To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

V850E/MS1
 32-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD70F3102A-33 is a product that substitutes the internal mask ROM of the μ PD703102A-33 with flash memory. This enables users to perform on-board program writing and erasure, enabling effective evaluation during system development, small-lot production of multiple devices, and rapid production start, and quick development and time-to-market.

A version using a 5.0 V power supply for external pins, the μ PD70F3102-33, is also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

V850E/MS1 User's Manual Hardware:
U12688E
V850E/MS1, V850E/MS2 User's Manual Architecture: U12197E

FEATURES

- μ PD703102A-33 compatible

Can be replaced by the μ PD703102A-33 with internal mask ROM for mass production

- Internal flash memory: 128 KB

ORDERING INFORMATION

	Part Number	Package
	μ PD70F3102AF1-33-FA1	157-pin plastic FBGA (14×14)
\star	μ PD70F3102AF1-33-FA1-A	157-pin plastic FBGA (14×14)
	μ PD70F3102AGJ-33-8EU	144-pin plastic LQFP (fine pitch) (20×20)
\star	μ PD70F3102AGJ-33-8EU-A ${ }^{\text {Note }}$	144-pin plastic LQFP (fine pitch) (20×20)
	μ PD70F3102AGJ-33-UEN ${ }^{\text {Note }}$	144-pin plastic LQFP (fine pitch) (20×20)

Note Under development

Remark Products with -A at the end of the part number are lead-free products.

PIN CONFIGURATION (TOP VIEW)

157-pin plastic FBGA (14×14)

- μ PD70F3102AF1-33-FA1
* • μ PD70F3102AF1-33-FA1-A

(1/2)

Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	-	B1	INTP103/DMARQ3/P07	C1	INTP101/DMARQ1/P05
A2	D0/P40	B2	D1/P41	C2	INTP102/DMARQ2/P06
A3	D2/P42	B3	D3/P43	C3	Vss
A4	D4/P44	B4	D5/P45	C4	Vss
A5	D6/P46	B5	D7/P47	C5	HVDd
A6	D8/P50	B6	D9/P51	C6	Vss
A7	D10/P52	B7	D11/P53	C7	D12/P54
A8	D13/P55	B8	D14/P56	C8	D15/P57
A9	A0/PA0	B9	A1/PA1	C9	HVDD
A10	A2/PA2	B10	A3/PA3	C10	A4/PA4
A11	A5/PA5	B11	A6/PA6	C11	A7/PA7
A12	A8/PB0	B12	A9/PB1	C12	Vss
A13	A10/PB2	B13	A11/PB3	C13	A12/PB4
A14	A13/PB5	B14	A14/PB6	C14	A18/P62
A15	A15/PB7	B15	A17/P61	C15	A19/P63
A16	-	B16	A16/P60	C16	-

Pin No.	Name	Pin No.	Name	Pin No.	Name
D1	TI10/P03	K1	TI12/P103	P14	RESET
D2	INTP100/DMARQ0/P04	K2	INTP120/TC0/P104	P15	INTP151/P125
D3	HVdd	K3	INTP121/TC1/P105	P16	INTP150/P124
D4	-	K14	HLDAK/P96	R1	AVss
D14	Vss	K15	OE/P95	R2	ANI0/P70
D15	A21/P65	K16	$\overline{\text { BCYST/P94 }}$	R3	P21
D16	A20/P64	L1	TO120/P100	R4	$\overline{\text { SCK0/P24 }}$
E1	TO101/P01	L2	TO121/P101	R5	$\overline{\text { SCK1/P27 }}$
E2	TCLR10/P02	L3	TCLR12/P102	R6	INTP132/SI2/P36
E3	Vss	L14	Vss	R7	TI13/P33
E14	HVdd	L15	$\overline{\text { REFRQ/PX5 }}$	R8	TO130/P30
E15	A23/P67	L16	HLDRQ/P97	R9	INTP141/SO3/P115
E16	A22/P66	M1	ANI5/P75	R10	TCLR14/P112
F1	INTP113/DMAAK3/P17	M2	ANI6/P76	R11	TO140/P110
F2	TO100/P00	M3	ANI7/P77	R12	MODE0
F3	VDD	M14	TO150/P120	R13	MODE1
F14	CS2/RAS2/P82	M15	WAIT/PX6	R14	MODE2
F15	$\overline{\mathrm{CS1}} / \overline{\mathrm{RAS1}} / \mathrm{P} 81$	M16	CLKOUT/PX7	R15	INTP153/ADTRG/P127
F16	CS0/RAS0/P80	N1	ANI2/P72	R16	INTP152/P126
G1	INTP110/DMAAK0 $/$ P14	N2	ANI3/P73	T1	-
G2	INTP111/(DMAAK1/P15	N3	ANI4/P74	T2	AVref
G3	INTP112/DMAAK2/P16	N14	TI15/P123	T3	NMI/P20
G14	$\overline{\mathrm{CS5}} / \overline{\mathrm{RAS5}} / \overline{\mathrm{ORD}} / \mathrm{P} 85$	N15	TCLR15/P122	T4	RXD0/SI0/P23
G15	$\overline{\mathrm{CS} 4 / \mathrm{RAS4} / \overline{\mathrm{OWR}} / \mathrm{P} 84}$	N16	TO151/P121	T5	RXD1/SI1/P26
G16	$\overline{\mathrm{CS3}} / \overline{\mathrm{RAS3}} / \mathrm{P} 83$	P1	AVdd	T6	INTP131/SO2/P35
H1	TO111/P11	P2	ANI1/P71	T7	TCLR13/P32
H2	TCLR11/P12	P3	TXD0/SO0/P22	T8	INTP143/产CK3/P117
H3	Tl11/P13	P4	TXD1/SO1/P25	T9	INTP140/P114
H14	$\overline{\text { LCAS } / \mathrm{LWR} / \mathrm{P90}}$	P5	Vod	T10	CVDd
H15	CS7/RAS7/P87	P6	INTP133/(SCK2/P37	T11	X2
H16	CS6/RAS6/P86	P7	INTP130/P34	T12	X1
J1	INTP122/TC2/P106	P8	TO131/P31	T13	CVss
J2	INTP123/TC3/P107	P9	INTP142/SI3/P116	T14	MODE3/VPP
J3	TO110/P10	P10	TI14/P113	T15	-
J14	WE/P93	P11	TO141/P111	T16	-
J15	RD/P92	P12	CKSEL	-	-
J16	$\overline{\mathrm{UCAS}} / \overline{\mathrm{UWR}} / \mathrm{P} 91$	P13	HVdd	-	-

Remark Leave pins A1, A16, C16, D4, T1, T15, and T16 open.

144-pin plastic LQFP (fine pitch) (20 $\times 20$)

- μ PD70F3102AGJ-33-8EU
* • μ PD70F3102AGJ-33-8EU-A
- μ PD70F3102AGJ-33-UEN

PIN IDENTIFICATION

A0 to A23:	Address bus	P50 to P57:	Port 5
ADTRG:	A/D trigger input	P60 to P67:	Port 6
ANIO to ANI7:	Analog input	P70 to P77:	Port 7
AVdD:	Analog power supply	P80 to P87:	Port 8
AVref:	Analog reference voltage	P90 to P97:	Port 9
AVss:	Analog ground	P100 to P107:	Port 10
BCYST:	Bus cycle start timing	P110 to P117:	Port 11
CKSEL:	Clock generator operating mode	P120 to P127:	Port 12
	Select	PA0 to PA7:	Port A
CLKOUT:	Clock output	PB0 to PB7:	Port B
$\overline{\mathrm{CS} 0}$ to $\overline{\mathrm{CS7}}$:	Chip select	PX5 to PX7:	Port X
CVDD:	Clock generator power supply	$\overline{\text { RAS0 }}$ to $\overline{\mathrm{RAS7}}$:	Row address strobe
CVss:	Clock generator	$\overline{\mathrm{RD}}$:	Read strobe
D0 to D15:	Data bus	REFRQ:	Refresh request
$\overline{\text { DMAAK0 }}$ to $\overline{\text { DMAAK3: }}$	DMA acknowledge	RESET:	Reset
$\overline{\text { DMARQ0 }}$ to $\overline{\text { DMARQ3: }}$	DMA request	RXD0, RXD1:	Receive data
HLDAK:	Hold acknowledge	$\overline{\text { SCK0 }}$ to $\overline{\text { SCK3 }}$:	Serial clock
HLDRQ:	Hold request	SIO to SI3:	Serial input
HVdd:	Power supply for external pins	SO0 to SO3:	Serial output
INTP100 to INTP103,		$\overline{\mathrm{TC0}}$ to $\overline{\mathrm{TC3}}$:	Terminal count signal
INTP110 to INTP113,		TCLR10 to TCLR15:	Timer clear
INTP120 to INTP123,		TI10 to TI15:	Timer input
INTP130 to INTP133,		TO100, TO101,	
INTP140 to INTP143,		TO110, TO111,	
INTP150 to INTP153:	Interrupt request from peripherals	TO120, TO121,	
$\overline{\text { IORD: }}$	I/O read strobe	TO130, TO131,	
IOWR:	I/O write strobe	TO140, TO141,	
LCAS:	Lower column address strobe	TO150, TO151:	Timer output
$\overline{\text { LWR: }}$	Lower write strobe	TXD0, TXD1:	Transmit data
MODE0 to MODE3:	Mode	UCAS:	Upper column address strobe
NMI:	Non-maskable interrupt request	UWR:	Upper write strobe
$\overline{\mathrm{OE}}$	Output enable	VdD:	Power supply for internal unit
P00 to P07:	Port 0	Vpp:	Programming power supply
P10 to P17:	Port 1	Vss:	Ground
P20 to P27:	Port 2	WAIT:	Wait
P30 to P37:	Port 3	$\overline{\mathrm{WE}}$:	Write enable
P40 to P47:	Port 4	X1, X2:	Crystal

INTERNAL BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES AMONG PRODUCTS 8
1.1 Differences Between μ PD70F3102A-33 and μ PD703102A-33 8
1.2 Differences Between μ PD70F3102A-33 and μ PD70F3102-33 8
2. PIN FUNCTIONS 9
2.1 Port Pins 9
2.2 Non-Port Pins 12
2.3 Pin I/O Circuit Types and Recommended Connection of Unused Pins 16
3. FLASH MEMORY PROGRAMMING 19
3.1 Selection of Communication Mode 19
3.2 Flash Memory Programming Functions 20
3.3 Connecting Dedicated Flash Programmer 20
4. ELECTRICAL SPECIFICATIONS 21
4.1 Normal Operation Mode. 21
4.2 Flash Memory Programming Mode 76
5. PACKAGE DRAWINGS 79
6. RECOMMENDED SOLDERING CONDITIONS 82
APPENDIX NOTES ON DESIGNING TARGET SYSTEM 83

1. DIFFERENCES AMONG PRODUCTS

1.1 Differences Between μ PD70F3102A-33 and μ PD703102A-33

Product	$\mu \mathrm{PDD70F3102A-33}$	$\mu \mathrm{PD} 703102 \mathrm{~A}-33$
Item		Flash memory
Internal ROM	Provided (VPP)	Mask ROM
Flash memory programming pin	Provided (MODE0 $=\mathrm{L}, \mathrm{MODE} 1=\mathrm{H}$, MODE2 $=\mathrm{L}, \mathrm{MODE3} / \mathrm{VPP}=7.8 \mathrm{~V})$	None
Flash memory programming mode	Consumption current etc. differs (see individual data sheets).	
Electrical specifications	Circuit scale and mask layout differ, thus noise immunity, noise radiation, etc. differ.	
Others		

