bridge

data[12:11] = 11_{BIN}

Check Sum

6. EEPROM and RAM

6.1 **Programming the EEPROM**

Programming the EEPROM is done using an internal charge pump to generate the required programming voltage. The timing of the programming pulses is controlled internally. The programming time for a write operation is typically 12.5ms independent of the programmed clock frequency (CFGAPP2:OSCADJ). Waiting a minimum of 15ms per write operation before starting the next communication is recommended.

To program the EEPROM, the ZSSC3154 must be set to Command Mode by the command START_CM [72 74]_{HEX} and EEPROM programming must be enabled by the command EEP_WRITE_EN [6C F7 42]_{HEX}. Writing data to the EEPROM is done via the serial digital interface by sending specific commands (refer to section 5.1).

The WRITE_EEP command includes the address of the targeted EEPROM word and is followed by two data bytes. During EEPROM programming, the serial digital interface is disabled and no further commands can be recognized.

The COPY_RAM2EEP command writes the contents of the RAM mirror area to the EEPROM. This is to simplify the calibration process when the ZSSC3154 is configured iteratively. The EEPROM signature, which is not mirrored in RAM, is generated, written to EEPROM, and returned to the interface output register. This copy operation includes 25 EEPROM write operations and therefore typically requires 300ms (recommended wait time 375ms).

6.2 **EEPROM and RAM Contents**

The configuration of the ZSSC3154 is stored in 28 EEPROM 16-bit words.

Calibration coefficients for conditioning the sensor signal via conditioning calculations and output limits are stored in 19 words. There are 5 words for setting the configuration of the ZSSC3154 for the application. One register is used for storing the EEPROM signature, which is used in NOM to check the validity of the EEPROM contents after power-on. Two additional 16-bit words are available for optional user data. One additional word is reserved for IDT use only.

After every power-on, the EEPROM contents are mirrored to RAM. After this read out, the contents of the RAM mirror are checked by calculating the signature and comparing it to the one stored in EEPROM. If a signature error is detected, the ZSSC3154 changes to steady Diagnostic Mode (DM). DM is indicated by setting both analog outputs AOUT1 and AOUT2 to the Diagnostic Fault Band (DFB). Subsequently the error code can be read via I2C or OWI.

The configuration of the device is done from the mirrored area in RAM, so the configuration words are subsequently transferred to the internal registers. The calibration coefficients for the conditioning calculations are also read from RAM. As a result, every change to the RAM mirror area impacts the configuration and behavior of the device after the next start of the measurement cycle.

After power-on, the contents of the RAM mirror area are determined by the EEPROM contents and can then be changed by specific commands writing to RAM. This new configuration can be activated by the START_CYC_RAM command or by the START_AD_x commands.

The EEPROM data are stored with Hamming distance of 3, which means that detection and correction of 1-bit or 2-bit errors is 100%. Detection of multi-bit-errors (>2 bit) is processed at a lower detection rate.

