# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.



#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
  of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
  of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.





# MOS INTEGRATED CIRCUIT

D780021, 780022, 780023, 780024

# 8-BIT SINGLE-CHIP MICROCONTROLLERS

#### **DESCRIPTION**

The  $\mu$ PD780021, 780022, 780023, and 780024 are members of the  $\mu$ PD780024 Subseries of the 78K/0 Series. Only selected functions of the existing  $\mu$ PD78054 Subseries are provided, and the serial interface is enhanced.

A flash memory version, the  $\mu$ PD78F0034, that can operate in the same power supply voltage range as the mask ROM version, and various development tools, are available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780024, 780034, 780024Y, 780034Y Subseries User's Manual: U12022E 78K/0 Series User's Manual – Instructions : U12326E

#### **FEATURES**

Internal ROM and RAM

| Item        | Program Memory | Data Memory               | Package                             |
|-------------|----------------|---------------------------|-------------------------------------|
| Part Number | (Internal ROM) | (Internal High-Speed RAM) |                                     |
| μPD780021   | 8 Kbytes       | 512 bytes                 | 64-pin plastic shrink DIP (750 mil) |
| μPD780022   | 16 Kbytes      |                           | 64-pin plastic QFP (14 × 14 mm)     |
| μPD780023   | 24 Kbytes      | 1024 bytes                | 64-pin plastic LQFP (12 × 12 mm)    |
| μPD780024   | 32 Kbytes      |                           |                                     |

- External memory expansion space: 64 Kbytes
- Minimum instruction execution time: 0.24  $\mu$ s (at fx = 8.38-MHz operation)
- I/O ports: 51 (N-ch open-drain 5-V withstand voltage: 4)
- ★ 8-bit resolution A/D converter: 8 channels (AVDD = 2.7 to 5.5 V)
  - · Serial interface: 3 channels
  - Timer: 5 channels
  - Power supply voltage: VDD = 1.8 to 5.5 V

# **APPLICATIONS**

Telephones, home electric appliances, pagers, AV equipment, car audios, office automation equipments, etc.

The information in this document is subject to change without notice.

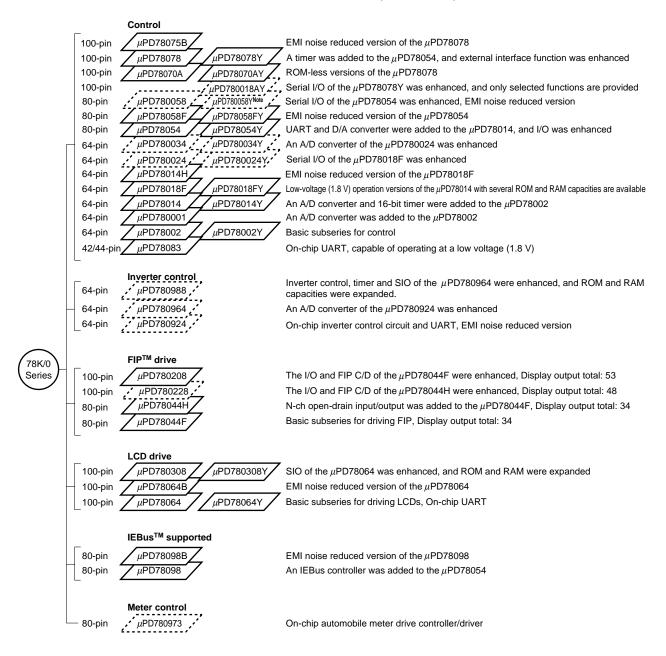




# **ORDERING INFORMATION**

| Part Number                              | Package                                 |
|------------------------------------------|-----------------------------------------|
| μPD780021CW-×××                          | 64-pin plastic shrink DIP (750 mils)    |
| $\mu$ PD780021GC- $\times$ $\times$ -AB8 | 64-pin plastic QFP (14 $\times$ 14 mm)  |
| $\mu$ PD780021GK- $\times$ $\times$ -8A8 | 64-pin plastic LQFP (12 × 12 mm)        |
| $\mu$ PD780022CW- $\times\!\times\!$     | 64-pin plastic shrink DIP (750 mils)    |
| $\mu$ PD780022GC- $\times$ $\times$ -AB8 | 64-pin plastic QFP (14 $\times$ 14 mm)  |
| $\mu$ PD780022GK- $\times$ $\times$ -8A8 | 64-pin plastic LQFP (12 × 12 mm)        |
| $\mu$ PD780023CW- $\times\!\times$       | 64-pin plastic shrink DIP (750 mils)    |
| $\mu$ PD780023GC- $\times$ $\times$ -AB8 | 64-pin plastic QFP (14 $\times$ 14 mm)  |
| $\mu$ PD780023GK- $\times$ $\times$ -8A8 | 64-pin plastic LQFP (12 $\times$ 12 mm) |
| $\mu$ PD780024CW- $\times\!\times$       | 64-pin plastic shrink DIP (750 mils)    |
| $\mu$ PD780024GC- $\times$ $\times$ -AB8 | 64-pin plastic QFP (14 $	imes$ 14 mm)   |
| μPD780024GK-××-8A8                       | 64-pin plastic LQFP (12 × 12 mm)        |

**Remark** ××× indicates the ROM code suffix.






# **★** 78K/0 SERIES PRODUCT DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.





Note Under planning





The major functional differences among the subseries are shown below.

|           | Function       | ROM       | -     | Tin    | ner   |      |      | 10-bit |      | Serial Interface                | I/O  | V <sub>DD</sub> | External  |
|-----------|----------------|-----------|-------|--------|-------|------|------|--------|------|---------------------------------|------|-----------------|-----------|
| Subseries | Name           | Capacity  | 8-bit | 16-bit | Watch | WDT  | A/D  | A/D    | D/A  |                                 | ., 0 | Value           | Expansion |
| Control   | $\mu$ PD78075B | 32 K-40 K | 4 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | 2 ch | 3 ch (UART: 1 ch)               | 88   | 1.8 V           | Available |
|           | $\mu$ PD78078  | 48 K-60 K |       |        |       |      |      |        |      |                                 |      |                 |           |
|           | μPD78070A      | -         |       |        |       |      |      |        |      |                                 | 61   | 2.7 V           |           |
|           | μPD780058      | 24 K-60 K | 2 ch  |        |       |      |      |        |      | 3 ch (time-division UART: 1ch)  | 68   | 1.8 V           |           |
|           | $\mu$ PD78058F | 48 K-60 K |       |        |       |      |      |        |      | 3 ch (UART: 1 ch)               | 69   | 2.7 V           |           |
|           | μPD78054       | 16 K-60 K |       |        |       |      |      |        |      |                                 |      | 2.0 V           |           |
|           | μPD780034      | 8 K-32 K  |       |        |       |      | -    | 8 ch   | _    | 3 ch (UART: 1 ch,               | 51   | 1.8 V           |           |
|           | μPD780024      |           |       |        |       |      | 8 ch | _      |      | time-division 3-wire: 1 ch)     |      |                 |           |
|           | μPD78014H      |           |       |        |       |      |      |        |      | 2 ch                            | 53   | 1               |           |
|           | μPD78018F      | 8 K-60 K  |       |        |       |      |      |        |      |                                 |      |                 |           |
|           | μPD78014       | 8 K-32 K  |       |        |       |      |      |        |      |                                 |      | 2.7 V           |           |
|           | μPD780001      | 8 K       |       | _      | _     |      |      |        |      | 1 ch                            | 39   | 1               | _         |
|           | μPD78002       | 8 K-16 K  |       |        | 1 ch  |      | _    |        |      |                                 | 53   | 1               | Available |
|           | μPD78083       |           |       |        | _     |      | 8 ch |        |      | 1 ch (UART: 1 ch)               | 33   | 1.8 V           | _         |
| Inverter  | $\mu$ PD780988 | 32 K-60 K | 3 ch  | Note 1 | _     | 1 ch | -    | 8 ch   | _    | 3 ch (UART: 2 ch)               | 47   | 4.0 V           | Available |
| control   | μPD780964      | 8 K-32 K  |       | Note 2 |       |      |      |        |      | 2 ch (UART: 2 ch)               |      | 2.7 V           |           |
|           | μPD780924      |           |       |        |       |      | 8 ch | _      |      |                                 |      |                 |           |
| FIP       | $\mu$ PD780208 | 32 K-60 K | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | _    | 2 ch                            | 74   | 2.7 V           | _         |
| drive     | μPD780228      | 48 K-60 K | 3 ch  | -      | _     |      |      |        |      | 1 ch                            | 72   | 4.5 V           |           |
|           | μPD78044H      | 32 K-48 K | 2 ch  | 1 ch   | 1 ch  |      |      |        |      |                                 | 68   | 2.7 V           |           |
|           | μPD78044F      | 16 K-40 K |       |        |       |      |      |        |      | 2 ch                            |      |                 |           |
| LCD       | μPD780308      | 48 K-60 K | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | -    | 3 ch (time-division UART: 1 ch) | 57   | 2.0 V           | _         |
| drive     | μPD78064B      | 32 K      |       |        |       |      |      |        |      | 2 ch (UART: 1 ch)               |      |                 |           |
|           | μPD78064       | 16 K-32 K |       |        |       |      |      |        |      |                                 |      |                 |           |
| IEBus     | μPD78098B      | 40 K-60 K | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch | _      | 2 ch | 3 ch (UART: 1 ch)               | 69   | 2.7 V           | Available |
| supported | μPD78098       | 32 K-60 K |       |        |       |      |      |        |      |                                 |      |                 |           |
| Meter     | μPD780973      | 24 K-32 K | 3 ch  | 1 ch   | 1 ch  | 1 ch | 5 ch | -      | -    | 2 ch (UART: 1 ch)               | 56   | 4.5 V           | _         |
| control   |                |           |       |        |       |      |      |        |      |                                 |      |                 |           |

Notes 1. 16-bit timer: 2 channels

10-bit timer: 1 channel2. 10-bit timer: 1 channel





# **FUNCTION OVERVIEW**

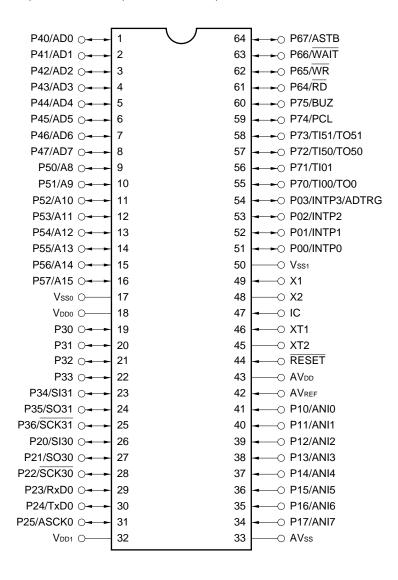
| Item           | Part Number                     | μPD780021                                                                                                                                                                                | μPD780022                                                        | μPD780023                | μPD780024        |  |  |  |  |
|----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|------------------|--|--|--|--|
| Internal       | ROM                             | 8 Kbytes                                                                                                                                                                                 | 16 Kbytes                                                        | 24 Kbytes                | 32 Kbytes        |  |  |  |  |
| memory         | High-speed RAM                  | 512 bytes                                                                                                                                                                                | I                                                                | 1024 bytes               |                  |  |  |  |  |
| Memory space   | ce                              | 64 Kbytes                                                                                                                                                                                |                                                                  |                          |                  |  |  |  |  |
| General-purp   | oose registers                  | 8 bits $\times$ 32 registers (8 bits $\times$ 8 registers $\times$ 4 banks)                                                                                                              |                                                                  |                          |                  |  |  |  |  |
| Minimum ins    | truction execution              | On-chip minimum ins                                                                                                                                                                      | On-chip minimum instruction execution time cycle change function |                          |                  |  |  |  |  |
| time           | When main system clock selected | 0.24 $\mu$ s/0.48 $\mu$ s/0.95 $\mu$ s/1.91 $\mu$ s/3.81 $\mu$ s (at 8.38-MHz operation)                                                                                                 |                                                                  |                          |                  |  |  |  |  |
|                | When subsystem clock selected   | 122 μs (at 32.768-kHz operation)                                                                                                                                                         |                                                                  |                          |                  |  |  |  |  |
| Instruction se | et                              | <ul> <li>16-bit operation</li> <li>Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits)</li> <li>Bit manipulate (set, reset, test, Boolean operation)</li> <li>BCD adjust, etc.</li> </ul> |                                                                  |                          |                  |  |  |  |  |
| I/O ports      |                                 | Total                                                                                                                                                                                    |                                                                  | : 51                     |                  |  |  |  |  |
|                |                                 | CMOS input : 8 CMOS I/O : 39  N-ch open-drain I/O (5-V withstand voltage) : 4                                                                                                            |                                                                  |                          |                  |  |  |  |  |
| A/D converte   | er                              | <ul> <li>8-bit resolution x 8 channels</li> <li>Low-voltage operation available: AVDD = 2.7 to 5.5 V</li> </ul>                                                                          |                                                                  |                          |                  |  |  |  |  |
| Serial interfa | се                              | 3-wire serial I/O mode : 2 channels     UART mode : 1 channel                                                                                                                            |                                                                  |                          |                  |  |  |  |  |
| Timer          |                                 | 16-bit timer/event counter : 1 channel     8-bit timer/event counter : 2 channels     Watch timer : 1 channel     Watchdog timer : 1 channel                                             |                                                                  |                          |                  |  |  |  |  |
| Timer output   |                                 | 3 (8-bit PWM output                                                                                                                                                                      | capable: 2)                                                      |                          |                  |  |  |  |  |
| Clock output   |                                 | 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (main system clock: at 8.38-MHz operation)     32.768 kHz (subsystem clock: at 32.768-kHz operation)         |                                                                  |                          |                  |  |  |  |  |
| Buzzer outpu   | ut                              | 1.02 kHz, 2.05 kHz, 4                                                                                                                                                                    | 1.10 kHz, 8.19 kHz (ma                                           | ain system clock: at 8.3 | 8-MHz operation) |  |  |  |  |
| Vectored       | Maskable                        | Internal: 13, external: 5                                                                                                                                                                |                                                                  |                          |                  |  |  |  |  |
| interrupt      | Non-maskable                    | Internal: 1                                                                                                                                                                              |                                                                  |                          |                  |  |  |  |  |
| sources        | Software                        | 1                                                                                                                                                                                        |                                                                  |                          |                  |  |  |  |  |
| Power supply   | y voltage                       | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                                                                                           |                                                                  |                          |                  |  |  |  |  |
| Operating an   | nbient temperature              | $T_A = -40 \text{ to } +85^{\circ}\text{C}$                                                                                                                                              |                                                                  |                          |                  |  |  |  |  |
| Package        |                                 | 64-pin plastic shrink DIP (750 mils)     64-pin plastic QFP (14 × 14 mm)     64-pin plastic LQFP (12 × 12 mm)                                                                            |                                                                  |                          |                  |  |  |  |  |

