Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F9872

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F9872 is a μ PD789871 Subseries product (Driving VFD) of the 78K/0S Series.

The μ PD789871 Subseries consists of products that incorporate a VFD controller/driver for panel control.

The μ PD78F9872 replaces the internal masked ROM of the μ PD789870 and μ PD789871 with flash memory, which enables the writing/erasing of a program while the device is mounted on the board.

Because the device can be programmed by the user, it is ideally suited to the evaluation stages of system development, the manufacture of small batches of multiple products, and the rapid development of new products.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD789871 Subseries User's Manual: To be prepared 78K/0S Series User's Manual Instruction: U11047E

FEATURES

- Pin compatible with mask ROM version (except VPP pin)
- Internal ROM and RAM
 - Flash memory: 16 KB
 - · Internal high-speed RAM: 512 bytes
 - VFD display RAM: 96 bytes
- Minimum instruction execution time can be changed from high-speed (0.4 μs: Main system clock 5.0-MHz operation) to ultra-low speed (122 μs: Subsystem clock 32.768-kHz operation)
- I/O ports: 33
- Timers: 5 channels
 - 8-bit remote control: 1 channel
 - 8-bit timer/event counter: 2 channels
 - Watch timer: 1 channel
 - Watchdog timer: 1 channel
 - Serial interface: 1 channel
- VFD controller/driver: Total of display outputs: 25
- Power supply voltage: VDD = 2.7 to 5.5 V (in normal operation)

: $V_{DD} = 4.5$ to 5.5 V (when VFD is operating)

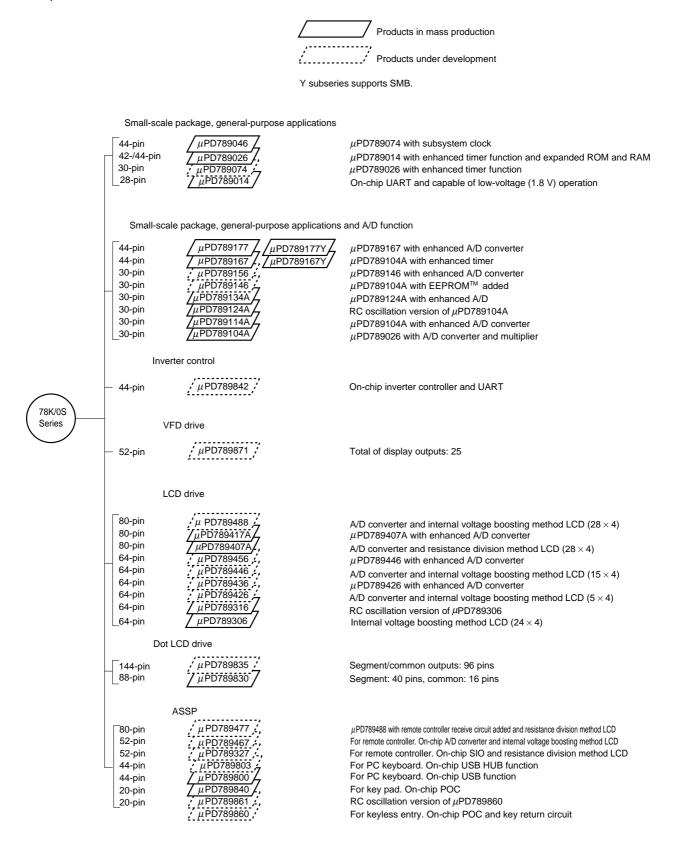
APPLICATIONS

Products with front panel such as DVD, VCD, S-VCD players etc.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part Number


Package

 μ PD78F9872GB-8ET

52-pin plastic LQFP (10 \times 10)

78K/0S SERIES DEVELOPMENT

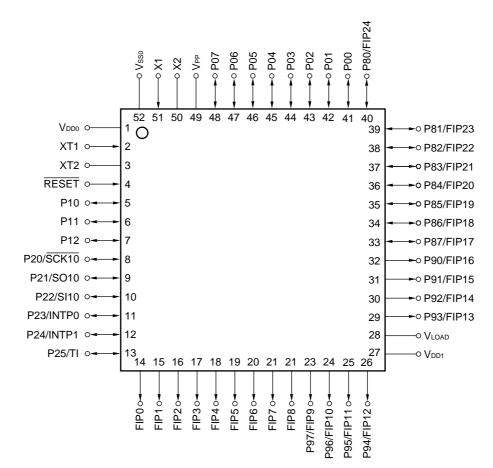
The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

		ROM	011 300		ner		8-bit	10-bit			Vdd	
Subseries	Function s Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	Serial Interface	I/O	MIN Value	Remark
Small,	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	_	-	1 ch (UART:1 ch)	34 pins	1.8 V	_
general- purpose	μPD789026	4 K-16 K			_							
puipose	μPD789014	2 K-4 K	2 ch	-						22 pins		
Small,	μPD789177	16 K-24 K	3 ch	1 ch	1 ch	1 ch	-	8 ch	1 ch (UART: 1 ch)	31 pins	1.8 V	-
general- purpose	μPD789167						8 ch	-				
+ A/D	μPD789156	8 K-16 K	1 ch		-		_	4 ch		20 pins		Internal
	μPD789146						4 ch	-				EEPROM
	μPD789134A	2 K-8 K						4 ch				RC oscillation
	μPD789124A						4 ch	-				version
	μPD789114A						-	4 ch				-
	μPD789104A						4 ch	-				
For inverter control	μPD789842	8 K-16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30 pins	4.0 V	_
For LCD	μPD789417A	12 K-24 K	3 ch	1 ch	1 ch	1 ch		7 ch	1 ch (UART: 1 ch)	43 pins	1.8 V	-
driving	μPD789407A						7 ch	-				
	μPD789456	12 K-16 K	2 ch				-	6 ch		30 pins		
	μPD789446						6 ch	-				
	μPD789436						-	6 ch		40 pins		
	μPD789426						6 ch	-				
	μPD789316	8 K to 16K					-		2 ch (UART: 1 ch)	23 pins		RC oscillation version
	µPD789306											-
For Dot	μPD789835	24 K-60 K	6 ch	-	1 ch	1 ch	3 ch	-	1 ch	28 pins	1.8 V	-
LCD driving	μPD789830	24 K	1 ch	1 ch			_			30 pins	2.7 V	
ASSP	μPD789467	4 K-24 K	2 ch	-	1 ch	1 ch	1 ch	-	_	18 pins	1.8 V	Internal
	μPD789327						-		1 ch	21 pins		LCD
	µPD789803	8 K-16 K			-				2 ch (USB: 1 ch,	41 pins	3.6 V	-
									UART: 1 ch)			-
	μPD789800	8 K							2 ch (USB: 1 ch)	31 pins	4.0 V	-
	μPD789840						4 ch		1 ch	29 pins	2.8 V	
	μPD789861	4 K					_		_	14 pins	1.8 V	RC oscillation version, Internal EEPROM
	μPD789860											Internal EEPROM

The major differences between subseries are shown below.