Table 6.1 EEPROM and RAM Contents

RAM and EEPROM Address	Write Command RAM/EEPROM	Description Note: The MSB is given first if an address has more t	han one assignment.
Conditioning Coefficien	ts – Conditioning For	mula Bridge Sensor Signal (section 2)	
00 _{HEX}	80 _{HEX} /A0 _{HEX}	c0 – Bridge offset	Bridge Signal
01 _{HEX}	81 _{HEX} /A1 _{HEX}	c1 – Bridge gain	Bridge Signal
02 _{HEX}	82 _{HEX} /A2 _{HEX}	c2 – Bridge non-linearity 2nd order	Bridge Signal
03 _{HEX}	83 _{HEX} /A3 _{HEX}	c3 – Bridge non-linearity 3rd order	Bridge Signal
04 _{HEX}	84 _{HEX} /A4 _{HEX}	c4 – Bridge temperature coefficient offset 1st order	Bridge Signal
05 _{HEX}	85 _{HEX} /A5 _{HEX}	c5 – Bridge temperature coefficient offset 2nd order	Bridge Signal
06 _{HEX}	86 _{HEX} /A6 _{HEX}	c6 – Bridge temperature coefficient gain 1st order	Bridge Signal
07 _{HEX}	87 _{HEX} /A7 _{HEX}	c7 – Bridge temperature coefficient gain 2nd order	Bridge Signal
Temperature Measurem	ent → CFGAPP2:AO	UT2MD selects output of conditioned Temperature Signal	
Conditioning Coeff	icients – Conditioning	Formula Temperature Signal (section 2.3)	
08 _{HEX}	88 _{HEX} /A8 _{HEX}	t0 – Temperature offset	Temperature Signal
09 _{HEX}	89 _{HEX} /A9 _{HEX}	t1 – Temperature gain	Temperature Signal
0A _{HEX}	8A _{HEX} /AA _{HEX}	t2 – Temperature non-linearity 2nd order	Temperature Signal
Analog Front-End E	Built-In Self-Test (AFE	BIST) Limits	
0B _{HEX}	8B _{HEX} /AB _{HEX}	AFEBISTMIN – Lower limit analog front-end BIST Not used	(14MSB) (2LSB)
OC _{HEX}	8C _{HEX} /AC _{HEX}	AFEBISTMAX – Upper limit analog front-end BIST Not used	(14MSB) (2LSB)
Sensor Aging Chec	k (SAC) Limits		
0D _{HEX}	8D _{HEX} /AD _{HEX}	CMVMIN – Lower limit common mode voltage (SAC) Not used	(14MSB) (2LSB)
0E _{HEX}	8E _{HEX} /AE _{HEX}	CMVMAX – Upper limit common mode voltage (SAC) Not used	(14MSB) (2LSB)
Half-Bridge Measureme	nt → CFGAPP2:AOU	T2MD selects output of conditioned half-bridge signal	
Conditioning Coeff	icients – Conditioning	Formula Half-Bridge Sensor Signal (section 2.4)	
08 _{HEX}	88 _{HEX} /A8 _{HEX}	h0 – Half-bridge offset	Half-Bridge Sensor
09 _{HEX}	89 _{HEX} /A9 _{HEX}	h1 – Half-bridge gain	Half-Bridge Sensor
0A _{HEX}	8A _{HEX} /AA _{HEX}	h2 – Half-bridge non-linearity 2nd order	Half-Bridge Sensor
0B _{HEX}	8B _{HEX} /AB _{HEX}	h4 – Half-bridge temperature coefficient offset 1st order	Half-Bridge Sensor
0C _{HEX}	8C _{HEX} /AC _{HEX}	h5 – Half-bridge temperature coefficient offset 2nd order	Half-Bridge Sensor
0D _{HEX}	8D _{HEX} /AD _{HEX}	h6 – Half-bridge temperature coefficient gain 1st order	Half-Bridge Sensor
0E _{HEX}	8E _{HEX} /AE _{HEX}	h7 – Half-bridge temperature coefficient gain 2nd order	Half-Bridge Sensor

RAM and EEPROM Address	Write Command RAM/EEPROM	Description Note: The MSB is given first if an address has more than one a	assignment.
Analog Output Filter Co	efficients and Limits		
0F _{HEX}	8F _{HEX} /AF _{HEX}	Bridge sensor signal analog output AOUTMINBR – Lower limit analog output LPFAVRGBR – Digital LPF averaging coefficient Note that f(AOUTMINBR) limits f(BR) at pin AOUT2 if selected.	(13MSB) (3LSB)
10 _{HEX}	90 _{HEX} /B0 _{HEX}	Bridge sensor signal analog output AOUTMAXBR – Upper limit analog output LPFDIFFBR – Digital LPF differential coefficient Note that f(AOUTMAXBR) limits f(BR) at pin AOUT2 if selected.	(13MSB) (3LSB)
11 _{HEX}	91 _{HEX} /B1 _{HEX}	Temperature or half-bridge signal analog output AOUTMINT, AOUTMINHB – Lower limit analog output LPFAVRGT, LPFAVRGHB – Digital LPF averaging coefficient	(13MSB) (3LSB)
12 _{HEX}	92 _{HEX} /B2 _{HEX}	Temperature or half-bridge signal analog output AOUTMAXT, AOUTMAXHB – Upper limit analog output LPFDIFFT, LPFDIFFHB – Digital LPF differential coefficient	(13MSB) (3LSB)
Configuration Words (s	ection 6.4)		
13 _{HEX}	93 _{HEX} /B3 _{HEX}	CFGAFE – Configuration of analog front-end	
14 _{HEX}	94 _{HEX} /B4 _{HEX}	CFGAFE2 – Configuration of analog front-end	
15 _{HEX}	95 _{HEX} /B5 _{HEX}	CFGAPP – Configuration of target application	
16 _{HEX}	96 _{HEX} /B6 _{HEX}	CFGAPP2 – Configuration of target application	
17 _{HEX}	97 _{HEX} /B7 _{HEX}	CFGSF – Configuration of safety functions (Diagnostic function and bridge sensor signal filter fun	ction)
Calculated Signature Ba	ased on Register 00 _{HE}	_x to 17 _{HEX} Data	
18 _{HEX}	- /B8 _{HEX}	Signature	
Free Memory Available	for Optional Use by U	ser Applications (not included in signature)	
19 _{HEX}	- /B9 _{HEX}	Free user memory, not included in signature (e.g., serial number)	
1A _{HEX}	- /BA _{HEX}	Free user memory, not included in signature	
Restricted			
1B _{HEX}	- / -	No user access - IDT restricted use	

