LENESAS

RX Development Environment Migration Guide REJ06J0102-0200
Rev.2.00
Migration from SuperH Family to RX Family (IDE ed.) Apr 20, 2017

(High-performance Embedded Workshop to CS+)

Introduction

This document explains how to migrate sample projects created by using SuperH, to RX.

Contents

R |18 o Yo [o o1 2
1.1 Dependencies 0N ProCeSSING iN € .ooiiuiiiiiiiie i e s e s e e e e e e r e e e e e s s nanar e e e e e e e e annrneeees 2
2. Functionality Requiring Care during Migration...........cuuviiiii i 2
% R ©] o] (1o] 1= PO PPPPP ST 2
2.1.1 Sign specification for the Char tyPe ... 3
2.1.2 Size specCification fOr ENUIM ..o e e e s snreree s 4
2.1.3 Specifying the size of dOUDIE tYPe ... 5
2.1.4 ENndian SPECITICALION . ..o a e e e 6
2.1.5 Sign specification for bit field MemMbErscvvvvieiiii 7
2.1.6 Allocation order specification for bit field members.........ccccoi 8
2.1.7 Allocation order specification for bit field members........ccccccvvvvi e, 9
2.2 Language SPECITICALION ..ivieii i e e e e e s e e e e e e e e e e e e aannne 10
2.2.1 SIgNS fOr CRar tYPES ..t e e 10
2.2.2 SizeS fOr dOUDIE tYPES .. ————— 11
P T = o [T T oL =2 PSPPSR PR 12
2.2.4 Allocation order for Dit fleldS ... 13
22285 TS Yo 0 =0 o] o 11 4 1= o 1= S 14
2.2.6 Extended language SPEeCIfiCALiONccviiiiiiiiiieii e 15
2.2.7 Predefined MaCIOS ..ot e e e e e e e e e e e e e nnr e e 15
3. Migration SAmMPle ProjJECT ...coooeiiiii i 16
3.1 Listof Main proceSSiNg fillES ... 16
3.2 Migrating the SuperH sample project t0 RX ... 17
3.2.1 Creating an RX PrOJECT c.iii e e e e ettt e e st e e e e e e s st e e e e e e s s et e e e e e e s s anntnreeeaeeeaannnes 17
3.2.2 Migrating main processing SOUICE filES ..o 19
3.2.3 Performing @abDUIld ... 21
3.2.4 EXeCUting the SIMUIALONvvviiiiic e e e e e s r e e e e e e e nanes 22
B T S T ST~ €1 o e o) 0 o 1= PESRS 25
3.2.6 Performing arebUild ... 30
3.2.7 Checking eXECULION FESUILS ..uuiiiiiiii i ee e s s e e e e e e s e e e e e e e s snnanreeeeeeeaennnes 30
4. COrrelation LiSTS ..ccoii i 31
o R O o) (0] 1= TP ROUTT PPN 31
R < o T =T | - 35
4.3 Embedded fUNCHIONS ...t st e s b e e s enees 36
REJ06J0102-0200 Rev.2.00 Page 1 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

1. Introduction

This document explains the precautions to take when migrating projects created for the SuperH-family to RX, and
how to perform migration, based actual sample workspace usage.

Note that the options and other version-dependent information used in this document are based on version 9.04 of the
SuperH-family C/C++ compiler, and version 2.06 of the RX-family compiler.

1.1 Dependencies on processing in C

A processing dependency is part of a program that lacks compatibility due to differences in behavior specific to
certain hardware or compilers.

The C specification contains parts for which the behavior of code can be decided by each process, and parts within
the SuperH-family C/C++ compiler and RX-family C/C++ compiler exist for which processing dependencies differ.

As such, even for the same C source program, the options for RX-family C/C++ compilers need to be set
appropriately, to correctly handle these differences in processing dependencies.

2. Functionality Requiring Care during Migration

The SuperH-family and RX-family compilers contain parts for which the specification for processing dependencies
differs under the default options. These options need to be specified explicitly to handle the differences in specification.
This chapter explains the options and source program code that require special care during migration from the SuperH-
family to the RX family.

2.1 Options

This chapter explains the options that require special care for RX family migration. The following table lists these
options:

Table 2-1 List of options

No Functionality H8 option RX option Reference
1 Sign specification for the char type -- signed_char 2.1.1
2 Size specification for enum auto_enum auto_enum 2.1.2
3 Size specification for the double type double=float dbl_size 2.13
4 Endian specification endian endian 2.14
5 Sign specification for bit field members -- signed_bitfield 2.15
6 Allocation order specification for bit field members bit_order bit_order 2.1.6
7 Allocation specification for structures pack pack 2.1.7
REJ06J0102-0200 Rev.2.00 Page 2 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

211 Sign specification for the char type

With the SuperH-family compiler, char types without a specified sign are handled as signed char types, whereas the
RX-family compiler handles them as unsigned char types by default.

When migrating a SuperH-family source program created assuming that char types are signed char types to the RX
family, specify the "signed_char" option for the RX-family compiler.

Format
signed_char

unsigned_char : unsigned_char by default

[How to specify this option in CS+]
Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

% Property | [=lix
I

A, CC-RX Property @) (&) ==
4 Build Mode -

Build mode Defautt Build F

Change property value for all build modes at once Mo
a4 CPU

Instruction set architecture R¥wv1 architectureHsa=mv1)

Uses floating-point operation instructions Yes(fpu)

Endian type for data Little-endian data(-endian=litle) E

Rounding method for floating-point constant operations round to nearest{-round=nearest)

Handling of denormalized numbers in floating-point constants Handles as zeros(-denomalize=off)

Precision of the double type and long double type Handles in single precision(-dbl_size=4)

Replaces the int type with the short type bl

Sign of the char type Handles as unsigned char-unsigned_char) E|

Sign of the bit-field type Handles as signed char(signed_char)

Selects the enumeration type size automatically Handles as unsigned charl-unsigned_char)

Order of bit-field members FITOCETES O TG _OTOET=TTgriCy

Assumes the boundary alignment value for structure members is 1 Lﬁmcm

Enables C++ exceptional handling function (try, catch and throw) MNo(-noexception)

Enables the C++ exceptional handling function (dynamic_cast and typeid) No(-tti=off)

General registers used only in fast interrupt functions Mone(fint_register=0)

Eranch width size Compiles within 24 bits(-branch=24)

Ease register for ROM Mone

Base register for RAM None

Address value of base register that sets the address value [Fe=] 00000000

Register of base register that sets the address value MNone

Lyoids & problem specific to the CPU type Yesfor RX610 Group)-patch=r610)

Saves and restores ACC using the interrupt function Mo -
Sign of the char type

Selects sign of the char type with no sign specification.
This corresponds to the -signed_char and -unsigned_char options of the compiler and library generator.