 $\star$ 





# **CONTENTS**


| 1.  | PIN CONFIGURATION (Top View)                                   | 7   |
|-----|----------------------------------------------------------------|-----|
| 2.  | BLOCK DIAGRAM                                                  | 10  |
| 3.  | PIN FUNCTIONS                                                  | 11  |
|     | 3.1 Port Pins                                                  | 11  |
|     | 3.2 Non-port Pins                                              | 12  |
|     | 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins | 14  |
| 4.  | MEMORY SPACE                                                   | 16  |
| 5.  | PERIPHERAL HARDWARE FUNCTION FEATURES                          | 17  |
|     | 5.1 Ports                                                      | 17  |
|     | 5.2 Clock Generator                                            | 18  |
|     | 5.3 Timer/Counter                                              | 19  |
|     | 5.4 Clock Output/Buzzer Output Control Circuit                 | 23  |
|     | 5.5 A/D Converter                                              | 24  |
|     | 5.6 Serial Interface                                           | 25  |
| 6.  | INTERRUPT FUNCTIONS                                            | 27  |
| 7.  | EXTERNAL DEVICE EXPANSION FUNCTIONS                            | 30  |
| 8.  | STANDBY FUNCTIONS                                              | 30  |
| 9.  | RESET FUNCTION                                                 | 30  |
| 10  | . INSTRUCTION SET                                              | 31  |
| 11. | . ELECTRICAL SPECIFICATIONS                                    | 33  |
| 12  | . PACKAGE DRAWINGS                                             | 52  |
| ΑP  | PPENDIX A. DEVELOPMENT TOOLS                                   | 55  |
|     | DENDLY B. DELATED DOCUMENTS                                    | F.0 |

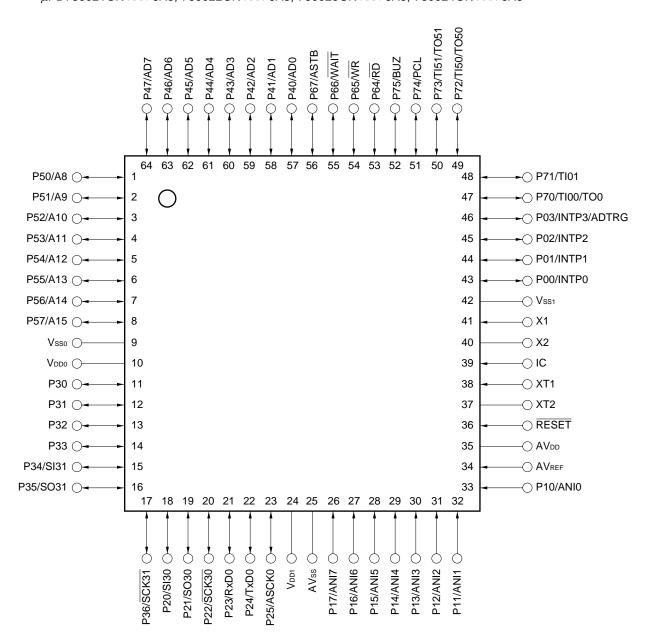




- 1. PIN CONFIGURATION (Top View)
  - 64-pin plastic shrink DIP (750 mil)

 $\mu$ PD780021CW-xxx, 780022CW-xxx, 780023CW-xxx, 780024CW-xxx




- ★ Cautions 1. Connect the IC (Internally Connected) pin directly to Vss₀ or Vss₁.
  - 2. Connect the AVss pin to Vsso.

Remark When the μPD780021, 780022, 780023, and 780024 are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V<sub>DD0</sub> and V<sub>DD1</sub> individually and connecting V<sub>SS0</sub> and V<sub>SS1</sub> to different ground lines, is recommended.





- **64-pin plastic QFP (14 × 14 mm)**μPD780021GC-×××-AB8, 780022GC-×××-AB8, 780023GC-×××-AB8, 780024GC-×××-AB8
- 64-pin plastic LQFP (12 × 12 mm)  $\mu$ PD780021GK-xxx-8A8, 780022GK-xxx-8A8, 780023GK-xxx-8A8, 780024GK-xxx-8A8



- ★ Cautions 1. Connect the IC (Internally Connected) pin directly to Vss₀ or Vss₁.
  - 2. Connect the AVss pin to Vsso.

**Remark** When the μPD780021, 780022, 780023, and 780024 are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V<sub>DD0</sub> and V<sub>DD1</sub> individually and connecting V<sub>SS0</sub> and V<sub>SS1</sub> to different ground lines, is recommended.





A8 to A15 : Address Bus P64 to P67 : Port 6
AD0 to AD7 : Address/Data Bus P70 to P75 : Port 7

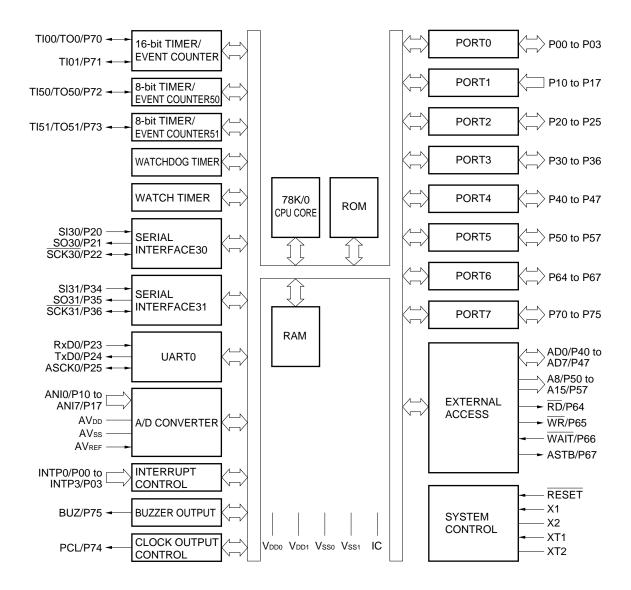
ADTRG : AD Trigger Input PCL : Programmable Clock

ANI0 to ANI7 : Analog Input  $\overline{\text{RD}}$  : Read Strobe

ASCK0 : Asynchronous Serial Clock RESET : Reset

: Receive Data **ASTB** : Address Strobe RxD0  $AV_{DD}$ : Analog Power Supply SCK30, SCK31 : Serial Clock **AV**REF : Analog Reference Voltage SI30, SI31 : Serial Input AVss : Analog Ground SO30, SO31 : Serial Output BUZ : Buzzer Clock TI00, TI01, TI50, TI51 : Timer Input IC : Internally Connected TO0, TO50, TO51 : Timer Output

INTP0 to INTP3 : Interrupt from Peripherals TxD0 : Transmit Data P00 to P03 : Port 0 VDD0, VDD1 : Power Supply


P30 to P36 : Port 3  $\overline{\text{WR}}$  : Write Strobe

P40 to P47 : Port 4 X1, X2 : Crystal (Main System Clock)
P50 to P57 : Port 5 XT1, XT2 : Crystal (Subsystem Clock)





#### 2. BLOCK DIAGRAM



**Remark** The internal ROM and RAM capacities depend on the product.





# 3. PIN FUNCTIONS

# 3.1 Port Pins (1/2)

| Pin Name   | I/O   |                                                                                                                                                  | Function                                             | After<br>Reset | Alternate<br>Function |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|-----------------------|
| P00        | I/O   | Port 0                                                                                                                                           |                                                      | Input          | INTP0                 |
| P01        |       | 4-bit input/output port.                                                                                                                         |                                                      |                | INTP1                 |
| P02        |       | Input/output can be specified bit-<br>When used as an input port, an o                                                                           | wise.<br>n-chip pull-up resistor can be connected by |                | INTP2                 |
| P03        |       | software.                                                                                                                                        |                                                      | INTP3/ADTRG    |                       |
| P10 to P17 | Input | Port 1<br>8-bit input only port.                                                                                                                 |                                                      | Input          | ANI0 to ANI7          |
| P20        | I/O   | Port 2                                                                                                                                           |                                                      | Input          | SI30                  |
| P21        |       | 6-bit input/output port.  Input/output can be specified bit-                                                                                     | wigo                                                 |                | SO30                  |
| P22        |       |                                                                                                                                                  | n-chip pull-up resistor can be connected by          |                | SCK30                 |
| P23        |       | software.                                                                                                                                        |                                                      |                | RxD0                  |
| P24        |       |                                                                                                                                                  |                                                      |                | TxD0                  |
| P25        |       |                                                                                                                                                  |                                                      |                | ASCK0                 |
| P30        | I/O   | Port 3                                                                                                                                           | N-ch open-drain input/output port.                   | Input          | _                     |
| P31        |       | 7-bit input/output port.                                                                                                                         | An on-chip pull-up resistor can be specified         |                |                       |
| P32        |       | Input/output can be specified bit-wise.                                                                                                          | by mask option.  LEDs can be driven directly.        |                |                       |
| P33        |       |                                                                                                                                                  |                                                      |                |                       |
| P34        |       |                                                                                                                                                  | When used as an input port, an on-chip               |                | SI31                  |
| P35        |       |                                                                                                                                                  | pull-up resistor can be connected by                 |                | SO31                  |
| P36        |       |                                                                                                                                                  | software.                                            |                | SCK31                 |
| P40 to P47 | I/O   | Port 4 8-bit input/output port. Input/output can be specified bit- When used as an input port, an o software. Interrupt request flag (KRIF) is s | Input                                                | AD0 to AD7     |                       |
| P50 to P57 | I/O   | Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified bit- When used as an input port, an o software.       | Input                                                | A8 to A15      |                       |
| P64        | I/O   | Port 6                                                                                                                                           | Input                                                | RD             |                       |
| P65        |       | 4-bit input/output port.  Input/output can be specified bit-                                                                                     | -wise                                                |                | WR                    |
| P66        |       | 1                                                                                                                                                | n-chip pull-up resistor can be connected by          |                | WAIT                  |
| P67        |       | software.                                                                                                                                        |                                                      |                | ASTB                  |





# 3.1 Port Pins (2/2)

| Pin Name | I/O | Function                                                                                                             | After | Alternate |
|----------|-----|----------------------------------------------------------------------------------------------------------------------|-------|-----------|
|          |     |                                                                                                                      | Reset | Function  |
| P70      | I/O | Port 7                                                                                                               | Input | TI00/TO0  |
| P71      |     | 6-bit input/output port.                                                                                             |       | TI01      |
| P72      |     | Input/output can be specified bit-wise.  When used as an input port, an on-chip pull-up resistor can be connected by |       | TI50/TO50 |
| P73      |     | software.                                                                                                            |       | TI51/TO51 |
| P74      |     |                                                                                                                      |       | PCL       |
| P75      |     |                                                                                                                      |       | BUZ       |

# 3.2 Non-port Pins (1/2)

| Pin Name   | I/O    | Function                                                                                                          | After<br>Reset | Alternate<br>Function |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|
| INTP0      | Input  | External interrupt request input for which the effective edge (rising edge,                                       | Input          | P00                   |
| INTP1      | Imput  | falling edge, or both rising edge and falling edge) can be specified.                                             | Input          | P01                   |
| INTP2      | -      | railing edge, or both fishing edge and railing edge) can be specified.                                            |                | P02                   |
| INTP3      | -      |                                                                                                                   |                | P02/ADTRG             |
| SI30       | Innut  | Carial interface carial data input                                                                                | Innut          | P20                   |
|            | Input  | Serial interface serial data input.                                                                               | Input          | P34                   |
| SI31       | 0.11   | Out all interests are a solid little and sout                                                                     | la accet       |                       |
| SO30       | Output | Serial interface serial data output.                                                                              | Input          | P21                   |
| SO31       |        |                                                                                                                   |                | P35                   |
| SCK30      | I/O    | Serial interface serial clock input/output.                                                                       | Input          | P22                   |
| SCK31      |        |                                                                                                                   |                | P36                   |
| RxD0       | Input  | Serial data input for asynchronous serial interface.                                                              | Input          | P23                   |
| TxD0       | Output | Serial data output for asynchronous serial interface.                                                             | Input          | P24                   |
| ASCK0      | Input  | Serial clock input for asynchronous serial interface.                                                             | Input          | P25                   |
| TI00       | Input  | External count clock input to 16-bit timer (TM0).                                                                 | Input          | P70/TO0               |
|            |        | Capture trigger input to capture register (CR01) of 16-bit timer (TM0).                                           |                |                       |
| TI01       |        | Capture trigger input to capture register (CR00) of 16-bit timer (TM0).                                           |                | P71                   |
| TI50       |        | External count clock input to 8-bit timer (TM50).                                                                 |                | P72/TO50              |
| TI51       |        | External count clock input to 8-bit timer (TM51).                                                                 |                | P73/TO51              |
| TO0        | Output | 16-bit timer (TM0) output.                                                                                        | Input          | P70/TI00              |
| TO50       | ] [    | 8-bit timer (TM50) output (shared with 8-bit PWM output).                                                         | Input          | P72/TI50              |
| TO51       | ] [    | 8-bit timer (TM51) output (shared with 8-bit PWM output).                                                         |                | P73/TI51              |
| PCL        | Output | Clock output (for trimming of main system clock and subsystem clock).                                             | Input          | P74                   |
| BUZ        | Output | Buzzer output.                                                                                                    | Input          | P75                   |
| AD0 to AD7 | I/O    | Lower address/data bus for extending memory externally.                                                           | Input          | P40 to P47            |
| A8 to A15  | Output | Higher address bus for extending memory externally.                                                               | Input          | P50 to P57            |
| RD         | Output | Strobe signal output for read operation of external memory.                                                       | Input          | P64                   |
| WR         | 1      | Strobe signal output for write operation of external memory.                                                      |                | P65                   |
| WAIT       | Input  | Inserting wait for accessing external memory.                                                                     | Input          | P66                   |
| ASTB       | Output | Strobe output which externally latches address information output to port 4 and port 5 to access external memory. | Input          | P67                   |





# 3.2 Non-port Pins (2/2)

| Pin Name         | I/O   | Function                                                                  | After | Alternate  |
|------------------|-------|---------------------------------------------------------------------------|-------|------------|
|                  |       |                                                                           | Reset | Function   |
| ANI0 to ANI7     | Input | A/D converter analog input.                                               | Input | P10 to P17 |
| ADTRG            | Input | A/D converter trigger signal input.                                       | Input | P03/INTP3  |
| AVREF            | Input | A/D converter reference voltage input.                                    | _     | _          |
| AV <sub>DD</sub> |       | A/D converter analog power supply. Set potential to that of VDD0 or VDD1. | _     | _          |
| AVss             |       | A/D converter ground potential. Set potential to that of Vsso or Vss1.    | _     | _          |
| RESET            | Input | System reset input.                                                       | _     | _          |
| X1               | Input | Connecting crystal resonator for main system clock oscillation.           | _     | _          |
| X2               |       |                                                                           | _     | _          |
| XT1              | Input | Connecting crystal resonator for subsystem clock oscillation.             | _     | _          |
| XT2              |       |                                                                           | _     | _          |
| V <sub>DD0</sub> |       | Positive power supply for ports.                                          | _     | _          |
| Vsso             | _     | Ground potential of ports.                                                | _     | _          |
| V <sub>DD1</sub> | _     | Positive power supply (except ports).                                     | _     | _          |
| Vss1             |       | Ground potential (except ports).                                          |       | _          |
| IC               |       | Internally connected. Connect directly to Vsso or Vss1.                   | _     | _          |