Note 10-bit timer: 1 channel

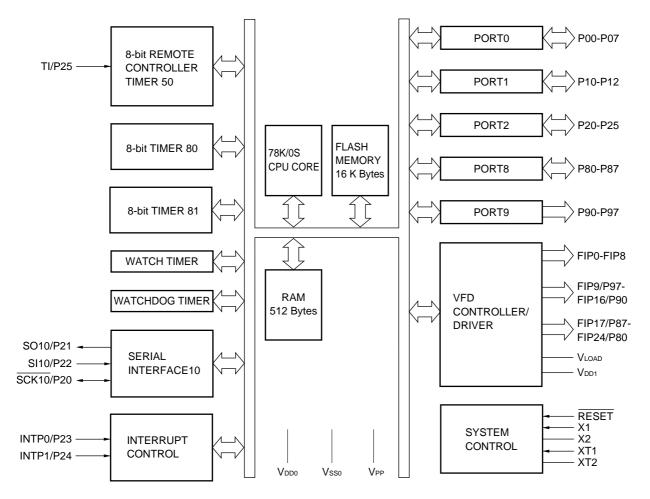
OVERVIEW OF FUNCTIONS


Item		function			
Internal memory	Flash memory	16 KB			
	High-speed RAM	512 bytes			
VFD display RAM		96 bytes			
Minimum instruction	execution time	•0.4/1.6 μ s (@5.0-MHz operation with main system clock)			
		•122 μ s (@ 32.768-kHz operation with subsystem clock)			
General-purpose reg	sters	8 bits × 8 registers			
Instruction set		•16-bit operations			
		•Bit manipulations (set, reset, test)			
I/O ports		Total: 33			
		•CMOS I/O: 17			
		•P-ch open-drain I/O: 8			
		•P-ch open-drain output: 8			
VFD controller/driver		Total of display outputs:25			
Timers		•8-bit remote control timer:1 channel			
		•8-bit timer:2 channel			
		•Watch timer:1 channel			
		•Watchdog timer:1 channel			
Serial interface		3-wire serial mode: 1channel			
Vectored interrupt	Maskable	Internal: 8, External: 4			
sources Non-maskable		Internal: 1			
Power supply voltage		V_{DD} = 2.7 to 5.5 V (in normal mode operation)			
		V_{DD} = 4.5 to 5.5 V (VFD is operating)			
Operating ambient te	mperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$			
Package		52-pin plastic LQFP (10 $ imes$ 10)			

CONTENTS

1. PIN CONFIGURATION (TOP VIEW)						
2.	BLOCK DIAGRAM	8				
3.	PIN FUNCTIONS	9				
	3.1 Port Pins	9				
	3.2 Non-Port Pins	10				
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11				
4.	MEMORY SPACE	13				
5.	PERIPHERAL HARDWARE FUNCTIONS	14				
	5.1 Ports	14				
	5.2 Clock Generator	15				
	5.3 Timer	15				
	5.4 Serial Interface	18				
	5.5 VFD Controller/Driver	19				
6.	INTERRUPT FUNCTION	20				
7.	STANDBY FUNCTION	23				
8.	RESET FUNCTION	23				
9.	FLASH MEMORY PROGRAMMING	24				
	9.1 Selecting Communication Mode	24				
	9.2 Function of Flash Memory Programming	25				
	9.3 Flashpro III Connection Example	25				
	9.4 Example of Settings for Flashpro III (PG-FP3)	26				
10.	INSTRUCTION SET OVERVIEW	27				
	10.1 Conventions	27				
	10.2 Operations	29				
11.	ELECTRICAL SPECIFICATIONS	34				
12.	PACKAGE DRAWING	46				
AP	PENDIX A DIFFERENCES BETWEEN μ PD78F9872, AND MASK ROM VERSIONS	47				
APPENDIX B DEVELOPMENT TOOLS 48						
APPENDIX C RELATED DOCUMENTS						

1. PIN CONFIGURATION (TOP VIEW)


• **52-pin plastic LQFP (10 × 10)** μPD78F9872GB-8ET

Caution Connect the VPP pin directly to Vsso in normal operation mode.

FIP0 to FIP24	Fluorescent Indicator Panel	SI10:	Serial Data Input
INTP0, INTP1	Interrupt from Peripherals	SO10:	Serial Data Output
P00 to P07:	Port0	TI:	Timer Input
P10 to P12:	Port1	Vdd0, Vdd1:	Power Supply
P20 to P25:	Port2	VLOAD:	Negative Power Supply
P80 to P87:	Port8	Vpp:	Programming Power Supply
P90 to P97:	Port9	Vsso:	Ground
RESET:	Reset	X1, X2:	Crystal (Main System Clock)
SCK10:	Serial Clock	XT1, XT2:	Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0 8-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	_
P10 to P12	I/O	Port 1 3-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	_
P20	I/O	Port 2	Input	SCK10
P21		8-bit input/output port		SO10
P22		Input/output can be specified in 1-bit units		SI10
P23		An input port, an on-chip pull-up resistor can be specified by means of software.		INTP0
P24				INTP1
P25				ті
P80 to P87	I/O	Port 8 P-ch open-drain 8-bit I/O port	Output	FIP17 to FIP24
P60 to P67	Output	Port 6 P-ch open-drain 8-bit output port	Output	FIP9 to FIP16

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt input for which the valid edge (rising	Input	P23
INTP1		edge, falling edge, or both rising and falling edges) can be specified		P24
SCK10	I/O	Serial clock input/output for serial interface	Input	P20
SI10	Input	Serial data input to serial interface	Input	P22
SO10	Output	Serial data output from serial interface	Input	P21
ТІ	Input	8-bit remote control timer input	Input	P25
FIP0 to FIP8	Output	VFD controller/driver high withstand voltage large current	Output	-
FIP9 to FIP16		output		P97 to P90
FIP17 to FIP24				P87 to P80
X1	Input	Connecting crystal resonator for main system clock	_	-
X2	_	oscillation	_	-
XT1	Input	Connecting crystal resonator for Subsystem clock	_	-
XT2	_	oscillation	_	-
VLOAD		VFD controller/driver pull-down resistor connection	-	-
RESET	Input	System reset input	Input	-
VDD0	_	Positive power supply for ports	_	-
VDD1	_	Positive power supply for VFD controller/driver	-	-
Vsso	_	Ground potential	-	-
Vpp	-	Sets flash memory programming mode.	_	_
		Applies high voltage when a program is written or verified. Connect directly to V _{SS0} in normal operation mode.		

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins is shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Type of I/O Circuit for Each Pin and Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P07	5-H	I/O	Input: Independently connects to VDD0 or VSS0 via a resistor.
P10 to P12			Output: Leave open.
P20/SCK10	8-C		
P21/SO10	5-H		
P22/SI10	8-C		
P23/INTP0			
P24/INTP1			
P25/TI			
FIP0 to FIP8	14-F	Output	Leave open.
FIP9/P97 to FIP16/P90	14-E		
FIP17/P87 to FIP24/P80	15-E	I/O	
RESET	2	Input	_
Vpp	_	_	Connect directly to Vsso.

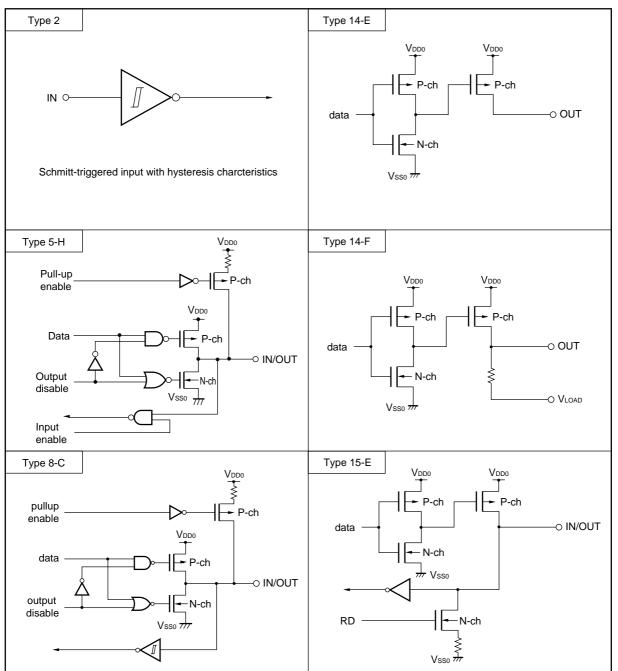
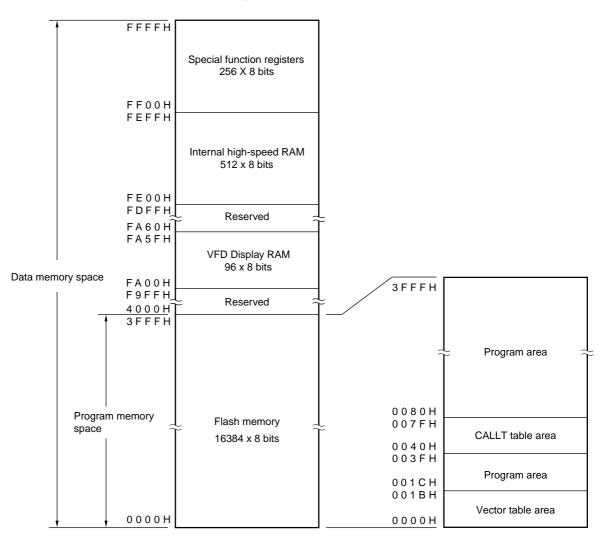



Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

Products in the $\mu \text{PD78F9872}$ can access up to 64 Kbytes of memory space. Figure 4-1 shows the memory map.

