Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

mos integrated circuit D78011H(A), 78012H(A), 78013H(A), 78014H(A)

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

Compared to the μ PD78011H, 78012H, 78013H, and 78014H (standard models), the μ PD78011H(A), 78012H(A), 78013H(A), and 78014H(A) employ a stricter quality-assurance program. (NEC calls this quality grade "special grade"). The μ PD78011H(A), 78012H(A), 78013H(A), and 78014H(A) are the products in the μ PD78014H subseries within the 78K/0 series.

Compared with the older μ PD78018F subseries, this subseries reduces the EMI (Electro Magnetic Interface) noise generated from the microcontroller.

Functions are described in detail in the following User's Manual, which should be read when carring out design work.

 μ PD78014H Subseries User's Manual: Planned to publish 78K/0 Series User's Manual – Instruction: IEU-1372

FEATURES

- · Low EMI noise model
- Large on-chip ROM & RAM

Item	Program	Data M	lemory	
	Memory	Internal High-	Internal	Package
Product Name	(ROM)	Speed RAM	Buffer RAM	
μPD78011H(A)	8K bytes	512 bytes	32 bytes	64-pin plastic shrink DIP (750 mil)
μPD78012H(A)	16K bytes			64-pin plastic QFP (14 × 14 mm)
μPD78013H(A)	24K bytes	1024 bytes		
μPD78014H(A)	32K bytes			

• External memory expansion space : 64K bytes

• Instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs)

• I/O ports: 53 (N-ch open-drain: 4)

• 8-bit resolution A/D converter: 8 channels

· Serial interface: 2 channels

• Timer: 5 channels

• Supply voltage: VDD = 1.8 to 5.5 V

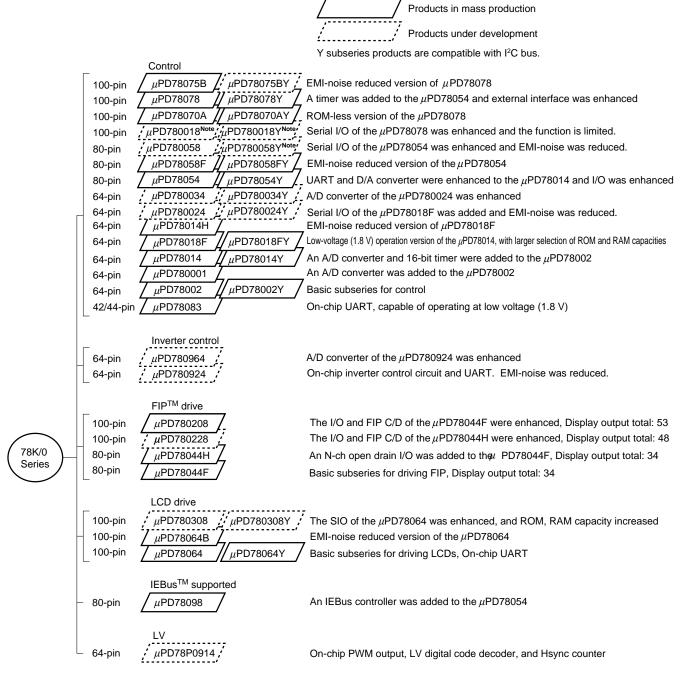
APPLICATION FIELD

Control unit of automotive, gas leak breaker, and safety devices, etc.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package
μ PD78011HCW(A)-×××	64-pin plastic shrink DIP (750 mil)
μ PD78011HGC(A)- $\times\times$ -AB8	64-pin plastic QFP (14 × 14 mm)
μ PD78012HCW(A)- $\times\!\times$	64-pin plastic shrink DIP (750 mil)
μ PD78012HGC(A)- $\times\times$ -AB8	64-pin plastic QFP (14 × 14 mm)
μ PD78013HCW(A)- \times \times	64-pin plastic shrink DIP (750 mil)
μ PD78013HGC(A)- $\times\times$ -AB8	64-pin plastic QFP (14 × 14 mm)
μ PD78014HCW(A)- \times \times	64-pin plastic shrink DIP (750 mil)
μ PD78014HGC(A)- \times \times -AB8	64-pin plastic QFP (14 × 14 mm)


Remark xxx indicates ROM code No.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

78K/0 Series Expansion

The following shows the 78K/0 Series products development. Subseries name are shown inside frames.

Note Under planning

Phase-out/Discontinued

The following lists the main functional differences between subseries products.

	Function	ROM		Tin	ner		-	10-bit	8-bit	Serial Interface	I/O	VDD MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32K-40K	4ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	88	1.8 V	0
	μPD78078	48K-60K											
	μPD78070A	_									61	2.7 V	
	μPD780018	48K-60K							_	2ch (time division 3-wire: 1ch)	88		
	μPD780058	24K-60K	2ch						2ch	3ch (time division UART: 1ch)	68	1.8 V	
	μPD78058F	48K-60K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16K-60K										2.0 V	
	μPD780034	8K-32K					_	8ch	-	3ch (UART: 1ch,	51	1.8 V	
	μPD780024						8ch	_		time division 3-wire: 1ch)			
	μPD78014H									2ch	53	1.8 V	
	μPD78018F	8K-60K											
	μPD78014	8K-32K										2.7 V	
	μPD780001	8K		_	_					1ch	39		_
	μPD78002	8K-16K			1ch		_				53		0
	μPD78083				_		8ch			1ch (UART: 1ch)	33	1.8 V	_
Inverter	μPD780964	8K-32K	3ch	Note	-	1ch	_	8ch	-	2ch (UART: 2ch)	47	2.7 V	0
control	μPD780924						8ch	-					
FIP	μPD780208	32K-60K	2ch	1ch	1ch	1ch	8ch	-	_	2ch	74	2.7 V	_
drive	μPD780228	48K-60K	3ch	_	_					1ch	72	4.5 V	
	μPD78044H	32K-48K	2ch	1ch	1ch						68	2.7 V	
	μPD78044F	16K-40K								2ch			
LCD	μPD780308	48K-60K	2ch	1ch	1ch	1ch	8ch	-	_	3ch (time division UART: 1ch)	57	1.8 V	_
drive	μPD78064B	32K								2ch (UART: 1ch)		2.0 V	
	μPD78064	16K-32K											
IEBus supported	μPD78098	32K-60K	2ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	69	2.7 V	0
LV	μPD78P0914	32K	6ch	_	_	1ch	8ch	_	_	2ch	54	4.5 V	0

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION

Product Na	Item	μPD78011H(A)	μPD78012H(A)	μPD78013H(A)	μPD78014H(A)		
	ROM	8K bytes	16K bytes	24K bytes	32K bytes		
Internal	High-speed RAM		bytes	,	bytes		
memory	Buffer RAM	32 bytes					
Memory sp	pace	64K bytes					
General-pu	irpose registers	8 bits × 32 registers (8 b	its × 8 registers × 4 banks	s)			
Instruction	cycle	On-chip instruction execu	ution time cycle modificat	ion function			
	nen main system ock selected	0.4 μs/0.8 μs/1.6 μs/3.2	us/6.4 μs (at 10.0 MHz op	peration)			
	nen subsystem ock selected	122 μs (at 32.768 kHz op	peration)				
Instruction	set		3 bits × 8 bits,16 bits ÷ 8 eset, test, boolean operat	,			
I/O ports		Total CMOS input CMOS I/O N-channel open-drain I (15 V withstand voltage					
A/D conver	rter	 8-bit resolution × 8 channels Operable over a wide power supply voltage range: AV_{DD} = 1.8 to 5.5 V 					
Serial inter	face	3-wire serial I/O/SBI /2-wire serial I/O mode selectable: 1 channel 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel					
Timer		16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel					
Timer outp	ut	3 (14-bit PWM output × 1	1)				
Clock outp	ut	39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)					
Buzzer out	put	2.4 kHz, 4.9 kHz, 9.8 kH	z (at main system clock:	10.0 MHz operation)			
Vectored	Maskable	Internal : 8, External :	4				
interrupt	Non-maskable	Internal : 1					
sources	Software	1					
Test input		Internal : 1, External : 1					
Supply volt	tage	V _{DD} = 1.8 to 5.5 V					
Operating a temperatur		T _A = -40 to +85°C					
Package		64-pin plastic shrink DI 64-pin plastic QFP (14					

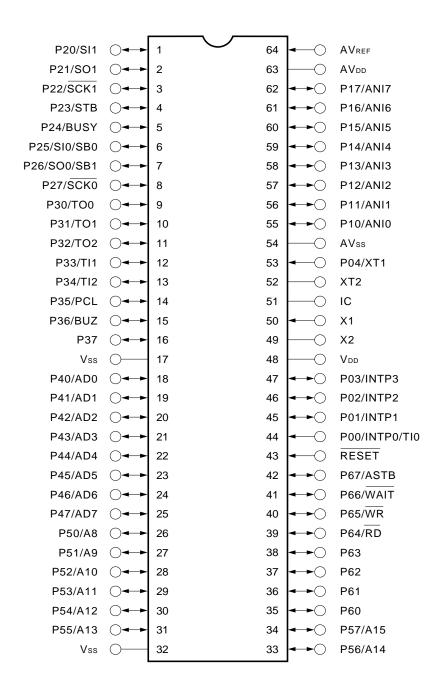
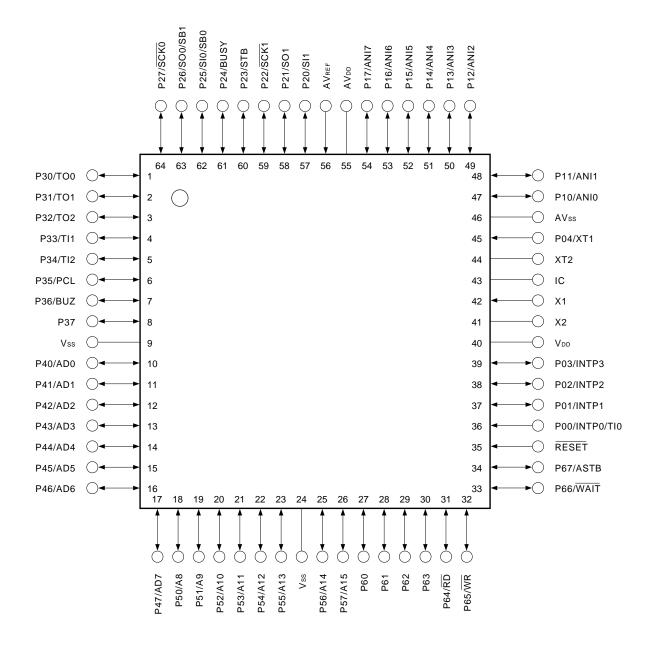