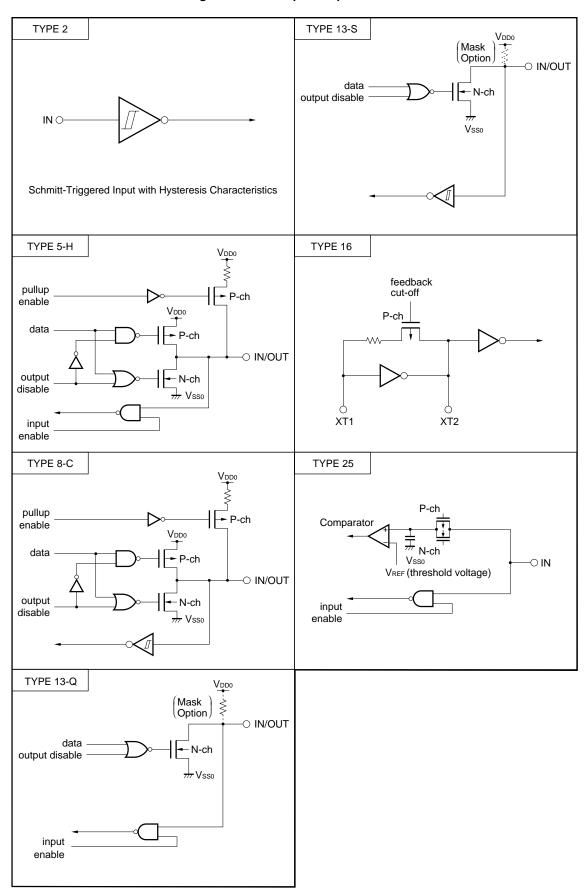
 $\star$ 





# 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

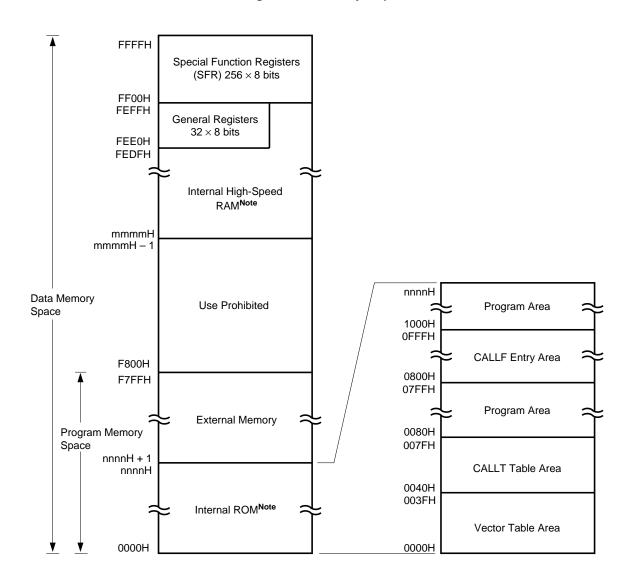

Table 3-1. Input/Output Circuit Type of Each Pin

| Pin Name             | Input/output<br>Circuit Type | I/O          | Recommended Connection when not Used                    |
|----------------------|------------------------------|--------------|---------------------------------------------------------|
| P00/INTP0            | 8-C                          | Input        | Independently connect to Vsso via a resistor .          |
| P01/INTP1            |                              |              |                                                         |
| P02/INTP2            |                              |              |                                                         |
| P03/INTP3            |                              |              |                                                         |
| P10/ANI0 to P17/ANI7 | 25                           | Input        | Independently connect to VDDO or VSSO via a resistor.   |
| P20/SI30             | 8-C                          | Input/output |                                                         |
| P21/SO30             | 5-H                          |              |                                                         |
| P22/SCK30            | 8-C                          |              |                                                         |
| P23/RxD0             |                              |              |                                                         |
| P24/TxD0             | 5-H                          |              |                                                         |
| P25/ASCK0            | 8-C                          |              |                                                         |
| P30, P31             | 13-Q                         | Input/output | Independently connect to VDD0 via a resistor .          |
| P32, P33             | 13-S                         |              |                                                         |
| P34/SI31             | 8-C                          |              | Independently connect to VDDO or VSSO via a resistor .  |
| P35/SO31             | 5-H                          |              |                                                         |
| P36/SCK31            | 8-C                          |              |                                                         |
| P40/AD0 to P47/AD7   | 5-H                          | Input/output | Independently connect to VDDO via a resistor.           |
| P50/A8 to P57/A15    |                              |              | Independently connect to VDD0 or VSS0 via a resistor.   |
| P64/RD               |                              |              |                                                         |
| P65/WR               |                              |              |                                                         |
| P66/WAIT             |                              |              |                                                         |
| P67/ASTB             |                              |              |                                                         |
| P70/TI00/TO0         | 8-C                          | -            |                                                         |
| P71/TI01             |                              |              |                                                         |
| P72/TI50/TO50        |                              |              |                                                         |
| P73/TI51/TO51        |                              |              |                                                         |
| P74/PCL              | 5-H                          | 1            |                                                         |
| P75/BUZ              | 7                            |              |                                                         |
| RESET                | 2                            | Input        | _                                                       |
| XT1                  | 16                           | 1            | Connect to VDDO.                                        |
| XT2                  | 7                            | _            | Leave open                                              |
| AV <sub>DD</sub>     | _                            | 1            | Connect to VDDO.                                        |
| AVREF                | 7                            |              | Connect directly to Vsso.                               |
| AVss                 | 7                            |              |                                                         |
| IC                   |                              |              | Internally connected. Connect directly to Vsso or Vss1. |





Figure 3-1. Pin Input/Output Circuits






# 4. MEMORY SPACE

Figure 4-1 shows the memory map of the  $\mu$ PD780021, 780022, 780023, and 780024.

Figure 4-1. Memory Map



**Note** The internal ROM capacity and internal high-speed RAM capacity depend on the products (see the following table).

| Part Number | Internal ROM Last Address<br>nnnnH | Internal High-Speed RAM Start Address mmmmH |
|-------------|------------------------------------|---------------------------------------------|
| μPD780021   | 1FFFH                              | FD00H                                       |
| μPD780022   | 3FFFH                              |                                             |
| μPD780023   | 5FFFH                              | FB00H                                       |
| μPD780024   | 7FFFH                              |                                             |





# 5. PERIPHERAL HARDWARE FUNCTION FEATURES

#### 5.1 Ports

The following 3 types of I/O ports are available.

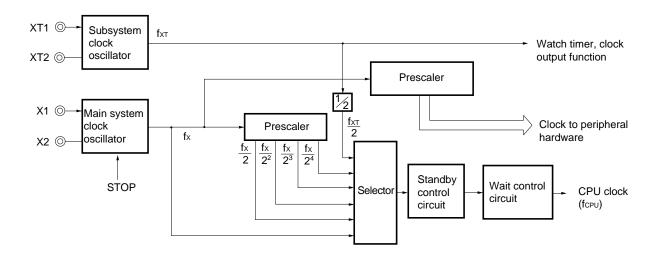
CMOS input (Port 1) : 8
 CMOS input/output (Port 0, Port 2 to Port 7) : 39
 N-channel open-drain input/output (P30 to P33) : 4
 Total : 51

# Table 5-1. Port Functions

| Name   | Pin Name   | Function                                                                                                                                                                                                   |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port 0 | P00 to P03 | Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.                                                                 |
| Port 1 | P10 to P17 | Dedicated input port pins.                                                                                                                                                                                 |
| Port 2 | P20 to P25 | Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.                                                                 |
| Port 3 | P30 to P33 | N-channel open-drain input/output port pins. Input/output specifiable bit-wise.  On-chip pull-up resistor can be used by mask option.  LED can be driven directly.                                         |
|        | P34 to P36 | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.                                                                |
| Port 4 | P40 to P47 | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.  Test input flag (KRIF) is set to 1 by falling edge detection. |
| Port 5 | P50 to P57 | Input/output port pins. Input/output specifiable bit-wise.  When used as input port pins, on-chip pull-up resistor can be used by software.  LED can be driven directly.                                   |
| Port 6 | P64 to P67 | Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.                                                                 |
| Port 7 | P70 to P75 | Input/output port pins. Input/output specifiable bit-wise. When used as input port pins, on-chip pull-up resistor can be used by software.                                                                 |






#### 5.2 Clock Generator

A system clock generator is incorporated.

The minimum instruction execution time can also be changed.

- 0.24  $\mu$ s/0.48  $\mu$ s/0.95  $\mu$ s/1.91  $\mu$ s/3.81  $\mu$ s (main system clock: at 8.38-MHz operation)
- 122 μs (subsystem clock: at 32.768-kHz operation)

Figure 5-1. Block Diagram of Clock Generator







#### 5.3 Timer/Counter

Five timer/counter channels are incorporated.

16-bit timer/event counter: 1 channel
 8-bit timer/event counter: 2 channels
 Watch timer: 1 channel
 Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

|     |                         | 16-Bit Timer/<br>Event Counter TM0 | 8-Bit Timer/<br>Event Counter TM50, TM51 | Watch Timer                 | Watchdog Timer              |
|-----|-------------------------|------------------------------------|------------------------------------------|-----------------------------|-----------------------------|
| Оре | eration mode            |                                    |                                          |                             |                             |
|     | Interval timer          | 2 channels <sup>Note 1</sup>       | 2 channels                               | 1 channel <sup>Note 2</sup> | 1 channel <sup>Note 3</sup> |
|     | External event counter  | 1 channel                          | 2 channels                               | _                           | _                           |
| Fur | nction                  |                                    |                                          |                             |                             |
|     | Timer output            | 1 output                           | 2 outputs                                | _                           | _                           |
|     | PWM output              | _                                  | 2 outputs                                | _                           | _                           |
|     | Pulse width measurement | 2 inputs                           | _                                        | <del>_</del>                | _                           |
|     | Square wave output      | 1 output                           | 2 outputs                                | _                           | _                           |
|     | One-shot pulse output   | 1 output                           | _                                        | _                           | _                           |
|     | Interrupt source        | 2                                  | 2                                        | 2                           | 1                           |

Notes 1. When capture/compare registers 00, 01 (CR00, CR01) are both specified as compare registers

- 2. The watch timer can perform both watch timer and interval timer functions at the same time.
- **3.** The watchdog timer has the watchdog timer and interval timer functions. However, use the watchdog timer by selecting either the watchdog timer function or the interval timer function.



Figure 5-2. Block Diagram of 16-bit Timer/Event Counter TM0

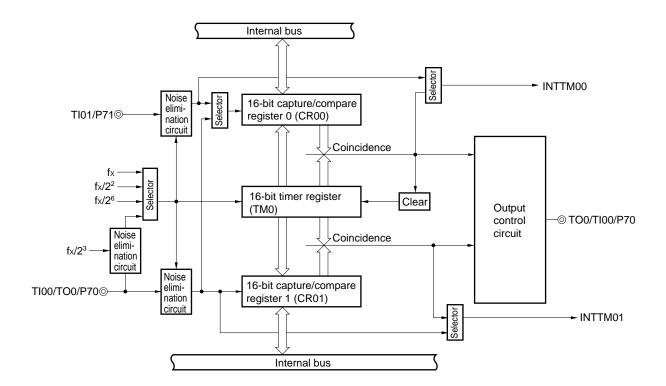



Figure 5-3. Block Diagram of 8-bit Timer/Event Counter TM50

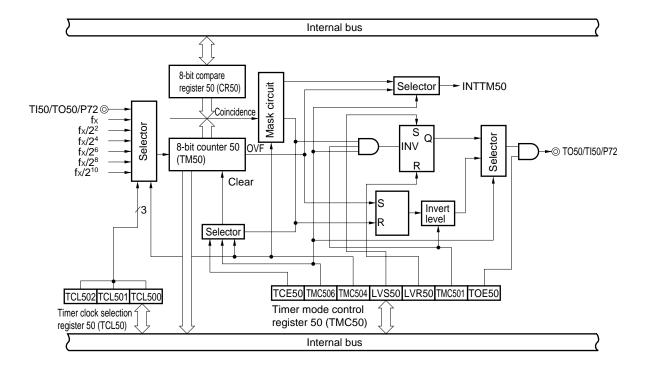



Figure 5-4. Block Diagram of 8-bit Timer/Event Counter TM51

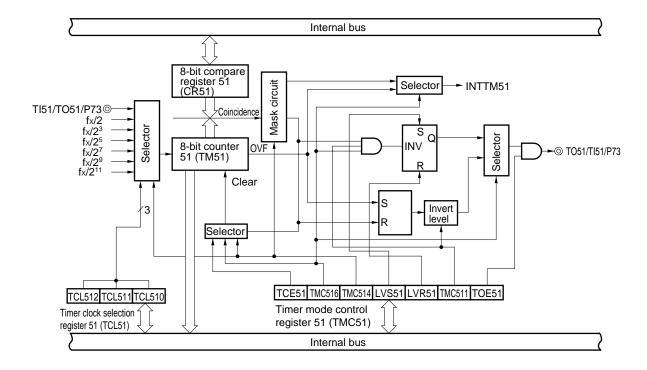







Figure 5-5. Block Diagram of Watch Timer

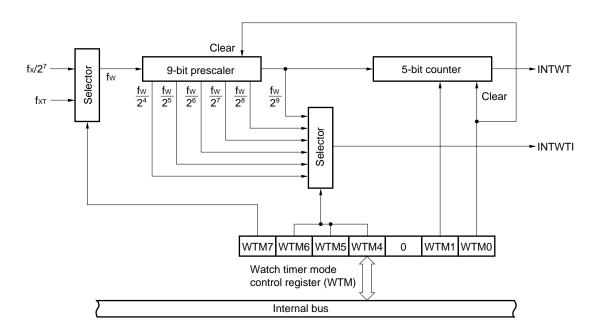
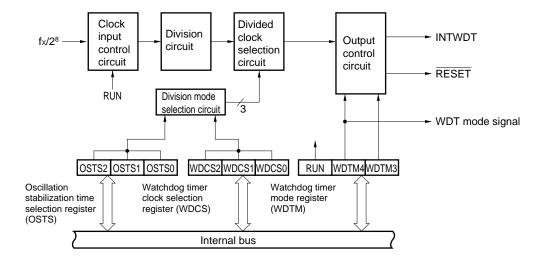



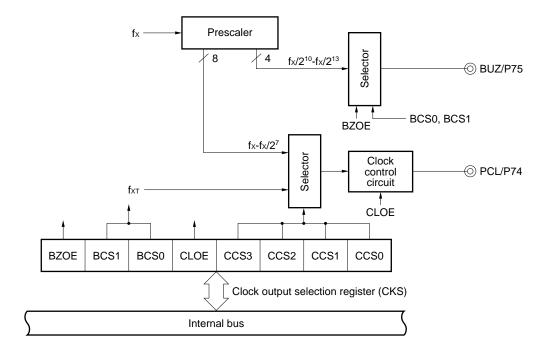

Figure 5-6. Block Diagram of Watchdog Timer





### 5.4 Clock Output/Buzzer Output Control Circuit

A clock output/buzzer output control circuit (CKU) is incorporated.


Clocks with the following frequencies can be output as a clock output.

- 65.5 kHz/131 kHz/262 kHz/524 kHz/1.05 MHz/2.10 MHz/4.19 MHz/8.38 MHz (main system clock: at 8.38-MHz operation)
- 32.768 kHz (subsystem clock: at 32.768-kHz operation)

Clocks with the following frequencies can be output as a buzzer output.

