

REJ06J0102-0200 Rev.2.00 Page 1 of 37
Apr 20, 2017

RX Development Environment Migration Guide
Migration from SuperH Family to RX Family (IDE ed.)
(High-performance Embedded Workshop to CS+)

Introduction
This document explains how to migrate sample projects created by using SuperH, to RX.

Contents
1. Introduction .. 2

1.1 Dependencies on processing in C .. 2
2. Functionality Requiring Care during Migration .. 2

2.1 Options ... 2
2.1.1 Sign specification for the char type .. 3
2.1.2 Size specification for enum ... 4
2.1.3 Specifying the size of double type .. 5
2.1.4 Endian specification ... 6
2.1.5 Sign specification for bit field members .. 7
2.1.6 Allocation order specification for bit field members... 8
2.1.7 Allocation order specification for bit field members... 9

2.2 Language specification .. 10
2.2.1 Signs for char types ... 10
2.2.2 Sizes for double types .. 11
2.2.3 Endianness .. 12
2.2.4 Allocation order for bit fields ... 13
2.2.5 Signs for bit fields ... 14
2.2.6 Extended language specification .. 15
2.2.7 Predefined macros .. 15

3. Migration Sample Project .. 16
3.1 List of main processing files .. 16
3.2 Migrating the SuperH sample project to RX ... 17

3.2.1 Creating an RX project ... 17
3.2.2 Migrating main processing source files ... 19
3.2.3 Performing a build .. 21
3.2.4 Executing the simulator ... 22
3.2.5 Setting options .. 25
3.2.6 Performing a rebuild ... 30
3.2.7 Checking execution results ... 30

4. Correlation Lists ... 31
4.1 Options ... 31
4.2 #pragma ... 35
4.3 Embedded functions ... 36

REJ06J0102-0200
Rev.2.00

Apr 20, 2017

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 2 of 37
Apr 20, 2017

1. Introduction
This document explains the precautions to take when migrating projects created for the SuperH-family to RX, and

how to perform migration, based actual sample workspace usage.
Note that the options and other version-dependent information used in this document are based on version 9.04 of the

SuperH-family C/C++ compiler, and version 2.06 of the RX-family compiler.

1.1 Dependencies on processing in C
A processing dependency is part of a program that lacks compatibility due to differences in behavior specific to

certain hardware or compilers.
The C specification contains parts for which the behavior of code can be decided by each process, and parts within

the SuperH-family C/C++ compiler and RX-family C/C++ compiler exist for which processing dependencies differ.
As such, even for the same C source program, the options for RX-family C/C++ compilers need to be set

appropriately, to correctly handle these differences in processing dependencies.

2. Functionality Requiring Care during Migration
The SuperH-family and RX-family compilers contain parts for which the specification for processing dependencies

differs under the default options. These options need to be specified explicitly to handle the differences in specification.
This chapter explains the options and source program code that require special care during migration from the SuperH-
family to the RX family.

2.1 Options
This chapter explains the options that require special care for RX family migration. The following table lists these

options:

Table 2-1 List of options

No Functionality H8 option RX option Reference
1 Sign specification for the char type -- signed_char 2.1.1
2 Size specification for enum auto_enum auto_enum 2.1.2
3 Size specification for the double type double=float dbl_size 2.1.3
4 Endian specification endian endian 2.1.4
5 Sign specification for bit field members -- signed_bitfield 2.1.5
6 Allocation order specification for bit field members bit_order bit_order 2.1.6
7 Allocation specification for structures pack pack 2.1.7

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 3 of 37
Apr 20, 2017

2.1.1 Sign specification for the char type
With the SuperH-family compiler, char types without a specified sign are handled as signed char types, whereas the

RX-family compiler handles them as unsigned char types by default.
When migrating a SuperH-family source program created assuming that char types are signed char types to the RX

family, specify the "signed_char" option for the RX-family compiler.

Format

signed_char

unsigned_char : unsigned_char by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-1

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 4 of 37
Apr 20, 2017

2.1.2 Size specification for enum
When the "auto_enum" option was specified for the SuperH-family compiler, and data for enumeration types

declared as enum is the smallest type stored in which enumeration values are stored, specify the "auto_enum" option in
the RX-family compiler when migrating to the RX family.

