

AMD - K7™ System Clock Chip

Recommended Application:

VIA K7 style chipset

Output Features:

- 1 Differential pair open drain CPU clocks
- 1 Single-ended open drain CPU clock
- 13 SDRAM @ 3.3V
- 6 PCI @3.3V,
- 1 48MHz, @3.3V fixed.
- 1 24/48MHz @ 3.3V
- 2 REF @3.3V, 14.318MHz.

Features:

- Up to 155MHz frequency support
- Support power management: CPU stop and Power down Mode from I^2C programming.
- Spread spectrum for EMI control (0 to -0.5% down spread, \pm 0.25% center spread).
- Uses external 14.318MHz crystal

Skew Specifications:

- CPUT CPUC: <200ps
- PCI PCI: <500ps
- CPU PCI: <1-3ns

Pin Configuration

48-Pin 300mil SSOP

* Internal Pull-up Resistor of 120K to VDD

Block Diagram

Functionality

FS3	FS2	FS1	FS0	CPU (MHz)	PCICLK (MHz)
0	0	0	0	124.00	41.33
0	0	0	1	75.00	37.50
0	0	1	0	83.30	41.65
0	0	1	1	66.80	33.40
0	1	0	0	103.00	34.33
0	1	0	1	112.00	37.33
0	1	1	0	133.30	44.43
0	1	1	1	100.00	33.33
1	0	0	0	120.00	40.00
1	0	0	1	115.00	38.33
1	0	1	0	110.00	36.67
1	0	1	1	105.00	35.00
1	1	0	0	140.00	35.00
1	1	0	1	150.00	37.50
1	1	1	0	124.00	31.00
1	1	1	1	133.30	33.33

ICS reserves the right to make changes in the device data identified in this publication without further notice. ICS advises its customers to obtain the latest version of all device data to verify that any information being relied upon by the customer is current and accurate.

9248-114 Rev D 12/28/01

Third party brands and names are the property of their respective owners. $\ensuremath{\mathbb{C}2019}$ Renesas Electronics Corporation.

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION		
1	VDD1	PWR	REF, XTAL power supply, nominal 3.3V		
2	REF0	OUT	14.318 Mhz reference clock. This REF output is the STRONGER buffer for ISA BUS loads		
2	CPU_STOP# ^{1, 2}	IN	This asynchronous input halts CPUCLKT, CPUCLKC & SDRAM at logic "0" level when driven low.		
3,9,16,22, 33,39,45, 47	GND	PWR	Ground		
4	X1	IN	Crystal input, has internal load cap (36pF) and feedback resistor from X2		
5	X2	OUT	Crystal output, nominally 14.318MHz. Has internal load cap (36pF)		
6,14	VDD2	PWR	Supply for PCICLK_F and PCICLK, nominal 3.3V		
7	PCICLK_F	OUT	Free running PCI clock not affected by PCI_STOP# for power management.		
,	MODE ^{1, 2}	IN	Pin 2 function select pin, 1=Desktop Mode, 0=Mobile Mode. Latched Input.		
0	FS3 ^{1, 2}	IN	Frequency select pin. Latched Input. Internal Pull-down to GND		
0	PCICLK0	OUT	PCI clock output		
10	SEL24_48# ^{1, 2}	IN	Logic input to select 24 or 48MHz for pin 25 output		
PCICLK1		OUT	PCI clock output.		
13, 12, 11	PCICLK (4:2)	OUT	PCI clock outputs.		
15	BUFFER IN	IN	Input to Fanout Buffers for SDRAM outputs.		
17, 18, 20, 21, 28, 29, 31, 32, 34, 35,37,38	SDRAM (11:0)	OUT	SDRAM clock outputs, Fanout Buffer outputs from BUFFER IN pin (controlled by chipset).		
19,30,36	VDD3	PWR	Supply for SDRAM nominal 3.3V.		
23	SDATA	IN	Data input for I ² C serial input, 5V tolerant input		
24	SCLK	IN	Clock input of I ² C input, 5V tolerant input		
25	24_48MHz	OUT	24MHz/48MHz clock output		
25	FS1 ^{1, 2}	IN	Frequency select pin. Latched Input.		
	48MHz	OUT	48MHz output clock		
26	FS0 ^{1, 2}	IN	Frequency select pin. Latched Input		
27	VDD4	PWR	Power for 24 & 48MHz output buffers and fixed PLL core.		
40	SDRAM_OUT	OUT	Reference clock for SDRAM zero delay buffer		
41	PD# ^{1, 2}	IN	Powers down chip, active low		
42	VDD	PWR	Supply for core 3.3V		
46, 43	CPUCLKT (1:0)	OUT	"True" clocks of differential pair CPU outputs. These open drain outputs need an external 1.5V pull-up.		
44	CPUCLKC0	OUT	"Complementory" clocks of differential pair CPU outputs. These open drain outputs need an external 1.5V pull-up.		
18	REF1	OUT	14.318 MHz reference clock.		
48	FS2 ^{1, 2}	IN	Frequency select pin. Latched Input		