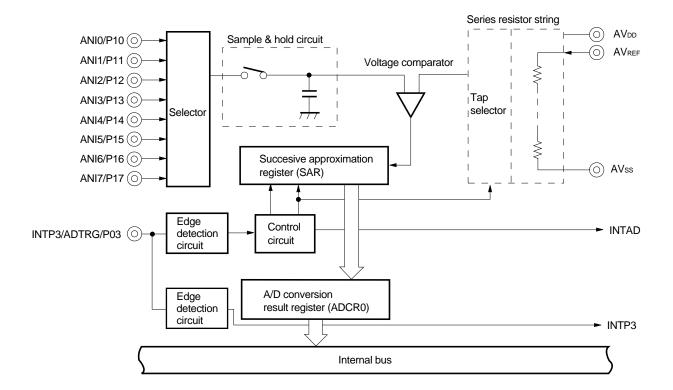
• 1.02 kHz/2.05 kHz/4.10 kHz/8.19 kHz (main system clock: at 8.38-MHz operation)

Figure 5-7. Block Diagram of Clock Output/Buzzer Output Control Circuit CKU








#### 5.5 A/D Converter

An A/D converter of 8-bit resolution  $\times$  8 channels is incorporated.

The following two types of the A/D conversion operation start-up methods are available.

- · Hardware start
- Software start

Figure 5-8. Block Diagram of A/D Converter





#### 5.6 Serial Interface

Three channels of the serial interface are incorporated.

Serial interface UART0 : 1 channel

• Serial interface SIO3n (n = 0, 1): 2 channels

#### (1) Serial interface UART0

The serial interface UART0 has two modes, asynchronous serial interface (UART) mode and infrared data transfer mode.

# · Asynchronous serial interface (UART) mode

This mode enables full-duplex operation wherein one byte of data is transmitted and received after the start bit.

The on-chip dedicated UART baud rate generator enables communication using a wide range of selectable baud rates. In addition, a baud rate can be also defined by dividing the clock input to the ASCK0 pin. The dedicated UART baud rate generator can also be used to generate a MIDI-standard baud rate (31.25 kbps).

#### Infrared data transfer mode

This mode enables pulse output and pulse reception in data format.

This mode can be used for office equipment applications such as personal computers.

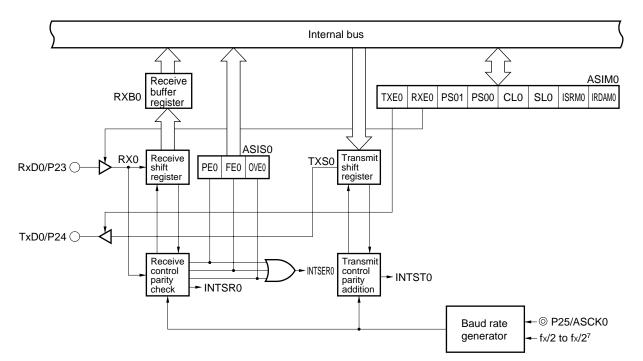



Figure 5-9. Block Diagram of Serial Interface UART0

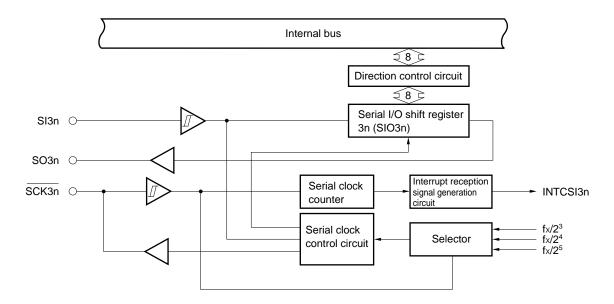




# (2) Serial interface SIO3n (n = 0, 1)

The serial interface SIO3n has the 3-wire serial I/O mode.

#### 3-wire serial I/O mode (fixed as MSB first)


This is an 8-bit data transfer mode using three lines: a serial clock line (SCK3n), serial output line (SO3n), and serial input line (SI3n).

Since simultaneous transmit and receive operations are enabled in the 3-wire serial I/O mode, the processing time for data transfer is reduced.

The first bit in 8-bit data in the serial transfer is fixed as MSB.

The 3-wire serial I/O mode is useful for connection to a peripheral I/O device that includes a clocked serial interface, a display controller, etc.

Figure 5-10. Block Diagram of Serial Interface SIO3n



Remark n = 0, 1





# 6. INTERRUPT FUNCTIONS

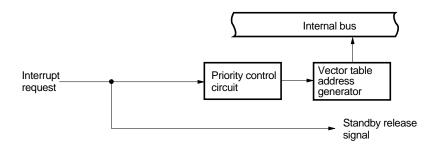
There are 20 interrupt functions of three different types, as shown below.

Non-maskable: 1Maskable : 18Software : 1

Table 6-1. Interrupt Source List

| Type of          | Default                    |          | Interrupt Source                                                                                                                           | Internal/ | Vector Table | Basic                    |
|------------------|----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------------------|
| Interrupt        | Priority <sup>Note 1</sup> | Name     | Trigger                                                                                                                                    | External  | Address      | Configuration TypeNote 2 |
| Non-<br>maskable |                            | INTWDT   | Watchdog timer overflow (watchdog timer mode 1 selected)                                                                                   | Internal  | 0004H        | (A)                      |
| Maskable         | 0                          | INTWDT   | Watchdog timer overflow (interval timer mode selected)                                                                                     |           |              | (B)                      |
|                  | 1                          | INTP0    | Pin input edge detection                                                                                                                   | External  | 0006H        | (C)                      |
|                  | 2                          | INTP1    |                                                                                                                                            |           | 0008H        |                          |
|                  | 3                          | INTP2    |                                                                                                                                            |           | 000AH        |                          |
|                  | 4                          | INTP3    |                                                                                                                                            |           | 000CH        |                          |
|                  | 5                          | INTSER0  | Generation of serial interface UART0 reception error                                                                                       | Internal  | 000EH        | (B)                      |
|                  | 6                          | INTSR0   | End of serial interface UART0 reception                                                                                                    |           | 0010H        |                          |
|                  | 7                          | INTST0   | End of serial interface UART0 transmission                                                                                                 |           | 0012H        |                          |
|                  | 8                          | INTCSI30 | End of serial interface SIO3 (SIO30) transfer                                                                                              |           | 0014H        |                          |
|                  | 9                          | INTCSI31 | End of serial interface SIO3 (SIO31) transfer                                                                                              |           | 0016H        |                          |
|                  | 10                         | INTWTI   | Reference time interval signal from watch timer                                                                                            |           | 001AH        |                          |
|                  | 11                         | INTTM00  | Generation of coincidence signal of 16-bit timer register and capture/compare register 00 (CR00) (when CR00 specified as compare register) |           | 001CH        |                          |
|                  | 12                         | INTTM01  | Generation of coincidence signal of 16-bit timer register and capture/compare register 01 (CR01) (when CR01 specified as compare register) |           | 001EH        |                          |
|                  | 13                         | INTTM50  | Generation of coincidence signal of 8-bit timer/event counter 50                                                                           |           | 0020H        |                          |
|                  | 14                         | INTTM51  | Generation of coincidence signal of 8-bit timer/event counter 51                                                                           |           | 0022H        |                          |
|                  | 15                         | INTAD0   | End of conversion by A/D converter                                                                                                         |           | 0024H        |                          |
|                  | 16                         | INTWT    | Watch timer overflow                                                                                                                       |           | 0026H        |                          |
|                  | 17                         | INTKR    | Falling edge detection of port 4                                                                                                           | External  | 0028H        | (D)                      |
| Software         | _                          | BRK      | BRK instruction execution                                                                                                                  | _         | 003EH        | (E)                      |

**Notes 1.** The default priority is a priority order when two or more maskable interrupt requests are generated simultaneously. 0 is the highest order and 17, the lowest.


2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1, respectively.



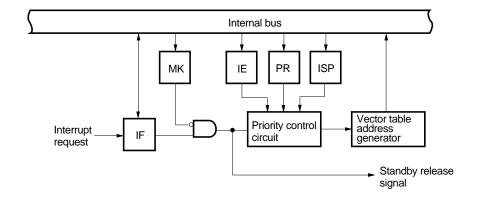



Figure 6-1. Basic Configuration of Interrupt Function (1/2)

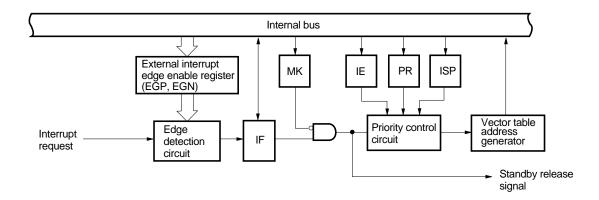
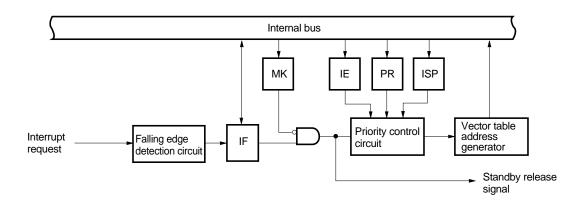
# (A) Internal non-maskable interrupt



# (B) Internal maskable interrupt



# (C) External maskable interrupt (INTP0 to INTP3)

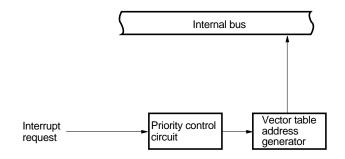




Figure 6-1. Basic Configuration of Interrupt Function (2/2)

# (D) External maskable interrupt (INTKR)



# (E) Software interrupt



IF : Interrupt request flagIE : Interrupt enable flagISP : In-service priority flagMK : Interrupt mask flagPR : Priority specification flag





#### 7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR. Ports 4 to 6 are used for external device connection.

#### 8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the consumption current.

- HALT mode: The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.
- STOP mode: The system clock oscillation is stopped. The whole operation by the system clock is stopped, so that the system operates with ultra-low power consumption.

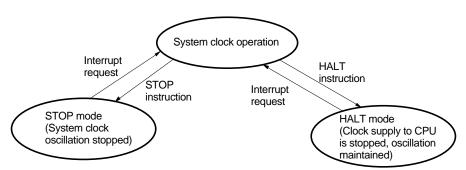



Figure 8-1. Standby Function

# 9. RESET FUNCTION

There are the following two reset methods.

- · External reset by RESET pin
- Internal reset by watchdog timer runaway time detection





# 10. INSTRUCTION SET

# (1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

| Second operand First operand        | #byte                                                        | А                                                            | r <sup>Note</sup>                        | sfr        | saddr                                    | !addr16                                                             | PSW | [DE]       | [HL]                                     | [HL + byte]<br>[HL + B]<br>[HL + C]      | l    | 1                          | None         |
|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------------|------------------------------------------|---------------------------------------------------------------------|-----|------------|------------------------------------------|------------------------------------------|------|----------------------------|--------------|
| A                                   | ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP        |                                                              | MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP | MOV<br>XCH | MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP | MOV<br>XCH<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV | MOV<br>XCH | MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP | MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP |      | ROR<br>ROL<br>RORC<br>ROLC |              |
| r                                   | MOV                                                          | MOV<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            | INC<br>DEC   |
| B, C                                |                                                              |                                                              |                                          |            |                                          |                                                                     |     |            |                                          |                                          | DBNZ |                            |              |
| sfr                                 | MOV                                                          | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            |              |
| saddr                               | MOV<br>ADD<br>ADDC<br>SUB<br>SUBC<br>AND<br>OR<br>XOR<br>CMP | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          | DBNZ |                            | INC<br>DEC   |
| !addr16                             |                                                              | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            |              |
| PSW                                 | MOV                                                          | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            | PUSH<br>POP  |
| [DE]                                |                                                              | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            |              |
| [HL]                                |                                                              | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            | ROR4<br>ROL4 |
| [HL + byte]<br>[HL + B]<br>[HL + C] |                                                              | MOV                                                          |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            |              |
| Х                                   |                                                              |                                                              |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            | MULU         |
| С                                   |                                                              |                                                              |                                          |            |                                          |                                                                     |     |            |                                          |                                          |      |                            | DIVUW        |

Note Except r = A





# (2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

| Second operand First operand | #word                | AX                   | rp <sup>Note</sup> | sfrp | saddrp | !addr16 | SP   | None                    |
|------------------------------|----------------------|----------------------|--------------------|------|--------|---------|------|-------------------------|
| AX                           | ADDW<br>SUBW<br>CMPW |                      | MOVW<br>XCHW       | MOVW | MOVW   | MOVW    | MOVW |                         |
| rp                           | MOVW                 | MOVW <sup>Note</sup> |                    |      |        |         |      | INCW, DECW<br>PUSH, POP |
| sfrp                         | MOVW                 | MOVW                 |                    |      |        |         |      |                         |
| saddrp                       | MOVW                 | MOVW                 |                    |      |        |         |      |                         |
| !addr16                      |                      | MOVW                 |                    |      |        |         |      |                         |
| SP                           | MOVW                 | MOVW                 |                    |      |        |         |      |                         |

Note Only when rp = BC, DE or HL

# (3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

| Second operand First operand | A.bit                       | sfr.bit                     | saddr.bit                   | PSW.bit                     | [HL].bit                    | CY   | \$addr16          | None                 |
|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|-------------------|----------------------|
| A.bit                        |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| sfr.bit                      |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| saddr.bit                    |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| PSW.bit                      |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| [HL].bit                     |                             |                             |                             |                             |                             | MOV1 | BT<br>BF<br>BTCLR | SET1<br>CLR1         |
| CY                           | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 | MOV1<br>AND1<br>OR1<br>XOR1 |      |                   | SET1<br>CLR1<br>NOT1 |

#### (4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

| Second operand<br>First operand | AX | !addr16    | !addr11 | [addr5] | \$addr16                |
|---------------------------------|----|------------|---------|---------|-------------------------|
| Basic instruction               | BR | CALL<br>BR | CALLF   | CALLT   | BR, BC, BNC<br>BZ, BNZ  |
| Compound instruction            |    |            |         |         | BT, BF<br>BTCLR<br>DBNZ |

# (5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP





# **★** 11. ELECTRICAL SPECIFICATIONS

# Absolute Maximum Ratings ( $T_A = 25^{\circ}C$ )

| Parameter                   | Symbol               |                                        | Test Conditions                                            |                               | Ratings                                             | Unit |
|-----------------------------|----------------------|----------------------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------------------|------|
| Supply voltage              | V <sub>DD</sub>      |                                        |                                                            |                               | -0.3 to +6.5                                        | V    |
|                             | AVDD                 |                                        |                                                            |                               | -0.3 to V <sub>DD</sub> + 0.3                       | V    |
|                             | AVREF                |                                        |                                                            |                               | -0.3 to V <sub>DD</sub> + 0.3                       | V    |
|                             | AVss                 |                                        |                                                            |                               | -0.3 to +0.3                                        | V    |
| Input voltage               | VII                  | *                                      | 10 to P17, P20 to P25, P34<br>64 to P67, P70 to P75, X1, X | ,                             | -0.3 to V <sub>DD</sub> + 0.3                       | V    |
|                             | Vı2                  | P30 to P33                             | N-ch open-drain                                            | -0.3 to V <sub>DD</sub> + 0.3 | V                                                   |      |
| Output voltage              | Vo                   |                                        |                                                            |                               | -0.3 to V <sub>DD</sub> + 0.3                       | V    |
| Analog input voltage        | Van                  | P10 to P17                             | Analog input pin                                           |                               | AVss - 0.3 to AVREF0 + 0.3<br>and -0.3 to VDD + 0.3 | V    |
| High-level output           | Іон                  | Per pin                                |                                                            | -10                           | mA                                                  |      |
| current                     |                      | Total for P00 to                       | P03, P40 to P47, P50 to P57, I                             | -15                           | mA                                                  |      |
|                             |                      | Total for P20                          | to P25, P30 to P36                                         |                               | -15                                                 | mA   |
| Low-level output            | I <sub>OL</sub> Note | Per pin for P00 to P03, P20 to P25, P3 |                                                            | Peak value                    | 20                                                  | mA   |
| current                     |                      | P36, P40 to P4                         | 7, P64 to P67, P70 to P75                                  | 10                            | mA                                                  |      |
|                             |                      | Per pin for P30 to P33, P50 to P57 Pea |                                                            | Peak value                    | 30                                                  | mA   |
|                             |                      |                                        |                                                            | Effective value               | 15                                                  | mA   |
|                             |                      | Total for P00                          | to P03, P40 to P47,                                        | Peak value                    | 50                                                  | mA   |
|                             |                      | P64 to P67, P70 to P75 Effective value |                                                            |                               | 20                                                  | mA   |
|                             |                      | Total for P20                          | to P25                                                     | Peak value                    | 20                                                  | mA   |
|                             |                      |                                        |                                                            | Effective value               | 10                                                  | mA   |
|                             |                      | Total for P30                          | to P36                                                     | Peak value                    | 100                                                 | mA   |
|                             |                      |                                        |                                                            | Effective value               | 70                                                  | mA   |
|                             |                      | Total for P50                          | to P57                                                     | Peak value                    | 100                                                 | mA   |
|                             |                      |                                        |                                                            | Effective value               | 70                                                  | mA   |
| Operating ambient tempature | Та                   |                                        |                                                            | Peak value                    | -40 to +85                                          | °C   |
| Storage temperature         | T <sub>stg</sub>     |                                        |                                                            | Effective value               | -65 to +150                                         | °C   |

**Note** The effective value should be calculated as follows: [Effective value] = [Peak value]  $\times \sqrt{\text{duty}}$ 

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.