If the "auto_enum" option is not specified for the RX-family compiler, the signed long type is used as the
enumeration type size.

Format

auto_enum

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-2

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 5 of 37
Apr 20, 2017

2.1.3 Specifying the size of double type
With H8-family compilers, the size of the double type is 8 bytes, whereas with RX-family compilers, the size of the
double type is four bytes in default. To migrate to RX a program created in H8 based on the requirement that the size of
the double type is 8 bytes, specify the “dbl_size=8” option.

Format

dbl_size ={4|8} : 4 by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-3

Note:
When "double=float" is specified for the SuperH-family compiler, the size of the long double type is 8 bytes, but

when "dbl_size=4" is specified for the RX-family compiler, the size of the long double type is 4 bytes.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 6 of 37
Apr 20, 2017

2.1.4 Endian specification
The data byte order for the SuperH-family compiler is big-endian by the default setting for the ENdian option,

whereas for the RX-family compiler, it is little-endian by the default setting for the endian option.
When migrating a SuperH-family source program created assuming that data byte order is big-endian to the RX

family, specify the "endian=big" option for the RX-family compiler.

Format
endian={ big | little } : little by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-4

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 7 of 37
Apr 20, 2017

2.1.5 Sign specification for bit field members
For SuperH-family compilers, unsigned bit field members are handled as signed types, whereas RX-family compilers

handle them as unsigned types by default.
When migrating a SuperH-family source program created assuming that unsigned bit field members are signed types

to the RX family, specify the "signed_bitfield" option for the RX-family compiler.

Format
signed_bitfield
unsigned_bitfield : unsigned_bitfield by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-5

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 8 of 37
Apr 20, 2017

2.1.6 Allocation order specification for bit field members
 For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compiler,

they are allocated for the lowest bit by default.
When migrating a SuperH-family source program created assuming that bit field members are allocated from the

highest bit to the RX family, specify the "bit_order=left" option for the RX-family compiler.

Format

bit_order={ left | right } : right by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-6

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 9 of 37
Apr 20, 2017

2.1.7 Allocation order specification for bit field members
 When the "pack=1" option is specified for the SuperH-family compiler to set the structure alignment count to 1,

specify the "pack" option for the RX-family compiler when migrating to the RX family.

Format

pack
unpack : unpack by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties

Figure 2-7

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 10 of 37
Apr 20, 2017

2.2 Language specification
This chapter explains the language specifications for which changes are needed during migration to RX.

Table 2-2 List of language specifications

No Functionality Reference
1 Signs for char types 2.2.1

2 Sizes for double types 2.2.2

3 Endianness 2.2.3

4 Allocation order for bit fields 2.2.4

5 Signs for bit fields 2.2.5

2.2.1 Signs for char types

 For SuperH-family compilers, unsigned char types are handled as signed char types, whereas RX-family compilers
handle them as unsigned char types.

SuperH-family source programs created assuming that char types are signed char types may not operate correctly
when migrated to RX.

Example: Differing operation due to presence of a char type sign.
Source code

char a = -1;

void main(void)

{

if (a < 0) {

// The char type is signed, 'a' is evaluated as negative, and the condition is satisfied (SuperH)

} else {

// The char type is unsigned, 'a' is evaluated as positive, and the condition is not satisfied (RX)

}

}

When migrating a source program created assuming that char types are signed char types to RX, specify the

"signed_char" option.
For details about specifying this option, see 2.1.1 Specifying sign for the char type.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 11 of 37
Apr 20, 2017

2.2.2 Sizes for double types
 For SuperH-family compilers, the size of a double type is 8 bytes, whereas for RX-family compilers, the size of a

double type is 4 bytes.
SuperH-family source programs created assuming that the size of a double type is 8 bytes may not operate correctly

when migrated to RX.

