Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

Multimedia Processor for Mobile Applications

SD Memory Card Interface

EMMA Mobile[™]1

Document No. S19361EJ4V0UM00 (4th edition) Date Published September 2009

© NEC Electronics Corporation 2009 Printed in Japan [MEMO]

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

The names of other companies and products are the registered trademarks or trademarks of the respective company.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of September, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC
 Electronics products are not taken measures to prevent radioactive rays in the product design. When customers
 use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate
 sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in
 order to avoid risks of the damages to property (including public or social property) or injury (including death) to
 persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E0904E

PREFACE

Readers	This manual is intended for hardware/software application system designers who w to understand and use the SD card interface functions of EMMA Mobile1 (EM1) multimedia processor for mobile applications.			
Purpose	This manual is inter the SD card interfa hardware and softwa	nded to explain to users the hardware and software functions of ce of EM1, and be used as a reference material for developing are for systems that use EM1.		
Organization	This manual consist • Chapter 1 • Chapter 2 • Chapter 3 • Chapter 4	s of the following chapters. Overview Pin functions Registers Description of functions		
How to Read This Manual	It is assumed that the logic circuits, and model To understand the free \rightarrow Read this manual To understand the constant the use To understand the end \rightarrow Refer to the use To understand the end \rightarrow Refer to the Data	he readers of this manual have general knowledge of electricity, icrocontrollers. unctions of the SD card interface of EM1 in detail ual according to the CONTENTS . other functions of EM1 er's manual of the respective module. electrical specifications of EM1 ta Sheet.		
Conventions	Data significance: Note: Caution: Remark: Numeric representa Data type:	Higher digits on the left and lower digits on the right Footnote for item marked with Note in the text Information requiring particular attention Supplementary information tion: Binary xxxx or xxxxB Decimal xxxx Hexadecimal xxxxh Word 32 bits Halfword 16 bits		

Byte ... 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

	Document No.	
MC-10118A Data	S19657E	
μPD77630A Data	a sheet	S19686E
User's manual	Audio/Voice and PWM Interfaces	S19253E
	DDR SDRAM Interface	S19254E
	DMA Controller	S19255E
	I ² C Interface	S19256E
	ITU-R BT.656 Interface	S19257E
	LCD Controller	S19258E
	MICROWIRE	S19259E
	NAND Flash Interface	S19260E
	SPI	S19261E
	UART Interface	S19262E
	Image Composer	S19263E
	Image Processor Unit	S19264E
	System Control/General-Purpose I/O Interface	S19265E
	Timer	S19266E
	Terrestrial Digital TV Interface	S19267E
	Camera Interface	S19285E
	USB Interface	S19359E
	SD Memory Card Interface	This manual
	PDMA	S19373E
	One Chip (MC-10118A)	S19598E
	One Chip (μPD77630A)	S19687E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

CONTENTS

CHAPTE	R 1 0	VERVIEW	9
1.1	Featu	res	9
CHAPTE	R 2 P	IN FUNCTIONS	10
2.1	SD Ca	ard Interface Pins	10
CHAPTE	R 3 R	EGISTERS	11
3.1	Regis	ters	11
3.2	Regis	ter Functions	13
	3.2.1	SD memory card command register	13
	3.2.2	SD memory card port select register	15
	3.2.3	SD memory card command parameter register 0	16
	3.2.4	SD memory card command parameter register 1	16
	3.2.5	SD memory card stop register	17
	3.2.6	SD memory card transfer sector count register	17
	3.2.7	SD memory card response register 0	18
	3.2.8	SD memory card response register 1	18
	3.2.9	SD memory card response register 2	19
	3.2.10	SD memory card response register 3	19
	3.2.11	SD memory card response register 4	20
	3.2.12	SD memory card response register 5	20
	3.2.13	SD memory card response register 6	21
	3.2.14	SD memory card response register 7	21
	3.2.15	SD memory card information register 1	
	3.2.16	SD memory card information register 2	23
	3.2.17	SD memory card information mask register 1	
	3.2.18	SD memory card information mask register 2	
	3.2.19	SD memory card transfer clock control register	27
	3.2.20	SD memory card transfer data size register	
	3.2.21	SD memory card option setting register	
	3.2.22	SD memory card error interrupt status register 1	
	3.2.23	SD memory card error interrupt status register 2	
	3.2.24	SD memory card data butter U register	
	3.2.25	SDIO mode setting register	
	3.2.26	SDIO information register.	
	3.2.27	SDIO Information mask register	
	3.2.28	Expansion mode control register.	
	3.2.29	SDIX SURWARE TESEL CONTON TEGISLET	
	J.∠.JU	SDix use register 2	
	3.2.31 3.2.32	SDIx use register 2	40 41
	0.2.02		
CHAPTE	K 4 D	ESCRIPTION OF FUNCTIONS	42
4.1	Select	ting SD Memory Card Transfer Clock Signal (in Synchronous Mode)	42
4.2	SDIO	Interrupts	42

LIST OF FIGURES

 4-1. SDIO Interrupt Timing When SDIA Is Used in 1-Bit Mode	Figure	No.	Title		Page
	4-1. S 4-2. S 4-3. S	DIO Interrupt Timing When SDIA Is Used in A DIO Interrupt Timing When SDIA Is Used in A DIO Interrupt Timing When SDIA Is Used in A	1-Bit Mode 4-Bit Mode (Wher 4-Bit Mode (Wher	ו Single Block Transfer C Multiple Block Transfer מ	

LIST OF TABLES

Table No.	Title	Page

4-1. SD Memory Card Transfer Clock Signals That Can Be Selected (in Asynchronous Mode)...... 42

CHAPTER 1 OVERVIEW

This manual describes the functional specifications of the modules related to the SDIO card and non-secure SD memory card interfaces (SDIA, SDIB, and SDIC, which are represented as SDIx below) provided in EM1.

1.1 Features

The main features of SDIx are as follows.

- O Supports a line width of 1 bit or 4 bits for transferring data to and from SD memory cards or SDIO cards.
- O Supports data transfers in frame units.
- O Supports CRC7 error checks on the command line and CRC16 checks (hardware) on each data bit line.
- O Provides three SD memory card and SDIO card ports.
- O The data transfer buffer for SD memory cards is configured of two blocks of 16 bits \times 256 words.
- O Supports data transfers from 1 to 512 bytes.
- O The SD memory card transfer clock signal can be derived from the source clock signal in the SDIx module (by selecting to divide the source clock frequency by 2, 4, 8, 16, ..., or 512).
- O Supports SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0, SDIO Physical Specifications 2.0, and specifications equivalent to MMC 4.2.

