

Fifteen Output Differential Buffer w/2 input mux for PCle Gen1/2/3

9EX21531

Recommended Application:

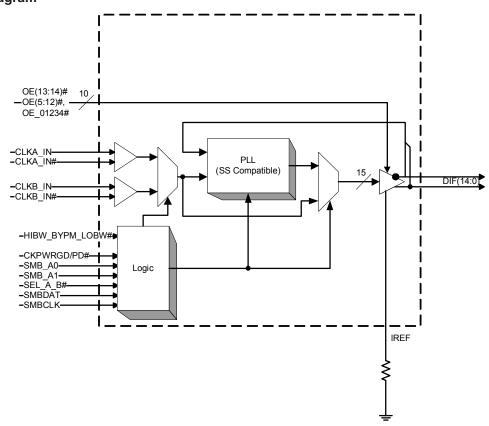
15 Output PCIe G3 Differential Buffer with 2:1 input mux

General Description

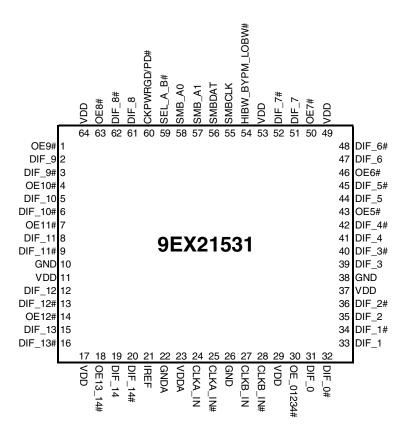
The ICS9EX21531 provides 15 output clocks for PCIe Gen1/2/3 applications. The 9EX21531 has 4 selectable SMBus addresses, and dedicated CKPWRGD/PD# and VDDA pins for easy board design. A differential clock from a CK410B+ or CK420BQ main clock generator, such as the ICS932S421, drives the ICS9EX21531. In fanout mode, the 9EX21531 provides outputs up to 166MHz.

Output Features:

15 - 0.7V current mode differential HSCL output pairs


Features/Benefits:

- Pin compatible to 9EX21501/ Easy PCIe Gen3 upgrade
- 4 Selectable SMBus Addresses/Mulitple devices can share the same SMBus Segment
- 8 dedicated and 2 group OE# pins/Hardware control of the outputs
- PLL or bypass mode/PLL can dejitter incoming clock
- Selectable PLL bandwidth/minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible/tracks spreading input clock for low EMI
- SMBus Interface/unused outputs can be disabled
- Undriven differential outputs in Power Down mode/ Easy power management


Key Specifications:

- Cycle-to-cycle jitter <50ps
- Output-to-output skew < 150 ps
- PCle Gen3 phase jitter < 1.0ps RMS

Functional Block Diagram

Pin Configuration

Power Groups

Pin Numb	Pin Number					
VDD	GND	Description				
23	22	Main PLL, Analog				
29	26	Input buffers				
11,17,37,49,53,64	10, 38	DIF clocks				

Power Down Functionality

INPUTS		OUTPUTS	PLL State	
CKPWRGD/PD#	Input	DIF_x	PLL State	
1	Running	Running	ON	
0	0 X		OFF	

HIBW_BYPM_LOBW# Selection (Pin 54)

State	Voltage	Mode
Low	<0.8V	Low BW
Mid	1.2 <vin<1.8v< td=""><td>Bypass</td></vin<1.8v<>	Bypass
High	Vin > 2.0V	High BW

SMBus Address Selection (pins 57, 58)