Cautions 1. There are differences in noise immunity and noise radiation between the flash memory version and mask ROM version. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.
2. When switching from the flash memory version to the mask ROM version, write the same code to the free area of the internal ROM.
1.2 Differences Between μ PD70F3102A-33 and μ PD70F3102-33

Product Item	μ PD70F3102A-33	μ PD70F3102-33
HV ${ }_{\text {do }}$	3.0 to 3.6 V	4.5 to 5.5 V
Electrical specifications	See individual data sheets.	
Package	- 157-pin plastic FBGA (14×14) - 144-pin plastic LQFP (fine pitch) (20×20)	- 144-pin plastic LQFP (fine pitch) (20×20)

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0 8-bit I/O port Input/output can be specified in 1-bit units.	TO100
P01			TO101
P02			TCLR10
P03			TI10
P04			INTP100/DMARQ0
P05			INTP101/DMARQ1
P06			INTP102/信ARQ2
P07			INTP103/DMARQ3
P10	I/O	Port 1 8-bit I/O port Input/output can be specified in 1-bit units.	TO110
P11			TO111
P12			TCLR11
P13			TI11
P14			INTP110/DMAAK0
P15			INTP111/DMAAK1
P16			INTP112/信MAKK2
P17			INTP113/DMAAK3
P20	Input	Port 2 P 20 is an input-only port. When a valid edge is input, it operates as an NMI input. The status of the NMI input is shown by bit 0 of register P 2 . P21 to P27 is a 7-bit I/O port. Input/output can be specified in 1-bit units.	NMI
P21	I/O		-
P22			TXDO/SOO
P23			RXDO/SIO
P24			$\overline{\text { SCKO }}$
P25			TXD1/SO1
P26			RXD1/SI1
P27			$\overline{\text { SCK1 }}$
P30	1/O	Port 3 8-bit I/O port Input/output can be specified in 1-bit units.	TO130
P31			TO131
P32			TCLR13
P33			TI13
P34			INTP130
P35			INTP131/SO2
P36			INTP132/SI2
P37			INTP133/SCK2
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1 -bit units.	D0 to D7

Pin Name	1/O	Function	Alternate Function
P50 to P57	I/O	Port 5 8-bit I/O port Input/output can be specified in 1-bit units.	D8 to D15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output can be specified in 1-bit units.	A16 to A23
P70 to P77	Input	Port 7 8 -bit input-only port	ANIO to ANI7
P80	I/O	Port 8 8-bit I/O port Input/output can be specified in 1-bit units.	$\overline{\text { CSO/RASO }}$
P81			$\overline{\text { CS1/RAS1 }}$
P82			$\overline{\mathrm{CS} 2} / \overline{\mathrm{RAS} 2}$
P83			$\overline{\mathrm{CS3}} / \overline{\mathrm{RAS3}}$
P84			$\overline{\mathrm{CS} 4} / \overline{\mathrm{RAS4}} / \overline{\mathrm{OWR}}$
P85			$\overline{\mathrm{CS5}} / \overline{\mathrm{RAS5}} / \overline{\text { ORD }}$
P86			$\overline{\text { CS6/RAS6 }}$
P87			$\overline{\text { CS7/RAS7 }}$
P90	1/0	Port 9 8 -bit I/O port Input/output can be specified in 1-bit units	$\overline{\text { LCAS/LWR }}$
P91			$\overline{\text { UCAS }} / \overline{\text { UWR }}$
P92			$\overline{\mathrm{RD}}$
P93			$\overline{\text { WE }}$
P94			$\overline{\text { BCYST }}$
P95			$\overline{\text { OE }}$
P96			HLDAK
P97			HLDRQ
P100	I/O	Port 10 8-bit I/O port Input/output can be specified in 1-bit units.	TO120
P101			TO121
P102			TCLR12
P103			TI12
P104			INTP120/TC0
P105			INTP121/TC1
P106			INTP122/TC2
P107			INTP123/TC3
P110	1/O	Port 11 8-bit I/O port Input/output can be specified in 1-bit units.	TO140
P111			TO141
P112			TCLR14
P113			TI14
P114			INTP140
P115			INTP141/SO3
P116			INTP142/SI3
P117			INTP143/SCK3

Pin Name	I/O	Function	Alternate Function
P120	I/O	Port 12 8-bit I/O port Input/output can be specified in 1-bit units.	TO150
P121			TO151
P122			TCLR15
P123			TI15
P124			INTP150
P125			INTP151
P126			INTP152
P127			INTP153/ADTRG
PAO	I/O	Port A 8-bit I/O port Input/output can be specified in 1-bit units.	AO
PA1			A1
PA2			A2
PA3			A3
PA4			A4
PA5			A5
PA6			A6
PA7			A7
PB0	I/O	Port B 8-bit I/O port Input/output can be specified in 1-bit units.	A8
PB1			A9
PB2			A10
PB3			A11
PB4			A12
PB5			A13
PB6			A14
PB7			A15
PX5	I/O	Port X 3-bit I/O port Input/output can be specified in 1-bit units.	$\overline{\text { REFRQ }}$
PX6			WAIT
PX7			CLKOUT

2.2 Non-Port Pins

Pin Name	I/O	Function	Alternate Function
TO100	Output	Pulse signal output of timers 10 to 15	P00
TO101			P01
TO110			P10
TO111			P11
TO120			P100
TO121			P101
TO130			P30
TO131			P31
TO140			P110
TO141			P111
TO150			P120
TO151			P121
TCLR10	Input	External clear signal input of timers 10 to 15	P02
TCLR11			P12
TCLR12			P102
TCLR13			P32
TCLR14			P112
TCLR15			P122
Tl10	Input	External count clock input of timers 10 to 15	P03
Tl11			P13
TI12			P103
Tl13			P33
TI14			P113
TI15			P123
INTP100	Input	External maskable interrupt request input, or timer 10 external capture trigger input	P04/DMARQ0
INTP101			P05/DMARQ1
INTP102			P06/DMARQ2
INTP103			P07/DMARQ3
INTP110	Input	External maskable interrupt request input, or timer 11 external capture trigger input	P14/
INTP111			P15/DMAAK1
INTP112			P16/DMAAK2
INTP113			P17/DMAAK3
INTP120	Input	External maskable interrupt request input, or timer 12 external capture trigger input	P104/TC0
INTP121			P105/TC1
INTP122			P106/TC2
INTP123			P107/TC3

Pin Name	1/O	Function	Alternate Function
INTP130	Input	External maskable interrupt request input, or timer 13 external capture trigger input	P34
INTP131			P35/SO2
INTP132			P36/SI2
INTP133			P37/\CK2
INTP140	Input	External maskable interrupt request input, or timer 14 external capture trigger input	P114
INTP141			P115/SO3
INTP142			P116/SI3
INTP143			P117/ $\overline{\text { SCK3 }}$
INTP150	Input	External maskable interrupt request input, or timer 15 external capture trigger input	P124
INTP151			P125
INTP152			P126
INTP153			P127/ADTRG
SOO	Output	CSIO to CSI3 serial transmission data output (3-wire)	P22/TXD0
SO1			P25/TXD1
SO2			P35/INTP131
SO3			P115/INTP141
SIO	Input	CSIO to CSI3 serial reception data input (3-wire)	P23/RXD0
SI1			P26/RXD1
SI2			P36/INTP132
SI3			P116/INTP142
$\overline{\text { SCKO }}$	1/O	CSIO to CSI3 serial clock input/output (3-wire)	P24
$\overline{\text { SCK1 }}$			P27
$\overline{\text { SCK2 }}$			P37/INTP133
$\overline{\text { SCK3 }}$			P117/INTP143
TXD0	Output	UART0 and UART1 serial transmission data output	P22/SO0
TXD1			P25/SO1
RXD0	Input	UART0 and UART1 serial reception data input	P23/SIO
RXD1			P26/SI1
D0 to D7	I/O	16-bit data bus for external memory	P40 to P47
D8 to D15			P50 to P57
A0 to A7	Output	24-bit address bus for external memory	PA0 to PA7
A8 to A15			PB0 to PB7
A16 to A23			P60 to P67
$\overline{\text { LWR }}$	Output	External data bus lower byte write enable signal output	P90/LCAS
$\overline{\text { UWR }}$	Output	External data bus upper byte write enable signal output	P91/UCAS
$\overline{\mathrm{RD}}$	Output	External data bus read strobe signal output	P92
$\overline{\text { WE }}$	Output	Write enable signal output for DRAM	P93
$\overline{\text { OE }}$	Output	Output enable signal output for DRAM	P95

Pin Name	I/O	Function	Alternate Function
$\overline{\text { LCAS }}$	Output	Column address strobe signal output for lower data of DRAM	P90/LWR
$\overline{\text { UCAS }}$	Output	Column address strobe signal output for higher data of DRAM	P91/UWR
$\overline{\text { RAS0 }}$ to $\overline{\text { RAS3 }}$	Output	Row address strobe signal output for DRAM	P80/ $\overline{\mathrm{CSO}}$ to P83/ $\overline{\mathrm{CS3}}$
$\overline{\text { RAS4 }}$			P84/CS4/IOWR
RAS5			P85/CS5/IORD
$\overline{\text { RAS6 }}$			P86/CS6
$\overline{\text { RAS7 }}$			P87/CS7
BCYST	Output	Strobe signal output indicating start of bus cycle	P94
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$	Output	Chip select signal output	P80/ $\overline{\text { RAS0 }}$ to P83/RAS3
$\overline{\text { CS4 }}$			P84/ $\overline{\mathrm{RAS4}} / \overline{\mathrm{IOWR}}$
$\overline{\text { CS5 }}$			P85/RAS5/IORD
$\overline{\text { CS6 }}$			P86/RAS6
$\overline{\text { CS7 }}$			P87/RAS7
$\overline{\text { WAIT }}$	Input	Control signal input that inserts a wait in the bus cycle	PX6
$\overline{\text { REFRQ }}$	Output	Refresh request signal output for DRAM	PX5
$\overline{\text { IOWR }}$	Output	DMA write strobe signal output	P84/RAS4/CS4
$\overline{\text { IORD }}$	Output	DMA read strobe signal output	P85/RAS5/CS5
$\frac{\overline{\text { DMARQO }} \text { to }}{\text { DMARQ3 }}$	Input	DMA request signal input	P04/INTP100 to P07/INTP103
$\overline{\text { DMAAKO }}$ to DMAAK	Output	DMA acknowledge signal output	P14/INTP110 to P17/INTP113
$\overline{\mathrm{TCO}}$ to $\overline{\mathrm{TC} 3}$	Output	DMA termination (terminal count) signal output	P104/INTP120 to P107/INTP123
$\overline{\text { HLDAK }}$	Output	Bus hold acknowledge output	P96
$\overline{\text { HLDRQ }}$	Input	Bus hold request input	P97
ANIO to ANI7	Input	Analog input to A/D converter	P70 to P77
NMI	Input	Non-maskable interrupt request input	P20
CLKOUT	Output	System clock output	PX7
CKSEL	Input	Input that specifies the clock generator's operation mode	-
MODEO to MODE2	Input	Operation mode specification	-
MODE3			VPP
RESET	Input	System reset input	-
X1	Input	Connecting system clock resonator. In the case of an external clock, it is input to X 1 .	-
X2	-		-
ADTRG	Input	A/D converter external trigger input	P127/INTP153
$\mathrm{AV}_{\text {ref }}$	Input	Reference voltage applied to A/D converter	-
AV ${ }_{\text {do }}$	-	Positive power supply for A/D converter	-

Pin Name	I/O	Function	Alternate Function
AVSs	-	Ground potential for A/D converter	-
$\mathrm{CV}_{\mathrm{DD}}$	-	Positive power supply for dedicated clock generator	-
$\mathrm{CV}_{S S}$	-	Ground potential for dedicated clock generator	-
V_{DD}	-	Positive power supply (internal unit power supply)	-
$H V_{D D}$	-	Positive power supply (external pin power supply)	-
$\mathrm{V}_{S S}$	-	Ground potential	-
V_{PP}	-	High-voltage application pin during program write/verify	MODE3

2.3 Pin I/O Circuit Types and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin and the recommended connection of unused pins, and Figure 2-1 shows the schematic circuit diagram for each I/O circuit type.