., Common Options , Compile Options AssembleOptions Link Options Hex Qutput Options Library Generate Options -
A

Figure 2-1

REJ06J0102-0200 Rev.2.00 Page 3 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.1.2 Size specification for enum

When the "auto_enum" option was specified for the SuperH-family compiler, and data for enumeration types
declared as enum is the smallest type stored in which enumeration values are stored, specify the "auto_enum™ option in
the RX-family compiler when migrating to the RX family.

If the "auto_enum™ option is not specified for the RX-family compiler, the signed long type is used as the
enumeration type size.

Format

auto_enum

[How to specify this option in CS+]
Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

A, CC-RX Property @ E] E]E

4 Build Mode
Build mode Diefault Build
Change property value for all build modes at once No

a CPU
Instruction set architecture Ry 1 architecture4sa=nov1)
Uses floating-point operation instructions Yes(Hpu)
Endian type for data Little-endian data(-endian=litle)
Rounding method for floating-point constant operations round to nearest(tound=neanest)
Handling of denormalized numbers in floating-point constants Handles as zeros(-denomalize=off)
Precision of the double type and long double type Handles in single precision(-dbl_size=4)
Replaces the int type with the short type Mo
Sign of the char type Handles as unsigned char-unsigned_char)
Sign of the bit-field type Mzl immsd lossinnasd bitfisld

m

Selects the enumeration type size automatically
Order of bit-field members
Assumes the boundary alignment value for structure members is 1

Enables C++ exceptional handling function (try, catch and throw)

Enables the C++ exceptional handling function (dynamic_cast and typeid) No(-iti=off)

General registers used only in fast interrupt functions None({int_register=0)

Branch width size Compiles within 24 bits{-branch=24)
Base register for ROM Mone

Base register for RAM MNone

Address value of base register that sets the address value [HE=] DOOO0DO00

Register of base register that sets the address value MNone

HAvoids a problem specific to the CPU type Yesffor RXE10 Group)-patch=nd610)
Saves and restores ACC using the interrupt function Mo

Selects the enumeration type size automatically
Selects whether to automatically select the enumeration type size.
This corresponds to the -auto_enum opticn of the compiler and library generator.

CommonOptions,{ Compile Options ({ AssembleOptions /{ LTnkOptionS/{ Hex Qutput Options ({ Library Generate Options /

Figure 2-2

REJ06J0102-0200 Rev.2.00 Page 4 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

2.1.3 Specifying the size of double type
With H8-family compilers, the size of the double type is 8 bytes, whereas with RX-family compilers, the size of the

double type is four bytes in default. To migrate to RX a program created in H8 based on the requirement that the size of

the double type is 8 bytes, specify the “dbl_size=8" option.

Format

dbl_size ={4/8} : 4 by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

ﬁ Property

“‘ CC-RX Property

4 Build Mode

Build mode

Change property value for all build modes at once
4 CPU
Instruction set architecture
Uses floating-point operation instructions
Endian type for data
Rounding method for floating-point constant operations
Handling of dencrmalized numbers in floating-point constants
Precision of the double type and long double type
Replaces the int type with the short type
Sign of the char type
Sign of the bit-field type
Selects the enumeration type size automatically
Order of bit-field members
Assumes the boundary alignment value for structure members is 1
Enables C++ exceptional handling function (try, catch and throw)
Enables the C++ exceptional handling function (dynamic_cast and typeid)
General registers used only in fast interrupt functions
Branch width size

Defautt Build
No

R¥v1 architecture(isa=nov 1)
Yes(fpu)

Big-endian data(-endian=big)
round to nearest(-round=nearest)

m

Handles in single precision (-dbl_size=4) E
Handles in single precision|-dbl_size=4)
Handles in double precision(-dbl_size=8) | &

No
Allocates from left{-bit_order=left)
No(-unpack)

Mo{-noexception)

Nof+tti=off)

Mone(fint_register=0)

Compiles within 24 bits(-branch=24)

Base register for ROM MNone
Basze register for RAM Mone
Address value of base register that sets the address value [He<] DOOD0OOD
Register of base register that sets the address value None
Lwoids & problem specific to the CPU type Yesfor RX610 Group)-patch=nc610)
Saves and restores ACC using the interrupt function No -
Precision of the double type and long double type
Selects precision of the double type and long double type.
This corresponds to the -dbl_size option of the compiler and library generator.
\ Common Options a,i Compile Options /{ AzsembleOptions /{ Link Options /{ Hex Output Options /{ Library Generate Options / -
Figure 2-3

Note:

When "double=float" is specified for the SuperH-family compiler, the size of the long double type is 8 bytes, but
when "dbl_size=4" is specified for the RX-family compiler, the size of the long double type is 4 bytes.

REJ06J0102-0200 Rev.2.00
Apr 20, 2017

Page 5 of 37

RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

2.1.4 Endian specification

The data byte order for the SuperH-family compiler is big-endian by the default setting for the ENdian option,
whereas for the RX-family compiler, it is little-endian by the default setting for the endian option.

When migrating a SuperH-family source program created assuming that data byte order is big-endian to the RX
family, specify the "endian=big" option for the RX-family compiler.

Format
endian={ big | little } : little by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

=[x

“‘ CC-RX Property

Rounding methed for floating-point constant operations
Handling of dencrmalized numbers in floating-point constants
Precision of the double type and long double type

Replaces the int type with the short type

Sign of the char type

Sign of the bit-field type

General registers used only in fast interrupt functions
Branch width size

4 Build Mode
Build mode DefauttBuild
Change property value for all build modes at once Mo
4 CPU
Instruction set architecture F¥w1 architecture{isa=npov 1)
Uses floating-peint operation instructions esTpd)
Endian type for data Little-endian datal-endian=ittle) E| =

@ & =

Big-endian data(-endian=big)
Little-endian datal-endian=little)

No
Handles as signed char{-signed_char) B
Handles as signed(-signed_bitfield)

Selects the enumeration type size automatically Mo

Order of bit-field members Allocates from left (-bit_ordereft)
Assumes the boundary alignment value for structure members is 1 Mof{-unpack)

Enables C++ exceptional handling function (try, catch and throw) No(-noexception)

Enables the C++ exceptional handling function (dynamic_cast and typeid) No(-tti=off)

Mone(fint_register=0)
Compiles within 24 bits(-branch=24)

Ease register for ROM Mone
Ease register for RAM Mone
Address value of base register that sets the address value [Fe<] DOODOOOO
Register of base register that sets the address value Mone
Lyvoids a problem specific to the CPU type Yesffor R¥E10 Group)-patch=m610)
Saves and restores ACC using the interrupt function Mo -
Endian type for data
Selects endian type for data.
This corresponds to the -endian option of the compiler, assembler and library generator.
' Common Options ,{ Compile Options (< AssembleOptions /< Link Options /< Hex Output Options /< Library Generate Options / -
Figure 2-4
REJ06J0102-0200 Rev.2.00 Page 6 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.15 Sign specification for bit field members

For SuperH-family compilers, unsigned bit field members are handled as signed types, whereas RX-family compilers
handle them as unsigned types by default.

