RENESAS

RMHE41A184AGBG RMHE41A364AGBG

1.1G-BIT Low Latency DRAM-III Common I/O Burst Length of 4

R10DS0250EJ0100 Rev. 1.00 Jun. 19, 2015

Description

The RMHE41A184AGBG is a 67,108,864-word by 18-bit and the RMHE41A364AGBG is a 33,554,432-word by 36-bit synchronous double data rate Low Latency RAM fabricated with advanced CMOS technology using DRAM memory cell.

The Low Latency DRAM-III chip is a 1.1Gb DRAM capable of a sustained throughput of approximately 57.6 Gbps for burst length of 4 (approximately 51.2 Gbps for applications implementing error correction), excluding refresh overhead and data bus turn-around

With a bus speed of 800 MHz, a burst length of 4, and a t_{RC} of 13.75 ns, the Low Latency DRAM-III chip is capable of achieving this rate when accesses to at least 6 banks of memory are overlapped.

These products are packaged in 180-pin FCBGA.

Specification

- Density: 1.1Gbit
- Organization: 8M words x 18 bits x 8 banks 4M words x 36 bits x 8 banks
- Operating frequency 800 MHz (MAX.) @ t_{RC}=13.75 ns
- t_{RC}

13.75 ns t_{RC} (and 13.75 ns $t_{\text{RFC}})$

- Burst length: 4
- Address bus

2 cycle DDR address

Package

180-pin FCBGA (Ball Array: 1 mm x 1 mm Pitch) Package size: 18.5 mm x 14 mm ROHS 6/6 compliance

- Power supply
 - 2.5 V V_{EXT}
 - 1.5 V V_{DD}
 - 1.0 V or 1.2 V VDDQ
- Refresh command
 - Auto Refresh : 16384 cycles / 2 ms for each bank
 - Overlapped Refresh with REF# pin
- Operating case temperature: 0 to 95 °C

Features

- 2 cycle 800MHz DDR Muxed Address
- Optional data bus inversion to reduce SSO, SSN, maximum I/O current, and average I/O power
- Training sequence for per-bit deskew
- Selectable Refresh Mode: Auto or Overlapped Refresh
- Programmable PVT-compensated output impedance
- Programmable PVT-compensated on-die input termination
- PLL for improved input jitter tolerance and wide output data valid window

Ordering Information

Orderable Part Name	Cycle	Clock	Random	Output Supply	Burst	Address	Organization	Package
	Time	Frequency	Cycle	Voltage	Length	Туре	(word x bit)	
				(V _{DDQ})				
	ns	MHz	ns	v				
RMHE41A184AGBG-120#AC0	1.25	800	13.75	1.0 / 1.2	4	DDR	64 M x 18	180-pin
RMHE41A184AGBG-150#AC0	1.50	667						FCBGA
RMHE41A364AGBG-120#AC0	1.25	800					32 M x 36	(18.5 x14)
RMHE41A364AGBG-150#AC0	1.50	667						Pb-Free

Pin Configurations

1 TMS	2	3	4	5	6		0	<u> </u>	40		4.0	
TMS			1	0	0	7	8	9	10	11	12	13
	V _{DD}	тск	V_{DDQ}	V _{SS}				V _{SS}	V_{DDQ}	V_{EXT}	V_{DD}	QK0
V_{SS}	DNU, V _{SS}	V_{SS}	DQ6	V_{DD}		x18		V_{DD}	DNU, V _{SS}	V_{SS}	DQ8	V _{SS}
QVLD	V_{DDQ}	DNU, V _{SS}	V_{DDQ}	DQ4		Burst of 4		DNU, V _{SS}	V_{DDQ}	DQ7	V_{DDQ}	QK0#
V _{SS}	DNU, V _{SS}	V_{SS}	DQ2	V _{SS}		259 sq. mm		V _{SS}	DNU, V _{ss}	V_{SS}	DQ5	V _{SS}
DNU, V _{SS}	V _{DDQ}	DNU, Vss	V_{DDQ}	DQ0				DNU, V _{SS}	V_{DDQ}	DQ1	V_{DDQ}	DQ3
V _{ss}	DINV0	V_{SS}	DNU, V _{DDQ}	V _{SS}				V _{SS}	DNU, V _{DDQ}	V_{SS}	DNU, V _{SS}	V _{SS}
V_{DD}	V_{DDQ}	DNU, V _{ddq}	V_{DDQ}	DNU, V _{DDQ}				DNU, V _{ddq}	V_{DDQ}	DNU, V _{ddq}	V_{DDQ}	V_{DD}
V _{SS}	RST#	V_{SS}	A6	$V_{\text{SS}}^{\text{Note}}$		Top View		V _{ss}	A5	V_{SS}	DM	V _{SS}
MF	V_{DDQ}	DK0	V _{SS}	V _{DD}				СК	V_{SS}	DNU, V _{SS}	V_{DDQ}	LBK#
V_{REF}	V_{SS}	DK0#	V_{DDQ}	V _{DD}				CK#	V_{DDQ}	DNU, V _{SS}	V _{SS}	V_{REF}
TRST#	CS#	V_{SS}	A4	$V_{\rm SS}$				V_{SS}	A3	V_{SS}	WE#	V _{SS}
V_{DD}	V_{DDQ}	DNU, V _{DDQ}	V_{DDQ}	A2				REF#	V_{DDQ}	DNU, V _{DDQ}	V_{DDQ}	V _{DD}
V _{SS}	DINV1	V_{SS}	A0	V_{SS}	I			V _{SS}	A1	V_{SS}	DNU, V _{SS}	V _{SS}
DNU, V _{SS}	V_{DDQ}	DNU, V _{SS}	V_{DDQ}	DQ9				DNU, V _{SS}	V_{DDQ}	DQ10	V_{DDQ}	DQ12
V_{SS}	DNU, Vss	V_{SS}	DQ11	V _{SS}				V _{SS}	DNU, Vss	V_{SS}	DQ14	V _{SS}
QK1#	V _{DDQ}	DNU, V _{SS}	V _{DDQ}	DQ13				DNU, V _{SS}	V_{DDQ}	DQ16	V_{DDQ}	TDO
V_{SS}	DNU, V _{SS}	V_{SS}	DQ15	V_{DD}				V_{DD}	DNU, V _{SS}	V_{SS}	DQ17	V _{SS}
QK1	V _{DD}	ZQ	V _{DDQ}	V _{SS}				V _{ss}	V _{DDQ}	V _{EXT}	V_{DD}	TDI
	QVLD Vss DNU, Vss Vss Vdd Vss MF Vref TRST# Vdd Vss QK1# QK1	QVLDVDDQVssDNU, VSSDNU, VSSDNU, VDDQVssDINVOVssRST#VssRST#MFVDDQVREFVSSTRST#CS#VDDVDDQVssDINV1DNU, VSSVDDQVssDINV1QK1#VDDQQK1VDDVDDDNU, VSSQK1VDD	QVLDVDDQDNU, VSSVSSDNU, VSSVSSDNU, VSSVDDQDNU, VSSVSSDINV0VSSVDDVDDQDNU, VSSVDDVDDQDNU, VDDQVSSRST#VSSMFVDDQDK0VREFVSSDK0#TRST#CS#VSSVDDVDDQDNU, VDDQVSSDINV1VSSVDDVDDQDNU, VDDQVSSDINV1VSSDNU, VSSVSSDNU, VSSQK1#VDDQZQQK1VDDZQ	QVLDVDDQDNU, VSSVDQVSSDNU, VSSVSSDQ2DNU, VSSVDDQDNU, VSSVDDQVSSDINVOVSSDNU, VDDQVDDVDDQDNU, VDDQVDDQVDDVDDQDNU, VDDQVDDQVDDVDDQDNU, VDDQVDDQVSSRST#VSSA6MFVDDQDK0VSSVREFVSSDK0#VDDQTRST#CS#VSSA4VDDVDDQDNU, VDDQVDDQVSSDINV1VSSA0DNU, VSSVDDQDNU, VSSVDDQVSSDNU, VSSVSSDQ11QK1#VDDQZQVDQQK1VDDZQVDQ	QVLD V_{DDQ} DNU, V_{SS} V_{DDQ} $DQ4$ V_{SS} DNU, V_{SS} V_{SS} $DQ2$ V_{SS} DNU, V_{SS} V_{DDQ} DNU, V_{SS} $DQ0$ $DQ0$ V_{SS} $DINV0$ V_{SS} DNU, V_{DDQ} $DQ0$ V_{SS} $DINV0$ V_{SS} DNU, V_{DDQ} V_{SS} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{DDQ} DNU, V_{DDQ} V_{SS} $RST#$ V_{SS} $A6$ V_{SS}^{Note} MF V_{DDQ} $DK0$ V_{SS} V_{DD} V_{REF} V_{SS} $DK0$ V_{SS} V_{DD} V_{DD} V_{DDQ} $DK0$ V_{DDQ} $A2$ V_{SS} $DINV1$ V_{SS} $A4$ V_{SS} V_{DD} V_{DDQ} DNU, V_{DDQ} $PQ9$ V_{SS} $DINV1$ V_{SS} $A0$ V_{SS} DNU, V_{SS} DNU, V_{SS} $PQ11$ V_{SS} $QK1#$ V_{DDQ} DNU, V_{SS} $PQ15$ V_{DD} $QK1$ V_{DD} ZQ V_{DDQ} V_{SS}	QVLDVDDQDNU, VSSVDDQDQ4VSSDNU, VSSVSSDQ2VSSDNU, VSSVDDQDNU, VSSVDDQDQ0VSSDINV0VSSDNU, VDDQVSSVDDVDDQDNU, VDDQVDDQVSSVDDVDDQDNU, VDDQVDDQDNU, VDDQVSSDINV0VSSA6VSSVDDVDDQDK0VSSVDDVRFVSSDK0#VDDQVDDVDDVDDQDK0VSSVDDTRST#CS#VSSA4VSSVDDVDDQDNU, VDDQVDDQA2VSSDINV1VSSA0VSSDNU, VSSVDDQDQ9VSSDQ11VSSDNU, VSSVDDQDQ13VDDQK1#VDDZQVDDQVSSQK1VDDZQVDDQVSS	QVLD V_{DDQ} DNU, V_{SS} V_{DDQ} $DQ4$ Burst of 4 V_{SS} DNU, V_{SS} V_{SS} $DQ2$ V_{SS} 259 sq. mm DNU, V_{SS} V_{DDQ} DNU, V_{DDQ} V_{DDQ} $DQ0$ V_{SS} V_{SS} $DINV0$ V_{SS} DNU, V_{DDQ} V_{SS} V_{DDQ} V_{SS} $DINV0$ V_{SS} DNU, V_{DDQ} V_{SS} V_{DDQ} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{DDQ} V_{DDQ} V_{SS} $RST#$ V_{SS} $A6$ V_{SS}^{Note} V_{REF} V_{SS} $DK0#$ V_{DDQ} V_{DD} V_{REF} V_{SS} $DK0#$ V_{DDQ} $A2$ V_{SS} $DINV1$ V_{SS} $A0$ V_{SS} NU, V_{DDQ} DNU, V_{SS} V_{DDQ} $DQ9$ V_{SS} DNU, V_{SS} V_{DDQ} $DQ13$ V_{SS} DNU, V_{SS} V_{DDQ} $DQ13$ V_{SS} DNU, V_{SS} V_{DDQ} V_{SS} $QK1#$ V_{DD} ZQ V_{DDQ} V_{SS}	QVLD V_{DDQ} DNU, V_{SS} V_{DDQ} $DQ4$ Burst of 4 V_{SS} DNU, V_{SS} V_{SS} $DQ2$ V_{SS} DNU, V_{SS} V_{DDQ} $DQ0$ $DQ0$ V_{SS} $DINV0$ V_{SS} V_{DDQ} $DQ0$ V_{SS} $DINV0$ V_{SS} V_{DDQ} $DQ0$ V_{SS} $DINV0$ V_{SS} V_{DDQ} V_{SS} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{SS} V_{SS} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{DDQ} V_{DDQ} V_{SS} $RST#$ V_{SS} $A66$ V_{SS}^{Note} V_{REF} V_{SS} $DK0#$ V_{DDQ} V_{DD} V_{REF} V_{SS} $DK0#$ V_{DDQ} V_{DD} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{DD} $A22$ V_{SS} $DINV1$ V_{SS} $A0$ V_{SS} N_{DD} V_{DDQ} DNU, V_{DDQ} $DQ9$ V_{SS} DNU, V_{SS} V_{DDQ} $DQ13$ V_{SS} DNU, V_{SS} $DQ15$ V_{DD} $QK1$ V_{DD} ZQ V_{DDQ} V_{SS}	$QVLD$ V_{DOQ} DNU, V_{SS} V_{DDQ} $DQ4$ Burst of 4 DNU, V_{SS} V_{SS} DNU, V_{SS} V_{SS} $DQ2$ V_{SS} 259 sq. mm V_{SS} DNU, V_{SS} V_{DDQ} DNU, V_{DDQ} $DQ0$ V_{SS} V_{SS} V_{SS} V_{SS} $DINVO$ V_{SS} DNU, V_{DDQ} V_{SS} V_{SS} V_{SS} V_{DD} V_{DDQ} V_{DDQ} V_{DDQ} V_{SS} V_{SS} V_{DD} V_{DDQ} V_{DDQ} DNU, V_{DDQ} V_{SS} V_{SS} $RST#$ V_{SS} $A6$ V_{SS}^{Note} Top V_{RFF} V_{SS} $DK0$ V_{SS} V_{DD} V_{SS} V_{DD} V_{DDQ} DNU, V_{DDQ} V_{DD} V_{SS} V_{DD} V_{SS} $A4$ V_{SS} V_{SS} V_{DD} V_{DDQ} V_{DDQ} $A2$ V_{SS} V_{SS} DNU, V_{SS} $A0$ V_{SS} DNU, V_{SS} V_{DDQ} $DQ9$ V_{SS} V_{SS} DNU, V_{SS} V_{DDQ} $DQ13$ V_{SS} DNU, V_{SS} V_{DDQ} V_{SD} $QK1$ V_{DD} ZQ V_{DDQ} V_{SS}	QVLD VDDQ DNU, VSS VDDQ DQ4 Burst of 4 DNU, VSS VDDQ VDSS DNU, VSS VDDQ VDDQ	QVLD V _{DDQ} DNU, V _{SS} V _{DDQ} DQ4 Burst of 4 DNU, V _{SS} V _{DDQ} DQ2 V _{SS} Vss DNU, V _{SS} V _{DDQ} DNU, V _{SS} V _{DDQ} DQ2 V _{SS} DS0 V _{SS} </td <td>QVLD VDDQ DNU, Vss VDDQ DQ4 Burst of 4 Vss DNU, Vss Vss DQ2 Vss DNU, Vss VbDQ DNU, Vss VbDQ DQ2 Vss DNU, Vss VbDQ DNU, Vss VbDQ DQ0 Vss DQ1 VbDQ Vss DINV0 Vss DNU, Vss VbDQ Vss DNU, VbDQ Vss DQ1 VbDQ Vss DINV0 Vss DNU, VbDQ Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss D</td>	QVLD VDDQ DNU, Vss VDDQ DQ4 Burst of 4 Vss DNU, Vss Vss DQ2 Vss DNU, Vss VbDQ DNU, Vss VbDQ DQ2 Vss DNU, Vss VbDQ DNU, Vss VbDQ DQ0 Vss DQ1 VbDQ Vss DINV0 Vss DNU, Vss VbDQ Vss DNU, VbDQ Vss DQ1 VbDQ Vss DINV0 Vss DNU, VbDQ Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss DNU, Vss Vss D