In the case of connection to VDD or Vss via a resistor, connection of a resistor of 1 to $10 \mathrm{k} \Omega$ is recommended.

Table 2-1. Pin I/O Circuit Types and Recommended Connection of Unused Pins (1/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO100, P01/TO101	5	Input: Independently connect to HV dD or V ss via a resistor. Output: Leave open.
P02/TCLR10, P03/TI10	5-K	
P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3		
P10/TO110, P11/TO111	5	
P12/TCLR11, P13/TI11	5-K	
P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3		
P20/NMI	2	Connect directly to Vss.
P21	5	Input: Independently connect to HV DD or $\mathrm{V}_{s s}$ via a resistor. Output: Leave open.
P22/TXD0/SO0		
P23/RXD0/SI0	5-K	
P24/SCK0		
P25/TXD1/SO1	5	
P26/RXD1/SI1	5-K	
P27//SCK1		
P30/TO130, P31/TO131	5	
P32/TCLR13, P33/TI13	5-K	
P34/INTP130		
P35/INTP131/SO2		
P36/INTP132/SI2		
P37/INTP133/SCK2		
P40/D0 to P47/D7	5	
P50/D8 to P57/D15		
P60/A16 to P67/A23		
P70/ANI0 to P77/ANI7	9	Connect directly to Vss.

Table 2-1. Pin I/O Circuit Types and Recommended Connection of Unused Pins (2/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P80/CS0/ $/ \overline{\mathrm{RAS0}}$ to P83/CS3$/ \overline{\mathrm{RAS3}}$	5	Input: Independently connect to HVDD or Vss via a resistor. Output: Leave open.
P84/ $\overline{\mathrm{CS} 4} / \overline{\mathrm{RAS} 4} / \overline{\mathrm{OWR}}$, P85/CS5/RAS5/IORD		
P86/CS6 $/ \overline{\text { RAS6 }}$, P87/ $\overline{\mathrm{CS7}} / \overline{\mathrm{RAS7}}$		
P90/ $\overline{\text { LCAS }} / \overline{\text { LWR }}$		
P91/UCAS/ $\overline{\text { UWR }}$		
P92/RD		
P93/WE		
P94/BCYST		
P95/OE		
P96/ $\overline{\text { HLDAK }}$		
P97/HLDRQ		
P100/TO120, P101/TO121	5	Input: Independently connect to HV DD or $\mathrm{V}_{s s}$ via a resistor. Output: Leave open.
P102/TCLR12, P103/TI12	5-K	
$\begin{aligned} & \text { P104/INTP120 } \overline{T C 0} \text { to } \\ & \text { P107/INTP123 } / \overline{T C 3} \end{aligned}$		
P110/TO140, P111/TO141	5	
P112/TCLR14, P113/T114	5-K	
P114/INTP140		
P115/INTP141/SO3		
P116/INTP142/SI3		
P117/INTP143/SCK3		
P120/TO150, P121/TO151	5	
P122/TCLR15, P123/TI15	5-K	
P124/INTP150 to P126/INTP152		
P127/INTP153/ADTRG		
PA0/A0 to PA7/A7	5	
PB0/A8 to PB7/A15		
PX5/ $\overline{\text { REFRQ }}$		
PX6/WAIT		
PX7/CLKOUT		
CKSEL	1	-
RESET	2	
MODE0 to MODE2		
MODE3/VPP		Connect to Vss via a resistor (Rvpp).
$\mathrm{AV}_{\text {ref, }} \mathrm{AV}$ ss	-	Connect directly to Vss.
AVdd	-	Connect directly to HVDD.

Figure 2-1. Pin Input/Output Circuits

Caution Replace Vdo in the circuit diagrams with HVdo.

3. FLASH MEMORY PROGRAMMING

The following two flash memory programming methods are available.
(1) On-board programming

The program is written to the flash memory using a dedicated flash programmer after the μ PD70F3102A-33 is mounted on the target board. Install the connectors, etc., required for communication with the dedicated flash programmer, on the target board.
(2) Off-board programming

The program is written to the flash memory using a dedicated adapter before the μ PD70F3102A-33 is mounted on the target board.

3.1 Selection of Communication Mode

Writing to the flash memory is done via serial communication using the dedicated flash programmer. Select one of the communication modes listed in Table 3-1. Base your selection of the communication mode on the selection format shown in Table 3-1. Refer to the number of VPP pulses shown in Table 3-1 when selecting the communication mode.

Table 3-1. Communication Modes

Communication Mode	Pins Used	Number of VPP Pulses
CSIO	SOO (serial data output) SIO (serial data input) SCKO (serial clock input)	0
UARTO	TXDO (serial data output) RXDO (serial data input)	8

Figure 3-1. Communication Mode Selection Format

3.2 Flash Memory Programming Functions

Flash memory programming is performed by sending and receiving commands and data according to the selected communication mode. Table 3-2 shows the main flash memory programming functions.

Table 3-2. Main Flash Memory Programming Functions

Function	
Batch erase	Erases the contents of the entire memory.
Batch blank check	Checks whether the entire memory has been erased.
Data write	Writes data to flash memory based on the write start address and the number of bytes to be written.
Batch verify	Compares the contents of the entire memory with the input data.

3.3 Connecting Dedicated Flash Programmer

The connection of the dedicated flash programmer to the μ PD70F3102A-33 differs depending on the communication mode. Figures 3-2 and 3-3 show the various connection types.

Figure 3-2. Connection of Dedicated Flash Programmer for CSIO Mode

Figure 3-3. Connection of Dedicated Flash Programmer for UARTO Mode

Dedicated flash programm	μ PD70F3102A-33
CLK	CLK
VPP	Vpp
VDD	VDD
RESET	RESET
TxD	RXDO
RxD	TXDO
V_{ss}	Vss

4. ELECTRICAL SPECIFICATIONS

4.1 Normal Operation Mode

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	VDD	Vod pin		-0.5 to +4.6	V
	HVDD	HVDD pin, $\mathrm{HV}_{\mathrm{DD}} \geq \mathrm{V}_{\text {dD }}$		-0.5 to +4.6	V
	CVDD	CVdo pin		-0.5 to +4.6	V
	CVss	CVss pin		-0.5 to +0.5	V
	AVD	AVdo pin		-0.5 to HV ${ }_{\text {DD }}+0.5{ }^{\text {Note }}$	V
	AVss	AVss pin		-0.5 to +0.5	V
Input voltage	V	Except X1 pin, MODE3/Vpp pin		-0.5 to $\mathrm{HV} \mathrm{DDD}^{+0.5}{ }^{\text {Note }}$	V
		MODE3/VPP pin		-0.5 to 8.5	V
Clock input voltage	V_{K}	$\mathrm{X} 1, \mathrm{~V} D=3.0$ to 3.6 V		-0.5 to $V_{\text {DD }}+1.0^{\text {Note }}$	V
Output current, low	loL	1 pin		4.0	mA
		Total of all pins		100	mA
Output current, high	Іон	1 pin		-4.0	mA
		Total of all pins		-100	mA
Output voltage	Vo	HVDD $=3.0$ to 3.6 V		-0.5 to HVDD $+0.5^{\text {Note }}$	V
Analog input voltage	Vian	P70/ANIO to P77/ANI7 pins	$A V_{D D}>H V_{\text {do }}$	-0.5 to HVDD $+0.5^{\text {Note }}$	V
			$H V_{D D} \geq A V_{\text {do }}$	-0.5 to $\mathrm{AV} \mathrm{VDD}^{+0.5}{ }^{\text {Note }}$	V
A/D converter reference input voltage	$\mathrm{AV}_{\text {ref }}$	$A V_{D D}>H V_{D D}$		-0.5 to HVDD $+0.5^{\text {Note }}$	V
		$H V_{D D} \geq A V_{\text {dD }}$		-0.5 to $\mathrm{AV} \mathrm{VDD}^{+0.5}{ }^{\text {Note }}$	V
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +125	${ }^{\circ} \mathrm{C}$

Note The product must be used under conditions that ensure the absolute maximum ratings (max. values) of each supply voltage are not exceeded.

Cautions 1. Do not directly connect output pins (or I/O pins) of IC products to each other, and do not connect them directly to VdD, Vcc, or GND. However, open-drain pins and open-collector pins can be directly connected to each other. Moreover, external circuits that implement a timing that avoids conflict with the output of pins that go into high-impedance can be directly connected.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{I}	$\mathrm{fc}=1 \mathrm{MHz}$			15	pF
I/O capacitance	C_{\circ}	Unmeasured pins returned to 0 V			15	pF
Output capacitance	Co				15	pF

Operating Conditions

Operation Mode	Internal Operation Clock Frequency (fx)	Operating Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	Supply Voltage (VDD, HVDD$)$ Direct mode$\quad 2$ to 33 MHz
PLL mode $^{\text {Note } 1}$	20 to $33 \mathrm{MHz}^{\text {Note } 2}$	-40 to $+85^{\circ} \mathrm{C}$	3.0 to 3.6 V

Notes 1. The internal operation clock frequency in PLL mode is the value during $\times 5$ operation. Operation at 20 MHz or lower is possible when using $\times 1$ or $\times 1 / 2$ operation by setting the CKDIVn $(\mathrm{n}=0,1)$ bit of the CKC register.
2. Set the input clock frequency used in PLL mode to 4.0 to 6.6 MHz .

Recommended Oscillator

(a) Connection of ceramic resonator $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
(i) Murata Mfg. Co., Ltd. $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Type	Product Name	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C1 (pF)	C2 (pF)	$\mathrm{R}_{\mathrm{d}}(\mathrm{k} \Omega)$	MIN. (V)	MAX. (V)	
Surface mount	CSAC4.00MGC040	4.0	100	100	0	3.0	3.6	0.5
	CSTCC4.00MG0H6	4.0	On-chip	On-chip	0	3.0	3.6	0.3
	CSAC5.00MGC040	5.0	100	100	0	3.0	3.6	0.4
	CSTCC5.00MG0H6	5.0	On-chip	On-chip	0	3.0	3.6	0.2
	CSAC6.60MT	6.6	30	30	0	3.0	3.6	0.2
	CSTCC6.60MG0H6	6.6	On-chip	On-chip	0	3.0	3.6	0.1
Lead	CSA4.00MG040	4.0	100	100	0	3.0	3.6	0.5
	CSTC4.00MGW040	4.0	On-chip	On-chip	0	3.0	3.6	0.5
	CSA5.00MG040	5.0	100	100	0	3.0	3.6	0.5
	CSTC5.00MGW040	5.0	On-chip	On-chip	0	3.0	3.6	0.5
	CSA6.60MTZ	6.6	30	30	0	3.0	3.6	0.1
	CSA6.60MTW	6.6	On-chip	On-chip	0	3.0	3.6	0.1

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area indicated by the broken lines.
3. Thoroughly evaluate the matching between the μ PD70F3102A-33 and the resonator.
(ii) TDK Corporation ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C 1 (pF)	C 2 (pF)	Rd (k ${ }^{\text {) }}$	MIN. (V)	MAX. (V)	
TDK	CCR4.0MC3	4.0	On-chip	On-chip	0	3.0	3.6	0.17
	CCR5.0MC3	5.0	On-chip	On-chip	0	3.0	3.6	0.15

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area indicated by the broken lines.
3. Thoroughly evaluate the matching between the μ PD70F3102A-33 and the resonator.
(iii) Kyocera Corporation ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C 1 (pF)	C2 (pF)	Rd (k $\mathrm{S}_{\text {) }}$	MIN. (V)	MAX. (V)	
Kyocera	PBRC5.00BR-A	5.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.00BR-A	6.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.60BR-A	6.6	On-chip	On-chip	0	3.0	3.6	0.06

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area indicated by the broken lines.
3. Thoroughly evaluate the matching between the μ PD70F3102A-33 and the resonator.
(b) External clock input ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Caution Input a CMOS level voltage to the X1 pin.