Notes:

1:

Internal Pull-up Resistor of 120K to 3.3V on indicated inputs Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor 2: to program logic Hi to VDD or GND for logic low.

Third party brands and names are the property of their respective owners.

General Description

The ICS9248-114 is a main clock synthesizer chip for AMD-K7 based systems with VIA style chipset. This provides all clocks required for such a system.

Spread spectrum may be enabled through I^2C programming. Spread spectrum typically reduces system EMI by 8dB to 10dB. This simplifies EMI qualification without resorting to board design iterations or costly shielding. The ICS9248-114 employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations.

Serial programming I²C interface allows changing functions, stop clock programming and frequency selection.

MODE, Pin 7 (Latched Input)	Pin 2
0	CPU_STOP# (Input)
1	REF0 (Output)

Mode Pin - Power Management Input Control

Serial Configuration Command Bitmap Byte0: Functionality and Frequency Select Register (default = 0)

Bit		Description						PWD	
		D'/ (2		A	、 、	CPUCLK	PCICLK	Spread	-
		Bit (2	, /, 0	, 5, 4)	(MHz)	(MHz)	Precentage	
	0	0	0	0	0	124.00	41.33	±0.25% Center Spread	
	0	0	0	0	1	75.00	37.50	±0.25% Center Spread	
	0	0 0 0 1		1	0	83.30	41.65	±0.25% Center Spread	
	0	0	0	1	1	66.80	33.40	±0.25% Center Spread	
	0	0	1	0	0	103.00	34.33	±0.25% Center Spread	
	0	0	1	0	1	112.00	37.33	±0.25% Center Spread	
	0	0	1	1	0	133.30	44.43	±0.25% Center Spread	
	0	0	1	1	1	100.00	33.33	±0.25% Center Spread	
	0	1	0	0	0	120.00	40.00	±0.25% Center Spread	
	0	1	0	0	1	115.00	38.33	±0.25% Center Spread	
	0	1	0	1	0	110.00	36.67	±0.25% Center Spread	
	0	1	0	1	1	105.00	35.00	±0.25% Center Spread	
	0	1	1	0	0	140.00	35.00	±0.25% Center Spread	
	0	1	1	0	1	150.00	37.50	±0.25% Center Spread	00100
Bit 2,	0	1	1	1	0	124.00	31.00	±0.25% Center Spread	Note1
Bit 7:4	Bit 7:4 0 1 1	1	1	133.30	33.33	±0.25% Center Spread			
	1	0	0	0	0	90.00	30.00	±0.25% Center Spread	C.
	1	0	0	0	1	92.50	30.83	±0.25% Center Spread	
	1	0	0	1	0	95.00	31.67	±0.25% Center Spread	
	1	0	0	1	1	97.50	32.50	±0.25% Center Spread	
	1	0	1	0	0	101.50	33.83	±0.25% Center Spread	
	1	0	1	0	1	127.00	42.33	±0.25% Center Spread	
	1	0	1	1	0	136.50	34.13	±0.25% Center Spread	
	1	0	1	1	1	100.00	33.33	-0.5% Down Spread	
	1	1	0	0	0	120.00	40.00	-0.5% Down Spread	
	1	1	0	0	1	117.50	39.17	±0.25% Center Spread	
	1	1	0	1	0	122.00	40.67	±0.25% Center Spread	
	1	1	0	1	1	107.50	35.83	±0.25% Center Spread	
	1	1	1	0	0	145.00	36.25	±0.25% Center Spread	
	1	1	1	0	1	155.00	38.75	±0.25% Center Spread	
	1	1	1	1	0	130.00	32.50	±0.25% Center Spread	
	1	1	1	1	1	133.30	33.32	-0.5% Down Spread	
Bit 3	0 - F	Freque	ency i	s sele	cted b	y hardware select,	Latched Inputs		0
		reque	$\frac{\text{ncy 19}}{1}$	s sele	cted b	y Bit 2, /:4			
Bit 1	1 - S	pread	Spec	trum	Enabl	ed			1
Bit 0	0 - F	Runnii	ng						0
Dit	11- Ti	ristate	all o	utputs	5				U