Example: Differing operation due to difference in double type size
Source code

double d1 = 1E30;

double d2 = 1E20;

void main(void)

{

d1 = d1 * d1; // d1 * d1 overflows when the double type size is 4 bytes

d2 = d2 * d2; // d2 * d2 overflows when the double type size is 4 bytes

if (d1 > d2) {

// Size is compared correctly when the double type size is 8 bytes (SuperH)

} else {

// Both d1 and d2 overflow when the double type size is 4 bytes

// so that size comparison is not satisfied (RX)

}

}

When migrating a source program created assuming that the size of a double type is 8 bytes to RX, specify the
"dbl_size=8" option.

For details about specifying this option, see 2.1.3 Specifying bit-field member allocation.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 12 of 37
Apr 20, 2017

2.2.3 Endianness
 The data byte order for the SuperH-family compiler is big-endian by the default setting for the ENdian option,

whereas for the RX-family compiler, it is little-endian by the default setting for the endian option.
When a SuperH-family source program created based on the assumption that the data byte order is big-endian is

migrated to the RX family, it may not operate correctly.

Example: Differing operation due to difference in endianness

Source code

typedef union{

short data1;

struct {

unsigned char upper;

unsigned char lower;

} data2;

} UN;

UN u = { 0x7f6f };

void main(void)

{

if (u.data2.upper == 0x7f && u.data2.lower == 0x6f) {

// When the data byte order is big-endian (SuperH)

} else {

// When the data byte order is little-endian (RX)

}

}

When migrating a source program created assuming that the byte order for data is big-endian to RX, specify the
"endian=big" option.

For details about specifying this option, see 2.1.4 Specifying endian.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 13 of 37
Apr 20, 2017

2.2.4 Allocation order for bit fields
 For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compilers,

they are allocated from the lowest bit.
SuperH-family source programs created assuming that bit field members are allocated from the highest bit may not

operate correctly when migrated to RX.

Example: Differing operation due to differences in the allocation order for bit fields

Source code

union {

unsigned char c1;

struct {

unsigned char b0 : 1;

unsigned char b1 : 1;

unsigned char b2 : 1;

unsigned char b3 : 1;

} b;

} un;

void bit_order(void)

{

un.c1 = 0xc0;

if ((un.b.b0 == 1) && (un.b.b1 == 1) &&

(un.b.b2 == 0) && (un.b.b3 == 0)) {

// When bit field members are allocated from the highest bit (SuperH)

} else {

// When bit field members are allocated from the lowest bit (RX)

}

}

SuperH allocation (left)

1 1 0 0 0 0 0 0
b0 b1 b2 b3

The highest bits are allocated, so the set value can be read as b0, b1

RX allocation (right)

1 1 0 0 0 0 0 0
b3 b2 b1 b0

The lowest bits are allocated, so the set value cannot be read

When migrating a source program created assuming that bit field members are allocated from the highest bit to RX,
specify the "bit_order=left" option.

For details about specifying this option, see 2.1.6 Correspondence of int type size to difference.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 14 of 37
Apr 20, 2017

2.2.5 Signs for bit fields
For SuperH-family compilers, unsigned bit field members are handled as signed types, whereas for RX-family

compilers, they are handled as unsigned types.
SuperH-family source programs created assuming that unsigned bit field members are signed types may not operate

correctly when migrated to RX.

Example: Differing operation due to presence of sign for bit field members

Source code

struct S {

int a : 15;

} s = { -1 };

void main(void)

{

if (s.a < 0) {

// The bit field member is signed, 's.a' is evaluated as negative

//so the condition is satisfied (SuperH)

} else {

// The bit field member is unsigned, 's.a' is evaluated as positive

//so the condition is not satisfied (RX)

}

}

When migrating a source program created assuming that unsigned bit field members are signed types to RX, specify
the "signed_bitfield" option.

For details about specifying this option, see 2.1.5 Sign specification for bit field members.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 15 of 37
Apr 20, 2017

2.2.6 Extended language specification
(1) Support for #pragma pack

When #pragma pack is used for the SuperH-family compiler, the specification for the RX-family compiler needs to
be changed.

