Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

μPD78F0711, 78F0712, 78F0714

8-Bit Single-Chip Microcontroller

Flash Memory Self Programming

μPD78F0711 μPD78F0712 μPD78F0714

Document No. U18886EJ1V0UM00 (1st edition) Date Published September 2007 NS

© NEC Electronics Corporation 2007 Printed in Japan [MEMO]

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

EEPROM is a trademark of NEC Electronics Corporation.

- The information in this document is current as of September, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

INTRODUCTION

Readers	This User's Manual is in programming function of application systems using the second structure of the systems and the systems application systems applicati systems applicati systems application systems app	intended for users who wish to understand the self- the μ PD78F0711, 78F0712, and 78F0714 and design these microcontrollers.
Purpose	This User's Manual is int application programs that flash memory.	ended to give users an understanding of the creation of utilize the μ PD78F0711, 78F0712, and 78F0714's on-chip
Organization	This manual can be generaDescription of flash enviDescription of flash men	ally divided into the following sections. ronment nory control firmware
How to Read This Manual	It is assumed that the read electrical engineering, logid • To gain a general under \rightarrow Read this manual in • To check the hardware f \rightarrow Refer to the μ PD78F μ PD78F0714 User's	ders of this manual have general knowledge in the fields of c circuits, microcontrollers, assembler, and C language. standing of functions: the order of the CONTENTS . functions of the μ PD78F0711, 78F0712, and 78F0714 F0711, 78F0712 User's Manual (U17890E) or s Manual (U16928E) .
Conventions	Data significance: Active low representation: Note: Caution: Remark: Numerical representation:	Higher digits on the left and lower digits on the right xxx (overscore over pin or signal name) Footnote for item marked with Note in the text Information requiring particular attention Supplementary information Binary xxxx or xxxxB Decimal xxxx Hexadecimal xxxxH

Terminology

The following describes the meanings of certain terms used in this manual.

• Self programming

Self programming operations are flash memory write operations that are performed by user programs.

• Flash memory control firmware

This firmware provides an interface for flash memory manipulations performed by the μ PD78F0711, 78F0712, and 78F0714 using its internal software. In this manual, the term "firmware" refers to this flash memory control firmware.

• Flash environment

This is the environment that supports flash memory manipulations. It has restrictions that differ from those applied to ordinary program execution.

Block number

Block numbers indicate blocks in flash memory. They are used as units during manipulations such as erasures and blank checks.

• Boot cluster (µPD78F0714 only)

This is the boot area used for boot swaps. Two boot clusters, boot cluster 0 and boot cluster 1, are provided, so that the cluster to be booted can be selected.

• Entry RAM

This is the area in RAM that is used by flash functions. The user program reserves this area and specifies the start address of the specific area to be used when flash functions are called.

• Internal verification

After writing to flash memory, signal levels are checked internally to confirm correct reading of data. When an internal verification error occurs, the corresponding device is judged as faulty.

CONTENTS

CHAPT	ER 1 OVERVIEW OF FLASH MEMORY SELF PROGRAMMING	8
1.1	Functions of Flash Memory Control Firmware	8
1.2	Control of Flash Memory Control Firmware	9
1.3	Self Programming Modes	10
1.4	Hardware Environment	11
1.5	Software Environment	12
СНАРТ	ER 2 SELF PROGRAMMING FUNCTIONS	
2.1	Registers That Control Self Programming	
	2.1.1 Flash programming mode control register (FLPMC)	
	2.1.2 Flash protect command register (PFCMD)	
	2.1.3 Flash status register (PFS)	
2.2	FLMD0 Pin Manipulations	
2.3	Self Programming Mode and FLMD0 Pin Control	
2.4	Functions of Flash Memory Control Firmware	
2.5	Flash Memory Control Firmware Use Environment	20
2.6	Parameters for Controlling Flash Memory Control Firmware	
	2.6.1 Register bank 3	22
	2.6.2 Entry RAM	23
	2.6.3 Data buffer	24
	2.6.4 Flash memory block numbers	25
	2.6.5 RAM memory map	26
СНАРТ	ER 3 ACCESS TO FLASH MEMORY	27
31	Overall Flow	27
3.2	Initial Settings	
3.3	Initialization	
3.4	Mode Check	
3.5	Block Blank Check	34
3.6	Block Erasure	
3.7	Word Write	
3.8	Block Verify	
3.9	Get Information	
3.10	Set Information	
3.11	EEPBOM Write	
3.12	EEPROM Erase	
3.13	Status List	
3.14	Boot Swap Function (μPD78F0714 only)	
CHAPT	ER 4 CC78K0 SELF-WRITE EXPANSION FUNCTION	57

CHAPTER 1 OVERVIEW OF FLASH MEMORY SELF PROGRAMMING

The μ PD78F0711, 78F0712, and 78F0714 supports flash memory control firmware that is used to rewrite flash memory. This firmware control enables flash memory to be rewritten from application programs. Possible uses of self-programming include the following.

- Rewriting of programs by application programs (for program upgrading in the field, etc.)
- Use for EEPROM[™] emulation (rewriting of constant data by applications, etc.)

1.1 Functions of Flash Memory Control Firmware

The μ PD78F0711, 78F0712, and 78F0714's on-chip flash memory control firmware^{Note} provides the functions to erase or write flash memory.

Note Allocated in the memory area where users cannot access.

Function (Command)		Description
Initialize	Initialization	Performs self programming setup.
Block erase	Block erasure	Erases specified block (2 KB) of data.
Word write	Word writing	Writes data in RAM to flash memory. Up to 256 bytes (specified in 4-byte units) can be written at one time.
EEPROM write	EEPROM emulation data writing	During EEPROM emulation, this function writes data in RAM to flash memory. Up to 256 bytes (specified in 4-byte units) can be written at one time.
Block verify	Verification	Verifies the specified block (2 KB).
Block blank check	Blank check	Performs a blank check of the specified block (2 KB).
Mode check	FLMD0 voltage check	Checks voltage level of FLMD0 pin.
Get information	Information acquisition	Reads information related to flash memory settings.
Set information	Information setting	Sets for security and boot swap ^{Note} .
EEPROM erase	Data erasure for EEPROM emulation	During EEPROM emulation, the memory in a specified block is deleted only by the duration of given time (10 ms units).