Cautions when turning on/off the power

The μ PD70F3102A-33 is configured with power supply pins for the internal unit (VDD) and for the external pins (HVdd).

The operation guaranteed range is $\mathrm{V}_{\mathrm{DD}}=\mathrm{HVDD}=3.0$ to 3.6 V . The input and output state of ports may be undefined when the voltage exceeds this range.

Parameter		Symbol		onditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high		VIH	Except Note 1		0.65 HV do		$\mathrm{HV} \mathrm{DD}^{+0.3}$	V	
		Note 1	0.8 HV do		HVDD +0.3	V			
Input voltage, low			VIL	Except Notes 1 and 2		-0.5		0.2 HV DD	V
		Note 1		-0.5		0.15 HV do	V		
Clock input voltage, high		VxH		X1 pin	Direct mode	0.8 VDD		$V_{D D}+0.3$	V
		PLL mode	0.8 VdD			VDD +0.3	V		
Clock input voltage, low			VxL	X1 pin	Direct mode	-0.3		0.15 VDD	V
		PLL mode			-0.3		0.15 Vdo	V	
Schmitt trigger input threshold voltage		$\mathrm{HV}^{+}{ }^{+}$	Note 1, rising edge			2.0		V	
		$\mathrm{HV}_{T^{-}}$	Note 1, falling edge			1.0		V	
Schmitt trigger input hysteresis width		$\begin{gathered} \mathrm{HV}_{\mathrm{T}^{+}} \\ -\mathrm{HV}_{T^{-}} \end{gathered}$	Note 1		0.3			V	
Output voltage, high		Vон	$\mathrm{IOH}=-1.0 \mathrm{~mA}$		0.8 HV do			V	
Output voltage, low,		Vob	$\mathrm{loL}=2.5 \mathrm{~mA}$				0.15 HV do	V	
Input leakage current, high		İı	VI = HVdD, except Note 2				10	$\mu \mathrm{A}$	
Input leakage current, low		ILIL	VI $=0 \mathrm{~V}$, except Note 2				-10	$\mu \mathrm{A}$	
Output leakage current, high		ILoн	$V_{0}=H V_{\text {dD }}$				10	$\mu \mathrm{A}$	
Output leakage current, low		ILoL	V o $=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$	
Supply current ${ }^{\text {Note } 3}$	Normal	ldo1				$2.7 \times \mathrm{fx}^{\text {x }}$	$4.5 \times \mathrm{fx}$	mA	
	HALT	IdD2				$1.2 \times \mathrm{fx}$	$3.0 \times \mathrm{fx}$	mA	
	IDLE	IdD3				3.0	10.0	mA	
	STOP	ldo4	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+40^{\circ} \mathrm{C}$			5.0	50	$\mu \mathrm{A}$	
			$+40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$				600	$\mu \mathrm{A}$	

Notes 1. P04/INTP100/ $\overline{\text { DMARQ0 }}$ to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2,
P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/ $\overline{\text { SCK1 }}$, MODE0 to MODE2, $\overline{R E S E T}$
2. When using the P70/AN10 to P77/AN17 pins as analog inputs.
3. $V_{D D}+H V_{D D}+C V_{D D}$

Remarks 1. TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{HVDD}=\mathrm{CV} D \mathrm{D}=3.3 \mathrm{~V}$.
2. Direct mode: $f x$ (CPU operation frequency) $=2$ to 33 MHz

PLL mode: fx (CPU operation frequency) $=20$ to 33 MHz
3. The fx unit is MHz .

Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Data retention voltage	Vdodr	STOP	mode, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {dDDR }}$	1.5		3.6	V
Data retention current	Iddor	$\begin{aligned} & V_{D D}= \\ & V_{D D D R} \end{aligned}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+40^{\circ} \mathrm{C}$		5.0	50	$\mu \mathrm{A}$
			$+40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			600	$\mu \mathrm{A}$
Supply voltage rise time	trvo			200			$\mu \mathrm{s}$
Supply voltage fall time	tfvo			200			$\mu \mathrm{s}$
Supply voltage hold time (from STOP mode setting)	thvo			0			ms
STOP release signal input time	toreL			0			ns
Data retention high-level input voltage	VIHDR	Note		0.8 V DDDR		Vddor	V
Data retention low-level input voltage	TILDR	Note		0		$0.2 \mathrm{~V}_{\text {dodr }}$	V

Note P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SIO, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET

Remark TYP. values are reference values for when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

 Output Pin Load Capacitance: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

AC Test Input Measurement Points

(a) P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to
 P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/든, P26/RXD1/SI1, P27/ $\overline{\mathrm{SCK} 1, ~ M O D E 0 ~ t o ~ M O D E 2, ~} \overline{\mathrm{RESET}}$

(b) Other than (a)

AC Test Output Measurement Points

Output signal

Load Conditions

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, reduce the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.
(1) Clock timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	In direct mode	15	250	ns
			In PLL mode	150	250	ns
X1 input high-level width	<2>	twxH	In direct mode	5		ns
			In PLL mode	50		ns
X1 input low-level width	<3>	twxL	In direct mode	5		ns
			In PLL mode	50		ns
X1 input rise time	<4>	txR	In direct mode		4	ns
			In PLL mode		10	ns
X1 input fall time	<5>	txF	In direct mode		4	ns
			In PLL mode		10	ns
CLKOUT output cycle	<6>	tcyk		30	100	ns
CLKOUT high-level width	<7>	twKH		0.5T-7		ns
CLKOUT low-level width	<8>	twkL		0.5T-4		ns
CLKOUT rise time	<9>	tkR			5	ns
CLKOUT fall time	<10>	tkF			5	ns

Remark $\mathrm{T}=$ tcyk

CLKOUT (output)

(2) Output waveform (other than CLKOUT)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	$<12>$	tor			5	ns
Output fall time	$<13>$	tof			5	ns

Signals other than CLKOUT
(3) Reset timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { RESET }}$ pin high-level width	$<14>$	twrSH		500		ns
$\overline{\text { RESET }}$ pin low-level width	$<15>$	twrsL	At power ON, STOP mode release	$500+$ Tos		ns
			Except at power ON, STOP mode release	500		ns

Remark Tos: Oscillation stabilization time

(4) SRAM, external ROM, external I/O access timing

(a) Access timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address, $\overline{\mathrm{CSn}}$ output delay time (from CLKOUT \downarrow)	<16>	toka		2	10	ns
Address, $\overline{\mathrm{CSn}}$ output hold time (from CLKOUT \downarrow)	<17>	tHKA		2	10	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \downarrow$ delay time (from CLKOUT \uparrow)	<18>	tokroL		2	14	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \uparrow$ delay time (from CLKOUT \uparrow)	<19>	tнквдн		2	14	ns
$\overline{\text { UWR, }} \overline{\text { LWR }, ~} \overline{\text { IOWR }} \downarrow$ delay time (from CLKOUT \uparrow)	<20>	tokwrL		2	10	ns
$\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \uparrow$ delay time (from CLKOUT \uparrow)	<21>	tнкwвн		2	10	ns
$\overline{\mathrm{BCYST}} \downarrow$ delay time (from CLKOUT \downarrow)	<22>	tokesL		2	10	ns
$\overline{\mathrm{BCYST}} \uparrow$ delay time (from CLKOUT \downarrow)	<23>	tнквsн		2	10	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		10		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHкID		2		ns
Data output delay time (from CLKOUT \downarrow)	<28>	tokod		2	10	ns
Data output hold time (from CLKOUT \downarrow)	<29>	tнкод		2	10	ns

Remarks 1. Observe at least one of the data input hold times, thkid or thrdid.
2. $\mathrm{n}=0$ to 7
(a) Access timing (SRAM, external ROM, external I/O) (2/2)

Remarks 1. Timing when number of waits specified by registers DWC1 and DWC2 is 0 .
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(b) Read timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Data input setup time (to address)	<30>	tsald			$\left(1.5+w^{\prime}+w\right) T-20$	ns
Data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tsroid			$(1+w d+w) T-24$	ns
$\overline{\mathrm{RD}}$, $\overline{\text { IORD }}$ low-level width	<32>	twrdL		($1+\mathrm{wd}+\mathrm{w}$) T-10		ns
$\overline{\mathrm{RD}}$, $\overline{\mathrm{IORD}}$ high-level width	<33>	twroh		T-10		ns
Delay time from address, CSn to $\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \downarrow$	<34>	toard		0.5T-5		ns
Delay time from $\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \uparrow$ to address	<35>	torda		$(0.5+i) T-5$		ns
Data input hold time (from $\overline{\mathrm{RD}}, \overline{\mathrm{IORD} \uparrow)}$	<36>	throid		0		ns
Delay time from $\overline{\mathrm{RD}}, \overline{\mathrm{IORD} \uparrow}$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-20	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\mathrm{BCYST}} \downarrow$)	<39>	tsssw	Note		T-20	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\mathrm{BCYST}} \uparrow$)	<40>	thbsw	Note	0		ns

Note During the first $\overline{\text { WAIT }}$ sampling, when the number of waits specified by registers DWC1 and DWC2 is 0 .

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: Number of waits due to WAIT
3. WD: Number of waits specified by registers DWC1, DWC2
4. i: Number of idle states inserted when a write cycle follows the read cycle.
5. Observe at least one of the data input hold times, thkid or thrdid.
6. $\mathrm{n}=0$ to 7
(b) Read timing (SRAM, external ROM, external I/O) (2/2)

Remarks 1. Timing when the number of waits specified by registers DWC1 and DWC2 is 0 .
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(c) Write timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-20	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsssw	Note		T-20	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\text { UWR, }} \overline{\text { LWR }}, \overline{I O W R} \downarrow$	<41>	toawr		0.5T-5		ns
Address setup time (to $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \uparrow$)	<42>	tsawr		$\left(1.5+W_{D}+w\right) T-10$		ns
Delay time from UWR, $\overline{\text { LWR }}$, $\overline{\text { IOWR }} \uparrow$ to address	<43>	towra		0.5T-5		ns
$\overline{\text { UWR, }}$, $\overline{\text { LWR, }}$, $\overline{\text { IOWR }}$ high-level width	<44>	twwrer		T-10		ns
$\overline{\text { UWR, }}$, $\overline{\text { LWR, }}$, IOWR low-level width	<45>	twwRL		$(1+w D+w) T-10$		ns
Data output setup time (to $\overline{\mathrm{UWR}}$, $\overline{\text { LWR }}, \overline{I O W R} \uparrow)$	<46>	tsodwr		$\left(1.5+w_{D}+w\right) T-10$		ns
Data output hold time (from UWR, $\overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \uparrow$)	<47>	thwrod		0.5T-5		ns

Note During the first $\overline{\text { WAIT }}$ sampling, when the number of waits specified by registers DWC1 and DWC2 is 0 .