When migrating a SuperH-family source program created assuming that unsigned bit field members are signed types
to the RX family, specify the "signed_bitfield" option for the RX-family compiler.

Format
signed_bitfield
unsigned_bitfield > unsigned_bitfield by default
[How to specify this option in CS+]
Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

4 Build Mode

“‘ CC-RX Property E] E] E]E

Build mode Defautt Build
Change property value for all build modes at once Mo
a CPU
Instruction set architecture R¥v1 architecture{isa=nov 1)
Uses floating-point operation instructions “es(fpu)
Endian type for data Little-endian data(-endian=litle) £
Rounding method for floating-point constant operations round to nearest(-round=nearest)
Handling of denormalized numbers in floating-point constants Handles as zeros{-denomalize=off)
Frecision of the double type and long double type Handles in single precision|-dbl_size=4)
Replaces the int type with the short type Mo
Sign of the char type Handles as signed char{-signed_char) [&

Sign of the bit-field type
Selects the enumeration type size automatically
Order of bit-field members

Handles as unsigned|-unsigned_bitfield)
Handles as signed|=signed_bitfield)
Handles as unsigned{-unsigned_bitfield)

Assumes the boundary alignment value for structure members is 1 T

Enables C++ exceptional handling function (try, catch and throw) MNoi-noexception)

Enables the C++ exceptional handling function (dynamic_cast and typeid) Moi-tti=off)

General registers used only in fast interrupt functions MNone{{irt_register={)}

Eranch width size Compiles within 24 bits(-branch=24)

Base register for ROM Mone

Ease register for RAM Mone

Address value of base register that sets the address value [Fe=] DOO0000D

Fegister of base register that sets the address value Mone

Lwoids a problem specific to the CPU type Yesffor RX610 Group)-patch=m610)

Saves and restores ACC using the interrupt function Mo -
Sign of the bit-held type

Selects sign of the bit-field type with no sign specification.
This corresponds to the -signed_bitfield and -unsigned_bitfield options of the compiler and library generator.

.CommonOptions‘,i Compile Options /{ Assemble Options /{ L'|nk0pt'|onS/{ Hex Qutput Options /{ Library Generate Options / -

Figure 2-5

REJ06J0102-0200 Rev.2.00 Page 7 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.1.6 Allocation order specification for bit field members

For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compiler,
they are allocated for the lowest bit by default.
When migrating a SuperH-family source program created assuming that bit field members are allocated from the
highest bit to the RX family, specify the "bit_order=left" option for the RX-family compiler.

Format
bit_order={ left |right } : right by default

[How to specify this option in CS+]
Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

==
A, CC-RX Property (2] (2] (=)=
4 Build Mode
Build mode Defautt Build b
Change property value for all build modes at once No
4 CPU
Instruction set architecture F¥v1 architecture(4sa=nov1)
Uses floating-point operation instructions Yes(fpu)
Endian type for data Big-endian data(-endian=big) =
Rounding method for floating-peint constant operations round to nearest{-tound=nearest)
Handling of denormalized numbers in floating-point constants Handles as zeros(-denomalize=off)
Precision of the double type and long double type Herdie T o e e T e
Replaces the int type with the short type Mo E|
Sign of the char type Yes(int_to_short) .
Sign of the bit-field type Mo
Selects the enumeration type size automatically y18
Order of bit-field members Allocates from left(-bit_order=left)
Assumes the boundary alignment value for structure members is 1 No(-unpack)
Enables C++ exceptional handling function (try, catch and throw) No(-noexception)
Enables the C++ exceptional handling function (dynamic_cast and typeid) No(+tti=off)
General registers used only in fast interrupt functions Mone(fint_register=0)
Eranch width size Compiles within 24 bits(-branch=24)
Base register for ROM None
Ease register for RAM Mone
Address value of base register that sets the address value [He=] DOODO0OD
Register of base register that sets the address value Mone
Avoids a problem specific to the CPU type Yesffor R¥610 Group)-patch=m610)
Saves and restores ACC using the interrupt function Mo -
Replaces the int type with the short type
Selects whether to replace the int type with the short type.
This corresponds to the -int_to_short option of the compiler and library generator.
, Common Options a,i Compile Options /{ AssembleOptions /{ Link Options /{ Hex Qutput Options A Library Generate Options / -
Figure 2-6
REJ06J0102-0200 Rev.2.00 Page 8 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.1.7 Allocation order specification for bit field members

When the "pack=1" option is specified for the SuperH-family compiler to set the structure alignment count to 1,
specify the "pack" option for the RX-family compiler when migrating to the RX family.

Format
pack
unpack : unpack by default

[How to specify this option in CS+]
Perform the following settings in the [Common Options] page of CC-RX (build tool) properties

A, CCRX Property (&) (2] (=]

4 Build Mode
Build mode Default Build i
Change property value for all build modes at once Nao
4 CPU
Instruction set architecture R¥w1 architecture(isa=nov 1)
|Jses floating-point operation instructions Yes(fpu) E
Endian type for data Little-endian data(-endianlitle)
Rounding method for floating-point constant operations round to nearest{+ound=nearest)
Handling of denarmalized numbers in floating-point constants Handles as zeros(-denomalize=off)
Precision of the double type and long double type Handles in single precision(-dbl_size=4) T
Replaces the int type with the short type Nao
Sign of the char type Handles as unsigned char(-unsigned_char)
Sign of the bit-field type Handles as unsigned(-unsigned_bitfield)
Selects the enumeration type size automatically Nao

Order of bit-field members Slocates fom
Assumes the boundary alignment value for structure members is 1 Nol(-unpack)
Enables C++ exceptional handling function (try, catch and throw)

Enables the C++ exceptional handling function (dynamic_cast and typeid) No(unpack)

(General registers used only in fast interrupt functions O TE e =0T

Branch width size Compiles within 24 bits(-branch=24)

Base register for ROM None

Base register for RAM None

Address value of base register that sets the address value 00000000 il

[DRI LL bt o al A4 L Kl

Assumes the boundary alignment value for structure members is 1
Selects whether to assume the boundary alignment value for structure members is 1.
This corresponds to the -pack and -unpack options of the compiler and library generator.

\Commonﬂptionsl,{ Compile Options (< AssembleOptions (< LinkOptionsA Hex Output Options (< Library Generate Options f -

Figure 2-7

REJ06J0102-0200 Rev.2.00 Page 9 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.2 Language specification
This chapter explains the language specifications for which changes are needed during migration to RX.

Table 2-2 List of language specifications

No Functionality Reference
1 Signs for char types 221
2 Sizes for double types 2.2.2
3 Endianness 2.2.3
4 Allocation order for bit fields 2.2.4
5 Signs for bit fields 2.2.5

221 Signs for char types

For SuperH-family compilers, unsigned char types are handled as signed char types, whereas RX-family compilers
handle them as unsigned char types.
SuperH-family source programs created assuming that char types are signed char types may not operate correctly
when migrated to RX.

Example: Differing operation due to presence of a char type sign.

