ICS93716

RENESAS

Low Cost DDR Phase Lock Loop Clock Driver

Recommended Application:

DDR Clock Driver

Product Description/Features:

- Low skew, low jitter PLL clock driver
- I²C for functional and output control
- · Feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- Bypass mode on B revision only

Switching Characteristics:

- PEAK PEAK jitter (66MHz): <75ps
- CYCLE CYCLE jitter (>100MHz):<65ps
- OUTPUT OUTPUT skew: <100ps
- Output Rise and Fall Time: 550ps 950ps

Pin Configuration CLKC0 GND 28 CLKT0 2 27 CLKC5 3 VDD . 26 CLKT5 CLKT1 4 25 CLKC4 5 CLKT4 CLKC1 24 ICS93716 GND 6 23 VDD 7 SCLK 22 SDATA CLK_INT 8 21 FBINC CLK_INC 9 20 FBINT VDDA 10 19 FB_OUTT FB_OUTC GND -11 18 VDD 12 17 CLKT3 CLKT2 CLKC3 13 16 CLKC2 14 GND 15

28-Pin SSOP and TSSOP

Functionality

	INPUTS		(PLL State		
AVDD	CLK_INT	CLK_INC	CLKT	CLKC	FB_OUTT	FB_OUTC	FLL State
2.5V (nom)	L	Н	L	Н	L	Н	on
2.5V (nom)	Н	L	н	L	н	L	on
2.5V (nom)	<20MHz		z	Z	Z	Z	off
GND	L	Н	L	Н	L	Н	Bypassed/off
GND	Н	L	Н	L	Н	L	Bypassed/off

Block Diagram

© 2019 Renesas Electronics Corporation

Pin Descriptions

PIN NUMBER	PIN NAME	ТҮРЕ	DESCRIPTION
6, 11, 15, 28	GND	PWR	Ground
27, 25, 16, 14, 5, 1	CLKC(5:0)	OUT	"Complementary" clocks of differential pair outputs.
26, 24, 17, 13, 4, 2	CLKT(5:0)	OUT	"True" Clock of differential pair outputs.
3, 12, 23	VDD	PWR	Power supply 2.5V
7	SCLK	IN	Clock input of I ² C input, 5V tolerant input
8	CLK_INT	IN	"True" reference clock input
9	CLK_INC	IN	"Complementary" reference clock input
10	VDDA	PWR	Analog power supply, 2.5V
18	FB_OUTC	OUT	"Complementary" Feedback output, dedicated for external feedback. It switches at the same frequency as the CLK. This output must be wired to FB_INC.
19	FB_OUTT	OUT	"True" " Feedback output, dedicated for external feedback. It switches at the same frequency as the CLK. This output must be wired to FB_INT.
20	FB_INT	IN	"True" Feedback input, provides feedback signal to the internal PLL for synchronization with CLK_INT to eliminate phase error.
21	FB_INC	IN	"Complementary" Feedback input, provides signal to the internal PLL for synchronization with CLK_INC to eliminate phase error.
22	SDATA	IN	Data input for I ² C serial input, 5V tolerant input

Byte 0: Output Control (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	2, 1	1	CLKT0, CLKC0
Bit 6	4, 5	1	CLKT1, CLKC1
Bit 5	-	1	Reserved
Bit 4	-	1	Reserved
Bit 3	13, 14	1	CLKT2, CLKC2
Bit 2	26, 27	1	CLKT5, CLKC5
Bit 1	-	1	Reserved
Bit 0	24, 25	1	CLKT4, CLKC4

Byte 2: Reserved (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION				
Bit 7	-	Х	Reserved				
Bit 6	-	Х	Reserved				
Bit 5	-	Х	Reserved				
Bit 4	-	Х	Reserved				
Bit 3	-	Х	Reserved				
Bit 2	-	Х	Reserved				
Bit 1	-	Х	Reserved				
Bit 0	-	Х	Reserved				

Byte 4: Reserved

(1= enable, 0 = disable)	(1=	enable,	0 = dis	sable)
--------------------------	-----	---------	---------	--------

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	Reserved
Bit 6	-	Х	Reserved
Bit 5	-	Х	Reserved
Bit 4	-	Х	Reserved
Bit 3	-	Х	Reserved
Bit 2	-	Х	Reserved
Bit 1	-	Х	Reserved
Bit 0	-	Х	Reserved

