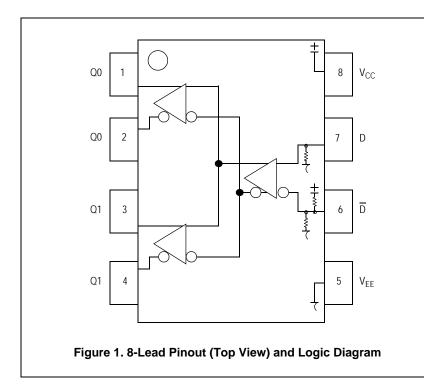
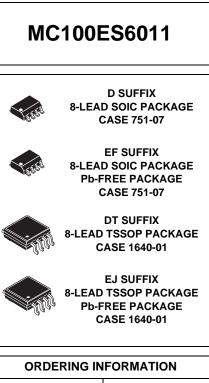
RENESAS 2.5 V/3.3 V ECL 1:2 Differential Fanout Buffer

Product Discontinuance Notice – Last Time Buy Expires on (12/19/2013)


DATASHEET


The MC100ES6011 is a differential 1:2 fanout buffer. The ES6011 is ideal for applications requiring lower voltage.

The 100ES Series contains temperature compensation.

Features

- 270 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- + ECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Open Input Default State
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- LVDS Input Compatible
- 8-Lead SOIC and TSSOP Pb-Free Packages Available
- Use replacement part: 853S011

IFORMATION
Package
SO-8
SO-8
SO-8 (Pb-Free)
SO-8 (Pb-Free)
TSSOP-8
TSSOP-8
TSSOP-8 (Pb-Free)
TSSOP-8 (Pb-Free)

PIN DESCRIPTION							
Pin	Function						
$D^{(1)}, \overline{D}^{(2)}$	ECL Data Inputs						
Q0, <u>Q0</u> Q1, <u>Q1</u>	ECL Data Outputs						
V _{CC}	Positive Supply						
V _{EE}	Negative Supply						

1. Pins will default LOW when left open.

 Pins will default to 0.572 V_{CC}/2 when left open.

Table 1. Attributes

Characteri	stics	Value		
Internal Input Pulldown Resistor	Pulldown Resistor			
Internal Input Pullup Resistor		56 kΩ		
ESD Protection	Human Body Model Machine Model Charged Device Model	> 4000 V > 200 V > 1500 V		
θ_{JA} Thermal Resistance (Junction to Ambient)	0 LFPM, 8 SOIC 500 LFPM, 8 SOIC	190°C/W 130°C/W		

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 2. Maximum Ratings⁽¹⁾

Symbol	Parameter	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between $V_{CC} \& V_{EE}$	3.9	V
V _{IN}	Input Voltage	$V_{CC}-V_{EE}$ < 3.6 V	V _{CC} +0.3 V _{EE} -0.3	V V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
TA	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature Range		-65 to +150	°C

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 3. DC Characteristics ($V_{CC} = 0 V$; $V_{EE} = -2.5 V \pm 5\%$ or $V_{CC} = 2.5 V \pm 5\%$; $V_{EE} = 0 V$)⁽¹⁾

Symbol	ol Characteristic -40°C				Unit			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		12	25		12	25	mA
V _{OH}	Output HIGH Voltage ⁽²⁾	V _{CC} -1135		V _{CC} -760	V _{CC} -1070		V _{CC} -760	mV
V _{OL}	Output LOW Voltage ⁽²⁾	V _{CC} -1950		V _{CC} -1350	V _{CC} -1950		V _{CC} -1520	mV
V _{OUTPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage (Single Ended)	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage (Single Ended)	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{PP}	Differential Input Voltage ⁽³⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽⁴⁾	V _{EE} +1.0		V _{CC} –0.8	V _{EE} +1.0		V _{CC} -0.8	V
I _{IN}	Input Current			±150			±150	μΑ

1. ES6011 circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow > 500 LFPM is maintained.

2. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

3. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

4. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Symbol	Characteristic		−40°C		(0°C to 85°C		Unit
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		12	25		12	25	mA
V _{OH}	Output HIGH Voltage ⁽²⁾	V _{CC} -1135		V _{CC} -760	V _{CC} -1070		V _{CC} –760	mV
V _{OL}	Output LOW Voltage ⁽²⁾	V _{CC} -1950		V _{CC} -1500	V _{CC} –1950		V _{CC} -1520	mV
V _{OUTPP}	Output Peak-to-Peak Voltage	200			200			mV
V_{IH}	Input HIGH Voltage (Single Ended)	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
VIL	Input LOW Voltage (Single Ended)	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{PP}	Differential Input Voltage ⁽³⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽⁴⁾	V _{EE} +1.0		V _{CC} –0.8	V _{EE} +1.0		V _{CC} –0.8	V
I _{IN}	Input Current			±150			±150	μA

Table 4. DC Characteristics (V_{CC} = 0 V; V_{EE} = -3.8 to -3.135 or V_{CC} = 3.8 to 3.135 V; V_{EE} = 0 V)⁽¹⁾

1. ES6011 circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow > 500 LFPM is maintained.

2. Output termination voltage $V_{TT} = 0$ V for $V_{CC} = 2.5$ V operation is supported but the power consumption of the device will increase.

3. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

4. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Table 5. AC Characteristics ($V_{CC} = 0 V$; $V_{EE} = -3.8$ to -2.375 or $V_{CC} = 2.375$ to $3.8 V$; $V_{EE} = 0 V$)	o –2.375 or V_{CC} = 2.375 to 3.8 V; V_{EE} = 0 V) ⁽¹⁾
--	---

Symbol	Characteristic	Characteristic		25°C			0°C to 85°C			Unit	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Frequency		> 3			> 3			> 3		GHz
t _{PLH,} t _{PHL}	Propagation Delay (Differential) CLK to Q, \overline{Q}	170	260	300	180	270	310	210	285	360	ps
t _{SKEW}	Within Device Skew Q, \overline{Q} Device-to-Device Skew ⁽²⁾		9	20 130		9	20 130		9	20 150	ps
t _{JITTER}	Cycle-to-Cycle Jitter RMS (1 σ)			1			1			1	ps
V _{PP}	Input Voltage Swing (Differential)	150		1200	150		1200	150		1200	mV
V _{CMR}	Differential Cross Point Voltage	V _{EE} +1.2		V _{CC} -1.1	V _{EE} +1.2		V _{CC} -1.1	V _{EE} +1.2		V _{CC} -1.1	V
t _r t _f	Output Rise/Fall Times (20% – 80%)	70		220	70		220	70		220	ps

1. Measured using a 750 mV source 50% Duty Cycle clock source. All loading with 50 Ω to V_{CC}–2.0 V.

2. Skew is measured between outputs under identical transitions.

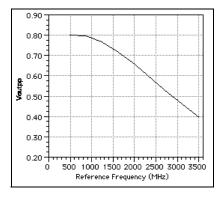


Figure 2. V_{OUTPP} versus Frequency

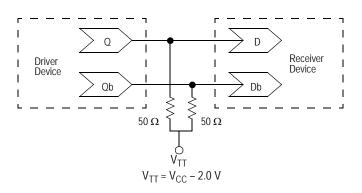
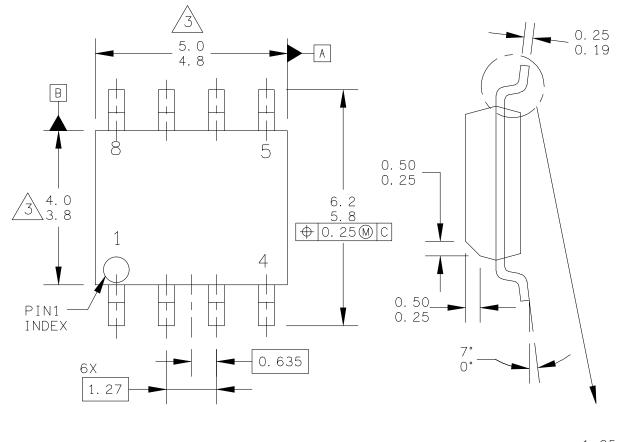
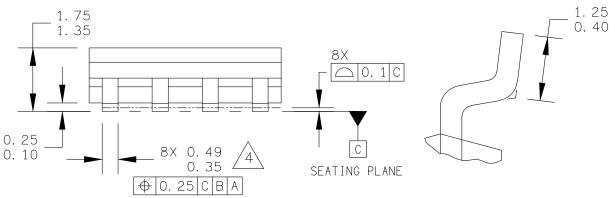
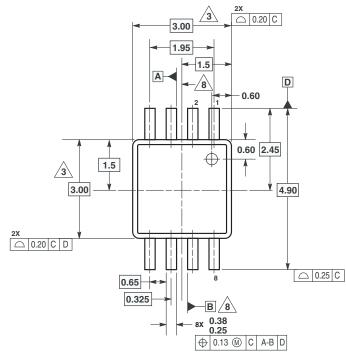




Figure 3. Typical Termination for Output Driver and Device Evaluation

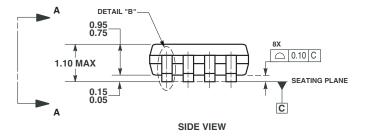
PACKAGE DIMENSIONS

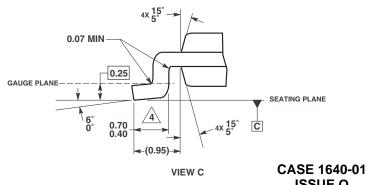
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW	CASE NUMBER	2: 751–07	07 APR 2005	
	STANDARD: JE	DEC MS-012AA		
	PAGE 1 OF 2			

PACKAGE DIMENSIONS

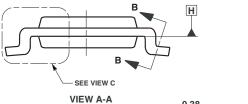

NOTES:

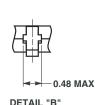
- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

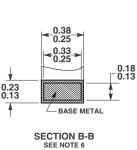

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW	BODY	CASE NUMBER	2:751-07	07 APR 2005
			DEC MS-012AA	
CASE 751-07 ISSUE U				PAGE 2 OF 2


8-LEAD SOIC PACKAGE

PACKAGE DIMENSIONS




TOP VIEW



ISSUE O 8-LEAD TSSOP PACKAGE

DETAIL "B" DAMBAR PROTRUSION

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- DIMENSIONS ARE IN MILLIMETERS.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT DATUM H, MOLD FLASH OR PROTRUSIONS, SHALL NOT EXCEED 0.15mm PER SIDE.
- A. DIMENSION IS THE LENGTH OF TERMINAL FOR SOLDERING TO A SUBSTRATE.
- SUBSINATE. OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.14mm SEE DETAIL "B" AND SECTION B-B.
- Construction of the second secon

Revision History Sheet

Rev	Table	Page	Description of Change	Date
5		1	Product Discontinuance Notice – Last Time Buy Expires on (12/19/2013)	2/5/2013
6		1	PDN# N-12-29 - Added - Use replacement part 853S011	10/4/13

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.