SMB_A1	SMB_A0	Address
0	0	D4
0	1	D6
1	0	D8
1	1	DA

Pin Description

PIN#	PIN NAME	TYPE	DESCRIPTION
			Active low input for enabling DIF pair 9.
1	OE9#	IN	1 = tri-state outputs, 0 = enable outputs
2	DIF 9	OUT	0.7V differential true clock output
	DIF_9#	OUT	0.7V differential complement clock output
			Active low input for enabling DIF pair 10.
4	OE10#	IN	1 = tri-state outputs, 0 = enable outputs
5	DIF_10	OUT	0.7V differential true clock output
6	DIF 10#	OUT	0.7V differential complement clock output
			Active low input for enabling DIF pair 11.
7	OE11#	IN	1 = tri-state outputs, 0 = enable outputs
8	DIF_11	OUT	0.7V differential true clock output
9	DIF_11#	OUT	0.7V differential complement clock output
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF 12	OUT	0.7V differential true clock output
13	DIF 12#	OUT	0.7V differential complement clock output
	_		Active low input for enabling DIF pair 12.
14	OE12#	IN	1 = tri-state outputs, 0 = enable outputs
15	DIF_13	OUT	0.7V differential true clock output
16	DIF_13#	OUT	0.7V differential complement clock output
17	VDD	PWR	Power supply, nominal 3.3V
			Active low input for enabling DIF pairs 13 and 14
18	OE13_14#	IN	1 = tri-state outputs, 0 = enable outputs
19	DIF_14	OUT	0.7V differential true clock output
20	DIF_14#	OUT	0.7V differential complement clock output
			This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed
21	IREF	OUT	precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
22	GNDA	PWR	Ground pin for the PLL core.
23	VDDA	PWR	3.3V power for the PLL core.
24	CLKA IN	IN	True Input for differential reference clock.
25	CLKA IN#	IN	Complement Input for differential reference clock.
26	GND	PWR	Ground pin.
27	CLKB IN	IN	True Input for differential reference clock.
28	CLKB IN#	IN	Complement Input for differential reference clock.
29	VDD	PWR	Power supply, nominal 3.3V
			Active low input for enabling DIF pairs 0, 1, 2, 3 and 4.
30	OE_01234#	IN	1 = tri-state outputs, 0 = enable outputs
31	DIF 0	OUT	0.7V differential true clock output
32	DIF_0#	OUT	0.7V differential complement clock output
	120"		on a more man compression or out of the

Pin Description (Continued)

	DIF_2	OUT	0.7V differential true clock output
	DIF_2#	OUT	0.7V differential complement clock output
	VDD	PWR	Power supply, nominal 3.3V
	GND	PWR	Ground pin.
	DIF_3	OUT	0.7V differential true clock output
	DIF_3#	OUT	0.7V differential complement clock output
	DIF_4	OUT	0.7V differential true clock output
42	DIF_4#	OUT	0.7V differential complement clock output
43	OE5#	IN	Active low input for enabling DIF pair 5.
			1 = tri-state outputs, 0 = enable outputs
	DIF_5	OUT	0.7V differential true clock output
45	DIF_5#	OUT	0.7V differential complement clock output
46	OE6#	IN	Active low input for enabling DIF pair 6.
			1 = tri-state outputs, 0 = enable outputs
	DIF_6	OUT	0.7V differential true clock output
	DIF_6#	OUT	0.7V differential complement clock output
49	VDD	PWR	Power supply, nominal 3.3V
50	OE7#	IN	Active low input for enabling DIF pair 7.
			1 = tri-state outputs, 0 = enable outputs
	DIF_7	OUT	0.7V differential true clock output
	DIF_7#	OUT	0.7V differential complement clock output
53	VDD	PWR	Power supply, nominal 3.3V
54	HIBW BYPM LOBW#	IN	Trilevel input to select High BW, Bypass Mode or Low BW.
			0 = Low BW Mode, Mid= Bypass Mode, 1 = High Bandwidth
	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
	SMB_A1	IN	SMBus address bit 1
58	SMB_A0	IN	SMBus address bit 0 (LSB)
59	SEL_A_B#	IN	Input to select differential input clock A or differential input clock B.
			0 = Input B selected, 1 = Input A selected.
60	CKPWRGD/PD#	IN	Notifies the clock to sample latched inputs on the rising edge, and to power down on the falling edge.
	DIF_8	OUT	0.7V differential true clock output
62	DIF_8#	OUT	0.7V differential complement clock output
00	OE8#	IN	Active low input for enabling DIF pair 8.
		I IIN	
	VDD	PWR	1 = tri-state outputs, 0 = enable outputs Power supply, nominal 3.3V