Table 1-1. Firmware Function (Command) List

Note The boot swap function is supported only with the μ PD78F0714.

1.2 Control of Flash Memory Control Firmware

The user performs flash memory write or erase via the flash memory control firmware. The self-programming operation contents are indicated to the firmware from the user's application program, and the firmware performs flash memory write or erase. The operation contents are set in the memory area (entry RAM, data buffer, register bank 3). The application program is in the wait status during firmware operation.

Figure 1-1 shows an outline of self programming.

Figure 1-1. Self Programming Outline

1.3 Self Programming Modes

The self programming mode is determined by the FLSPM values (values of bits 1 and 0 of FLPMC register).

<1> Normal mode

This is the mode for executing user applications. After reset release, the operation starts in this normal mode.

<2> Self programming mode

This is the mode used to perform self programming preparations and settings. In this mode, the flash memory control firmware can be executed (CALL !8100H).

Cautions 1. Before firmware execution, be sure to set the self programming mode.

- 2. When all the self programming work is completed, be sure to set the normal mode.
- 3. In the self programming mode, addresses 8000H and higher are allocated to firmware. Place the program for controlling flash memory in addresses 0000H to 7FFFH.

Mode	FLSPMC Register		Firmware Execution	User Program Execution	
	FLSPM1	FLSPM0	(CALL! 8100H)		
<1> Normal mode	0	0	_	\checkmark	
<2> Self programming mode	0	1	\checkmark	\sqrt{Note}	

Table 1-2. Self Programming Modes

Note Only the address range of 0000H to 7FFFH can be accessed (instruction fetch, data read).

Caution Setting FLSPM1, FLSPM0 = 1, 0 or 1, 1 is prohibited.

Remark $\sqrt{:}$ Enabled, -: Disabled

1.4 Hardware Environment

The voltage of the FLMD0 pin must be set to low level during normal operation and to high level during self programming. Figure 1-2 shows an example of a circuit that switches the voltage of the FLMD0 pin through port manipulation.

1.5 Software Environment

When performing self programming, the resources shown in Table 1-3 and Figure 1-3 below are required. For details, refer to **2.6 Parameters for Controlling Flash Memory Control Firmware**.

Table 1-3. Software Resources

Item	Description
Register bank	Register bank 3
Timer	8-bit timer (TM50)
Data buffer	4 to 256 bytes (can be set in 4-byte units)
Entry RAM	48 bytes
Stack	Up to 30 bytes (uses same stack area as user program)

Figure 1-3. Software Environment

CHAPTER 2 SELF PROGRAMMING FUNCTIONS

2.1 Registers That Control Self Programming

2.1.1 Flash programming mode control register (FLPMC)

This register is used to enable/disable flash memory access (write, erase, etc.), and indicate the self programming operation mode.

A particular sequence must be used when writing to this register, in order to prevent inadvertent settings due to noise or manipulation errors. For the specific sequence, refer to **2.1.2** Flash protect command register (PFCMD).

After reset: 08H R/WNote Symbol 3 2 0 7 6 5 4 1 FLPMC 0 FWEDIS FWEPR FLSPM1 0 0 0 FLSPM0

Note Bit 2 is a read-only bit.

[FWEDIS]

This flag is used to control flash memory access (write, erase, etc.) enable/disable through software. The initial value of this flag is 1, and flash memory access is enabled by writing 0 to this flag.

FWEDIS	Function
0	Enable write/erase
1	Disable write/erase

[FWEPR]

This flag is used to control flash memory access (write, erase, etc.) enable/disable through hardware. It directly reflects the voltage of the FLMD0 pin.

FLMD0 Pin Voltage	FWEPR ^{Note} Function	
Low level (Vss)	0	Disable write/erase
High level (VDD)	1	Enable write/erase

Note The FWEPR bit is a read-only bit. Its value cannot be changed by software. However, when using an in-circuit emulator, the value can be changed even by overwriting.

Flash memory access can be enabled through the combination of FWEDIS and FWEPR.

FWEDIS	FWEPR	Flash Memory Write/Erase Enable			
0	1	Enable write/erase			
Other th	an above	Disable write/erase			

Cautions 1. When executing flash memory control firmware, such as flash memory write/erase, be sure to set FWEDIS to 0.

2. In the normal mode, be sure to set FWEDIS to 1.

[FLSPM0 and FLSPM1]

These control flags are used to select the self programming operation mode.

FLSPM1	FLSPM0	Mode Selection
0	0	Normal modeAccess (instruction fetch, data read) to the entire address range of flash memory is possible.
0	1	 Self programming mode Firmware execution "CALL #8100H" is possible. Access (instruction fetch, data read) to flash memory is possible.

Caution Setting FLSPM1, FLSPM0 = 1, 0 or 1, 1 is prohibited.

Figure 2-1 shows the self programming operation mode and memory map.

Caution Place the program that controls the flash memory control firmware in the address range of 0000H to 7FFFH.

2.1.2 Flash protect command register (PFCMD)

To prevent erroneous flash memory write or erase caused by an inadvertent program loop, etc., protection is implemented by this register for flash programming mode control register (FLPMC) write.

The FLPMC register is a special register that is valid for write operations only when the write operations are performed via following special sequence.

- <1> Write a specified value (= A5H) to the PFCMD register.
- <2> Write the value to be set to the FLPMC register (writing is invalid at this step).
- <3> Write the inverted value of the value to be set to the FLPMC register (writing is invalid at this step).
- <4> Write the value to be set to the FLPMC register (writing is valid at this step).

Caution The above sequence must be executed every time the value of the FLPMC register is changed.

After reset: Undefined W

Symbol	7	6	5	4	3	2	1	0
PFCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0

<Coding example of special sequence>

When writing 05H to FLPMC register:

; Writes A5H to PFCMD
; Writes 05H to FLPMC
; Writes 0FAH (inverted value of 05H) to FLPMC
; Writes 05H to FLPMC

Figure 2-2. Write Protection

2.1.3 Flash status register (PFS)

If the flash programming mode control register (FLPMC) is not written in the correct sequence, the FLPMC register is not set and a protection error occurs. At this time, bit 0 (FPRERR) of the PFS register is set to 1.

This flag is a cumulative flag.

After reset: 00H R/W								
Symbol	7	6	5	4	3	2	1	0
PFS	0	0	0	0	0	0	0	FPRERR

The FPRERR flag's operation conditions are as follows.