# Capacitance (TA = 25°C, VDD = Vss = 0 V)

| Parameter          | Symbol | Test Conditions                                  |                                                                                             |  | TYP. | MAX. | Unit |
|--------------------|--------|--------------------------------------------------|---------------------------------------------------------------------------------------------|--|------|------|------|
| Input capacitance  | Cin    | f = 1 MHz<br>Unmeasured pins returne             |                                                                                             |  | 15   | pF   |      |
| I/O<br>capacitance | Сю     | f = 1 MHz<br>Unmeasured pins<br>returned to 0 V. | P00 to P03, P20 to P25,<br>P34 to P36, P40 to P47,<br>P50 to P57, P64 to P67,<br>P70 to P75 |  |      | 15   | pF   |
|                    |        |                                                  | P30 to P33                                                                                  |  |      | 20   | pF   |

**Remark** Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

# Main System Clock Oscillation Circuit Characteristics (T<sub>A</sub> = -40 to 85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Resonator         | Recommended<br>Circuit | Parameter                                           | Test Conditions                                              | MIN.     | TYP. | MAX.        | Unit |
|-------------------|------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------|------|-------------|------|
| Ceramic resonator | X1 X2 IC<br>\$R1       | Oscillation<br>frequency (fx) <sup>Note 1</sup>     | V <sub>DD</sub> = 4.5 to 5.5 V                               | 1.0      |      | 8.38<br>5.0 | MHz  |
|                   | +C1 +C2                | Oscillation stabilization time Note 2               | After V <sub>DD</sub> reaches oscillation voltage range MIN. |          |      | 4           | ms   |
| Crystal resonator |                        | Oscillator<br>frequency (fx) <sup>Note 1</sup>      | V <sub>DD</sub> = 4.5 to 5.5 V                               | 1.0      |      | 8.38<br>5.0 | MHz  |
|                   | ±C1                    | Oscillation<br>stabilization time <sup>Note 2</sup> | V <sub>DD</sub> = 4.5 to 5.5 V                               |          |      | 10<br>30    | ms   |
| External clock    | nal                    | X1 input<br>frequency (fx)Note 1                    | V <sub>DD</sub> = 4.5 to 5.5 V                               | 1.0      |      | 8.38<br>5.0 | MHz  |
|                   |                        | X1 input<br>high-/low-level width<br>(txH, txL)     | V <sub>DD</sub> = 4.5 to 5.5 V                               | 50<br>85 |      | 500<br>500  | ns   |

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
  - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
  - . Keep the wiring length as short as possible.
  - Do not cross the wiring with the other signal lines.
  - . Do not route the wiring near a signal line through which a high fluctuating current flows.
  - Always keep the ground point of the oscillator to the same potential as Vss.
  - . Do not ground the capacitor to a ground pattern in which a high current flows.
  - · Do not fetch signals from the oscillator.
  - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.





#### Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

| Resonator         | Recommended Circuit | Parameter                                                   | Test Conditions                | MIN. | TYP.   | MAX. | Unit |
|-------------------|---------------------|-------------------------------------------------------------|--------------------------------|------|--------|------|------|
| Crystal resonator | · <u> </u>          | Oscillation frequency (fxt)Note 1                           |                                | 32   | 32.768 | 35   | kHz  |
|                   |                     | Oscillation                                                 | V <sub>DD</sub> = 4.5 to 5.5 V |      | 1.2    | 2    | s    |
|                   |                     | stabilization time <sup>Note 2</sup>                        |                                |      |        | 10   |      |
| External clock    | XT2 XT1             | XT1 input<br>frequency (f <sub>XT</sub> ) <sup>Note</sup> 1 |                                | 32   |        | 100  | kHz  |
|                   | μPD74HCU04          | XT1 input high-/low-level width (txth, txtl)                |                                | 5    |        | 15   | μs   |

- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
  - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
  - Keep the wiring length as short as possible.
  - Do not cross the wiring with the other signal lines.
  - Do not route the wiring near a signal line through which a high fluctuating current flows.
  - · Always keep the ground point of the oscillator to the same potential as Vss.
  - Do not ground the capacitor to a ground pattern in which a high current flows.
  - · Do not fetch signals from the oscillator.
  - The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator.
     Particular care is therefore required with the wiring method when the subsystem clock is used.





# DC Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter        | Symbol           | Test Condition                                                  | ons                                                | MIN.                 | TYP. | MAX.                 | Unit |
|------------------|------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------|------|----------------------|------|
| Input voltage,   | V <sub>IH1</sub> | P10 to P17, P21, P24, P35,                                      | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0.7 V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
| high             |                  | P40 to P47, P50 to P57,                                         |                                                    | 0.8 V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
|                  |                  | P64 to P67, P74, P75                                            |                                                    | 0.0 100              |      | ***                  | •    |
|                  | V <sub>IH2</sub> | P00 to P03, P20, P22, P23, P25,                                 | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0.8 V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
|                  |                  | P34, P36, P70 to P73, RESET                                     |                                                    | 0.85 VDD             |      | V <sub>DD</sub>      | V    |
|                  | Vінз             | P30-P33                                                         | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0.7 Vdd              |      | 5.5                  | ٧    |
|                  |                  | (N-ch open-drain)                                               |                                                    | 0.8 V <sub>DD</sub>  |      | 5.5                  | ٧    |
|                  | V <sub>IH4</sub> | X1, X2                                                          | V <sub>DD</sub> = 2.7 to 5.5 V                     | V <sub>DD</sub> -0.5 |      | V <sub>DD</sub>      | V    |
|                  |                  |                                                                 |                                                    | V <sub>DD</sub> -0.2 |      | V <sub>DD</sub>      | V    |
| V <sub>IH5</sub> | V <sub>IH5</sub> | XT1, XT2                                                        | V <sub>DD</sub> = 4.5 to 5.5 V                     | 0.8 V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
|                  |                  |                                                                 |                                                    | 0.9 V <sub>DD</sub>  |      | V <sub>DD</sub>      | V    |
| Input voltage,   | VIL1             | P10 to P17, P21, P24, P35,                                      | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0                    |      | 0.3 V <sub>DD</sub>  | V    |
| low              |                  | P40 to P47, P50 to P57,                                         |                                                    | 0                    |      | 0.2 V <sub>DD</sub>  | V    |
|                  |                  | P64 to P67, P74, P75                                            |                                                    |                      |      | 0.2 000              | V    |
|                  | V <sub>IL2</sub> | P00 to P03, P20, P22, P23, P25,                                 | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0                    |      | 0.2 V <sub>DD</sub>  | V    |
|                  |                  | P34, P36, P70 to P73, RESET                                     |                                                    | 0                    |      | 0.15 V <sub>DD</sub> | V    |
|                  | V <sub>IL3</sub> | P30 to P33                                                      | 4.5 V ≤ V <sub>DD</sub> ≤ 5.5 V                    | 0                    |      | 0.3 V <sub>DD</sub>  | V    |
|                  |                  |                                                                 | $2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$ | 0                    |      | 0.2 V <sub>DD</sub>  | V    |
|                  |                  |                                                                 | 1.8 V ≤ V <sub>DD</sub> < 2.7 V                    | 0                    |      | 0.1 V <sub>DD</sub>  | V    |
|                  | V <sub>IL4</sub> | X1, X2                                                          | V <sub>DD</sub> = 2.7 to 5.5 V                     | 0                    |      | 0.4                  | V    |
|                  |                  |                                                                 |                                                    | 0                    |      | 0.2                  | ٧    |
|                  | V <sub>IL5</sub> | XT1, XT2                                                        | V <sub>DD</sub> = 4.5 to 5.5 V                     | 0                    |      | 0.2 V <sub>DD</sub>  | V    |
|                  |                  |                                                                 |                                                    | 0                    |      | 0.1 V <sub>DD</sub>  | ٧    |
| Output voltage,  | Vон              | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, I_{OH} = -1 \text{mA}$ |                                                    | V <sub>DD</sub> -1.0 |      | V <sub>DD</sub>      | V    |
| high             |                  | Іон = -100 μΑ                                                   |                                                    | VDD-0.5              |      | V <sub>DD</sub>      | V    |
| Output voltage,  | V <sub>OL1</sub> | P30 to P33, P50 to P57                                          | V <sub>DD</sub> = 4.5 to 5.5 V,                    |                      | 0.4  | 2.0                  | V    |
| low              |                  |                                                                 | IoL = 15 mA                                        |                      |      |                      |      |
|                  |                  | P00 to P03, P20 to P25, P34 to P36,                             | V <sub>DD</sub> = 4.5 to 5.5 V,                    |                      |      | 0.4                  | V    |
|                  |                  | P40 to P47, P64 to P67, P70 to P75                              | IoL = 1.6 mA                                       |                      |      |                      |      |
|                  | V <sub>OL2</sub> | IoL = 400 μA                                                    | •                                                  |                      |      | 0.5                  | V    |

**Remark** Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.





## DC Characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ )

| Parameter                      | Symbol         |                                    | Test Conditions                                                                                       | MIN. | TYP. | MAX.   | Unit |
|--------------------------------|----------------|------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|--------|------|
| Input leakage<br>current, high | Ішн1           | Vin = Vdd                          | P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P60 to P67, P70 to P75, RESET |      |      | 3      | μΑ   |
|                                | ILIH2          |                                    | X1, X2, XT1, XT2                                                                                      |      |      | 20     | μΑ   |
|                                | Інз            | VIN = 5.5 V                        | P30 to P33                                                                                            |      |      | 80     | μΑ   |
| Input leakage<br>current, low  | ILIL1          | Vin = 0 V                          | P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET |      |      | -3     | μΑ   |
|                                | ILIL2          |                                    | X1, X2, XT1, XT2                                                                                      |      |      | -20    | μΑ   |
|                                | Ішз            |                                    | P30 to P33                                                                                            |      |      | _3Note | μΑ   |
| Output leakage current, high   | Ісон           | Vout = Vdd                         |                                                                                                       |      |      | 3      | μΑ   |
| Output leakage current, low    | Ісос           | Vout = 0 V                         |                                                                                                       |      |      | -3     | μΑ   |
| Mask option pull-up resistor   | R <sub>1</sub> | V <sub>IN</sub> = 0 V,<br>P30, P31 |                                                                                                       |      | 30   | 90     | kΩ   |
| Software pull-<br>up resistor  | R <sub>2</sub> | 1                                  |                                                                                                       |      | 30   | 90     | kΩ   |

Note When the pull-up resistor is not included in P30 to P33 (specified by a mask option), a  $-200~\mu$ A (MAX.) low-level input leakage current flows only at the 3-clock interval (no wait) when the read instruction to port 3 (PM3) and port mode register 3 (PM3) is executed. At times other than this 3-clock interval, a  $-3~\mu$ A (MAX.) current flows.

**Remark** Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.





## DC Characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ )

| Parameter                              | Symbol                                                      | Test Condit                                                                                                                | ions                         | MIN. | TYP. | MAX. | Unit |
|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|------|------|------|------|
| Power supply current <sup>Note 1</sup> | IDD1                                                        | 8.38-MHz crystal oscillation operating mode                                                                                | V <sub>DD</sub> = 5.0 V ±10% |      | 8    | 16   | mA   |
|                                        | I <sub>DD2</sub>                                            | 8.38-MHz crystal oscillation<br>HALT mode                                                                                  | V <sub>DD</sub> = 5.0 V ±10% |      | 1.6  | 3.2  | mA   |
|                                        | I <sub>DD3</sub>                                            | 32.768-kHz crystal oscillation operating mode <sup>Note 2</sup> 32.768-kHz crystal oscillation HALT mode <sup>Note 2</sup> | VDD = 5.0 V ±10%             |      | 60   | 120  | μΑ   |
|                                        |                                                             | operating mode <sup>Note 2</sup>                                                                                           | V <sub>DD</sub> = 3.0 V ±10% |      | 32   | 64   | μΑ   |
|                                        |                                                             |                                                                                                                            | V <sub>DD</sub> = 2.0 V ±10% |      | 24   | 48   | μΑ   |
|                                        | 32.768-kHz crystal oscillation                              | V <sub>DD</sub> = 5.0 V ±10%                                                                                               |                              | 25   | 55   | μΑ   |      |
|                                        |                                                             | HALT modeNote 2                                                                                                            | V <sub>DD</sub> = 3.0 V ±10% |      | 5    | 15   | μΑ   |
|                                        |                                                             |                                                                                                                            | V <sub>DD</sub> = 2.0 V ±10% |      | 2.5  | 12.5 | μΑ   |
|                                        | I <sub>DD5</sub>                                            | XT1 = V <sub>DD</sub> STOP mode                                                                                            | V <sub>DD</sub> = 5.0 V ±10% |      | 1    | 30   | μΑ   |
|                                        |                                                             | When feedback resistor is used                                                                                             | V <sub>DD</sub> = 3.0 V ±10% |      | 0.5  | 10   | μΑ   |
|                                        |                                                             | V <sub>DD</sub> = 2.0 V ±10%                                                                                               |                              | 0.3  | 10   | μΑ   |      |
|                                        | IDD6 XT1 = VDD STOP mode When feedback resistor is not used |                                                                                                                            | V <sub>DD</sub> = 5.0 V ±10% |      | 0.1  | 30   | μΑ   |
|                                        |                                                             | V <sub>DD</sub> = 3.0 V ±10%                                                                                               |                              | 0.05 | 10   | μΑ   |      |
|                                        |                                                             |                                                                                                                            | V <sub>DD</sub> = 2.0 V ±10% |      | 0.05 | 10   | μΑ   |

**Notes 1.** Does not include the on-chip pull-up resistor, AVREF current, and port current.

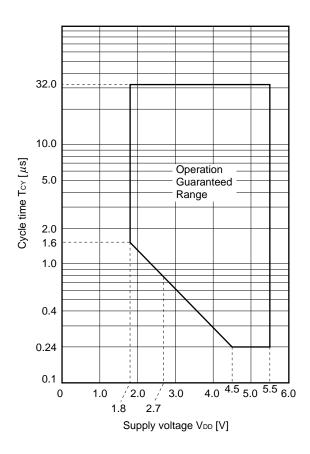
**2.** When the main system clock is stopped.