Electrical Characteristics - Absolute Maximum Ratings

		9			ī		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	٧	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	ů	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Parameters

 $TA = T_{COM}$ or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	PIMITS	NOTES
Ambient Operating	OTWIDOL	CONDITIONS	IVIIIV	- ' ' '	IVIAA	CIVITO	NOTES
Temperature	T _{COM}	Commmercial range	0		70	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	V	1,6
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	٧	1,6
	I_{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	$\label{eq:Single-ended} Single-ended inputs \\ V_{IN} = 0 \text{ V}; \text{ Inputs with internal pull-up resistors} \\ V_{IN} = \text{VDD}; \text{ Inputs with internal pull-down resistors}$	-200		200	uA	1
Innut Francisco	F _{ibyp}	V _{DD} = 3.3 V, Bypass mode	33		167	MHz	2
Input Frequency	F _{ipII}	V _{DD} = 3.3 V, 100MHz PLL mode	80	100	110	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
'	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.50	1	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	cycles	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				0.8	٧	1
SMBus Input High Voltage	V_{IHSMB}		2.1		V_{DDSMB}	٧	1
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	٧	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	$V_{\rm DDSMB}$	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

 $^{^1\}mbox{Guaranteed}$ by design and characterization, not 100% tested in production.

 $^{^{\}rm 2}\,{\rm Operation}$ under these conditions is neither implied nor guaranteed.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

 $^{^{\}rm 6}$ See the functionality tables for the thresholds for the tri-level and low threshold inputs.

Electrical Characteristics - Clock Input Parameters

TA = T_{COM}: Supply Voltage VDD = 3.3 V +/-5%

Tr. Tooly, Capping Tollage		., .,.					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - DIF 0.7V Current Mode Differential Outputs

 $T_A = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

7. 00, 117							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1		4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging	660		850	mV	1
Voltage Low	VLow	on)	-150		150	IIIV	1
Max Voltage	Vmax	Measurement on single ended signal using absolute			1150	mV	1
Min Voltage	Vmin	value. (Scope averaging off)	-300			IIIV	1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250		550	mV	1, 5
Crossing Voltage (var)	∆-Vcross	Scope averaging off			140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475Ω (1%), I_{REF} = 2.32mA. I_{OH} = $6 \times I_{REF}$ and V_{OH} = 0.7V @ Z_O=50Ω (100Ω differential impedance).

Electrical Characteristics - Current Consumption

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V} + /-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	VDD rail. All outputs active @100MHz, $C_L =$ Full load;		300	350	mA	1
	I _{DD3.3AOP}	VDDA rail. All outputs active @100MHz, $C_L =$ Full load;		30	40	mA	1
Powerdown Current	I _{DD3.3PDZ}	VDD Rail, All differential pairs tri-stated		12	15	mA	1
	I _{DD3.3APDZ}	VDDA Rail, All differential pairs tri-stated		13	18	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

Electrical Characteristics - Skew and Differential Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V} + /-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	O I WIDOL	Input-to-Output Skew in PLL mode				JINITO	
CLK_IN, DIF[x:0]	t _{SPO_PLL}	nominal value @ 25°C, 3.3V	900	1000	1125	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3V	4000	4700	5200	ns	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_PLL}	Input-to-Output Skew Varation in PLL mode across voltage and temperature		12501	13501	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_BYP}	Input-to-Output Skew Varation in Bypass mode across voltage and temperature		18001	19001	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DTE}	Random Differential Tracking error beween two 9EX devices in Hi BW Mode		2	5	ps (rms)	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSSTE}	Random Differential Spread Spectrum Tracking error beween two 9EX devices in Hi BW Mode		20	75	ps	1,2,3,5,8
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		75	150	ps	1,2,3,8
PLL Jitter Peaking	j peak-hibw	LOBW#_BYPASS_HIBW = 1	0	2.5	3	dB	7,8
PLL Jitter Peaking	jpeak-lobw	LOBW#_BYPASS_HIBW = 0	0	2	2.5	dB	7,8
PLL Bandwidth	pll _{HIBW}	LOBW#_BYPASS_HIBW = 1	2	3	4	MHz	8,9
PLL Bandwidth	pll _{LOBW}	LOBW#_BYPASS_HIBW = 0	0.7	1	1.4	MHz	8,9
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	0	2	%	1,10
Jitter, Cycle to cycle	t.	PLL mode		30	50	ps	1,11
onter, cycle to cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		20	50	ps	1,11