Source code

char a = -1;

void main(void)

{
if (a<0){
// The char type is signed, "a" is evaluated as negative, and the condition is satisfied (SuperH)
} else {
// The char type is unsigned, "a" is evaluated as positive, and the condition is not satisfied (RX)
3
3

When migrating a source program created assuming that char types are signed char types to RX, specify the
"signed_char" option.
For details about specifying this option, see 2.1.1 Specifying sign for the char type.

REJ06J0102-0200 Rev.2.00 Page 10 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

222 Sizes for double types
For SuperH-family compilers, the size of a double type is 8 bytes, whereas for RX-family compilers, the size of a

double type is 4 bytes.
SuperH-family source programs created assuming that the size of a double type is 8 bytes may not operate correctly
when migrated to RX.

Example: Differing operation due to difference in double type size

Source code

double d1 = 1E30;
double d2 = 1E20;

void main(void)

{
dl = dl * dl1; // d1 * d1 overflows when the double type size is 4 bytes
d2 = d2 * d2; // d2 * d2 overflows when the double type size is 4 bytes
if (d1 > d2) {
// Size is compared correctly when the double type size is 8 bytes (SuperH)
} else {
// Both dl1 and d2 overflow when the double type size is 4 bytes
// so that size comparison is not satisfied (RX)
3
3

When migrating a source program created assuming that the size of a double type is 8 bytes to RX, specify the
"dbl_size=8" option.
For details about specifying this option, see 2.1.3 Specifying bit-field member allocation.

REJ06J0102-0200 Rev.2.00 Page 11 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.2.3 Endianness

The data byte order for the SuperH-family compiler is big-endian by the default setting for the ENdian option,
whereas for the RX-family compiler, it is little-endian by the default setting for the endian option.

When a SuperH-family source program created based on the assumption that the data byte order is big-endian is
migrated to the RX family, it may not operate correctly.

Example: Differing operation due to difference in endianness
Source code

typedef union{
short datal;
struct {
unsigned char upper;
unsigned char lower;
} dataz2;
} UN;

UN u = { ox7f6f };

void main(void)
{
if (u.data2.upper == Ox7f && u.data2.lower == O0x6F) {
// When the data byte order is big-endian (SuperH)
} else {
// When the data byte order is little-endian (RX)
3
3

When migrating a source program created assuming that the byte order for data is big-endian to RX, specify the
"endian=big" option.
For details about specifying this option, see 2.1.4 Specifying endian.

REJ06J0102-0200 Rev.2.00 Page 12 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

224 Allocation order for bit fields
For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compilers,
they are allocated from the lowest bit.
SuperH-family source programs created assuming that bit field members are allocated from the highest bit may not
operate correctly when migrated to RX.

Example: Differing operation due to differences in the allocation order for bit fields

Source code
union {

unsigned char c1l;

struct {
unsigned char b0 : 1;
unsigned char bl : 1;
unsigned char b2 : 1;
unsigned char b3 : 1;
} b
} un;

void bit_order(void)
{
un.cl = 0xcO0;
if ((un.b.b0 == 1) && (un.b.bl == 1) &&
(un.b.b2 == 0) && (un.b.b3 == 0)) {
// When bit field members are allocated from the highest bit (SuperH)
} else {
// When bit Ffield members are allocated from the lowest bit (RX)

SuperH allocation (left)

[+ [¢+ | o f o f o o f o o]
bo b1 b2 b3

The highest bits are allocated, so the set value can be read as b0, bl

RX allocation (right)

L+ [2 [o] o f o f o o f o]
b3 b2 bl b0
The lowest bits are allocated, so the set value cannot be read

When migrating a source program created assuming that bit field members are allocated from the highest bit to RX,
specify the "bit_order=left" option.
For details about specifying this option, see 2.1.6 Correspondence of int type size to difference.

REJ06J0102-0200 Rev.2.00 Page 13 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

225 Signs for bit fields
For SuperH-family compilers, unsigned bit field members are handled as signed types, whereas for RX-family

compilers, they are handled as unsigned types.
SuperH-family source programs created assuming that unsigned bit field members are signed types may not operate

correctly when migrated to RX.

Example: Differing operation due to presence of sign for bit field members
Source code

struct S {
int a : 15;
ys={-1%;

void main(void)
{
if (s.a<0){
// The bit field member is signed, "s.a" is evaluated as negative
//so the condition is satisfied (SuperH)
} else {
// The bit field member is unsigned, "s.a" is evaluated as positive

//so the condition is not satisfied (RX)

When migrating a source program created assuming that unsigned bit field members are signed types to RX, specify
the "signed_bitfield" option.
For details about specifying this option, see 2.1.5 Sign specification for bit field members.

REJ06J0102-0200 Rev.2.00 Page 14 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

2.2.6 Extended language specification

(1) Support for #pragma pack
When #pragma pack is used for the SuperH-family compiler, the specification for the RX-family compiler needs to
be changed.

Table 2-3 List of language specifications

SuperH RX Note
#pragma pack 1 #pragma pack 1 is used for the alignment count
#pragma pack 4 #pragma unpack The default alignment is used
#pragma unpack #pragma packoption The pack option is used

(2) Support for evenaccess
For the SuperH-family compiler, variables declared as volatile are guaranteed to be accessed with the size of their

type.
However, for the RX-family compiler, evenaccess needs to be used with the following format in order to guarantee

access with the size of the type.
__evenaccess <type-specifier> <variable-name>

<type-specifier> __evenaccess <variable-name>

2.2.7 Predefined macros
Keep in mind that the predefined macros defined when options are specified differ between the SuperH-family
compiler and RX-family compiler.
To make these options correspond, the changes shown in the following tables need to be made for the predefined
macro names of the RX-family compiler.

Table 2-4 Predefined macros for SuperH Table 2-5 Predefined macros for RX
Option Predefined macros Option Predefined macros

endian=big _BIG endian=big __BIG

endian=little _LT endian=little _ LT

double=float _FLT double=float _ DBL4
_FLT__ denormalize=on __DON

denormalize=on _DON round=nearest RON

round=nearest _RON —

REJ06J0102-0200 Rev.2.00 Page 15 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

3. Migration Sample Project

This chapter explains how to migrate the SuperH sample project whose operation can be checked in the
simulator/debugger, to RX.

3.1 List of main processing files

The 'SH_Sample' SuperH sample projects can be broadly divided into those that perform pre- and post-processing
such as for initialization, and those that perform main processing.
The following table lists the files that comprise main processing.

Table 3-1 List of main processing files

No Functionality File name Reference
1 Signs for char types SH_sign_char.c 3.2.5(1)
2 Sign for bit field members SH_sign_bit_field.c 3.2.5(2)
3 Allocation for bit field members SH_bit_order.c 3.2.5(3)
4 Endianness SH_endian.c 3.2.5(4)
5 Size for the double type SH_double_size.c 3.2.5(5)
6 main function SH_Sample.c —

REJ06J0102-0200 Rev.2.00

Apr 20, 2017

RENESAS

Page 16 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.2 Migrating the SuperH sample project to RX

3.2.1 Creating an RX project
Create a new RX project workspace to which migrate the SuperH sample projects.

(1) Import Sample Project
Select “RX” tab in [Open Sample Project] and select [RX610_Tutorial_DebugConsole].