<Setting conditions>

- When the PFCMD register is written to at a time when the store instruction's operation for the latest peripheral register was not a write operation to the PFCMD register using a specified value (A5H)
- When the first store instruction operation after <1> above is for a peripheral register other than the FLPMC register
- When the first store instruction operation after <2> above is for a peripheral register other than the FLPMC register
- When the first store instruction operation after <2> above writes a value other than the inverted value of the value to be set to the FLPMC register
- When the first store instruction operation after <3> above is for a peripheral register other than the FLPMC register
- When the first store instruction operation after <3> above writes a value other than the value (write value in <2>) to be set to the FLPMC register.
- Remark The numbers shown in angle brackets above correspond to the numbers shown in angle brackets in section 2.1.2 above.

<Reset conditions>

- When 0 is written to bit 0 (FPRERR) in the PFS register.
- When a system reset is performed.

2.2 FLMD0 Pin Manipulations

For self programming, the level of the FLMD0 pin must be changed. The firmware execution requires that FWEDIS = 0, in addition to high level input to the FLMD0 pin.

Table 2-1. Levels of FLMD0 Pin Based on Flash Programming Mode

Pin Name	Normal Mode (FLSPM1, FLSPM0 = 0, 0)	Self-Programming Mode (FLSPM1, FLSPM0 = 0, 1)
FLMD0	Low level	High level

Caution Since FLMD0 pin is also used as alternate-function test pin, make the FLMD0 pin voltage Vss after a reset is released.

2.3 Self Programming Mode and FLMD0 Pin Control

Figure 2-3 shows the actual voltage change timing for each register and the FLMD0 pin.

Caution Release a reset while low level is input to the FLMD0 pin.

After setting the self programming mode, input a high level to the FLMD0 pin prior to firmware execution (CALL !8100H) and keep this input level fixed until the firmware operation ends. Also, before returning to the normal mode, input a low level to the FLMD0 pin.

2.4 Functions of Flash Memory Control Firmware

Table 2-2 lists the flash memory control firmware functions (commands).To use these functions, specify the function numbers in self programming mode.For details about the functions, refer to CHAPTER 3 ACCESS TO FLASH MEMORY.

Function No.	Function (Command)	Description			
00H	Initialize	Initialization	Performs initial settings for self programming.		
01H	Reserved				
02H	Reserved				
03H	Block erase	Block erasure	Erases the data of the specified block (2 KB).		
04H	Word write	Word writing Writes the data in RAM to the flamemory. Up to 256 bytes (in 4- units) can be written at one time			
05H	Reserved				
06H	Block verify	Verification	Performs verify of the specified block (2 KB).		
07H	Reserved				
08H	Block blank check	Blank check	Performs blank check of the specified block (2 KB).		
09H	Get information	Information acquisition	Reads the set information in the flash memory.		
0AH	Set information	Information setting	Performs security, boot swap ^{Note} , and other settings.		
0BH	Reserved				
0CH	Reserved				
0DH	Reserved				
0EH	Mode check	FLMD0 voltage check	Checks the voltage level of the FLMD0 pin.		
0FH to 16H	Reserved				
17H	EEPROM write	EEPROM emulation data writing	During EEPROM emulation, writes the data in RAM to the flash memory. Up to 256 bytes (in 4-byte units) can be written at one time.		
1CH	EEPROM erase	Data erasure for EEPROM emulation	During EEPROM emulation, the memory in a specified block is deleted only by the duration of given time (10 ms units).		

Table 2-2. Firmware Function (Command) List

Note The boot swap function is supported only with the μ PD78F0714.

2.5 Flash Memory Control Firmware Use Environment

Table 2-3 lists the conditions required for operation of the flash memory control firmware.

Table 2-3.	Conditions	for	Firmware	Operation
------------	------------	-----	----------	-----------

Item	Description			
Secure entry RAM area	During firmware operation, 48 bytes are required as the entry RAM area. Any addresses in the internal high-speed RAM can be specified as this entry RAM area.			
Secure stack area	During firmware operation, the stacks used by the user program are taken over and used. An additional 30-byte stack area must be secured from the stack addresses at firmware execution start.			
Secure data buffer	During flash memory write, an area for temporarily holding the write data must be secured. This area is known as a data buffer, and any address in the internal high-speed RAM and any size from 4 to 256 bytes that is a multiple of 4 can be specified for this buffer.			
Save general-purpose register	Because the value of register bank 3 is overwritten during firmware operation. Save and restore the value of register bank 3 as needed.			
Timer (TM50)	Since internal timer (TM50) is used by the firmware, TM50 cannot be used by user programs during firmware operation. Be sure to mask the interrupt of TM50. Moreover, since TM50 is initialized at the end of firmware operation, if it needs to be used by a user program, it must be set again.			
WDT operation	The firmware refreshes the watchdog timer enable register of WDT periodically. During a firmware execution, a reset by WDT, etc. does not occur.			
Interrupt masking	Before executing firmware, disable all interrupts. Disable interrupts using the interrupt mask flag register or the DI instruction. However, be sure to use the interrupt mask flag register for TM50.			
Program allocation of self programming	In the self programming mode, instructions at addresses 0 to 7FFFH can be executed.			
Manipulation of FLMD0 voltage	Before executing the firmware, stabilize the voltage input to the FLMD0 pin with the V_{DD} voltage. Before changing the mode to the normal mode, set the voltage input to the FLMD0 pin to Vss.			
Reset	Do not reset this microcontroller during firmware operation. The data of the flash memory accessed upon reset becomes undefined ^{Note} .			
Power supply cutoff/instantaneous power supply interruption	Supply a stable voltage to the microcontroller during firmware operation. The data of flash memory accessed during power supply cutoff/instantaneous power supply interruption becomes undefined ^{Note} .			

Note For countermeasures in regards to instantaneous power supply interruptions, refer to 3.14 Boot Swap Function (μPD78F0714 only).

2.6 Parameters for Controlling Flash Memory Control Firmware

As was mentioned above, access to flash memory (for erasing or writing) is performed by the firmware. The operation instructions are sent from the user application to the firmware via parameters in RAM. There are the following three types of control parameters.

- Register bank 3
- Entry RAM
- Data buffer

Each type of parameter is described below.

