RENESAS FemtoClock™ Crystal-to-LVDS **Clock Generator**

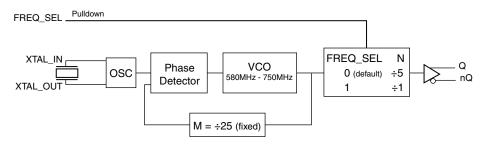
ICS844251-15

DATA SHEET

General Description

The ICS844251-15 is an Ethernet Clock Generator and a member of the HiPerClocks[®] family of high performance devices from IDT. The ICS844251-15 uses an 18pF parallel resonant crystal over the range of 23.2MHz - 30MHz. For Ethernet applications, a

25MHz crystal is used. The device has excellent <1ps phase jitter performance, over the 1.875MHz - 20MHz integration range. The ICS844251-15 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


Features

- One differential LVDS output pair
- Crystal oscillator interface designed for 18pF, parallel resonant ٠ crystal (23.2MHz - 30MHz)
- Output frequency ranges: 116MHz 150MHz and • 580MHz – 750MHz
- VCO range: 580MHz 750MHz
- ٠ RMS phase jitter at 125MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.46ps (typical)
- Full 3.3V or 2.5V output supply modes
- 0°C to 70°C ambient operating temperature
- Available in a lead-free (RoHS 6) package

Common Configuration Table

	Output Frequency Range				
Crystal Frequency (MHz)	FREQ_SEL	М	Ν	Multiplication Value M/N	(MHz)
25	1	25	1	25	625
26.667	1	25	1	25	666.67
25 (default)	0	25	5	5	125
26.667	0	25	5	5	133.33

Block Diagram

Pin Assignment

Table 1. Pin Descriptions

Number	Name	Туре		Description
1	V _{DDA}	Power		Analog supply pin.
2	GND	Power		Power supply ground.
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential output pair. LVDS interface levels.
8	V _{DD}	Power		Core supply pin.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O	
Continuos Current	10mA
Surge Current	15mA
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.10	3.3	V _{DD}	V
I _{DD}	Power Supply Current				100	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3B. Power Supply DC Characteristics, V_{DD} = 2.5V ± 5%, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.10	2.5	V _{DD}	V
I _{DD}	Power Supply Current				95	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, V_{DD} = $3.3V \pm 5\%$ or $2.5V \pm 5\%$, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	la suit l'Ésle Malta sui	V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage	V _{DD} = 2.625V	1.7			V
V	land the second second	V _{DD} = 3.465V	-0.3		0.8	V
V _{IL}	Input Low Voltage	V _{DD} = 2.625V	-0.3		0.7	V
I _{IH}	Input High Current	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
I _{IL}	Input Low Current	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-5			μA

RENESAS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		247		454	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.275		1.525	V
ΔV_{OS}	V _{OS} Magnitude Change				50	mV

Table 3D. LVDS DC Characteristics, V_{DD} = 3.3V \pm 5%, T_{A} = 0°C to 70°C

Table 3E. LVDS DC Characteristics, V_{DD} = 2.5V \pm 5%, T_{A} = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		247		454	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.0		1.4	V
ΔV_{OS}	V _{OS} Magnitude Change				50	mV

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		23.2		30	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

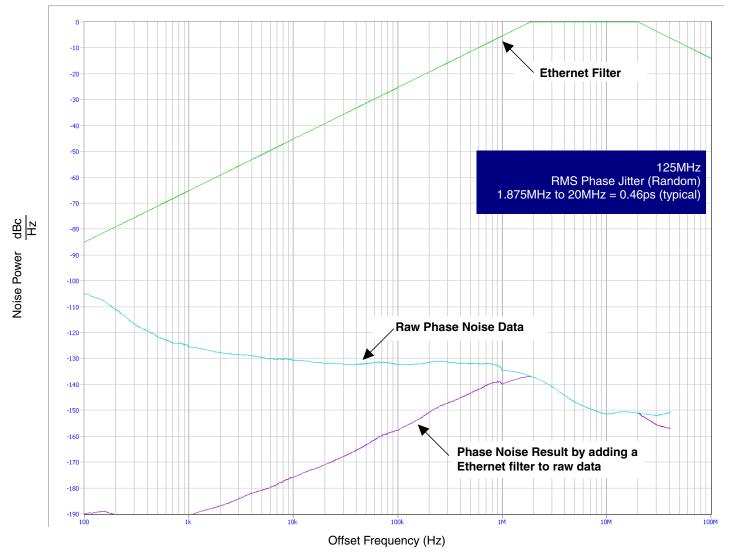
AC Electrical Characteristics

Table 5A. AC Characteristics,	$V_{DD} = 3.3V \pm 5\%$,	$T_A = 0^\circ C$ to $70^\circ C$
-------------------------------	---------------------------	-----------------------------------