#### **AC CHARACTERISTICS**

## (1) Basic Operation ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ )


| Parameter                       | Symbol       |                                                       | Test Condition                                    | ns                              | MIN.                                     | TYP. | MAX. | Unit |
|---------------------------------|--------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------|------------------------------------------|------|------|------|
| Cycle time                      | Тсч          | Operating with                                        | 4.5 V ≤ V <sub>DD</sub> ≤                         | 4.5 V ≤ V <sub>DD</sub> ≤ 5.5 V |                                          |      | 32   | μs   |
| (Min. instruction               |              | main system clock                                     | nain system clock 2.7 V ≤ V <sub>DD</sub> < 4.5 V |                                 | 0.8                                      |      | 32   | μs   |
| execution time)                 |              |                                                       |                                                   |                                 | 1.6                                      |      | 32   | μs   |
|                                 |              | Operating with subs                                   | system clock                                      |                                 | 40 <sup>Note 1</sup>                     | 122  | 125  | μs   |
| TI00, TI01 input                | ttiho, ttilo | $3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$ | ı                                                 |                                 | 2/f <sub>sam</sub> +0.1 <sup>Note2</sup> |      |      | μs   |
| high-/low-level                 |              | 2.7 V ≤ V <sub>DD</sub> < 3.5 V                       |                                                   |                                 | 2/f <sub>sam</sub> +0.2 <sup>Note2</sup> |      |      | μs   |
| width                           | width        |                                                       | 1.8 V ≤ V <sub>DD</sub> < 2.7 V                   |                                 |                                          |      |      | μs   |
| TI50, TI51 input                | <b>f</b> T15 | V <sub>DD</sub> = 2.7 to 5.5 V                        | √ <sub>DD</sub> = 2.7 to 5.5 V                    |                                 |                                          |      | 4    | MHz  |
| frequency                       |              |                                                       |                                                   |                                 | 0                                        |      | 275  | kHz  |
| TI50, TI51 input                | ttihs, ttils | V <sub>DD</sub> = 2.7 to 5.5 V                        |                                                   |                                 | 100                                      |      |      | ns   |
| high-/low-level<br>width        |              |                                                       |                                                   |                                 | 1.8                                      |      |      | ns   |
| Interrupt request               | tinth, tintl | INTP0 to INTP3,                                       |                                                   | V <sub>DD</sub> = 2.7 to 5.5 V  | 1                                        |      |      | μs   |
| input high-/low<br>-level width |              | P40 to P47                                            |                                                   |                                 | 2                                        |      |      | μs   |
| RESET                           | trsL         | V <sub>DD</sub> = 2.7 to 5.5 V                        |                                                   |                                 | 10                                       |      |      | μs   |
| low-level width                 |              |                                                       |                                                   |                                 | 20                                       |      |      | μs   |

**Notes 1.** Value when using the external clock. When using a crystal resonator, the value becomes 114  $\mu$ s (MIN:).

**2.** Selection of  $f_{sam} = f_x$ ,  $f_x/4$ ,  $f_x/64$  is possible with bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes  $f_{sam} = f_x/8$ .



Tcy vs VDD (at main system clock operation)







# (2) Read/Write Operation (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 4.5 to 5.5 V) (1/3)

| Parameter                                                                                                | Symbol         | Test Conditions | MIN.           | MAX.         | Unit |
|----------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|--------------|------|
| ASTB high-level width                                                                                    | tasth          |                 | 0.5tcy         |              | ns   |
| Address setup time                                                                                       | tads           |                 | tcy-40         |              | ns   |
| Address hold time                                                                                        | <b>t</b> adh   |                 | 6              |              | ns   |
| Data input time from address                                                                             | tadd1          |                 |                | (2+2n)tcy-54 | ns   |
|                                                                                                          | tADD2          |                 |                | (3+2n)tcy-60 | ns   |
| Address output time from RD↓                                                                             | trdad          |                 | 0              | 100          | ns   |
| Data input time from RD↓                                                                                 | trdd1          |                 |                | (2+2n)tcy-87 | ns   |
|                                                                                                          | trdd2          |                 |                | (3+2n)tcy-93 | ns   |
| Read data hold time                                                                                      | <b>t</b> RDH   |                 | 0              |              | ns   |
| RD low-level width                                                                                       | trdL1          |                 | (1.5+2n)tcy-33 |              | ns   |
|                                                                                                          | trdl2          |                 | (2.5+2n)tcy-33 |              | ns   |
| $\overline{\text{WAIT}}\downarrow \text{ input time from } \overline{\text{RD}}\downarrow$               | trdwt1         |                 |                | 0.5tcy-43    | ns   |
|                                                                                                          | trdwt2         |                 |                | tcy-43       | ns   |
| $\overline{\mathrm{WAIT}}\!\!\downarrow\mathrm{input\ time\ from\ }\overline{\mathrm{WR}}\!\!\downarrow$ | <b>t</b> wrwt  |                 |                | 0.5tcy-25    | ns   |
| WAIT low-level width                                                                                     | <b>t</b> wTL   |                 | (0.5+2n)tcy+10 | (2+2n)tcy    | ns   |
| Write data setup time                                                                                    | twos           |                 | 60             |              | ns   |
| Write data hold time                                                                                     | <b>t</b> wdh   |                 | 6              |              | ns   |
| WR low-level width                                                                                       | twrL1          |                 | (1.5+2n)tcy-15 |              | ns   |
| RD↓ delay time from ASTB↓                                                                                | tastrd         |                 | 6              |              | ns   |
| WR↓ delay time from ASTB↓                                                                                | tastwr         |                 | 2tcy-15        |              | ns   |
| ASTB↑ delay time from RD↑ in external fetch                                                              | trdast         |                 | 0.8tcy-10      | 1.2tcy       | ns   |
| Address hold time from RD↑ in external fetch                                                             | <b>t</b> RDADH |                 | 0.8tcy-15      | 1.2tcy+30    | ns   |
| Write data output time from RD↑                                                                          | <b>t</b> RDWD  |                 | 40             |              | ns   |
| Write data output time from $\overline{\mathrm{WR}} \downarrow$                                          | <b>t</b> wrwd  |                 | 10             | 60           | ns   |
| Address hold time from WR↑                                                                               | twradh         |                 | 0.8tcy-15      | 1.2tcy+30    | ns   |
| RD↑ delay time from WAIT↑                                                                                | twtrd          |                 | 0.8tcy         | 2.5tcy+25    | ns   |
| WR↑ delay time from WAIT↑                                                                                | twrwr          |                 | 0.8tcy         | 2.5tcy+25    | ns   |

**Remarks 1.** tcy = Tcy/4

2. n indicates the number of waits.





# (2) Read/Write Operation (T<sub>A</sub> = -40 to + 85°C, $V_{DD}$ = 2.7 to 4.5 V) (2/3)

| Parameter                                                                                 | Symbol         | Test Conditions | MIN.           | MAX.          | Unit |
|-------------------------------------------------------------------------------------------|----------------|-----------------|----------------|---------------|------|
| ASTB high-level width                                                                     | <b>t</b> asth  |                 | 0.5tcy         |               | ns   |
| Address setup time                                                                        | tads           |                 | 0.5tcy-54      |               | ns   |
| Address hold time                                                                         | tadh           |                 | 10             |               | ns   |
| Data input time from address                                                              | tADD1          |                 |                | (2+2n)tcy-108 | ns   |
|                                                                                           | tADD2          |                 |                | (3+2n)tcy-120 | ns   |
| Address output time from $\overline{RD} \downarrow$                                       | trdad          |                 | 0              | 200           | ns   |
| Data input time from RD↓                                                                  | trdd1          |                 |                | (2+2n)tcy-148 | ns   |
|                                                                                           | trdd2          |                 |                | (3+2n)tcy-162 | ns   |
| Read data hold time                                                                       | <b>t</b> RDH   |                 | 0              |               | ns   |
| RD low-level width                                                                        | trdL1          |                 | (1.5+2n)tcy-40 |               | ns   |
|                                                                                           | tRDL2          |                 | (2.5+2n)tcy-40 |               | ns   |
| WAIT↓ input time from RD↓                                                                 | <b>t</b> RDWT1 |                 |                | 0.5tcy-60     | ns   |
|                                                                                           | trdwt2         |                 |                | tcy-60        | ns   |
| $\overline{\mathrm{WAIT}} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$ | twrwt          |                 |                | 0.5tcy-50     | ns   |
| WAIT low-level width                                                                      | <b>t</b> wTL   |                 | (0.5+2n)tcy+10 | (2+2n)tcy     | ns   |
| Write data setup time                                                                     | twos           |                 | 60             |               | ns   |
| Write data hold time                                                                      | <b>t</b> wdh   |                 | 10             |               | ns   |
| WR low-level width                                                                        | twrL1          |                 | (1.5+2n)tcy-30 |               | ns   |
| $\overline{RD} \!\!\downarrow delay$ time from $ASTB \!\!\downarrow$                      | tastrd         |                 | 10             |               | ns   |
| WR↓ delay time from ASTB↓                                                                 | tastwr         |                 | 2tcy-30        |               | ns   |
| ASTB↑ delay time from RD↑ in external fetch                                               | trdast         |                 | 0.8tcy-30      | 1.2tcy        | ns   |
| Address hold time from RD↑ in external fetch                                              | trdadh         |                 | 0.8tcy-30      | 1.2tcy+60     | ns   |
| Write data output time from RD↑                                                           | trdwd          |                 | 40             |               | ns   |
| Write data output time from WR↓                                                           | twrwd          |                 | 20             | 120           | ns   |
| Address hold time from WR↑                                                                | twradh         |                 | 0.8tcy-30      | 1.2tcy+60     | ns   |
| RD↑ delay time from WAIT↑                                                                 | twrd           |                 | 0.5tcy         | 2.5tcy+50     | ns   |
| WR↑ delay time from WAIT↑                                                                 | twrwr          |                 | 0.5tcy         | 2.5tcy+50     | ns   |
|                                                                                           | 1              |                 | 1              |               |      |

**Remarks 1.** tcy = Tcy/4

2. n indicates the number of waits.





# (2) Read/Write Operation (T<sub>A</sub> = -40 to + $85^{\circ}$ C, V<sub>DD</sub> = 1.8 to 2.7 V) (3/3)

| Parameter                                                                                  | Symbol         | Test Conditions | MIN.           | MAX.          | Unit |
|--------------------------------------------------------------------------------------------|----------------|-----------------|----------------|---------------|------|
| ASTB high-level width                                                                      | tasth          |                 | 0.5tcy         |               | ns   |
| Address setup time                                                                         | tads           |                 | 0.5tcy-60      |               | ns   |
| Address hold time                                                                          | <b>t</b> adh   |                 | 20             |               | ns   |
| Data input time from address                                                               | tADD1          |                 |                | (2+2n)tcy-233 | ns   |
|                                                                                            | tADD2          |                 |                | (3+2n)tcy-240 | ns   |
| Address output time from $\overline{RD} \!\!\downarrow$                                    | trdad          |                 | 0              | 400           | ns   |
| Data input time from RD↓                                                                   | trdd1          |                 |                | (2+2n)tcy-325 | ns   |
|                                                                                            | trdd2          |                 |                | (3+2n)tcy-332 | ns   |
| Read data hold time                                                                        | <b>t</b> RDH   |                 | 0              |               | ns   |
| RD low-level width                                                                         | <b>t</b> RDL1  |                 | (1.5+2n)tcy-92 |               | ns   |
|                                                                                            | <b>t</b> RDL2  |                 | (2.5+2n)tcy-92 |               | ns   |
| $\overline{\text{WAIT}}\downarrow \text{ input time from } \overline{\text{RD}}\downarrow$ | <b>t</b> RDWT1 |                 |                | 0.5tcy-132    | ns   |
|                                                                                            | trdwt2         |                 |                | tcy-132       | ns   |
| $\overline{\mathrm{WAIT}} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$  | twrwt          |                 |                | 0.5tcy-100    | ns   |
| WAIT low-level width                                                                       | <b>t</b> wTL   |                 | (0.5+2n)tcy+10 | (2+2n)tcy     | ns   |
| Write data setup time                                                                      | twos           |                 | 60             |               | ns   |
| Write data hold time                                                                       | twdh           |                 | 20             |               | ns   |
| WR low-level width                                                                         | <b>t</b> WRL1  |                 | (1.5+2n)tcy-60 |               | ns   |
| RD↓ delay time from ASTB↓                                                                  | <b>t</b> astrd |                 | 20             |               | ns   |
| WR↓ delay time from ASTB↓                                                                  | tastwr         |                 | 2tcy-60        |               | ns   |
| ASTB↑ delay time from RD↑ in external fetch                                                | trdast         |                 | 0.8tcy-60      | 1.2tcy        | ns   |
| Address hold time from RD↑ in external fetch                                               | trdadh         |                 | 0.8tcy-60      | 1.2tcy+120    | ns   |
| Write data output time from RD↑                                                            | <b>t</b> RDWD  |                 | 40             |               | ns   |
| Write data output time from WR↓                                                            | twrwd          |                 | 40             | 240           | ns   |
| Address hold time from WR↑                                                                 | twradh         |                 | 0.8tcy-60      | 1.2tcy+120    | ns   |
| RD↑ delay time from WAIT↑                                                                  | twtrd          |                 | 0.5tcy         | 2.5tcy+100    | ns   |
| WR↑ delay time from WAIT↑                                                                  | twrwr          |                 | 0.5tcy         | 2.5tcy+100    | ns   |

**Remarks 1.** tcy = Tcy/4

2. n indicates the number of waits.