Note1: Default at power-up will be for latched logic inputs to define frequency, as displayed by Bit 3. The I²C readback of the power up default could indicate the manufacture ID in bits 2, 7:4 as shown.

Byte 1: CPU, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	FS2#
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	-	Х	FS3#
Bit 3	40	1	SDRAM_OUT
Bit 2	-	Х	(SEL24_48#)#
Bit 1	43,44	1	CPUCLK0 enable (both differential pair. "True" and Complimentary")
Bit 0	46	1	CPUCLKT enable

Byte 3: SDRAM, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	1	(Reserved)
Bit 6	-	1	(Reserved)
Bit 5	26	1	48MHz
Bit 4	25	1	24_48MHz
Bit 3	17	1	SDRAM 11
Bit 2	18	1	SDRAM 10
Bit 1	20	1	SDRAM 9
Bit 0	21	1	SDRAM 8

Byte 5: Peripheral , Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	1	(Reserved)
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	-	Х	MODE#
Bit 3	-	X	FS1#
Bit 2	-	1	(Reserved)
Bit 1	48	1	REF1
Bit 0	2	1	REF0

Notes:

- 1. Inactive means outputs are held LOW and are disabled from switching.
- 2. Latched Frequency Selects (FS#) will be inverted logic load of the input frequency select pin conditions.

Byte 2: PCI, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	X	FS0#
Bit 6	7	1	PCICLK_F
Bit 5	-	1	(Reserved)
Bit 4	13	1	PCICLK4
Bit 3	12	1	PCICLK3
Bit 2	11	1	PCICLK2
Bit 1	10	1	PCICLK1
Bit 0	8	1	PCICLK0

Byte 4: SDRAM , Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	28	1	SDRAM 7
Bit 6	29	1	SDRAM 6
Bit 5	31	1	SDRAM 5
Bit 4	32	1	SDRAM 4
Bit 3	34	1	SDRAM 3
Bit 2	35	1	SDRAM 2
Bit 1	37	1	SDRAM 1
Bit 0	38	1	SDRAM 0

Byte 6: Peripheral , Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit7	-	0	Reserved (Note)
Bit6	_	0	Reserved (Note)
Bit5	-	0	Reserved (Note)
Bit4	-	0	Reserved (Note)
Bit3		0	Reserved (Note)
Bit2	[]	1	Reserved (Note)
Bit1	-	1	Reserved (Note)
Bit0	-	0	Reserved (Note)

Note: Don't write into this register, writing into this register can cause malfunction