Note: The contents of the EEPROM registers at delivery are not specified and can be subject to changes. Particularly with regard to traceability, the contents can be unique per die. Note that contents at delivery might not have a valid signature. In this case, the ZSSC3154 would start in the Diagnostic Mode.

All registers must be rewritten during the calibration procedure.

Note that the LOAD_RAM_STD command can be used to load default values from ROM into RAM for registers 00_{HEX} to 17_{HEX} . See page 34 for defaults and command details.

6.3 Traceability Information

IDT can guarantee the EEPROM content only for packaged parts; on delivery, the EEPROM content of bare dice might be changed by flipped bits because of electrostatic effects, which might occur during the wafer sawing. For more information, refer to the ZSSC3154 Technical Note— Traceability Information.

6.4 Configuration Words

The data stored in EEPROM at addresses 13_{HEX} to 17_{HEX} determine the configuration of the ZSSC3154, as explained in the following tables.

Table 6.2	Configuration	Word CFGAFE
-----------	---------------	-------------

Bit	CF	GAFE – Configur	ation of Analog	Front-End <i>(Part 1)</i>	EEPROM/RA	M Address 13 _{HEX}
15	BRidge sensor		ed Zero Compens	sation POL arity (offset	compensation by analog front-e	end; BRXZCPOL
	-	- compensates po				
	1 = positive –	compensates neg	ative offsets			
14:10	•	BR idge sensor channel eXtended Zero Compensation value (offset compensation by analog front-end; refer to section 2.1)				BRXZC
	One compens	nsation is only act ation step depend Analog Front-End	ds on the selected		4 Data Sheet).	
9:6	BRidge sense	or channel GAIN (a _{IN} —refer to section	on 2.1)		BRGAIN
	$\begin{array}{c} 0000_{\text{BIN}} = 420\\ 0001_{\text{BIN}} = 280\\ 0010_{\text{BIN}} = 210\\ 0011_{\text{BIN}} = 140 \end{array}$	0101 _{BIN} = 7 0110 _{BIN} = 5	70 1001 _{BIN} 52.5 1010 _{BIN}	₁ = 9.3	= 2.8	
5:4	A/D C onversion input R ange S hift regarding measured signal (rs _{ADC} – refer to section 2.1) $00_{\text{BIN}} = \frac{1}{16} \rightarrow \text{ADC}$ range = [(-1/16 V _{ADC_REF}) to (+15/16 V _{ADC_REF})] $01_{\text{BIN}} = \frac{1}{8} \rightarrow \text{ADC}$ range = [(-1/8 V _{ADC_REF}) to (+7/8 V _{ADC_REF})] $10_{\text{BIN}} = \frac{1}{4} \rightarrow \text{ADC}$ range = [(-1/4 V _{ADC_REF}) to (+3/4 V _{ADC_REF})] $11_{\text{BIN}} = \frac{1}{2} \rightarrow \text{ADC}$ range = [(-1/2 V _{ADC_REF}) to (+1/2 V _{ADC_REF})]					BRADCRS
3	BRidge Signa 0 = positive 1 = negative	I POL arity (differe (V _{IN_DIFF} = V _V (V _{IN_DIFF} = V _V	_{BP} – V _{VBN})	ns VBP, VBN)		BRPOL
2	A/D Conversion	on SLOW mode				ADCSLOW
	Doubles A/D o	conversion time (s	ee ADCMD).			
	Valid for all m					
	0 = disabled	1 = enable	d			
1:0	A/D Conversion					ADCMD
	Resolution of A/D conversion integration phase. Adjust conversion and integration time. Valid for all measurements.					
	Resolution					
		A/D	Integration	Integration Time	A/D Conversion Time	
	ADCMD	Conversion	Phase	@ f _{osc} = 2.6MHz	@ f _{osc} = 2.6MHz	
	00 _{BIN}		10-bit	788µs	837µs	
	01 _{BIN}	14-bit	9-bit	394µs	443µs	
	10 _{BIN}	ויד־טונ	8-bit	197µs	246µs	
	11 _{BIN}		7-bit	98.5µs	197µs	