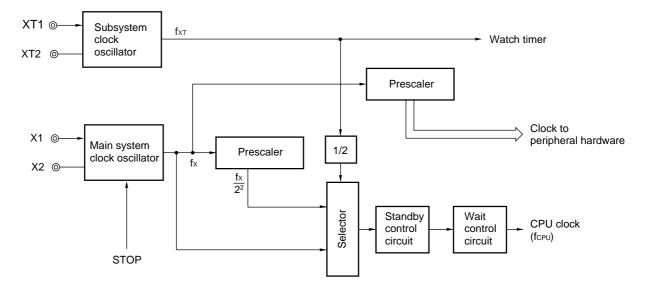
Figure 4-1. Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

The following three types of I/O ports are available:

CMOS Input/output:	17
 P-ch open-drain input/output: 	8
 P-ch open-drain output: 	8
Total:	33


Table 5-1. Port Functions

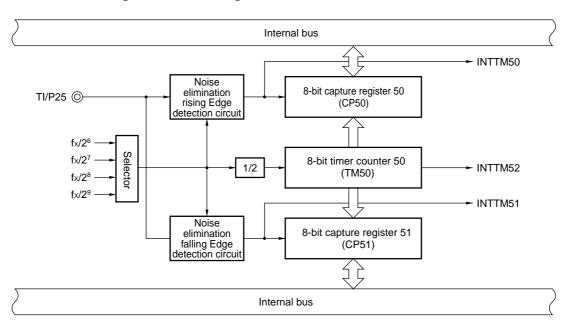
Port Name	Pin Name	Function
Port 0	P00 to P05	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 1	P10 to P12	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 2	P20 to P25	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 8	P80 to P87	P-ch open-drain input/output port.
Port 9	P90 to P97	P-ch open-drain output port.

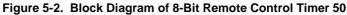
5.2 Clock Generator

An on-chip system clock generator is provided. The minimum instruction execution time can be changed.

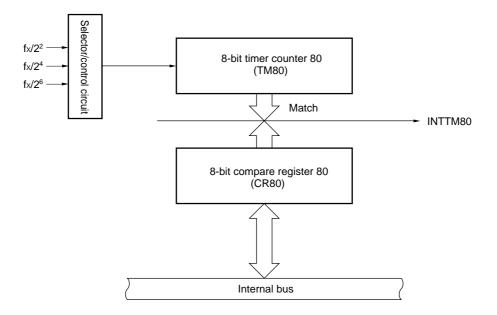
- 0.4 μ s/1.6 μ s (@ 5.0-MHz operation with Main system clock)
- 122 µs (@ 32.768-kHz operation with Subsystem clock)

Figure 5-1. Clock Generator Block Diagram

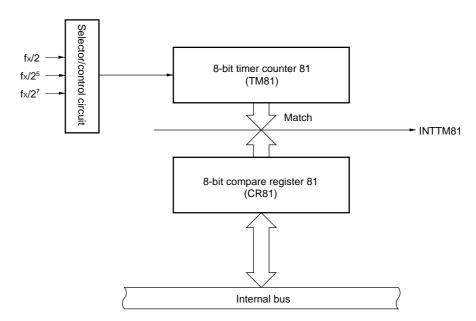
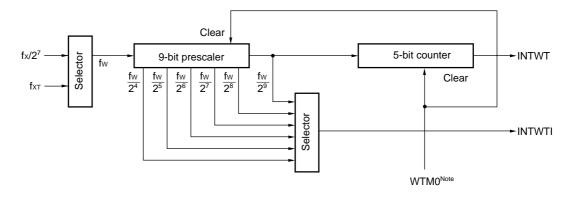
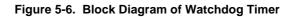

5.3 Timer

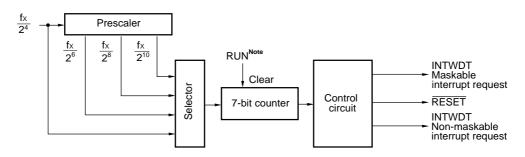

Five on-chip timers are provided.

- 8-bit remote control timer 50: 1 channel
- 8-bit timer 80, 81: 2 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel


Table 5-2. Timer Operation

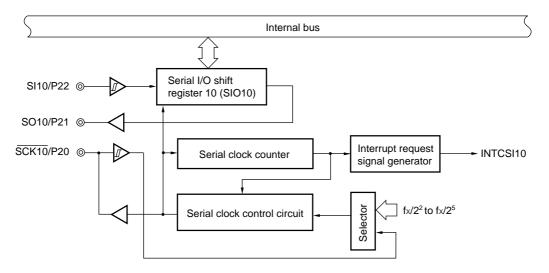
		8-bit remote control timer	8-bit timer	Watch timer	Watchdog timer
Operation mode	Interval timer	-	2 channels	1 channel	1 channel
Function	Pulse width measurement	1 output	-	-	-
	Interrupt request	3	2	1	1


Figure 5-4. Block Diagram of 8-Bit Timer 81

Note Bit 0 of the Watch timer mode control register (WTM)

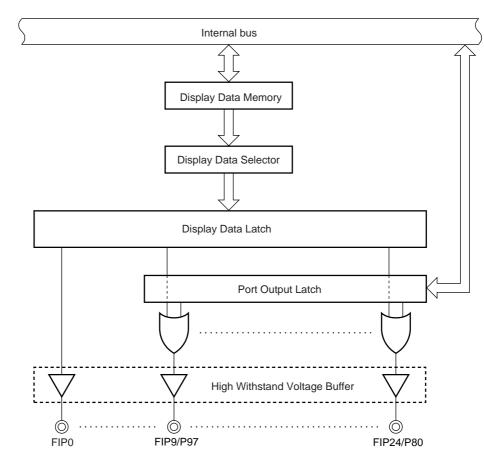
Note Bit 7 of the Watchdog timer mode control register (WDTM)


5.4 Serial Interface

One on-chip serial interface is provided.

SIO10 has the following two modes.

- Operation stop mode: Power consumption can be reduced.
- Three-wire serial I/O mode: A function to select the clock phase or data phase is incorporated.



5.5 VFD Controller/Driver

A VFD controller/driver with the following function is incorporated.

- (a) Total number of display outputs: 25. Output of 16 patterns is enabled.
- (b) 96-bytes display RAM is provided to enable display signal output by reading display data automatically (direct memory access).
- (c) A port pin which is not used for VFD display can be used as an output port or an I/O port (except for FIP0 to FIP8, which are VFD output only pins).
- (d) The luminance can be adjusted in 8 stages with software.
- (e) Hardware taking into consideration the key scan application is incorporated.
- (f) Whether the key scan timing is inserted or not is selectable.
- (g) A high withstand voltage output buffer (VFD driver) that can drive the VFD directly is incorporated.

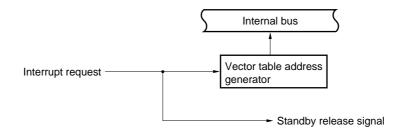
Figure 5-8. Block Diagram of VFD Controller/Driver

6. INTERRUPT FUNCTION

A total of 13 interrupt sources are provided, divided into the following two types.

- Non-maskable interrupts: 1 source
- Maskable interrupts: 12 sources

Table 6-1. Interrupt Source List


			Interrupt Source	Internal/	Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with the interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	
	3	INTTM50	Remote control timer 50 input rising edge detection		000AH	(D)
	4	INTTM51	Remote control timer 50 input falling edge detection		000CH	
	5	INTTM52	Remote control timer 50 overflow	Internal	000EH	(B)
	6	INTKS	Key scan timing from VFD controller/driver		0010H	
	7	INTCSI10	Serial interface 10 transfer termination		0012H	
	8	INTTM80	Generation of matching signal of 8-bit timer 80		0014H	
	9	INTTM81	Generation of matching signal of 8-bit timer 81		0016H	
	10	INTWT	Watch timer interrupt		0018H	
	11	INTWTI	Interval timer interrupt		001AH	

Notes 1. Priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 11 is the lowest order.