Open Sample Project [3

Many sample projects that can be built immediately are provided. After selecting the desired project from the list below, press the GO
button and specify the destination felder to copy the selected sample project.

F{H35D| RL78 | RX

FX¥111_Tutoral_Basic_Operation
RX¥610_Tutoral_Anahysis

RX610_Tutorial_DebugConsale I}

Figure 3-1

(2) Select where to copy sample project.

Select folder to copy sample project.

Browse For Folder @

Select the folder to copy sample project.

o

. PerfLogs -
> | Program Files
») Users

» 0 Windows

| wark

]

» WorkSpace

> e CD Drive (D) -

Make Mew Folder] [QK] [Cancel]
Figure 3-2
REJ06J0102-0200 Rev.2.00 Page 17 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

(3) Select debug tool

Select [Using Debug Tool], and then “RX Simulator”.

Project Tree

: © 8| [E

S50 RXEVJTAG) Property

Ell} R¥E10 Tutorial DebugConsole (Project]

4 Internal ROM/RAM

.4y, CC-RX (Build Tool)

.. ® RSFSE107VFP (Microcontroller)

L R E1(JTAG) (Debug Tooll

Size of internal ROM[KEytes]

Size of internal RAM[KEytes]

&3P File

£-| DebugConsole_Samy =

(4) Select Stream 1/0 mode

Siza of DiatsFlash memorvKBvtes]
Using Debug Tocl » RX E2 Lite
Property RX EL(JTAG)
Cperating RX E20(ITAG)
Allow ch N
4 Con R Simulator
Emulator senial Mo.
Figure 3-3

Perform the following settings in the [Stream 1/0] category of the [Debug Tool Settings] page.

& RX Simulator Property

4 Memory

Stream /0 address
4 Execution Mode

m

> Memory mappings [1&]
4 Access Memory While Running
|Update display during the execution Yes
Display update interval[ms] 500
4 Register
PC display during the execution Ma
4 Trace
Use trace function Ma
Clear trace memony before running Yes
QOperation after trace memory is full Mon stop and overwrite to trace memony
Accumulate trace time Mo
Trace memory size[frames] B4K
4 Coverage
|Uze coverage function Ma
4 Stream /O
= =
Use stream 1/0 function imulator mode

ato ode

Select stream VO mode
Select the stream /0 mode.

Connect Settings :\Debug Tool Settingsz{ Download File Settings ({ Hook Transaction Settings /

Figure 3-4
REJ06J0102-0200 Rev.2.00 Page 18 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.2.2 Migrating main processing source files

Copy, and add to the created RX project, the files comprising main processing for the SuperH sample project explained
in 3.1 SuperH sample project overview.

(1) Copy the files from the SuperH sample project folder
Copy the six files explained in 3.1 SuperH sample project overview.
[Before copy] [After copy]

Project Tree o x Project Tree 1 X

A, CC-RX (Build Tool)

-z RX Simulator (Debug Tool) g2 RX Simulator (Debug Toal)
&3 File =30 File

----- ‘ﬂ DebugConsole_Sample.c []---ﬂ Build tool generated files

----- & dbsct.c 2| dbsct.c

----- ‘ﬂ intprg.c ﬂ intprg.c

..... gt Jowlvlsrc -8} lowlvlsre

..... | lowsre.c ,\ & Jowsrc.c

""" & resetprg.c > | resetprg.c

..... (ﬂ sbrk.c I/ ‘d sbrk.c

----- £-| vecttbl.c .| vecttbl.c

..... ‘d SH_bit_order.c

..... ﬂ SH_double_size.c
..... ‘ﬂ 5H_endian.c

----- ‘ﬂ SH_Sample.c

..... & SH_sign_bit_field.c
..... & SH_sign_char.c

4 i | »

4 (L1 3

Figure 3-5

REJ06J0102-0200 Rev.2.00 Page 19 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

(2)Add the copied files to the project

Perform the following settings in the dialog box displayed by choosing [Project —Add — Add Existing File] in CS+.

|| SH_bit_order.c

Select the files to register.

|| SH_double_size.c

|| 5H Sample.c || SH_sign_bit field.c
|| vecttbl.c /

Add Existing File ==
@Qv| <« WorkSpace » RX510_Tutorial_DebugConsole » Source - |¢¢ | | Search Source el |
Organize « Mew folder - [l @
| |dbsct.c || DebugConsole_Sample.c __|intprg.c
| |lowsrc.c || resetprg.c || sbrk.c

__ 5H_endian.c

__ SH_sign_char.c

After selecting,

click Add.
File name: "SH_sign_char.c” "SH_bit_order.c” "5H_double_size.c” "SH_er + [C source//{(*.c] v]
14
[Open |v] [Cancel]

(3) Remove any unnecessary files

Figure 3-6

Since the ' DebugConsole_Sample.c ' main function file in RX sample project is no longer needed, remove it (since
the main function file has been copied from the SuperH project).
Select [DebugConsole_Sample.c] in project tree, and select [Remove from Project].

..... &| vecttblc

..... U SH_bit_order.c
----- U 5H_double_size.c
----- U 5H_endian.c

..... U 5H_Sample.c

----- 3] DcbugCorsole Sampicg

----- El DU LUU geEnerdLed Hies ||I

& Compile

Open

Add

E_‘ Remove from Project Shift+Del

5
A Open with Internal Editor...
[Open with Selected Application...
?:k Open Folder with Explorer

El Windows Explorer Menu

b

----- €| SH_sign_bit_field.c 33 Copy Ctrl+C
Figure 3-7
REJ06J0102-0200 Rev.2.00 Page 20 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.2.3 Performing a build
Build the RX project for which the main processing files have been copied and registered.

To start a build, choose [Build], and then [Build Project] in CS+.

RX610_Tutorial_DebugConsole - C5+ for CC - [Project Tree]

File Edit View Project |Auld) Debug.Tool \indoue Heln
&, start | [[e Build Project 7

(@ Solution List © [' Shift=F7
@ Clean Project]

723 Rapid Build =

3| Update Dependencies

B RSFSE10TVxFP 1“_] Build R¥610_Tuterial_DebugConscle B
A CC-RX (Build T] Rebuild RX610_Tutorial_DebugConsole ke
g, RX Simulator (O
Bj!l File A§ Clean R¥610_Tutorial_DebugConsocle
EJ'"ﬂ Build tool g 35‘ Update Dependencies of RX610_Tutorial_DebugCensole
0| dbsct.c 5
d d " ‘% Set Link Order of RX610_Tutorial_DebugConsole...
.| intprg.c
piri, lowhlsrc #1 Open the Optimization Perfermance Comparison Tool for R¥610_Tuterial_DebugCensole..
& lowsree || siop Uil Cerl+F7
‘d resetprg.c

] sbri.c Ty Build Mode Settings...
& vecttblc | £] Batch Build..