2.6.1 Register bank 3

When executing the flash memory control firmware, set the firmware's function numbers to C register of register bank 3, and the start address of the entry RAM to HL register.

The firmware execution results can be checked with B register.

Register Function Name	C Register Function No.	B Register's Execution Result (Return Value)	HL Register	AX Register	DE Register	
Initialization	00H	00H: Normal end 05H: Parameter error	Start address of entry RAM ^{Note}	Not used (used by firmware)		
Block erase	03H	00H: Normal end 05H: Parameter error 1AH: Erasure error				
Word write	04H	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1CH: Write error				
Block verify	06H	00H: Normal end 05H: Parameter error 1BH: Internal verification error				
Block blank check	08H	00H: Normal end 05H: Parameter error 1BH: Blank check error				
Get information	09H	00H: Normal end 05H: Parameter error				
Set information	ОАН	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1BH: Internal verification error 1CH: Write error				
Mode check	0EH	00H: Normal end 01H: Error				
EEPROM write	17H	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1CH: Write error 1DH: Internal verification error 1EH: Blank error				
EEPROM erase	1CH	00H: Normal end 05H: Parameter error 1AH: Erasure error				

Table 2-4. List of Register Bank 3 Parameters

Note Any address in the internal high-speed RAM can be set. However, secure a 48-byte area.

2.6.2 Entry RAM

The entry RAM is a 48-byte area used to set the firmware functions. The setting contents vary according to the firmware function.

The entry RAM can be placed to any addresses in the internal high-speed RAM, and the start address of the entry RAM is set with HL register of register bank 3. As shown in Table 2-5, each parameter is placed to "start address of entry RAM + offset value".

The entry RAM can also be used as the work area of the firmware. Therefore, do not change data other than parameters during self programming.

Offset Value Function	Function No.	+00H	+01H	+02H	+03H	+04H to	+07H	+08H, +09H	+0AH	+0BH	+0CH to
(C Register)	00H	00H: Normal end 05H: Parameter error				+06H		Start address of data buffer			+2FH
Block erase	03H	00H: Normal end 05H: Parameter error 1AH: Erasure error					Block no.				
Word write	04H	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1CH: Write error	Start ad memory Lower	dress of Higher	flash Highest ^{™®®}		Word count	Start address of data buffer			
Block verify	06H	00H: Normal end 05H: Parameter error 1BH: Internal verification error					Block no.				
Block blank check	08H	00H: Normal end 05H: Parameter error 1BH: Blank error					Block no.				
Get information	09H	00H: Normal end 05H: Parameter error	Block no.				Option value	Start address of data buffer			
Set information	OAH	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1BH: Internal verification error 1CH: Write error						Start address of data buffer			
Mode check	0EH	00H: Normal end 01H: Error									
EEPROM write	17H	00H: Normal end 05H: Parameter error 18H: FLMD0 error 1CH: Write error 1DH: Internal verification error 1EH: Blank error	Start ad memory Lower	dress of Higher	flash Highest ^{Note}		Word count	Start address of data buffer			
EEPROM erase	1CH	00H: Normal end 05H: Parameter error 1AH: Erasure error					Block no.			Retry count	

Table 2-5. List of Entry RAM Parameters

Note Set the highest address to 00H.

2.6.3 Data buffer

The data buffer is an area used to pass and receive data to be written to the flash memory and set information, and its contents vary according to the firmware function.

The data buffer can be placed to any address in the internal high-speed RAM, and its start address is specified in the entry RAM. The data buffer size differs according to the function, and an area between 4 and 256 bytes is required^{Note}.

Note The data buffer size is set in the entry RAM only when performing word write. The size of the data written at one time can be set in the range of 4 to 256 bytes (in 4-byte units).

Function	Name	Function	Data	Data Buffer Contents					
	Option Value Entry RAM	No.	Buffer Size (Bytes)		+00H	+01H	+02H	+03H	+04H to +FFH
Initialization	1	00H	4	Frequency data	Data 1	Data 2	Data 3	Data 4	Not used
Block erase	9	03H	-	-	Not used				
Word write		04H	4 to 256	Write data	Write data				
Block verify	1	06H	-	-	Not used				
Block blank	check	08H	-	-	Not used				
Get information	03H	09H	1	Security flag	Bits 1, 0: Block erase disable (other than 1, 1)/ enable (1, 1) Bits 3, 2: Chip erase disable (other than 1, 1)/ enable (1, 1) Bits 5, 4: Write disable (other than 1, 1)/enable (1, 1) Note 1	Not use	d		
	04H		1	Boot flag	00H: Boot area is swapped 01H: Boot area is not swapped	Not use	d		
	05H		3	End address of specified block	Lower address	Higher address	Highest address ^{Note 2}	Not use	d
Set informa	tion	OAH	1	Information flag	Bit 0: Boot swap enable (0)/ disable (1) ^{Net3} Bit 1: Chip erase disable (0)/ enable (1) Bit 2: Block erase disable (0)/ enable (1) Bit 3: Write disable (0)/ enable (1)	Not use	d		
Mode chec	k	0EH		-	Not used				
EEPROM v	vrite	17H	4 to 256	Write data	Write data				
EEPROM erase		1CH	-	-	Not used				

Table 2-6. List of Data Buffer Parameters

Notes 1. Set bits 6 and 7 to 1.

- 2. Set the highest address to 00H.
- **3.** Setting bit 0 is supported only with the μ PD78F0714.

2.6.4 Flash memory block numbers

The areas used to perform blank check, erase, and verify are specified in block (2 KB) units. The boot swap (μ PD78F0714 only) is performed in cluster (4 KB) units.

Caution Areas (banks) other than the on-chip flash memory of the product cannot be accessed.

Figure 2-4.	Allocation o	f Block Numbers	(µPD78F0714)
-------------	--------------	-----------------	--------------

8000H			
7800H	Block 15		
7000H	Block 14		
6800H	Block 13		
6000Н	Block 12		
5800H	Block 11		
5000H	Block 10		
4800H	Block 9		
4000H	Block 8		
3800Н	Block 7		
3000Н	Block 6	2000H	
2800H	Block 5	1FFFH	
2000H	Block 4		Boot cluster 1
1800H	Block 3	1000H	
1000H	Block 2	0FFFH	
0800Н	Block 1		Boot cluster 0
оооон	Block 0	0000Н	

2.6.5 RAM memory map

Figure 2-5 shows the memory map during flash programming.