Byte 1: Output Control (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	Reserved
Bit 6	17, 16	1	CLKT3, CLKC3
Bit 5	-	Х	Reserved
Bit 4	-	Х	Reserved
Bit 3	-	Х	Reserved
Bit 2	-	Х	Reserved
Bit 1	-	Х	Reserved
Bit 0	-	Х	Reserved

Byte 3: Reserved (1= enable, 0 = disable)

<u>`</u>			
BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	Reserved
Bit 6	-	Х	Reserved
Bit 5	-	Х	Reserved
Bit 4	-	Х	Reserved
Bit 3	-	Х	Reserved
Bit 2	-	Х	Reserved
Bit 1	-	Х	Reserved
Bit 0	-	Х	Reserved

Byte 5: Reserved (1= enable, 0 = disable)

(
BIT	PIN#	PWD	DESCRIPTION				
Bit7	-	0	Reserved (Note)				
Bit6	-	0	Reserved (Note)				
Bit5	-	0	Reserved (Note)				
Bit4	-	0	Reserved (Note)				
Bit3	-	0	Reserved (Note)				
Bit2	-	1	Reserved (Note)				
Bit1	-	1	Reserved (Note)				
Bit0	-	0	Reserved (Note)				

Note: Don't write into this register, writing into this register can cause malfunction

© 2019 Renesas Electronics Corporation

Absolute Maximum Ratings

Supply Voltage (VDD & AVDD)	-0.5V to 4.6V
Logic Inputs	GND - 0.5V to V_{DD} + 0.5V
Ambient Operating Temperature	0°C to +85°C
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$T_A = 0$ - 85C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V, $H_L = 120\Omega$, $C_L = 15$ pF (unless otherwise stated)							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input High Current	I _{IH}	$V_{I} = V_{DD}$ or GND	5			μA	
Input Low Current	IIL	$V_{I} = V_{DD}$ or GND			5	μA	
Operating Supply	I _{DD2.5}	$R_L = 120\Omega, C_L = 0pf @ 170MHz$		250	350	mA	
Current	I _{DDPD}	$C_L = 0pf$		65	90	mA	
Input Clamp Voltage	V _{IK}	$V_{DDQ} = 2.3V \text{ lin} = -18\text{mA}$			-1.2	V	
High-level output	V _{он}	I _{OH} = -1 mA	V _{DD} - 0.1			V	
voltage	V OH	I _{OH} = -12 mA	1.7			V	
Low-level output voltage	V.	I _{OL} =1 mA			0.1	V	
Low-level output voltage	V _{OL}	I _{OL} =12 mA			0.6	V	
Input Capacitance ¹	C _{IN}	$V_I = GND \text{ or } V_{DD}$		3		pF	
Output Capacitance ¹	COUT	$V_{OUT} = GND \text{ or } V_{DD}$		3		pF	

 $T_A = 0 - 85C$; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V, $R_L = 120\Omega$, $C_L=15pF$ (unless otherwise stated)

¹Guaranteed by design at 233MHz, not 100% tested in production.

DC Electrical Characteristics (see note1)

 $T_A = 0 - 85^{\circ}C$; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DDQ}, A_{VDD}		2.3	2.5	2.7	V
Low level input voltage	V _{IL}	CLK_INT, CLK_INC, FB_INC, FB_INT		0.4	V _{DD} /2 - 0.18	V
		SCLK, SDATA	-0.3		0.7	V
High level input voltage	V _{IH}	CLK_INT, CLK_INC, FB_INC, FB_INT	V _{DD} /2 + 0.18	2.1		V
		SCLK, SDATA	1.7		5	V
DC input signal voltage (note 2)	V _{IN}		-0.3		V _{DD} + 0.3	v
Differential input signal	V	DC - CLK_INT, CLK_INC, FB_INC, FB_INT	0.36		V _{DD} + 0.6	V
voltage (note 3)	V _{ID}	AC - CLK_INT, CLK_INC, FB_INC, FB_INT	0.7		V _{DD} + 0.6	V
Output differential cross- voltage (note 4)	V _{OX}		V _{DD} /2 - 0.15		V _{DD} /2 + 0.15	V
Input differential cross- voltage (note 4)	V _{IX}		V _{DD} /2 - 0.2	V _{DD} /2	$V_{DD}/2 + 0.2$	V
High Impedance Output Current	I _{OZ}	V_{DD} =2.7V, V_{OUT} = V_{DD} or GND		0.1	±5	μA
Operating free-air temperature	T _A		0		85	°C

Notes:

- 1. Unused inputs must be held high or low to prevent them from floating.
- 2. DC input signal voltage specifies the allowable DC excursion of differential input.
- 3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VTR is the true input level and VCP is the complementary input level.
- 4. Differential cross-point voltage is expected to track variations of V_{DD} and is the voltage at which the differential signal crosses.

