Product Discontinuance Notice - Last Time Buy Expires on (12/3/2013)
DATA SHEET

The MC100ES6014 is a low skew 1-to-5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single-ended (if the $V_{B B}$ output is used). HSTL and LVDS inputs can be used when the ES6014 is operating under PECL conditions.

The ES6014 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The common enable ($\overline{\mathrm{EN}}$) is synchronous, outputs are enabled/disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

The MC100ES6014, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the ES6014 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single ended CLK input pin operation is limited to a $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}$ in PECL mode, or $\mathrm{V}_{\mathrm{EE}} \leq-3.0 \mathrm{~V}$ in ECL mode. Designers can take advantage of the ES6014's performance to distribute low skew clocks across the backplane or the board.

Features

- 25 ps Within Device Skew
- 400 ps Typical Propagation Delay

MC100ES6014

ORDERING INFORMATION	
Device	Package
MC100ES6014EJ	TSSOP-20 (Pb-Free)
MC100ES6014EJR2	TSSOP-20 (Pb-Free)

- Maximum Frequency > 2 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.8 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- ECL Mode: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V
- LVDS and HSTL Input Compatible
- Open Input Default State
- 20-Lead Pb-Free Package Available
- Replacement part: ICS853S014I

Warning: All V_{CC} and V_{EE} pins must be externally connected to
Power Supply to guarantee proper operation.
Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Function
CLK0 $^{*}, \overline{\mathrm{CLKO}}$	**
CLK1 $^{*}, \overline{\mathrm{CLK}}^{* *}$	ECL/PECL/HSTL CLK Input
Q0:4, $\overline{\mathrm{Q0}: 4}$	ECL/PECL Outputs
CLK_SEL* *	ECL/PECL Active Clock Select Input
$\overline{\mathrm{EN}}^{*}$	ECL Sync Enable
V_{BB}	Reference Voltage Output
V_{CC}	Positive Supply
V_{EE}	Negative Supply

* Pins will default LOW when left open.
** Pins will default to $\mathrm{V}_{\mathrm{CC}} / 2$ when left open.

Table 2. Function Table

CLK0	CLK1	CLK_SEL	$\overline{\text { EN }}$	Q
L	X	L	L	L
H	X	L	L	H
X	L	H	L	L
X	H	H	L	H
X	X	X	H	L*

* On next negative transition of CLK0 or CLK1

Table 3. General specifications

Characteristics	Value	
Internal Input Pulldown Resistor	$75 \mathrm{k} \Omega$	
Internal Input Pullup Resistor	Human Body Model Machine Model Charged Device Model	$75 \mathrm{k} \Omega$
ESD Protection	$>2000 \mathrm{~V}$	
	$>200 \mathrm{~V}$	
Thermal Resistance (Junction-to-Ambient)	0 LFPM, 20 TSSOP	$>1500 \mathrm{~V}$

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Characteristic	Conditions	Rating	Units
$\mathrm{V}_{\text {SUPPLY }}$	Power Supply Voltage	Difference between $\mathrm{V}_{\mathrm{CC}} \& \mathrm{~V}_{\mathrm{EE}}$	3.9	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \leq 3.6 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}+0.3$	
		Continuous	V	
$\mathrm{I}_{\mathrm{EUT}}-0.3$	Surge	50	mA	
	Output Current		100	mA
I_{BB}	V_{BB} Sink/Source Current		± 0.5	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$	

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 5. DC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \pm 5 \%\right.$ or $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$)

Symbol	Characteristics	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		30	60		30	60	mA
V_{OH}	Output HIGH Voltage ${ }^{(1)}$	$\mathrm{V}_{\mathrm{CC}}-1250$	$\mathrm{V}_{\mathrm{CC}}-990$	$\mathrm{V}_{\mathrm{CC}}-800$	$\mathrm{V}_{\mathrm{CC}}-1200$	$\mathrm{V}_{\mathrm{CC}}-960$	$\mathrm{V}_{C C}-750$	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage ${ }^{(1)}$	$\mathrm{V}_{\mathrm{CC}}-2000$	V_{CC}-1550	V_{CC}-1150	V_{CC}-1925	V_{CC}-1630	$\mathrm{V}_{\mathrm{CC}}-1200$	mV
$\mathrm{V}_{\text {outPP }}$	Output Peak-to-Peak Voltage	200			200			mV
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}-1165$		$\mathrm{V}_{\mathrm{CC}}-880$	$\mathrm{V}_{\mathrm{CC}}-1165$		$\mathrm{V}_{\text {CC }}$-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\mathrm{V}_{\mathrm{CC}}-1810$		$\mathrm{V}_{\mathrm{CC}}-1475$	$\mathrm{V}_{\mathrm{CC}}-1810$		$\mathrm{V}_{\text {CC }}-1475$	mV
$V_{B B}$	Output Reference Voltage $I_{\mathrm{BB}}=200 \mu \mathrm{~A}$	$\mathrm{V}_{C C}-1400$		$\mathrm{V}_{\mathrm{CC}}-1200$	$\mathrm{V}_{\mathrm{CC}}-1400$		$\mathrm{V}_{\mathrm{CC}}-1200$	mV
V_{PP}	Differential Input Voltage ${ }^{(2)}$	0.12		1.3	0.12		1.3	mV
$\mathrm{V}_{\text {CMR }}$	Differential Cross Point Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.0$	mV
I_{N}	Input Current			± 150			± 150	$\mu \mathrm{A}$