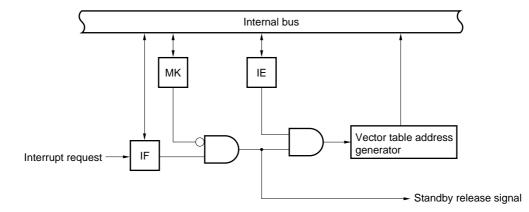
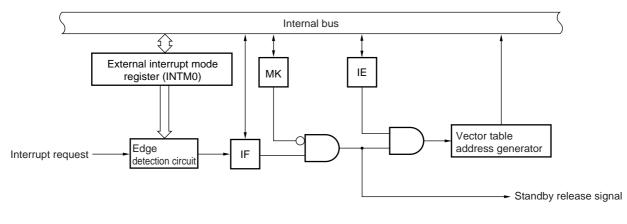
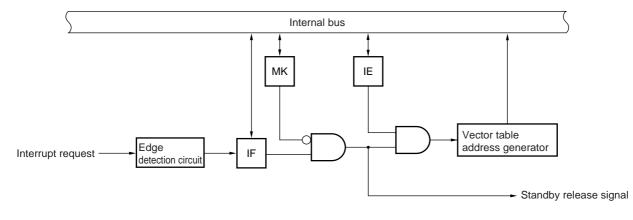

- 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1.
- **Remark** As the interrupt source of the watchdog timer (INTWDT), either a non-maskable interrupt or a maskable interrupt (internal) can be selected.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0, INTP1)

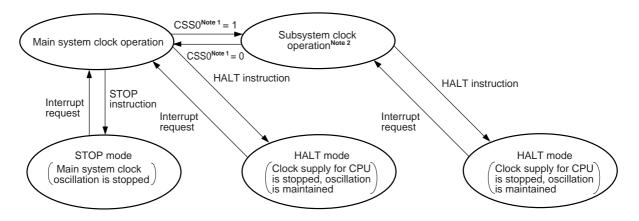

IF: Interrupt request flag

IE: Interrupt enable flag

MK: Interrupt mask flag

Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(D) External maskable interrupt (INTTM50, INTTM51)



- IF: Interrupt request flag
- IE: Interrupt enable flag
- MK: Interrupt mask flag

7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

Figure 7-1. Standby Function

Notes 1. Bit 4 of the sub-clock control register (CSS)

- The current consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

8. RESET FUNCTION

The following two reset methods are available.

- (1) External reset by the RESET pin
- (2) Internal reset by watchdog timer detection runaway time.

9. FLASH MEMORY PROGRAMMING

The on-chip program memory in the μ PD78F9872 is flash memory.

The flash memory can be written with the μ PD78F9872 mounted on the target system (on-board). Connect the dedicated flash programmer (Flashpro III (part number: FL-PR3, PG-FP3)) to the host machine and target system to write the flash memory.

Remark FL-PR3 is made by Naito Densei Machida Mfg. Co., Ltd.

9.1 Selecting Communication Mode

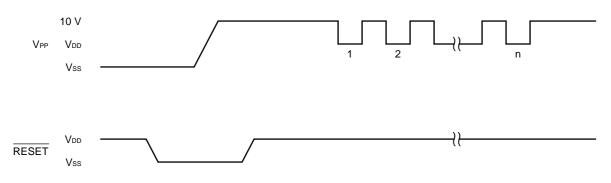

The flash memory is written by using Flashpro III and by means of serial communication. Select a communication mode from those listed in Table 9-1. To select a communication mode, the format shown in Figure 9-1 is used. Each communication mode is selected by the number of VPP pulses shown in Table 9-1.

Table 9-1. Communication Mode

Communication Mode	Pins Used	Number of VPP Pulses
3-wire serial I/O	SCK10/P20	0
	SO10/P21	
	SI10/P22	

Caution Be sure to select a communication mode based on the VPP pulse number shown in Table 9-1.

9.2 Function of Flash Memory Programming

By transmitting/receiving commands and data in the selected communication mode, operations such as writing to the flash memory are performed. Table 9-2 shows the major functions of flash memory programming.

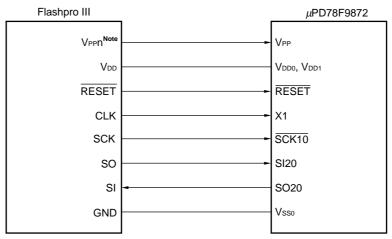

Function	Description
Batch erase	Erases all contents of memory
Batch blank check	Checks erased state of entire memory
Data write	Write to flash memory based on write start address and number of data written (number of bytes)
Batch verify	Compares all contents of memory with input data

Table 9-2. Functions of Flash Memory Programming

9.3 Flashpro III Connection Example

Figures 9-2 shows the connection in the Flashpro III and the μ PD78F9872.

Figure 9-2. Flashpro III Connection in 3-wired Serial I/O Mode

Note n = 1, 2

9.4 Example of Settings for Flashpro III (PG-FP3)

Set as follows when writing to flash memory using the Flashpro III (PG-FP3).

<1> Download the parameter file.

<2> Select the serial mode and the serial clock using the type command.

<3> The following is a setting example using the PG-FP3.

Table 9-3. Example Using PG-FP3

Communication mode	Setting exampl	Number of VPP pulses ^{Note1}	
3-wired serial I/O mode	COMM PORT	SIO ch-0	0
	CPU CLK	On target board	
	In Flashpro In Flashpro 2.0 MHz or 4.0 MHz		
	SIO CLK	1.0 MHz	

- **Note** The number of VPP pulses supplied from the Flashpro III during serial communication initialization. The pins to be used in communication are determined by this number of pulses.
- Remark COMM PORT : Selection of serial port
 - SIO CLK: Selection of serial clock frequencyCPU CLK: Selection of CPU clock source to be input

10. INSTRUCTION SET OVERVIEW

This section lists the μ PD78F9872 instruction set.

10.1 Conventions

10.1.1 Operand identifiers and description methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, \$, and [], are keywords and must be described as they are. Each symbol has the following meaning.

•	#:	Immediate data specification	• \$:	Relative address specification
---	----	------------------------------	-------	--------------------------------

• !: Absolute address specification • []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #,!, \$, or [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Identifier	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7),
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol
saddr	FE20H to FF1FH immediate data or label
saddrp	FE20H to FF1FH immediate data or label (even address only)
addr16 addr5	0000H to FFFFH immediate data or label (Only even addresses for 16-bit data transfer instructions) 0040H to 007FH immediate data or label (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

Table 10-1. Operand Identifiers and Description Methods

10.1.2	Descriptions of the operation field
A:	A register; 8-bit accumulator
X:	X register
B:	B register
C:	C register
D:	D register
E:	E register
H:	H register
L:	L register
AX:	AX register pair; 16-bit accumulator
BC:	BC register pair
DE:	DE register pair
HL:	HL register pair
PC:	Program counter
SP:	Stack pointer
PS\	W: Program status word
CY:	Carry flag
AC:	Auxiliary carry flag
Z:	Zero flag
IE:	Interrupt request enable flag
NM	IS: Non-maskable interrupt servicing flag
():	Memory contents indicated by address or register contents in parentheses
Χн,	XL: Higher 8 bits and lower 8 bits of 16-bit register
∧:	Logical product (AND)
∨:	Logical sum (OR)
∀:	Exclusive OR
	-: Inverted data
add	Ir16: 16-bit immediate data or label
jdis	p8: Signed 8-bit data (displacement value)

10.1.3 Description of the flag operation field

- (Blank): Not affected
- 0: Cleared to 0
- 1: Set to 1
- ×: Set/cleared according to the result
- R: Previously saved value is restored