TABLE OF CONTENTS

1.	PIN CONFIGURATION (Top View)	7
2.	BLOCK DIAGRAM	10
3.	PIN FUNCTIONS	
	3.1 PORT PINS	11
	3.2 OTHER PORTS	
	3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS	14
4.	MEMORY SPACE	16
5.	PERIPHERAL HARDWARE FUNCTION FEATURES	
	5.1 PORTS	
	5.2 CLOCK GENERATOR	
	5.3 TIMER/EVENT COUNTER	
	5.4 CLOCK OUTPUT CONTROL CIRCUIT	
	5.5 BUZZER OUTPUT CONTROL CIRCUIT	
	5.6 A/D CONVERTER	
	5.7 SERIAL INTERFACES	23
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	
	6.1 INTERRUPT FUNCTIONS	
	6.2 TEST FUNCTIONS	28
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	29
8.	STANDBY FUNCTIONS	29
9.	RESET FUNCTIONS	29
10.	INSTRUCTION SET	30
11.	ELECTRICAL SPECIFICATIONS	33
12.	PACKAGE DRAWINGS	57
13.	RECOMMENDED SOLDERING CONDITIONS	59
APF	PENDIX A. DEVELOPMENT TOOLS	60
ΔРΙ	PENDIX R. RELATED DOCUMENTS	62

- 1. PIN CONFIGURATION (Top View)
 - 64-Pin Plastic Shrink DIP (750 mil) $\mu \text{PD78011HCW(A)-}\times\times\times, 78012\text{HCW(A)-}\times\times\times, 78013\text{HCW(A)-}\times\times\times, 78014\text{HCW(A)-}\times\times\times$


Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.

- 2. The AV_{DD} pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AV_{DD} pin to a power supply of the same voltage as V_{DD}.
- 3. The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

Phase-out/Discontinued

• 64-Pin Plastic QFP (14 × 14 mm) μPD78011HGC(A)-×××-AB8, 78012HGC(A)-×××-AB8, 78013HGC(A)-×××-AB8, 78014HGC(A)-×××-AB8

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.

- 2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin to a power supply of the same voltage as VDD.
- 3. The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

μ PD78011H(A), 78012H(A), 78013H(A), 78014H(A)

Phase-out/Discontinued

: Address Bus A8-A15 P60-P67 : Port 6

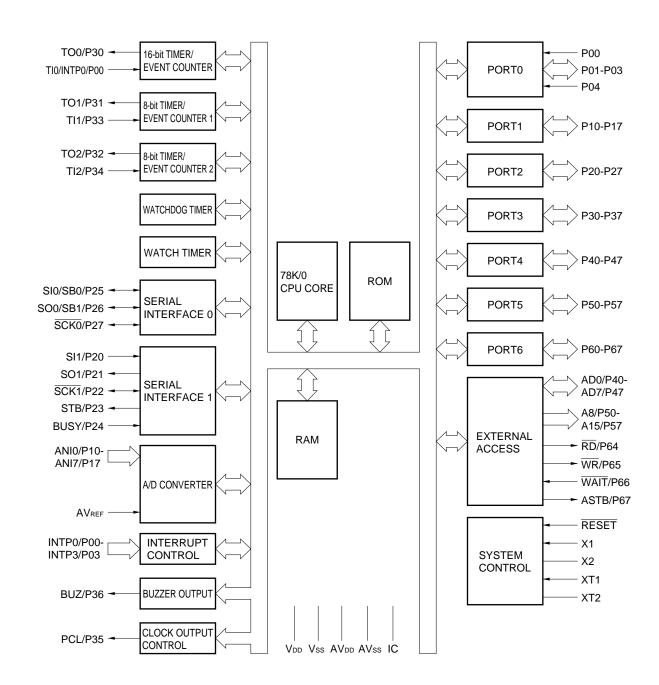
AD0-AD7 : Address/Data Bus PCL : Programmable Clock

: Analog Input ANIO-ANI7 RD : Read Strobe

ASTB : Address Strobe RESET : Reset : Analog Power Supply AV_{DD} SB0, SB1 : Serial Bus : Analog Reference Voltage **AV**REF SCK0, SCK1 : Serial Clock : Analog Ground **AVss** SIO, SI1 : Serial Input

BUSY : Busy SO0, SO1 : Serial Output

BUZ : Buzzer Clock STB : Strobe : Internally Connected IC TI0-TI2 : Timer Input INTP0-INTP3 : Interrupt from Peripherals TO0-TO2 : Timer Output : Port 0 VDD


P00-P04 : Power Supply : Port 1 P10-P17 Vss : Ground P20-P27 : Port 2 : Wait WAIT

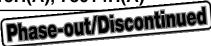
P30-P37 : Port 3 $\overline{\mathsf{WR}}$: Write Strobe

: Port 4 P40-P47 X1, X2 : Crystal (Main System Clock) P50-P57 : Port 5 XT1, XT2 : Crystal (Subsystem Clock)

Phase-out/Discontinued

2. BLOCK DIAGRAM

Remark Internal ROM & RAM capacity varies depending on the product.


3. PIN FUNCTIONS

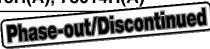
3.1 PORT PINS (1/2)

Pin Name	I/O		Function	On Reset	Dual- Function Pin
P00	Input	Port 0	Input only	Input	INTP0/TI0
P01	Input/	5-bit I/O port	Input/output can be specified bit-wise.	Input	INTP1
P02	output		When used as an input port, on-chip pull-up resistor can be used by software.		INTP2
P03			resistor can be used by software.		INTP3
P04Note 1	Input		Input only	Input	XT1
P10 to P17	Input/ output		n be specified bit-wise. an input port, on-chip pull-up resistor can be used	Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/outpu	•		SO1
P22			n be specified bit-wise. an input port, on-chip pull-up resistor can be used		SCK1
P23		by software.	an input port, on one pull of resister can be used		STB
P24					BUSY
P25					SI0/SB0
P26	1				SO0/SB1
P27					SCK0
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output	•		TO1
P32			Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistor can be used by software.		TO2
P33		by software.			TI1
P34					TI2
P35					PCL
P36					BUZ
P37					_
P40 to P47	Input/ output	When used as a by software.	ut port. n be specified in 8-bit unit. an input port, on-chip pull-up resistor can be used KRIF) is set to 1 by falling edge detection.	Input	AD0 to AD7

- **Notes 1.** When using the P04/XT1 pin as an input port pin, set bit 6 (FRC) of the processor clock control register (PCC) to 1 (do not use the internal feedback resistor of the subsystem clock oscillation circuit).
 - 2. When using the P10/ANI0 through P17/ANI7 pins as the analog input pins of the A/D converter, the internal pull-up resistors are automatically not used.

3.1 PORT PINS (2/2)

Pin Name	I/O	Fu	unction	On Reset	Dual- Function Pin
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit When used as an input port, on- software.	Input	A8 to A15	
P60	Input/	Port 6	N-ch open-drain input/output port.	Input	
P61	output	8-bit input/output port.	On-chip pull-up resistor can be		
P62		Input/output can be specified bit-wise.	specified by mask option.		
P63		Dit-wise.	LED can be driven directly.		
P64			When used as an input port, on-chip		RD
P65			pull-up resistor can be used by soft-		WR
P66			ware.		WAIT
P67					ASTB


Caution Do not manipulate the pins multiplexed with a port pin as follows during A/D conversion; otherwise, the rated total error during A/D conversion may not be satisfied.

- <1> Rewriting the contents of the output latch when the pin is used as an output port pin.
- <2> Changing the output level of the pin used as an output pin even when the pin is not used as a port pin.

3.2 OTHER PORTS (1/2)

Pin Name	I/O	Function	On Reset	Dual- Function Pin
INTP0	Input	External interrupt request input by which the effective edge (rising	Input	P00/TI0
INTP1		edge, falling edge, or both rising edge and falling edge) can be		P01
INTP2		specified.		P02
INTP3		Falling edge detection external interrupt request input.		P03
SI0	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SB0	Input	Serial interface serial data input/output.	Input	P25/SI0
SB1	/output			P26/SO0
SCK0	Input	Serial interface serial clock input/output.	Input	P27
SCK1	/output			P22
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24

3.2 OTHER PORTS (2/2)

Pin Name	I/O	Function	On Reset	Dual- Function Pin
TI0	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (multiplexed with 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
AD0 to AD7	Input /output	Low-order address/data bus at external memory expansion.	Input	P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 and port 5 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.	_	_
AVDD	_	A/D converter analog power supply (multiplexed with a port power pin).	_	_
AVss	_	A/D converter ground potential (multiplexed with a port ground pin).	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	_		_	_
VDD	_	Positive power supply (except port pins).	_	_
Vss	_	Ground potential (except port pins).	_	_
IC	_	Internal connection. Connected to Vss directly.	_	_

- Cautions 1. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin to a power supply of the same voltage as VDD.
 - 2. The AVss pin is multiplexed with an A/D converter ground pin and a port ground pin. In an application where the noise generated from the microcontroller must be reduced, connect AVss pin to a ground line separate from Vss.