180-pin FCBGA (18.5 x 14) (Top View)

[RMHE41A184AGBG] (x18)

Note When V_{DDQ} is set to a nominal 1.0 V supply, H5 pin must be connected to V_{SS} .

When V_{DDQ} is set to a nominal 1.2 V supply, H5 pin must be connected to V_{DDQ} .

DQ0–DQ17	: Data inputs / output	REF#	: Refresh enable
DINV0-DINV1	: Data inversion	LBK#	: Loopback mode
DM	: Write data mask	MF	: Mirror function
A0–A6	: Address	TMS	: IEEE 1149.1 test input
CK, CK#	: Input clock	TDI	: IEEE 1149.1 test input
DK0, DK0#	: Input data clock	тск	: IEEE 1149.1 clock input
QVLD	: Read data valid	TDO	: IEEE 1149.1 test output
QK0–QK1,	: Output data clock	TRST#	: IEEE 1149.1 test reset input
QK0#–QK1#		Vref	: HSTL input reference input
ZQ	: Output impedance & input	Vdd	: Power supply, 1.5 V nominal
	termination control	V _{DDQ}	: DQ power supply, 1.0 V or 1.2 V nominal
RST#	: Master reset	VEXT	: Power supply, 2.5 V nominal
CS#	: Chip select	Vss	: Ground
WE#	: Write enable	DNU, V _{SS}	: Must not be used, or must be connected to V_{SS}
		DNU, Vddq	: Must not be used, or must be connected to V_{DDQ}

	1	2	3	4	5	6 7	8	3	9	10	11	12	13
А	TMS	V_{DD}	тск	V_{DDQ}	V_{SS}				V_{SS}	V_{DDQ}	V_{EXT}	V_{DD}	QK0
в	V_{SS}	DQ9	V_{SS}	DQ6	V _{DD}	x36			V_{DD}	DQ11	V_{SS}	DQ8	V _{SS}
С	QVLD	V _{DDQ}	DQ10	V_{DDQ}	DQ4	Burst	of 4		DQ13	V_{DDQ}	DQ7	V _{DDQ}	QK0#
D	V_{SS}	DQ12	V _{SS}	DQ2	V _{SS}	259 sq	. mm		V_{SS}	DQ15	V _{SS}	DQ5	V _{SS}
Е	DQ16	V_{DDQ}	DQ14	V_{DDQ}	DQ0				DQ17	V_{DDQ}	DQ1	V _{DDQ}	DQ3
F	V_{SS}	DINV0	V_{SS}	DNU, V _{DDQ}	V_{SS}				V_{SS}	DNU, V _{DDQ}	V _{SS}	DINV1	V _{SS}
G	V_{DD}	V_{DDQ}	DNU, V _{DDQ}	V_{DDQ}	DNU, V _{DDQ}				DNU, V _{DDQ}	V_{DDQ}	DNU, V _{DDQ}	V _{DDQ}	V _{DD}
н	V_{SS}	RST#	V_{SS}	A6	V_{SS}^{Note}	Top View	v		V_{SS}	A5	V_{SS}	DM	V _{SS}
J	MF	V_{DDQ}	DK0	V_{SS}	V_{DD}				СК	V_{SS}	DK1	V_{DDQ}	LBK#
к	V_{REF}	V _{SS}	DK0#	V_{DDQ}	V _{DD}				CK#	V_{DDQ}	DK1#	V _{SS}	V_{REF}
L	TRST#	CS#	V _{ss}	A4	V _{ss}				V_{SS}	A3	V _{SS}	WE#	Vss
Μ	V _{DD}	V_{DDQ}	DNU, V _{DDQ}	V_{DDQ}	A2				REF#	V_{DDQ}	DNU, V _{DDQ}	V_{DDQ}	V _{DD}
Ν	V_{SS}	DINV2	V_{SS}	A0	V _{ss}				V_{SS}	A1	V _{SS}	DINV3	V _{SS}
Ρ	DQ35	V _{DDQ}	DQ34	V_{DDQ}	DQ18				DQ33	V_{DDQ}	DQ19	V _{DDQ}	DQ21
R	V_{SS}	DQ32	V _{SS}	DQ20	V _{SS}				V_{SS}	DQ31	V _{SS}	DQ23	V _{SS}
т	QK1#	V_{DDQ}	DQ30	V_{DDQ}	DQ22				DQ29	V_{DDQ}	DQ25	V _{DDQ}	TDO
U	V_{SS}	DQ28	V_{SS}	DQ24	V _{DD}				V_{DD}	DQ27	V_{SS}	DQ26	V _{SS}
V	QK1	V_{DD}	ZQ	V _{DDQ}	V_{SS}				V_{SS}	V _{DDQ}	V _{EXT}	V_{DD}	TDI

180-pin FCBGA (18.5 x 14) (Top View) [RMHE41A364AGBG] (x36)

Note When V_{DDQ} is set to a nominal 1.0 V supply, H5 pin must be connected to Vss.

When V_{DDQ} is set to a nominal 1.2 V supply, H5 pin must be connected to $V_{\text{DDQ}}.$

DQ0–DQ35	: Data inputs / output	REF#	: Refresh enable
DINV0–DINV3	: Data inversion	LBK#	: Loopback mode
DM	: Write data mask	MF	: Mirror function
A0–A6	: Address	TMS	: IEEE 1149.1 test input
CK, CK#	: Input clock	TDI	: IEEE 1149.1 test input
DK0–DK1,	: Input data clock	TCK	: IEEE 1149.1 clock input
DK0#–DK1#		TDO	: IEEE 1149.1 test output
QVLD	: Read data Valid	TRST#	: IEEE 1149.1 test reset input
QK0–QK1,	: Output data clock	VREF	: HSTL input reference input
QK0#–QK1#		V _{DD}	: Power supply, 1.5 V nominal
ZQ	: Output impedance & Input	Vddq	: DQ power supply, 1.0 V or 1.2 V nominal
	termination control	V _{EXT}	: Power supply, 2.5 V nominal
RST#	: Master reset	Vss	: Ground
CS#	: Chip select	DNU, Vss	: Must not be used, or must be connected to V_{SS}
WE#	: Write enable	DNU, V _{DDQ}	: Must not be used, or must be connected to VDDQ

Pin Identification

۵	Data	asł	ne	et

,		<i>(</i> 0)	
l	1	12)	

Symbol	Direction	I/О Туре	Freq [MHz]	Description
CK, CK#	Input	1.0 / 1.2 V HSIO	800 / 667	Clock inputs: CK and CK# are differential clock inputs. This input clock pair registers address and control inputs on the rising edge of CK. CK# is ideally 180
				degrees out of phase with CK.
DK0-DK1,	Input	1.0 / 1.2 V	800 / 667	Differential clocks for DQ inputs:
DK0#-DK1#		HSIO		DK0, DK0# => DQ0-DQ17, DM
				DK1, DK1# => DQ18-DQ35
				Note that DK1,DK1# are only active on x36 parts.
CS#	Input	1.0 / 1.2 V	800 / 667	Chip select:
		HSIO		CS# enables the commands when CS# is LOW and disables them
				when CS# is HIGH. When the command is disabled, new commands
				are ignored, but internal operations continue.
WE#, REF#	Input	1.0 / 1.2 V	800 / 667	Write enable, Refresh enable:
		HSIO		WE#, REF# are sampled at the positive edge of CK, WE#, and REF#
				define (together with CS#) the command to be executed.
RST#	Input	1.0 / 1.2 V	-	Master reset:
		HSIO		Note that this pin has no on-die termination.
		(no ODT)		
LBK#	Input	1.0 / 1.2 V	-	Loopback mode for control pin de-skew training
		HSIO		Note that this pin has no on-die termination.
		(no ODT)		
MF	Input	1.0 / 1.2 V	DC	Causes "mirroring" of certain pins as described in
		HSIO		2.14 Clam-shell support.
		(no ODT)		Note that this pin has no on-die termination.
A0-A6	Input	1.0 / 1.2 V	800 / 667	Address inputs for DDR Address:
		HSIO		Address bus, including bank select bits.
				A 6 is reserved for future use.
DQ0-DQ35	Input	1.0 / 1.2 V	800 / 667	Data input/output:
	/Output	HSIO		The DQ signals form the 36 bit data bus. During READ commands, the
				data is referenced to both edges of QKx. During WRITE commands,
				the data is sampled at both edges of DKx.
				Note that DQ18-DQ35 are only active on x36 parts.
DINV0-DINV3	Input	1.0 / 1.2 V	800 / 667	Data inversion state for DQ inputs:
	/Output	HSIO		DINV0 => DQ0-DQ8
				DINV1 => DQ9-DQ17
				DINV2 => DQ18-DQ26
				DINV3 => DQ27-DQ35
				Note that DINV2-DINV3 are only active on x36 parts
DM	Input	1.0 / 1.2 V	800 / 667	Write data mask: disables writing of the corresponding data value.
		HSIO		Clocked by DK0.