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V
Ambient Operating Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2		V _{DD} +0.3	V
Input Low Voltage	V _{IL}		V _{SS} -0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$]	5	μA
Input Low Current	I _{IL1}	$V_{IN} = 0V$; Inputs with no pull-up resistors	-5			μA
Input Low Current	I _{IL2}	$V_{IN} = 0V$; Inputs with pull-up resistors	-200			μA
Operating Supply	I _{DD3.3OP66}	$C_L = 0 \text{ pF}$; Select @ 66 MHz			180	mA
	I _{DD3.3OP100}	$C_L = 0 \text{ pF}$; Select @ 100 MHz			180	mA
Current	I _{DD3.3OP133}	$C_L = 0 \text{ pF}$; Select @ 133 MHz		[]	180	mA
Powerdown Current	I _{DD3.3PD}	$C_L = 0$ pF; Input address to VDD or GND			600	μA
Input Frequency	Fi	$V_{DD} = 3.3 V$	12	14.318	16	MHz
Input Capacitance ¹	C _{IN}	Logic Inputs			5	pF
	C _{INX}	X1 & X2 pins	27		45	pF
Clk Stabilization ¹	T _{STAB}	From $V_{DD} = 3.3$ V to 1% target frequency			3	ms
Skew1	T _{CPU-PCI}	$CPU V_{T} = V_{X}, PCI V_{T} = 1.5V$	1	2.8	3	ns

 $T_A = 0$ - 70C; Supply Voltage $V_{DD} = 3.3 \text{ V} + -5\%$ (unless otherwise stated)

Electrical Characteristics - CPUCLK (Open Drain)

$T_A = 0 - 70^{\circ} \text{ C}$; $V_{DD} = 3.3 \text{ V} \pm -5\%$; $C_L = 20 \text{ pF}$ (unless otherwise stated).							

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Impedance	Z ₀ ¹	$V_0 = V_X$			60	Ω
Output High Voltage	V _{OH2B}	Termination to V _{pull-up} (external)	1		1.2	V
Output Low Voltage	V _{OL2B}	Termination to $V_{pull-up(external)}$			0.4	V
Output Low Current	I _{OL2B}	$V_{OL} = 0.3 V$	18			mA
Rise Time	t_{r2B}^{1}	$V_{OL} = 0.3 V, V_{OH} = 1.2 V$		1.93	2.6	ns
Fall Time	t_{f2B}^{1}	$V_{OH} = 1.2 \text{ V}, V_{OL} = 0.3 \text{ V}$		0.81	2.6	ns
Duty Cycle	d_{t2B}^{1}	$V_T = V_X$	45	49.3	55	%
Differential Voltage-AC	V_{DIF}^{1}	Note 2	0.4	1.18	$V_{pull-up (external)} + 0.6$	v
Differential Voltage-DC	V_{DIF}^{1}	Note 2	0.2		V _{pull-up (external)} + 0.6	V
Differential Crossover Voltage	V_X^{1}	Note 3	550	958	1100	mV
Skew	t _{sk2B} ¹	$V_{\rm T} = 1.5 {\rm V}$		94	200	ps
Jitter, Cycle-to-cycle	t _{icvc-cvc2B} ¹	V _T = V _X		158	250	ps

Notes:

- 1 Guaranteed by design, not 100% tested in production.
- 2 V_{DIF} specifies the minimum input differential voltages (V_{TR} - V_{CP}) required for switching, where V_{TR} is the "true" input level and V_{CP} is the "complement" input level.
- 3 Vpull-up(external) = 1.5V, $Min = (V_{pull-up(external)}/2) 150mV$; $Max = (V_{pull-up(external)}/2) + 150mV$

Electrical Characteristics - SDRAM

$T_{\Lambda} =$	0 -	70C:	V _{DD} =	3.3V	+/-5%:	$C_1 =$	= 30	pF ((unless	otherw	vise	stated
- A	•	,,	עעי	0.0 .	., .,,	$\sim_{\rm L}$	20	P* '	(000000000000000000000000000000000000000	100	State a