3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

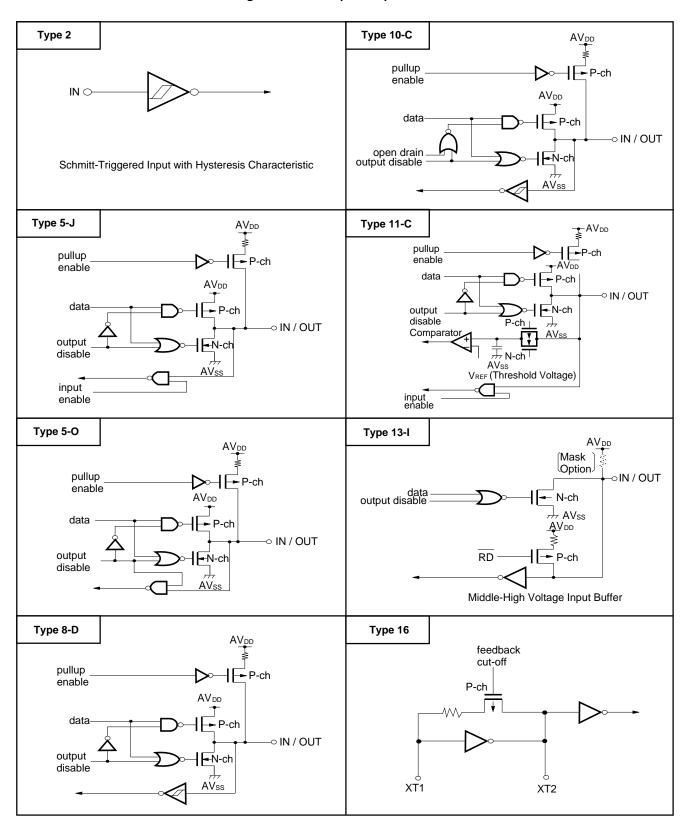

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI0	2	Input	Connected to Vss.
P01/INTP1	8-D	Input/output	Individually connected to Vss via resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connected to V _{DD} or Vss.
P10/ANI0 to P17/ANI7	11-C	Input/output	Individually connected to VDD or Vss via resisitor.
P20/SI1	8-D		
P21/SO1	5-J		
P22/SCK1	8-D		
P23/STB	5-J		
P24/BUSY	8-D		
P25/SI0/SB0	10-C		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/TI1	8-D		
P34/TI2			
P35/PCL	5-J		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-O		Individually connected to VDD via resistor.
P50/A8 to P57/A15	5-J		Individually connected to VDD or Vss via resistor.
P60 to P63	13-I		Individually connected to VDD via resistor.
P64/RD	5-J		Individually connected to VDD or Vss via resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
RESET	2	Input	_
XT2	16	_	Leave open.
AVREF	_		Connected to Vss.
AVDD			Connected to VDD.
AVss			Connected to Vss.
IC			Connected to Vss directly.

Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

The memory map of the μ PD78011H(A), 78012H(A), 78013H(A), 78014H(A) is shown in Figure 4-1.

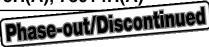

FFFFH Special Function Registers (SFR) 256×8 Bits FF00H **FEFFH** General-Purpose Registers 32×8 Bits FEE0H **FEDFH** Internal High-Speed RAMNote mmmmH $\mathsf{nnnn}\mathsf{H}$ mmmmH-1 Use Prohibited Program Area FAE0H 1000H Data **FADFH** Buffer RAM 32×8 Bits 0FFFH Memory FAC0H Space **FABFH CALLF Entry Area** Use Prohibited 0800H FA80H 07FFH FA7FH Program Area Program 0080H **External Memory** Memory 007FH Space nnnnH+1 **CALLT Table Area** nnnnH 0040H 003FH Internal ROMNote Vector Table Area 0000H 0000H

Figure 4-1. Memory Map

Note Internal ROM and internal high-speed RAM capacities vary depending on the product (see the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address mmmmH
μPD78011H(A)	1FFFH	FD00H
μPD78012H(A)	3FFFH	
μPD78013H(A)	5FFFH	FB00H
μPD78014H(A)	7FFFH	

5. PERIPHERAL HARDWARE FUNCTION FEATURES

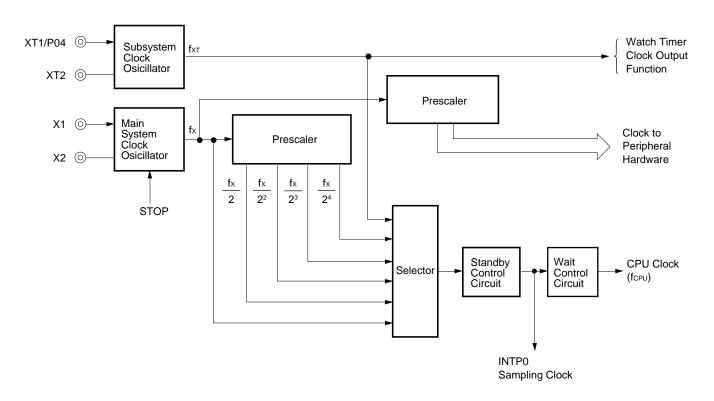
5.1 PORTS

The I/O port has the following three types

CMOS input (P00, P04)
 CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67)
 N-ch open-drain input/output(15V withstand voltage) (P60 to P63)
 Total

Table 5-1. Functions of Ports

Port Name	Pin Name	Function
Port 0	P00, P04	Dedicated Input port
	P01 to P03	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.
Port 1	P10 to P17	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.
Port 2	P20 to P27	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.
Port 3	P30 to P37	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.
Port 4	P40 to P47	Input/output ports. Input/output can be specified in 8-bit units.
		When used as an input port, pull-up resistor can be used by software.
		Test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.
		LED can be driven directly.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise.
		On-chip pull-up resistor can be specified by mask option.
		LED can be driven directly.
	P64 to P67	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used by software.



5.2 CLOCK GENERATOR

There are two types of clock generator: main system clock and subsystem clock. The instruction exection time can be changed.

- 0.4μ s/ 0.8μ s/ 1.6μ s/ 3.2μ s/ 6.4μ s (Main system clock: at 10.0 MHz operation)
- 122μs (Subsystem clock: at 32.768 KHz operation)

Figure 5-1. Clock Generator Block Diagram

5.3 TIMER/EVENT COUNTER

The following five channels are incorporated in the timer/event counter.

16-bit timer/event counter
 8-bit timer/event counter
 Watch timer
 Watchdog timer
 1 channel
 1 channel
 1 channel

Table 5-2. Types and Functions of Timer/Event Counter

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Туре	Interval timer	1 channel	2 channels	1 channel	1 channel
	Externanal event counter	1 channel	2 channels	-	_
Functions	Timer output	1 output	2 outputs	_	_
	PWM output	1 output	_	-	_
	Pulse width mesurement	1 input	_	_	_
	Sqare wave output	1 output	2 outputs	-	_
	Interrupt request	2	2	1	1
	Test input	-	_	1	_