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT} Output Frequency		$FREQ_SEL = 0$	116		150	MHz
	FREQ_SEL = 1	580		750	MHz	
ru (a) R	RMS Phase Jitter, Random;	125MHz, Integration Range: 1.875MHz – 20MHz		0.46		ps
<i>t</i> jit(Ø)	NOTE 1	625MHz, Integration Range: 1.875MHz – 20MHz		0.35		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	70		550	ps
!-	Output Duty Cycle	FREQ_SEL = 0	48		52	%
odc		FREQ_SEL = 1	46		54	%

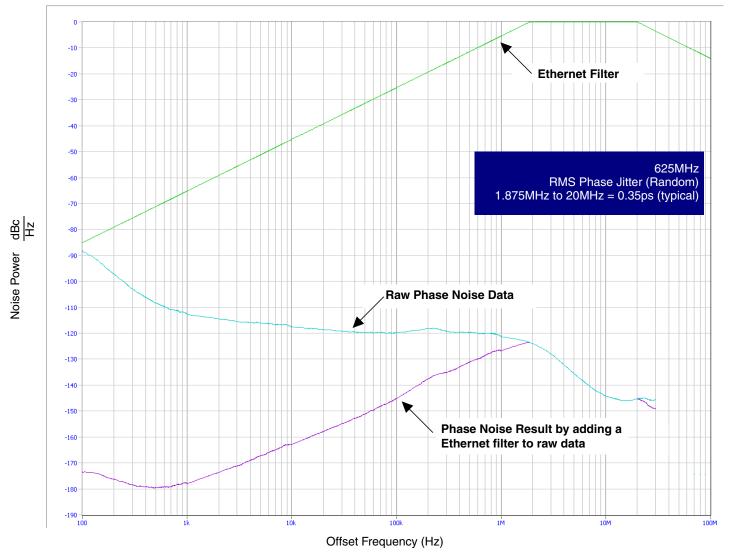
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Refer to Phase Noise Plots.

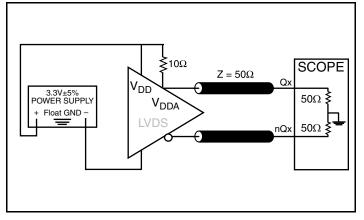

Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency	FREQ_SEL = 0	116		150	MHz
		FREQ_SEL = 1	580		750	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 1	125MHz, Integration Range: 1.875MHz – 20MHz		0.46		ps
		625MHz, Integration Range: 1.875MHz – 20MHz		0.35		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	70		550	ps
odc	Output Duty Cycle	FREQ_SEL = 0	48		52	%
		FREQ_SEL = 1	46		54	%

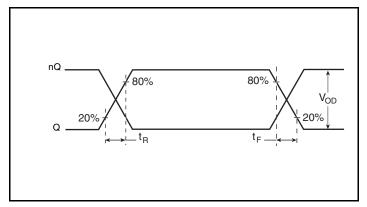
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

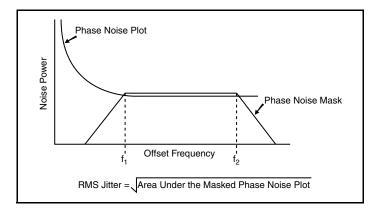

NOTE 1: Refer to Phase Noise Plots.