CHAPTER 2 PIN FUNCTIONS

2.1 SD Card Interface Pins

Pin Name	I/O	After Reset	Function	Alternate Pin Function
SD0_CKO	Output	0	Clock output	-
SD0_CMD	I/O	0	Command	-
SD0_DATA0	I/O	0	Data	-
SD0_DATA1	I/O	0	Data	GIO_P88
SD0_DATA2	I/O	0	Data	GIO_P89
SD0_DATA3	I/O	0	Data	GIO_P90
SD0_CKI	Input		Clock input	GIO_P91
SD1_CKO	Output	0	Clock output	-
SD1_CMD	I/O	0	Command	CAM_YUV5
SD1_DATA0	I/O	0	Data	CAM_YUV6
SD1_DATA1	I/O	0	Data	CAM_YUV7
SD1_DATA2	I/O	0	Data	CAM_VS
SD1_DATA3	I/O	0	Data	CAM_HS
SD1_CKI	Input	-	Clock input	GIO_P92, CAM_CLKI
SD2_CKO	Output	0	Clock output	GIO_P112, NAND_D2
SD2_CMD	I/O	0	Command	GIO_P113, NAND_D3
SD2_DATA0	I/O	0	Data	GIO_P114, NAND_D4
SD2_DATA1	I/O	0	Data	GIO_P115, NAND_D5
SD2_DATA2	I/O	0	Data	GIO_P116, NAND_D6
SD2_DATA3	I/O	0	Data	GIO_P117, NAND_D7
SD2_CKI	Input	-	Clock input	GIO_P93, NAND_OE

CHAPTER 3 REGISTERS

3.1 Registers

The registers that control SDIx consist of 16 bits. The registers are accessed from the ACPU, ADSP, and DMAC in word (32-bit) units, of which the higher 16 bits are invalid data. Invalid data means that the data written is ignored and the data read is 0. Do not access reserved registers. Do not write any value other than 0 to reserved bits in each register.

Base addresses:

SD0 (SDIA)	5005_0000H
SD1 (SDIB)	5006_0000H
SD2 (SDIC)	5009_0000H

				(1/2)
Address	Register Name	Register Symbol	R/W	After Reset
500x_0000h	SD memory card command register	SDIx_CMD	R/W	0000_0000h
500x_0004h	SD memory card port select register	SDIx_PORT	R/W	0000_0100h
500x_0008h	SD memory card command parameter register 0	SDIx_ARG0	R/W	0000_0000h
500x_000Ch	SD memory card command parameter register 1	SDIx_ARG1	R/W	0000_0000h
500x_0010h	SD memory card stop register	SDIx_STOP	R/W	0000_0000h
500x_0014h	SD memory card transfer sector count register	SDIx_SECCNT	R/W	0000_0000h
500x_0018h	SD memory card response register 0	SDIx_RSP0	R	0000_0000h
500x_001Ch	SD memory card response register 1	SDIx_RSP1	R	0000_0000h
500x_0020h	SD memory card response register 2	SDIx_RSP2	R	0000_0000h
500x_0024h	SD memory card response register 3	SDIx_RSP3	R	0000_0000h
500x_0028h	SD memory card response register 4	SDIx_RSP4	R	0000_0000h
500x_002Ch	SD memory card response register 5	SDIx_RSP5	R	0000_0000h
500x_0030h	SD memory card response register 6	SDIx_RSP6	R	0000_0000h
500x_0034h	SD memory card response register 7	SDIx_RSP7	R	0000_0000h
500x_0038h	SD memory card information register 1	SDIx_INFO1	R/W, R	Undefined
				(0000_068D)
500x_003Ch	SD memory card information register 2	SDIx_INFO2	R/W, R	Undefined
				(0000_2080h)
500x_0040h	SD memory card information mask register 1	SDIx_INFO1_MASK	R/W	0000_031Dh
500x_0044h	SD memory card information mask register 2	SDIx_INFO2_MASK	R/W	0000_8B7Fh
500x_0048h	SD memory card transfer clock control register	SDIx_CLK_CTRL	R/W	0000_0020h
500x_004Ch	SD memory card transfer data size register	SDIx_SIZE	R/W	0000_0200h
500x_0050h	SD memory card option setting register	SDIx_OPTION	R/W	0000_00EEh
500x_0054h	Reserved	_	_	_
500x_0058h	SD memory card error interrupt status register 1	SDIx_ERR_STS1	R	0000_2000h
500x_005Ch	SD memory card error interrupt status register 2	SDIx_ERR_STS2	R	0000_0000h

				(2/2)
Address	Register Name	Register Symbol	R/W	After Reset
500x_0060h	SD memory card data buffer 0 register	SDIx_BUF0	R/W	Undefined
500x_0064h	Reserved	-	-	-
500x_0068h	SDIO mode setting register	SDIx_SDIO_MODE	R/W	0000_0000h
500x_006Ch	SDIO information register	SDIx_SDIO_INFO1	R/W	0000_0000h
500x_0070h	SDIO information mask register	SDIx_SDIO_INFO1_	R/W	0000_C007h
		MASK		
500x_0074h to	Reserved	-	-	-
500x_01ACh				
500x_01B0h	Expansion mode control register	SDIx_CC_EXT_MODE	R, R/W	0000_1000h
500x_01B4h	Reserved	-	Ι	-
500x_01BCh				
500x_01C0h	SDIx software reset control register	SDIx_SOFT_RST	R/W	0000_0000h
500x_01C4h to	Reserved	-	Ι	-
500x_01E0h				
500x_0200h	SDIx use register	SDIx_USER	R/W, R	0000_0004h
500x_0204h	SDIx use register 2	SDIx_USER2	R/W	0000_0000h
500x_0210h to	Reserved	_	-	-
500x_02FCh				
500x_0300h	SDIx DMA mode SD buffer register	SDIx_DMASD	R/W	_

3.2 Register Functions

3.2.1 SD memory card command register

This register (SDIA_CMD: 5005_0000h, SDIB_CMD: 5006_000h, SDIC_CMD: 5009_000h) controls the SD memory card commands and responses.

15	14	13	12	11	10	9	8
MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
7	6	5	4	3	2	1	0
C1	C0	CF45	CF44	CF43	CF42	CF41	CF40

Name	R/W	Bit	After Reset	Function
MD[7:6]	R/W	15:14	0	Specifies the CMD12 mode.
MD5	R/W	13	0	Selects between single- or multiple-block transfers.
				0: Single-block transfer
				1: Multiple-block transfer
MD4	R/W	12	0	Specifies the write or read mode.
				0: Write
				1: Read
MD3	R/W	11	0	Specifies the data mode.
				0: No data
				1: Data is present
MD[2:0]	R/W	10:8	0	Specifies an expansion command and the response type.
C[1:0]	R/W	7:6	0	Specifies the command mode.
CF[45:40]	R/W	5:0	0	Specifies the command index.

Caution For details about setup commands and responses, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

MD[7:6] CMD12 mode specification

MD7	MD6	Function
0	0	Automatic CMD12 transfer
0	1	Non-automatic transfer of CMD12 (SDIO command) (transfer between host and SD card)
1	0	Reserved
1	1	Reserved

Remark Automatic CMD12 transfer means that CMD12 is automatically transferred according to the sector count, after which data transfer stops.