Datasheet

				(2/2)
Symbol	Direction	I/О Туре	Freq [MHz]	Description
QK0-QK1,	Output	1.0 / 1.2 V	800 / 667	Output data clocks:
QK0#-QK1#		HSIO		Differential clocks for DQ, QVLD outputs:
				QK0/QK0# => x36: DQ0-DQ17, x18: DQ0-DQ8, QVLD
				QK1/QK1# => x36: DQ18-DQ35, x18: DQ9-DQ17
QVLD	Output	1.0 / 1.2 V	800 / 667	Data valid:
		HSIO		The QVLD indicates valid output data. QVLD is edge-aligned with QKx and
				QKx#.
TMS, TDI	Input	1.0 / 1.2 V		JTAG function pins:
		HSIO		IEEE 1149.1 test inputs: These balls may be left as no connects if the
				JTAG function is not used in the circuit
тск	Input	1.0 / 1.2 V		JTAG function pin:
		HSIO		IEEE 1149.1 clock input: This ball must be tied to V_{SS} if the JTAG function
				is not used in the circuit.
TDO	Output	1.0 / 1.2 V		JTAG function pin:
		HSIO		IEEE 1149.1 test output: JTAG output.
				This ball may be left as no connect if JTAG function is not used.
TRST#	Input	1.0 / 1.2 V		JTAG reset:
		HSIO		IEEE 1149.1 test rest: This ball must be tied to $V_{\mbox{\scriptsize SS}}$ if the JTAG function is
				not used in the circuit.
ZQ	Analog			Output impedance and input termination control
V _{REF}	Ref			VDDQ*0.7 V I/O reference voltage.
V _{EXT}	Supply			Power supply: 2.5 V nominal. See Recommended DC Operating
				Conditions for range.
V _{DD}	Supply			Power supply: 1.5 V nominal. See Recommended DC Operating
				Conditions for range.
V _{DDQ}	Supply			DQ power supply:
				Nominally, 1.0 V or 1.2 V. Isolated on the device for improved noise
				immunity.
				See Recommended DC Operating Conditions for range.
V _{SS}	Supply			Ground
DNU, V _{SS}				Do Not Use, Or must not be used, or must be connected to $V_{\mbox{\scriptsize SS}}.$
DNU,V_{DDQ}				Do Not Use, Or must not be used, or must be connected to $V_{\mbox{\tiny DDQ}}$

HSIO is a single-ended 1.0 V or 1.2 V high-side terminated I/O described in 1. Electrical Specifications.

Block Diagram

Contents

1. Electrical Specifications	9
2. Operation	17
2.1 Interface Overview	17
2.2 Clocking	17
2.3 Address bus	
2.4 Command encoding	19
2.5 Data mask	21
2.6 Data inversion	21
2.7 Data bus turn-around	21
2.8 Command cycles	21
2.9 Write data cycles	
2.10 Read data cycles	
2.11 READ and WRITE command protocol	
2.12 Automatic Refresh	25
2.13 Overlapped refresh commands	25
2.14 Clam-shell support	
3. Initialization	28
3.1 Power-on	
3.2 Reset	
3.3 Initial impedance settings	
3.4 Per-bit de-skew training sequence	
3.5 Configuration	
4. JTAG Specification	
4.1 Test Pins	
4.2 JTAG AC Test Conditions	
4.3 Boundary Scan	
4.4 JTAG Instructions	
4.5 TAP Controller State Diagram	
5. Package Drawing	50

1. Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{EXT}	2.5 V nominal	-0.3 to +2.8	V
Supply voltage	V _{DD}	1.5 V nominal	-0.3 to +1.95	V
Output supply voltage,	V _{DDQ}	1.0 / 1.2 V nominal	-0.3 to +1.56	V
Input voltage, Input / Output voltage				
Input / Output voltage	$V_{\rm IH}$ / $V_{\rm IL}$	1.0 / 1.2 V nominal	-0.3 to +1.56	V
Junction temperature	TJ MAX.		105	°C
Storage temperature	T _{STG}		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

 $0^{\circ}C \leq T_C \leq 95^{\circ}C$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Comments	Note
Supply voltage	V _{EXT}	2.3	2.5	2.7	V		1
Supply voltage	V _{DD}	1.395	1.5	1.605	V		1
Output supply voltage (1.0 V nominal)	V _{DDQ}	0.95	1.0	1.05	V		1
Output supply voltage (1.2 V nominal)	V _{DDQ}	1.14	1.2	1.26	V		1
Reference voltage	V_{REF}	V _{DDQ} *0.69	V _{DDQ} *0.7	V _{DDQ} *0.71	V		1,2,4
High level output voltage	V _{OH (DC)}	V _{DDQ} -0.025			V		1
Low level output voltage	V _{OL (DC)}		V _{DDQ} *0.4		V	Z _{OL} =40 Ω, R _L =60 Ω	1
High level input voltage	V _{IH (DC)}	V _{REF} +0.07		V _{DDQ} +0.3	V		1,4
Low level input voltage	V _{IL (DC)}	-0.3		V _{REF} -0.07	V		1,4
Clock input voltage	V _{IN}	-0.3		V _{DDQ} +0.3	V		
Clock differential voltage	V _{ID}	0.2		V _{DDQ} +0.6	V		
Output Impedance HIGH	Z _{OH}		60		Ω		3
Output Impedance LOW	Z _{OL}		40		Ω		3
Input Impedance LOW	Zı		60		Ω		4

Notes 1. All voltage referenced to V_{SS} (GND)

2. Peak - to - Peak AC noise on V_{REF} must not exceed +/- 2 % V_{DDQ} (DC)

- 3. Programmable via ZQ and Reset Impedance Control
- 4. High-side termination (programmable via ZQ and Reset/MRS)

DC Characteristics

 $0^{\circ}C \leq T_{C} \leq 95^{\circ}C; \ 1.395 \ V \leq V_{DD} \leq 1.605 \ V,$ unless otherwise noted

Parameter	Symbol	Test condition	MIN.	MAX.	Unit	Note
Input leakage current	Ιu		0	50	μA	1
Output leakage current	I _{LO}		0	50	μA	1
3 state leakage current	I _{oz}		0	50	μA	1

Note 1. Outputs Driver High-Z and ODT Disabled.

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
Input capacitance	C _{IN}	$V_{IN} = 0 V$		1.5	pF
(CK,DK, CS#, WE#, REF#, A)					
I/O, Output, Other capacitance	C _{I/O}	$V_{I/O} = 0 V$		1.8	pF
(DQ, DINV, QVLD, DM)					
Input capacitance delta between	CDCK	$V_{IN} = 0 V$		0.15	pF
differential clock pins					
Input capacitance delta between DQ pins	CDDQ	$V_{I/O} = 0 V$		0.2	pF
Input capacitance delta between CS#,	C _{DCTL}	$V_{IN} = 0 V$		0.2	pF
WE#, REF#, A pins					

Remark These parameters are periodically sampled and not 100% tested.

Capacitance is not tested on ZQ pin.

Recommended AC Operating Conditions

 $0^{\circ}C \leq T_{C} \leq 95^{\circ}C; \ 1.395 \ V \leq V_{DD} \leq 1.605 \ V,$ unless otherwise noted

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Input HIGH voltage	V _{IH (AC)}		V _{REF} +0.13	V _{DDQ} +0.3	V	1
Input LOW voltage	VIL (AC)		-0.3	V _{REF} -0.13	V	1

Note 1. Overshoot: V_{IH (AC)} \le V_{DDQ}\text{+}0.3 \text{ V for } t \le t_{CK}/5

Undershoot: VIL (AC) ≥ -0.3 V for t $\leq t_{CK}/5$

Control input signals may not have pulse widths less than t_{CKH} (MIN.) or operate at cycle rates less than t_{CK} (MIN.).

Power Consumption

Parameter	Symbol	Test condition		Max	Unit	Note
Total power consumption	PD	Nominal supply voltage Sequential bank access Overlapped refresh mode Data inversion enabled Half address and data transitions 30% Write and $70%$ Read operation ODT= 60Ω , $Z_{OH}/Z_{OL} = 60\Omega/40\Omega$ Tc= $95^{\circ}C$	x18 x36	2.0	W	1

Note 1. Including all the power supply (V_DD=1.5 V, V_DDQ=1.0 V and V_EXT=2.5 V)

AC Characteristics

Normal bus timing

Standard bus timing waveforms and values for command and data are shown in **Figure 1-1** through **Figure 1-5** and **Interface AC Parameters**. All timing is measured to/from the crossing point on differential clocks and to/from the V_{REF} crossing point on single-ended signals.

Figure 1-3 Data Output Timing Waveforms

Figure 1-5 Reset Timing Waveforms

Note The clock must be within specification and all other chip inputs must be driven to legal values throughout the t_{RSS} period.

Interface AC Parameters

Parameter	Symbol	-1	20	-1	50	Unit	Noto
Falanelei	Symbol	(800	MHz)	(667	MHz)	Unit	NOLE
		MIN.	MAX.	MIN.	MAX.		
CK, DK, QK clock period (maximum 800 MHz	t _{ск}	1.250	2.500	1.500	2.500	ns	
clock frequency, minimum 400 MHz)							
CK, DK LOW time (assumes 5% duty cycle	t _{CKL}	0.45*		0.45*		t _{ск} (avg)	5
distortion at 800 MHz)							
CK, DK HIGH time (assumed 5% duty cycle	t _{скн}	0.45*		0.45*		t _{ск} (avg)	5
distortion at 800 MHz)							
Clock period jitter	t _{JIT} (per)	-0.070	0.070	-0.070	0.070	ns	6,7
Cycle-to-cycle clock jitter	t _{JIT} (cc)		0.140		0.140	ns	
Cumulative jitter error	t _{ERR(nper)}	t _{ERR(np}	er),min = [1+0.0	08LN(n)] * t _{JI}	T(per),min	ns	8
		t _{ERR(npe}	er),max = [1+0.0	08LN(n)] * t _{JI}	T(per),max		
A to CK setup	t _{AS}	0.160		0.192		ns	2
CK to A hold	t _{AH}	0.160		0.192		ns	1
CK to A setup/hold window	t _{ASH}	0.160		0.192		ns	4
A input pulse width	t _{APW}	0.200		0.240		ns	
CS#, WE#, REF# to CK setup	t _{cs}	0.180		0.215		ns	2
CK to CS#, WE#, REF # hold	t _{сн}	0.180		0.215			1
CK to CS#, WE#, REF# setup/hold	t _{CSH}	0.300		0.358		ns	4
window							
CS#, WE#, REF# input pulse width	t _{CPW}	0.400		0.480		ns	
CK to DK skew	t _{CKDK}	-0.200	0.200	-0.240	0.240	ns	
DQ, DINV, DM to DK setup	t _{IS}	0.160		0.192		ns	2
DK to DQ, DINV, DM hold	t _{IH}	0.160		0.192		ns	1
DK to DQ, DINV, DM setup/hold window	t _{ISH}	0.160		0.192		ns	4
DQ, DINV, DM input pulse width	t _{IPW}	0.200		0.240		ns	
Output signal rise time [See Note]	tRISE	2	5	2	5	V/ns	3
Output signal fall time [See Note]	teau	2	5	2	5	V/ns	3
	tor	0 45*		0 45*		t _{or} (avg)	5
(assumed 5% duty cycle distortion at 800 MHz)	"QKL	0110		0110		CK(C g)	Ũ
OK HIGH time	toru	0.45*		0.45*		t _{er} (avg)	5
(assumed 5% duty cycle distortion at 800 MHz)	•QKH	0110		0110		CK(C g)	Ũ
CK to QK skew	toror	-0.300	0.300	-0.358	0.358	ns	
Additional ter delay in loopback	top		5		5	ns	
QK0 to DQ[17:0], DINV[1:0] (x36) or DQ[8:0]	toron		0.100		0,120	ns	9
DINV[0] (x18)	4QKQU		0.100		0.120		5
QK0 to DQ[17:0], DINV[1:0] (x36) or DQ[8:0]	tous	0.4*		0.4*		tor(ava)	5
DINV[0] (x18)	•QH0	0.7		0.7		UK(UVY)	
QK1 to DQ[35:18] DINV[3:2] (x36) or	torer		0 100		0 120	ns	9
DQ[17:9].DINV[1] (x18)	4QKQ1		0.100		0.120		5
QK1 to DO[35:18]. DINV[3:2] (x36) or	tour	0.4*		0.4*		t _{er} (avg)	5
DO[17:9] DINV[1] (x18)	•QH1	0.7		U.T		UN(UV9)	Ŭ