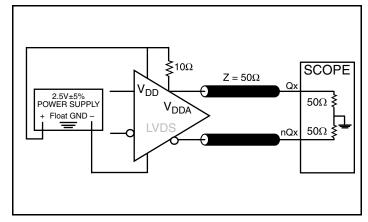
Typical Phase Noise at 125MHz (3.3V)

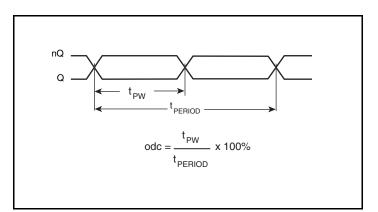


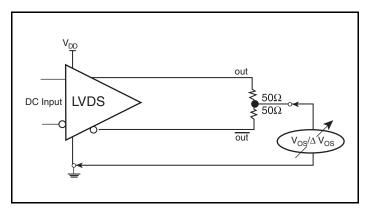
RENESAS


Typical Phase Noise at 625MHz (3.3V)

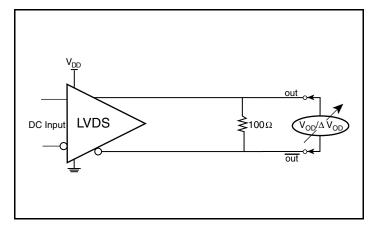

Parameter Measurement Information


3.3V LVDS Output Load AC Test Circuit


Output Rise/Fall Time


RMS Phase Jitter

2.5V LVDS Output Load AC Test Circuit


Output Duty Cycle/Pulse Width/Period

RENESAS

Parameter Measurement Information, continued

Differential Output Voltage Setup

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS844251-15 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10 Ω resistor along with a 10µF bypass capacitor be connected to the V_{DDA} pin.

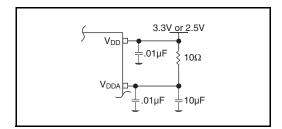


Figure 1. Power Supply Filtering

Crystal Input Interface

The ICS844251-15 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant

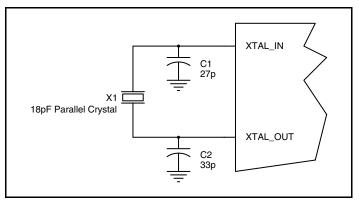


Figure 2. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals

the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

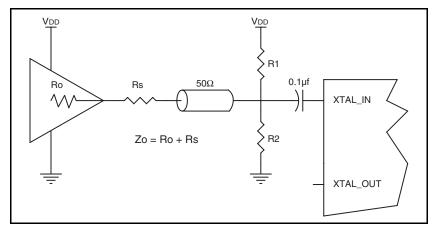


Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface

crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

3.3V, 2.5V LVDS Driver Termination

A general LVDS interface is shown in *Figure 4*. In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near the receiver input. For a multiple

LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs

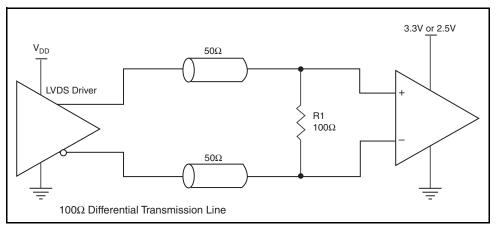


Figure 4. Typical LVDS Driver Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS844251-15. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS844251-15 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Power (core)_{MAX} = V_{DD MAX} * (I_{DD MAX} + I_{DDA MAX}) = 3.465V * (100mA + 10mA) = **381.15mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5.°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

70°C + 0.381W *129.5°C/W = 119.3°C. This is below the limit of 125°C.

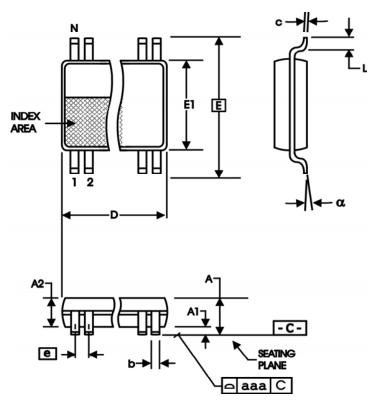
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ _{JA} by Velocity				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W	

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


θ _{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W	

Transistor Count

The transistor count for ICS844251-15 is: 2398

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum	Maximum			
N	8				
Α		1.20			
A1	0.5	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	2.90	3.10			
E	6.40 Basic				
E1	4.30	4.50			
е	0.65 Basic				
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
844251BG-15LF	TBD	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
844251BG-15LFT	TBD	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.