MD2	MD1	MD0	Command Mode	Response Type
0	0	0	Normal mode	Decoding command for SD memory
				cards and multimedia cards
0	0	1	Expansion command	Reserved
0	1	0	Expansion command	Reserved
0	1	1	Expansion command	No response
1	0	0	Expansion command	R1, R6, R5
1	0	1	Expansion command	R1b, R5b
1	1	0	Expansion command	R2
1	1	1	Expansion command	R3, R4

MD[2:0] Expansion command and response type specification

C[1:0] Command mode specification

C1	C0	Function		
0	0	SD memory card or multimedia card command		
0	1	ACMD following CMD55 of an SD memory card		
1	0	Mutual recognition command		
1	1	Reserved		

CF[45:40] Command index specification

Specifies the command index set to bits 45 to 40 in the SD memory card command format.

5	4	3	2	1	0
CF45	CF44	CF43	CF42	CF41	CF40

3.2.2 SD memory card port select register

This register (SDIA_PORT: 5005_0004h, SDIB_PORT: 5006_0004h, SDIC_PORT: 5009_0004h) specifies the port used when multiple SD memory card ports are mounted.

15	14	13	12	11	10	9	8
		Reserved	NP2	NP1	NP0		
7	6	5	4	3	2	1	0
		Rese		P1	P0		

Name	R/W	Bit	After Reset	Function
Reserved	1	15:11	-	_
NP[2:0]	R	10:8	1	Specifies the number of supported SD memory cards.
Reserved	-	7:2	-	_
P[1:0]	R/W	1:0	0	Selects the port number of the selected SD memory card.

NP[2:0] Number of supported SD memory cards

NP2	NP1	NP0	Function
0	0	0	Not defined
0	0	1	1 port (default)
0	1	0	2 ports
0	1	1	3 ports
1	0	0	4 ports

P[[1:0]	Port number	of the	selected	SD	memory	card
----	-------	-------------	--------	----------	----	--------	------

P1	P0	Function
0	0	Port 0
0	1	Setting prohibited ^{Note}
1	0	Setting prohibited ^{Note}
1	1	Setting prohibited ^{Note}

Note Operation is not guaranteed if a value other than 0 is specified for bits P1 and P0.

3.2.3 SD memory card command parameter register 0

This register (SDIA_ARG0: 5005_0008h, SDIB_ARG0: 5006_0008h, SDIC_ARG0: 5009_0008h) stores the SD card command parameters.

15	14	13	12	11	10	9	8
CF23	CF22	CF21	CF20	CF19	CF18	CF17	CF16
7	6	5	4	3	2	1	0
CF15	CF14	CF13	CF12	CF11	CF10	CF9	CF8

Name	R/W	Bit	After Reset	Function
CF[23:8]	R/W	15:0	0x0000	Specifies the parameters for the command to be transferred to
				the SD memory card. The settings of these bits correspond to
				bits 23 to 8 of the command format.
				Remark For details about the command parameters, see SD
				Specifications Part 1 Physical Layer Simplified
				Specification Ver. 2.0.

3.2.4 SD memory card command parameter register 1

This register (SDIA_ARG1: 5005_000Ch, SDIB_ARG1: 5006_000Ch, SDIC_ARG1: 5009_000Ch) stores the SD card command parameters.

15	14	13	12	11	10	9	8
CF39	CF38	CF37	CF36	CF35	CF34	CF33	CF32
7	6	5	4	3	2	1	0
CF31	CF30	CF29	CF28	CF27	CF26	CF25	CF24

Name	R/W	Bit	After Reset	Function
CF[39:24]	R/W	15:0	0x0000	Specifies the parameters for the command to be transferred to
				the SD memory card. The settings of these bits correspond to
				bits 39 to 24 of the command format.
				Remark For details about the command parameters, see SD
				Specifications Part 1 Physical Layer Simplified
				Specification Ver. 2.0.

3.2.5 SD memory card stop register

This register (SDIA_STOP: 5005_0010h, SDIB_STOP: 5006_0010h, SDIC_STOP: 5009_0010h) specifies stopping SD transfers.

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	SEC
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	STP
Name	R/W	Bit	After Reset		Funct	ion	

Name	R/W	Bit	After Reset	Function
Reserved	_	15:9	0	_
SEC	R/W	8	0	Enables or disables the SDIx_SECCNT register.
				0: Disables the SDIx_SECCNT register.
				1: Enables the SDIx_SECCNT register.
Reserved	-	7:1	0	_
STP	R/W	0	0	Transfer stop bit
				0: Do not stop transfer.
				Set this bit to 0 before CMD17, CMD18, CMD24, CMD27,
				CMD30, CMD42, CMD56, CMD43 to CMD48, ACMD18, or
				ACMD25 is set.
				1: Stop transfer.

3.2.6 SD memory card transfer sector count register

This register (SDIA_SECCNT: 5005_0014h, SDIB_SECCNT: 5006_0014h, SDIC_SECCNT: 5009_0014h) counts the number of transfer sectors.

15	14	13	12	11	10	9	8
CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
7	6	5	4	3	2	1	0
CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0

Name	R/W	Bit	After Reset	Function
CNT[15:0]	R/W	15:0	0x0000	16-bit counter that counts the number of transfer sectors

Remark If SDIx_SECCNT is 0x0001, the number of transfer sectors is 1.

If SDIx_SECCNT is 0xFFFF, the number of transfer sectors is 65,535.

if SDIx_SECCNT is 0x0000, the number of transfer sectors is 65,536.

3.2.7 SD memory card response register 0

This register (SDIA_RSP0: 5005_0018h, SDIB_RSP0: 5006_0018h, SDIC_RSP0: 5009_0018h) stores the responses returned from the SD memory card.

 15	14	13	12	11	10	9	8
R23	R22	R21	R20	R19	R18	R17	R16
 7	6	5	4	3	2	1	0
R15	R14	R13	R12	R11	R10	R9	R8

Name	R/W	Bit	After Reset	Function
R[23:8]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 23 to 8 of the response
				format.

Remark For details about the response formats, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

3.2.8 SD memory card response register 1

This register (SDIA_RSP1: 5005_001Ch, SDIB_RSP1: 5006_001Ch, SDIC_RSP1: 5009_001Ch) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8	
R39	R38	R37	R36	R35	R34	R33	R32	
7	6	5	4	3	2	1	0	
R31	R30	R29	R28	R27	R26	R25	R24	

Name	R/W	Bit	After Reset	Function
R[39:24]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 39 to 24 of the response
				format.

3.2.9 SD memory card response register 2

This register (SDIA_RSP2: 5005_0020h, SDIB_RSP2: 5006_0020h, SDIC_RSP2: 5009_0020h) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8
R55	R54	R53	R52	R51	R50	R49	R48
7	6	5	4	3	2	1	0
R47	R46	R45	R44	R43	R42	R41	R40

Name	R/W	Bit	After Reset	Function
R[55:40]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 55 to 40 of the response
				format.

Remark For details about the response formats, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

3.2.10 SD memory card response register 3

This register (SDIA_RSP3: 5005_0024h, SDIB_RSP3: 5006_0024h, SDIC_RSP3: 5009_0024h) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8
R71	R70	R69	R68	R67	R66	R65	R64
7	6	5	4	3	2	1	0
R63	R62	R61	R60	R59	R58	R57	R56

Name	R/W	Bit	After Reset	Function
R[71:56]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 71 to 56 of the response
				format.