CHAPTER 3 ACCESS TO FLASH MEMORY

This chapter describes flash memory access methods.

3.1 Overall Flow

The following describes the overall flow of flash memory manipulations by the entry program. At each stage in this flow of manipulations, the flash memory control firmware is called only when all of the hardware and software use conditions have been met and all of the required parameters have been set.

- Step 3 Firmware execution (CALL #8100H)
- Step 4 Restore to normal operation

Caution Place the self-flash control program in the range of 0000H to 7FFFH.

Figure 3-2 outlines the programming part for self-flash.

Before performing flash memory write/erase, perform [Initial settings] \rightarrow [Initialization] \rightarrow [Mode check], in this order. Then execute the required functions the required number of times.

Figure 3-2. Self Flash Programming (Outline)

3.2 Initial Settings

Check the usage conditions and enable self programming.

- <1> All interrupts are masked (interrupts are masked by the interrupt mask flag or executed by the DI instruction).
- <2> TM50 is not being used (TM50 will be used by the firmware).
- <3> Entry RAM area is available (reserve a 48-byte area at any address in RAM).
- <4> Stack area is available (a 30-byte stack area is required for use by the firmware. Save the required data).
- <5> Data buffer area is available (Secure an area of 4 to 256 bytes covering any addresses in RAM).
- <6> Select register bank 3 (register bank 3 will be used to control the firmware, so be sure to save any required data from that area).
- <7> Change the FLPMC register^{Note} and go to self programming mode & the write/erase enable mode.
- <8> Check whether FLPMC register rewrite was done in the correct sequence (if the PFS register is set to 1, an error results).
- <9> Input VDD to the FLMD0 pin (stabilize VDD until all accesses to flash memory are completed).
- <10> Check that the FWEDIS flag and FWEPR flag have been set to 0 and 1, respectively.
- Note A special sequence must be used when accessing the FLPMC register. For details, refer to 2.1.2 Flash protect command register (PFCMD).

3.3 Initialization

(1) Functions

- Perform initial settings of flash firmware
- The parameters used by the firmware are calculated based on the frequency data set to the data buffer and stored in the firmware use area in the entry RAM.

(2) Arguments

Item	Description
Function number	Set 00H to C register.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Start address of data buffer	Set any address in internal high-speed RAM to entry RAM (+08H, +09H).
Frequency data	Set frequency data to the data buffers (+00H, +01H, +02H, +03H).

(3) Return value

Return Value ^{№te}		Description
00H	Normal end	
05H	Parameter error	Occurs when the frequency data is outside the allowable range.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 26 bytes

(6) Other

• Frequency data: The frequency data (Hz) is set to the data buffer as a 4-digit hexadecimal value.

Offset	Description
+0	First digit
+1	Second digit
+2	Third digit
+3	Fourth digit

Table 3-1. Format of Oscillation Frequency Data

Oscillation frequency (Hz) = Fourth digit value \times 1000000H + third digit value \times 10000H + second digit value \times 100H + first digit value

Example: 5 MHz = 5000000 Hz = 004C4B40H

Offset	Description
+0	40H: First digit
+1	4BH: Second digit
+2	4CH: Third digit
+3	00H: Fourth digit

(7) Flowchart example

Figure 3-3. Initialization Flowchart

(8) Call example

MOV C,#00H	; $00H \rightarrow C$ register Selects initialize function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOVW AX,#0FD00H	; 0FD00H \rightarrow AX register
MOVW !0FC08H,AX	; 0FD00H \rightarrow entry RAM (+08H, +09H) Sets start address of data buffer to
	; 0FD00H
PUSH HL	; Saves HL register
MOVW HL,AX	; AX register \rightarrow HL register
MOV A,#60H	; Sets frequency data 8.38 MHz = 007FDE60H
MOV [HL+0] ,A	; 00H \rightarrow 0FB50H (+00H)
MOV A,#DEH	; DEH \rightarrow A register
MOV [HL+1] ,A	; DEH \rightarrow 0FB51H (+01H)
MOV A,#7FH	; 7FH \rightarrow A register
MOV [HL+2] ,A	; 7FH \rightarrow 0FB52H (+02H)
MOV A,#00H	; $00H \rightarrow A$ register
MOV [HL+3] ,A	; 00H \rightarrow 0FB53H (+03H)
POP HL	; Restores HL register
CALL !8100H	; Executes flash firmware

3.4 Mode Check

(1) Function

- Check level (high or low) of FLMD0 pin
- Caution If FLMD0 pin is at low level, flash memory cannot be erased or programmed. Therefore, when writing to flash memory with self programming, execute this subroutine after initialization.

(2) Arguments

Item	Description
Function number	Set C register to 0EH.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
01H	Error	If FWEPR (FLPMC.2) = 0, an error is set.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 12 bytes

(6) Flowchart example

Figure 3-4. Mode Check Flowchart

(7) Call example

MOV C,#0EH	; 0EH \rightarrow C register Selects mode check function
MOVW HL,#0FC00H	; <code>OFC00H</code> \rightarrow HL register <code>Sets</code> start address of entry RAM to <code>OFC00H</code>
CALL !8100H	; Executes flash firmware

3.5 Block Blank Check

(1) Function

• Performs a blank check of a specified block.

(2) Arguments

Item	Description
Function no.	Set C register to 08H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Blank check block	Set block number to be blank-checked to entry RAM (+07H).

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when the specified block number is outside the specifiable range (exceeds total block count).
1BH	Blank check error	Occurs when the state was other than the blank state in blank check processing.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 14 bytes

(6) Flowchart

Figure 3-5. Block Blank Check Flowchart

(7) Call example

MOV C,#08H	; 08H \rightarrow C register Selects block blank check function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOV A,#0	; $00H \rightarrow A$ register
MOV [HL+7] ,A	; 00H \rightarrow entry RAM (+07H) Specifies area for blank check to block 0
CALL !8100H	; Executes flash firmware

3.6 Block Erasure

(1) Functions

• Erases a specified block.

(2) Arguments

Item	Description
Function no.	Set C register = 03H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Erase block	Set block number to be erased to entry RAM (+07H).