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH3}	$I_{OH} = -28 \text{ mA}$	2.4	3		V
Output Low Voltage	V _{OL3}	$I_{OL} = 20 \text{ mA}$		0.18	0.4	V
Output High Current	I _{OH3}	$V_{OH} = 2.0 V$		-110	-40	mA
Output Low Current	I _{OL3}	$V_{OL} = 0.8 V$	41	86		mA
Rise Time ¹	t _{r3}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.42	2	ns
Fall Time ¹	t _{f3}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.78	2	ns
Duty Cycle ¹	d _{t3}	$V_{\rm T} = 1.5 \ {\rm V}$	45	56.7	55	%
Skew window ¹	t _{sk3}	$V_{\rm T} = 1.5 {\rm V}$		225	250	ps
Propagation Time ¹ (Buffer In to Output)	Tprop	$V_{\rm T} = 1.5 \rm V$		3.41		ns

Electrical Characteristics - PCICLK

 $T_{\rm A}$ = 0 - 70C; $V_{\rm DD}$ = 3.3V +/-5%; $C_{\rm L}$ = 30 pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	3.15		V
Output Low Voltage	V _{OL1}	$I_{OL} = 9.4 \text{ mA}$		0.13	0.4	V
Output High Current	I _{OH1}	$V_{OH} = 2.0 V$		-97	-40	mA
Output Low Current	I _{OL1}	$V_{OL} = 0.8 V$	41	69]]	mA
Rise Time ¹	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.69	2.0	ns
Fall Time ¹	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.75	2.0	ns
Duty Cycle ¹	d _{t1}	$V_{\rm T} = 1.5 \ {\rm V}$	45	51.7	55	%
Skew window ¹	t _{sk1}	$V_{\rm T} = 1.5 {\rm V}$		400	500	ps
Jitter, _{Cycle-to-Cycle} ¹	t _{jcyc-cyc1}	$V_{\rm T} = 1.5 \ {\rm V}$	-500	135	500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK_F

 $T_A = 0 - 70C; V_{DD} = 3.3V + -5\%; C_L = 30 \text{ pF} \text{ (unless otherwise stated)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	3.15		V
Output Low Voltage	V _{OL1}	$I_{OL} = 9.4 \text{ mA}$		0.13	0.4	V
Output High Current	I _{OH1}	$V_{OH} = 2.0 V$		-97	-40	mA
Output Low Current	I _{OL1}	$V_{OL} = 0.8 V$	41	69		mA
Rise Time ¹	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.90	2.0	ns
Fall Time ¹	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.79	2.0	ns
Duty Cycle ¹	d_{t1}	$V_{\rm T} = 1.5 {\rm V}$	45	49.9	55	%
Skew window ¹	t _{sk1}	$V_{\rm T} = 1.5 {\rm V}$		400	500	ps
Jitter, _{Cycle-to-Cycle} ¹	t _{jcyc-cyc1}	$V_{\rm T} = 1.5 {\rm V}$	-500	110	500	ps

Electrical Characteristics - REF, 48MHz, 24MHz $T_A = 0 - 70C; V_{DD} = 3.3V + /-5\%; C_I = 20 \text{ pF} (unless otherwise stated)$

$r_{\rm A}$ = 7.00, $r_{\rm DD}$ = 5.5 + 7.07, $c_{\rm L}$ = 0.5 F (unless state (integration))						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH5}	$I_{OH} = -16 \text{ mA}$	2.4	3.03		V
Output Low Voltage	V _{OL5}	$I_{OL} = 9 \text{ mA}$		0.23	0.4	V
Output High Current	I _{OH5}	$V_{OH} = 2.0 V$		-50	-22	mA
Output Low Current	I _{OL5}	$V_{OL} = 0.8 V$	16	40		mA
Rise Time ¹	t _{r5}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.47	4.0	ns
Fall Time ¹	t _{f5}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.98	4.0	ns
Duty Cycle ¹	d _{t5}	$V_{\rm T} = 1.5 \ {\rm V}$	45	54.4	55	%
Jitter, _{Cycle-to-Cycle} ¹	t _{jcyc-cyc5, Ref}	$V_{\rm T} = 1.5 \ {\rm V}$		552	1000	ps
Jitter, _{Cycle-to-Cycle} ¹	t _{jcyc-cyc5, Fixed}	$V_{\rm T} = 1.5 {\rm V}$	-1	421	500	ps
1						