3.2.11 SD memory card response register 4

This register (SDIA_RSP4: 5005_0028h, SDIB_RSP4: 5006_0028h, SDIC_RSP4: 5009_0028h) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8
R87	R86	R85	R84	R83	R82	R81	R80
7	6	5	4	3	2	1	0
R79	R78	R77	R76	R75	R74	R73	R72

Name	R/W	Bit	After Reset	Function
R[87:72]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 87 to 72 of the response
				format.

Remark For details about the response formats, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

3.2.12 SD memory card response register 5

This register (SDIA_RSP5: 5005_002Ch, SDIB_RSP5: 5006_002Ch, SDIC_RSP5: 5009_002Ch) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8
R103	R102	R101	R100	R99	R98	R97	R96
7	6	5	4	3	2	1	0
R95	R94	R93	R92	R91	R90	R89	R88

Name	R/W	Bit	After Reset	Function
R[103:88]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 103 to 88 of the
				response format.

3.2.13 SD memory card response register 6

This register (SDIA_RSP6: 5005_0030h, SDIB_RSP6: 5006_0030h, SDIC_RSP6: 5009_0030h) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8
R119	R118	R117	R116	R115	R114	R113	R112
7	6	5	4	3	2	1	0
7 R111	6 R110	5 R109	4 R108	3 R107	2 R106	1 R105	0 R104

Name	R/W	Bit	After Reset	Function
R[119:104]	R	15:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 119 to 104 of the
				response format.

Remark For details about the response formats, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

3.2.14 SD memory card response register 7

This register (SDIA_RSP7: 5005_0034h, SDIB_RSP7: 5006_0034h, SDIC_RSP7: 5009_0034h) stores the responses returned from the SD memory card.

15	14	13	12	11	10	9	8	
0	0	0	0	0	0	0	0	
7	6	5	4	3	2	1	0	
R127	R126	R125	R124	R123	R122	R121	R120	

Name	R/W	Bit	After Reset	Function
Reserved	Ι	15:8	0	_
R[127:120]	R	7:0	0x0000	Stores the responses returned from the SD memory card. The
				settings of these bits correspond to bits 127 to 120 of the
				response format.

3.2.15 SD memory card information register 1

This register (SDIA_INFO1: 5005_0038h, SDIB_INFO1: 5006_0038h, SDIC_INFO1: 5009_0038h) indicates two of the interrupt sources of SDIx.

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	INFO2	0	INF00
Name	R/W	Bit	After Reset	Function			
Reserved	-	15:3	0	_			
INFO2	R/W	2	0	Indicates whether all read/write accesses have finished.			

1111-02	17/17	2	0	0: Not all accesses have finished. 1: All accesses have finished.
Reserved	_	1	0	_
INFO0	R/W	0	0	Indicates whether the response has ended. 0: The response has not ended.
				1: The response has ended.

3.2.16 SD memory card information register 2

This register (SDIA_INFO2: 5005_003Ch, SDIB_INFO2: 5006_003Ch, SDIC_INFO2: 5009_003Ch) indicates the error and buffer status interrupt sources of SDIx.

15	14	13	12	11	10	9	8
ILA	CBSY	SCLKDIVEN	1 0	0	0	BWE	BRE
7	6	5	4	3	2	1	0
DAT0	ERR6	ERR5	ERR4	ERR3	ERR2	ERR1	ERR0
							(1/2)
Name	R/W	Bit	After Reset Function				
ILA	R/W	15	0	Illegal access erro	Dr ^{Note 1}		
				0: Normal access			
				1: Illegal access e	error		
CBSY	R	14	0	Command registe	er busy		
				0: Transfer is com	nplete.		
				1: Transfer is in p	rogress.		
SCLKDIVEN	R	13	0	SD_CLK_DIV ena	able bit		
				0: The SD bus is	being used to tr	ansmit commar	nds and data.
				1: The SD bus is	not being used	to transmit com	mands and
				data.			
Reserved	_	12:10	0	-			
BWE	R/W	9	0	Write enable			
				0: Writing to the S	SD memory card	is disabled.	
				1: Writing to the S	is enabled. (Th	e data buffer in	
				SDIx is empty.)		
BRE	R/W	8	0	Read enable			
				0: Reading from t	he SD memory of	card is disabled	
				1: Reading from t	he SD memory of	card is enabled.	(The data
				buffer in SDIx i	s full.)		
DAT0	R	7	Undefined	SD data line 0 bit			
				0: SDDATA0 = 0			
				1: SDDATA0 = 1			
ERR6	R/W	6	0	Response timeou	t		
				0: No response ti	meout error occu	irred.	
				1: A response tim	eout error occur	red (because no	o command
			response or SI	D_STOP respons	se was issued fo	or 64 SD	
	_			transfer clock o	cycles or more).		
ERR5	R/W	5	0	Invalid data buffer	r read error bit		
				0: No invalid data	buffer read erro	r occurred.	
				1: An invalid data	buffer read erro	r occurred (bec	ause an
				attempt was m	ade to read data	from the data b	ouffer even
				though the data	a buffer was emp	oty).	

				(2/2)
Name	R/W	Bit	After Reset	Function
ERR4	R/W	4	0	Invalid data buffer write error bit
				0: No invalid data buffer write error occurred.
				1: An invalid data buffer write error occurred ^{Note 2} .
ERR3	R/W	3	0	Timeout (other than a response) error
				0: No timeout error occurred.
				1: A timeout error occurred ^{Note 3} .
ERR2	R/W	2	0	End error status bit
				0: No end error occurred.
		 		1: An end error occurred ^{Note 4} .
ERR1	R/W	1	0	CRC error status bit
				0: No CRC error occurred.
				1: A CRC error occurred ^{Note 5} .
ERR0	R/W	0	0	Command error status bit
				0: No command error occurred.
				1: A command error occurred ^{Note 6} .

Remark For details about the response formats, see SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.

Notes 1. This error occurs in any of the following cases:

- If the command register is rewritten during a transfer.
- If "No response" (MD[2:0] = 011) and "Data is present" (MD3 = 1) is specified in the SDIx_CMD register.
- If CMD12 for which data is present is specified in the SDIx_CMD register.
- 2. This error occurs in any of the following cases:
 - If data is written to data buffer SDIx_BUF0 when the data read or data write command status is not asserted.
 - If data is written before SDIx_BUF0 becomes empty during a single block write.
 - If data is written to bank 1 of the data buffer before the bank becomes empty during a multiple block write.
- 3. This error occurs in any of the following five cases:
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDIx_OPTION register after an R1b response is received.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDIx_OPTION register after the CRC status is written.
 - If the CRC status is not written for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDIx_OPTION register after a write access.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDIx_OPTION register after a read command is issued.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDIx_OPTION register after an SD_STOP response is issued.
- **4.** *End error* refers to an END bit error in a command response (response length), in the data read (data length), when the CRC status is written (CRC status length), or in an SD_STOP response.
- **5.** *CRC error* refers to a CRC status write error, a CRC16 error in the data read, a CRC7 error in a stop response, or a CRC7 error in a response.
- 6. Command error refers to a command index error in a command response or in an SD_STOP response.