1. Output termination voltage $\mathrm{V}_{T T}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ operation is supported but the power consumption of the device will increase.
2. $V_{P P}(D C)$ is the minimum differential input voltage swing required to maintain device functionality.
3. $\mathrm{V}_{\mathrm{CMR}}(\mathrm{DC})$ is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the $\mathrm{V}_{\mathrm{CMR}}$ (DC) range and the input swing lies within the $V_{P P}$ (DC) specification.
Table 6. DC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.8 \mathrm{~V}\right.$ to -3.135 V or $\mathrm{V}_{\mathrm{CC}}=3.135 \mathrm{~V}$ to $\left.3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right)$

Symbol	Characteristics	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		30	60		30	60	mA
V_{OH}	Output HIGH Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {CC }}$-1150	$\mathrm{V}_{\mathrm{CC}}-1020$	$\mathrm{V}_{\mathrm{CC}}-800$	$\mathrm{V}_{\mathrm{CC}}-1200$	$\mathrm{V}_{\text {CC }}-970$	$\mathrm{V}_{\mathrm{CC}}-750$	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage ${ }^{(1)}$	V_{CC}-1950	$\mathrm{V}_{\mathrm{CC}}-1620$	$\mathrm{V}_{\mathrm{CC}}-1250$	$\mathrm{V}_{C C}-2000$	$\mathrm{V}_{\mathrm{CC}}-1680$	$\mathrm{V}_{\mathrm{CC}}-1300$	mV
$V_{\text {outPP }}$	Output Peak-to-Peak Voltage	200			200			mV
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}-1165$		$\mathrm{V}_{\mathrm{CC}}-880$	$\mathrm{V}_{\mathrm{CC}}-1165$		$\mathrm{V}_{\mathrm{CC}}-880$	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\mathrm{V}_{\text {CC }}$-1810		$\mathrm{V}_{\mathrm{CC}}-1475$	$\mathrm{V}_{\mathrm{CC}}-1810$		V_{CC}-1475	mV
$V_{B B}$	Output Reference Voltage $I_{\mathrm{BB}}=200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-1400$		$\mathrm{V}_{\mathrm{CC}}-1200$	$\mathrm{V}_{C C}-1400$		$\mathrm{V}_{\mathrm{CC}}-1200$	mV
V_{PP}	Differential Input Voltage ${ }^{(2)}$	0.12		1.3	0.12		1.3	V
$\mathrm{V}_{\text {CMR }}$	Differential Cross Point Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.1$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.1$	V
I_{N}	Input Current			± 150			± 150	$\mu \mathrm{A}$

1. Output termination voltage $\mathrm{V}_{T T}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ operation is supported but the power consumption of the device will increase.
2. $V_{P P}(D C)$ is the minimum differential input voltage swing required to maintain device functionality.
3. $\mathrm{V}_{\mathrm{CMR}}(\mathrm{DC})$ is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the $\mathrm{V}_{\mathrm{CMR}}$ (DC) range and the input swing lies within the V_{PP} (DC) specification.
Table 7. AC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.8 \mathrm{~V} \text { to }-2.375 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V} \text { to } 3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right)^{(\mathbf{1})}$

Symbol	Characteristics	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Output Frequency	2			2			2			GHz
$t_{\text {pLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay (Differential) CLK to Q, \bar{Q}	300	355	425	300	375	475	300	400	525	ps
$\mathrm{t}_{\text {SKEW }}$	Within Device Skew Device-to-Device Skew (2)$\quad \mathrm{Q}, \overline{\mathrm{Q}}$		23	$\begin{gathered} 45 \\ 125 \end{gathered}$		23	$\begin{gathered} \hline 45 \\ 175 \end{gathered}$		23	$\begin{gathered} 45 \\ 225 \end{gathered}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter RMS (1ه)			1			1			1	ps
V_{PP}	Input Peak-to-Peak Voltage Swing (Differential)	200		1200	200		1200	200		1200	mV
$\mathrm{V}_{\text {CMR }}$	Differential Cross Point Voltage	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.2}$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.2$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{CC}}-1.2$	V
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time (20\%-80\%)	70		225	70		250	70		275	ps

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
2. Skew is measured between outputs under identical transitions.

Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS

CASE 948E-03
ISSUE B
PAGE 1 OF 3
20-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

CASE 948E-03

PACKAGE DIMENSIONS

```
    NOTES:
    1. CONTROLLING DIMENSION: MILLIMETER
    2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
3. DIMENSION DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE
    BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE
4
    DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION
        INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0. 25 PER SIDE.
5
    DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
        DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF
        THE DIMENSION AT MAXIMUM MATERIAL CONDITION.
    6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
    7 DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE -W-
```


CASE 948E-03 ISSUE B

PAGE 3 OF 3
20-LEAD TSSOP PACKAGE

Renesas

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