Table 6.3 Configuration Word CFGAFE2

Bit	CFGAFE2 – Configuration of Analog Front-End (Part 2) EEPROM/RAM A	Address 14 _{HEX}
15:12	Not used	-
11	Half-Bridge channel eXtended Zero Compensation POLarity (offset compensation by analog front-end; refer to section 2.1)	HBXZCPOL
	0 = negative – compensates positive offsets	
	1 = positive – compensates negative offsets	
10:6	Half-Bridge channel eXtended Zero Compensation value (offset compensation by analog front-end; refer to section 2.1)	HBXZC
	Offset compensation is only active if HBXZC \neq 0. One compensation step depends on the selected input span (refer to the "Analog Front-End Characteristics" section in the <i>ZSSC3154 Data Sheet</i>).	
5:2	Half-Bridge channel GAIN (a _{IN} —refer to section 2.1)	HBGAIN
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1:0	Half-Bridge A/D Conversion input Range Shift (r_{ADC} —refer to section 2.1) $00_{BIN} = 1/_{16} \rightarrow ADC$ range= [(-1/16 V_{ADC_REF}) to (+15/16 V_{ADC_REF})] $01_{BIN} = 1/_8 \rightarrow ADC$ range= [(-1/8 V_{ADC_REF}) to (+7/8 V_{ADC_REF})] $10_{BIN} = 1/_4 \rightarrow ADC$ range= [(-1/4 V_{ADC_REF}) to (+3/4 V_{ADC_REF})] $11_{BIN} = 1/_2 \rightarrow ADC$ range= [(-1/2 V_{ADC_REF}) to (+1/2 V_{ADC_REF})]	HBADCRS

Table 6.4 Configuration Word CFGAPP

Bit	CFGAPP – Configuration of Temp. Measurement and TIMEDIV EEPROM/RAM A				M Address 15 _{HEX}
15:8	Not used				-
7:6		Output TIM ing DIV ider:			
	Timing of Pow	ver-On Diagnostic Output and c	of Sequential Analog Output (refer to sections 3.2 and 3.3):	
	Time base τ _{PDO} Time base τ _{SEQ} Power-On Diagnostic Sequential Analog Output				
	TIMEDIV	Time Base	@ f _{OSC} = 2.6MHz	@ f _{OSC} = 2.6MHz	
	00 _{BIN}	Basic timing	160ms	37ms	
	01 _{BIN}	Divide basic timing by 2	80ms	18ms	
	10 _{BIN}	Divide basic timing by 4	40ms	9ms	
	11 _{BIN}	Divide basic timing by 8	20ms	4ms	

Bit	CFGAPP – Configuration of Terr	p. Measurement and TIMEDIV	EEPROM/RAM A	ddress 15 _{HEX}
5:3	Temperature Sensor select: $00d_{BIN} = on-chip diode$ $d10_{BIN} = external resistor on pin VTN1$ $d11_{BIN} = external diode on pin VTN1$	100 _{BIN} = external resistor on pin VTN2 101 _{BIN} = external diode on pin VTN2		TS
2:0	Calibration Temperature Sensor select: $00d_{BIN} = on-chip diode$ $d10_{BIN} = external resistor on pin VTN1$ $d11_{BIN} = external diode on pin VTN1$	100 _{BIN} = external resistor on pin VTN2 101 _{BIN} = external diode on pin VTN2		CTS