3.2.17 SD memory card information mask register 1

This register (SDIA_INFO1_MASK: 5005_0040h, SDIB_INFO1_MASK: 5006_0040h, SDIC_INFO1_MASK: 5009_0040h) masks the SDIx interrupts specified in the SDIx_INFO1 register.

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	IMASK2	0	IMASK0
				1			
Name	R/W	Bit	After Reset		Functi	on	
Reserved	-	15:3	0	-			
IMASK2	R/W	2	1	Masks the interr	upt that detects wi	hether all read/	write accesses
				have finished.			
				0: The interrupt i	s not masked.		
				1: The interrupt i	s masked.		
Reserved	-	1	0		-		
IMASK0	R/W	0	1	Masks the interr	upt that detects wi	hether the resp	onse has
				ended.			
				0: The interrupt i	s not masked.		
				1: The interrupt i	s masked.		

3.2.18 SD memory card information mask register 2

This register (SDIA_INFO2_MASK: 5005_0044h, SDIB_INFO2_MASK: 5006_0044h, SDIC_INFO2_MASK: 5009_0044h) masks the SDIx interrupts specified in the SDIx_INFO2 register.

	15	14	13	12	11	10	9	8
	IMASK	0	0	0	0	0	BMSK1	BMSK0
_	7	6	5	4	3	2	1	0
	0	EMASK6	EMASK5	EMASK4	EMASK3	EMASK2	EMASK1	EMASK0

Name	R/W	Bit	After Reset	Function
IMASK	R/W	15	1	Masks the illegal access interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
Reserved	-	14:10	0	_
BMASK1	R/W	9	1	Masks the write enable interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
BMASK0	R/W	8	1	Masks the read enable interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
Reserved	-	7	0	_
EMASK6	R/W	6	1	Masks the response timeout interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK5	R/W	5	1	Masks the illegal data buffer read access interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK4	R/W	4	1	Masks the illegal data buffer write access interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK3	R/W	3	1	Masks the timeout (other than response) interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK2	R/W	2	1	Masks the end error interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK1	R/W	1	1	Masks the CRC error interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EMASK0	R/W	0	1	Masks the command error interrupt.
				0: The interrupt is not masked.
				1: The interrupt is masked.

3.2.19 SD memory card transfer clock control register

This register (SDIA_CLK_CTRL: 5005_0048h, SDIB_CLK_CTRL: 5006_0048h, SDIC_CLK_CTRL: 5009_0048h) specifies the ratio for dividing the SD memory card transfer clock frequency.

15	14	13	12	11	10	9	8
0	0	0	0	0	SDCLKSEL	SDCLKOFFEN	SCLKEN
7	6	5	4	3	2	1	0
DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0

Name	R/W	Bit	After Reset	Function
Reserved	_	15:11	0	
SDCLKSEL	R/W	10	0	Selects the type of SD memory card according to the transfer
				clock speed.
				0: SD normal card
				1: SD high-speed card
SDCLKOFFEN	R/W	9	0	Enables or disables turning on and off the SD memory card
				transfer clock signal (SDCLK).
				0: Disables turning on and off SDCLK.
				1: Enables turning on and off SDCLK. (The clock signal can be
				turned off when no transfers are being executed).
SCLKEN	R/W	8	0	Enables or disables the SD memory card transfer clock signal.
				0: Disables the SD memory card transfer clock signal (low
				output).
				1: Enables the SD memory card transfer clock signal.
DIV[7:0]	R/W	7:0	20H	Specifies the ratio for dividing the SD memory card transfer
				clock frequency.

SDIx_CLK_CTRL[7:0]

These bits specify the ratio for dividing the SD memory card transfer clock frequency.

Specify the division ratio of the signal derived from SDIx_CLK.

- 0 Division by 2
- 1 Division by 4
- 2 Division by 8
- 4 Division by 16
- 8 Division by 32
- 16 Division by 64
- 32 Division by 128
- 64 Division by 256
- 128 Division by 512

3.2.20 SD memory card transfer data size register

This register (SDIA_SIZE: 5005_004Ch, SDIB_SIZE: 5006_004Ch, SDIC_SIZE: 5009_004Ch) specifies the transfer data size.

_	15	14	13	12	11	10	9	8
	0	0	0	0	0	0	LEN9	LEN8
_	7	6	5	4	3	2	1	0
ľ	LEN7	LEN6	LEN5	LEN4	LEN3	LEN2	LEN1	LEN0

Name	R/W	Bit	After Reset	Function	
Reserved	-	15:10	0	_	
LEN[9:0]	R/W	9:0	0200H	Specifies the size of the SD data to be transferred.	
				1 to 512 bytes can be specified in byte units. Do not set this	
				field to 0. Do not specify 513 or more bytes.	

3.2.21 SD memory card option setting register

This register (SDIA_OPTION: 5005_0050h, SDIB_OPTION: 5006_0050h, SDIC_OPTION: 5009_0050h) specifies various options.

15	14	13	12	11	10	9	8
WIDTH	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
TOP27	TOP26	TOP25	TOP24	CTOP24	CTOP23	CTOP22	CTOP21

Name	R/W	Bit	After Reset	Function	
WIDTH	R/W	15	0	Specifies the SD data transfer bit width.	
				0: 4 bits	
				1: 1 bit	
Reserved	-	14:8	0	_	
TOP[27:24]	R/W	7:4	EH	Response timeout counter	
CTOP[24:21]	R/W	3:0	EH	Card detection stabilization time counter	

TOP[27:24] Response timeout counter

TOP27	TOP26	TOP25	TOP24	Function
1	1	1	1	Timeout testing mode
1	1	1	0	SD transfer clock $\times 2^{27}$
1	1	0	1	SD transfer clock $\times 2^{26}$
1	1	0	0	SD transfer clock $\times2^{25}$
1	0	1	1	SD transfer clock $\times 2^{24}$
1	0	1	0	SD transfer clock $\times 2^{23}$
1	0	0	1	SD transfer clock $\times 2^{22}$
1	0	0	0	SD transfer clock $\times 2^{21}$
0	1	1	1	SD transfer clock $\times 2^{20}$
0	1	1	0	SD transfer clock $\times2^{19}$
0	1	0	1	SD transfer clock $\times 2^{18}$
0	1	0	0	SD transfer clock $\times 2^{17}$
0	0	1	1	SD transfer clock $\times 2^{16}$
0	0	1	0	SD transfer clock $\times 2^{15}$
0	0	0	1	SD transfer clock $\times 2^{14}$
0	0	0	0	SD transfer clock $\times 2^{13}$