Remarks 1. $\mathrm{T}=\mathrm{t}$ tcyk
2. w: Number of waits due to $\overline{\text { WAIT }}$
3. wD: Number of waits specified by registers DWC1 and DWC2
4. $\mathrm{n}=0$ to 7
(c) Write timing (SRAM, external ROM, external I/O) (2/2)

Remarks 1. Timing when the number of waits specified by registers DWC1 and DWC2 is 0 .
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thкw		2		ns
$\overline{\mathrm{RD}}$ low-level width	<32>	twrdL		$(1+W D+W F+W) T-10$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twrdh		T-10		$n s$
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{RD}} \downarrow$	<34>	toard		0.5T-5		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to address	<35>	tDrdA		$(0.5+i) T-5$		ns
Delay time from $\overline{\mathrm{RD} \uparrow}$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-20	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-20	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\mathrm{BCYST}} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to $\overline{\mathrm{IOWR}} \downarrow$	<41>	tdawr		0.5T-5		ns
Address setup time (to $\overline{\mathrm{IOWR}} \uparrow$)	<42>	tsawr		$(1.5+W D+w) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to address	<43>	towra		0.5T-5		ns
$\overline{\text { IOWR }}$ high-level width	<44>	twwRH		T-10		ns
$\overline{\text { IOWR }}$ low-level width	<45>	twwRL		$(1+w d+w) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	$\mathrm{WF}=0$	0		ns
			$W F=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\text { IOWR }} \downarrow$	<49>	todawr		0.5T-10		ns
Delay time from $\overline{\overline{O W W R}} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<50>	towrda		$\left(0.5+W_{F}\right) T-10$		ns

Note During the first $\overline{\text { WAIT }}$ sampling, when the number of waits specified by registers DWC1 and DWC2 is 0 .

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Y} \mathrm{k}$
2. w: Number of waits due to $\overline{\text { WAIT }}$
3. wo: Number of waits specified by registers DWC1, DWC2
4. WF: Number of waits inserted to source-side access during DMA flyby transfer
5. i: Number of idle states inserted when a write cycle follows the read cycle
6. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (2/2)

Remarks 1. Timing when the number of waits specified by registers DWC1 and DWC2 is 0 and $W F=0$.
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\text { IORD }}$ low-level width	<32>	twrdi		$(1+W D+W F+W) T-10$		ns
$\overline{\text { IORD }}$ high-level width	<33>	twrdh		T-10		ns
Delay time from address, CSn to IORD \downarrow	<34>	tDARD		0.5T-5		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to address	<35>	torda		$(0.5+i) T-5$		ns
Delay time from $\overline{\text { ORD } \uparrow \text { to data output }}$	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-20	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\mathrm{BCYST}} \downarrow$)	<39>	tsbsw	Note		T-20	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to $\overline{\text { UWR }}$, LWR \downarrow	<41>	tDawr		0.5T-5		$n s$
Address setup time (to $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR} \uparrow}$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from UWR, $\overline{\text { LWR }} \uparrow$ to address	<43>	towra		$0.5 \mathrm{~T}-5$		ns
$\overline{\text { UWR, }} \overline{\text { LWR }}$ high-level width	<44>	twWRH		T-10		ns
$\overline{\text { UWR, }}$, LWR low-level width	<45>	twwRL		$(1+w d+w) T-10$		ns
Delay time from $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}} \uparrow$ to	<48>	towrrd	$\mathrm{WF}=0$	0		ns
IORD \uparrow			WF $=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\text { IORD }} \downarrow$	<51>	todard		0.5T-10		ns
Delay time from $\overline{\text { IORD }} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<52>	tordoa		0.5T-10		ns

Note During the first $\overline{\text { WAIT }}$ sampling, when the number of waits specified by registers DWC1 and DWC2 is 0 .

Remarks 1. $\mathrm{T}=$ tсүк
2. w: Number of waits due to WAIT
3. WD: Number of waits specified by registers DWC1 and DWC2.
4. WF: Number of waits inserted to source-side access during DMA flyby transfer.
5. i: Number of idle states inserted when a write cycle follows the read cycle.
6. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (2/2)

Remarks 1. Timing when the number of waits specified by registers DWC1 and DWC2 is 0 and $W F=0$.
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3

(5) Page ROM access timing (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		10		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHkid		2		ns
Off-page data input setup time (to address)	<30>	tsald			$(1.5+w D+w) T-20$	ns
Off-page data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tsroid			$(1+w D+w) T-24$	ns
Off-page $\overline{\mathrm{RD}}$ low-level width	<32>	twroL		$(1+w D+w) T-10$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twroh		0.5T-10		ns
Data input hold time (from $\overline{\mathrm{RD}}$)	<36>	throid		0		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to data output	<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
On-page $\overline{\mathrm{RD}}$ low-level width	<53>	twordi		$(1.5+$ WPR + w $)$ - 10		ns
On-page data input setup time (to address)	<54>	tsoald			$\left(1.5+W_{\text {PR }}+w^{\prime} T-20\right.$	ns
On-page data input setup time (to $\overline{\mathrm{RD}}$)	<55>	tsordio			$(1.5+$ WPR $+w) T-24$	ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Y} \mathrm{k}$
2. w: Number of waits due to $\overline{\text { WAIT }}$
3. wD: Number of waits specified by registers DWC1 and DWC2.
4. WPR: Number of waits specified by register PRC.
5. i: Number of idle states inserted when a write cycle follows the read cycle.
6. Observe at least one of the data input hold times, thkid or throid.
(5)

Page ROM access timing (2/2)

$\overline{\mathrm{BCYST}}$ (output)

Note On-page addresses and off-page addresses are as follows.

PRC Register			On-Page Address	Off-Page Address
MA5	MA4	MA3		
0	0	0	A0, A1	A2 to A23
0	0	1	A0 to A2	A3 to A23
0	1	1	A0 to A3	A4 to A23
1	1	1	A0 to A4	A5 to A23

Remarks 1. These timings are for the following cases:
Number of waits (TDW) specified by registers DWC1 and DWC2: 1
Number of waits (TPRW) specified by register PRC: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7

(6) DRAM access timing

(a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		10		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKıD		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Row address setup time	<56>	taSR		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trat		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	$t_{\text {ASC }}$		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+W D A+W) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W D A+\right. \\ W) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		(0.5 + WRP) T - 5		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\begin{gathered} \left(2.5+W_{R H}+\text { WDA }+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trse		$(1.5+\mathrm{WDA}+\mathrm{w}) \mathrm{T}-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+$ WRP $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcse		$(2+W R H+W D A+w) T-10$		ns
$\overline{\text { WE }}$ setup time	<68>	trics		(2 + WRP + WRH) T - 10		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trch		T-10		ns
$\overline{\mathrm{CAS}}$ precharge time	< 71 >	tcPn		$(2+$ WRP + WRH) T -5		ns
Output enable access time	<72>	toea			$\begin{gathered} (2+W R P+W R H+W D A+ \\ w) T-20 \end{gathered}$	ns
RAS access time	<73>	trac			$(2+W R H+W D A+W) T-20$	ns
Access time from column address	<74>	$t_{A A}$			$(1.5+W D A+W) T-20$	ns
$\overline{\mathrm{CAS}}$ access time	<75>	tcac			$(1+W D A+w) T-20$	ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. w: Number of waits due to WAIT
3. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WRн: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. i: Number of idle states inserted when a write cycle follows the read cycle.
(a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\mathrm{RAS}}$ column address delay time	<76>	trad		(0.5 + WRн) ${ }^{\text {- }}$ - 10		ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	<77>	trco		($1+$ WRH $^{\text {) }}$ T-10		ns
Output buffer turn off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn off delay time (from $\overline{\mathrm{CAS}} \uparrow$)	<79>	toff		0		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tсүк
2. WRн: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
(a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3)

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
[MEMO]
(b) Read timing (high-speed DRAM access: on-page) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		10		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKıD		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Column address setup time	<58>	tasc		$(0.5+W C P) T-10$		ns
Column address hold time	<59>	tcah		$(1.5+$ WDA $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+$ WDA $) T-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W C P+W D A) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<68>	trcs		$(1+\mathrm{WCP}) \mathrm{T}-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5 T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trach		T-10		ns
Output enable access time	<72>	toea			$(1+W C P+W D A) T-20$	ns
Access time from column address	<74>	$t_{\text {A }}$			$(1.5+W C P+W D A) T-20$	ns
$\overline{\text { CAS }}$ access time	<75>	tcac			$(1+$ WDA $) T-20$	ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\mathrm{CAS}} \uparrow$)	<79>	toff		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge	<80>	$t_{\text {ACP }}$			$(2+W C P+$ WDA $) T-20$	ns
$\overline{\mathrm{CAS}}$ precharge time	<81>	tcp		$(1+\mathrm{WcP}) \mathrm{T}-5$		ns
High-speed page mode cycle time	<82>	tpc		$(2+W C P+W D A) T-10$		ns
$\overline{\mathrm{RAS}}$ hold time from $\overline{\mathrm{CAS}}$ precharge	<83>	trhcp		$(2.5+W C P+W D A) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
3. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. i: Number of idle states inserted when a write cycle follows the read cycle.
(b) Read timing (high-speed DRAM access: on-page) (2/2)

WAIT (input)

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Row address setup time	<56>	task		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trah		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+W D A+W) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W_{D A}+\right. \\ \text { w) } T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	$t_{\text {RP }}$		(0.5 + WRP) T - 5		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\begin{gathered} \left(2.5+W_{R H}+\text { WDA }+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+W D A+w) T-10$		ns
Column address read time (from $\overline{R A S} \uparrow$)	<64>	$t_{\text {RaL }}$		$(2+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+$ wrн $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsh		$(2+W R H+W D A+W) T-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcPN		($2+$ WRP + WRH)T - 5		ns
$\overline{\text { RAS }}$ column address delay time	<76>	trad		(0.5+ Wrн) ${ }^{\text {a }}$ - 10		ns
$\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time	<77>	tricd		$(1+$ WRH $)$ T - 10		ns
$\overline{\mathrm{WE}}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<84>	twcs		$(1+W R P+W R H) T-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+W D A+w) T-10$		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<86>	tos		$(1.5+$ WRP + WRH)T - 10		ns
Data hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<87>	toh		$(1.5+$ WDA $+w) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tcyk
2. w: Number of waits due to WAIT
3. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WRH: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
(c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2)