Table 6.5 Configuration Word CFGAPP2

Bit	CFG	APP2 – Configuration	of Target Application	EEPROM/R	AM Address 16 _{HEX}
15	One-Wire Interface 0 = Analog output s 1 = Analog output s	OWIMD			
14		Analog OUTput MoDe at Dutput 1 = Sequential A	AOUT2 pin (SEQAOUT; re Analog Output	efer to section 3.3.)	AOUT2MD
13:11	Select Analog Outp	out Signal at the AOUT2 p	pin:		
		AOUT2MD[3] = 0 Single Signal		2MD[3] = 1 Output (see Figure 3.3)	
	AOUT2MD[2:0]	Analog Output	1st Analog Output	2 nd Analog Output	
	000 _{BIN}	Temperature	Bridge	Temperature	
	001 _{BIN}	(1 – Bridge)	(1 – Bridge)	Temperature	
	010 _{BIN}	(½ * Bridge)	(1/2 * Bridge)	Temperature	
	011 _{BIN}	(½ (1 – Bridge))	(½ (1 – Bridge))	Temperature	
	100 _{BIN}	Half-Bridge	Bridge	Half-Bridge	
	101 _{BIN}	Half-Bridge	(1 – Bridge)	Half-Bridge	
	110 _{BIN}	Half-Bridge	(1/2 * Bridge)	Half-Bridge	
	111 _{BIN}	Half-Bridge	(½ (1 – Bridge))	Half-Bridge	
	Note: Bit 13 (AOUT2MD[2]) is also used for selecting the second signal sent by the digital output (I2C interface) during NOM and Temporary DM (see section 4.2). The second value sent in the digital output sequence can be either the 13-bit temperature or 13-bit half-bridge value: 0 = temperature; 1 = half bridge.				
10:5		e for Half-Bridge Measure			HBREF
	Single-ended Half-Bridge signal is measured against reference voltage V _{HB,REF} .				
	-	• •	steps from $0.3 \cdot V_{BR}$ to $0.7 \cdot V$	BR•	
	$HBREF \in [0; 31] \Longrightarrow V_{HE}$	$_{B,REF} = V_{BR} \cdot \frac{81 + HBREF}{161}$			
	$HBREF \in [32;63] \Longrightarrow V_{F}$	$_{HB,REF} = V_{BR} \cdot \frac{81 + 31 - HBRE}{161}$	F -		

Bit	CFGAPP2 – Configuration of Target Application	EEPROM/RAM Address 16 _{HEX}
4	Enable OSCillator Spread Spectrum Mode	OSCSS
	0 = disabled 1 = enabled	
	Reduces electromagnetic emission (EME). Frequency of internal oscillator is linearly varied in 63 steps by nominal ±11%.	
3:0	ADJust frequency f _{OSC} of internal OSC illator Refer to the ZSSC3154 Application Note—Oscillator Frequency Adjustment for details.	OSCADJ

Table 6.6 Configuration Word CFGSF

Bit	CFGSF – Configuration of Safety Functions EEPROM/RAM	Address 17 _{HEX}
15	Enables the EEPROM Lock for OWI communication 0 = disabled 1 = enabled	EEPLOCK
14:11	Slave address for OWI and I2C communication Defines 4 LSB of a possible additional I2C slave address within the range 20 _{HEX} to 2F _{HEX} . Use 8 _{HEX} to disable this second address by setting it to the general address 28 _{HEX} .	SLVADDR
10	Enable the Power-On Diagnostic Output (PDO) 0 = disabled 1 = enabled Note that the Sequential Analog Output at pin AOUT2 is dominant and disables PDO. (Refer to section 3.2.)	PDOENA
9	Enable the ROM Check at power-on. Startup time is increased approximately 10ms. 0 = disabled 1 = enabled	CHKROM
8	Enable the Temperature Sensor Check Applies to temperature and calibration temperature. 0 = disabled 1 = enabled	CHKTSC
7	Enable the Main Channel A/D Conversion Result Check High Limit 0 = disabled 1 = enabled	СНКМССН
6	Enable the Main Channel A/D Conversion Result Check Low Limit 0 = disabled 1 = enabled	CHKMCCL
5	Enable the Broken Chip Check 0 = disabled 1 = enabled	СНКВСС
4	Enable the Sensor Short Check 0 = disabled 1 = enabled Note that the Sensor Short Check is always disabled if the Half-Bridge measurement is enabled by the CFGAPP2:AOUT2MD setting.	CHKSSC

Bit	CFGSF – Configuration of Safety Functions EEPROM/RAM A	ddress 17 _{HEX}
3	Switch to the Sensor Connection Check High Capacitor Mode	CHKSCCHIC
	0 = SCC Normal Mode 1 = SCC High Capacitor Mode	
	The SCC High Capacitor Mode enables SCC diagnostics for input load capacities greater than 1nF up to 10nF.	
	Note that for either mode, the Sensor Connection Check must be enabled by the CFGSF:CHKSCC setting. Note that the Sensor Connection Check is always disabled if the Half-Bridge measurement is enabled by the CFGAPP2:AOUT2MD setting.	
2	Enable the Sensor Connection Check	CHKSCC
	0 = disabled 1 = enabled	
	Note that the Sensor Connection Check is always disabled if the Half-Bridge measurement is enabled by the CFGAPP2:AOUT2MD setting.	
1	Enable the Sensor Aging Check	CHKSAC
	0 = disabled 1 = enabled	
	Note that the Sensor Aging Check is always disabled if the Half-Bridge measurement is enabled by the CFGAPP2:AOUT2MD setting.	
0	Enables triggering a reset if the Diagnostic Mode (DM) occurs	DMRES
	0 = stop and DM 1 = reset and startup again	
	If set to 1, reset is executed after timeout of watchdog.	