CTOP24	CTOP23	CTOP22	CTOP21	Function
1	1	1	1	Timeout testing mode
1	1	1	0	SD transfer clock $\times 2^{27}$
1	1	0	1	SD transfer clock $\times 2^{26}$
1	1	0	0	SD transfer clock $\times 2^{25}$
1	0	1	1	SD transfer clock $\times 2^{24}$
1	0	1	0	SD transfer clock $\times 2^{23}$
1	0	0	1	SD transfer clock $\times 2^{22}$
1	0	0	0	SD transfer clock $\times 2^{21}$
0	1	1	1	SD transfer clock $\times 2^{20}$
0	1	1	0	SD transfer clock $\times 2^{19}$
0	1	0	1	SD transfer clock $\times 2^{18}$
0	1	0	0	SD transfer clock $\times 2^{17}$
0	0	1	1	SD transfer clock $\times 2^{16}$
0	0	1	0	SD transfer clock $\times 2^{15}$
0	0	0	1	SD transfer clock $\times 2^{14}$
0	0	0	0	SD transfer clock $\times 2^{13}$

CTOP[24:21] Card detection stabilization time counter

3.2.22 SD memory card error interrupt status register 1

This register (SDIA_ERR_STS1: 5005_0058h, SDIB_ERR_STS1: 5006_0058h, SDIC_ERR_STS1: 5009_0058h) displays the status of the interrupts that are generated by an SDIx error.

15	14	13	12	11	10	9	8			
0	E14	E13	E12	E11	E10	E9	E8			
7	6	5	4	3	2	1	0			
0	0	E5	E4	E3	E2	E1	E0			
							(1/2			
Name	R/W	Bit	After Reset	et Function						
Reserved	-	15	0		-					
E[14:12]	R	14:12	010	Stores the CRC	status in data se	nt from the SD r	memory card.			
E11 R 11			0	Indicates whether	er there is a CRC	write error.				
	0: No		0: No error has o	occurred.						
				1: The error has	occurred.					
E10	R	10	0	Indicates whether	er there is a CRC	error in read da	ata.			
				0: No error has o	occurred.					
				1: The error has	occurred.					
E9	R	9	0	Indicates whether there is a CRC error in an SD_STOP						
				response.						
				0: No error has o	occurred.					
				1: The error has	occurred.					
E8	R	8	0	Indicates whether	er there is a CRC	error in a comm	nand response.			
				0: No error has o	occurred.					
				1: The error has	occurred.					
Reserved	-	7:6	0		_					
E5	R	5	0	Indicates whethe	er there is an end	bit error during	CRC status			
				writing.						
				0: No error has o	occurred.					
_				1: The error has	occurred.					
E4	R	4	0	Indicates whethe	er there is an end	bit error in read	d data.			
				0: No error has o	occurred.					
				1: The error has	occurred.					
E3	к	3	0	Indicates whethe	er there is an end	bit error in an S	SD_STOP			
				response.						
				0: No error has o	occurred.					
52					mmand					
	к	2	U	indicates whethe	er there is an end	DIT EFFOR IN A CC	ommana			
				response.	accurred					
					occurred.					
				1: The error has	occurred.					

				(2/2
Name	R/W	Bit	After Reset	Function
E1	R	1	0	Indicates whether there is a command index error in an
				SD_STOP response.
				0: No error has occurred.
				1: The error has occurred.
E0	R	0	0	Indicates whether there is a command index error in a command
				response.
				0: No error has occurred.
				1: The error has occurred.

3.2.23 SD memory card error interrupt status register 2

This register (SDIA_ERR_STS2: 5005_005Ch, SDIB_ERR_STS2: 5006_005Ch, SDIC_ERR_STS2: 5009_005Ch) displays the status of the interrupts that are generated by an SDIx error.

15	14	13	12	11	10	9	8	
0	0	0	0	0	0	0	0	
7	6	5	4	3	2	1	0	
0	E6	E5	E4	E3	E2	E1	E0	
			-					
Name	R/W	Bit	After Reset	Function				
Reserved	-	15:7	0		-			
E6	R	6	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e the busy statu	s continued for	
				a period of tim	e longer than the	e number of cycl	es specified by	
				SDIx_OPTION	I [7:4], after the (CRC status was	written).	
E5	R	5	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e the CRC write	status was not	
				returned for a	period of time lo	nger than the nu	mber of cycles	
				specified by SDIx_OPTION [7:4] after a write access).				
E4	R	4	0	0: No error has occurred.				
				1: An error has occurred (because the read data was not				
				returned for a	period of time lo	nger than the nu	mber of cycles	
				specified by S	DIX_OPTION [7:	4] after the read	command was	
				issued).				
E3	R	3	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e the status con	tinued for a	
				period of time	longer than the r	number of cycles	s specified by	
				SDIx_OPTION	I [7:4] after a SD	_STOP respons	e was	
				returned)				
E2	R	2	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e the busy statu	s continued for	
				a period of tim	e longer than the	e number of cycl	es specified by	
				SDIx_OPTION	I [7:4], after an F	1b response wa	as returned).	
E1	R	1	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e no SD_STOP	response was	
				returned for 64	10 SD transfer cl	ock cycles or mo	ore).	
E0	R	0	0	0: No error has o	occurred.			
				1: An error has c	ccurred (becaus	e no command i	response was	
				returned for 64	10 SD transfer cl	ock cycles or mo	ore).	

3.2.24 SD memory card data buffer 0 register

This buffer register (SDIA_BUF0: 5005_0060h, SDIB_BUF0: 5006_0060h, SDIC_BUF0: 5009_0060h) stores the data read from and written to the SD memory card in SDIx.

15		14	13	12	11	10	9	8
BUF15	E	BUF14	BUF13	BUF12	BUF11	BUF10	BUF9	BUF8
7		6	5	4	3	2	1	0
BUF7	I	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
Name		R/W	Bit	After Reset		Fur	nction	

Name	10,00	ы	71101 110901	T dilotion
RBUF[15:0]	R/W	15:0	Undefined	Register for inputting and outputting data to and from the 512-
				byte × 2-bank data buffer

3.2.25 SDIO mode setting register

This register (SDIA_SDIO_MODE: 5005_0068h, SDIB_SDIO_MODE: 5006_0068h, SDIC_SDIO_MODE: 5009_0068h) controls selection of the SDIO mode.

15	14	13	12	11	10	9	8
0	0	0	0	0	0	C52PUB	IOABT
7	6	5	4	3	2	1	0
0	0	0	0	0	RWREQ	0	IOMOD

Name	R/W	Bit	After Reset	Function		
Reserved	-	15:10	0	_		
C52PUB	R/W	9	0	SD IO abort (Data being transferred is guaranteed.)		
				1: CMD52 is sent and the SD host holds IP transmission		
				pending. The value before setting this bit is used as the		
				CMD52 parameter. This bit is cleared after a CMD52		
				response is issued.		
				0: Default		
IOABT	R/W	8	0	SD IO abort (Data being transferred is lost.)		
				This bit must be specified only during multiple IO transactions.		
				1: CMD52 is sent and the SD host stops IP transmission. The		
				value before setting this bit is used as the CMD52 parameter.		
				0: Default		
Reserved	-	7:3	0	_		
RWREQ	R/W	2	0	Read wait request signal used during a multiple block read		
Reserved	R/W	1	0	_		
IOMOD	R/W	0	0	SDIO mode specification bit		
				0: Disables acknowledgment of interrupts from SDIO.		
				1: Enables acknowledgment of interrupts from SDIO.		