Table 2-3 List of language specifications

SuperH RX Note
#pragma pack 1 #pragma pack 1 is used for the alignment count
#pragma pack 4 #pragma unpack The default alignment is used
#pragma unpack #pragma packoption The pack option is used

(2) Support for evenaccess

For the SuperH-family compiler, variables declared as volatile are guaranteed to be accessed with the size of their
type.

However, for the RX-family compiler, evenaccess needs to be used with the following format in order to guarantee
access with the size of the type.

__evenaccess <type-specifier> <variable-name>

<type-specifier> __evenaccess <variable-name>

2.2.7 Predefined macros

 Keep in mind that the predefined macros defined when options are specified differ between the SuperH-family
compiler and RX-family compiler.

To make these options correspond, the changes shown in the following tables need to be made for the predefined
macro names of the RX-family compiler.

Table 2-4 Predefined macros for SuperH Table 2-5 Predefined macros for RX

Option Predefined macros
endian=big _BIG
endian=little _LIT
double=float _FLT

__FLT__
denormalize=on _DON
round=nearest _RON

Option Predefined macros
endian=big __BIG
endian=little __LIT
double=float __DBL4
denormalize=on __DON
round=nearest __RON

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 16 of 37
Apr 20, 2017

3. Migration Sample Project
This chapter explains how to migrate the SuperH sample project whose operation can be checked in the

simulator/debugger, to RX.

3.1 List of main processing files
The 'SH_Sample' SuperH sample projects can be broadly divided into those that perform pre- and post-processing

such as for initialization, and those that perform main processing.
The following table lists the files that comprise main processing.

Table 3-1 List of main processing files

No Functionality File name Reference
1 Signs for char types SH_sign_char.c 3.2.5(1)
2 Sign for bit field members SH_sign_bit_field.c 3.2.5(2)
3 Allocation for bit field members SH_bit_order.c 3.2.5(3)
4 Endianness SH_endian.c 3.2.5(4)
5 Size for the double type SH_double_size.c 3.2.5(5)
6 main function SH_Sample.c ―

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 17 of 37
Apr 20, 2017

3.2 Migrating the SuperH sample project to RX
3.2.1 Creating an RX project

 Create a new RX project workspace to which migrate the SuperH sample projects.

(1) Import Sample Project

Select “RX” tab in [Open Sample Project] and select [RX610_Tutorial_DebugConsole].

Figure 3-1

(2) Select where to copy sample project.

Select folder to copy sample project.

Figure 3-2

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 18 of 37
Apr 20, 2017

(3) Select debug tool

Select [Using Debug Tool], and then “RX Simulator”.

Figure 3-3

(4) Select Stream I/O mode

Perform the following settings in the [Stream I/O] category of the [Debug Tool Settings] page.

Figure 3-4

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 19 of 37
Apr 20, 2017

3.2.2 Migrating main processing source files
Copy, and add to the created RX project, the files comprising main processing for the SuperH sample project explained
in 3.1 SuperH sample project overview.

(1) Copy the files from the SuperH sample project folder

Copy the six files explained in 3.1 SuperH sample project overview.

 [Before copy] [After copy]

Figure 3-5

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 20 of 37
Apr 20, 2017

(2)Add the copied files to the project

Perform the following settings in the dialog box displayed by choosing [Project →Add → Add Existing File] in CS+.

Figure 3-6

(3) Remove any unnecessary files
Since the ' DebugConsole_Sample.c ' main function file in RX sample project is no longer needed, remove it (since

the main function file has been copied from the SuperH project).
Select [DebugConsole_Sample.c] in project tree, and select [Remove from Project].

Figure 3-7

Select the files to register.

After selecting,
click Add.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 21 of 37
Apr 20, 2017

3.2.3 Performing a build
Build the RX project for which the main processing files have been copied and registered.

To start a build, choose [Build], and then [Build Project] in CS+.

Figure 3-8

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 22 of 37
Apr 20, 2017

3.2.4 Executing the simulator
Execute the built RX project load module in the simulator.

(1) Setting up Debug Console

The execution results of the source program are output to the standard output.
Debug Console plug-in needs to be enabled to display the standard output.
Choose [tool], and then [Plug-in Manager] and select as follows from dialog in CS+.