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when the specified block number is outside the specifiable range (exceeds total block count).
1AH	Erasure error	Occurs when the block could not be erased by erase processing.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 30 bytes

(6) Flowchart

(7) Call example

MOV C,#03H	; 03H \rightarrow C register Selects block erasure function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOV A,#0	; $00H \rightarrow A$ register
MOV [HL+7] ,A	; 00H \rightarrow entry RAM (+07H) Specifies area for block erasure to block 0
CALL !8100H	; Executes flash firmware

3.7 Word Write

(1) Function

- Writes data to the flash memory.
- Used to write programs.

(2) Arguments

Item	Description
Function no.	Set C register to 04H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Start address of data buffer	Set any address in internal high-speed RAM to entry RAM (+08H, +09H).
Start address of write destination (start address of flash memory)	Set ^{Note 2} any address in internal high-speed RAM to entry RAM (+01H, +02H, +03H) ^{Note 1} .
Write data size	Set any word count to entry RAM (+07H) ^{Note 3} .
Write data	Place in data buffer

Notes 1. +01H: Lower; +02H: Higher; +03H: Highest

- 2. Set address that is a multiple of 4.
- **3.** Set within range of 1 to 64 words (1 word = 4 bytes).

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	 Occurs when start address is other than a multiple of 1 word (4 bytes). Occurs when word count is 0. Occurs when word count exceeds 64. Occurs when start address and end address calculated from word count exceed flash memory area.
18H	FLMD0 error	Occurs when input voltage to FLMD0 pin is abnormal.
1CH	Write error	Occurs when anomaly occurs in verification for READ level.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 18 bytes

(6) Flowchart

Figure 3-7. Word Write Flowchart

RAM (+07H)

(7) Call example

MOV C,#04H	; $04H \rightarrow C$ register Selects word write function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOVW AX,#0FD00H	; 0FD00H \rightarrow AX register
MOVW !0FC08H,AX	; 0FD00H $ ightarrow$ entry RAM (+08H, 09H) Sets start address of data buffer to
	; 0FD00H
MOV A,#00H	; $00H \rightarrow A$ register
MOV [HL+1] ,A	; 00H \rightarrow entry RAM (+01H) Sets start address (lower) of write destination
	; to 00H
MOV A,#60H	; $60H \rightarrow A$ register
MOV [HL+2] ,A	; A register \rightarrow entry RAM (+02H) Sets start address (higher) of write destination
	; to 60H
MOV A,#00H	; $00H \rightarrow A$ register
MOV [HL+3] ,A	; A register \rightarrow entry RAM (+03H) Sets start address (highest) of write
	; destination to 00H
MOV A,#08H	; 08H \rightarrow A register
MOV [HL+7] ,A	; 08H \rightarrow entry RAM (+07H) Sets write size to 8 words (8 \times 4 bytes)
CALL !8100H	; Executes flash firmware

3.8 Block Verify

(1) Function

- Performs internal verification of the specified block^{Note}.
- After a write operation, be sure to perform internal verification of blocks that include the write range.

Note Internal verification is a function that checks to confirm that the data written to flash memory was written at an adequate level. This type of verification differs from data comparison verification.

(2) Arguments

Item	Description
Function no.	Set C register to 06H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Verification block	Set block number to be verified to entry RAM (+07H).

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when block number is outside settable range (exceeds total block count).
1BH	Internal verification error	Occurs when an error occurs during internal verify processing.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 14 bytes

(6) Flowchart

Figure 3-9. Block Verification Flowchart

(7) Call example

MOV C,#06H	; 06H \rightarrow C register Selects block verify function
MOVW HL,#0FC00H	; <code>OFC00H \rightarrow HL register Sets start address of entry RAM to <code>OFC00H</code></code>
MOV A,#0	; $00H \rightarrow A register$
MOV [HL+7] ,A	; 00H \rightarrow entry RAM (+07H) Specify area to be verified to block 0
CALL !8100H	; Executes flash firmware

3.9 Get Information

The firmware's flash information read function is used to read product information. The read information is then checked to see if it poses any problems for subsequent flash memory manipulations.

(1) Function

• Obtains various setting-related information

(2) Arguments

Item	Description
Function no.	Set C register to 09H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Start address of data buffer	Set any address in internal high-speed RAM to entry RAM (+08H, +09H).
Option value	Set type of information to be obtained to entry RAM (+07H). 03H: Security flag information 04H: Boot flag information 05H: End address information of specified block
Information get block ^{Note}	Set specified block number to entry RAM (+01H)

Note Specification of the block number is valid only when the option value is 05H.

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when option value exceeds range.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

- Start address (HL register) of entry RAM held
- Acquired information held in data buffer

(5) Stack size

• 22 bytes

(6) Get information for option value

The information selected with an option value is stored in the data buffer.

<1> Security flag information (Option value: 03H):

Obtain the onboard^{Note} write/erase disable/enable status via the 1 byte of data from the beginning of the data buffer.

Note Onboard refers to write/erase using an external tool such as a flash programmer.

 Table 3-2.
 Security Flag Data Format

Offset	Description
+0	Security flag information

Bit No.	Description
Security flag information - Bits 1, 0	Block erase enable flag
	Other than 1, 1: Onboard block erase disable 1, 1: Onboard block erase enable
Security flag information – Bits 3, 2	Chip erase enable flag
	Other than 1, 1: Onboard chip erase disable
	1, 1: Onboard chip erase enable
Security flag information – Bits 5, 4	Write enable flag
	Other than 1, 1: Onboard write disable
	1, 1: Onboard write enable
Security flag information - Bit 6	1
Security flag information – Bit 7	1

<2> Boot flag information (option value: 04H)

Get boot flag area state with 1 byte of data from the beginning of the data buffer.

Table 3-3. Boot Flag Data Format

Offset	Description
+0	Boot flag information
	00H: Boot cluster 0 (0000H to 0FFFH, blocks 0 and 1) is selected.
	01H: Boot cluster 1 (1000H to 1FFFH, blocks 2 and 3) is selected.

<3> End address of specified block (option value: 05H)

Get end address of specified block with 3 bytes of data from start of data buffer.