10.2 Operations

Maamania	Operand	Dutoo	Clock	Operation	Flags
Mnemonic	Operand	Bytes			Z AC C
MOV	r. #byte	3	6	$r \leftarrow byte$	
	saddr, #byte	3	6	$(saddr) \leftarrow byte$	
	sfr, #byte	3	6	sfr ← byte	
	A, r ^{Note 1}	2	4	$A \leftarrow r$	
	r, A ^{Note 1}	2	4	$r \leftarrow A$	
	A, saddr	2	4	$A \leftarrow (saddr)$	
	saddr, A	2	4	$(saddr) \leftarrow A$	
	A, sfr	2	4	$A \leftarrow sfr$	
	sfr, A	2	4	$sfr \leftarrow A$	
	A, !addr16	3	8	$A \leftarrow (addr16)$	
	!addr16, A	3	8	$(addr16) \leftarrow A$	
	PSW, #byte	3	6	$PSW \leftarrow byte$	× × ×
	A, PSW	2	4	$A \gets PSW$	
	PSW, A	2	4	$PSW \leftarrow A$	× × ×
	A, [DE]	1	6	$A \leftarrow (DE)$	
	[DE], A	1	6	$(DE) \leftarrow A$	
	A, [HL]	1	6	$A \leftarrow (HL)$	
	[HL], A	1	6	$(HL) \leftarrow A$	
	A, [HL + byte]	2	6	$A \gets (HL + byte)$	
	[HL + byte], A	2	6	$(HL + byte) \leftarrow A$	
ХСН	A, X	1	4	$A \longleftrightarrow X$	
	A, r ^{Note 2}	2	6	$A \leftarrow \rightarrow r$	
	A, saddr	2	6	$A \longleftrightarrow (saddr)$	
	A, sfr	2	6	$A \longleftrightarrow (sfr)$	
	A, [DE]	1	8	$A \longleftrightarrow (\mathsf{DE)}$	
	A, [HL]	1	8	$A \longleftrightarrow (HL)$	
	A, [HL + byte]	2	8	$A \longleftrightarrow (HL+byte)$	
MOVW	rp, #word	3	6	$rp \leftarrow word$	
	AX, saddrp	2	6	$AX \gets (saddrp)$	
	saddrp, AX	2	8	$(saddrp) \leftarrow AX$	
	AX, rp ^{Note 3}	1	4	$AX \leftarrow rp$	
	rp, AX ^{Note 3}	1	4	$rp \leftarrow AX$	

Notes 1. Except r = A

2. Except r = A, X

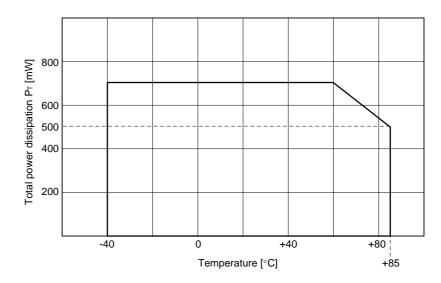
3. Only when rp = BC, DE, HL

Mnemonic	Operand	Putoo	Clock	Operation		Flag	js
winemonic	Operand	Bytes		Operation	Z	AC	CY
XCHW	AX, rp ^{Note}	1	8	$AX \leftarrow \rightarrow rp$			
ADD	A, #byte	2	4	A, CY \leftarrow A + byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	×	×	×
	A, r	2	4	A, CY \leftarrow A + r	×	×	×
	A, saddr	2	4	A, CY \leftarrow A + (saddr)	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A + (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A + (HL)	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A + (HL + byte)	×	×	×
ADDC	A, #byte	2	4	A, CY \leftarrow A + byte + CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×
	A, r	2	4	$A,CY \gets A + r + CY$	×	×	×
	A, saddr	2	4	$A, CY \gets A\text{+} (saddr) + CY$	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A+ (addr16) +CY	×	×	×
	A, [HL]	1	6	$A,CY \gets A + (HL) + CY$	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A+ (HL + byte) + CY	×	×	×
SUB	A, #byte	2	4	A, CY \leftarrow A – byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte	×	×	×
	A, r	2	4	A, CY \leftarrow A – r	×	×	×
	A, saddr	2	4	A, CY \leftarrow A – (saddr)	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A – (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A – (HL)	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte)	×	×	×
SUBC	A, #byte	2	4	A, CY \leftarrow A – byte – CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte – CY	×	×	×
	A, r	2	4	$A,CY\leftarrowA-r-CY$	×	×	×
	A, saddr	2	4	$A, CY \gets A - (saddr) - CY$	×	×	×
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	×	×	×
	A, [HL]	1	6	$A,CY\leftarrowA-(HL)-CY$	×	×	×
	A, [HL + byte]	2	6	A, $CY \leftarrow A - (HL + byte) - CY$	×	×	×

Note Only when rp = BC, DE, HL

Masasia	Onemand	Dutes	Cleak	Operation	Flags
Mnemonic	Operand	Bytes	Clock		Z AC C
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×
	A, r	2	4	$A \leftarrow A \land r$	×
	A, saddr	2	4	$A \leftarrow A \land (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×
XOR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×
CMP	A, #byte	2	4	A – byte	× × >
	saddr, #byte	3	6	(saddr) – byte	× × >
	A, r	2	4	A – r	× × >
	A, saddr	2	4	A – (saddr)	× × >
	A, !addr16	3	8	A – (addr16)	× × >
	A, [HL]	1	6	A – (HL)	× × >
	A, [HL + byte]	2	6	A – (HL + byte)	× × >
ADDW	AX, #word	3	6	AX, CY \leftarrow AX + word	× × ×
SUBW	AX, #word	3	6	AX, CY \leftarrow AX – word	× × >
CMPW	AX, #word	3	6	AX – word	× × >
INC	r	2	4	r ← r + 1	× ×
	saddr	2	4	$(saddr) \leftarrow (saddr) + 1$	× ×
DEC	r	2	4	r ← r− 1	× ×
	saddr	2	4	$(saddr) \leftarrow (saddr) - 1$	× ×

Mnemonic	Operand	Bytes	Clock	Operation		Flage	3
Winemonie	operand	Dytes			Z	AC	C١
INCW	rp	1	4	$rp \leftarrow rp + 1$			
DECW	rp	1	4	$rp \leftarrow rp - 1$			
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$			×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$			×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m \cdot 1} \leftarrow A_m) \times 1$			×
ROLC	A, 1	1	2	$(CY \leftarrow A_7,A_0 \leftarrow CY,A_{m+1} \leftarrow A_m) \times 1$			×
SET1	saddr.bit	3	6	$(saddr.bit) \leftarrow 1$			
	sfr.bit	3	6	sfr.bit ← 1			
	A.bit	2	4	A.bit \leftarrow 1			
	PSW.bit	3	6	$PSW.bit \gets 1$	×	×	×
	[HL].bit	2	10	(HL).bit ← 1			
CLR1	saddr.bit	3	6	$(saddr.bit) \leftarrow 0$			
	sfr.bit	3	6	sfr.bit $\leftarrow 0$			
	A.bit	2	4	A.bit $\leftarrow 0$			
	PSW.bit	3	6	PSW.bit ← 0	×	×	×
	[HL].bit	2	10	(HL).bit $\leftarrow 0$			
SET1	CY	1	2	CY ← 1			1
CLR1	CY	1	2	$CY \leftarrow 0$			0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$			×
CALL	!addr16	3	6	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$			
CALLT	[addr5]	1	8	$\begin{array}{l} (SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ PC_{H} \leftarrow (00000000, addr5+1) \\ PC_{L} \leftarrow (00000000, addr5) \\ SP \leftarrow SP-2 \end{array}$			
RET		1	6	$\begin{array}{l} PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), \\ SP \leftarrow SP+2 \end{array}$			
RETI		1	8	$\begin{array}{l} PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ NMIS \leftarrow 0 \end{array}$	R	R	R
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
	rp	1	4	$(SP - 1) \leftarrow rp_{H}, (SP - 2) \leftarrow rp_{L},$ $SP \leftarrow SP - 2$			
POP	PSW	1	4	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
	rp	1	6	$r_{PH} \leftarrow (SP + 1), r_{PL} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	$AX \leftarrow SP$			