Figure 3-9

(2) Download to Debug Tool

Select [Debug → Download] in CS+ to download load module to debug tool.

Figure 3-10

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 23 of 37
Apr 20, 2017

(3) Display Debug Console panel

Debug Console panel needs to be enabled to display the standard output.
Choose [View], and then [Debug Console] and select as follows from dialog in CS+ display Debug Console panel.

Figure 3-11

Debug Console panel

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 24 of 37
Apr 20, 2017

(4) Executing the simulator

Choose [Debug] and then [Execute post-reset] in CS+ to run the source program in the simulator, and display the
standard output of the source program in the [Debug Console] panel.

Displayed output says "NG", and it means that the results are invalid.

<Debug Console>

Figure 3-12

Table 3-2 I/O simulation output results

Item OK NG
(1)Char type without a specified sign signed unsigned
(2)Bit field members without a specified
sign

signed unsigned

(3) Bit field member allocation order From the highest bit From the lowest bit
(4) Endianness big little
(5) Size of the double type 8byte 4byte

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 25 of 37
Apr 20, 2017

3.2.5 Setting options
The simulator execution results are invalid due to differences in specifications for processing-related definitions

between SuperH-family and RX-family compilers.
This chapter explains how to change the specified options for resolving the specification differences for processing-

related definitions, using a RX-family project migrated from the SuperH-family as a sample.

(1) char signs

If the execution results of the "SH_sign_char.c" sample source program are "NG", this indicates a problem with the
compatibility of the "unsigned_char" option specification.

For SuperH-family compilers, char types without a specified sign are handled as signed char types, whereas RX-
family compilers handle them as unsigned char types.

Since the "SH_sign_char.c" sample source program was created assuming that char types without a specified sign are
signed char types, if the "unsigned_char" option is specified, the operation results will differ from SuperH.

Sample Source Program : SH_sign_char.c
Source code

struct S {

char a;

} s = { -1 };

void sign_char(void)

{

printf("(1) sign char : ");

if (s.a < 0) {

printf("OK¥n");

} else {

printf("NG¥n");

}

}

To migrate a source program created assuming that char types with a specified sign are signed char types to RX,
specify the "signed_char" option.

For details about specifying this option, see 2.1.1 Sign specification for the char type.
Also, change the options specified for the created RX project.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 26 of 37
Apr 20, 2017

(2) Bit fields signs

If the execution results of the "SH_sign_bit_field.c" sample source program are "NG", this indicates a problem with
the compatibility of the "unsigned_bitfield" option specification.

For SuperH-family compilers, bit field members without a specified sign are handled as signed types, whereas RX-
family compilers handle them as unsigned types.

Since the " SH_sign_bit_field.c " sample source program was created assuming that bit field members without a
specified sign are signed types, if the "unsigned_bitfield" option is specified, the operation results will differ from
SuperH.

Sample source program: SH_sign_bit_field.c
Source code

struct S {

 int a : 15;

} bit = { -1 };

void sign_bit_field(void)

{

 printf("(2) sign bit field : ");

 if (bit.a < 0) {

 printf("OK\n");

 } else {

 printf("NG\n");

 }

}

To migrate a source program created assuming that bit field members without a specified sign are signed to RX,
specify the "signed_bitfield" option.

For details about specifying this option, see 2.1.5 Sign specification for bit field members.

Also, change the options specified for the created RX project.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 27 of 37
Apr 20, 2017

(3) Bit field allocation order

 If the execution results of the "SH_bit_order.c" sample source program are "NG", this indicates a problem with the
compatibility of the "bit_order=right" option specification.

For SuperH-family compilers, bit field members are allocated from the highest bit, whereas for RX-family compilers,
they are allocated from the lowest bit.

Since the "SH_bit_order.c" sample source program was created assuming that bit field members are allocated from
the highest bit, if the "bit_order=right" option is specified, the operation results will differ from SuperH.