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will *acknowledge*
- Controller (host) sends a dummy byte count
- ICS clock will *acknowledge*
- Controller (host) starts sending first byte (Byte 0) through byte 5
- ICS clock will *acknowledge* each byte *one at a time*.
- Controller (host) sends a Stop bit

How to Write:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit						
Address						
D2 _(H)						
	ACK					
Dummy Command Code						
	ACK					
Dummy Byte Count						
	ACK					
Byte 0						
	ACK					
Byte 1						
	ACK					
Byte 2						
	ACK					
Byte 3						
	ACK					
Byte 4						
	ACK					
Byte 5	10%					
	ACK					
Stop Bit						

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the *byte count*
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 5
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit						
Address						
D3 _(H)						
	ACK					
	Byte Count					
ACK						
	Byte 0					
ACK						
	Byte 1					
ACK						
	Byte 2					
ACK						
	Byte 3					
ACK						
	Byte 4					
ACK						
	Byte 5					
ACK						
Stop Bit						

Shared Pin Operation -Input/Output Pins

The I/O pins designated by (input/output) on the ICS9248-114 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

Fig. 1

CPU_STOP# Timing Diagram

CPU_STOP# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CPU_STOP# is synchronized by the **ICS9248-114**. The minimum that the CPU clock is enabled (CPU_STOP# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clocks off latency is less than 4 CPU clocks.

Notes:

- 1. All timing is referenced to the internal CPU clock.
- 2. CPU_STOP# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS9248-114.
- 3. All other clocks continue to run undisturbed.

PD# Timing Diagram

The power down selection is used to put the part into a very low power state without turning off the power to the part. PD# is an asynchronous active low input. This signal needs to be synchronized internal to the device prior to powering down the clock synthesizer.

Internal clocks are not running after the device is put in power down. When PD# is active low all clocks need to be driven to a low value and held prior to turning off the VCOs and crystal. The power up latency needs to be less than 3 mS. The power down latency should be as short as possible but conforming to the sequence requirements shown below. PCI_STOP# and CPU_STOP# are considered to be don't cares during the power down operations. The REF and 48MHz clocks are expected to be stopped in the LOW state as soon as possible. Due to the state of the internal logic, stopping and holding the REF clock outputs in the LOW state may require more than one clock cycle to complete.

Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248-114 device).
- 2. As shown, the outputs Stop Low on the next falling edge after PD# goes low.
- 3. PD# is an asynchronous input and metastable conditions may exist. This signal is synchronized inside this part.
- 4. The shaded sections on the VCO and the Crystal signals indicate an active clock.
- 5. Diagrams shown with respect to 133MHz. Similar operation when CPU is 100MHz.

300 mil SSOP

SYMBOL	In Milli	meters			
	COMMON D	INENSIONS	COMMON D	IMENSIONS	
	MIN	MAX	MIN	MAX	
A	2.413	2.794	.095	.110	
A1	0.203	0.406	.008	.016	
b	0.203	0.343	.008	.0135	
С	0.127	0.254	.005	.010	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	10.033	10.668	.395	.420	
E1	7.391	7.595	.291	.299	
е	0.635	BASIC	0.025	BASIC	
h	0.381	0.635	.015	.025	
L	0.508	1.016	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

Ν	D mm.		D (ii	inch)	
IN	MIN	MAX	MIN	MAX	
48	15.748	16.002 .620		.630	
			JEDEC MO-118	6/1/00	

DOC# 10-0034 REV B

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.