Notes for preceding table:

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point.

³ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁴ This parameter is deterministic for a given device

⁵ Measured with scope averaging on to find mean value.

⁶ t is the period of the input clock

⁷ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

^{8.} Guaranteed by design and characterization, not 100% tested in production.

⁹ Measured at 3 db down or half power point.

¹⁰ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode

¹¹ Measured from differential waveform

Electrical Characteristics - Phase Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V +/-5}\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		39	86	ps (p-p)	1,2,3
	t _{jphPCle} G2	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.3	3	ps (rms)	1,2
Phase Jitter, PLL Mode		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.0	3.1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.6	1	ps (rms)	1,2,4
	t _{jphPCleG1}	PCle Gen 1		1.4	10	ps (p-p)	1,2,3
Additive Phase Jitter,		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.30	0.4	ps (rms)	1,2,6
Bypass Mode	t _{jphPCle} G2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.24	0.5	ps (rms)	1,2,6
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.07	0.3	ps (rms)	1,2,4,5,6

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² - (total jitter)² - (input jitter)²

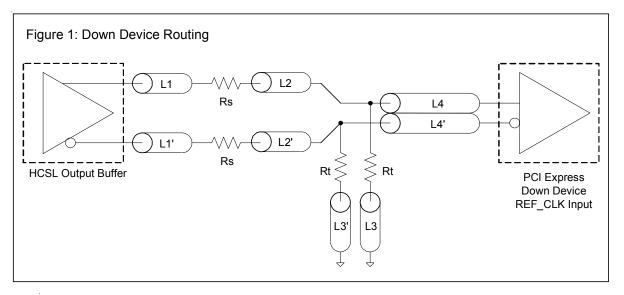
Clock Periods Differential Outputs with Spread Spectrum Enabled

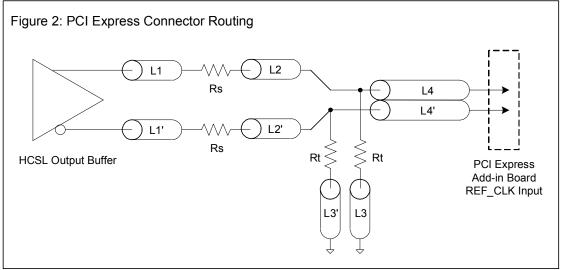
	urement ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	mbol		-SSC		0.15 Oppm	+ ppm error	+SSC		1	
Oy.	111501	Lg-	-330	-ppm error	оррін	+ ppili elloi	+330	Lg+	1	
		Absolute	Short-term	Long-Term	Period	Long-Term	Term Short-term	hort-term Period		
		Period	Average	Average	renou	Average	Average	renou		
Defi	inition	Minimum	Minimum	Minimum						
		Absolute	Absolute	Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
DIF	DIF 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2,3

Clock Periods Differential Outputs with Spread Spectrum Disabled

	urement ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Syı	mbol	Lg-	-ssc	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
				Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Defi	inition	Minimum Absolute	Minimum Absolute	Minimum Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
DIF	DIF 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2,3

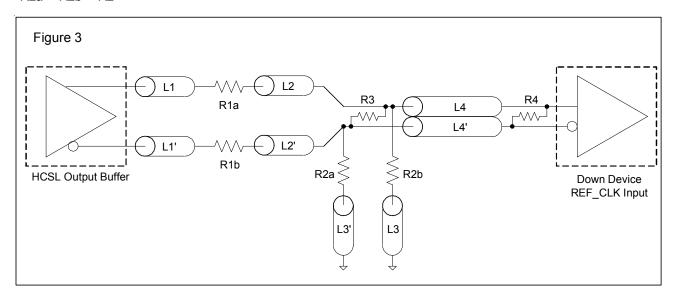
¹Guaranteed by design and characterization, not 100% tested in production.