Sample source program: SH_bit_order.c

Source code

union {

unsigned char c1;

struct {

unsigned char b0 : 1;

unsigned char b1 : 1;

unsigned char b2 : 1;

unsigned char b3 : 1;

} b;

} un;

void bit_order(void)

{

printf("(3) bit field order : ");

un.c1 = 0xc0;

if ((un.b.b0 == 1) && (un.b.b1 == 1) &&

(un.b.b2 == 0) && (un.b.b3 == 0)) {

printf("OK¥n");

} else {

printf("NG¥n");

}

}

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 28 of 37
Apr 20, 2017

(4) Endian-ness

 If the execution results of the "SH_endian.c" sample source program are "NG", this indicates a problem with the
compatibility of the "endian=little" option specification.

For SuperH-family compilers, the byte order for data is big-endian, whereas for RX-family compilers, it is little-
endian.

Since the "SH_endian.c" sample source program was created assuming that the data byte order is big-endian, if the
"endian=little" option is specified, the operation results will differ from SuperH.

Sample source program: SH_endian.c

Source code

typedef union{

short data1;

struct {

unsigned char upper;

unsigned char lower;

} data2;

} UN;

UN u = { 0x7f6f };

void endian(void)

{

printf("(4) endian : ");

if (u.data2.upper == 0x7f && u.data2.lower == 0x6f) {

printf("OK¥n");

} else {

printf("NG¥n");

}

}

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 29 of 37
Apr 20, 2017

(5) double type sizes

 If the execution results of the "SH_double_size.c" sample source program are "NG", this indicates a problem with
the compatibility of the "dbl_size=4" option specification.

For SuperH-family compilers, the size of a double type is 8 bytes, whereas for RX-family compilers, the size of a
double type is 4 bytes.

Since the "SH_double_size.c" sample source program was created assuming that the size of a double type is 8 bytes,
if the "dbl_size=4" option is specified, the operation results will differ from SuperH.

Sample source program: SH_double_size.c

Source code

double d1 = 1E30;

double d2 = 1E20;

void double_size(void)

{

d1 = d1 * d1;

d2 = d2 * d2;

printf("(5) double type size : ");

if (d1 > d2) {

printf("OK¥n");

} else {

printf("NG¥n");

}

}

To migrate a source program created assuming that the size of a double type is 8 bytes to RX, specify the
"dbl_size=8" option.

For details about specifying this option, see 2.1.3 Size specification for the double type.
Also, change the options specified for the created RX project.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 30 of 37
Apr 20, 2017

3.2.6 Performing a rebuild
(1) Setting the simulator endian
 Since the endian option changed the endian from little to big, the endian of the simulator also must be changed to big.
While connecting with debug tool, simulator endian cannot be changed. First choose [debug], and then [Disconnect

from Debug Tool], in CS+.
 Set [Endian] category as follows in [Connect Settings] tab of [Property] page.

Figure 3-13

3.2.7 Checking execution results

Execute the rebuilt load module in the simulator, and check that the execution results are valid.
For details about how to run the simulator, see 3.2.4 (2) Executing the simulator.
The module is executed in the simulator, and the source program standard output is displayed in the I/O Simulation

window.
Make sure that the displayed result is "OK". If it is "NG", check the specified option again.

[Debug Console]

Figure 3-14

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 31 of 37
Apr 20, 2017

4. Correlation Lists

4.1 Options

 Hardware-dependent options for SuperH-family C/C++ compilers are not compatible with RX-family C/C++
compilers.

The following table lists the correlated options. Uppercase letters indicate characters for abbreviated format
specification. RX does not have an abbreviated format.

Options for which the format differs from RX will need their specifications changed, and options that are not
compatible need to be deleted.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 32 of 37
Apr 20, 2017

Table 4-1 List of correlated options

SuperH RX Note
Include = <path-name>[,…] include = < path-name >[,…]

PREInclude = < file-name >[,…] preinclude = < file-name >[,
…]

DEFine = <sub>[,…] define = <sub>[,…]
MEssage | NOMEssage message | nomessage

FILE_INLINE_PATH= < path-name
>[,...]

file_inline_path=< path-name
>[,…]

CHAnge_message =<sub>[,…] change_message=<sub>[,…]
PREProcessor[= < file-name >] output = prep