# (3) Serial Interface ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ )

# (a) 3-wire serial I/O mode (SCK30, SCK31... Internal clock output)

| Parameter                                             | Symbol     | Test Conditions                                    | MIN.        | TYP. | MAX. | Unit |
|-------------------------------------------------------|------------|----------------------------------------------------|-------------|------|------|------|
| SCK30, SCK31                                          | tkcy1      | 4.5 V ≤ V <sub>DD</sub> ≤ 5.5 V                    | 954         |      |      | ns   |
| cycle time                                            |            | $2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$ | 1600        |      |      | ns   |
|                                                       |            |                                                    | 3200        |      |      | ns   |
| SCK30, SCK31 high-/                                   | tkH1, tkL1 | V <sub>DD</sub> = 4.5 to 5.5 V                     | tксү1/2-50  |      |      | ns   |
| low-level width                                       |            |                                                    | tkcy1/2-100 |      |      | ns   |
| SI30, SI31 setup time                                 | tsıĸ1      | 4.5 V ≤ V <sub>DD</sub> ≤ 5.5V                     | 100         |      |      | ns   |
| (to SCK30, SCK31↑)                                    |            | 2.7 V ≤ V <sub>DD</sub> < 4.5V                     | 150         |      |      | ns   |
|                                                       |            |                                                    | 300         |      |      | ns   |
| SI30, SI31 hold time (from SCK30, SCK31↑)             | tksı1      |                                                    | 400         |      |      | ns   |
| SO30, SO31 output<br>dealy time from<br>SCK30, SCK31↓ | tkso1      | C = 100 pFNote                                     |             |      | 300  | ns   |

**Note** C is the load capacitance of the SCK30, SCK31, SO30, and SO31 output lines.

# (b) 3-wire serial I/O mode (SCK30, SCK31... External clock input)

| Parameter                                             | Symbol                     | Test Con                                          | ditions                                                    | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------|----------------------------|---------------------------------------------------|------------------------------------------------------------|------|------|------|------|
| SCK30, SCK31                                          | tkcy2                      | $4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$        | 5 V                                                        | 800  |      |      | ns   |
| cycle time                                            |                            | 2.7 V ≤ V <sub>DD</sub> < 4.                      | 5 V                                                        | 1600 |      |      | ns   |
|                                                       |                            |                                                   |                                                            | 3200 |      |      | ns   |
| SCK30, SCK31 high-/                                   | <b>t</b> KH2, <b>t</b> KL2 | $4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$        | 5 V                                                        | 400  |      |      | ns   |
| low-level width                                       |                            | 2.7 V ≤ V <sub>DD</sub> < 4.                      | 5 V                                                        | 800  |      |      | ns   |
|                                                       |                            |                                                   |                                                            | 1600 |      |      | ns   |
| SI30, SI31 setup time (to SCK30, SCK31↑)              | tsık2                      |                                                   |                                                            | 100  |      |      | ns   |
| SI30, SI31 hold time<br>(from SCK30, SCK31↑)          | tksi2                      |                                                   |                                                            | 400  |      |      | ns   |
| SO30, SO31 output<br>dealy time from<br>SCK30, SCK31↓ | tkso2                      | C = 100 pFNote                                    |                                                            |      |      | 300  | ns   |
| SCK30, SCK31 rise, fall time                          | tR2, tF2                   | When using extended expansion funct               |                                                            |      |      | 160  | ns   |
|                                                       |                            | When not using external device expansion function | When using<br>16-bit timer<br>expansion<br>function        |      |      | 700  | ns   |
|                                                       |                            |                                                   | When not<br>using 16-bit<br>timer<br>expansion<br>function |      |      | 1000 | ns   |

Note C is the load capacitance of the SO30 and SO31 output lines.





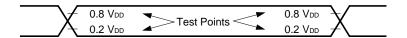
# (c) UART mode (Dedicated baud rate generator output)

| Parameter     | Symbol | Test Conditions                                                  | MIN. | TYP. | MAX.   | Unit |
|---------------|--------|------------------------------------------------------------------|------|------|--------|------|
| Transfer rate |        | $4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$ |      |      | 125000 | bps  |
|               |        | 2.7 V ≤ V <sub>DD</sub> < 4.5 V                                  |      |      | 78125  | bps  |
|               |        |                                                                  |      |      | 39063  | bps  |

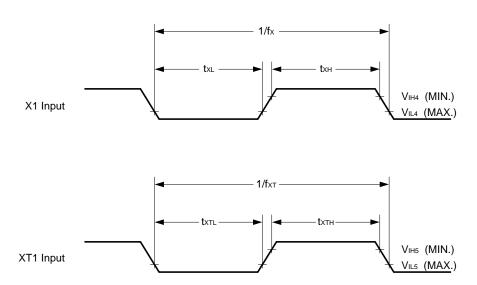
## (d) UART mode (External clock input)

| Parameter                   | Symbol            | Test Conditions                                                  | MIN. | TYP. | MAX.  | Unit |
|-----------------------------|-------------------|------------------------------------------------------------------|------|------|-------|------|
| ASCK0 cycle time            | tксүз             | $4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$            | 800  |      |       | ns   |
|                             |                   | $2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$               | 1600 |      |       | ns   |
|                             |                   |                                                                  | 3200 |      |       | ns   |
| ASCK0 high-/low-level width | <b>t</b> кнз,     | $4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$            | 400  |      |       | ns   |
|                             | tкLз              | $2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$               | 800  |      |       | ns   |
|                             |                   |                                                                  | 1600 |      |       | ns   |
| Transfer rate               |                   | $4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$ |      |      | 39063 | bps  |
|                             |                   | $2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$               |      |      | 19531 | bps  |
|                             |                   |                                                                  |      |      | 9766  | bps  |
| ASCK0 rise, fall time       | t <sub>R3</sub> , | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$                        |      |      | 1000  | ns   |
|                             | tғз               | when not using external                                          |      |      |       |      |
|                             |                   | device expansion function                                        |      |      |       |      |
|                             |                   |                                                                  |      |      | 160   | ns   |

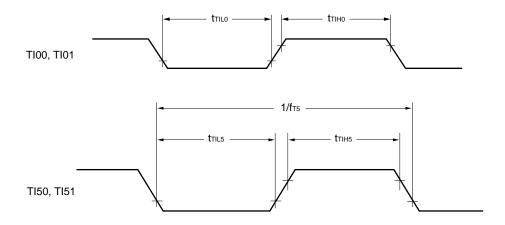
## (e) UART mode (Infrared ray data transfer mode)


| Parameter                | Symbol | Test Conditions                | MIN. | MAX.                     | Unit |
|--------------------------|--------|--------------------------------|------|--------------------------|------|
| Transfer rate            |        | V <sub>DD</sub> = 4.5 to 5.5 V |      | 115200                   | bps  |
| Bit rate allowable error |        | V <sub>DD</sub> = 4.5 to 5.5 V |      | ±0.87                    | %    |
| Output pulse width       |        | V <sub>DD</sub> = 4.5 to 5.5 V | 1.2  | 0.24/fbr <sup>Note</sup> | μs   |
| Input pulse width        |        | V <sub>DD</sub> = 4.5 to 5.5 V | 4/fx |                          | μs   |

Note fbr: Specified baud rate



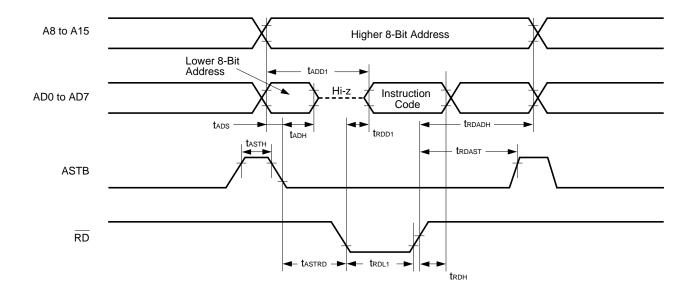




# AC Timing Test Point (Excluding X1, XT1 Input)

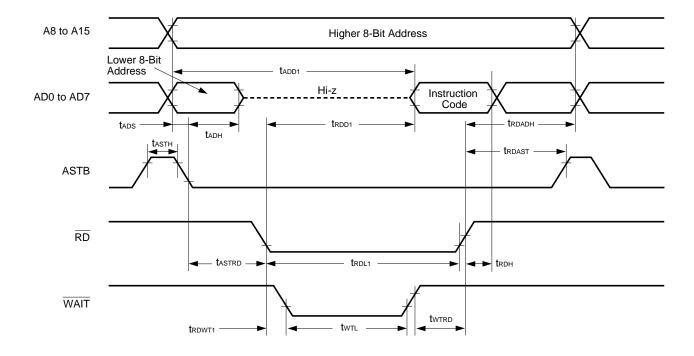


# **Clock Timing**




# **TI Timing**

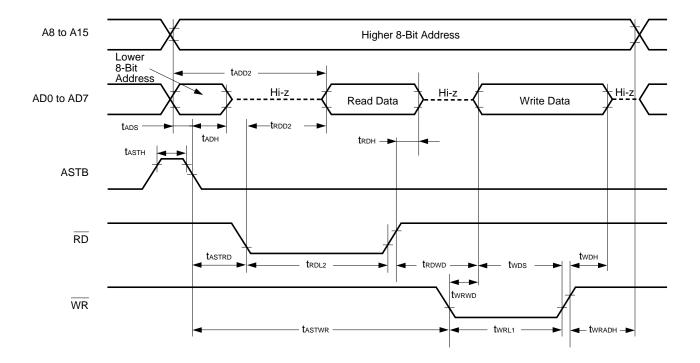




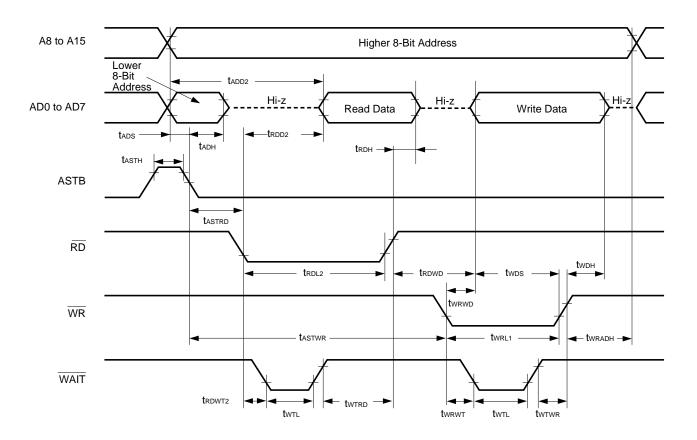

# **Read/Write Operation**

## External Fetch (No Wait):




## External Fetch (Wait Insertion):

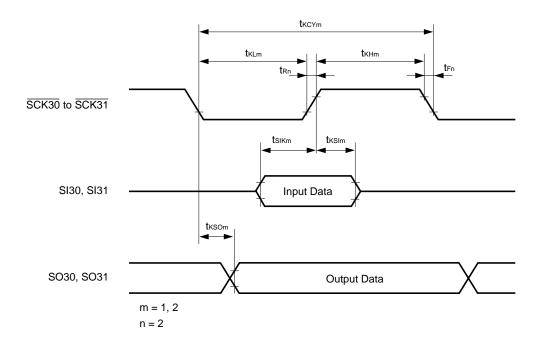




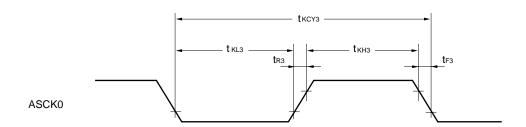



## External Data Access (No Wait):




#### External Data Access (Wait Insertion):






## **Serial Transfer Timing**

#### 3-wire Serial I/O Mode:



# **UART Mode (External Clock Input):**

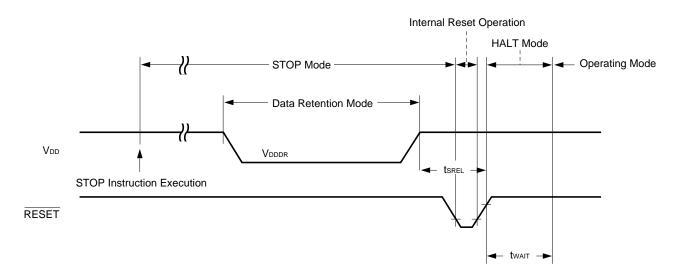






#### A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = AVREF = 2.7 to 5.5 V, AVSS = VSS = 0 V)

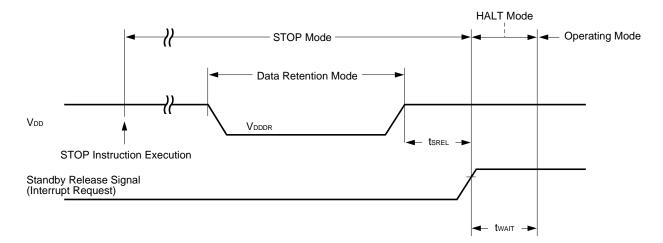
| Parameter                     | Symbol | Test Conditions | MIN. | TYP. | MAX.             | Unit |
|-------------------------------|--------|-----------------|------|------|------------------|------|
| Resolution                    |        |                 | 8    | 8    | 8                | bit  |
| Overall error <sup>Note</sup> |        |                 |      |      | ±0.6             | %    |
| Conversion time               | tconv  |                 | 14   |      | 200              | μs   |
| Analog input voltage          | VIAN   |                 | 0    |      | AVREF + 0.3      | V    |
| Reference voltage             | AVREF  |                 | 2.7  |      | AV <sub>DD</sub> | V    |
| AV <sub>REF</sub> resistance  | RAIREF |                 | 10   | 20   |                  | kΩ   |


**Note** Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

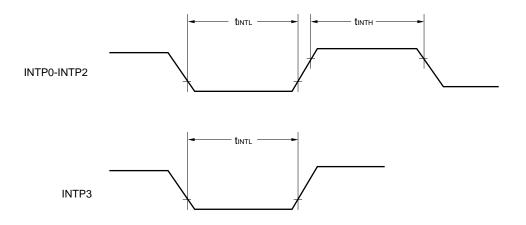
## Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

| Parameter                           | Symbol | Test Conditions                                                        | MIN. | TYP.                | MAX. | Unit |
|-------------------------------------|--------|------------------------------------------------------------------------|------|---------------------|------|------|
| Data retention power supply voltage | VDDDR  |                                                                        | 1.6  |                     | 5.5  | V    |
| Data retention power supply current | IDDDR  | VDDDR = 1.6 V Subsystem clock stop and feed-back resistor disconnected |      | 0.1                 | 10   | μΑ   |
| Release signal set time             | tsrel  |                                                                        | 0    |                     |      | μs   |
| Oscillation stabiliza-              | twait  | Release by RESET                                                       |      | 2 <sup>17</sup> /fx |      | ms   |
| tion wait time                      |        | Release by interrupt request                                           |      | Note                |      | ms   |

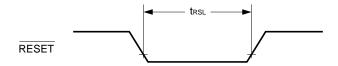
**Note** Selection of  $2^{12}/fx$  and  $2^{14}/fx$  to  $2^{17}/fx$  is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


#### Data Retention Timing (STOP Mode Release by RESET)







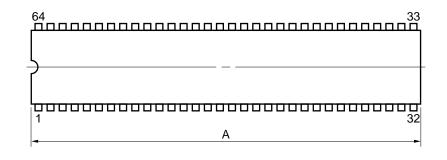


## Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

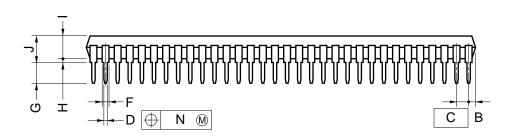


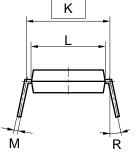
#### **Interrupt Request Input Timing**



## **RESET** Input Timing




## 12. PACKAGE DRAWINGS

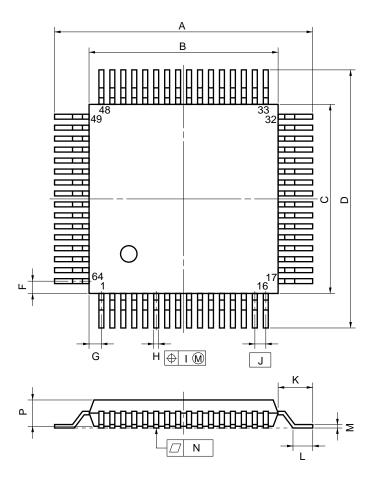
# 64-PIN PLASTIC SHRINK DIP (750 mils)