Masasia	Onerrord	Dutes	es Clock	On anti-	Flags
Mnemonic	Operand	Bytes		Operation	Z AC CY
BR	!addr16	3	6	$PC \leftarrow addr16$	
	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$	
	AX	1	6	$PC_{H} \leftarrow A, PC_{L} \leftarrow X$	
BC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$	
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$	
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
BT	saddr.bit, \$saddr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 1	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1	
	A.bit, \$saddr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1	
	PSW.bit \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1	
BF	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0	
	A.bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0	
	PSW.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if $B \neq 0$	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then PC \leftarrow PC + 2 + jdisp8 if C $\neq 0$	
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if (saddr) $\neq 0$	
NOP		1	2	No Operation	
EI		3	6	IE ← 1 (Enable Interrupt)	
DI		3	6	$IE \leftarrow 0$ (Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set Stop Mode	

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.3 to +6.5	V
	VLOAD		VDD-45 to VDD + 0.3	V
	Vpp		-0.3 to +10.5	V
Input voltage	VII	P00 to P07, P10 to P12, P20 to P25, X1, X2, XT1, XT2, RESET	-0.3 to Vbb + 0.3	V
	Vı2	FIP0 to FIP24	Vdd -45 to Vdd + 0.3	V
Output voltage	Vo1		-0.3 to VDD + 0.3	V
	Vo2	FIP0 to FIP24	Vdd -45 to Vdd + 0.3	V
Output current, high	Іон	Per pin for P00 to P07, P10 to P12, P20 to P25	-10	mA
		Total for P00 to P07, P10 to P12, P20 to P25	-30	mA
		Per pin for FIP0 to FIP24	-30	mA
		Total for FIP0 to FIP24	-300	mA
Output current, low	lol	Per pin for P00 to P07, P10 to P12, P20 to P25	30	mA
		Total for P00 to P07, P10 to P12, P20 to P25	160	mA
Total loss	P⊤ ^{Note}	T _A = -40 to +60 °C	700	mW
			500	mW
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +125	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Note Total power dissipation differs depending on the temperature (see the following figure).

How to calculate total power dissipation

Total power dissipation of the μ PD78F9872 can be divided to the following three. The sum of the three power dissipation should be less than the total power dissipation PT rated in the above figure (80% or less of ratings is recommended.)

- <1> CPU power dissipation: calculate VDD (MAX.). x IDD (MAX.).
- <2> Output pin power dissipation: Power dissipation when maximum current flows into VFD output pins.
- <3> Pull-down resistor power dissipation: Power dissipation by the Pull-down resistors incorporated in VFD output pins.

The following is how to calculate total power dissipation for the example in Figure 11-1.

Example Assume the following conditions:

VDD = 5.5 V, 5.0-MHz	VDD = 5.5 V, 5.0-MHz oscillation						
Supply current (IDD) =	= 15.0 mA						
VFD output:	11 grids x 10 segments (Blanking width = 1/16)						
	Maximum current at the grid pin is 15 mA.						
	Maximum current at the segment pin is 5 mA.						
	At the key scan timing, VFD output pin is OFF.						
VFD output voltage:	grid $Vod = Vdd - 2 V$ (voltage drop of 2 V)						
Segment $V_{OD} = V_{DD} - 0.5 V$ (voltage drop of 0.5 V)							
Fluorescent display control voltage (VLOAD) = - 35 V							
Pull-down resistor = 30 k Ω							

By placing the above conditions in calculation <1> to <3>, the total dissipation can be worked out.

<1> CPU power dissipation: 5.5 V x 15.0 mA = 82.5 mW

<2> Output pin power dissipation:

Grid
$$(V_{DD} - V_{OD}) \times \frac{\text{Total current value of each grid}}{\text{The number of grids + 1}} \times (1 - Blanking width)$$

= 2 V x
$$\frac{15 \text{ mA x } 11 \text{ Grids}}{11 \text{ Grids } + 1}$$
 x (1 - 1/16) = 25.8 mW

Segment (VDD - VOD) x Total segment current value of illuminated dots The number of grids + 1 x (1- Blanking width)

= 0.5 V x
$$\frac{5 \text{ mA x 31 dots}}{11 \text{ Grids + 1}}$$
 x (1- 1/16) = 6.1 mW

<3> Pull-down resistor power dissipation:

Grid
$$\frac{(V_{DD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{\text{The number of grids}}{\text{The number of grids + 1}} \times (1 - \text{Blanking width})$$
$$= \frac{(5.5 \text{ V} - 2 \text{ V} - (-35 \text{ V}))^2}{30 \text{ k}\Omega} \times \frac{11 \text{ Grids}}{11 \text{ Grids + 1}} \times (1 - 1/16) = 42.5 \text{ mW}$$
Sgment
$$\frac{(V_{DD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{\text{The number of illuminated dots}}{\text{The number of grids + 1}} \times (1 - \text{Blanking width})$$
$$= \frac{(5.5 \text{ V} - 2 \text{ V} - (-35 \text{ V}))^2}{30 \text{ k}\Omega} \times \frac{31 \text{ dots}}{11 \text{ Grids + 1}} \times (1 - 1/16) = 129.2 \text{ mW}}$$

Total power dissipation = <1> + <2> + <3> = 82.5 + 25.8 + 6.1 + 42.5 + 129.2 = 286.1 mW

In this example, the total power dissipation does not exceed the rating of the total power dissipation, it is necessary to lower no problem in power dissipation.

However, when the total power dissipation exceeds the rating of the total power dissipation, it is necessary to lower the power dissipation. To reduce power dissipation, reduce the number of pull-down resistor.

	_			
FA02H, FA01H, FA00H 0	0 0 0 1 1 1 0 1	0 0 0 0 0	0 0 0 0 0	0 0 1 TO
FA09H, FA08H, FA07H 0	0 0 0 1 0 1 1 0	0 0 0 0 0	0 0 0 0 0	0 1 0 T1
FA10H, FA0FH, FA0EH 0	0 0 0 1 0 0 1 1	1 1 0 0 0	0 0 0 0 0	1 0 0 T2
FA17H, FA16H, FA15H 0	0 0 0 0 0 0 1	1 0 0 0 0	0 0 0 0 1	0 0 0 T3
FA1EH, FA1DH, FA1CH 0	0 0 1 0 0 0 0 0	0 0 0 0 0	0 0 0 1 0	0 0 0 T4
FA25H, FA24H, FA23H 0	0 0 0 1 1 0 1 1	0 1 0 0 0	0 0 1 0 0	0 0 0 T5
FA2CH, FA2BH, FA2AH 0	0,0,0,1,10,0,1	1 0 0 0 0	0 1 0 0 0	0 0 0 T6
FA33H, FA32H, FA31H 1	0 0 0 0 0 0 0	0 0 0 0 0	1 0 0 0 0	0 0 0 T7
FA3AH, FA39H, FA38H 0	0 1 0 0 0 0 0 1	1 0 0 0 1	0 0 0 0 0	0 0 0 T8
FA41H, FA40H, FA3FH 0	0 0 0 0 0 0 1	1 0 0 1 0	0 0 0 0 0	0 0 0 T9
FA48H, FA47H, FA46H 0		0 1 0 0	0 0 0 0 0	0 0 0 T10
\neg		\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	
(The output pint	0 19 18 17 16 15 14 13 1	2 11 10 9 8	7 6 5 4 3	2 1 0
FIP0 to FIP20)	i li lh lg lf le ld lc	b a		
SUN M	ION TUE WED		SAT	
	—, ,—, ,—, ,	<u> </u>		
	<u>j•</u> 	—¦ ¦—¦	¦¦ ¦¦	f <u>g</u> b
· · · · · · · · · · · · · · · · · · ·		' ''	'—' ' — '	
0 1	2 3 4	5 6	7 8	9 10

Figure 11-1. Display Example of 10 Segments-11 Digits

Display Data Memory

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Note 1 Oscillation frequency (fx)	V _{DD} = oscillation voltage range	1.0		5.0	MHz
		Note 2 Oscillation stabilization time	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal resonator		Oscillation frequency (fx)		1.0		5.0	MHz
		Note 2 Oscillation stabilization time	V _{DD} = 4.5 to 5.5 V			10	ms
						30	