3.2.26 SDIO information register

This register (SDIA_SDIO_INFO1: 5005_006Ch, SDIB_SDIO_INFO1: 5006_006Ch, SDIC_SDIO_INFO1: 5009_006Ch) indicates the interrupt sources when SDIx is used in SDIO mode.

15	14	13	12	11	10	9	8
EXWT	EXPUB52	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	RWRDY	C52RDY	IOIRQ

Name	R/W	Bit	After Reset	Function				
EXWT	R/W	15	0	Software read/write request				
				0: No request was issued.				
				1: A request was issued.				
EXPUB52	R/W	14	0	Software read/write request				
				0: Data was written				
				1: C52PUB was set to 1 other than when a read or write transfer				
				was performed				
Reserved	-	13:3	0	_				
RWRDY	R/W	2	0	Indicates the read wait mode ready status.				
				0: The read wait mode is not ready.				
				1: The read wait mode is ready.				
C52RDY	R/W	1	0	Indicates the CMD52 ready status.				
				0: CMD52 is not ready to be issued.				
				1: CMD52 is ready to be issued.				
IOIRQ	R/W	0	0	Indicates the SDIO interrupt status.				
				0: No interrupt was issued from the SDIO card.				
				1: An interrupts was issued from the SDIO card.				

3.2.27 SDIO information mask register

This register (SDIA_SDIO_INFO1_MASK: 5005_0070h, SDIB_SDIO_INFO1_MASK: 5006_0070h, SDIC_SDIO_INFO1_MASK: 5009_0070h) specifies masking the interrupt sources assigned to the corresponding bits in SDIO mode.

15	14	13	12	11	10	9	8
EXWT_MASK	EXPUB52_	0	0	0	0	0	0
	MASK						
7	6	5	4	3	2	1	0
0	0	0	0	0	RWRDY_	C52RDY_	IOIRQ_MASK
					MASK	MASK	

Name	R/W	Bit	After Reset	Function
EXWT_MASK	R/W	15	1	Masks the software read/write request.
				0: The interrupt is not masked.
				1: The interrupt is masked.
EXPUB52_MASK	R/W	14	1	Masks the software read/write request.
				0: The interrupt is not masked.
				1: The interrupt is masked.
Reserved	-	13:3	0	_
RWRDY_MASK	R/W	2	1	Masks the read wait mode ready source.
				0: The interrupt is not masked.
				1: The interrupt is masked.
C52RDY_MASK	R/W	1	1	Masks the CMD52 ready source.
				0: The interrupt is not masked.
				1: The interrupt is masked.
IOIRQ_MASK	R/W	0	1	Masks the SDIO interrupt status source.
				0: The interrupt is not masked.
				1: The interrupt is masked.

3.2.28 Expansion mode control register

This register (SDIA_CC_EXT_MODE: 5005_01B0h, SDIB_CC_EXT_MODE: 5006_01B0h, SDIC_CC_EXT_MODE: 5009_01B0h) controls the CC buffer expansion mode.

15	14	13	12	11	10	9	8	
0	0	0	OREN	0	0	OBEN	FOSEL	
7	6	5	4	3	3 2 1		0	
CCOREN	CCIWEN	SDRWEN	I IWEN	0	0	DMASDRW	FISEL	
				÷				
Name	R/W	Bit	After Reset		Fund	ction		
Reserved	-	15:13	0		-	-		
OREN	R	12	1	0: Indicates that o	lata remains in	the output buffer	in FIFO mode.	
				1: Indicates that t	he output buffe	r is empty in FIFC) mode.	
Reserved	-	11:10	0		-	_		
OBEN	R/W	9	0	0: Little endian ou	Itput buffer			
				1: Big endian output buffer				
FOSEL	R/W	8	0	0: RAM output buffer mode				
				1: FIFO output buffer mode				
CCOREN	R/W	7	0	0: Disables readi	ng from the CC	output buffer in F	PIO mode.	
				1: Enables writing	g to the CC out	put buffer in PIO r	node.	
CCIWEN	R/W	6	0	0: Disables the w	riting to the CC	input buffer in Pl	O mode.	
				1: Enables the wr	iting to the CC	input buffer in PIC	D mode.	
SDRWEN	R/W	5	0	0: Disables writin	g to and readin	g from the SD but	ffer in PIO	
				mode.				
				1: Enables writing	g to and reading	g from the SD buf	fer in PIO	
				mode.				
IWEN	R/W	4	0	0: Disables writin	g to the output	buffer in FIFO mo	ode.	
				1: Enables writing	g to the input bu	uffer in FIFO mode	е.	
Reserved	-	3:2	0		-	-		
DMASDRW	R/W	1	0	0: Disables DMA	for writing to ar	nd reading from th	e SD buffer.	
				1: Enables DMA f	for writing to an	d reading from the	e SD buffer.	
FISEL	R/W	0	0	0: RAM input buff	er			
				1: FIFO input buff	er			

3.2.29 SDIx software reset control register

This register (SDIA_SOFT_RST: 5005_01C0h, SDIB_SOFT_RST: 5006_01C0h, SDIC_SOFT_RST: 5009_01C0h) is the software reset register of the SDIx blocks.

15	14	13	12	11	10	9	8	
0	0	0	0	0	0	0	0	
7	6	5	4	3	2	1	0	
0	0	0	0	0	1	1	SDRST	
Name	R/W	Bit	After Reset		Funct	ion		
Reserved	-	15:3	0		_			
Reserved	-	2:1	1		_			
SDRST	R/W	0	1	Controls reset of the SD card interface block.				
				0: Resets the SDIx module.				
				1: Cancels the reset state.				

Caution Be sure to set bits 2 and 1 to 1.

3.2.30 SDIx use register

This register (SDIA_USER: 5005_0200h, SDIB_USER: 5006_0200h, SDIC_USER: 5009_0200h) controls the SDIx wrapper block.