	-			-		-	
Parameter	Symbol	–1 (800	20 MHz)	-1 (667	50 MHz)		Note
		MIN.	MAX.	MIN.	MAX.		
Any QK to any DQ, DINV	t _{QKQ}		0. 150		0.180	ns	9
Any QK to any DQ, DINV	t _{QH}	0.35*		0.35*		t _{ск} (avg)	5
Any QK to QVLD	t _{ακαν}		0. 150		0.180	ns	
Any QK to QVLD	t _{QVH}	0.85*		0.85*		t _{ск} (avg)	5
QK to DQ output driver turn-on time	t _{QON}		0.100		0.120	ns	
and ODT turn-on time							
QK to DQ output driver turn-off time		-0.1*	0.100	-0.1*	0.120	ns	5
and ODT turn-on time		t _{ск} (avg)		t _{ск} (avg)			
DQ to RST# setup	t _{RDS}	1000 *		1000 *		t _{ск}	2
DQ to RST# hold	t _{RDH}	5 *		5 *		t _{ск}	1
RST# pulse length	t _{RSS}	200		200		μs	
RST# deasserted to CS# or LBK# asserted	t _{RSH}	400000 *		400000 *		t _{ск}	
Time for PLL to stabilize after being	t _{PLL}		20		20	μs	
enabled							
MRS command start to next CS#, or LBK#	t _{MRD}	24 *		24 *		t _{ск}	
assertion; also from previous command							
to MRS command							

Notes 1. All input hold timing assumes rising edge slew rate of 2 V/ns measured from $V_{IL}/V_{IH (DC)}$ to V_{REF} .

- 2. All input setup timing assumes falling edge slew rate of 2 V/ns measured from V_{REF} to $V_{\text{IL}}/V_{\text{IH}\,(\text{AC})}$
- 3. All output timing assumes the load shown in Figure 1-6.
- **4.** Setup/hold windows, t_{ASH}, t_{CSH}, t_{ISH} are used for de-skew timing budgeting and are based on electrical simulations. These cannot be directly measured without performing de-skew training.
- 5. t_{CK} (avg) is the value of t_{CK} averaged over 200 clock cycles.
- 6. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
- 7. Frequency drift is not allowed.
- **8.** The cumulative jitter error, t_{ERR(nper)}, where n is the number of clocks between 2 and 50, is the amount of clock time allowed to accumulate consecutively away from the average clock over n number of clock cycles.
- 9. $t_{\text{QKQ}},\,t_{\text{QKQ0}}$ and t_{QKQ1} are guaranteed by design.

Figure 1-6 Output Load

Temperature and Thermal Impedance

Temperature Limits

Parameter	Symbol	MIN.	MAX.	Unit	Note
Reliability junction temperature	TJ	0	+105	°C	1
Operating junction temperature	TJ	0	+100	°C	2
Operating case temperature	Tc	0	+95	°C	3

Notes 1. Temperatures greater than 105°C may cause permanent damage to the device. This is a stress rating only and functional operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability of the part.

- 2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.
- **3.** MAX operating case temperature; T_c is measured in the center of the package. Device functionality is not guaranteed if the device exceeds maximum T_c during operation.

Thermal Impedance

Substrate		θ _{ja} (°C/W)		θ _{jb}	θ _{jc}
	Air Flow = 0 m/s	Air Flow = 1 m/s	Air Flow = 2 m/s	(°C/W)	(°C/W)
4 - Layers	14.9	11.7	10.7	5.7	2.1

Impedance Controls

The Low Latency DRAM-III includes programmable impedance control that affects the output impedance of all output and bidirectional pins, as well as the termination of all input and bidirectional pins. The output impedance control affects all output pins and the input termination control affects those pins grouped together as shown in **Table 3-5** and **Table 3-6**. The impedance control affects the drive strengths of both high and low values, as well as the high-side termination impedance. The impedance is controlled via a precision resistor connected between the ZQ and V_{SS} pins. The nominal value of the precision (1%) resistor is 240 Ω , with a supported range of 200 to 240 Ω .

The output impedance accuracy is within 15% of the programmed nominal value, with the linearity measured at the points described in **Impedance Test Parameters**. The actual impedance must remain within the range specified by the linear interpolation of the values at those points.

Normally, the input termination and output impedance are continuously adjusted, such that only minor instantaneous variations in the impedance occur. However, when the FZ bit in the configuration register is set, then the input termination and output impedance will be "frozen" at their current values. If the IM bit in the configuration register is set, then the output impedance will have a nominal value that is not dependent on the value of the resistor connected to the ZQ pin. In this mode, the ZQ pin is ignored by the Low Latency DRAM-III, and the output impedances will not be PVT compensated.

Impedance Test Parameters

Parameter	Symbol	MIN.	NORM.	MAX.	Unit
Output HIGH voltage with forced I_{OH} = $\ -(V_{\text{DDQ}}$ -0.85 $V_{\text{DDQ}}) / Z_{\text{OH}}$	V _{он}	0.723*	0.85*	0.978*	V _{DDQ}
Output HIGH voltage with forced I_{OH} = -(V_{\text{DDQ}} -0.7 V_{\text{DDQ}}) / Z_{OH}	V _{он}	0.595*	0.7*	0.805*	V _{DDQ}
Output LOW voltage with forced I_{OL} = 0.7 V_{DDQ} / Z_{OL}	V _{OL}	0.595*	0.7*	0.805*	V_{DDQ}
Output LOW voltage with forced I_{OL} = 0.55 V_{DDQ} / Z_{OL}	V _{OL}	0.468*	0.55*	0.633*	V _{DDQ}

2. Operation

2.1 Interface Overview

The primary Low Latency DRAM-III interface consists of a unidirectional command and address bus and a bidirectional data bus. This type of data bus is often referred to as common I/O or CIO. **Pin Identification** contains the list of pins on the Low Latency DRAM-III.

The command bus is a single data rate (SDR) bus consisting of CS#, WE#, and REF#. The RMHE41A184AGBG, RMHE41A364AGBG have a double data rate (DDR) address bus consisting of multiplexed A0-A6 in burst length 4 mode. Both the command bus and address bus are clocked by the differential clock pair CK and CK#. READ and WRITE commands can be issued at a rate of one every 2 cycles of CK in burst length 4 mode.

The data interface is a double-rate (DDR) interface that transfers 36 bits of data ^{Note} on each clock edge for 36-bit parts and 18 bits of data on each clock edge for 18-bit parts. The data interface also includes 4 data inversion pins. In addition to 36 data bits, the inputs to the Low Latency DRAM-III include a DDR data mask, DM, and two differential clock pairs, DK0-DK1 and DK0#-DK1#. The Low Latency DRAM-III outputs two differential clock pairs, QK0-QK1 and QK0#-QK1# that are associated with read data, and a data valid signal, QVLD. Because the data bus is bidirectional, idle cycles are required to implement data bus turn-around as described in **2.7 Data bus turn-around**.

Note For parts with 18-bit data bus, all references in this section should refer to DQ0-DQ17 and DINV0- DINV1 unless otherwise noted. DQ0-DQn is used to represent DQ0-DQ35 or DQ0-DQ17 for 36-bit and 18-bit parts, respectively, and DINV0-DINVm is used to represent either DINV0-DINV3 or DINV0-DINV1 for 36-bit and 18-bit parts.

2.2 Clocking

There are three groups of clock signals: CK/CK#, DK0-DK1/DK0#-DK1#, and QK0-QK1/QK0#-QK1#.

The CK/CK# clock is associated with the address and command pins: A0-A6, CS#, WE#, and REF#. At the Low Latency DRAM-III pins, the CK/CK# transitions are nominally centered with respect to address and command signal transitions. The DK0-DK1/DK0#-DK1# clocks are associated with write data. DK0/DK0# is used as a source-centered clock for the double data rate DQ0-DQ17, DINV0-DINV1, and DM pins. DK1/DK1# is used as a source-centered clock for the double data rate DQ18-DQ35 and DINV2-DINV3 pins.

The DK0-DK1/DK0#-DK1# clocks must meet the specified t_{CKDK} skew with respect to the CK/CK# clock in order to ensure proper timing relationship between command and data cycles and to enable proper data bus turn-around.

The QK0-QK1/QK0#-QK1# clocks are associated with read data. At the Low Latency DRAM-III pins, and for x36 devices, QK0/QK0# must be source-synchronous with the read data DQ0-DQ17, DINV0-DINV1, and QVLD pins. Similarly, for x36 devices, QK1/QK1# is used as a source-synchronous clock for the read data DQ18-DQ35 and DINV2-DINV3 pins.

For x18 devices, QK0/QK0# must be source-synchronous with DQ0-DQ8, DINV0, and QVLD. Similarly, for x18 devices, QK1/QK1# must be source-synchronous with DQ9-DQ17 and DINV1.

The QK0-QK1/QK0#-QK1# clocks must meet the specified t_{CKQK} skew with respect to the CK/CK# clock in order to ensure proper timing relationship between command and data cycles and to enable proper data bus turn-around.

2.3 Address bus

In Burst of 4 mode two clock cycles are required to load the multiplexed address. In DDR Address mode address inputs are captured by the RAM in two beats per cycle. Three of the bits in the address field select which of the 8 banks in the RAM will be accessed. Note that a 4th bank address bit has been identified anticipating that a 16 bank version of the RAM might someday reach the market. The bit functions as an ordinary address bit in the devices described in this data sheet.

Command	Device Width	Beat	A6 Note1	A5	A4 A3		A2	A1	A0		
READ or WRITE	x36	0	Х	Addre	Address Address Note2 Bank			Address Address Note2 Bank			
		1	Х	Address							
		2	Х	Address							
		3	Х	X Note1			Address				
READ or WRITE	x18	0	Х	Addre	ess	Address Note2		Bank			
		1	Х			Address					
		2	Х			Address					
		3	Х	Address							
AUTO REFRESH	ANY	0	Х	Х	Х	Х		Bank			

Notes 1. A6 is reserved for future expansion. For smaller capacity devices, the value is a don't care, but for devices of the designated capacity or larger, the value will be used.

2. Address bit A3 in beat zero is used as an address bit in the current devices, but may be used as a bank address bit in future generations of the part.

2.4 Command encoding

The Low Latency DRAM-III supports five types of command cycles as shown in Table 2-3.

The NOP command must be used on any cycle where no other commands are requested.

The READ command is used to initiate a burst read from the Low Latency DRAM-III.

The WRITE command is used to initiate a burst write from the Low Latency DRAM-III.

The AUTO REFRESH command is used to initiate a refresh operation on a particular bank of the memory.

The OVERLAPPED REFRESH command is used to initiate a refresh operation, but may be overlapped with other commands.

The MRS command is used to configure the Low Latency DRAM-III following a reset.

Because the overlapped refresh feature can be enabled or disabled, the command decoding and it's associated state diagram have two different forms. **Table 2-2** and **Figure 2-1** show the command encoding for the case when the overlapped refresh feature is disabled. **Figure 2-1** only shows the state diagram for the command decoder; there may be many other states internal to the device.

Because READ and WRITE commands require two cycles to fully transfer their associated address in burst length 4 mode and because the OVERLAPPED REFRESH command may be specified simultaneously with other commands, the command decoder and its state diagram are more complex when the overlapped refresh feature is enabled. The states associated with the command decoder and how command cycles are interpreted is described in **Table 2-3** and **Figure 2-2** (again, the state diagram only shows the states for the command decoder, not other internal states of the device).