Timing Requirements

 T_A = 0 - 85C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V, R_L = 120 $\Omega,\ C_L$ =15pF (unless otherwise

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency ³	freq _{op}		33	233	MHz
Application Frequency Range ³	freq _{App}		60	170	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			100	μs

Switching Characteristics

 $T_A = 0 - 85C$; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V, $R_L = 120$, $C_L=15pF$ (unless otherwise stated)

<i>// // // 3</i>	,	, E ,				,
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Low-to high level	t _{PLH} 1	CLK_IN to any output		5.5		ns
propagation delay time	^L PLH	CER_IN to any output		5.5		115
High-to low level propagation	t _{PHL} 1	CLK_IN to any output		5.5		ns
delay time	^I PHL	CER_IN to any output		5.5		115
Duty Cycle	DC		49		51	%
Input clock slew rate	t _{sl(I)}		1		4	v/ns
Cycle to Cycle Jitter ¹	t _{cyc} -t _{cyc}	100MHz < f < 170MHz		50	65	ps
Cycle to Cycle Jitter ¹	t _{cyc} -t _{cyc}	f=66MHz		72	75	ps
Phase error	t _(phase error) 4		-150	0	150	ps
Output to Output Skew	t _{skew}			75	100	ps
Rise Time, Fall Time	t _r , t _f	See figure 8	550		950	ps

Notes:

1. Refers to transition on noninverting output in PLL bypass mode.

2. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle=t_{wH}/t_c, were the cycle (t_c) decreases as the frequency goes up.

3. Switching characteristics guaranteed for application frequency range.

4. Static phase offset shifted by design.

 $t_{jit(cc)} = t_{c(n)} \pm t_{c(n+1)}$

Figure 3. Cycle-to-Cycle Jitter

Parameter Measurement Information

⁰⁴²⁰H-09/10/08

^{© 2019} Renesas Electronics Corporation

Parameter Measurement Information

Figure 8. Input and Output Slew Rates

⁰⁴²⁰H-09/10/08

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will *acknowledge*
- Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 5
- ICS clock will *acknowledge* each byte *one at a time*.
- Controller (host) sends a Stop bit

How to Write:					
Controller (Host)	ICS (Slave/Receiver)				
Start Bit					
Address					
D2 _(H)					
	ACK				
Dummy Command Code					
	ACK				
Dummy Byte Count					
	ACK				
Byte 0					
	ACK				
Byte 1					
	ACK				
Byte 2					
	ACK				
Byte 3					
	ACK				
Byte 4					
	ACK				
Byte 5					
	ACK				
Stop Bit					

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4** "**Block-Read**" **protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

0420H-09/10/08

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 5
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:				
Controller (Host)	ICS (Slave/Receiver)			
Start Bit				
Address				
D3 _(H)				
	ACK			
	Byte Count			
ACK				
	Byte 0			
ACK				
	Byte 1			
ACK				
	Byte 2			
ACK				
-	Byte 3			
ACK				
	Byte 4			
ACK				
1.01/	Byte 5			
ACK				
Stop Bit				

	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
А		2.00		.079	
A1	0.05		.002		
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
E	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 BASIC		0.0256 BASIC		
L	0.55	0.95	.022	.037	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

Ν	D mm.		D (inch)	
IN	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

Ordering Information

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
OTMEOL	MIN	MAX	MIN	MAX
A		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.17	0.27	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VARIATIONS	
E	8.10 BASIC		0.319 BASIC	
E1	6.00	6.20	.236	.244
е	0.65 B	ASIC	0.0256	BASIC
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VAR	IATIONS
α	0°	8°	0°	8°
aaa		0.10		.004

VARIATIONS

N	D mm.		D (inch)		
MIN		MAX	MIN	MAX	
28	9.60	9.80	.378	.386	
Defense Des LIDEO Dublication OF NO 452					

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

6.10 mm. Body, 0.65 mm. pitch TSSOP (240 mil) (25.6 mil)

Ordering Information

93716<u>y</u>GLF-T

Revision History

Rev.	Issue Date	Description	Page #
Н	9/10/2008	Updated Product Description/Features	1

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.