Figure 5-2. 16-bit Timer/Enent Counter Block Diagram

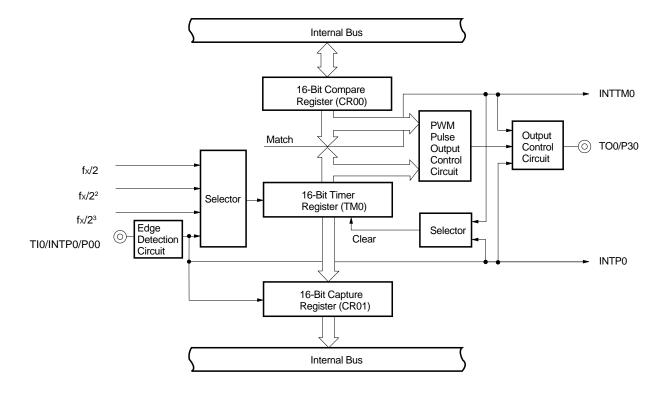


Figure 5-3. 8-bit Timer/Enent Counter Block Diagram

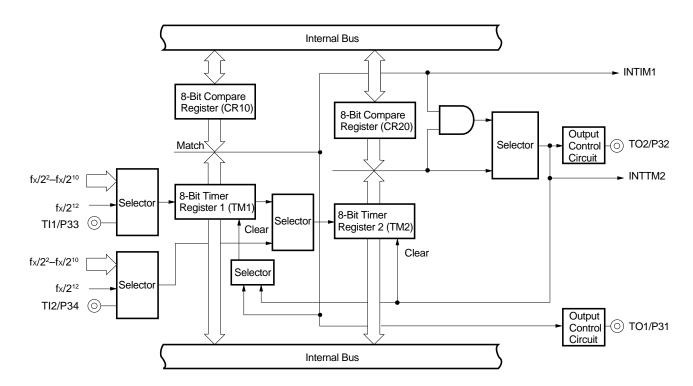


Figure 5-4. Watch Timer Block Diagram

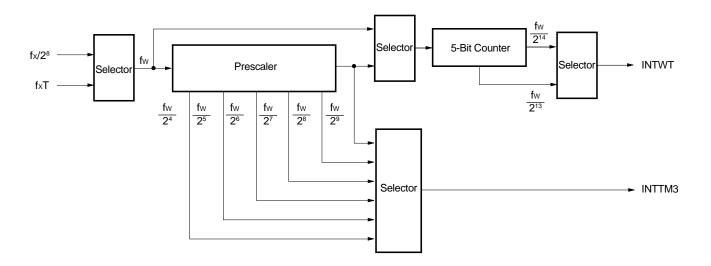
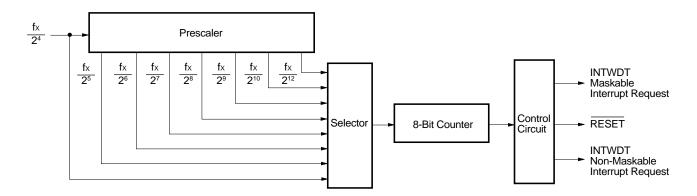
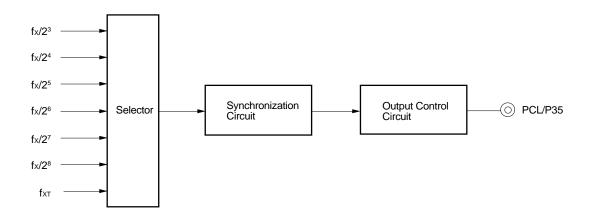



Figure 5-5. Watchdog Timer Block Diagram

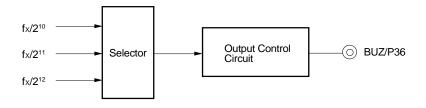


5.4 CLOCK OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for clock output.

- 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)
- 32.768 kHz (Subsystem clock: at 32.768 kHz operation)

Figure 5-6. Clock Output Control Block Diagram

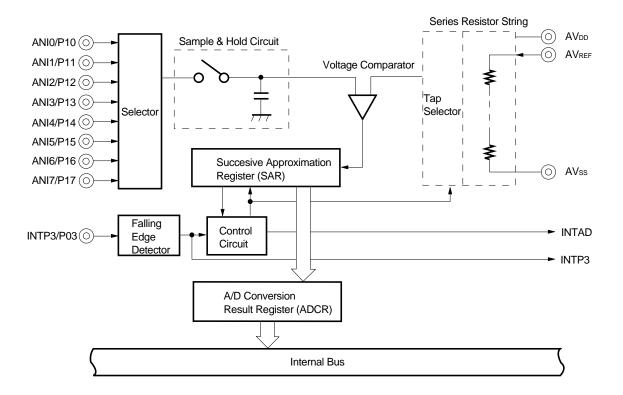


5.5 BUZZER OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for buzzer output.

• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)

Figure 5-7. Buzzer Output Control Block Diagram



5.6 A/D CONVERTER

The A/D converter has on-chip eight 8-bit resolution channels. There are the following two method to start A/D conversion.

- · Hardware starting
- · Software starting

Figure 5-8. A/D Converter Block Diagram

Caution Do not manipulate the pins multiplexed with a port pin (refer to 3.1 PORT PINS) during A/D conversion; otherwise, the rated total error during A/D conversion may not be satisfied.

- <1> Rewriting the contents of the output latch when the pin is used as an output port pin.
- <2> Changing the output level of the pin used as an output pin even when the pin is not used as a port pin.

5.7 SERIAL INTERFACES

There are two on-chip clocked serial interfaces as follows.

- Serial Interface channel 0
- Serial Interface channel 1

Table 5-3. Type and Function of Serial Interface

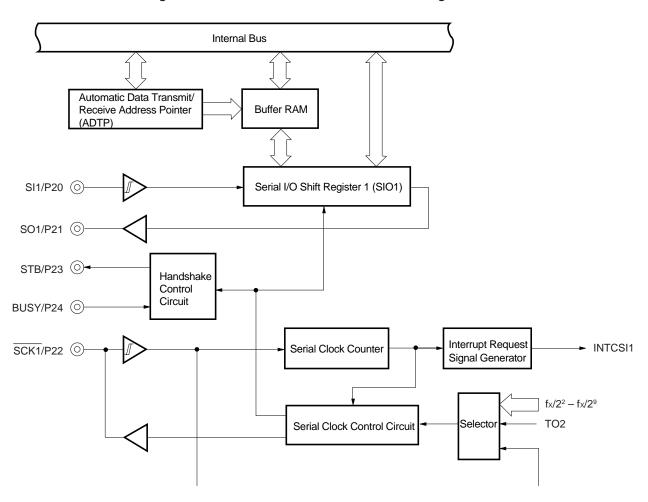

Function	Serial Interface Channel 0	Serial Interface Channel 1
3-wire serial I/O mode	O (MSB/LSB-first switchable)	O (MSB/LSB-first switchable)
3-wire serial I/O mode with automatic data transmit/	-	O (MSB/LSB-first switchable)
SBI (Serial Bus Interface) mode	O (MSB-first)	-
2-wire serial I/O mode	O (MSB-first)	-

Figure 5-9. Serial Interface Channel 0 Block Diagram

Phase-out/Discontinued

Figure 5-10. Serial Interface Channel 1 Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

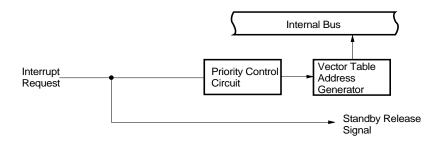
6.1 INTERRUPT FUNCTIONS

There are the 14 interrupt sources of 3 different kind as shown below.

Non-maskable : 1
 Maskable : 12
 Software : 1

Table 6-1. Interrupt Source List

	Default		Interrupt Source	Internal/	Vector Table	Basic
Interrupt Type	Priority Note 1	Name	Trigger	External	Address	Configuratin Type Note 2
Non-maskable		INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3				000AH	
	4	INTP3			000CH	
	5	INTCSI0	Serial interface channel 0 transfer end	Internal	000EH	(B)
	6	INTCSI1	Serial interface channel 1 transfer end		0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTM0	16 bit timer/event counter match signal generation		0014H	
	9	INTTM1	8-bit timer/event counter 1 match signal generation		0016H	
	10	INTTM2	8-bit timer/event counter 2 match signal generation		0018H	
	11	INTAD	A/D converter conversion end		001AH	
Software		BRK	BRK instruction execution	_	003EH	(E)


Notes 1. The default pririty is the priority applicable when more than one maskable interrupt is generated. 0 is the highest priority and 11, the lowest.

2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.

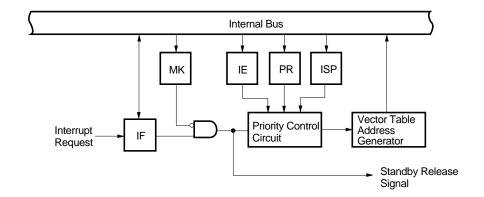
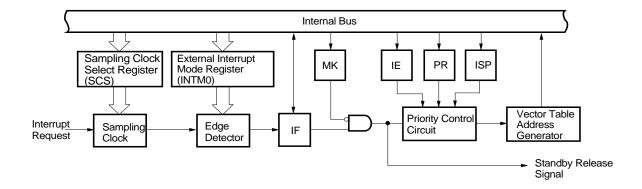


Figure 6-1. Basic Interrupt Function Configuration (1/2)


(A) Internal Non-Maskable Interrupt

(B) Internal Maskable Interrupt

(C) External Maskable Interrupt (INTP0)

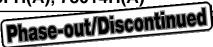
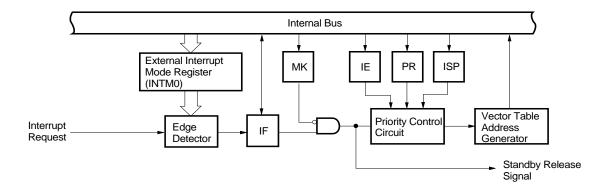
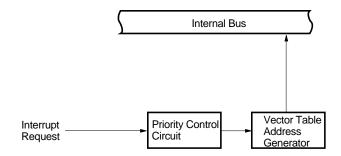




Figure 6-1. Basic Interrupt Function Configuration (2/2)

(D) External Maskable Interrupt (Except INTP0)

(E) Software Interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority spcification flag


6.2 TEST FUNCTIONS

There are two test functions as shown in Table 6-2.

Table 6-2. Test Source List

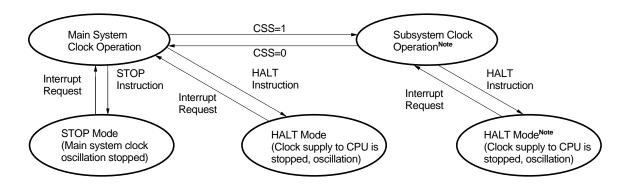
	Test Source	Internal/External	
Name	Trigger	internal/External	
INTWT	Watch timer overflow	Internal	
INTPT4	Port 4 falling edge detection	External	

Figure 6-2. Test Function Basic Configuration

IF : Test input flagMK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM and SFR.


Ports 4 to 6 are used for connection with external devices.

8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the current dissipation.

- HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.
- STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates withultra-low power consumption using only the subsystem clock.

Figure 8-1. Standby Functions

Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used.

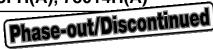
Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program by the program.

9. RESET FUNCTIONS

There are the following two reset methods.

- External reset input by RESET pin.
- Internal reset by watchdog timer runaway time detection.