Table 3-4. End Address Data Format

Offset	Description
+0	Block end address, lower address
+1	Block end address, higher address
+2	Block end address, highest address

Example: Block 0 (when end address is 0007FFH)

Offset	Description
+0	FFH
+1	07H
+2	00H

(7) Flowchart

(8) Call example

MOV C,#09H	; 09H \rightarrow C register Selects get information function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOVW AX,#0FD00H	; 0FD00H \rightarrow AX register
MOVW !0FC08H,AX	; 0FD00H \rightarrow entry RAM (+08H, +09H) Sets start address of data buffer to
	; 0FD00H
MOV A,#03H	; 03H \rightarrow A register
MOV [HL+7] ,A	; 03H \rightarrow entry RAM (+07H) Sets security flag information as information to get
CALL !8100H	; Executes flash firmware

3.10 Set Information

(1) Function

• Sets the boot flag. As a result, boot area swap is possible (boot swap function^{Note}).

Note The boot swap function is supported only with the μ PD78F0714.

(2) Arguments

Item	De	escription
Function no.	Set C register to A0H.	
Start address of entry RAM	Set any address in internal high-speed F	RAM to HL register.
Start address of data buffer	Set any address in internal high-speed F	RAM to entry RAM (+08H, +09H).
Option value	Set option value to 1st byte (+00H) in da	ata buffer.
	Bit $0 \rightarrow 0$: Don't perform boot swap	1: Perform boot swap ^{Note 1}
	Bit 1 \rightarrow 0: Onboard chip erase disable	1: Onboard chip erase enable ^{Notes 2, 3}
	Bit 2 \rightarrow 0: Onboard block erase disable	1: Onboard block erase enable ^{Notes 2, 3}
	Bit $3 \rightarrow 0$: Onboard write disable	1: Onboard write enable ^{Notes 2, 3}

- Notes 1. Because of the reset after the "Perform boot swap" was set, the boot cluster 0 (0000H to 0FFFH) and boot cluster 1 (1000H to 1FFFH) are swapped. For details, refer to 3.14 Boot Swap Function (μPD78F0714 only).
 - **2.** If rewriting the boot swap bit, overwrite the same value. If a different value is attempted to be input, a parameter error occurs (value is not rewritten) (μ PD78F0714 only).
 - 3. Restrictions imposed by this security flag do not apply to write/erase through self programming.

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when the information flag security values (bit 1, bit 2, bit 3) are not the same as the option values of arguments.
18H	FLMD0 error	Occurs when input voltage of FLMD0 pin is abnormal.
1BH	Internal verification error	Occurs when an error occurs during internal verify processing.
1CH	Write error	Occurs when anomaly occurs in verify for READ level.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 12 bytes

Caution The maximum number of times the security flag can be set is 100 times.

(6) Flowchart

Figure 3-11. Set Information Flowchart

Note The boot swap function is supported only with the μ PD78F0714.

(7) Call example

MOV C,#0AH	; $0AH \rightarrow C$ register Selects set information function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOVW AX,#0FD00H	; 0FD00H \rightarrow AX register
MOVW !0FC08H,AX	; 0FD00H \rightarrow entry RAM (+08H, +09H) Sets start address of data buffer to
	; 0FD00H
MOV A,#00H	; $00H \rightarrow A \text{ register}$
MOV [HL] ,A	; 00H \rightarrow entry RAM (+00H) Sets option value to 00H
CALL !8100H	; Executes flash firmware

3.11 EEPROM Write

(1) Function

- Writes data to the flash memory during EEPROM emulation.
- Used to write data.

Remark For the data hold period and rewrite count, refer to the μPD78F0711, 78F0712 User's Manual (U17890E) or μPD78F0714 User's Manual (U16928E).

(2) Arguments

Item	Description
Function no.	Set C register to 17H.
Start address of entry RAM	Set any address in internal high-speed RAM to HL register.
Start address of data buffer	Set any address in internal high-speed RAM to entry RAM (+08H, +09H).
Start address of write destination (start address of flash memory)	Set ^{Note 2} any address in internal high-speed RAM to entry RAM (+01H, +02H, +03H) ^{Note 1} .
Write data size	Set any word count to entry RAM (+07H) ^{Note 3} .
Write data	Place in data buffer

Notes 1. +01H: Lower; +02H: Higher; +03H: Highest

- 2. Set address that is a multiple of 4.
- **3.** Set within range of 1 to 64 words (1 word = 4 bytes).

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	 Occurs when start address is other than a multiple of 1 word (4 bytes). Occurs when word count is 0. Occurs when word count exceeds 64. Occurs when start address and end address calculated from word count exceed flash memory area.
18H	FLMD0 error	Occurs when input voltage to FLMD0 pin is abnormal.
1CH	Write error	Occurs when anomaly occurs in verification for READ level.
1DH	Internal verification error	Occurs when an error occurs during internal verify processing.
1EH	Blank check error	Occurs when a free area corresponding to the write word count is not available.

Note Return value = B register, or in entry RAM (+00H)

(4) Register memory state following firmware execution

• Start address (HL register) of entry RAM held

(5) Stack size

• 15 bytes

(6) Flowchart

Figure 3-12. EEPROM Write Flowchart

Figure 3-13. Memory Map

(7) Call example

MOV C,#17H	; $17H \rightarrow C$ register Selects EEPROM write function
MOVW HL,#0FC00H	; 0FC00H \rightarrow HL register Sets start address of entry RAM to 0FC00H
MOVW AX,#0FD00H	; 0FD00H \rightarrow AX register
MOVW !0FC08H,AX	; 0FD00H \rightarrow entry RAM (+08H, 09H) Sets start address of data buffer to
	; 0FD00H
MOV A,#00H	; $00H \rightarrow A register$
MOV [HL+1] ,A	; 00H \rightarrow entry RAM (+01H) Sets start address (lower) of write destination
	; to 00H.
MOV A,#60H	; 60H \rightarrow A register
MOV [HL+2] ,A	; A register \rightarrow entry RAM (+02H) Sets start address (higher) of write destination
	; to 60H.
MOV A,#00H	; $00H \rightarrow A register$
MOV [HL+3] ,A	; A register \rightarrow entry RAM (+03H) Sets start address (highest) of write
	; destination to 00H.
MOV A,#08H	; $08H \rightarrow A register$
MOV [HL+7] ,A	; 08H \rightarrow entry RAM (+07H) Sets write size to 8 words (8 \times 4 bytes).
CALL !8100H	; Executes flash firmware

3.12 EEPROM Erase

- (1) Functions
 - During EEPROM emulation, the memory in a specified block is deleted only by the duration of given time (10 ms units). With this function, the deletion of one block can be divided into a number of short erasure processings.
 - Used to erase data.