.E=| SH_bit_orde
..&-] SH_double

‘ﬂ 5H_endian.c H|
el g1 Ramanle -

T4 Build Option List

Figure 3-8

REJ06J0102-0200 Rev.2.00 Page 21 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.2.4 Executing the simulator
Execute the built RX project load module in the simulator.

(1) Setting up Debug Console

The execution results of the source program are output to the standard output.
Debug Console plug-in needs to be enabled to display the standard output.

Choose [tool], and then [Plug-in Manager] and select as follows from dialog in CS+.

Plug-in Manager

These settings are enabled at the

*You can never uncheck a chec

Checked plug-ins are loaded at the C5+ start-up.

recommended that the checkbexes of the plugn for the target microcontroller of the development are not cleared.

Addttional Function

(=)

next start-up.

b box of the grayout plugin that is required by the CS+. Also, on the [Basic Function] tab, it is

Module: Name

[14 Code Generatar Plugin

T g .
I . Debug Console Plug-n

Enert

[C] % Code Generator Plug-n for R

Description

Plug-in to generate the device driver automatically.for V850, 78K0, 7TBKOR, F
Ha50 Plug+n to generate the device driver automatically and to view the device co

DebugConsole plug+n to support using standard 10,

[147 Pin Carfiguratar Plugin

f‘Quick and Effective tool
[T Stack Usage Tracer
[147 Update Manager Plugin

™ =] Eator plugn DLL SEanor DL
] . IronPython Console Plug-n lt is a console where the IronPython commands and the C5+ enhanced featy

[;f Program Analyzer Plug-in Plug+n to analyze program.

Plug-in to define the device pin corfiguration.

solution - QE Plug-in for application development that containg useful tools.
Lkility to display and adjust stack usage of each functions.
Plug4n to communicate with CS5+ Update Manager.

4

m | 3

(2) Download to Debug Tool

Figure 3-9

Select [Debug — Download] in CS+ to download load module to debug tool.

gConsole - C5+ for CC - [Qutput]
t Build | Debug | Tool Window Help

Download 5

[|
]

(Microc B
Tool)
Debug T

Build & Download F&
Rebuild & Download

Connect to Debug Tool

Upload...
Disconnect from Debug Tool Shift+F6
Using Debug Tool 3

Figure 3-10
REJ06J0102-0200 Rev.2.00 Page 22 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

(3) Display Debug Console panel

Debug Console panel needs to be enabled to display the standard output.

Choose [View], and then [Debug Console] and select as follows from dialog in CS+ display Debug Console panel.

&L

o e

File Edit Miew Project Build Debug Tool Window Help

(Bser DH@ X B0 SRS

T EELMNE®EMm @ s

: g SolutionList | [0 & @ & &

: @8 @

=L} X610 Tutorial DebugConsole (Project]
1% RSFS6107VFP (Microcontroller)
%, CC-RX (Build Tool)
51 RX Simulator (Debug Teol)
= File

-l Build tool generated files

& intprg.c
as) lowhvl.sre
& lowsre.c

& resetprg.c

6| SH_bit_order.c
6| SH_double size.c
& SH_endian.c

£|ISH Sample

| SH_sign_bit_field.c

| SH_sign_char.c

Debug Console panel

s 68 T55) e T/

& Output @ Smart Browser |

F1

e &

3 Ry Simulator (1) 20.310 ps.

Figure 3-11

__|
ElED

REJ06J0102-0200 Rev.2.00

Apr 20, 2017

RENESAS

Page 23 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

(4) Executing the simulator

Choose [Debug] and then [Execute post-reset] in CS+ to run the source program in the simulator, and display the
standard output of the source program in the [Debug Console] panel.
Displayed output says "NG", and it means that the results are invalid.

<Debug Console>

Debug Console 2 x

(1) =ign char : NG

(2) =sign bit field : HG
(3) bit feild order : NG
(4) endian : NG

(5) double type =ize : NG

Figure 3-12

Table 3-2 I/O simulation output results

Iltem OK NG
(1)Char type without a specified sign signed unsigned
(2)Bit field members without a specified signed unsigned
sign
(3) Bit field member allocation order From the highest bit From the lowest bit
(4) Endianness big little
(5) Size of the double type 8byte 4dbyte
REJ06J0102-0200 Rev.2.00 Page 24 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.25 Setting options

The simulator execution results are invalid due to differences in specifications for processing-related definitions
between SuperH-family and RX-family compilers.

This chapter explains how to change the specified options for resolving the specification differences for processing-
related definitions, using a RX-family project migrated from the SuperH-family as a sample.

(1) char signs

If the execution results of the "SH_sign_char.c" sample source program are "NG", this indicates a problem with the
compatibility of the "unsigned_char" option specification.

For SuperH-family compilers, char types without a specified sign are handled as signed char types, whereas RX-
family compilers handle them as unsigned char types.

Since the "SH_sign_char.c" sample source program was created assuming that char types without a specified sign are
signed char types, if the "unsigned_char" option is specified, the operation results will differ from SuperH.

Sample Source Program : SH_sign_char.c

Source code

struct S {

char a;

}s={-1%;

void sign_char(void)

{
printf(*"(1) sign char : ");

if (s.ca<0){
printf("'OK¥n");
} else {
printf("'NG¥n™);

To migrate a source program created assuming that char types with a specified sign are signed char types to RX,
specify the "signed_char" option.

For details about specifying this option, see 2.1.1 Sign specification for the char type.
Also, change the options specified for the created RX project.

REJ06J0102-0200 Rev.2.00 Page 25 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

(2) Bit fields signs

If the execution results of the "SH_sign_bit_field.c" sample source program are "NG", this indicates a problem with

the compatibility of the "unsigned_bitfield" option specification.

For SuperH-family compilers, bit field members without a specified sign are handled as signed types, whereas RX-

family compilers handle them as unsigned types.

Since the " SH_sign_bit_field.c " sample source program was created assuming that bit field members without a
specified sign are signed types, if the "unsigned_bitfield" option is specified, the operation results will differ from

SuperH.

Sample source program: SH_sign_bit_field.c

Source code

struct S {
int a : 15;
P bit={-13;

void sign_bit_field(void)
{
printf(""(2) sign bit field : ");
if (bit.a <0) {
printf("'OK\n"");
} else {
printf('NG\n"");
3
bs

To migrate a source program created assuming that bit field members without a specified sign are signed to RX,

specify the "signed_bitfield" option.
For details about specifying this option, see 2.1.5 Sign specification for bit field members.

Also, change the options specified for the created RX project.

REJ06J0102-0200 Rev.2.00
Apr 20, 2017 RENESAS

Page 26 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

(3) Bit field allocation order

If the execution results of the "SH_bit_order.c" sample source program are "NG", this indicates a problem with the
compatibility of the "bit_order=right" option specification.