6.5 **EEPROM** Signature

The EEPROM signature (address 18_{HEX}) is used to check the validity of the EEPROM contents. The signature is built using a polynomial arithmetic modulo 2. The following source code generates the signature if the field eepcont[] is allocated by the EEPROM content (addresses 00_{HEX} to 17_{HEX}). The parameter N is the count of applicable addresses and must be set as N = 24.

Table 6.7 C Source Code Signature Generation

```
#define POLYNOM A005<sub>HEX</sub>
unsigned short signature(eepcont, N)
unsigned short eepcont[], N;
{
    unsigned short sign, poly, p, x, i, j;
    sign = 0; poly = POLYNOM;
    for (i=0; i<N; i++) {
        sign^=eepcont[i];
        p=0; x=sign&poly;
        for (j=0; j<16; j++, p^=x, x>>=1);
        sign<<=1; sign+=(p&1);
    }
    return(~sign);
}</pre>
```

6.6 EEPROM Write Locking

The ZSSC3154 supports EEPROM write locking (EEPLOCK). If the EEPROM lock is active (i.e., CFGSF:EEPLOCK=1), it is not possible to enable EEPROM programming with the command EEP_WRITE_EN using one-wire communication (OWI); the ZSSC3154 answers the command EEP_WRITE_EN with the reject code CF6C_{HEX}, and a subsequent EEPROM write access is blocked.

An activated EEPLOCK does not block writing to the EEPROM using I2C and can always be reset using I2C.

EEPLOCK is active only if programmed into EEPROM and activated due to

- New power-on or
- Receiving the EEP_WRITE_EN command or
- Starting the measurement cycle by receiving the START_CYC_x command

The following write sequence is possible:

- Write calibration data including EEPLOCK to RAM mirror
- Enable EEPROM writing by sending the command EEP_WRITE_EN
- Copy the RAM mirror to EEPROM
- Write the EEPROM signature directly to EEPROM

If an invalid EEPROM signature is detected, the EEPROM lock is always deactivated.

7. Glossary

Term	Description
ADC	Analog-to-Digital Converter
AFE	Analog Front-End
AFEBIST	Analog Front-End Built-In Self-Test
BCC	Broken Chip Check
BIST	Built-In Self-Test
СМ	Command Mode
CMC	Calibration Microcontroller
CMV	Common Mode Voltage
DFB	Diagnostic Fault Band
DFBH	Diagnostic Fault Band level High
DFBL	Diagnostic Fault Band level Low
DM	Diagnostic Mode
НВ	Half Bridge
LSB	Least Significant Bit
МССН	Main Channel Check High
MCCL	Main Channel Check Low
MSB	Most Significant Bit
NOM	Normal Operation Mode
OWI	One-Wire Interface
PDO	Power-On Diagnostic Output
SAC	Sensor Aging Check
SEQAOUT	Sequential Analog Output
SCC	Sensor Connection Check
SSC	Sensor Signal Conditioner
TSC	Temperature Sensor Check

8. Revision History

Revision Date	Description of Change
November 29, 2017	 Revisions for EEPROM signature section 6.5 regarding the setting for parameter N. Update for template. Removal of "Related Documents" section. Refer to <u>www.IDT.com/ZSSC3154</u> for the latest version of related documents. Minor edits.
March 29, 2016	Changed to IDT branding. Revision is now the release date.
November 25, 2015 (Revision 1.13)	 CRC changed to check sum. Revision to Table 4.2 for OWI bit time equation. Revision to table note for Table 5.1 regarding Dx commands and timing. Additional information added for watchdog time in Table 1.1. Contact information updated. Related documents updated.
March 18, 2014 (Revision 1.12)	 Update for contact information and imagery for cover and header. Replacement of Table 5.4 with a referral to the <i>ZSSC3154 Application Note</i>—Oscillator Frequency <i>Adjustment.</i> Minor edits for clarity.
April 2, 2013 (Revision 1.11)	Updates for traceability information in new section 6.3 and "Related Documents" section.
June 7, 2012 (Revision 1.10)	Updates for revision B silicon, including addition of ADJ_OSC_WRI command.
June 4, 2012 (Revision 1.00)	First released revision.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.