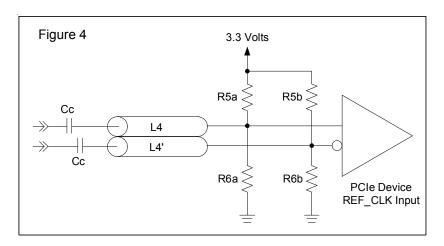

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+/CK420BQ accuracy requirements. The 9EX21831 itself does not contribute to ppm error.


³ Driven by SRC output of main clock, PLL or Bypass mode

DIF Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note			
0.45v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			

R1a = R1b = R1R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)								
Component	Value	Note						
R5a, R5b	8.2K 5%							
R6a, R6b	1K 5%							
Cc	0.1 μF							
Vcm	0.350 volts							

9EX21531

General SMBus serial interface information for the 9EX21531

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D4_(H)
- ICS clock will acknowledge
- · Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X (H)) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block W	/rit	e Operation
Cor	ntroller (Host)	ICS (Slave/Receiver)	
Т	starT bit		
Slav	e Address D4 _(H)		
WR	WRite		
	•		ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begin	ning Byte N		
			ACK
	\Diamond	ţe	
	\Diamond	X Byte	♦
	\Q	×	\Q
			\Q
Byte N + X - 1			
	•		ACK
Р	stoP bit		

Note: The SMBus addresses assume that the select pins are '00'

Ind	ex Block Rea	ad	Operation			
Con	troller (Host)	IC	S (Slave/Receiver)			
T	starT bit					
Slave	Address D4 _(H)					
WR	WRite					
	•		ACK			
Begir	nning Byte = N					
			ACK			
RT	Repeat starT					
Slave	Address D5 _(H)					
RD	ReaD					
	-	ACK				
		D	Data Byte Count = X			
	ACK					
			Beginning Byte N			
	ACK					
		X Byte	\Diamond			
	♦	B	\rightarrow			
	♦	×	\Q			
	\rightarrow					
			Byte N + X - 1			
N						
Р	stoP bit					

SMBusTable: Output, and PLL BW Control Register

Byte	e 0 P	Pin #	Name	Control Function	Туре	0	0 1	
Bit 7	5.4		PLL_B\	N# adjust	RW	00 = Low BW (1MHz) 10 = Bypass		Latch
Bit 6	6 BYPASS# te			est mode / PLL	RW	11 = High BW (3MHz)		Latch
Bit 5				RESERVED				1
Bit 4			DIF_14	Output Control	RW	Hi-Z	Enable	1
Bit 3				RESERVED				0
Bit 2				RESERVED				
Bit 1	_			RESERVED				
Bit 0				RESERVED				1

SMBusTable: Output Control Register

Byte 1	Pin #	Name	Control Function	Type	0	1	Default	
Bit 7			RESERVED					
Bit 6		DIF_6	Output Control	RW	Hi-Z	Enable	1	
Bit 5		DIF_5	Output Control	RW	Hi-Z	Enable	1	
Bit 4		DIF_4	Output Control	RW	Hi-Z	Enable	1	
Bit 3		DIF_3	Output Control	RW	Hi-Z	Enable	1	
Bit 2		DIF_2	Output Control	RW	Hi-Z	Enable	1	
Bit 1		DIF_1	Output Control	RW	Hi-Z	Enable	1	
Bit 0		DIF_0	Output Control	RW	Hi-Z	Enable	1	