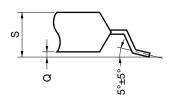




#### NOTE


- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

| ITEM | MILLIMETERS            | INCHES                    |
|------|------------------------|---------------------------|
| A    | 58.68 MAX.             | 2.311 MAX.                |
| В    | 1.78 MAX.              | 0.070 MAX.                |
| С    | 1.778 (T.P.)           | 0.070 (T.P.)              |
| D    | 0.50±0.10              | $0.020^{+0.004}_{-0.005}$ |
| F    | 0.9 MIN.               | 0.035 MIN.                |
| G    | 3.2±0.3                | 0.126±0.012               |
| Н    | 0.51 MIN.              | 0.020 MIN.                |
| ı    | 4.31 MAX.              | 0.170 MAX.                |
| J    | 5.08 MAX.              | 0.200 MAX.                |
| K    | 19.05 (T.P.)           | 0.750 (T.P.)              |
| L    | 17.0                   | 0.669                     |
| М    | $0.25^{+0.10}_{-0.05}$ | $0.010^{+0.004}_{-0.003}$ |
| N    | 0.17                   | 0.007                     |
| R    | 0~15°                  | 0~15°                     |


P64C-70-750A,C-1



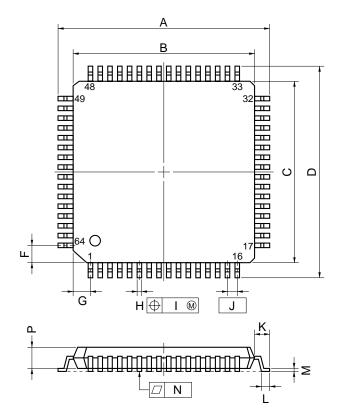
# 64-PIN PLASTIC QFP (□14)



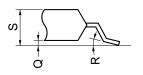
detail of lead end



#### NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P64GC-80-AB8-3


| ITEM | MILLIMETERS            | INCHES                    |
|------|------------------------|---------------------------|
| Α    | 17.6±0.4               | 0.693±0.016               |
| В    | 14.0±0.2               | $0.551^{+0.009}_{-0.008}$ |
| С    | 14.0±0.2               | $0.551^{+0.009}_{-0.008}$ |
| D    | 17.6±0.4               | 0.693±0.016               |
| F    | 1.0                    | 0.039                     |
| G    | 1.0                    | 0.039                     |
| Н    | 0.35±0.10              | $0.014^{+0.004}_{-0.005}$ |
| I    | 0.15                   | 0.006                     |
| J    | 0.8 (T.P.)             | 0.031 (T.P.)              |
| K    | 1.8±0.2                | 0.071±0.008               |
| L    | 0.8±0.2                | $0.031^{+0.009}_{-0.008}$ |
| М    | $0.15^{+0.10}_{-0.05}$ | $0.006^{+0.004}_{-0.003}$ |
| N    | 0.10                   | 0.004                     |
| Р    | 2.55                   | 0.100                     |
| Q    | 0.1±0.1                | 0.004±0.004               |
| S    | 2.85 MAX.              | 0.112 MAX.                |



# 64-PIN PLASTIC LQFP (□12)



detail of lead end



## NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS            | INCHES                    |
|------|------------------------|---------------------------|
| Α    | 14.8±0.4               | 0.583±0.016               |
| В    | 12.0±0.2               | $0.472^{+0.009}_{-0.008}$ |
| С    | 12.0±0.2               | $0.472^{+0.009}_{-0.008}$ |
| D    | 14.8±0.4               | 0.583±0.016               |
| F    | 1.125                  | 0.044                     |
| G    | 1.125                  | 0.044                     |
| Н    | 0.30±0.10              | $0.012^{+0.004}_{-0.005}$ |
| 1    | 0.13                   | 0.005                     |
| J    | 0.65 (T.P.)            | 0.026 (T.P.)              |
| K    | 1.4±0.2                | 0.055±0.008               |
| L    | 0.6±0.2                | $0.024^{+0.008}_{-0.009}$ |
| М    | $0.15^{+0.10}_{-0.05}$ | $0.006^{+0.004}_{-0.003}$ |
| N    | 0.10                   | 0.004                     |
| Р    | 1.4                    | 0.055                     |
| Q    | 0.125±0.075            | 0.005±0.003               |
| R    | 5°±5°                  | 5°±5°                     |
| S    | 1.7 MAX.               | 0.067 MAX.                |

P64GK-65-8A8-1



## **★** APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the  $\mu$ PD780024 Subseries. Also refer to **(5) Cautions on using development tools.** 

#### (1) Language Processing Software

| RA78K/0   | Assembler package common to 78K/0 Series              |  |
|-----------|-------------------------------------------------------|--|
| CC78K/0   | C compiler package common to 78K/0 Series             |  |
| DF780024  | Device file for μPD780024 Subseries                   |  |
| CC78K/0-L | C compiler library source file common to 78K/0 Series |  |

#### (2) Flash Memory Writing Tools

| Flashpro II (FL-PR2)    | Flash programmer dedicated on-chip flash memory microcontroller. A product of Naitou Densei Machidaseisakusho Co., Ltd. |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FA-64CW                 | Adapter for flash memory writing                                                                                        |
| FA-64GC                 | A product of Naitou Densei Machidaseisakusho Co., Ltd.                                                                  |
| FA-64GK <sup>Note</sup> |                                                                                                                         |

Note Under development

#### (3) Debugging Tool

#### • When using in-circuit emulator IE-78K0-NS

| IE-78K0-NS <sup>Note</sup>       | In-circuit emulator common to 78K/0 Series                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| IE-70000-MS-PS-B                 | Power supply unit for IE-78K0-NS                                                                                         |
| IE-70000-98-IF-CNote             | Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)                                     |
| IE-70000-CD-IFNote               | PC card and interface cable when using notebook PC of PC-9800 series as host machine                                     |
| IE-70000-PC-IF-CNote             | Interface adapter when using IBM PC/AT <sup>TM</sup> or compatible as host machine                                       |
| IE-780034-NS-EM1 <sup>Note</sup> | Emulation board to emulate $\mu$ PD780024 Subseries                                                                      |
| NP-64CW                          | Emulation probe for 64-pin plastic shrink DIP (CW type)                                                                  |
| NP-64GC                          | Emulation probe for 64-pin plastic QFP (GC-AB8 type)                                                                     |
| NP-64GK <sup>Note</sup>          | Emulation probe for 64-pin plastic LQFP (GC-8A8 type)                                                                    |
| TGK-064SBW                       | Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8 type) and NP-64GK. |
| EV-9200GC-64                     | Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)                            |
| ID78K0-NS <sup>Note</sup>        | Integrated debugger for IE-78K0-NS                                                                                       |
| SM78K0                           | System simulator common to 78K/0 Series                                                                                  |
| DF780024                         | Device file for μPD780024 Subseries                                                                                      |

Note Under development





# • When using in-circuit emulator IE-78001-R-A

| IE-78001-R-A <sup>Note</sup>     | In-circuit emulator common to 78K/0 Series                                                                          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| IE-70000-98-IF-B                 | Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)                                |
| IE-70000-98-IF-C <sup>Note</sup> |                                                                                                                     |
| IE-70000-PC-IF-B                 | Interface adapter when using IBM PC/AT or compatible as host machine                                                |
| IE-70000-PC-IF-CNote             |                                                                                                                     |
| IE-78000-R-SV3                   | Interface adapter and cable when using EWS as host machine                                                          |
| IE-780034-NS-EM1 <sup>Note</sup> | Emulation board to emulate $\mu$ PD780024 Subseries                                                                 |
| IE-78K0-R-EX1 <sup>Note</sup>    | Emulation probe conversion board to use IE-780034-NS-EM1 on IE-78001-R-A                                            |
| EP-78240CW-R                     | Emulation probe for 64-pin plastic shrink DIP (CW type)                                                             |
| EP-78240GC-R                     | Emulation probe for 64-pin plastic QFP (GC-AB8 type)                                                                |
| EP-78012GK-R                     | Emulation probe for 64-pin plastic LQFP (GK-8A8 type)                                                               |
| TGK-064SBW                       | Conversion adapter for connecting target system board designed to mount a 64-pin plastic LQFP (GK-8A8) and NP-64GK. |
| EV-9200GC-64                     | Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)                       |
| ID78K0                           | Integrated debugger for IE-78001-R-A                                                                                |
| SM78K0                           | System simulator common to 78K/0 Series                                                                             |
| DF780024                         | Device file for μPD780024 Subseries                                                                                 |

Note Under development

## (4) Real-time OS

| RX78K/0 | Real-time OS for 78K/0 Series |
|---------|-------------------------------|
| MX78K0  | OS for 78K/0 Series           |



#### (5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combinaiton with the DF780024.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF780024.
- The Flashpro II, FA-64CW, FA-64GC, FA64GK, NP-64CW, NP64GC, and NP-64GK are products made by Naitou Densei Machidaseisakusho (044-822-3813).

Contact an NEC dealer regarding the purchase of these products.

• The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Components Division (03-3820-7112)

Osaka Electronic Components Division (06-244-6672)

- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machines and OSs supporting each software are as follows.

| Host Machine     | PC                                                                                 | EWS                                                                              |
|------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| [OS]<br>Software | PC-9800 series [Windows™]<br>IBM PC/AT or compatible<br>[Japanese/English Windows] | HP9000 series 700™ [HP-UX™]<br>SPARCstation™ [SunOS™]<br>NEWS™ (RISC) [NEWS-OS™] |
| RA78K/0          | √ Note                                                                             | V                                                                                |
| CC78K/0          | √ Note                                                                             | V                                                                                |
| ID78K0-NS        | V                                                                                  | _                                                                                |
| ID78K0           | $\sqrt{}$                                                                          | V                                                                                |
| SM78K0           | $\checkmark$                                                                       | -                                                                                |
| RX78K/0          | √ Note                                                                             | V                                                                                |
| MX78K0           | √ Note                                                                             | √                                                                                |

Note DOS-based software





## **★** APPENDIX B. RELATED DOCUMENTS

#### **Device Related Documents**

| Document Name                                               | Document No.<br>(English) | Document No.<br>(Japanese) |
|-------------------------------------------------------------|---------------------------|----------------------------|
| μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual | U12022E                   | U12022J                    |
| μPD780021, 780022, 780023, 780024 Data Sheet                | This document             | U12299J                    |
| μPD78F0034 Preliminary Product Information                  | U11993E                   | U11993J                    |
| 78K/0 Series User's Manual-Instructions                     | U12326E                   | U12326J                    |
| 78K/0 Series Instruction Table                              | _                         | U10903J                    |
| 78K/0 Series Instruction Set                                | _                         | U10904J                    |
| μΡD780034 Subseries Special Function Register Table         | _                         | To be prepared             |

## **Development Tool Documents (User's Manual)**

| Document Name                                  |                                                  | Document No.<br>(English) | Document No.<br>(Japanese) |
|------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------|
| RA78K Series Assembler Package                 | Operation                                        | EEU-1399                  | EEU-809                    |
|                                                | Language                                         | EEU-1404                  | EEU-815                    |
| RA78K Series Structured Assembler Preprocessor |                                                  | EEU-1402                  | U12323J                    |
| RA78K0 Assembler Package                       | Operation                                        | U11802E                   | U11802J                    |
|                                                | Assembly Language                                | U11801E                   | U11801J                    |
|                                                | Structured Assembly Language                     | U11789E                   | U11789J                    |
| CC78K Series C Compiler                        | Operation                                        | EEU-1280                  | EEU-656                    |
|                                                | Language                                         | EEU-1284                  | EEU-655                    |
| CC78K/0 C Compiler                             | Operation                                        | U11517E                   | U11517J                    |
|                                                | Language                                         | U11518E                   | U11518J                    |
| CC78K/0 C Compiler Application Note            | Programming Know-how                             | EEA-1208                  | EEU-618                    |
| CC78K Series Library Source File               |                                                  | _                         | U12322J                    |
| IE-78K0-NS                                     |                                                  | To be prepared            | To be prepared             |
| IE-78001-R-A                                   |                                                  | To be prepared            | To be prepared             |
| IE-780034-NS-EM1                               |                                                  | To be prepared            | To be prepared             |
| EP-78240                                       |                                                  | U10332E                   | EEU-986                    |
| EP-78012GK-R                                   |                                                  | EEU-1538                  | EEU-5012                   |
| SM78K0 System Simulator-Windows based          | Reference                                        | U10181E                   | U10181J                    |
| SM78K Series System Simulator                  | External Part User Open Interface Specifications | U10092E                   | U10092J                    |
| ID78K0-NS Integrated Debugger                  | Reference                                        | To be prepared            | Under preparation          |
| ID78K0 Integrated Debugger, EWS based          | Reference                                        | _                         | U11151J                    |
| ID78K0 Integrated Debugger, PC based           | Reference                                        | U11539E                   | U11539J                    |
| ID78K0 Integrated Debugger, Windows based      | Guide                                            | U11649E                   | U11649J                    |

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.





## **Embedded Software Documents (User's Manual)**

| Document Name             |              | Document No.<br>(English) | Document No.<br>(Japanese) |
|---------------------------|--------------|---------------------------|----------------------------|
| 78K/0 Series Real-time OS | Basics       | U11537E                   | U11537J                    |
|                           | Installation | U11536E                   | U11536J                    |
| 78K/0 Series OS MX78K0    | Basics       | U12257E                   | U12257J                    |

#### **Other Documents**

| Document Name                                                                      | Document No.<br>(English) | Document No.<br>(Japanese) |
|------------------------------------------------------------------------------------|---------------------------|----------------------------|
| IC Package Manual                                                                  | C10943X                   |                            |
| Semiconductor Device Mounting Technology Manual                                    | C10535E                   | C10535J                    |
| Quality Grades on NEC Semiconductor Devices                                        | C11531E                   | C11531J                    |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983E                   | C10983J                    |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892E                   | C11892J                    |
| Guide to Quality Assurance for Semiconductor Devices                               | MEI-1202                  | _                          |
| Microcomputer Product Series Guide                                                 | _                         | U11416J                    |

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.





[MEMO]

60





[MEMO]



## NOTES FOR CMOS DEVICES -

# (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

# **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.





# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### **NEC Electronics Inc. (U.S.)**

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

## **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### **NEC Electronics (UK) Ltd.**

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

#### NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### **NEC Electronics (Germany) GmbH**

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

#### **NEC Electronics (France) S.A.**

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

#### **NEC Electronics (France) S.A.**

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

#### **NEC Electronics (Germany) GmbH**

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

#### **NEC Electronics Hong Kong Ltd.**

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

#### **NEC Electronics Hong Kong Ltd.**

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

#### **NEC Electronics Singapore Pte. Ltd.**

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

#### **NEC Electronics Taiwan Ltd.**

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

#### **NEC do Brasil S.A.**

Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8





FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.