For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compilers,
they are allocated from the lowest bit.

Since the "SH_bit_order.c" sample source program was created assuming that bit field members are allocated from
the highest bit, if the "bit_order=right" option is specified, the operation results will differ from SuperH.

Sample source program: SH_bit_order.c
Source code

union {
unsigned char cl;

struct {

unsigned char b0 : 1;
unsigned char bl : 1;
unsigned char b2 : 1;
unsigned char b3 : 1;
} b
} un;

void bit_order(void)

{
printf(""(3) bit field order : ");

un.cl = 0xcO0;

if ((un.b.b0 == 1) && (un.b.bl == 1) &&
(un.b.b2 == 0) && (un.b.b3 == 0)) {
printf('OK¥n™);

} else {
printf("'NG¥n");

REJ06J0102-0200 Rev.2.00 Page 27 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

(4) Endian-ness

If the execution results of the "SH_endian.c" sample source program are "NG", this indicates a problem with the

compatibility of the "endian=little" option specification.

For SuperH-family compilers, the byte order for data is big-endian, whereas for RX-family compilers, it is little-

endian.

Since the "SH_endian.c" sample source program was created assuming that the data byte order is big-endian, if the

"endian=little" option is specified, the operation results will differ from SuperH.

Sample source program: SH_endian.c

Source code

typedef union{
short datal;
struct {
unsigned char upper;
unsigned char lower;
} data2;
} UN;

UN u = { Ox7f6f };

void endian(void)

{
printf("'(4) endian : ");

if (u.data2.upper == Ox7f && u.data2.lower == 0x6F) {
printf('OK¥n™);
} else {
printf('NG¥n™);
}
3

REJ06J0102-0200 Rev.2.00
Apr 20, 2017 RENESAS

Page 28 of 37

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

(5) double type sizes

If the execution results of the "SH_double_size.c" sample source program are "NG", this indicates a problem with

the compatibility of the "dbl_size=4" option specification.
For SuperH-family compilers, the size of a double type is 8 bytes, whereas for RX-family compilers, the size of a

double type is 4 bytes.

Since the "SH_double_size.c" sample source program was created assuming that the size of a double type is 8 bytes,

if the "dbl_size=4" option is specified, the operation results will differ from SuperH.

Sample source program: SH_double_size.c

Source code
double d1 = 1E30;
double d2 = 1E20;

{
di = di * di;
d2 = d2 * d2;

if (d1 > d2) {
printf('OK¥n");
} else {
printf('NG¥n™);
}
}

void double_size(void)

printf(*"(56) double type size : "

To migrate a source program created assuming that the size of a double type is 8 bytes to RX, specify the

"dbl_size=8" option.

For details about specifying this option, see 2.1.3 Size specification for the double type.

Also, change the options specified for the created RX project.

REJ06J0102-0200 Rev.2.00
Apr 20, 2017

RENESAS

Page 29 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

3.2.6 Performing a rebuild
(1) Setting the simulator endian
Since the endian option changed the endian from little to big, the endian of the simulator also must be changed to big.

While connecting with debug tool, simulator endian cannot be changed. First choose [debug], and then [Disconnect
from Debug Tool], in CS+.

Set [Endian] category as follows in [Connect Settings] tab of [Property] page.

2 RX Simulator Property E] E]
4 Internal ROM/RAM
Size of internal ROM[KEytes] 1536
Size of internal RAM[KEytes] 128
4 Endian
Endian of CPU Little-endian data [=]
4 Clock Little-endian data
System clock (ICLK) freguency[MHz] Big-endian data
4 Peripheral Funchon Simulaiion
[Peripheral function simulation module [21
Peripheral clock rate 1
Endianof CPU
Displays the endian of CPU.
' Connect Settings .f{ Debug Tool Settings {{ Download File Settings (< Hook Transaction Settings / -
Figure 3-13
3.2.7 Checking execution results

Execute the rebuilt load module in the simulator, and check that the execution results are valid.

For details about how to run the simulator, see 3.2.4 (2) Executing the simulator.

The module is executed in the simulator, and the source program standard output is displayed in the 1/O Simulation
window.

Make sure that the displayed result is "OK". If it is "NG", check the specified option again.

[Debug Console]

Debug Console 1 X

(1) sign char : CH

(2) =sign bit field : CK
(3) bit feild order : CE
(4) endian : CE

(5) double type size : OK

Figure 3-14

REJ06J0102-0200 Rev.2.00 Page 30 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

4. Correlation Lists

4.1 Options

Hardware-dependent options for SuperH-family C/C++ compilers are not compatible with RX-family C/C++

compilers.

The following table lists the correlated options. Uppercase letters indicate characters for abbreviated format
specification. RX does not have an abbreviated format.

Options for which the format differs from RX will need their specifications changed, and options that are not
compatible need to be deleted.

REJ06J0102-0200 Rev.2.00 Page 31 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

Table 4-1 List of correlated options

SuperH

RX

Note

Include = <path-name>|,...]

include = < path-name >[,-*°]

PREInclude = < file-name >[,...]

preinclude = < file-name >[,

DEFine = <sub>[,...]

define = <sub>[, -]

MEssage | NOMEssage

message | nomessage

FILE_INLINE_PATH= < path-name
S[,...]

file_inline_path=< path-name

>,

CHANnge_message =<sub>[,...]

change_message=<sub>[, -]

PREProcessor[= < file-name >]

output = prep

Code ={ Machinecode | Asmcode }

output={ obj | src }

DEBug

debug

SEction = <sub>[,...]

section = <sub>[,-*-]

STring ={ Const | Data }

OBjectfile = < file-name >

output = obj = < file-name >

Template = { None |Static |Used |ALI
|AUto }

ABs16 =<sub>[,...]

Same as SuperH ABS20, ABS28,

and ABS32
Dlvision = Cpu ={ Inline | Runtime } —
IFUnc —
ALIGN16 — Same as SuperH ALIGN32

TBR [=<section-name >]

BSs_order = { DEClaration |
DEFinition }

STUff [={Bss | Data | Const} [,...]]

nostuff={ B |D | C} []]

nostuff is specified on RX for
items for which stuff is specified
for SuperH

Listfile [= < file-name >]

listfile[=<file-name >]

SHow = <sub>[,...]

show = <sub>[,---]

The way in which the <sub>
option is specified is different

OPtimize =0 optimize = 1 Not optimized
OPtimize =1 optimize = 2 Optimized
OPtimize = Debug_only optimize =0 Code that yields to the level of
debugging information
SPeed speed
Slze size
NOSPeed —
Goptimize goptimize
MAP = < file-name > map=< file-name >
SMap smap

GBr = { Auto | User}

CAse ={ Ifthen | Table }

case = { ifthen | table | auto }

SHIft = { Inline | Runtime }

BLOckcopy ={ Inline | Runtime }

Unaligned = { Inline | Runtime }

INLine[= < number >]

inling[= < integer >]

FlLe inline= < file-name >[,...]