SMBusTable: Output Control Register

Byte	e 2	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	DIF_13		DIF_13	Output Control	RW	Hi-Z	Enable	1
Bit 6				RESERVED				1
Bit 5	DIF_12 Output Control RW Hi-Z		Enable	1				
Bit 4			DIF_11	Output Control	RW	Hi-Z	Enable	1
Bit 3			DIF_10	Output Control	RW	Hi-Z	Enable	1
Bit 2			DIF_9	Output Control	RW	Hi-Z	Enable	1
Bit 1	·		DIF_8	Output Control	RW	Hi-Z	Enable	1
Bit 0		·	DIF_7	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output Enable Readback Register

Byte	e 3 Pin #	Name Control Function Type 0 1		Default			
Bit 7	4	OE10# Input	Pin Readback	R	Pin Low	Pin Hi	Х
Bit 6	1	OE9# Input	Pin Readback	R	Pin Low	Pin Hi	Х
Bit 5	63	OE8# Input	Pin Readback	R	Pin Low	Pin Hi	Х
Bit 4	50	OE7# Input	Pin Readback	R	Pin Low	Pin Hi	Х
Bit 3			RESERVED				1
Bit 2	46	OE6# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 1	43	OE5# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 0	30	OE_01234# Input	Pin Readback	R	Pin Low	Pin Hi	Х

SMBusTable: Output Enable Readback Register

Byte	e 4	Pin #	Name	Control Function	Type	0 1		Default		
Bit 7				RESERVED						
Bit 6				RESERVED						
Bit 5				RESERVED						
Bit 4			SEL_A_B# Input	Pin Readback	R	Input B	Input A	Χ		
Bit 3		18	OE13_14# Input	Pin Readback	R	Pin Low	Pin Hi	Χ		
Bit 2				RESERVED				1		
Bit 1		14	OE12# Input	Pin Readback	R	Pin Low	Pin Hi	Χ		
Bit 0		7	OE11# Input	Pin Readback	R	Pin Low	Pin Hi	Χ		

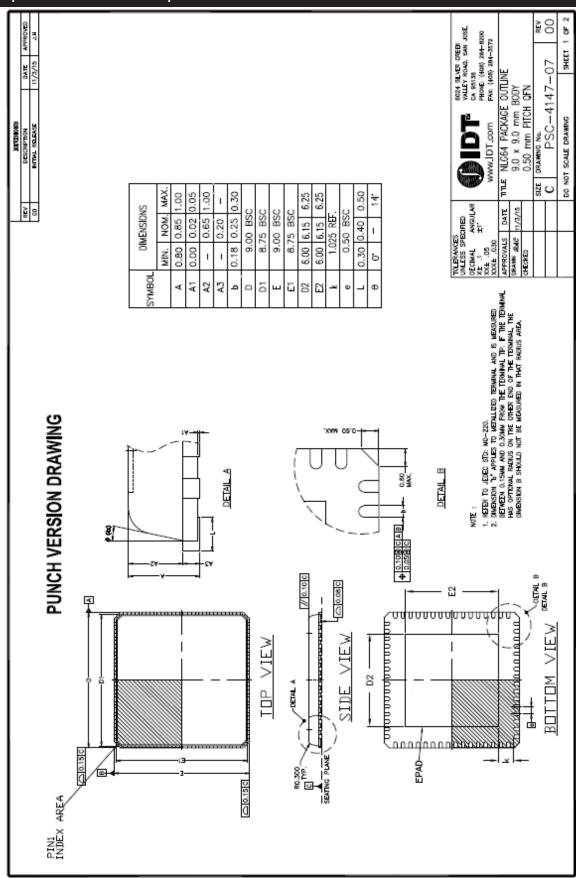
Note: For an output to be enabled, BOTH the Output Enable Bit and the OE# pin must be enabled. This means that the Output Enable Bit must be '1' and the corresponding OE# pin must be '0'.