10. INSTRUCTION SET


(1) 8-Bit Instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

,	·		1.02., .		0.,22								
2nd Operand 1st Operand	#byte	A	_r Note	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL+B] [HL+C]	\$adder16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
Г	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
r1											DBNZ		
sfr	MOV	MOV											
sadder	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!adder16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL+byte] [HL+B] [HL+C]		MOV											
Х													MULU
С	1												DIVUW

Note Except r=A

(2) 16-Bit Instruction

MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#byte	AX	rp ^{Note}	saddrp	!addr16	SP	None	
AX	ADDW		MOVW	MOVW	MOVW	MOVW	MOVW	
	SUBW		XCHW					
	CMPW							
rp	MOVW	MOVWNote						INCW, DECW
								PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp=BC, DE, HL.

(3) Bit Manipulation Instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand	A.bit	sfr.bit	saddr.bit	PWS.bit	[HL].bit	CY	\$addr16	None
1st Operand \ A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

Phase-out/Discontinued

(4) Call Instruction/Branch Instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL, BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction					BT, BF, BTCLR, DBNZ

(5) Other Instruction

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol	Test Conditions		Rating	Unit	
Supply voltage	VDD			-0.3 to + 7.0	V	
	AV _{DD}	V _{DD}	V			
	AVREF			-0.3 to +7.0 -0.3 to V _{DD} + 0.3 -0.3 to V _{DD} + 0.3 -0.3 to +0.3 -0.3 to +16 -0.3 to V _{DD} + 0.3 AV _{SS} -0.3 to AV _{REF} + 0.3 -10 -15 -15 30 15 100 70 100 70 50 20 -40 to +85	V	
	AVss			-0.3 to + 0.3	V	
Input voltage	Via	P00 to P04, P10 to P17, P20 to	P27, P30 to P37	0.3 to \/ 1.0.3	V	
	VII	P40 toP47, P50 to P57, P64 to	P67, X1, X2, XT2	-0.3 to V _{DD} + 0.3	V	
	V ₁₂	P60 to P67	-0.3 to + 7.0 -0.3 to V _{DD} + 0.3 Analog input pin AV _{SS} -0.3 to AV _{REF} + 0.3 -10 -10 -15 -10 -15 -17 -17 -18 -19 -19 -19 -19 -19 -19 -19	V		
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V	
Analog input voltage	Van	P10 to P17	Analog input pin	AV_{SS} –0.3 to AV_{REF} + 0.3	V	
Output	Іон	1 pin		-10	mA	
Output current high Output		P10 to P17, P20 to P27, P30 to	P37 total	-15	mA	
		P01 to P03, P40 to P47, P50 to P5	7, P60 to P67 total	-15	mA	
Output current low				Peak value	30	mA
		1 pin	rms	15	mA	
		P40 to P47, P50 to P55 total	Peak value	100	mA	
			rms	70	mA	
		P01 to P03, P56, P57,	Peak value	100	mA	
	_{OL} Note	P60 to P67 total	rms	70	mA	
		P01 to P03,	Peak value	50	mA	
		P64 to P67 total	rms	20	mA	
		P10 to P17, P20 to P27, P30 to P37	Peak value	50	mA	
		total	rms	20	mA	
Operating ambient temperature	TA			-40 to +85	°C	
Storage temperature	Tstg			−65 to +150	°C	

Note rms should be calculated as follows: [rms] = [peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Test (MIN.	TYP.	MAX.	Unit	
Input capacitance	Cin	f = 1 MHz Unmeasure	ed pins returned to 0 V			15	pF
I/O capacitance			P01 to P03, P10 to P17,				
		f = 1 MHz Unmeasured	P20 to P27, P30 toP37,			15	pF
	Сю	pins returned to 0 V	P40 toP47, P50 to P57,				
			P64 to P67				
			P60 to P63			20	pF

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

Main System Clock Oscillation Circuit Characteristics ($T_A = -40$ to +85 °C, $V_{DD} = 1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillator	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1		10	MHz
resonator	R1 -C1 -C2	frequency (fx) Note 1	1.8 V ≤ V _{DD} < 2.7 V	1		5	IVITZ
		Oscillation stabilization time Note 2	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal	tor X1 X2 IC	Oscillator	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz
resonator		frequency (fx) Note 1	1.8 V ≤ V _{DD} < 2.7 V	1		5	
	C1 +C2	Oscillation	V _{DD} = 4.5 to 5.5 V			10	
		stabilization time Note 2				30	ms
External clock	X1 X2	X1 input frequency (fx) Note 1		1.0		10.0	MHz
	μPD74HCU04	X1 input high/low level width (txH, txL)		45		500	ns

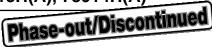
- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wirinin the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillation Circuit Characteristics ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 IC	Oscillator frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		stabilization time Note 2				10	J
External clock	XT1 XT2	XT1 input frequency (fxt) Note 1		32		100	kHz
		XT1 input high/low level width (txth, txtl)		5		15	μs

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. The subsystem clock oscillation circuit is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock.

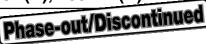
Particular care is therefore required with the wiring method when the subsystem clock is used.


DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Input voltage	V _{IH1}	P10-P17, P21, P23, P30-P32,	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		V _{DD}	V
high		P35-P37, P40-P47, P50-P57,					
		P64-67		0.8 V _{DD}		VDD	V
	V _{IH2}	P00-P03, P20, P22, P24-P27, P33,	V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V _{DD}	V
		P34, RESET		0.85 VDD		V _{DD}	V
	VIH3	P60-P63	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		15	٧
		(N-ch open-drain)		0.8 V _{DD}		15	٧
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} – 0.5		V _{DD}	V
				V _{DD} - 0.2		V _{DD}	٧
	V _{IH5}	XT1/P04, XT2	4.5 V ≤ V _{DD} ≤ 5.5 V	0.8 VDD		V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9 V _{DD}		V _{DD}	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ Note	0.9 V _{DD}		V _{DD}	V
Input voltage	VIL1	P10-P17, P21, P23, P30-P32,	V _{DD} = 2.7 to 5.5 V	0		0.3 Vdd	V
low		P35-P37, P40-P47, P50-P57,		0		0.2 V _{DD}	V
	V _{IL2}	P00-P03, P20, P22, P24-P27, P33,	V _{DD} = 2.7 to 5.5 V	0		0.2 V _{DD}	V
		P34, RESET		0		0.15 V _{DD}	V
	V _{IL3}	P60-P63	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3 V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.2 V _{DD}	V
				0		0.1 V _{DD}	V
	V _{IL4}	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
		,		0		0.2	V
	V _{IL5}	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2 V _{DD}	V
		·	2.7 V ≤ V _{DD} < 4.5 V	0		0.1 V _{DD}	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ Note	0		0.1 V _{DD}	V
Output	V _{OH1}	V _{DD} = 4.5 to 5.5 V, I _{OH} = -1 mA		V _{DD} – 1.0			V
voltage high		Ioн = −100 μA		V _{DD} – 0.5			V
Output	V _{OL1}	P50 to P57, P60 to P63	V _{DD} = 4.5 to 5.5 V,		0.4	2.0	V
voltage low		,	IoL = 15 mA				
Ü		P01 to P03, P10 to P17, P20 to P27	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P30 to P37, P40 to P47, P64 to P67	loL = 1.6 mA				
	V _{OL2}	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V, open-drain}$			0.2 V _{DD}	V
		SBU, SB1, SCKU VDD = 4.5 to 5.5 V, open-drain pulled-up (R = 1 K Ω)					-
			,				

Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.

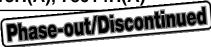
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.


DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Input leakage	Ішн1	VIN = VDD	P00 to P03, P10 to P17,			3	μΑ
current high			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, RESET				
	ILIH2		X1, X2, XT1/P04, XT2			20	μΑ
	Ішнз	Vin = 15 V	P60 to P63			80	μΑ
Input leakege	ILIL1	Vin = 0 V	P00 to P03, P10 to P17,			-3	μΑ
current low			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, RESET				
	ILIL2		X1, X2, XT1/P04, XT2			-20	μΑ
	ILIL3		P60 to P63			_3 Note	μΑ
Output leakage	ILOH1	Vout = VDD				3	μΑ
current high							
Output leakage	ILOL	Vout = 0 V				-3	μΑ
current low							
Mask option	R1	V _{IN} = 0 V, P60 to P63		20	40	90	kΩ
pull-up resister							
Software	R2	V _{IN} = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,			40	90	kΩ
pull-up resister		P40 to P47, P50 to P57, P60 to P67					

Note For P60-P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of -200 μ A (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is -3 μ A (MAX.).

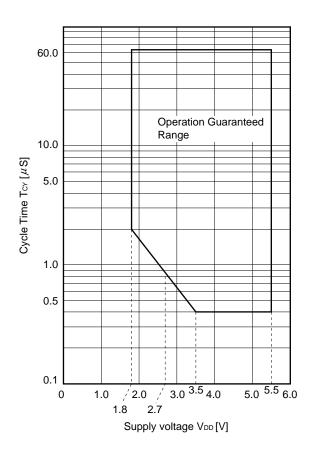
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.



DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	10.00 MHz crystal	V _{DD} = 5.0 V ± 10 % Note 2		9.0	18.0	mA
current Note 1		oscillation operation mode	V _{DD} = 3.0 V ± 10 % Note 3		1.3	2.6	mA
	I _{DD2}	10.00 MHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 2}$		2.0	4.0	mA
		oscillation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		1.0	2.0	mA
	I _{DD3}	32.768 kHz crystal	V _{DD} = 5.0 V ± 10 % Note 3		60	120	μΑ
		oscillation operation mode Note 4	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		35	70	μΑ
			V _{DD} = 2.0 V ± 10 % Note 4		24	48	μΑ
	I _{DD4}	32.768 kHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 3}$		25	50	μΑ
		oscillation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		5	15	μΑ
			V _{DD} = 2.0 V ± 10 % Note 4		2	10	μΑ
	I _{DD5}	XT1 = V _{DD}	V _{DD} = 5.0 V ± 10 %		1	30	μΑ
		STOP mode when using feedback	V _{DD} = 3.0 V ± 10 %		0.5	10	μΑ
		resistor	V _{DD} = 2.0 V ± 10 % Note 4		0.3	10	μΑ
	I _{DD6}	XT1 = V _{DD}	V _{DD} = 5.0 V ± 10 %		0.1	30	μΑ
		STOP mode when not using	V _{DD} = 3.0 V ± 10 %		0.05	10	μΑ
		feedback resistor	V _{DD} = 2.0 V ± 10 % Note 4		0.05	10	μΑ

- **Notes 1.** Current flowing into the V_{DD} and AV_{DD} pins. However, the current flowing into the A/D converter and internal pull-up resistors is not included.
 - 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
 - **3.** When operating at low-speed mode (when the PCC is set to 04H)
 - 4. When main system clock stopped.

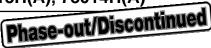

AC Characteristics

(1) Basic Operation ($T_A = -40 \text{ to } +85 \text{ °C}, V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Condition	ons	MIN.	TYP.	MAX.	Unit
Cycle time	Tcy	Operating on main system clock	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.4		64	μs
(Min. instruction			2.7 V ≤ V _{DD} < 3.5 V	0.8		64	μs
execution time)			1.8 V ≤ V _{DD} < 2.7 V	2.0		64	μs
		Operating on subsystem clock		40	122	125	μs
TI0 input	tтіно	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		2/f _{sam} +0.1 Note			μs
frequency	t TILO	$2.7 \text{ V} \leq \text{V}_{DD} < 3.5 \text{ V}$		2/f _{sam} +0.2 Note			μs
		1.8 V ≤ V _{DD} < 2.7 V		2/f _{sam} +0.5 Note			μs
TI1, TI2 input	f _{Tl1}	V _{DD} = 4.5 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	t тін1	V _{DD} = 4.5 to 5.5 V		100			ns
high/low-level width	t⊤iL1			1.8			μs
Interrupt input	tinth	INTP0	3.5 V ≤ V _{DD} ≤ 5.5 V	2/f _{sam} +0.1 Note			μs
high/low-level	tintl		2.7 V ≤ V _{DD} < 3.5 V	2/f _{sam} +0.2 Note			μs
width			1.8 V ≤ V _{DD} < 2.7 V	2/f _{sam} +0.5 Note			μs
		INTP1-INTP3, KR0-KR7	V _{DD} = 2.7 to 5.5 V	10			μs
				20			μs
RESET low	trsL	V _{DD} = 2.7 to 5.5 V		10			μs
level width				20			μs

Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible between $fX/2^{N+1}$, fX/64 and fx/128 (when N=0 to 4).

Tcy vs VDD (At main system clock operation)


(2) Read/Write Operation ($T_A = -40 \text{ to } +85 \text{ °C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.5tcy		ns
Address setup time	tads		0.5tcy-30		ns
Address hold time	t ADH		50		ns
Data input time from address	tADD1			(2.5+2n)tcy-50	ns
	tADD2			(3+2n)tcy-100	ns
Data input time from $\overline{RD} \!\downarrow$	trdd1			(1+2n)tcy-25	ns
	tRDD2			(2.5+2n)tcy-100	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5+2n)tcy-20		ns
	tRDL2		(2.5+2n) tcy-20		ns
$\overline{\text{WAIT}} \downarrow \text{input time from } \overline{\text{RD}} \downarrow$	trdwT1			0.5tcy	ns
	trdwt2			1.5tcr	ns
$\overline{WAIT} \!\!\downarrow input\;time\;from\;\overline{WR} \!\!\downarrow$	twrwt			0.5tcy	ns
WAIT low-level width	twTL		(0.5+2n)tcy+10	(2+2n)tcr	ns
Write data setup time	twos		100		ns
Write data hold time	twdh	Load resistor $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL1		(2.5+2n) tcy-20		ns
$\overline{RD} \!\!\downarrow delay$ time from $ASTB \!\!\downarrow$	t astrd		0.5tcy-30		ns
$\overline{WR} \!\downarrow delay$ time from ASTB $\!\downarrow$	t astwr		1.5tcy-30		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		tcy-10	tcy+40	ns
Address hold time from RD↑ in external fetch	trdadh		tcy	tcy+50	ns
Write data output time from RD↑	trowd	V _{DD} = 4.5 to 5.5 V	0.5tcy+5	0.5tcy+30	ns
			0.5tcy+15	0.5tcy+90	ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd	V _{DD} = 4.5 to 5.5 V	5	30	ns
			15	90	ns
Address hold time from WR↑	twradh	V _{DD} = 4.5 to 5.5 V	tcy	tcy+60	ns
			tcy	tcy+100	ns
RD↑ delay time from WAIT↑	twtrd		0.5tcy	2.5tcy+80	ns
WR↑ delay time from WAIT↑	twrwr		0.5tcy	2.5tcy+80	ns

Remarks 1. tcy = Tcy/4

2. n indicates number of waits.

(3) Serial Interface ($T_A = -40 \text{ to } +85 \text{ °C}, V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK0 high/low-level	t _{KH1}	V _{DD} = 4.5 to 5.5 V	tkcy1/2-50			ns
width	t _{KL1}		tксү1/2-100			ns
SI0 setup time	tsıĸ1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0↑)		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	300			ns
			400			ns
SI0 hold time	t _{KSI1}		400			ns
(from SCK0↑)						
SO0 output delay time	tkso1	C = 100 pF Note			300	ns
from SCK0↓						

Note $\,$ C is the load capacitance of $\overline{\text{SCK0}}$ and SO0 output line.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$		3200			ns
				4800			ns
SCK0 high/low-level	t _{KH2}	4.5 V ≤ V _{DD} ≤ 5.5	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
width	t _{KL2}	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SI0 setup time	tsik2	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK0↑)				150			ns
SI0 hold time	tksı2			400			ns
(from SCK0↑)							
SO0 output delay time	tkso2	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK0↓						500	ns
SCK0 rise, fall time	t _{R2}	When external d	levice			160	ns
	t _{F2}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note C is the load capacitance of SO0 output line.

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 4.5	5 V	3200			ns
							ns
SCK0 high/low-level	tкнз	V _{DD} = 4.5 to 6.0 V		tксүз/2-50			ns
width	tкLз			tксүз/2-150			ns
SB0, SB1 setup time	tsık3	4.5 V ≤ V _{DD} ≤ 5.5	5 V	100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5	5 V	300			ns
				400			ns
SB0, SB1 hold time	t ksi3			tксүз/2			ns
(from SCK0↑)							
SB0, SB1output delay	tkso3	$R = 1 k\Omega$,	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0		250	ns
time from $\overline{\text{SCK0}} \downarrow$		C = 100 pF Note		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
SCK0↓ from SB0, SB1↓	t sbk			tксүз			ns
SB0, SB1 high-level	tsвн			tксүз			ns
width							
SB0, SB1 low-level	tsbl			tксүз			ns
width							

Note R and C are the load resistors and load capacitance of the SB0, SB1 and $\overline{SCK0}$ output line.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 4.5	5 V	3200			ns
				4800			ns
SCK0 high/low-level	t кн4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	tĸL4	2.0 V ≤ V _{DD} < 4.5	5 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsık4	4.5 V ≤ V _{DD} ≤ 5.5	5 V	100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5	5 V	300			ns
				400			ns
SB0, SB1 hold time (from SCK0↑)	tksi4			tkcy4/2			ns
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF Note		0		1000	ns
SB0, SB1↓ from SCK0↑	tksb			tkcy4			ns
SCK0↓ from SB0, SB1↓				tkcy4			ns
SB0, SB1 high-level	tsвн			tkcy4			ns
width							
SB0, SB1 low-level width	t sbl			tkcy4			ns
SCK0 rise, fall time	t _{R4}	When external d	levice			160	ns
	t _{F4}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	$R = 1 k\Omega$,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1600			ns
		C = 100 pF Note	$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
				4800			ns
SCK0 high-level width	t _{KH5}		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	tkcy5/2-160			ns
				tkcy5/2-190			ns
SCK0 low-level width	t _{KL5}		V _{DD} = 4.5 to 5.5 V	tkcy5/2-50			ns
				tkcy5/2-100			ns
SB0, SB1 setup time	tsik5		4.5 V ≤ V _{DD} ≤ 5.5 V	300			ns
(to SCK0↑)			$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	350			ns
			$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	400			ns
				500			ns
SB0, SB1 hold time	tksi5			600			ns
(from SCK0↑)							
SB0, SB1 output delay	t KSO5			0		300	ns
time from SCK0↓							

Note R and C are the load resistors and load capacitance of the SCKO, SBO and SB1 output line.