(2) Arguments

Item	Description
Function no.	Sets C register to 1CH.
Start address of entry RAM	Sets given addresses in the internal high-speed RAM to HL register.
Erase block	Sets the block no. of the block to be erased to the entry RAM (+07H).
Retry count	Sets the retry count to the entry RAM (+0BH) to determine the erasure time. Erasure time = retry count \times 10 ms

- **Remarks 1.** The user program is suspended (interrupt disabled) during an erasure. Therefore, set the erasure time so that no problems occur if the user program is suspended for the set time.
 - 2. It is recommended that making the accumulated erasure time by an EEPROM erasure reach the erasure time of 1 block before writing to the specified block (for the erasure time of 1 block, refer to the electrical specifications in the user's manual of each microcontroller).
 - **3.** After the erasure of the specified block completes, any other erasure processing for that block is canceled. Therefore, no over erasures or the like occur.

(3) Return value

Return Value ^{Note}	Description	
00H	Normal end	
05H	Parameter error	Occurs when specified block no. is out of the settable range (total block number or more).
1AH	Erase error	Occurs if data cannot be erased by erasure processing.

Note Return value = B register, or in the entry RAM (+00H)

(4) Register memory status after firmware execution

• Retains the start address (HL register) of the entry RAM.

(5) Stack size

• 17 bytes

(6) Flowchart

Figure 3-14. EEPROM Erase Flow

(7) Call example

MOV C,#1CH;	1CH \rightarrow C register Selects EEPROM erasure function
MOVW HL,#0FC00H;	$\text{0FC00H} \rightarrow \text{HL}$ register Sets start address of entry RAM to 0FC00H
MOV A,#0;	$00H \rightarrow A register$
MOV [HL+7],A;	$\rm 00H \rightarrow entry~RAM~(+07H)~Specify~block~0$ as the area for which EEPROM erasure is
	performed.
MOV A,#02H;	$02H \rightarrow A$ register
MOV [HL+0BH],A;	02H \rightarrow entry RAM (+0BH) Sets retry count to twice (erasure time: 20 ms)
CALL !8100H;	Executes flash firmware

3.13 Status List

Table 3-5 shows the list of the firmware statuses (return values).

Table 3-5. Status List

Status	Description
00H	Normal end
05H	Parameter error (parameter setting error)
18H	FLMD0 error (write error due to abnormal FLMD0 levels)
1AH	MRG10 error (erasure error)
1BH	MRG11 error (internal verification error, blank check error)
1CH	Write error (write error due to verification abnormality at READ level)
1DH	MRG11 error (internal verification error) [on EEPROM write]
1EH	MRG11 error (blank check error) [on EEPROM write]

3.14 Boot Swap Function (µPD78F0714 only)

If, during boot area rewrite, rewrite fails due to an instantaneous power supply interruption, etc., the data in the boot area is lost and the program cannot be restarted through reset.

The boot swap function is provided to avoid this problem.

Before boot cluster 0^{Note}, which is a boot program area, is rewritten during self programming, a new boot program is written to boot cluster 1. Once write to boot cluster 1 ends normally, boot cluster 1 and boot cluster 0 are swapped with the firmware's set information function, and boot cluster 1 becomes the boot area.

As a result, even if an instantaneous power supply interruption occurs during boot programming area rewrite, the next reset start performs booting from swap target boot cluster 1, so that normal program operation is achieved. Then erase or write is performed, if necessary, for boot cluster 0, which is the original boot program area.

Note A boot cluster is a 4 KB area, and boot cluster 0 and boot cluster 1 are swapped through boot swap. Boot cluster 0 (0000H to 0FFFH): Original boot program area Boot cluster 1 (1000H to 1FFFH): Boot swap target area

Figures 3-15 and 3-16 show boot swap execution examples.

Figure 3-15. Boot Swap Execution Example 1

Figure 3-16. Boot Swap Execution Example 2

Remark In the boot swap of the execution example 2, the boot area can be changed without a reset.

CHAPTER 4 CC78K0 SELF-WRITE EXPANSION FUNCTION

The CC78K0 has self-write subroutine direct call functions in the firmware.

Flash memory control firmware can be called by using the __hromcall function.

The __hromcall function temporarily switches the register bank to bank 3, sets function numbers to C register and entry RAM addresses to HL register and calls the specified address. The value of B register is the return value.

unsigned char_hromcall (unsigned int entryaddr, unsigned char funcno, void *entrydata);

[#pragma hromcall] must be described.

Register bank 3 is temporarily switched to, entrydata is set to HL register, funcno to C register and the entryaddr address is called.

The value of B register is the return value.

Only constants can be specified for the first argument and second argument.

Example Executing firmware with function number 0x3 (CALL #8100H)

[C Source]

#pragma hromcall
unsigned char entrydata[48];
unsigned char ret;
_ _hromcall(0x8100,0x03,entrydata);

[Output Assembler]

push	psw
sel	rb3
movw	hl,#_entrydata
mov	c,#03H
call	!08100H
рор	psw
mov	a,0FEE3H
mov	!_ret,a

When creating a function corresponding to a function number, describing as follows using #define is possible. Note that in the case of the CC78K0 C compiler, functions with the same names as in the following example are supported, but if used as is, the function numbers may differ.

Example

#defineFlashEnv(entrydata_addr)	hromcall(0x8100,0x00,entrydata_addr)
#defineFlashBlockErase(entrydata_addr)	_ hromcall(0x8100,0x03,entrydata_addr)
#defineFlashWordWrite(entrydata_addr)	_ hromcall(0x8100,0x04,entrydata_addr)
#defineFlashBlockIVerify(entrydata_addr)	_ hromcall(0x8100,0x06,entrydata_addr)
#defineFlashBlockBlankCheck(entrydata_addr)	_ hromcall(0x8100,0x08,entrydata_addr)
#defineFlashGetInfo(entrydata_addr)	_ hromcall(0x8100,0x09,entrydata_addr)
#defineFlashSetInfo(entrydata_addr)	_ hromcall(0x8100,0x0a,entrydata_addr)
#defineFlashCheckFLMD(entrydata_addr)	_ hromcall(0x8100,0x0e,entrydata_addr)

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/