State	Command	CS#	WE#	REF#	LBK#	RST#	Length (cycles)	Description
IDLE	NOP	1	-	-	1	1	1	No operation
	READ	0	1	1	1	1	2	Read
	WRITE	0	0	1	1	1	2	Write
	AUTO REFRESH	0	1	0	1	1	1	Auto refresh
	MRS	0	0	0	1	1	2	Mode register set
RD, WR	NOP	1	-	-	1	1	-	No operation
MRS	NOP	1	-	-	1	1	-	No operation
	LOOPBACK	-	-	-	0	1	-	Address/control loopback
	RESET	-	-	-	-	0	-	Reset

Table 2-2 Command Encoding (Overlapped Refresh Disabled)

Figure 2-1 Command Decode State Diagram (Overlapped Refresh Disabled)

State	Command	CS#	WE#	REF#	LBK#	RST#	Length (cycles)	Description
IDLE	NOP	1	-	-	1	1	1	No operation
	READ	0	1	1	1	1	2	Read
	WRITE	0	0	1	1	1	2	Write
	OVERLAPPED	0	1	0	1	1	4	Overlapped refresh
	REFRESH							
	MRS	0	0	0	1	1	2	Mode register set
RD,	NOP	1	-	-	1	1	-	No operation
WR	OVERLAPPED	0	1	0	1	1	4	Overlapped refresh
	REFRESH							
OR1,	NOP	1	-	_ Note	1	1	-	No operation
OR2,	READ Note	0	1	_ Note	1	1	2	Read (overlapped)
OR3	WRITE Note	0	0	_ Note	1	1	2	Write (overlapped)
OR2RD,	NOP	1	-	_ Note	1	1	-	No operation
OR3RD,								
OR2WR,								
OR3WR								
MRS	NOP	1	-	-	1	1	-	No operation
	LOOPBACK	-	-	-	0	1	-	Address/control loopback
	RESET	-	-	-	-	0	-	Reset

Table 2-3 Command Encoding (Overlapped Refresh Enabled)

Note These indicate that the value of the REF# pin is ignored for the purpose of command decoding (the pin is used for conveying bank number during this cycle).

Note States and transitions marked with an asterisk (*) indicate that the value of the REF# pin should be ignored, so that neither a REFRESH, nor MRS command will be recognized in that state.

2.5 Data mask

The DM pin is used during write cycles to indicate that the corresponding data are to be masked off from writing to the memory. The value of the DM pin is sampled on both edges of DK0/DK0#, and corresponds to the data sampled on that same edge of either DK0/DK0# or DK1/DK1#.

When the DM pin has a logic 0 value, the data will be written to the memory. When the DM pin has a logic 1 value, the data will be ignored and no update to the corresponding memory data will be made.

The value of the DM pin is ignored in all other circumstances. Thus, driving a constant logic 0 to the DM pin can be used in systems where all data cycles in a burst result in writes to the memory.

When the Auto-DM Function (ADM) bit is set via an MRS command, the value of the DM pin is ignored and the device will behave as if it were a logic 0 on only the clock edge specified by the value of the DM pattern (DMP) field.

2.6 Data inversion

In order to reduce simultaneous switch noise, I/O current and average I/O power, the Low Latency DRAM-III provides the ability to invert all data pins. Because the nominal design for Low Latency DRAM-III I/O signals is high-side termination to V_{DDQ} , signals driven to a logic high state will consume less power than those in a logic low state.

The DINVm-DINV0 pins indicate whether corresponding DQn-DQ0 pins, in groups of nine, represent the true logic value or an inverted logic value. With the ability to invert DQn-DQ0 pins in groups of nine, each group is guaranteed to be driving no more than five pins low on any given cycle. As a result, no more than five pins in each group can switch in the same direction during each bit time, reducing simultaneous switching noise effects.

When data inversion is enabled (DI=1) and a DINV pin is a logic 1, the corresponding DQ pins have been inverted. When data inversion is disabled (DI=0) then the device will ignore the value of the DINV pins for write data and will drive DINV pins to logic 1 for read data; however, in such a case, the DQ pins are not inverted, regardless of the values of the DINV pins.

2.7 Data bus turn-around

Because the DQn-DQ0 and DINVm-DINV0 pins are bidirectional, care must be taken to ensure that the Low Latency DRAM-III and the system chip connected to it do not drive these pins simultaneously. In order to guarantee this, a rapid DQ and DINV turn-off time is required. The actual bus turn-around time is dependent on many system parameters, including BL, RL, WL, pre-amble, post-amble, controller I/O timing, DRAM I/O timing, PCB delays; and the system must ensure that neither the Low Latency DRAM-III, nor the system chip is driving the bus during that time. This is accomplished by inserting a sufficient number of NOP commands between each READ-to-WRITE command transition and between each WRITE-to-READ transition. Additional NOP commands may be required to allow settling of the bus in order to insure no adverse effect on I/O timing.

Note that a REFRESH command can be used in place of a NOP command to effect the insertion of an idle cycle on the data bus.

2.8 Command cycles

A command to the Low Latency DRAM-III is initiated by driving the CS# pin low at the rising edge of CK and simultaneously driving the WE#, REF#, and A0-A6 pins to the appropriate state corresponding to the command. READ and WRITE commands each require 2 clocks to send the full command in burst length 4 mode, due to the multiplexed nature of Address loading. The NOP and AUTO REFRESH commands are each a single cycle in length. The OVERLAPPED REFRESH command is four cycles in length.

2.9 Write data cycles

DQ0-DQn, DINV0-DINVm, and DM associated with a WRITE command are received by the Low Latency DRAM-III in a DDR burst, starting on a rising edge of DK that is offset WL clock cycles from rising edge of the CK signal corresponding to the first cycle that the WRITE command was initiated. This delay of WL cycles is intended to ensure that the write data are not driven at the same time that data from a previous READ command are being driven from the Low Latency DRAM-III.

2.10 Read data cycles

DQ0-DQn and DINV0-DINVm associated with a READ command are driven by the Low Latency DRAM-III in a DDR burst by the Low Latency DRAM-III RL clock cycles from the rising edge of the CK signal corresponding to the first cycle that the READ command was initiated. This delay of RL cycles is equal to the delay required for the internal logic and memory within the Low Latency DRAM-III to read data and make it available on the bus.

2.11 READ and WRITE command protocol

Figure 2-3 through Figure 2-4 show the READ and WRITE command sequences.

Figure 2-3 READ Command Sequence

Figure 2-4 WRITE Command Sequence

Figure 2-5 shows DDR Address examples of a sequence of 2 READ, 2 WRITE, and 2 READ commands, with the following configuration:

Burst length 4

Speed Config 5: t_{RC}=11, t_{RL}=16, t_{WL}=17

Data inversion is enabled

Some observations of this sequence are:

A NOP is inserted between READ2 and WRITE1 to allow for read-to-write bus turn-around

3 NOPs are inserted between WRITE2 and READ3 to allow for write-to-read bus turn-around

Because t_{RC} is 11, READ3 may access the same bank as READ1; however, none of READ2, WRITE1, or WRITE2 may access the same bank as READ1

Figure 2-5 READ/WRITE/READ Command Sequence (Speed Config 5, t_{RC}=11, t_{RL}=16, t_{WL}=17, DI=1)

2.12 Automatic Refresh

Refresh cycles of the internal memory are initiated via the AUTO REFRESH command. Each refresh command causes a single refresh cycle to occur on the bank specified in the command.

The minimum data retention time is 2 ms over the temperature range specified in **1. Electrical Specifications**, and there are 16384 words in each bank. Therefore, each bank must receive 16384 refresh commands every 2 ms in order to ensure proper data retention.

This means that a refresh command must be received at an average rate of one every 15.3 ns. At a frequency of 800 MHz, this represents 8.2% of the usable bandwidth to the Low Latency DRAM-III.

The refresh command waveforms are shown in **Figure 2-6**. This refresh command is only supported if overlapped refresh is not configured (see **2.13 Overlapped refresh commands**).

Figure 2-6 Automatic Refresh Command Sequence

2.13 Overlapped refresh commands

Refresh commands may be overlapped with READ, WRITE, or NOP commands so that it is possible to design a system that does not require any bus bandwidth to be consumed due to refresh. During the MRS command, overlapped refresh may be enabled.

Once configured for overlapped refresh via an MRS command, the REF# pin is used to both initiate the refresh command as well as to communicate the bank to be refreshed. This is accomplished by indicating one bit of bank address on each rising edge of the CK clock, following the initial assertion of the REF# pin. The AUTO REFRESH command is not supported when the Low Latency DRAM-III is configured for overlapped refresh mode.

The overlapped refresh command cannot be initiated on the same cycle as a READ or WRITE command; this avoids the potential ambiguity of an overlapped refresh and WRITE command being interpreted as an MRS command. In general, overlapped refresh commands are expected to be initiated one cycle out of phase with READ and WRITE commands. In addition, once the overlapped refresh command has begun, the state of the REF# pin is ignored for the purposes of command decoding, in order to allow subsequent READ or WRITE commands to begin while the refresh bank address is being specified on the REF# pin.

Figure 2-7 shows the OVERLAPPED REFRESH command sequence.

An example of refresh being overlapped with READ commands is shown in Figure 2-8.

Note t_{RC} for overlapped refresh begins 3 cycles after the start of the command.

Figure 2-8 Overlapped Refresh with READ Commands

Note t_{RC} for overlapped refresh begins 3 cycles after the start of the command.

2.14 Clam-shell support

In order to support clam-shell mounting on the board, the pin-out of the Low Latency DRAM-III is designed so that most pins that will be interchanged via mirroring are functionally interchangeable. A few pins require their function to be swapped, however. The MF pin causes the pin assignment to be modified to effect those pin swaps. In order to support proper signal integrity, package trace lengths for mirrored pins are matched to within +/- 0.1mm. **Table 2-4** shows the pins that are mirrored by the MF pin.

Due to the mirroring of A5 and A6, all devices are required to include an I/O cell on A6 in order to support the mirror function. For lower capacity devices, the A6 pin would remain DNU, V_{DDQ} from a memory controller standpoint, so the system need not actively drive this functionally unused pin.

A3 and A4 are mirrored to support future devices that may use A3 as an additional bank select bit. All of A0 through A5 must be mirrored in order for MRS commands to be interpreted correctly.

Pin	MF=0	MF=1
N4	A0	A1
N10	A1	A0
L4	A4	A3
L10	A3	A4
M5	A2	REF#
M9	REF#	A2
L2	CS#	WE#
L12	WE#	CS#
H10	A5	A6
H4	A6	A5
H2	RST#	DM
H12	DM	RST#

Table 2-4 Pins Affected by MF Pin

3. Initialization

Prior to functional use, the Low Latency DRAM-III must be initialized and configured. The steps described in this chapter will ensure that the internal logic of the Low Latency DRAM-III has been properly reset and that the functional timing parameters of the chip have been configured.

Figure 3-1 shows the overall initialization sequence required by the Low Latency DRAM-III. An example of an initialization sequence, showing each of the different phases, is shown in **Figure 3-7**.

Figure 3-1 Initialization Flow

3.1 Power-on

- There are no restrictions on the sequence of applying the V_{DD}, V_{EXT}, and V_{DDQ} power supplies as long as maintaining RST# = Low and fix MF input state before and during any of the power supplies ramp up.
- 2. In case when RST# can not be asserted Low and fixed MF input state before and during any of the power supplies ramp up, make sure to ramp up following manners.
 - (1) Ramp up V_{DD} and V_{EXT}

(no ramp up sequence restriction on V_{DD} and V_{EXT})

(2) Ramp up V_{DDQ} and V_{REF} following to the V_{DD} and V_{EXT}

(no ramp up sequence restriction on V_{DDQ} and $V_{\text{REF}})$

(3) Make sure to assert RST# for t_{RSS} specified period before initiating any operations

Figure 3-2 Power-on 1

Figure 3-3 Power-on 2

3.2 Reset

Before the Low Latency DRAM-III can be configured, it must be properly reset, to ensure that the Low Latency DRAM-III is in a known and functional state, regardless of any power on anomalies and power supply ramp rates. Reset requires the assertion of the RST# pin for at least 200 μ s, during which time the device logic is reset to a known state, and the I/O impedances are programmed as described in **3.3 Initial impedance settings**.