file_inline = < file-name >[,-*°]

GLOBAL_ Volatile={0 |1}

novolatile | volatile

OPT_Range={All | NOLoop |
NOBIock }

REJ06J0102-0200 Rev.2.00
Apr 20, 2017

RENESAS

Page 32 of 37

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

DEL_vacant_loop={ 0|1}

MAX_unroll=< number >

INFinite_loop={0 |1}

GLOBAL_Alloc={ 01}

STRUCT _Alloc={0 |1}

CONST Var_propagate={ 0|1}

const_copy

CONST_Load={ Inline | Literal }

SChedule={0 |1}

schedule | noschedule

SOftpipe —
SCOpe scope
NOSCOpe noscope
LOGIc_gbr —
ECpp lang = ecpp
DSpc —

COMment ={ Nest | NONest }

comment = { nest | nonest }

Macsave ={0 |1}

SAve _cont reg={ 0|1}

RTnext

LOop

loop[=<number>]

APproxdiv

approxdiv

PAtch=7055

FPScr = { Safe | Aggressive }

Volatile_loop

AUto_enum

auto_enum

ENAble_register

enable_register

STRIct_ansi

FDIv

FIXED_Const

FIXED_Max

FIXED_Noround

REPeat

SIMple_float_conv

simple_float_conv

CPu=< CPU-type >

cpu=< CPU-type >

The <CPU-type> is different.

ENdian = { Big | Little }

endian = { big | little }

FPu ={ Single | Double }

Round = { Zero | Nearest }

round = { zero | nearest }

DENormalize ={ OFF | ON }

denormalize = { off | on }

Pic={0]1} —

DOuble = Float dbl_size =4
Blt_order={ Left | Right } bit_order = { left | right }
PACK={1]4} pack | unpack
EXception exception

RTTI = { ON | OFF }

rtti= { on | off}

Dlvision = { Cpu | Peripheral |
Nomask }

LAng={C|CPp}

lang ={c | cpp | ecpp | c99 }

LOGO | NOLOGO

logo | nologo

Euc | SJis | LATin1

euc | sjis | latinl | utf8

OUtcode ={ EUc | SJis }

outcode = { euc | sjis | utf8 }

SUbcommand = < file-name >

subcommand = < file-name >

STUFF_GBR

REJ06J0102-0200 Rev.2.00
Apr 20, 2017

RENESAS

Page 33 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

ALIGN4={ALL|LOOP|INMOSTLOOP} —

CPP_NOINLINE —

CONST_VOLATILE={DATA|CONST} —

REJ06J0102-0200 Rev.2.00 Page 34 of 37
Apr 20, 2017 RENESAS

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

4.2 #pragma

The following SuperH-family C/C++ compiler pragma are not compatible with RX-family C/C++ compilers.

#pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32
#pragma regsave
#pragma noregsave
#pragma noregalloc
#pragma ifunc
#pragma tbr
#pragma global_register
#pragma gbr_base
#pragma gbr_basel
#pragma align4

Since these pragma are used for RX, the following warning message is output during compilation:

W0520161:Unrecognized #pragma

Also, the format is different for #pragma interrupt, for declaring an interrrupt function. Change these as necessary to
comply with the RX-family C/C++ compiler specification.

[SuperH]
#pragma interrupt [(J<function-name>[(interrupt-specification)][,...]1D]

Table 4-2 List of SuperH interrupt specifications

Item Format
Stack switching specification sp=<address>
Trap instruction return specification tn=<trap-vector-number>
Register bank specification resbank
Register bank switching specification Sr_rts
RTS instruction return specification rts

[RX]
#pragma interrupt [(J<function-name>[(<interrupt-specification>[,---1)1[,-*-1D]

Table 4-3 List of RX interrupt specifications

Item Format
Vector table specification vect= <vector-number>
High-speed interrupt specification fint
Interrupt function register control specification save
Multiplex interruptible specification enable
REJ06J0102-0200 Rev.2.00 Page 35 of 37

Apr 20, 2017 RENESAS

RX Development Environment Migration Guide

Migration from SuperH Family to RX Family (IDE ed.)

4.3 Embedded functions

Almost all embedded functions for SuperH-family C/C++ compilers are incompatible with RX-family C/C++
compilers. Either delete these embedded functions as needed, or replace them with embedded functions with similar
functionality for RX-family C/C++ compilers. Note that DSP embedded functions cannot be used with RX.

The following table lists the embedded functions for SuperH, and their correlated RX functions.

Table 4-4 List of correlated embedded functions

SuperH RX Function
nop nop NOP command
swapb, swapw, end_cnvl revl, revw Sort
macw, macwl, macl, macll rmpab, rmpaw, rmpal Arithmetic operations
rotl, rotr, rotcl, rotcr rotl, rotr, rolc, rorc Rotate

Using embedded functions, make sure to include <machine.h>. <umachine.h> and <smachine.h> cannot be used

with RX.

REJ06J0102-0200 Rev.2.00
Apr 20, 2017

RENESAS

Page 36 of 37

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

Website and Support <website and support,ws>

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

REJ06J0102-0200 Rev.2.00 Page 37 of 37
Apr 20, 2017 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History
Description

Rev. Date Page Summary

1.00 Apr.20.10 — First edition issued

2.00 Apr.20.17 — Revised the destination to CS+ and CC-RX V2

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but
having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application
examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages
incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.

“Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them
against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty
for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all
these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,
such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,
design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics
products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,
selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the
countries asserting jurisdiction over the parties or transactions.

1

=4

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,
and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "“Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

	1. Introduction
	1.1 Dependencies on processing in C

	2. Functionality Requiring Care during Migration
	2.1 Options
	2.1.1 Sign specification for the char type
	2.1.2 Size specification for enum
	2.1.3 Specifying the size of double type
	2.1.4 Endian specification
	2.1.5 Sign specification for bit field members
	2.1.6 Allocation order specification for bit field members
	2.1.7 Allocation order specification for bit field members

	2.2 Language specification
	2.2.1 Signs for char types
	2.2.2 Sizes for double types
	2.2.3 Endianness
	2.2.4 Allocation order for bit fields
	2.2.5 Signs for bit fields
	2.2.6 Extended language specification
	2.2.7 Predefined macros

	3. Migration Sample Project
	3.1 List of main processing files
	3.2 Migrating the SuperH sample project to RX
	3.2.1 Creating an RX project
	(1) Import Sample Project
	(2) Select where to copy sample project.
	(3) Select debug tool
	(4) Select Stream I/O mode

	3.2.2 Migrating main processing source files
	3.2.3 Performing a build
	3.2.4 Executing the simulator
	3.2.5 Setting options
	(1) char signs
	(2) Bit fields signs
	(3) Bit field allocation order
	(4) Endian-ness
	(5) double type sizes

	3.2.6 Performing a rebuild
	3.2.7 Checking execution results

	4. Correlation Lists
	4.1 Options
	4.2 #pragma
	4.3 Embedded functions

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