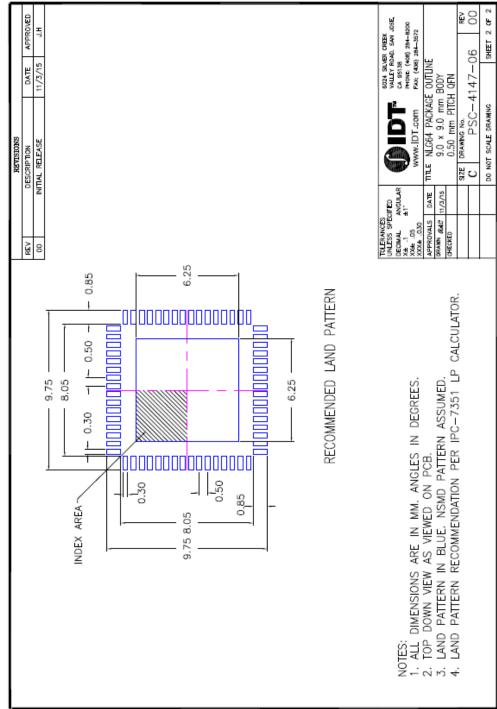
SMBusTable: Vendor & Revision ID Register

Singustration volidor a rievicion is riegicio.								
Byte 5	Pin #	Name	Control Function	Type	0	1	Default	
Bit 7	-	RID3	REVISION ID	R	-	-	0	
Bit 6	-	RID2		R	-	-	0	
Bit 5	-	RID1		R	-	-	0	
Bit 4	-	RID0		R	-	-	1	
Bit 3	-	VID3		R	-	-	0	
Bit 2	-	VID2	VENDODID	R	-	-	0	
Bit 1	-	VID1	VENDOR ID	R	-	-	0	
Bit 0	-	VID0		R	-	-	1	

SMBusTable: DEVICE ID

Byte	e 6 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	- Device ID 7 (MSB)		R			0	
Bit 6	- Device ID 6		R			0	
Bit 5	-	Devi	Device ID 5		1		0
Bit 4	-	Devi	Device ID 4		Device ID	ic 10 hov	1
Bit 3	-	Devi	ce ID 3	R	Device ID	15 TO HEX	1
Bit 2	-	Devi	ce ID 2	R			0
Bit 1	-	Devi	Device ID 1				0
Bit 0	-	Devi	ce ID 0	R	1		0


SMBusTable: Byte Count Register


Byte	e 7 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5	Writing to this register	RW	-	-	0
Bit 4	-	BC4	Writing to this register	RW	-	-	0
Bit 3	-	BC3	configures how many bytes will be read back.	RW	-	-	0
Bit 2	-	BC2	bytes will be read back.	RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1

SMBus Address Mapping

	Main								
SMBus Address	Clock								
(Hex)	(CKxxx)	9DB233	9DB433	9DB633	9DB833	9DB1233	9DB1933	9EX21531	9EX21831
D0							✓		
D2	✓						✓		
D4		✓		✓		✓	✓	✓	✓
D6						✓	✓	✓	✓
D8			✓		✓		✓	✓	✓
DA			✓		✓		✓	✓	✓
DC			✓		✓	✓	✓		
DE							√		

Note: ✓	Indicates	Bypass Mode.	PLL is OFF.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9EX21531AKLF	Tubes	64-pin MLF	0 to +70° C
9EX21531AKLFT	Tape and Reel	64-pin MLF	0 to +70° C

[&]quot;LF" suffix to the part number are the Pb-free configuration and are RoHS compliant.

Due to package size constraints top side marking may differ from the full orderable part number.

[&]quot;A" is the revision designator (will not correlate with datasheet revision).

9EX21531 Fifteen Output Differential Buffer w/2 input mux for PCle Gen1/2/3

Revision History

Rev.	Issue Date	Who	Description	Page #
Α	7/13/2010	RDW	Going to final	
			1. Updated data sheet title and general description to indicate PCIe Gen	
В	3/22/2012	RDW	1/2/3 instead of PCIe Gen3.	1, 8
			2. Updated phase jitter table.	
С	10/25/2016	RDW	Updated POD with latest document	16, 17

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.