The contents of memory are not guaranteed to be retained when the chip is reset.

3.3 Initial impedance settings

When the RST# pin is deasserted, the value of specific DQ pins is used to configure the input termination and output impedance as shown in **Table 3-1**. The meaning of the bits is the same as the corresponding bits described in **3.5 Configuration**, although their positions in the DQ pins are unrelated to their positions in the corresponding MRS registers. While RST# is asserted, the impedance values are continuously updated based on the values of the DQ pins and on the sampled value of the ZQ impedance programming pin. On the rising edge of RST#, the values will be latched into the device and stored in the appropriate positions in the MRS registers. **Figure 3-4** shows the waveforms associated with this function.

Note that the DINV pins are ignored during reset time and the values of the DQ pins are considered to never be inverted during this time.

	-					-												
Pins	U12	T11	U4	R12	T5	P13	R4	P11	P5	B12	C11	B4	D12	C5	E13	D4	E11	E5
DQ (x18)	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DQ (x36)	26	25	24	23	22	21	20	19	18	8	7	6	5	4	3	2	1	0
Reset Reg	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$MSB\toLSB$																		
Cell ID			К	D	K	U	С	D	С	U	D	D	D	U	ODT	QD	QU	IM

Table 3-1 Reset Impedance Control Assignments

3.4 Per-bit de-skew training sequence

The Low Latency DRAM-III device provides support that allows a memory controller to de-skew signals for high-speed operation. If per-bit de-skew is desired, the memory controller must provide the actual de-skew functionality. Per-pin de-skew is normally performed after deassertion of the RST# pin, but may be performed at any time, without affecting the contents of the memory within the device. Furthermore, resetting the device does not necessarily affect the skew characteristics of the device pins; therefore, a reset of the device does not necessarily require repeating the de-skew training sequence that was previously performed.

Per-pin de-skew training is anticipated to be implemented in three steps:

De-skew of the control, address, and clock pins: A0-A6, CS#, WE#, REF#, and DK0-DK1 with respect to CK

De-skew of the read path: DQ0-DQn, DINV0- DINVm and QVLD with respect to QK0-QK1

De-skew of the write path: DQ0-DQn, DINV0- DINVm and DM with respect to DK0-DK1

The first phase, de-skew of the control and related pins, requires support from the device by driving the LBK# pin to a logic 0. When the LBK# pin is a logic 0, the DK0-DK1, CS#, WE#, REF#, and A0-A6 pins are looped back to the various DQ and DINV pins. All pins are sampled by the CK clock, including DK0-DK1. The specific mapping of input pins to output pins during loopback mode is shown in **Table 3-2**.

	-		x36 part		x18 part			
		Inj	out	Output	Inp	Output		
Input Pin	Output	MF=0	MF=1		MF=0	MF=1		
	Pin							
H4	E5	A6 (DNU, V _{DDQ})	A5	DQ0	A6 (DNU, V _{DDQ})	A5	DQ0	
J1, K1	E11	DK0, DK0#	DK0, DK0#	DQ1	DK0, DK0#	DK0, DK0#	DQ1	
L4	P5	A4	A3	DQ18	A4	A3	DQ9	
L2	R4	CS#	WE#	DQ20	CS#	WE#	DQ11	
M5	T5	A2	REF#	DQ22	A2	REF#	DQ13	
N4	U4	A0	A1	DQ24	A0	A1	DQ15	
H10	E13	A5	A6	DQ3	A5	A6	DQ3	
			(DNU, V _{DDQ})			(DNU, V _{DDQ})		
J11, K11	E3	DK1, DK1#	DK1, DK1#	DQ14	DNU, V _{SS}	DNU, V _{SS}	DNU, V _{SS}	
L10	P11	A3	A4	DQ19	A3	A4	DQ10	
L12	P13	WE#	CS#	DQ21	WE#	CS#	DQ12	
M9	T11	REF#	A2	DQ25	REF#	A2	DQ16	
N10	U12	A1	A0	DQ26	A1	A0	DQ17	

Table 3-2 Control/Address Pin Mapping When LBK#=0

Note

DK0, DK0# and DK1, DK1# have differential receivers, so the output of the receiver is used as signal being looped back.

For each pin that is looped back, the input pin is sampled on both the rising edge and falling edges of the corresponding input clock. The value output on the rising edge of the corresponding output clock will be the value that was sampled on the rising edge of the input clock. The value output on the falling edge of the corresponding output clock will be the *inverted* value that was sampled on the falling edge of the input clock. Data inversion is *not used* during loopback mode and the value of the corresponding MRS bits are ignored.

The delay from input pins to DQ/DINV output pins, when loopback mode is enabled, is 5 cycles of CK.

In burst length 4 mode, while the LBK# pin is a logic 0, the DQ/DINV output pins corresponding to unused input pins (See **Table 3-2**) will still meet the AC timing specification (See **Interface AC Parameters**), but they may have arbitrary logic state and may or may not have a constant logic value.

While the LBK# pin is a logic 0, the device will ignore any apparent commands being presented on the CS#, WE#, and REF# pins and will perform self refresh operations to prevent loss of data during extended periods of de-skew training. In order to ensure that commands are not inadvertently received during entry and exit from de-skew training, no commands may be sent to the device for a period of 16 cycles of CK prior to the LBK# pin being driven to 0, nor for 16 cycles after the LBK# pin is returned to a logic 1. Also, no valid input signals for looped back must be inserted for 16 cycles after LBK# pin being driven to 0 when device just enters into loopback mode.

While LBK# is asserted, the on-chip PLL is ignored; therefore the phase of the QK output clock will be undefined with respect to the CK input clock. However, the QK to DQ timing will still meet its specifications. Note that the PLL will remain enabled or disabled, per its state prior to LBK# being asserted, and after LBK# is deasserted.

An example of a loopback sequence is show in Figure 3-5.

Figure 3-5 Loopback De-skew Training Sequence

Parameter	Symbol	-120	-150	Units
Loopback Latency	t _{LBL}	5	5	Cycle
Maximum CK to QK/DQ Output Delay in Loopback Mode	t _{CD}	5	5	ns

Following de-skew of the control, address, and DK pins, the memory controller drives the LBK# pin to a logic 1, then will likely perform read data and write data de-skew training.

Prior to beginning read path de-skew, the memory controller should issue an MRS command to the Low Latency DRAM-III device to enable the PLL. After the PLL is enabled, the timing of the QK, DQ outputs, and QVLD will be unspecified for a period of t_{PLL}. The MRS command is described in **3.5 Configuration**. While the PLL is stabilizing, refresh commands must continue to be issued to the device in order to ensure proper retention of data.

Read data de-skew requires that a training pattern be written to Low Latency DRAM-III memory. Complex data patterns can be written to the Low Latency DRAM-III memory using the non-de-skewed DQ signals and the auto-DM functions. Auto-DM functions are enabled through MRS, as described in **3.5 Configuration**.

Read data de-skew can be performed by using the de-skewed control and related pins, including the DK pin, and nonswitching DQ and DINV pins to write 36-bit values to memory locations in the device. Because the data are held at constant values, the auto-DM modes of the device are used to specify which 36-bit beat (or 18-bit beat for x18 devices) of data on the bus is to be written to the memory. Once written to the memory, these data can then be read out using standard BL4 READ commands to effect any desired pattern on the DQ bus. This permits the system to de-skew the DQ, DINV, and QVLD signals with respect to the QK clocks.

Write data de-skew can be performed by issuing WRITE commands to the device, then using the de-skewed read bus to determine whether or not data were correctly received by the device. This permits the system to de-skew the DQ, DINV, and DM signals with respect to the DK clocks.

3.5 Configuration

The MRS command is used to configure the Low Latency DRAM-III. Configuration is used to specify the following parameters:

Address Mode

The Address Mode of Low Latency DRAM-III devices from some vendors may be electrically configurable. The default Address Mode may vary from vendor-to-vendor as well. Therefore, systems must configure the desired Address Mode prior to issuing READ or WRITE commands

Mode select for READ latency, WRITE latency, and t_{RC} The version of the Low Latency DRAM-III covered by this specification only supports modes 4 and 5

Select driver pull-up impedance of 1/4 or 1/6 of reference resistor (default 1/4) Select driver pull-down impedance of 1/4 or 1/6 reference resistor (default 1/6) Select DQ, DINV, DM, DK, DKN, CK, CK#, RST# terminator pull-up impedance of OFF, 1x, 1/2, or 1/4 of reference resistor (default 1/4) Select DQ, DINV, DM, DK, DKN, CK, CK#, RST# terminator pull-down impedance of OFF, 1x, 1/2, or 1/4 of reference resistor (default OFF) Select CS#, WE#, REF#, A, LBK#, TCK, TDI, TMS terminator pull-up impedance of OFF, 1x, 1/2, or 1/4 of reference resistor (default 1/4) Select CS#, WE#, REF#, A, LBK#, TCK, TDI, TMS terminator pull-down impedance of OFF, 1x, 1/2, or 1/4 of reference resistor (default 1/4)

Enable/freeze dynamic PVT compensation (default enabled) Enable/disable PLL (default disabled) Enable/disable read/write data inversion (default disabled)

Refresh Mode (default AUTO REFRESH)

Select Auto-DM Mode (default disabled)

The MRS command allows the configuration of one of eight different registers to be configured using SDR timing on the address pins. The MRS command waveforms are shown in **Figure 3-6** and the values of the MRS registers are described in **Table 3-3** through **Table 3-6**. Because an MRS command may change values that significantly affect the behavior of the device, no other commands should be issued to the device for a period of t_{MRD} clock cycles following the MRS command.

MRS commands use the address pins specified in **Table 3-3**. The actual pins used depend on the value of the mirror function (MF) pin.

	-			Beat 0							Beat 2			
Pins (MF=0)	H4	H10	L4	L10	M5	N10	N4	H4	H10	L4	L10	M5	N10	N4
Pins (MF=1)	H10	H4	L10	L4	M9	N4	N10	H10	H4	L10	L4	M9	N4	N10
Address	A6	A5	A4	A3	A2	A1	A0	A6	A5	A4	A3	A2	A1	A0
Mode Register MSB→LSB					М	ode Reg	j #							
Active	X	Co	onfigurat	tion	0	0	0	Х	0	DI	FZ	RM	BL	
Active	Х	DMF	2	ADM	0	0	1	Х	0	0	0	0	0	PLL
Active	Х	KU		ODT	0	1	0	Х	CD		CU		KD)
Active	X	QD	QU	IM	0	1	1	Х	DD		DU		0	0
Reserved	Х	0	0	0	1	0	0	Х	0	0	0	0	0	0
	X	0	0	0	1	0	1	Х	0	0	0	0	0	0
	X	0	0	0	1	1	0	Х	0	0	0	0	0	0
	Х	0	0	0	1	1	1	Х	0	0	0	0	0	0

Table 3-3 MRS Configuration Register Bit Assignments

Table 3-4 MRS Configuration Bit Definitions

Speed Cont	figuration			Clock Cycles	8		
Config #		Configuration	า	DI	t _{RC}	t _{RL}	t _{wL}
0	0	0	0	0	Not supported		
1	0	0	1	0		Not supported	
2	0	1	0	0		Not supported	
3	0	1	1	0		Not supported	
4	1	0	0	0	10 12 13		
5	1	0	1	0	11	14	15
6	1	1	0	0	Not supported		
7	1	1	1	0	Not supported		
0	0	0	0	1		Not supported	I
1	0	0	1	1		Not supported	I
2	0	1	0	1		Not supported	l
3	0	1	1	1		Not supported	l
4	1	0	0	1	10 14 15		
5	1	0	1	1	11	16	17
6	1	1	0	1	Not supported		
7	1	1	1	1	Not supported		

Refresh Mode

RM Operation							
0	0 Auto Refresh Mode (Default)						
1 Overlapped Refresh Mode							