15	14	13	12	11	10	9	8
SYNC	DMASDIx	DMASDOx		Rese	erved		SDCLKSTP
7	6	5	4	3	2	1	0
CLKSTP	Rese	erved	DMARQSEL2	2 DMARQSEL1	– DMARQSEL0	Reserved	CD
Name	R/W	Bit	After Reset		Functi	on	
SYNC	R/W	15	0	Specifies the AB1	synchronous or	asynchronous i	mode
			(0: AB1 synchrono	us mode		
				1: AB1 asynchron	ous mode		
DMASDIX	R	14	0	Indicates whether	there are DMA r	equests for rea	ding the SD
				neau builer. D: No request was	sissued		
				1: A request was	issued		
DMASDOx	R	13	0	Indicates whether	there are DMA r	equests for rea	ding the SD
			,	write buffer.			9
				0: No request was	s issued.		
				1: A request was	issued.		
Reserved	-	12:9	0		-		
SDCLKSTP	R/W	8	0	Selects the SDCL	K loop path.		
				0: External loop ($SD_CKO \rightarrow SD_$	CKI)	
				1: not setting			
CLKSTP	R/W	7	0	Oscillates or stop	s the SDIx main	module clock si	gnal IMCLK.
			(0: Oscillates IMCI	_K.		
				1: Stops IMCLK.			
Reserved	-	6:5	0		-		
DMARQSEL[2:0	J R/W	4:2	0x01	Selects the DMA	request signal tri	gger.	
					ARQ: Not assig		
					ARQ: Reading St	SD data	
				SDIx TXDM	ARQ: Not assig	ned	
				010: SDIx_RXDM	ARQ: Not assig	ned	
				SDIx_TXDM	ARQ: Not assig	ned	
				001: SDIx_RXDM	ARQ: Reading	SD data	
				SDIx_TXDM	ARQ Writing SD	data	
			(000: SDIx_RXDM	ARQ: Reading S	SD data	
				SDIx_TXDM	ARQ: Writing SI) data	
Reserved	_	1	0		_		
CD	R/W	0	0	Resets the SDIx b	ous wrapper and	DMA interrupt of	control blocks
				by using software			
				U: Cancels the res	set state.		
					KS.	warted logic	
				Gaution SDIX_S	on _nor has h	iverteu logic.	

3.2.31 SDIx use register 2

This register (SDIA_USER2: 5005_0204h, SDIB_USER2: 5006_0204h, SDIC_USER2: 5009_0204h) specifies the internal SD clock group delay and the synchronization mode.

15	14	13	12	11	10	9	8
0	0	0	0	0	IntParam2	IntParaml1	IntParam0
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SYNCMODE
Name	R/W	Bit	After Reset	Function			
Reserved	-	15:11	0	_			
IntParam[2:0]	R/W	10:8	0	Internal adjustment bit			
				Do not specify a	value other than	000b.	
Reserved	-	7:1	0		_		
SYNCMODE	R/W	0	0	Specifies the synchronization mode			

The signal that results from logically combining (ORing) bit 15 of the SDIx use register (SDIx_USER) and bit 0 of SDIx use register 2 (SDIx_USER2) is the synchronization signal to be used to control the circuits.

0: Asynchronous mode 1: Synchronous mode

	Bit 15 of	Bit 0 of	Mode Control Signal	Mode
	SDIx_USER	SDIx_USER2	Level	
Pattern 1	0	0	0	Asynchronous mode
Pattern 2	0	1	1	Synchronous mode
Pattern 3	1	0	1	Synchronous mode
Pattern 4	1	1	1	Synchronous mode

3.2.32 SDIx DMA mode SD buffer register

This register (SDIA_DMASD: 5005_0300h, SDIB_DMASD: 5006_0300h, SDIC_DMASD: 5009_0300h) is the SD read/write buffer register used when SDIx operates in DMA mode.

Remark If the DMAC accesses the SDIx SD read/write buffer: SDIx_DMASD If the ACPU accesses the SDIx SD read/write buffer: SDIx_BUF0

15	14	13	12	11	10	9	8
SDIx_DMASD							
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
SDIx_DMASD							
7	6	5	4	3	2	1	0
7	6	5	4	3	2	1	0

Name	R/W	Bit	After Reset	Function
SDIx_DMASD[15:0]	R/W	15:0	0	SD buffer used during DMA

4.1 Selecting SD Memory Card Transfer Clock Signal (in Synchronous Mode)

The clock signal for SD memory card transfers is generated in the SDIA module. Table 4-1 shows examples of the clock signals that can be selected.

AHB Clock	SDIA Clock	SD Memory Card	SDIA_CLKCTRL	AB1_SDIAWAIT	AB1_SDIAREA
Frequency	Frequency	Transfer Clock	Register Setting	CTRL Register	DCTRL Register
		Frequency		Setting	Setting
83.00 MHz	83 MHz	41.50 MHz	Division by 2	0x0300	0x0000
83.00 MHz	83 MHz	20.75 MHz	Division by 4	0x0300	0x0000
83.00 MHz	83 MHz	10.38 MHz	Division by 8	0x0300	0x0000
83.00 MHz	83 MHz	5.19 MHz	Division by 16	0x0300	0x0000

Table 4-1. SD Memory Card Transfer Clock Signals That Can Be Selected (in Asynchronous Mode)

Remark The frequency of the SD serial transfer clock signal is specified using the SDIA_CLK_CTRL register.

When selecting the clock signal for SD memory card transfers, note that the frequency of the SDIA module clock signal from ASMU and the values of the SDIA_CLKCTRL (SDIA) and AB1_SDIAWAITCTRL (ASMU) registers are restricted.

4.2 SDIO Interrupts

SDIA supports SDIO interrupts that conform to SDIO Card Specification Ver. 2.0.

According to this specification, interrupts from an SDIO card are generated using bit 1 of the SD data line, but an SDIO card can only be detected in either of the following periods:

- <1> In an asynchronous interrupt period: The SD data line is used as an interrupt line when data transfer that uses bit 1 of the SD data line is not taking place.
- <2> In a synchronous interrupt period: Interrupts are output only at a certain timing when multiple blocks are transferred if the SD data line is in 4-bit mode.

The following figures show the interrupt periods when SDIA is used with the SD data line in 1-bit mode and in 4-bit mode (for single block transfers and multiple block transfers).

	(SD_CMD)	command without data	command single block	command with data
	(SD_DATA3)			
	(SD_DATA2)			
	(SD_DATA1)			data block
	(SD_DATAO)			
			asynchronou	s interrupt period
SDM_SD	INT	dələ 	ny for synchronized internapt	clear by cpu
SDM_CC	INT			ngate by SDIO device

Figure 4-1. SDIO Interrupt Timing When SDIA Is Used in 1-Bit Mode

Remark When SDIA is used in 1-bit mode, asynchronous interrupts are generated in all periods.

		command without data	command single bloc	k	command with data
	(SD_CMD)				
				data block	1
	(SD_DATA3)				Z
	(SD_DATA2)				Z
	(SD_DATA1)				
	(SD_DATA0)				2 cycle@LCD_G1(SDCKI)
		asynchronous inte	errupt period	—	A synchronous interrupt period
				-	
SDM_SI	D_INT		ncronized interrupt clear by cpu	, 	interrupt clear by opu
SDM_C	C_INT		upt clear by SDIO device		interrupt clear by SDIO device

Remark Interrupts are disabled when data is being transferred.

Figure 4-3. SDIO Interrupt Timing When SDIA Is Used in 4-Bit Mode

Remark From the interrupts that are generated from SDIO in synchronous interrupt periods, only the interrupt signal SDM_SD_INT is asserted.

Revision History

Date	Revision	Comments
April 27, 2009	3.0	-
September 30, 2009	4.0	Incremental update from comments to the 3.0.

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111

http://www.necel.com/

[America]

NEC Electronics America, Inc. 2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A.

Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH Arcadiastrasse 10

40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/ Hanover Office Podbielskistrasse 166 B

Podbielskistrasse 166 E 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française 9, rue Paul Dautier, B.P. 52

78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706