(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy6	2.7 V ≤ V _{DD} ≤ 5.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	3200			ns
				4800			ns
SCK0 high-level width	tkH6	2.7 V ≤ V _{DD} ≤ 5.5	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$				ns
		2.0 V ≤ V _{DD} < 2.7	2.0 V ≤ V _{DD} < 2.7 V				ns
							ns
SCK0 low-level width	t _{KL6}	2.7 V ≤ V _{DD} ≤ 5.5	2.7 V ≤ V _{DD} ≤ 5.5 V				ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik6	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time	tksi6			tkcy6/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso6	$R = 1 k\Omega$,	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF Note	$2.0 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	0		500	ns
				0		800	ns
SCK0 rise, fall time	t _{R6}	When external d	evice			160	ns
	t _{F6}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK1 high/low-level	tкн7	V _{DD} = 4.5 to 5.5 V	tксү7/2-50			ns
width	t _{KL7}		tксүт/2-100			ns
SI1 setup time	tsik7	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1 ↑)		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	300			ns
			400			ns
SI1 hold time	tksi7		400			ns
(from SCK1↑)						
SO1 output delay time	t KS07	C = 100 pF Note			300	ns
from SCK1↓						

Note $\,$ C is the load capacitance of $\overline{\text{SCK1}}$ and SO1 output line.

(ii) 3-wire serial I/O mode (SCK1... External clock input)

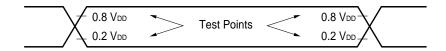
Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy8	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	3200			ns
				4800			ns
SCK1 high/low-level	t _{KH8}	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	t _{KL8}	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK1 ↑)				150			ns
SI1 hold time	tksi8			400			ns
(from SCK1↑)							
SO0 output delay time	tkso8	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	t _{R8}	When external of	levice			160	ns
	t _{F8}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer	<u> </u>		1000	ns
			output function is				
			not used				

Note C is the load capacitance of SO1 output line.

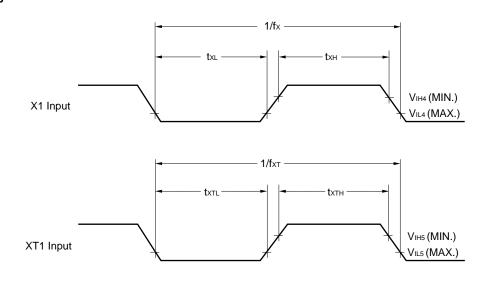
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high/low-level	tkH9	V _{DD} = 4.5 to 5.5 V	tксү9/2-50			ns
width	t _{KL9}		tксү9/2-100			ns
SI1 setup time	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time	tksi9		400			ns
(from SCK1↑)						
SO1 output delay time	tkso9	C = 100 pF Note			300	ns
from $\overline{\text{SCK1}} \downarrow$						
STB↑ from SCK1↑	tsbd		tксү9/2-100		tксү9/2+100	ns
Strobe signal	tssw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксү9-30		tксү9+30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксү9-60		tксү9+60	ns
			tксү9-90		tксү9+90	ns
Busy signal setup time	tBYS		100			ns
(to busy signal						
detection timing)						
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal		2.7 V ≤ V _{DD} < 4.5 V	150			ns
detection timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
SCK1↓ from busy	tsps				21ксү9	ns
inactive						

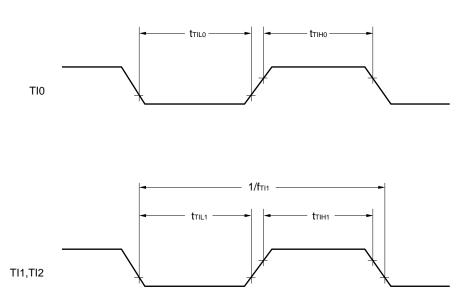
Note C is the load capacitance of $\overline{\text{SCK1}}$ and SO1 output line.



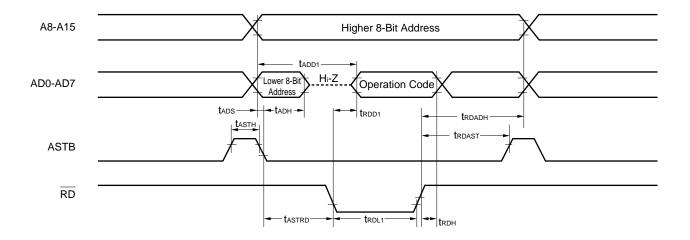
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

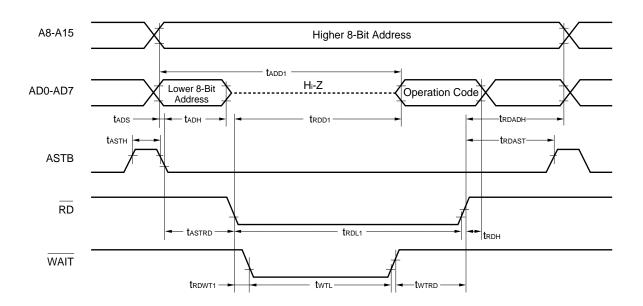

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY10	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	3200			ns
				4800			ns
SCK1 high/low-level	tкн10,	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	t _{KL10}	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SI1 setup time	tsik10	$V_{DD} = 2.0 \text{ to } 5.5 ^{\circ}$	V	100			ns
(to SCK1 ↑)				150			ns
SI1 hold time	tksi10			400			ns
(from SCK1↑)							
SO1 output delay time	t KSO10	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	tr10, tr10	When external d	levice expansion			160	ns
		function is used					
		When external d	levice expansion			1000	ns
		function is not us	sed				

Note C is the load capacitance of the SO1 output line.

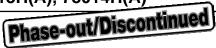

AC Timing Test Point (Excluding X1, XT1 Input)

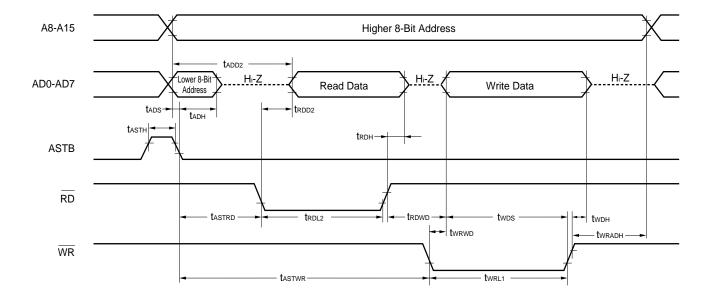
Clock Timing

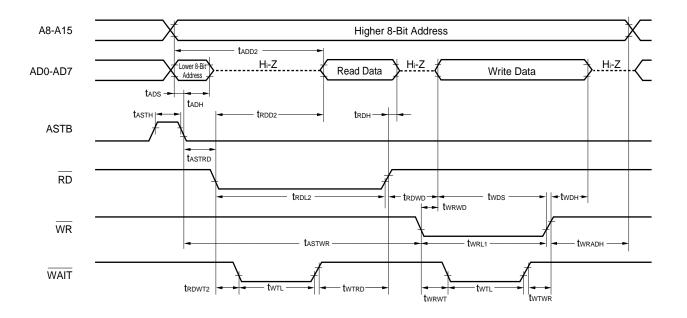

TI Timing



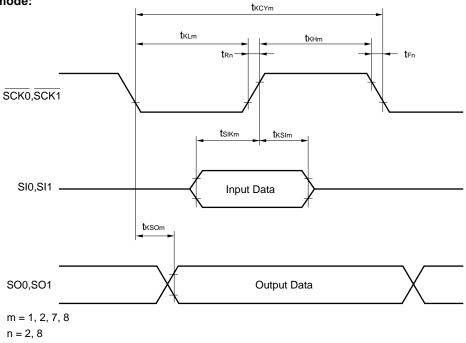
Read/Write Operation

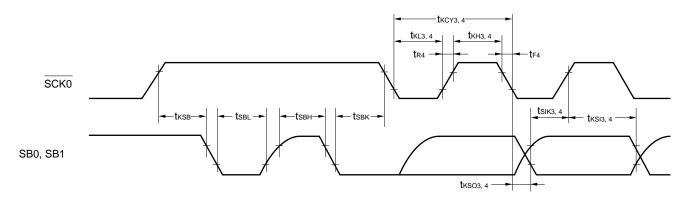

External fetch (No wait):

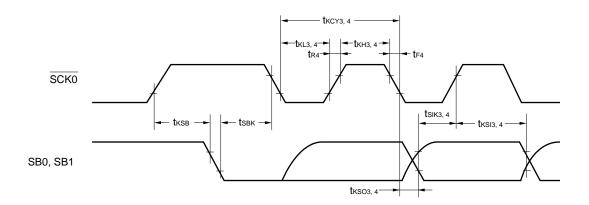

External fetch (Wait insertion):



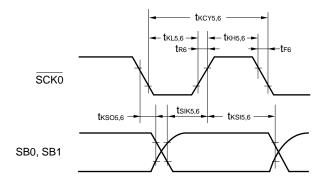
External data access (No wait):


External data access (Wait insertion):

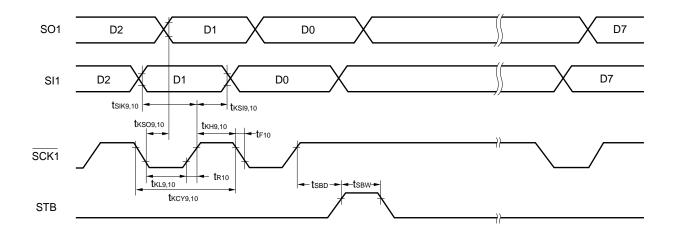


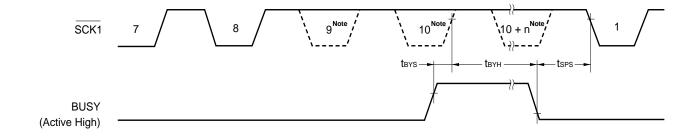

Serial Transfer Timing 3-wire serial I/O mode:

SBI mode (Bus release signal transfer):



SBI Mode (command signal transfer):




2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

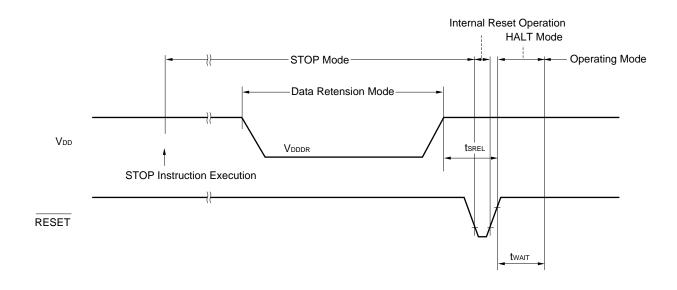


3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

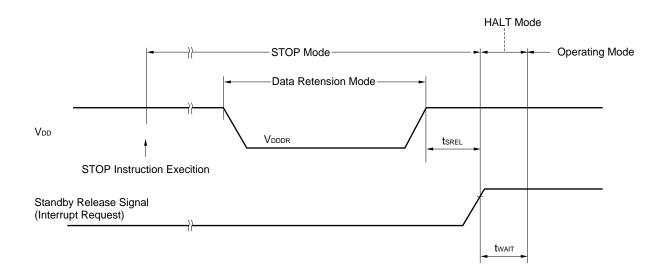
A/D converter characteristics (TA = -40 to +85 °C, AVDD = VDD = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		2.7 V ≤ AV _{REF} ≤ AV _{DD}			0.6	%
		1.8 V ≤ AV _{REF} < 2.7 V			1.4	%
Conversion time	tconv	2.0 V ≤ AV _{DD} ≤ 5.5 V	19.1		200	μs
		1.8 V ≤ AV _{DD} < 2.0 V	38.2		200	μs
Sampling time	tsamp		24/fx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		1.8		AV _{DD}	V
AVREF-AVss resistance	Rairef		4	14		kΩ

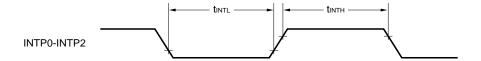

Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

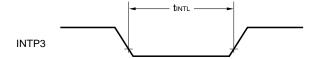
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.8		5.5	V
voltage						
Data retention supply	Idddr	VDDDR = 1.8 V		0.1	10	μΑ
current		Subsystem clock stop and feed-				
		back resister disconnected				
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁸ /fx		ms
wait time		Release by interrupt		Note		ms

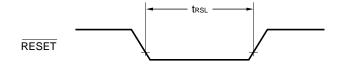

Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 2^{13} / fx and 2^{15} /fx to 2^{18} /fx is possible.

Data Retention Timing (STOP Mode Release by RESET)

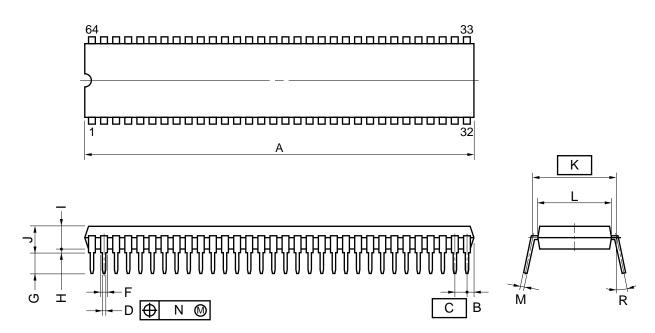




Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



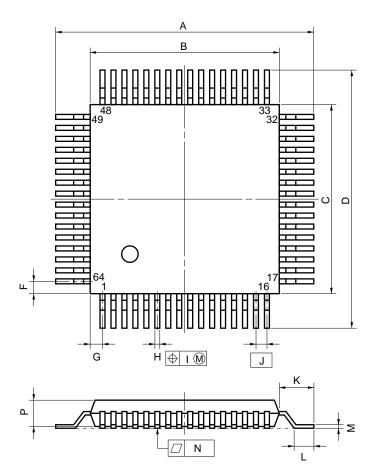
Interrupt Input Timing


RESET Input Timing

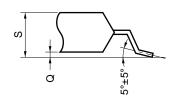
12. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE


- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} -0.05	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°


P64C-70-750A,C-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC QFP (□14)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P64GC-80-AB8-2

ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

Remark Dimensions and materials of ES products are the same as those of mass-production products.

13. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

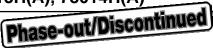
For soldering methods and conditions other than those recommended below, contact our salespersonnel.

Table 13-1. Surface Mounting Type Soldering Conditions

```
\muPD78011HGC(A)-××-AB8 : 64-Pin Plastic QFP (14 × 14 mm) \muPD78012HGC(A)-××-AB8 : 64-Pin Plastic QFP (14 × 14 mm) \muPD78013HGC(A)-××-AB8 : 64-Pin Plastic QFP (14 × 14 mm) \muPD78014HGC(A)-××-AB8 : 64-Pin Plastic QFP (14 × 14 mm)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Thrice max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Thrice max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	_

Caution Use more than one soldering method should be avoided (except in the case of partial heating).


Table 13-2. Insertion Type Soldering Conditions

```
\muPD78011HCW(A)-xxx : 64-Pin Plastic Shrink DIP (750 mil) \muPD78012HCW(A)-xxx : 64-Pin Plastic Shrink DIP (750 mil) \muPD78013HCW(A)-xxx : 64-Pin Plastic Shrink DIP (750 mil) \muPD78014HCW(A)-xxx : 64-Pin Plastic Shrink DIP (750 mil)
```

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: 260°C max., Duration: 10 sec. max.
Partial heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)

Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for the development of systems using the μ PD78014H subseries.

Language processor software

RA78K/0 Notes 1, 2, 3, 4	Assembler package common to 78K/0 series
CC78K0 Notes 1, 2, 3, 4	C compiler package common to 78K/0 series
DF78014 Notes 1, 2, 3, 4, 6	Device file common to μ PD78014 subseries
CC78K0-L Notes 1, 2, 3, 4	C compiler library source file common to 78K/0 series

Debugging tools

IE-78000-R	In-circuit emulator common to 78K/0 series
IE-78000R-A	In-circuit emulator common to 78K/0 series (for integrated debugger)
IE-78000-R-BK	Break board common to 78K/0 series
IE-78014-R-EM-A	Emulation board common to μ PD78018F and 78018FY subseries (V _{DD} = 3.0 to 6.0 V)
EP-78240CW-R	Emulation probe common to μ PD78244 subseries
EV-9200GC-64	Socket mounted on printed wiring board of target system created for 64-pin plastic QFP
	(GC-AB8 type)
SM78K0 Notes 5, 6, 7	System emulator common to 78K/0 series
ID78K0 Notes 4, 5, 6, 7	Integrated debugger common to 78K/0 series
SD78K/0 Notes 1, 2	Screen debugger for IE-78000-R
DF78014 Notes 1, 2, 3, 4, 5, 6, 7	Device file common to μPD78014 subseries

Real-Time OS

RX78K/0 Notes 1, 2	Real-time OS for 78K/0 series
MX78K0 Notes 1, 2	OS for 78K/0 series

Fuzzy Inference Devleopment Support System

FE9000 Note 1/FE9200 Note 6	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOSTM) based
 - 2. IBM PC/ATTM and compatible machine (PC DOSTM/IBM DOSTM/MS-DOS) based
 - **3.** HP9000 series 300TM (HP-UXTM) based
 - 4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWS-UX/V) based
 - **5.** PC-9800 series (MS-DOS + WindowsTM) based
 - 6. IBM PC/AT and compatible machine (PC DOS/IBM DOS/MS-DOS + Windows) based
 - 7. NEWSTM (NEWS-OSTM) based
- Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).
 - 2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents


Document Name	Document No.	
Document Name	Japanese	English
μ PD78014H Subseries User's Manual	Planned to publish	Planned to publish
μPD78011H(A), 78012H(A), 78013H(A), 78014H(A) Data Sheet	U12174J	This document
78K/0 Series User's Manual - Instruction	IEU-849	IEU-1372
78K/0 Series Instruction List	U10903J	_
78K/0 Series Instruction Set	U10904J	_
μ PD78014H Subseries Special Function Register List	Planned to publish	_

Development Tools Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11081E
	Structural Assembly Language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler	Operation	11517J	_
	Language	11518J	_
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	_
IE-78000-R		EEU-810	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78014-R-EM-A		EEU-962	U10418E
EP-78240		EEU-986	U10332E
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Components User Open Interface	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger	Introduction	EEU-852	_
PC-9800 Series (MS-DOS) Based	Reference	U10952J	_
SD78K/0 Screen Deb	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Embedded Software Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamental	U11537J	_
	Installation	U11536J	_
	Technical	U11538J	_
78K/0 Series OS MX78K0	Fundamental	EEU-5010	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series		EEU-862	EEU-1444
Fuzzy Inference Development Support System - Translator			
78K/0 Series Fuzzy Inference Development Suport System -		EEU-858	EEU-1441
Fuzzy Inference Module			
78K/0 Series Fuzzy Inference Development Support System -		EEU-921	EEU-1458
Fuzzy Inference Debugger			

Other Documents

Document Name	Document No.	
Document Name	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Device	C11893J	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	U11416J	_

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

FIP and IEBus are trademarks of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM-DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

HP9000 Series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a tradmark of SPARC International, Inc.

SunOS is a tradmark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Some related decuments are preliminary versions. This document, however, is not indicated as preliminary.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.