Code ={ Machinecode | Asmcode } output= { obj | src }
DEBug debug

SEction = <sub>[,…] section = <sub>[,…]
STring = { Const | Data } ―
OBjectfile = < file-name > output = obj = < file-name >

Template = { None |Static |Used |ALl
|AUto }

―

ABs16 =<sub>[,…] ― Same as SuperH ABS20, ABS28,
and ABS32

DIvision = Cpu ={ Inline | Runtime } ―
IFUnc ―

ALIGN16 ― Same as SuperH ALIGN32
TBR [=<section-name >] ―

BSs_order = { DEClaration |
DEFinition }

―

STUff [={Bss | Data | Const} [,…]] nostuff[= { B | D | C } [,…]] nostuff is specified on RX for
items for which stuff is specified

for SuperH
Listfile [= < file-name >] listfile[=<file-name >]

SHow = <sub>[,…] show = <sub>[,…] The way in which the <sub>
option is specified is different

OPtimize = 0 optimize = 1 Not optimized
OPtimize = 1 optimize = 2 Optimized

OPtimize = Debug_only optimize = 0 Code that yields to the level of
debugging information

SPeed speed
SIze size

NOSPeed ―
Goptimize goptimize

MAP = < file-name > map=< file-name >
SMap smap

GBr = { Auto | User } ―
CAse = { Ifthen | Table } case = { ifthen | table | auto }

SHIft = { Inline | Runtime } ―
BLOckcopy = { Inline | Runtime } ―
Unaligned = { Inline | Runtime } ―

INLine[= < number >] inline[= < integer >]
FILe_inline= < file-name >[,…] file_inline = < file-name >[,…]

GLOBAL_Volatile={ 0 | 1 } novolatile | volatile
OPT_Range={All | NOLoop |

NOBlock }
―

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 33 of 37
Apr 20, 2017

DEL_vacant_loop={ 0 | 1 } ―
MAX_unroll=< number > ―

INFinite_loop={ 0 | 1 } ―
GLOBAL_Alloc={ 0 | 1 } ―
STRUCT_Alloc={ 0 | 1 } ―

CONST_Var_propagate={ 0 | 1 } const_copy
CONST_Load={ Inline | Literal } ―

SChedule={ 0 | 1 } schedule | noschedule
SOftpipe ―
SCOpe scope

NOSCOpe noscope
LOGIc_gbr ―

ECpp lang = ecpp
DSpc ―

COMment = { Nest | NONest } comment = { nest | nonest }
Macsave = { 0 | 1 } ―

SAve_cont_reg={ 0 | 1 } ―
RTnext ―
LOop loop[=<number>]

APproxdiv approxdiv
PAtch=7055 ―

FPScr = { Safe | Aggressive } ―
Volatile_loop ―
AUto_enum auto_enum

ENAble_register enable_register
STRIct_ansi ―

FDIv ―
FIXED_Const ―
FIXED_Max ―

FIXED_Noround ―
REPeat ―

SIMple_float_conv simple_float_conv
CPu=< CPU-type > cpu=< CPU-type > The <CPU-type> is different.

ENdian = { Big | Little } endian = { big | little }
FPu = { Single | Double } ―

Round = { Zero | Nearest } round = { zero | nearest }
DENormalize = { OFF | ON } denormalize = { off | on }

Pic = { 0 | 1 } ―
DOuble = Float dbl_size = 4

BIt_order={ Left | Right } bit_order = { left | right }
PACK={ 1 | 4 } pack | unpack

EXception exception
RTTI = { ON | OFF } rtti= { on | off}

DIvision = { Cpu | Peripheral |
Nomask }

―

LAng = { C | CPp } lang = { c | cpp | ecpp | c99 }
LOGO | NOLOGO logo | nologo
Euc | SJis | LATin1 euc | sjis | latin1 | utf8

OUtcode = { EUc | SJis } outcode = { euc | sjis | utf8 }
SUbcommand = < file-name > subcommand = < file-name >

STUFF_GBR ―

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 34 of 37
Apr 20, 2017

ALIGN4={ALL|LOOP|INMOSTLOOP} ―
CPP_NOINLINE ―

CONST_VOLATILE={DATA|CONST} ―

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 35 of 37
Apr 20, 2017

4.2 #pragma
The following SuperH-family C/C++ compiler pragma are not compatible with RX-family C/C++ compilers.

#pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32
#pragma regsave
#pragma noregsave
#pragma noregalloc
#pragma ifunc
#pragma tbr
#pragma global_register
#pragma gbr_base
#pragma gbr_base1
#pragma align4

Since these pragma are used for RX, the following warning message is output during compilation:

 W0520161:Unrecognized #pragma

Also, the format is different for #pragma interrupt, for declaring an interrrupt function. Change these as necessary to

comply with the RX-family C/C++ compiler specification.

[SuperH]
#pragma interrupt [(]<function-name>[(interrupt-specification)][,…][)]

Table 4-2 List of SuperH interrupt specifications

Item Format
Stack switching specification sp=<address>

Trap instruction return specification tn=<trap-vector-number>
 Register bank specification resbank

Register bank switching specification sr_rts
RTS instruction return specification rts

[RX]
#pragma interrupt [(]<function-name>[(<interrupt-specification>[,…])][,…][)]

Table 4-3 List of RX interrupt specifications

Item Format
Vector table specification vect= <vector-number>

High-speed interrupt specification fint
Interrupt function register control specification save

Multiplex interruptible specification enable

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 36 of 37
Apr 20, 2017

4.3 Embedded functions
 Almost all embedded functions for SuperH-family C/C++ compilers are incompatible with RX-family C/C++

compilers. Either delete these embedded functions as needed, or replace them with embedded functions with similar
functionality for RX-family C/C++ compilers. Note that DSP embedded functions cannot be used with RX.

The following table lists the embedded functions for SuperH, and their correlated RX functions.

Table 4-4 List of correlated embedded functions

SuperH RX Function
nop nop NOP command

swapb, swapw, end_cnvl revl, revw Sort
macw, macwl, macl, macll rmpab, rmpaw, rmpal Arithmetic operations

rotl, rotr, rotcl, rotcr rotl, rotr, rolc, rorc Rotate

Using embedded functions, make sure to include <machine.h>. <umachine.h> and <smachine.h> cannot be used
with RX.

RX Development Environment Migration Guide Migration from SuperH Family to RX Family (IDE ed.)

REJ06J0102-0200 Rev.2.00 Page 37 of 37
Apr 20, 2017

Website and Support <website and support,ws>

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Apr.20.10 — First edition issued
2.00 Apr.20.17 — Revised the destination to CS+ and CC-RX V2

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Introduction
	1.1 Dependencies on processing in C

	2. Functionality Requiring Care during Migration
	2.1 Options
	2.1.1 Sign specification for the char type
	2.1.2 Size specification for enum
	2.1.3 Specifying the size of double type
	2.1.4 Endian specification
	2.1.5 Sign specification for bit field members
	2.1.6 Allocation order specification for bit field members
	2.1.7 Allocation order specification for bit field members

	2.2 Language specification
	2.2.1 Signs for char types
	2.2.2 Sizes for double types
	2.2.3 Endianness
	2.2.4 Allocation order for bit fields
	2.2.5 Signs for bit fields
	2.2.6 Extended language specification
	2.2.7 Predefined macros

	3. Migration Sample Project
	3.1 List of main processing files
	3.2 Migrating the SuperH sample project to RX
	3.2.1 Creating an RX project
	(1) Import Sample Project
	(2) Select where to copy sample project.
	(3) Select debug tool
	(4) Select Stream I/O mode

	3.2.2 Migrating main processing source files
	3.2.3 Performing a build
	3.2.4 Executing the simulator
	3.2.5 Setting options
	(1) char signs
	(2) Bit fields signs
	(3) Bit field allocation order
	(4) Endian-ness
	(5) double type sizes

	3.2.6 Performing a rebuild
	3.2.7 Checking execution results

	4. Correlation Lists
	4.1 Options
	4.2 #pragma
	4.3 Embedded functions

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