Auto-DM Function

ADM	Operation
0	Off / Normal Operation (Default)
1	On

Note When ADM=0, DMP=Don't Care

Auto-DM Pattern

Burst of 4	DMP							
Pattern #	00	01	10	11				
Write Beat 0	1	0	0	0				
Write Beat 1	0	1	0	0				
Write Beat 2	0	0	1	0				
Write Beat 3	0	0	0	1				

Note Data to be written =1, Data to be masked =0

PLL Control

PLL	Operation						
0	PLL Off / Reset (Default)						
1	PLL On						

Burst Length

E	3L	Operation
0	0	4
0	1	Not supported
1	0	Reserved
1	1	Reserved

Note Setting 01,10 & 11 not supported

Impedance Freeze

FZ	Operation
0	Update active (Default)
1	Update frozen

Data Inversion

DI	Operation
0	Disable data inversion (Default)
1	Enable data inversion

Pins	Data Input On-Die Termination - Up					_	Data Input On-Die Termination - Down				_			
DQ, DINV,	ODT	D	DU	Div	200	240	RQ Ohms	ODT	D	D	Div	200	240	RQ Ohms
DM,	1	Х	Х	Off	~	8		1	Х	Х	Off	∞	∞	
DK0, DK0#	Х	1	1	Off	8	8		Х	1	1	Off	8	∞	
DK1, DK1#	0	1	0	1	200	240		0	1	0	1	8	∞	(Not Supported
	0	0	1	1/2	100	120		0	0	1	1/2	∞	~	(Not Supported
	0	0	0	1/4	50	60		0	0	0	1/4	∞	~	(Not Supported
														•
Pins	Contro	ol Inpu	ıt On-E	Die Ter	minati	on - Up)	Contro	ol Inpu	t On-Di	ie Term	ninatio	n - Dov	'n
Address,	ODT	C	ະບ	Div	200	240	RQ Ohms	ODT	C	D	Div	200	240	RQ Ohms
CS#, WE#,	1	Х	Х	Off	~	8		1	Х	Х	Off	8	~	
REF#	Х	1	1	Off	∞	∞		Х	1	1	Off	~	∞	
	0	1	0	1	200	240		0	1	0	1	8	8	(Not Supported
	0	0	1	1/2	100	120		0	0	1	1/2	8	8	(Not Supported
	0	0	0	1/4	50	60		0	0	0	1/4	8	∞	(Not Supported
							-							•
Pins	Clock	Input	On-Die	e Term	inatior	ı - Up	_	Clock	Input C	On-Die	Termir	nation ·	- Down	I
	ODT	K	CU	Div	200	240	RQ Ohms	ODT	K	D	Div	200	240	RQ Ohms
	1	Х	Х	Off	~	8		1	Х	Х	Off	∞	∞	
CK, CK#	Х	1	1	Off	8	8		Х	1	1	Off	8	∞	
	0	1	0	1	200	240		0	1	0	1	~	~	(Not Supported
	0	0	1	1/2	100	120		0	0	1	1/2	~	~	(Not Supported
	0	0	0	1/4	50	60		0	0	0	1/4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	(Not Supported

Table 3-5 MRS Input Termination Bit Definitions

Note Internal RQ is set to 240Ω when IM=1.

Table 3-6 MRS Output Impedance Bit Definitions

Pins
DQ, DINV,
QK0, QK0#
QK1, QK1#
QVLD

Outpu	-				
IM	QU	Div	200	240	RQ Ohms
0	1	1/4	50	60	
1	Х	Х	60*	60*	
0	0	1/6	NA	40.0	

Note $60^* = 60 \Omega$ +/- 20% no PVT compensation

Output Driver Impedance - Down

IM	QD	Div	200	240	RQ Ohms
0	1	1/4	50	60	
1	Х	Х	40*	40*	
0	0	1/6	33.3	40.0	

Note $40^* = 40 \Omega$ +/- 20% no PVT compensation

Figure 3-6 MRS Sequence

4.JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

4.1 Test Pins

Pin Name	Test Use	Functional Mode Value	Pull Up/Down in Chip	Pull Up/Down on Board
TDI	JTAG serial chain input	1	1	1
TDO	JTAG serial chain output	1		
TCK	JTAG clock	0		0
TMS	JTAG mode	1	1	1
TRST#	JTAG reset	0	0	0

Table 4-2 Test Access Port (TAP) Pins

Pin Name	Pin Assignment	Description
ТСК	3A	Test Clock Input. All input are captured on the rising edge of TCK and all
		outputs propagate from the falling edge of TCK.
TMS	1A	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	13V	Test Data Input. This is the input side of the serial registers placed between TDI
		and TDO. The register placed between TDI and TDO is determined by the state
		of the TAP controller state machine and the instruction that is currently loaded in
		the TAP instruction.
TDO	13T	Test Data Output. This is the output side of the serial registers placed between
		TDI and TDO. Output changes in response to the falling edge of TCK.
TRST#	1L	Test Reset Input. This is active-low input asynchronously reset the TAP controller.
		This pin should be driven low or tied to GND when JTAG function is not in use.

Table 4-3 JTAG DC Characteristics (0°C \leq T_C \leq 95°C, 1.395 V \leq V_{DD} \leq 1.605 V, unless otherwise noted)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
JTAG Input leakage current	Ι _U	$0~V \leq V_{\text{IN}} \leq V_{\text{DD}}$	-100	+100	μA
JTAG I/O leakage current	I _{LO}	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DDQ}} \ ,$	-100	+100	μA
		Outputs disabled			
JTAG input HIGH voltage	V _{IH (DC)}		V _{REF} + 0.15	V _{DDQ} + 0.3	V
JTAG input LOW voltage	V _{IL (DC)}		$V_{\text{SS}} - 0.3$	$V_{\text{REF}} - 0.15$	V
JTAG output HIGH voltage	V _{OH (DC)}	I _{OHC} = 100 <i>μ</i> A	$V_{\text{DDQ}}-0.10$		V
JTAG output LOW voltage	V _{OL (DC)}	I _{OLC} = 100 μA		0.10	V

Note All voltages referenced to V_{SS} (GND).

Table 4-4 JTAG Capacitance

Parameter	Symbol	Teat Conditions	MIN.	MAX.	Unit
JTAG input capacitance	CINJ	$V_{IN} = 0V$		2.5	pF
(TCK, TDI, TMS and TRST#)					
JTAG output capacitance	Coj	$V_{IO} = 0V$		2.5	pF
(TDO)					

Note Including package.

4.2 JTAG AC Test Conditions

Input waveform (Rise / Fall time ≤ 0.3 ns)

Output waveform

Output load condition

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock						
Clock cycle time	t _{THTH}		20		ns	
Clock frequency	f _{TF}			50	MHz	
Clock HIGH time	t_{THTL}		10		ns	
Clock LOW time	t⊤∟⊤н		10		ns	
Output time						
TCK LOW to TDO unknown	t _{TLOX}		0		ns	
TCK LOW to TDO valid	t _{TLOV}			10	ns	
Setup time						
TMS setup time	t _{MVTH}		5		ns	
TDI valid to TCK HIGH	t _{DVTH}		5		ns	
TRST High Level to	t _{RVTH}		50		ns	
valid rising edge of TCK						
Capture setup time	t _{CSJ}		5		ns	1
Hold time						
TMS hold time	t _{THMX}		5		ns	
TCK HIGH to TDI invalid	t _{THDX}		5		ns	
Capture hold time	t _{CHJ}		5		ns	1
Reset						
TRST LOW pulse width	t _{TRSTW}		100		ns	

Table 4-5 JTAG AC Characteristics ($0^{\circ}C \le T_{c} \le 95^{\circ}C$)

Note t_{CSJ} and t_{CHJ} refer to the setup and hold time requirements of latching data from the boundary scan register.

JTAG Timing Diagram

Register name	Description
Instruction register	The 8 bit instruction registers hold the instructions that are executed by the TAP controller. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible. The bypass register is set LOW (V_{SS}) when the bypass instruction is executed.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Table 4-6 Scan Register Definition (1)

Table 4-7 Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	8	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	113	bit

Table 4-8 ID Register Definition

Part number	umber Organization ID [31:28] ID [27 vendor revision no. part		ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
RMHE41A184AGBG	64M x 18	0000	1000 0010 1100 1101	01000100011	1
RMHE41A364AGBG	32M x 36	0000	1000 0010 1100 1100	01000100011	1

4.3 Boundary Scan

IEEE 1149.1 compliant boundary scan will be implemented on all component I/O pins. High speed I/Os that are differential or AC coupled will be fully compliant to the IEEE 1149.6 standard.

The actual boundary scan order is defined in an underscore (e.g. "CS#_WE#").

Table 4-9 and Table 4-10.

Pins labeled DNU0 are DNU, Vss. Pins labeled DNU1 are DNU, VDDQ. Pins that are subject to the mirror function are named with the obverse name and reverse name, separated by an underscore (e.g. "CS#_WE#").

x18	Cell #	Cell	Pin Name	TYPE	Safe Bit	Cntrl Cell	Cntrl Value	Cntrl State
J3	0	BC_1	DK0	input	Х			
K3	1	BC_1	DK0#	input	Х			
L2	2	BC_1	CS#_WE#	input	Х			
L4	3	BC_1	A4_A3	input	Х			
M5	4	BC_1	A2_REF#	input	Х			
M3	5	BC_1	DNU1(1)	internal	Х			
	6	BC_2	*	control	0			
N2	7	BC_7	DINV1	bidir	Х	6	0	Z
N4	8	BC_1	A0_A1	input	Х			
	9	BC_2	*	control	0			
P5	10	BC_7	DQ9	bidir	Х	9	0	Z
	11	BC_2	*	internal	0			
P3	12	BC_7	DNU0(1)	internal	Х			
	13	BC_2	*	internal	0			
P1	14	BC_7	DNU0(2)	internal	Х			
	15	BC_2	*	internal	0			
R2	16	BC_7	DNU0(3)	internal	Х			
	17	BC_2	*	control	0			
R4	18	BC_7	DQ11	bidir	Х	17	0	Z
	19	BC_2	*	control	0			
T5	20	BC_7	DQ13	bidir	Х	19	0	Z
	21	BC_2	*	internal	0			
Т3	22	BC_7	DNU0(4)	internal	Х			
T1	23	BC_1	QK1#	output2	Х			
	24	BC_2	*	internal	0			
U2	25	BC_7	DNU0(5)	internal	Х			
	26	BC_2	*	control	0			
U4	27	BC_7	DQ15	bidir	Х	26	0	Z
V1	28	BC_1	QK1	output2	Х			
	29	BC_2	*	control	0			
U12	30	BC_7	DQ17	bidir	Х	29	0	Z
	31	BC_2	*	internal	0			
U10	32	BC_7	DNU0(6)	internal	Х			
	33	BC_2	*	internal	0			
Т9	34	BC_7	DNU0(7)	internal	Х			
	35	BC_2	*	control	0			
T11	36	BC_7	DQ16	bidir	Х	35	0	Z
	37	BC_2	*	control	0			
R12	38	BC_7	DQ14	bidir	Х	37	0	Z
	39	BC_2	*	internal	0			
R10	40	BC_7	DNU0(8)	internal	Х			
	41	BC_2	*	internal	0			
P9	42	BC_7	DNU0(9)	internal	Х			
	43	BC_2	*	control	0			
P11	44	BC_7	DQ10	bidir	Х	43	0	Z
	45	BC_2	*	control	0			
P13	46	BC_7	DQ12	bidir	Х	45	0	Z
	47	BC_2	*	internal	0			
N12	48	BC_7	DNU0(10)	internal	Х			
N10	49	BC_1	A1_A0	input	Х			
M9	50	BC_1	REF#_A2	input	Х			
M11	51	BC_1	DNU1(2)	internal	Х			
L12	52	BC_1	WE#_CS#	input	Х			
L10	53	BC_1	A3_A4	input	Х			
K9	54	BC_1	CK#	input	Х		ļ	
K11	55	BC_1	DNU0(11)	internal	Х		ļ	
J13	56	BC_1	LBK#	input	1			
J11	57	BC_1	DNU0(12)	internal	Х			
J9	58	BC_1	CK	input	Х			