Main System Clock Oscillator Characteristics (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator that stabilizes oscillation within the oscillation wait time.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vsso.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency $(f_{XT})^{Note 1}$		32	32.768	35	kHz
		Oscillation stabilization time	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	'					10	s

Notes 1. Indicates only oscillator characteristics. Refer AC Characteristics for instruction execution time.
 Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vsso.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Output current,	Іон	P00 to P07, P10 to P12,	Per pin			-1	mA
high		P20 to P25	Total for all pins			-15	mA
Output current, low	I OL	P00 to P07, P10 to P12,	Per pin			10	mA
		P20 to P25	Total for all pins			80	mA
Output voltage, high	Vон	P00 to P07, P10 to P12, P20 to P25	V _{DD} = 4.5 to 5.5 V, Іон = -1 mA	Vdd - 1.0			V
			V _{DD} = 2.7 to 5.5 V, Іон = -100 <i>µ</i> А	Vdd - 0.5			V
Output voltage, low	Vol	P00 to P07, P10 to P12, P20 to P25	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ IoL = 10 mA			1.0	V
			$V_{DD} = 2.7 \text{ to } 5.5 \text{ V},$ IoL = 400 μ A			0.5	V
Input voltage, high	VIH1	P00 to P07, P10 to P12, P21		0.7 Vdd		Vdd	V
	VIH2	RESET, P20, P22 to P25		0.8 Vdd		Vdd	V
	Vінз	X1, X2, XT1, XT2	V _{DD} = 4.5 to 5.5 V	Vdd - 0.5		Vdd	V
				Vdd - 0.1		Vdd	V
Input voltage, low	VIL1	P00 to P07, P10 to P12, P21		0		0.3 VDD	V
	VIL2	RESET, P20, P22 to P25		0		0.2 VDD	V
·	VIL3	X1, X2, XT1, XT2	V _{DD} = 4.5 to 5.5 V	0		0.4	V
				0		0.1	V
Input leakage current, high	Ішні	P00 to P07, P10 to P12, P20 to P25, RESET	Vi = Vdd			3	μA
-	LIH2	X1, X2, XT1, XT2				20	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P12, P20 to P25, RESET	V1 = 0 V			-3	μA
	LIL2	X1, X2, XT1, XT2				-20	μA
Output leakage current, high	Ісон	P00 to P07, P10 to P12, P20 to P25, FIP0 to FIP8, FIP9/P97 to FIP16/P90, FIP17/P87 to FIP24/P80	Vo = Vdd			3	μΑ
Output leakage current, low	ILOL1	P00 to P07, P10 to P12, P20 to P25	Vo = 0 V			-3	μA
,	ILOL2	FIP0 to FIP8, FIP9/P97 to FIP16/P90, FIP17/P87 to FIP24/P80				-10	μA
VFD output current	Юр	FIP0 to FIP24, V _{DD} = 4.5 to 5.5 V	Vod = Vload-2.0 V			-15	mA
Software pull-up resistor	R₁	$V_{IN} = 0$ V, P00 to P07, P10 to	P12, P20 to P25	50	100	200	kΩ
On-chip pull-down resistor (VLOAD connection)	R2	FIP0 to FIP8		30	60	135	kΩ

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Power supply	Note 1 IDD1	5.0-MHz crystal oscillation	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		5.0	15.0	mA
current		operating mode	Note 3 VDD = 3.0 V ± 10%		2.0	5.0	mA
	Note 1	5.0-MHz crystal oscillation	Note 3 VDD = $5.0 \text{ V} \pm 10\%$		1.2	3.6	mA
		HALT mode	Note 3 VDD = $3.0 \text{ V} \pm 10\%$		0.5	1.5	mA
	Note 1	32.768-kHz crystal	$V\text{dd} = 5.0 \text{ V} \pm 10\%$		150	280	μA
		oscillation operating Note 3 mode	$V_{DD}=3.0~V\pm10\%$		120	190	μΑ
	Note 1 IDD4	32.768-kHz crystal	$V\text{dd} = 5.0 \text{ V} \pm 10\%$		25	55	μA
		oscillation HALT mode Note 3	$V\text{dd}=3.0~\text{V}\pm10\%$		5	25	μA
	Note 1 IDD5	32.768-kHz crystal stop	$V\text{dd}=5.0~\text{V}\pm10\%$		0.1	10	μA
		STOP mode	$V\text{dd}=3.0~\text{V}\pm10\%$		0.05	10	μA

DC Characteristics (T_A = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)

Notes 1. The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) is not included.

2. During high-speed mode operation (when the processor clock control register (PCC) is set to 00H

3. During low-speed mode operation (when PCC is set to 02H)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics

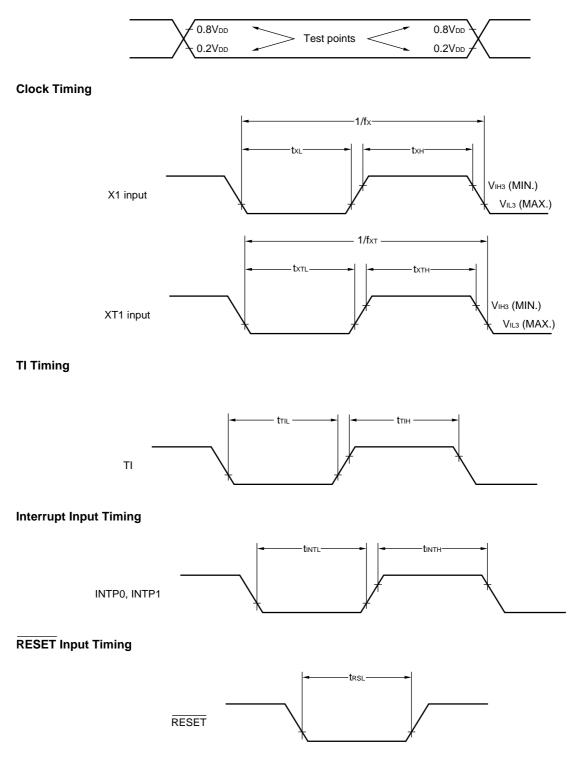
(1) Basic operation ($T_A = -40$ to +85°C, $V_{DD} = 2.7$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operation based on the main system clock	0.4		8	μs
(minimum instruction execution time)		Operation based on the subsystem clock	114	122	125	μs
TI input high-/low- level width	t⊤ıн, t⊤ı∟		2/Fcount +0.2			μs
Interrupt input high- /low-level width	tinth, tintl	INTP0, INTP1	10			μs
RESET input low- level width	trs∟		10			μs

Remark Fcount is a count clock selected by 8-bit remote control timer 50.

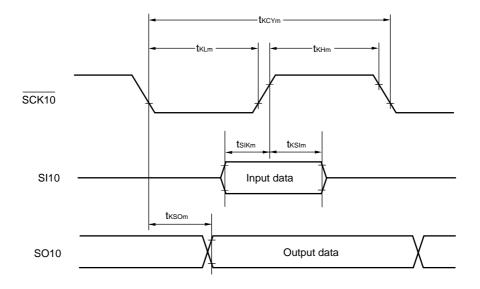
(2) Serial interface 10 (T_A = -40 to +85 °C, VDD = 2.7 to 5.5 V)

(a) 3-wire serial I/O mode (SCK10...Internal clock)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkCY1		800			ns
SCK10 high-/low- level width	t кн1, t к∟1		tксү1/2–50			ns
SI10 setup time (to SCK10 ↑)	tsıĸı		150			ns
SI10 hold time (from SCK10 ↑)	tksi1		400			ns
SO10 output delay time from $\overline{\text{SCK10}}\downarrow$	tkso1	$R = 1 k\Omega, C = 100 pF^{Note}$	0		200	ns

Note R and C are the load resistance and load capacitance of the SO10 output line.