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(d) Write timing (high-speed page DRAM access: on-page) (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Column address setup time	<58>	tasc		$(0.5+$ wcp $) \mathrm{T}-10$		ns
Column address hold time	<59>	tсaн		$(1.5+$ WDA $)$ T - 10		ns
$\overline{\text { RAS }}$ hold time	<63>	trsh		$(1.5+$ WDA $) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)	<64>	tral		$(2+W C P+$ WDA $) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+$ WDA $)$ T - 10		ns
$\overline{\text { CAS }}$ precharge time	<81>	tcp		($1+\mathrm{WCP}$) $\mathrm{T}-5$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge	<83>	trhcp		(2.5 + WCP + WDA $)$ T - 10		ns
	<84>	twos	WCP ≥ 1	WCPT-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Data setup time (to $\overline{\text { CAS }} \downarrow$)	<86>	tos		$\left(0.5+\right.$ wcP) ${ }^{\text {c }}$ - 10		ns
Data hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<87>	toh		$(1.5+$ wDA $) T-10$		ns
	<88>	trwL	$\mathrm{WCP}=0$	$(1.5+$ WDA $) T-10$		ns
$\overline{\text { WE read time (}}$ (rom $\overline{\mathrm{CAS}} \uparrow$)	<89>	tcw	WCP $=0$	$(1+$ WDA $) T-10$		ns
Data setup time (to $\overline{\mathrm{WE}} \downarrow$)	<90>	toswe	WCP $=0$	0.5T-10		ns
Data hold time (from $\overline{\mathrm{WE}} \downarrow$)	<91>	tohwe	WCP $=0$	$(1.5+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ pulse width	<92>	twp	WCP $=0$	$(1+$ WDA $) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. wCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
3. wDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
(d) Write timing (high-speed page DRAM access: on-page) (2/2)

$\overline{\text { WAIT }}$ (input)
\qquad
\qquad

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(e) Read timing (EDO DRAM) (1/3)

Parameter		Symbol		Conditions	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)		<26>	tskID		10		ns
Data input hold time (from CLKOUT \uparrow)		<27>	tHKID		2		ns
Data output delay time from $\overline{\mathrm{OE}} \uparrow$		<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Row address setup time		<56>	$\mathrm{t}_{\text {ASR }}$		(0.5 + WRP) $\mathrm{T}-10$		ns
Row address hold time		<57>	trah		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time		<58>	tasc		0.5T-10		ns
Column address hold time		<59>	tcah		$(0.5+$ WDA $) T-10$		ns
$\overline{\mathrm{RAS}}$ precharge time		<61>	trp		(0.5 + WRP) T - 5		ns
Column address read time (to $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+W D A) T-10$		ns
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time		<66>	tcre		$(1+$ WrP $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time		<67>	tcser		$\left(1.5+W_{R H}+W_{D A}\right) T-10$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)		<68>	trcs		($2+$ WRP + WRH) T - 10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)		<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)		<70>	trach		$1.5 \mathrm{~T}-10$		ns
$\overline{\mathrm{RAS}}$ access time		<73>	trac			$(2+$ WRH + WDA $)$ T - 20	ns
Access time from column address		<74>	$t_{A A}$			$(1.5+$ WDA $) T-20$	ns
$\overline{\text { CAS }}$ access time		<75>	tcac			$(1+$ WDA $) T-20$	ns
Delay time from $\overline{R A S}$ to column address		<76>	$t_{\text {rad }}$		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time		<77>	$t_{\text {RCD }}$		$(1+$ WRн $)$ T - 10		ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}}$)		<78>	toez		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge		<80>	$t_{\text {ACP }}$			$(1.5+W C P+W D A) T-20$	ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		(0.5 + WCP) T - 5		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\text { CAS }}$ precharge		<83>	trhcp		$(2+W C P+W D A) T-10$		ns
Read cycle time		<93>	thpe		$(1+W D A+W C P) T-10$		ns
$\overline{\text { RAS }}$ pulse width		<94>	trasp		$\left(2.5+W_{R H}+W_{\text {da }}\right) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width		<95>	thcas		$(0.5+$ WDA $)$ T - 10		ns
CAS hold time from $\overline{\mathrm{OE}}$	Off-page	<96>	toch1		$(2+$ WRH + WDA) T - 10		ns
	On-page	<97>	toch2		$(0.5+$ WDA $)$ T - 10		ns
Data input hold time (from $\overline{\mathrm{CAS}} \downarrow$)		<98>	tohc		0		ns

Remarks 1. $\mathrm{T}=$ tcyk
2. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
3. WRH: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. i: Number of idle states inserted when a write cycle follows the read cycle.
(e) Read timing (EDO DRAM) (2/3)

Parameter		Symbol		Conditions	MIN.	MAX.	Unit
Output enable access time	Off-page	<99>	toEal			$\begin{gathered} \left(2+W_{R P}+W_{R H}+W_{D A}\right) T \\ -20 \end{gathered}$	ns
	On-page	<100>	toeaz			$(1+W C P+W D A) T-20$	ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
3. WRн: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
(e) Read timing (EDO DRAM) (3/3)

Note In case of on-page access from another cycle, while $\overline{\mathrm{RASn}}$ is low level.

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
[MEMO]

(f) Write timing (EDO DRAM) (1/2)

Parameter		Symbol		Conditions	MIN.	MAX.	Unit
Row address setup time		<56>	$t_{\text {ASR }}$		(0.5 + WRP) T - 10		$n s$
Row address hold time		<57>	trah		(0.5 + WRн) T -10		$n s$
Column address setup time		<58>	tasc		0.5T-10		$n s$
Column address hold time		<59>	tcar		(0.5 + WDA $)$ T - 10		$n s$
$\overline{\text { RAS }}$ precharge time		<61>	trp		(0.5 + WRP) T - 5		ns
$\overline{\mathrm{RAS}}$ hold time		<63>	trsi		$(1.5+$ WDA $) T-10$		ns
Column address read time (to $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+W D A) T-10$		$n s$
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time		<66>	tcre		$(1+$ WrP $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time		<67>	tcsh		$(1.5+$ WRH + WDA $) T-10$		ns
Delay time from $\overline{R A S}$ to column address		<76>	$t_{\text {RAD }}$		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time		<77>	trcD		$(1+$ WRH $)$ T - 10		ns
CAS precharge time		<81>	tcp		(0.5 + WCP) T - 5		$n s$
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	trhcp		$(2+W C P+W D A) T-10$		ns
$\overline{W E}$ hold time (from $\overline{C A S} \downarrow$)		<85>	twCH		$(1+$ WDa $) T-10$		ns
Data hold time (from $\overline{\mathrm{CAS}} \downarrow$)		<87>	toh		$(0.5+$ WDA $) T-10$		ns
$\overline{\text { WE read time (to }}$ RAS \uparrow)	On-page	<88>	tRWL	$W C P=0$	$(1.5+\mathrm{twDA}) \mathrm{T}-10$		ns
$\overline{\text { WE read time (to }}$ CAS \uparrow)	On-page	<89>	tcw	$W C P=0$	$(0.5+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ pulse width	On-page	<92>	twp	$\mathrm{WCP}=0$	$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Write cycle time		<93>	tHPC		$(1+W D A+W C P) T-10$		ns
$\overline{\mathrm{RAS}}$ pulse width		<94>	trasp		$\left(2.5+W_{R H}+W_{D A}\right) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width		<95>	thcas		$(0.5+$ WDA $) T-10$		ns
WE setup time (to $\overline{\mathrm{CAS}} \downarrow$)	Off-page	<101>	twcs1		$(1+$ WRP + WRH)T-10		ns
	On-page	<102>	twcs2	$W C P \geq 1$	WCPT-10		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	Off-page	<103>	tos1		$(1.5+$ WRP + WRH)T - 10		ns
	On-page	<104>	tos2		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
3. WRH: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. wDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)

(f) Write timing (EDO DRAM) (2/2)

$\overline{\text { BCYST }}$ (output)

WAIT (input) \qquad

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (1/3)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
Delay time from address to $\overline{\text { IOWR }} \downarrow$	<41>	tdawr		(0.5 + WRP) T - 5		ns
Address setup time (to $\overline{\mathrm{OWRR}} \uparrow$)	<42>	tsawr		$\begin{gathered} (2+W R P+W R H+W D A+ \\ \text { W) } T-10 \end{gathered}$		ns
Delay time from $\overline{\overline{O W W R} \uparrow \text { to address }}$	<43>	towra		0.5T-5		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	$\mathrm{WF}=0$	0		ns
			$W \mathrm{~F}=1$	T-10		ns
$\overline{\text { IOWR }}$ low-level width	<50>	twwrL		$(2+W R H+W D A+W) T-10$		ns
Row address setup time	<56>	tasR		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trah		$(0.5+$ WRн $)$ T - 10		ns
Column address setup time	<58>	tasc		$0.5 \mathrm{~T}-10$		ns
Column address hold time	<59>	tcah		$\begin{gathered} \left(1.5+W_{D A}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W_{D A}\right. \\ \left.+W_{F}+w\right) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trp		(0.5 + WRP) T - 5		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$\begin{gathered} \left(1.5+W D A+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$\begin{gathered} (2+W C P+W D A+W F+ \\ W) T-10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+W F+W) T-10$		ns
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		(1+WRP) T - 10		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsi		$\begin{gathered} (2+W R H+W D A+W F+ \\ w) T-10 \end{gathered}$		ns
$\overline{\mathrm{WE}}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<68>	trcs		(2+WRP + WRH)T-10		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trch		$1.5 \mathrm{~T}-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcPn		$(2+$ WRP + WRH) T - 5		ns
Delay time from RAS to column address	<76>	$t_{\text {Rad }}$		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	<77>	$t_{\text {RCD }}$		$(1+$ WRH $) T-10$		ns

Remarks 1. $\mathrm{T}=$ tсүк
2. w: Number of waits due to WAIT
3. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WRн: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. wCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
7. WF: Number of waits inserted to source-side access during DMA flyby transfer
8. i: Number of idle states inserted when a write cycle follows the read cycle.
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (2/3)

Parameter		Symbol		Conditions	MIN.	MAX.	Unit
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)		<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\mathrm{CAS}} \uparrow$)		<79>	toff		0		ns
$\overline{\text { CAS }}$ precharge time		<81>	tcp		$(0.5+\mathrm{WcP}) \mathrm{T}-5$		ns
High-speed mode cycle time		<82>	tpc		$\begin{gathered} \left(2+W_{C P}+W_{D A}+W_{F}+\right. \\ w) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	trhcp		$\begin{gathered} \left(2.5+W C P+W D A+W_{F}+\right. \\ w) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ pulse width		<94>	trasp		$\begin{gathered} \left(2.5+W_{R H}+W_{D A}+W_{F}+\right. \\ w) T-10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ hold time from $\overline{\mathrm{OE}}$ (from $\overline{\mathrm{CAS}} \uparrow$)	Off-page	<96>	toch1		$\begin{gathered} \left(2.5+W_{\text {RP }}+\text { WRH }+\right. \\ \text { WDA } \left.+W_{F}+w\right) T-10 \end{gathered}$		ns
	On-page	<97>	toch2		$\begin{gathered} (1.5+W C P+W D A+W F+ \\ w) T-10 \end{gathered}$		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<105>	todacs		$\left(1.5+\right.$ WRH $^{\text {) }}$ T - 10		ns
Delay time from $\overline{\mathrm{OWR}} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<106>	tordis		$(1+$ Швн $)$ T - 10		ns

Remarks 1. $\mathrm{T}=$ tcyk
2. w: Number of waits due to WAIT
3. WCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WRн: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
7. WF: Number of waits inserted to source-side access during DMA flyby transfer
8. $m=0$ to 3
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (3/3)