Table 4-9 Boundary Scan Order, x18

x18	Cell #	Cell	Pin Name	TYPE	Safe Bit	Cntrl Cell	Cntrl Value	Cntrl State
H10	59	BC 1	A5 A6	input	X			01110
H12	60	BC 1	DM RST#	input	X			
G11	61	BC 1	DNU1(3)	internal	X			
G9	62	BC 1	DNU1(4)	internal	Х			
F10	63	BC 1	DNU1(5)	internal	Х			
	64	BC 2	*	internal	0			
F12	65	BC 7	DNU0(13)	internal	Х			
	66	BC 2	*	control	0			
E13	67	BC 7	DQ3	bidir	X	66	0	Z
	68	BC_2	*	control	0			
E11	69	BC 7	DQ1	bidir	Х	68	0	Z
	70	BC_2	*	internal	0			
E9	71	BC_7	DNU0(14)	internal	Х			
	72	BC_2	*	internal	0			
D10	73	BC_7	DNU0(15)	internal	Х			
	74	BC_2	*	control	0			
D12	75	BC_7	DQ5	bidir	Х	74	0	Z
C13	76	BC_1	QK0#	output2	Х			
	77	BC_2	*	control	0			
C11	78	BC_7	DQ7	bidir	Х	77	0	Z
	79	BC_2	*	internal	0			
C9	80	BC_7	DNU0(16)	internal	Х			
	81	BC 2	*	internal	0			
B10	82	BC 7	DNU0(17)	internal	X			
	83	BC 2	*	control	0			
B12	84	BC 7	DQ8	bidir	X	83	0	Z
A13	85	BC 1	QK0	output2	Х		-	
	86	BC 2	*	control	0			
B4	87	BC 7	DQ6	bidir	X	86	0	Z
	88	BC 2	*	internal	0			
B2	89	BC 7	DNU0(18)	internal	Х			
C1	90	BC 1	QVLD	output2	Х			
	91	BC 2	*	internal	0			
C3	92	BC 7	DNU0(19)	internal	Х			
	93	BC_2	*	control	0			
C5	94	BC_7	DQ4	bidir	Х	93	0	Z
	95	BC 2	*	control	0			
D4	96	BC_7	DQ2	bidir	Х	95	0	Z
	97	BC_2	*	internal	0			
D2	98	BC_7	DNU0(20)	internal	Х			
	99	BC_2	*	internal	0			
E1	100	BC 7	DNU0(21)	internal	Х			
	101	BC_2	*	internal	0			
E3	102	BC_7	DNU0(22)	internal	Х			
	103	BC_2	*	control	0			
E5	104	BC_7	DQ0	bidir	Х	103	0	Z
F4	105	 BC_1	DNU1(6)	internal	Х			
	106	BC_2	*	control	0			
F2	107	BC_7	DINV0	bidir	Х	106	0	Z
G3	108	BC_1	DNU1(7)	internal	Х			
G5	109	BC_1	DNU1(8)	internal	Х			
H4	110	BC_1	A6_A5	input	Х			
H2	111	 BC_1	RST#_DM	input	Х			
J1	112	BC 1	MF	input	Х		1	

x36	Cell #	Cell	Pin Name	TYPE	Safe Bit	Cntrl Cell	Cntrl Value	Cntrl State
J3	0	BC_1	DK0	input	Х			
K3	1	BC_1	DK0#	input	Х			
L2	2	BC_1	CS#_WE#	input	Х			
L4	3	BC_1	A4_A3	input	Х			
M5	4	BC_1	A2_REF#	input	Х			
M3	5	BC_1	DNU1(1)	internal	Х			
	6	BC 2	*	control	0			
N2	7	BC 7	DINV2	bidir	X	6	0	7
N4	8	BC 1	A0 A1	input	X	Ŭ		
	9	BC 2	*	control	0			
P5	10	BC 7	DO18	bidir	×	9	0	7
10	10	BC 2	*	control	0	0		L
P3	12	BC_2	DO34	bidir	×	11	0	7
10	13	BC_2	*	control	0		0	
P1	14	BC 7	DO35	bidir	×	13	0	7
	15	BC 2	*	control	0	10	0	2
R2	16	BC_Z	DO32	bidir	x	15	0	7
112	10		*	control	^	15	0	2
D4	10	BC_Z	DO20	bidir		17	0	7
K4	10		DQ20 *	Diuli	^	17	0	2
TE	19		D000	control		10	0	7
15	20		DQ22 *	Didii	^	19	0	2
то	21	BC_2	D O00	control	0	04	0	7
13	22	BC_7	DQ30	bidir	X	21	0	Ζ
11	23	BC_1	QK1#	output2	X			
	24	BC_2		control	0	0.4		7
02	25	BC_7	DQ28	bidir	X	24	0	Z
	26	BC_2	*	control	0			_
04	27	BC_7	DQ24	bidir	X	26	0	Z
V1	28	BC_1	QK1	output2	X			
1140	29	BC_2	*	control	0			_
012	30	BC_7	DQ26	bidir	X	29	0	Z
	31	BC_2	*	control	0			_
U10	32	BC_7	DQ27	bidir	X	31	0	Z
	33	BC_2	*	control	0			_
Т9	34	BC_7	DQ29	bidir	X	33	0	Z
	35	BC_2	*	control	0			_
T11	36	BC_7	DQ25	bidir	Х	35	0	Z
	37	BC_2	*	control	0			
R12	38	BC_7	DQ23	bidir	Х	37	0	Z
	39	BC_2	*	control	0			
R10	40	BC_7	DQ31	bidir	Х	39	0	Z
	41	BC_2	*	control	0			
P9	42	BC_7	DQ33	bidir	Х	41	0	Z
	43	BC_2	*	control	0			
P11	44	BC_7	DQ19	bidir	Х	43	0	Z
	45	BC_2	*	control	0			
P13	46	BC_7	DQ21	bidir	Х	45	0	Z
	47	BC_2	*	control	0			
N12	48	BC_7	DINV3	bidir	Х	47	0	Z
N10	49	BC_1	A1_A0	input	Х			
M9	50	BC_1	REF#_A2	input	Х			
M11	51	BC_1	DNU1(2)	internal	Х			
L12	52	BC_1	WE#_CS#	input	Х			
L10	53	BC_1	A3_A4	input	Х			
K9	54	BC_1	CK#	input	Х			
K11	55	BC_1	DK1#	input	Х			
J13	56	BC_1	LBK#	input	1			
J11	57	BC_1	DK1	input	Х			
J9	58	BC 1	СК	input	Х			

Table 4-10 Boundary Scan Order, x36

x36	Cell #	Cell	Pin Name	TYPE	Safe Bit	Cntrl Cell	Cntrl Value	Cntrl State
H10	59	BC_1	A5_A6	input	Х			
H12	60	BC_1	DM_RST#	input	Х			
G11	61	BC_1	DNU1(3)	internal	Х			
G9	62	BC_1	DNU1(4)	internal	Х			
F10	63	BC_1	DNU1(5)	internal	Х			
	64	BC_2	*	control	0			
F12	65	BC_7	DINV1	bidir	Х	64	0	Z
	66	BC_2	*	control	0			
E13	67	BC_7	DQ3	bidir	Х	66	0	Z
	68	BC_2	*	control	0			
E11	69	BC_7	DQ1	bidir	Х	68	0	Z
	70	BC_2	*	control	0			
E9	71	BC_7	DQ17	bidir	Х	70	0	Z
	72	BC_2	*	control	0			
D10	73	BC_7	DQ15	bidir	Х	72	0	Z
	74	BC_2	*	control	0			
D12	75	BC_7	DQ5	bidir	Х	74	0	Z
C13	76	BC_1	QK0#	output2	Х			
	77	BC_2	*	control	0			
C11	78	BC_7	DQ7	bidir	Х	77	0	Z
	79	BC_2	*	control	0			
C9	80	BC_7	DQ13	bidir	Х	79	0	Z
	81	BC_2	*	control	0			
B10	82	BC_7	DQ11	bidir	Х	81	0	Z
	83	BC_2	*	control	0			
B12	84	BC_7	DQ8	bidir	Х	83	0	Z
A13	85	BC_1	QK0	output2	Х			
	86	BC_2	*	control	0			
B4	87	BC_7	DQ6	bidir	Х	86	0	Z
	88	BC_2	*	control	0			
B2	89	BC_7	DQ9	bidir	Х	88	0	Z
C1	90	BC_1	QVLD	output2	Х			
	91	BC 2	*	control	0			
C3	92	BC_7	DQ10	bidir	Х	91	0	Z
	93	BC_2	*	control	0			
C5	94	BC_7	DQ4	bidir	Х	93	0	Z
	95	BC 2	*	control	0			
D4	96	BC 7	DQ2	bidir	Х	95	0	Z
	97	BC_2	*	control	0			
D2	98	BC 7	DQ12	bidir	Х	97	0	Z
	99	BC 2	*	control	0			
F1	100	BC 7	DQ16	bidir	x	99	0	Z
	101		*	oontrol	~		0	
E2	101	BC 7	DO14	bidir	0 V	101	0	7
LJ	102		*	control	^	101	U	۷
E 6	103		DOO	control bidir		102	0	7
E3 E4	104			internal		103	U	۷
Г4	100		(0) I UNU *	control	^			
EO	100			bidir		100	0	7
F2	107			internal		106	U	۷
63	100			internal				
Go	109			internal				
H4	110			input				
ΠZ 14	140			input				
JI	2			input		1	1	1

4.4 JTAG Instructions

Many different instructions (2⁸) are possible with the 8-bit instruction register. All used combinations are listed in **Table 4-11**, Instruction Codes. These six instructions are described in detail below. The remaining instructions are reserved and should not be used.

The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

Instructions	Instruction Code [7:0]	Description
EXTEST	0000 0000	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	0010 0001	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
SAMPLE / PRELOAD	0000 0101	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (t_{CS} plus t_{CH}). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
CLAMP	0000 0111	When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the values held in the boundary scan register. Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are determined from values held in the boundary scan register.
High-Z	0000 0011	The High-Z instruction causes the boundary scan register to be connected between the TDI and TDO. This places all RAMs outputs into a High-Z state. Selects the bypass register to be connected between TDI and TDO. All outputs are forced into high impedance state.
BYPASS	1111 1111	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Reserved for Future Use	_	The remaining instructions are not implemented but are reserved for future use. Do not use these instructions.

Table 4-11

4.5 TAP Controller State Diagram

5. Package Drawing

180-PIN FCBGA (18.5 x 14)

			Description				
Rev.	Date	Page	Summary				
Rev. 0.01	'14.10.01	-	New Preliminary Datasheet				
Rev. 0.02	'15.04.01	-	Fixed some typo				
		50	Added Package drawing				
Rev. 1.00	'15.06.19	-	New Datasheet				

All trademarks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
 use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electro equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended by Renesas Electronics and amages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for enduct is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clarg, CA 95050-2549, U.S.A. Tei: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004 Renesas Electronics Curope Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-585-100, Fax: +14-1628-585-900 Renesas Electronics Curope GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tei: +49-21-65030, Fax: +49-211-65030, Tax: +49-211-65030, Tax: +49-211-65030, Tax: +49-211-6503, Tax: Renesas Electronics (China) Co., Ltd. Room 7109, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +49-211-65030, Fax: +49-211-6503, Tax: Renesas Electronics (Shangha) Co., Ltd. Room 7109, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +49-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics (Shangha) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-6688, Fax: +86-21-2226-0999 Renesas Electronics Mong Kong Limited Unit 1001-1611, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei: +852-286-5688, Fax: +862-288-5902 Renesas Electronics Taiwan Co., Ltd. 315, No. 316, Tu Shing North Road, Taipei 10543, Taiwan Tei: +886-2-8175-9600, Fax: +886-2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit Roid-QL Philu Innovation Centre, Singapore 339949 Tei: +656-213-0200, Fax: +865-2813-03000 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit 90-62 Philu Innovation Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +80-8-795-9390, Fax: +80-5-295-9510 Renesas Electronics Malaysia Adb. Unit 107, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +80-8-7059-9390, Fax: +80-5-7087