(b) 3-wire serial I/O mode (SCK10...External clock)

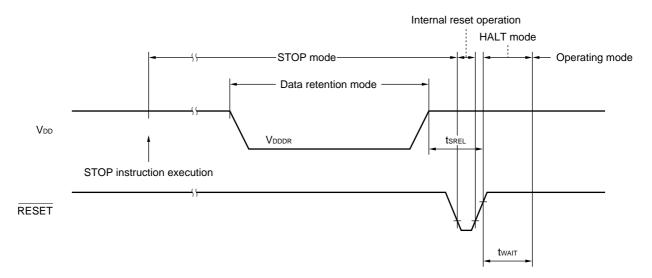

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	t ксү2		800			ns
SCK10 high-/low- level width	t кн2, t кL2		400			ns
SI10 setup time (to SCK10 ↑)	tsik2		100			ns
SI10 hold time (from SCK10 ↑)	tĸsı2		400			ns
SO10 output delay time from $\overline{\text{SCK10}}\downarrow$	tkso2	$R = 1 k\Omega$, $C = 100 pF^{Note}$	0		300	ns

Note R and C are the load resistance and load capacitance of the SO10 output line.

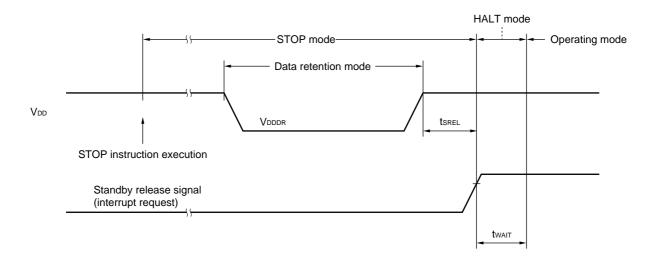
Serial Transfer Timing

3-wire serial I/O mode:

Data Memory Stop Mode Low Power Supply Voltage Data Retention Characteristics (T_A = -40 to +85 °C)

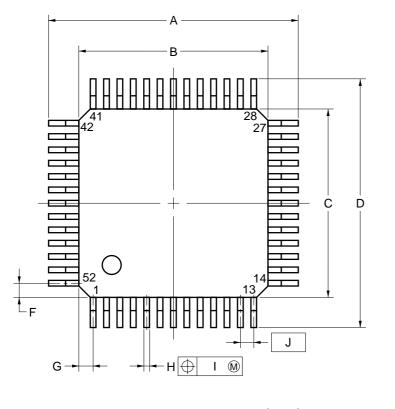

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		2.0		5.5	V
Release signal set time	t srel		0			μs
Oscillation stabilization	t wait	Release by RESET		2 ¹⁵ /fx		s
wait time ^{Note 1}		Release by interrupt request		Note 2		s

Notes 1. The oscillation stabilization time is the time the CPU operation is stopped to prevent unstable operation when oscillation starts.

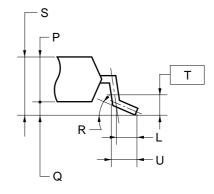

2. By using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS), 2^{12} /fx, 2^{15} /fx, or 2^{17} /fx can be selected.

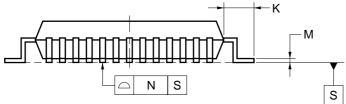
Remark fx: Main system clock oscillation frequency

Data Retention Timing (STOP Mode Release by RESET)



Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)




12. PACKAGE DRAWING

52-PIN PLASTIC LQFP (10x10)

detail of lead end

ITEM	MILLIMETERS
A	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.1
G	1.1
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.0±0.2
L	0.5
М	$0.17\substack{+0.03 \\ -0.05}$
N	0.10
Р	1.4
Q	0.1±0.05
R	$3^{\circ + 4^{\circ}}_{-3^{\circ}}$
S	1.5±0.1
Т	0.25
U	0.6±0.15
	S52GB-65-8ET-1

APPENDIX A. DIFFERENCES BETWEEN $\mu \text{PD78F9872}$ AND MASK ROM VERSIONS

The μ PD78F9872 is flash memory version of the Mask ROM version. The differences between the μ PD78F9872 and the Mask ROM versions are shown in Table A-1.

	Product Name	Flash Memory Version	Mask ROM Version	
Item		μPD78F9872	μPD789870	μPD789871
Internal	ROM	16 KB	4 KB	8 KB
memory	High-speed RAM	512 bytes		
	VFD display RAM	96 bytes		
IC pin		Not provided	Provided	
VPP pin		Provided	Not provided	
Pull-down i	resistor in FIP0 to FIP8	Provided		
•	n with on-chip pull- tor in P80/FIP24 to	Not provided	Provided	
Pull-down i P97/FIP9	resistor in P90/FIP16 to	Not provided	Provided	

Table A-1. Differences between µPD78F9872 and Mask ROM Versions

Caution There are differences in the amount of noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM versions, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering sample, ES) of the mask ROM version.

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD78F9872.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789872 ^{Notes 1, 2, 3}	Device file for μ PD789871 Subseries
Notes 1, 2, 3 CC78K0S-L	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III (Part No. FL-PR3 ^{Note 4} , PG-FP3)	Flash programmer dedicated for on-chip flash memory microcontrollers
FA-52GB Note 4	Flash memory programming adapter for 52-pin plastic QFP (GB-8ET type)

Debugging Tools(1/2)

IE-78K0S-NS In-circuit emulator	In-circuit emulator used to debug hardware or software when application systems which use the 78K/0S Series are developed. The IE-78K0S-NS supports an integrated debugger (ID78K0S-NS). The IE-78K0S-NS is used in combination with an interface adapter for connection to an AC adapter, emulation probe, or host machine.
IE-70000-MC-PS-B AC adapter	Adapter used to supply power from a 100- to 240-V AC outlet
IE-70000-98-IF-C Interface adapter	Adapter required when using the PC-9800 series (excluding notebook PCs) as the host machine for the IE-78K0S-NS (C bus supported)
IE-70000-CD-IF-A PC card/interface	PC card and interface cable required when using a notebook PC as the host machine for the IE-78K0S-NS (PCMCIA socket supported)
IE-70000-PC-IF-C Interface adapter	Adapter required when using an IBM PC/AT TM or compatible as the host machine for the IE-78K0S-NS (ISA bus supported)
IE-70000-PCI-IF Interface adapter	Adapter required when using a PC equipped with a PCI bus as the host machine for the IE-78K0S-NS
IE-789872-NS-EM1 Emulation board	Emulation board used to emulate the peripheral hardware specific to the device. This is used in combination with the in-circuit emulator.
NP-52GB ^{Note 4} Emulation probe	Board to connect an in-circuit emulator to the target system.
SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
ID78K0S-NS Notes 1, 2	Integrated debugger common to 78K/0S Series
DF789872 Notes 1, 2	Device file for μ PD789871 Subseries

Real-Time OS

MX78K0S ^{Notes 1, 2}	OS for 78K/0S Series
-------------------------------	----------------------

Notes 1. Based on the PC-9800 series (Japanese WindowsTM)

- 2. Based on IBM PC/AT and compatibles (Japanese Windows/English Windows)
- 3. Based on the HP9000 series 700[™] (HP-UX[™]), SPARCstation[™] (SunOS[™], Soraris[™]), and NEWS[™] (NEWS-OS[™])
- 4. Product made by and available from Naito Densei Machida Mfg. Co., Ltd. (+81-44-822-3813).

Remark The RA78K0S, CC78K0S, and SM78K0S can be used in combination with the DF789872.

APPENDIX C. RELATED DOCUMENTS

The related document indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD789870, 789871 Preliminary Product Information	To be prepared
μ PD78F9872 Preliminary Product Information	This manual
μ PD789871 Subseries User's Manual	To be prepared
78K/0S Series Instruction User's Manual	U11047E
78K/0, 78K/0S Series Application Note Flash Memory Write	U14458E

Document Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0S Assembler Package	Operation	U11622E
	Assembly Language	U11599E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U11816E
	Language	U11817E
SM78K0S System Simulator Windows based	Reference	U11489E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092E
ID78K0S-NS Windows based	Reference	U12901E
IE-78K0S-NS In-circuit Emulator		U13549E
IE-789872-NS-EM1 Emulation Board		To be Prepared

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
OS for 78K/0S Series MX78K0S	Fundamental	U12938E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Device	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

[MEMO]

[MEMO]

- NOTES FOR CMOS DEVICES —

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy

Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

NIF

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.