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
Number of waits inserted to source-side access during DMA flyby transfer: 0
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (1/3)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		10		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\text { IORD }}$ low-level width	<32>	twrdL		$(2+W R H+W D A+W F+W) T-10$		ns
IORD high-level width	<33>	twrdh		T-10		ns
Delay time from address to $\overline{\overline{O R D}} \uparrow$	<34>	tdard		0.5T-5		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to address	<35>	torda		$(0.5+i) T-5$		ns
Row address setup time	<56>	task		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	$t_{\text {RaH }}$		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		$0.5 \mathrm{~T}-10$		ns
Column address hold time	<59>	tcat		$(1.5+W D A+W F) T-10$		ns
Read/write cycle time	<60>	$t_{\text {RC }}$		$(3+W R P+W R H+W D A+W F+W) T-10$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	$t_{\text {PP }}$		(0.5 + WRP) T - 5		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+W D A+W F) T-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W C P+W D A+W F+W) T-10$		ns
$\overline{\text { CAS }}$ pulse width	<65>	tcas		$(1+W D A+W F) T-10$		ns
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	<66>	tcrp		$(1+$ WRP $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsi		$(2+W R H+W D A+W F+W) T-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcpn		$\left(2+W_{R P}+W_{R H}+w\right) T-5$		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address	<76>	trad		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	<77>	trcD		$\left(1+W_{R H}+W^{\prime} T-10\right.$		ns
$\overline{\text { CAS }}$ precharge time	<81>	tcp		$(0.5+W C P+w) T-5$		ns
High-speed page mode cycle time	<82>	tpc		$(2+W C P+W D A+W F+W) T-10$		ns
$\overline{\text { RAS }}$ hold time for $\overline{\text { CAS }}$ precharge	<83>	trhce		$(2.5+W C P+W D A+W) T-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twCH		$(1+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ read time (to $\overline{\mathrm{RAS}} \uparrow$)	<88>	trwL	$W C P=0$	$(1.5+W D A+W) T-10$		ns
$\overline{\text { WE }}$ read time (to $\overline{\mathrm{CAS}} \uparrow$)	<89>	tcwL	$W C P=0$	$(1+W D A+W) T-10$		ns
$\overline{\text { WE }}$ pulse width	<92>	twp	$\mathrm{WCP}=0$	$(1+W D A+W) T-10$		ns
$\overline{\mathrm{RAS}}$ pulse width	<94>	trasp		$(2.5+W R H+W D A+W F+W) T-10$		ns

Remarks 1. $\mathrm{T}=$ tcyk
2. w: Number of waits due to $\overline{\text { WAIT }}$
3. WRH: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WDA: Number of waits specified by DACxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. wCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
7. WF: Number of waits inserted to source-side access during DMA flyby transfer.
8. i: Number of idle states inserted when a write cycle follows the read cycle.
9. $\mathrm{n}=0$ to 7
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (2/3)

Parameter		Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	Off-page	<101>	twcs1	$\mathrm{WCP}=0$	$\left(1+W_{R H}+W_{R P}+W_{\text {c }}\right.$ T -10		ns
	On-page	<102>	twcs2	WCP ≥ 1	WCPT-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<105>	todacs		$\left(1.5+W_{\text {RH }}+\mathrm{w}_{\text {) }} \mathrm{T}-10\right.$		ns
Delay time from $\overline{\overline{O R D}} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<106>	tordes		$\left(1+W_{\text {RH }}+\mathrm{w}\right) \mathrm{T}-10$		ns
Delay time from $\overline{\mathrm{WE}} \uparrow$ to $\overline{\mathrm{IORD}} \uparrow$		<107>	towerd	WF $=0$	0		ns
		WF $=1$		T-10		ns	

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. w: Number of waits due to $\overline{\text { WAIT }}$
3. WRH: Number of waits specified by RHCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
4. WRP: Number of waits specified by RPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
5. wCP: Number of waits specified by CPCxx bit of register DRCn ($n=0$ to $3, x x=00$ to 03,10 to 13)
6. $\mathrm{m}=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (3/3)

Remarks 1. These timings are for the following cases ($n=0$ to $3, x x=00$ to 03,10 to 13):
Number of waits (TRPW) specified by RPCxx bit of register DRCn: 1
Number of waits (TRHW) specified by RHCxx bit of register DRCn: 1
Number of waits (TDAW) specified by DACxx bit of register DRCn: 1
Number of waits (TCPW) specified by CPCxx bit of register DRCn: 1
Number of waits inserted to source-side access during DMA flyby transfer: 0
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to 3

(i) CBR refresh timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\mathrm{RAS}}$ precharge time	<61>	$t_{\text {RP }}$		$(1.5+$ WRRW $)$ T - 5		ns
$\overline{\mathrm{RAS}}$ pulse width	<62>	tras		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<108>	tchr		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
$\overline{\mathrm{REFRQ}}$ pulse width	<109>	twrfL		$\begin{gathered} \left(3+W_{\text {RRW }}+W_{\text {RCW }}{ }^{\text {Note }}\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge $\overline{\mathrm{CAS}}$ hold time	<110>	trpC		(0.5 + WRRW) T - 10		ns
$\overline{\mathrm{REFRQ}}$ active delay time (from CLKOUT \downarrow)	<111>	tokrf		2	10	ns
$\overline{\operatorname{REFRQ}}$ inactive delay time (from CLKOUT \downarrow)	<112>	thkRF		2	10	ns
$\overline{\mathrm{CAS}}$ setup time	<113>	tcsr		T-10		ns

Note WRCW is inserted for at least 1 clock, regardless of the setting of bits RCW0 to RCW2 of register RWC.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WRRw: Number of waits specified by bits RRW0 and RRW1 of register RWC
3. WRCW: Number of waits specified by bits RCW0 to RCW2 of register RWC.

Note This TRCW is always inserted, regardless of the setting of bits RCW0 to RCW2 of register RWC.

Remarks 1. These timings are for the following cases:
Number of waits specified by bits RRW0 and RRW1 of register RWC (TRRW): 1
Number of waits specified by bits RCW0 to RCW2 of register RWC (TRCW): 2
2. $\mathrm{n}=0$ to 7

(j) CBR self refresh timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\mathrm{REFRQ}}$ active delay time (from CLKOUT \downarrow)	<111>	tokrf		2	10	ns
$\overline{\operatorname{REFRQ}}$ inactive delay time (from CLKOUT \downarrow)	<112>	thkRF		2	10	ns
$\overline{\text { CAS }}$ hold time	<114>	tchs		-5		ns
$\overline{\text { RAS }}$ precharge time	<115>	taps		$(1+2 w s$ sw $)$ T - 10		ns

Remarks 1. $\mathrm{T}=\mathrm{t}$ tсүк
2. WSRW: Number of waits specified by bits SRW0 to SRW2 of register RWC.

Output signals other than above

Remarks 1. These timings are for the following cases:
Number of waits (TRRW) specified by bits RRW0 and RRW1 of register RWC: 1
Number of waits (TRCW) specified by bits RCW0 to RCW2 of register RWC: 1
Number of waits (TSRW) specified by bits SRW0 to SRW2 of register RWC: 2
2. Broken lines indicate high impedance.
3. $\mathrm{n}=0$ to 7

(7) DMAC timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { DMARQn setup time }}$ (to CLKOUT \uparrow)	<116>	tsprk		10		ns
$\overline{\text { DMARQn }}$ hold time (from CLKOUT \uparrow)	<117>	thKDR1		2		ns
	<118>	thKor2		Until $\overline{\text { DMAAKn }} \downarrow$		ns
$\overline{\text { DMAAKn output delay time }}$ (from CLKOUT \downarrow)	<119>	tokda		2	10	ns
$\overline{\text { DMAAKn output hold time }}$ (from CLKOUT \downarrow)	<120>	tHKDA		2	10	ns
$\overline{\mathrm{TCn}}$ output delay time (from CLKOUT \downarrow)	<121>	toktc		2	10	ns
$\overline{\mathrm{TCn}}$ output hold time (from CLKOUT \downarrow)	<122>	tнктс		2	10	ns

Remark $\mathrm{n}=0$ to 3

Remark $\mathrm{n}=0$ to 3
[MEMO]
(8) Bus hold timing (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
	<123>	tshrk		10		ns
$\overline{\text { HLDRQ }}$ hold time (from CLKOUT \uparrow)	<124>	thкнr		5		ns
Delay time from CLKOUT \downarrow to $\overline{\text { HLDAK }}$	<125>	tokha		2	10	ns
$\overline{\text { HLDRQ }}$ high-level width	<126>	тшнон		T+17		ns
$\overline{\text { HLDAK }}$ low-level width	<127>	twhal		T-8		ns
Delay time from CLKOUT \downarrow to bus float	<128>	tokcF			10	ns
Delay time from $\overline{\text { HLDAK }} \uparrow$ to bus output	<129>	tDhac		0		ns
Delay time from $\overline{\text { HLDRQ }} \downarrow$ to $\overline{\text { HLDAK }} \downarrow$	<130>	tohahai		2.5 T		ns
Delay time from $\overline{\mathrm{HLDRQ}} \uparrow$ to $\overline{\mathrm{HLDAK}} \uparrow$	<131>	tohahaz		0.5T	1.5 T	ns

Remark $\mathrm{T}=$ tсүк
(8) Bus hold timing (2/2)

Remarks 1. Broken lines indicate high impedance.
2. $\mathrm{n}=0$ to 7

(9) Interrupt timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	$<132>$	twNIH		500		
NMI low-level width	$<133>$	twNIL		500	n	
INTPn high-level width	$<134>$	twiTH		$4 T+10$	$n s$	
INTPn low-level width	$<135>$	twiTL		$4 T+10$	$n s$	

Remarks 1. $n=100$ to 103,110 to 113,120 to 123,130 to 133,140 to 143 , and 150 to 153
2. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$

Remark $n=100$ to 103,110 to 113,120 to 123,130 to 133,140 to 143 , and 150 to 153

(10) RPU timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
TI1n high-level width	<136>	twtin		$3 T+18$		ns
TI1n low-level width	<137>	twTIL		$3 T+18$		$n \mathrm{~s}$
TCLR1n high-level width	<138>	twTCH		$3 T+18$		ns
TCLR1n low-level width	<139>	twTCL		$3 T+18$		ns

Remarks 1. $\mathrm{n}=0$ to 5
2. $\mathrm{T}=\mathrm{t} \mathrm{CYK}$

Remark $\mathrm{n}=0$ to 5
(11) UART0, UART1 timing (synchronized with clock, master mode only)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<140>	tcysko	Output	250		ns
$\overline{\text { SCKn }}$ high-level width	<141>	twskoh	Output	0.5tcysko - 20		ns
$\overline{\text { SCKn }}$ low-level width	<142>	twskol	Output	0.5tcysko - 20		ns
RXDn setup time (to $\overline{\mathrm{SCKn} \uparrow}$)	<143>	tsrxsk		30		ns
RXDn hold time (from $\overline{\mathrm{SCKn} \uparrow \text {) }}$	<144>	thskrx		0		ns
TXDn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<145>	toskTx			20	ns
TXDn output hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<146>	thsktx		0.5tcүSко - 5		ns

Remark $\mathrm{n}=0,1$

Remarks 1. Broken lines indicate high impedance.
2. $\mathrm{n}=0,1$

(12) CSIO to CSI3 timing

(a) Master mode

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<147>	tcysk 1	Output	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twskith	Output	0.5tcysk 1 - 20		ns
$\overline{\text { SCKn }}$ low-level width	<149>	twskiL	Output	0.5tcysk 1 - 20		ns
SIn setup time (to $\overline{\text { SCKn }} \uparrow$)	<150>	tssisk		30		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<151>	tHSKSI		0		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			20	ns
SOn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<153>	thskso		$0.5 \mathrm{tcYSK1}-5$		ns

Remark $n=0$ to 3
(b) Slave mode

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<147>	tcysk 1	Input	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twSK1H	Input	30		ns
$\overline{\text { SCKn }}$ low-level width	<149>	twskiL	Input	30		ns
SIn setup time (to $\overline{\text { SCKn }} \uparrow$)	<150>	tssisk		10		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<151>	thsksi		10		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			30	ns
SOn output hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<153>	thskso		twskin		ns

Remark $\mathrm{n}=0$ to 3

Remarks 1. Broken lines indicate high impedance.
2. $\mathrm{n}=0$ to 3

A/D Converter Characteristics

 output pin load capacitance: $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		10			bit
Overall error	-				± 5	LSB
Quantization error	-				$\pm 1 / 2$	LSB
Conversion time	tconv		5		10	$\mu \mathrm{s}$
Sampling time	tsamp		Conversion clock ${ }^{\text {Note }}{ }^{1} / 6$			ns
Zero scale error	-				± 5	LSB
Scale error	-				± 5	LSB
Linearity error	-				± 3	LSB
Analog input voltage	VIAN		-0.3		$A V_{\text {ref }}+0.3$	V
Analog input resistance	Ran			1.0		$\mathrm{M} \Omega$
AVref input voltage	AVref	Note 2	3.0		3.6	V
AVref input current	Alref	Note 3			2.0	mA
AVdd current	Aldo				5.0	mA

Notes 1. The conversion clock is the number of clocks converted via the ADM1 register.
2. Except in IDLE/software STOP mode
3. The current always flows regardless of the A/D converter operating status or standby mode. To further reduce the power consumption in IDLE/software STOP mode, make the voltage of the AVref pin the same potential as Vss.

4.2 Flash Memory Programming Mode

Basic Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $+85^{\circ} \mathrm{C}$ (Other Than When Rewriting), $\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=3.0$ to 3.6 V , $\left.\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)(1 / 2)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	$f \mathrm{x}$		20		33	MHz
VPP power supply voltage	VPP1	During flash memory programming	7.5	7.8	8.1	V
	VppL	Vpp low-level detection	0.8 VdD		1.2 Vod	V
	VPPM	Vpp, Vdo level detection	0.65 VdD	V ${ }_{\text {d }}$	$V_{D D}+0.3$	V
	VPPH	Vpp high-voltage level detection	7.5	7.8	8.1	V
Power supply current	IdD	$\mathrm{VPP}=\mathrm{VPP}^{1}$		$2.7 \times \mathrm{fx}$	$4.5 \times \mathrm{fx}$	mA
Vpp supply current	Ipp	$\mathrm{V} P \mathrm{P}=8.1 \mathrm{~V}$			150	mA
Step erase time	ter	K, P rank $^{\text {Note } 1}$ (Recommendation: Step erase = 5 s)		5		S
		M rank ${ }^{\text {Note } 1}$ (Recommendation: Step erase $=0.2$ s)		0.2		S
Total erase time	tera	$\mathrm{K}, \mathrm{P} \text { rank }^{\text {Note } 1}$ When step erase time = 5 s , Note 2			60	S
		M rank ${ }^{\text {Note }} 1$ When step erase time = 0.2 s, Note 2			20	S
Writeback time	twb	Note 3, K, P rank ${ }^{\text {Note } 1}$	19.99	20	20.01	ms
		M rank ${ }^{\text {Note } 1}$	0.99	1	1.01	ms
Number of writebacks per writeback command	Cwb	$\mathrm{K}, \mathrm{P} \text { rank }{ }^{\text {Note } 1}$ When writeback time $=$ 20 ms , Note 4			10	Times/ write-back command
		M rank ${ }^{\text {Note }} 1$ When writeback time = 1 ms , Note 4			60	
Number of erases - writebacks	Cerwb				16	Times

Notes 1. The rank is indicated by the fifth letter from the left of the lot number.
2. The prewrite time prior to erase and the erase verify time (writeback time) are not included.
3. The recommended set value for the writeback time is 1 ms (M rank) or 20 ms (K, P rank).
4. When the writeback command is issued, writeback is performed once. Therefore, set the retry count setting value to a value that is this value minus the number of command issuances.

Caution The I rank applies to engineering samples only. The number of rewrites is not guaranteed for I rank products.

Remark When the PG-FP3 or PG-FP4 is used, the time parameters required for write/erase are automatically set by downloading the parameter file. Do not change the set values unless otherwise specified.

Basic Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (Other Than When Rewriting), $\mathrm{V} D \mathrm{AD}=\mathrm{AVDD}=3.0$ to 3.6 V , V ss $=\mathrm{AVss}=0 \mathrm{~V}$) (2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Step write time	twT	Note 1		18	20	22	$\mu \mathrm{s}$
Total write time per word	twTw	Step write time is set to $20 \mu \mathrm{~s}$ (1 word = 4 bytes), Note 2		20		200	$\mu \mathrm{s}$ /word
Number of rewrites	Cerwr	One erase + one write after erase are taken as one rewrite, Note 3	K rank ${ }^{\text {Note } 4}$	5			Times
			P rank ${ }^{\text {Note } 4}$	10			Times
			M rank ${ }^{\text {Notes 4, } 5}$	20			Times
			M rank ${ }^{\text {Notes 4, } 6}$	100			Times
Temperature during write	Tprg	K, P rank ${ }^{\text {Note } 4}$		10		40	${ }^{\circ} \mathrm{C}$
		M rank ${ }^{\text {Note } 4}$		10		85	${ }^{\circ} \mathrm{C}$

Notes 1. The recommended set value for the step write time is $20 \mu \mathrm{~s}$.
2. The actual write time per word is longer than this value by $100 \mu \mathrm{~s}$. This value does not include the internal verify time during and after writing.
3. When a shipped product is written for the first time, both "write after erase" and "write only" are taken as one write.
Example (P: write, E: erase)

Product		
Product	$\rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}$	$\rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}$

4. The rank is indicated by the fifth letter from the left of the lot number.
5. Lot number 0120Mxxxx or earlier
6. Lot number 0121Mxxxx or later

Caution The I rank applies to engineering samples only. The number of rewrites is not guaranteed for I rank products.

Remarks 1. When the PG-FP3 or PG-FP4 is used, the time parameters required for write/erase are automatically set by downloading the parameter file. Do not change the set values unless specified.
2. In the lot number, the two digits from the left ("01" in Notes 5,6) indicate the lower 2 digits of the manufacture year and the 3rd and 4th digits from the left (" 20 " in Note 5 and " 21 " in Note 6) indicate the week of manufacture.
For example, Note 6 corresponds to products manufactured in 21 th week or later (21, 22, 23...) in 2001.

Serial Write Operation Characteristics

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Set time from $\mathrm{V}_{\mathrm{DD}} \uparrow$ to $\mathrm{V}_{\text {PP }} \uparrow$	<201>	tdrpsr		200			ns
Set time from VPP \uparrow to $\overline{\mathrm{RESET}} \uparrow$	<202>	tpSRRF		1			$\mu \mathrm{S}$
$\overline{\mathrm{RESET}} \uparrow$ to VPP count start time	<203>	trafor	$\mathrm{V} P \mathrm{PP}=7.8 \mathrm{~V}$	$5 \mathrm{~T}+500$			$\mu \mathrm{S}$
Count execution time	<204>	tcount				10	ms
Vpp counter high-level width	<205>	tch		1			$\mu \mathrm{s}$
VPP counter low-level width	<206>	tcL		1			$\mu \mathrm{S}$
VPP counter rise time	<207>	tR				3	$\mu \mathrm{s}$
VPP counter fall time	<208>	tF				3	$\mu \mathrm{s}$

5. PACKAGE DRAWINGS

157-PIN PLASTIC FBGA (14x14)

ITEM	MILLIMETERS
D	14.0 ± 0.1
D 1	13.4
E	14.0 ± 0.1
E 1	13.4
w	0.20
e	0.8
A	1.31 ± 0.15
A 1	0.35 ± 0.10
A 2	0.96
b	$0.5_{-0}^{+0.05}$
x	0.08
y	0.10
y 1	0.2
SD	0.4
SE	0.4
ZD	1.0
ZE	1.0
	S157F1-80-FA1

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

note
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	22.0 ± 0.2
B	20.0 ± 0.2
C	20.0 ± 0.2
D	22.0 ± 0.2
F	1.25
G	1.25
H	$0.22_{-0.05}^{+0.05}$
I	0.10
J	$0.5($ T.P. $)$
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.145_{-0.055}^{+0.055}$
N	0.10
P	1.4 ± 0.1
Q	0.125 ± 0.075
R	$3^{\circ+7^{\circ}}$
S	1.7 MAX.
	S144GJ-50-8EU-3

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

NOTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	22.0 ± 0.2
B	20.0 ± 0.2
C	20.0 ± 0.2
D	22.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	0.5 (T.P.)
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.17_{-0}^{+0.03}$
N	0.08
P	1.4
Q	0.10 ± 0.05
R	$3^{\circ+4^{\circ}}$
S	1.5 ± 0.1
	S144GJ-50-UEN

6. RECOMMENDED SOLDERING CONDITIONS

μ PD70F3102A-33 should be soldered and mounted under the following recommended conditions.
For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 6-1. Surface Mounting Type Soldering Conditions
(1) μ PD70F3102AF1-33-FA1: 157-pin plastic FBGA (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $230^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR30-103-2

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

* Remark For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
(2) μ PD70F3102AF1-33-FA1-A: 157-pin plastic FBGA (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	IR60-203-3

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Remarks 1. For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
2. Products with -A at the end of the part number are lead-free products.
(3) μ PD70F3102AGJ-33-8EU: 144-pin plastic LQFP (Fine Pitch) $(\mathbf{2 0} \times \mathbf{2 0})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: Within 25 to 40 seconds (at $200^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-103-2
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.
\star Caution Do not use different soldering methods together (except for partial heating).

* Remarks 1. For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
*

2. The soldering conditions for the μ PD70F3102AGJ-33-UEN and 70F3102AGJ-33-8EU-A have not been determined.
3. Products with -A at the end of the part number are lead-free products.

APPENDIX NOTES ON DESIGNING TARGET SYSTEM

The following shows the connection condition diagrams between in-circuit emulator optional board and conversion connector.

Side View

Note YQSOCKET144SDN (separately available) can be inserted here to adjust the height (height: 3.2 mm).

Top View

Connection Condition Diagram

The following shows the conversion connector for the 157-pin FBGA package.

157-pin conversion connector for FBGA package
(CSPACK157A1614N01 + CSICE157A1614N01)

Remarks 1. The target device of the 157-pin conversion connector for FBGA package is V850E/MS1 only.
2. Unit: mm

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vdd or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Related Documents μ PD70F3102-33 Data Sheet (U13844E)
μ PD703100-33, 703100-40, 703101-33, 703102-33 Data Sheet (U13995E)
μ PD703100A-33, 703100A-40, 703101A-33, 703102A-33 Data Sheet (U14168E)

Reference Materials Electrical Characteristics for Microcomputer (U15170J ${ }^{\text {Note }}$)

Note This document number is that of Japanese version.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

$\begin{array}{ll}\text { NEC Electronics America, Inc. (U.S.) } & \text { NEC Electronics (Europe) GmbH } \\ \text { Santa Clara, California } & \text { Duesseldorf, Germany }\end{array}$ Santa Clara, California
Tel: 408-588-6000
800-366-9782

Duesseldorf, Germany

Tel: 0211-65030

- Sucursal en España Madrid, Spain
Tel: 091-504 2787
- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-675800

- Filiale Italiana Milano, Italy
Tel: 02-66 7541
- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-265 4010
- Tyskland Filial

Taeby, Sweden
Tel: 08-63 87200

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737
NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

- The information in this document is current as of July, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

