RENESAS FemtoClock® Crystal-to-3.3V LVPECL Clock Generator

843021

DATA SHEET

General Description

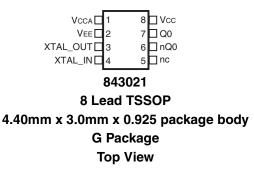
The 843021 is a Gigabit Ethernet Clock Generator. The ICS84302 uses a 25MHz crystal to synthesize 125MHz. The 843021has excellent phase jitter performance, over the 1.875MHz – 20MHz integration range. The 843021is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

Features

- One differential 3.3V LVPECL output
- Crystal oscillator interface designed for 22.4MHz 28MHz, 18pF parallel resonant crystal
- Output frequency range: 112MHz 140MHz
- VCO range: 560MHz 700MHz
- Output duty cycle range: 49% 51%
- RMS phase jitter at 125MHz, using a 25MHz crystal (1.875MHz 20MHz): 0.650ps (typical)


Offset	Noise Power
100Hz	94.2 dBc/Hz
1kHz	122.8 dBc/Hz
10kHz	132.2 dBc/Hz
100kHz	131.3 dBc/Hz

- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package
- Industrial temperature information available upon request


Table 1. Frequency Table - Typical Applications

Inputs	
Crystal Frequency (MHz)	Output Frequency Range (MHz)
25	125
26.6	133

Block Diagram

Pin Assignment

Table 2. Pin Descriptions

Number	Name	Ţ	уре	Description
1	V _{CCA}	Unused		Analog supply pin.
2	V _{EE}	Power		Negative supply pin.
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	nc	Unused		No connect.
6, 7	nQ0, Q0	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Core supply pin.

Table 3. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	101.7°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		2.97	3.3	3.63	V
V _{CCA}	Analog Supply Voltage		2.97	3.3	3.63	V
I _{EE}	Power Supply Current				85	mA

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.4		V _{CC} – 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} -2.0		V _{CC} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

Table 4B. LVPECL DC Characteristics, V_{CC} = 3.3V ±10%, V_{EE} = 0V, T_A = 0°C to 70°C

NOTE 1: Outputs termination with 50 Ω to V_CC – 2V.

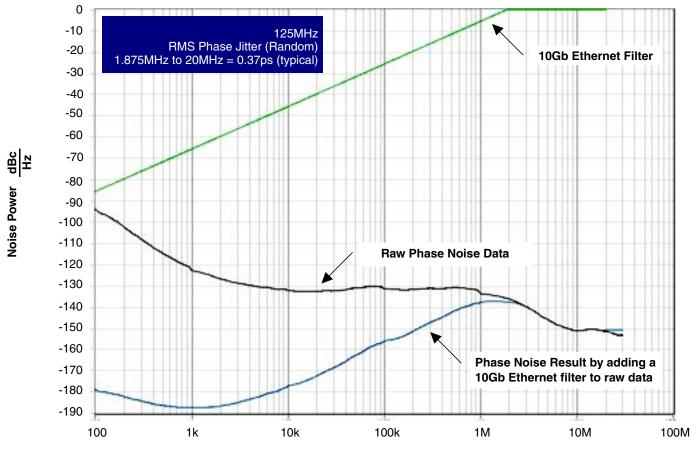
Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency; NOTE 1		14		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

NOTE 1:Input frequency is limited to a range of 22.4MHz – 28MHz due to VCO range.

AC Electrical Characteristics

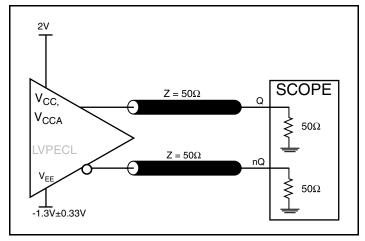
Table 6. AC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to 70°

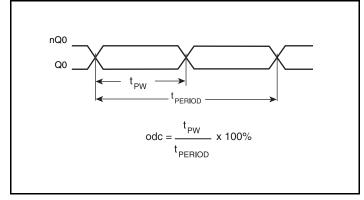

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		112		140	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 1	125MHz, Integration Range: 1.875MHz – 20MHz		0.37	0.65	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	250		550	ps
odc	Output Duty Cycle		49		51	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

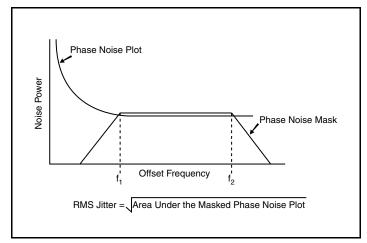
NOTE 1: Refer to Phase Noise Plot.

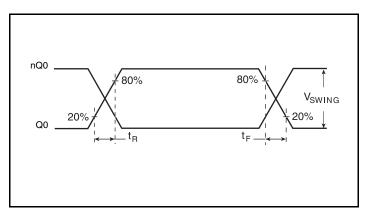
RENESAS


Typical Phase Noise at 125MHz


Offset Frequency (Hz)

RENESAS


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit

Output Duty Cycle/Pulse Width/Period

RMS Phase Jitter

Output Rise/Fall Time

RENESAS

Applications Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843021 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{CC} pin and also shows that V_{CCA} requires that an additional 10 Ω resistor along with a 10µF bypass capacitor be connected to the V_{CCA} pin.

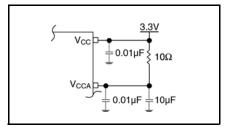


Figure 1. Power Supply Filtering

Crystal Input Interface

The 843021 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and

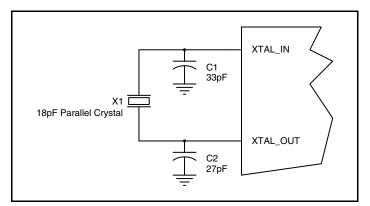


Figure 2. Crystal Input Interface

were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

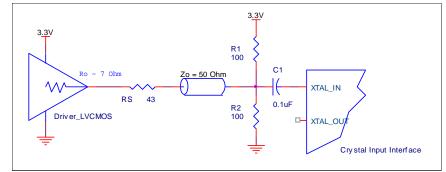


Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

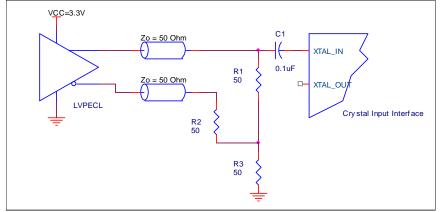


Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

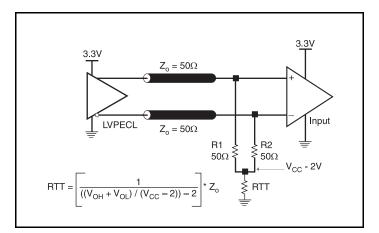


Figure 4A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

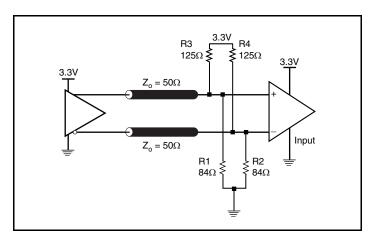


Figure 4B. 3.3V LVPECL Output Termination

Schematic Example

Figure 5A shows a schematic example of using an 843021. An example of LVPECL termination is shown in this schematic. Additional LVPECL termination approaches are shown in the LVPECL Termination Application Note. In this example, an 18pF

parallel resonant crystal is used for generating 125MHz output frequency. TheC1 = 27pF and C2 = 33pF are recommended for frequency accuracy. For a different board layout, the C1 and C2 values may be slightly adjusted for optimizing frequency accuracy.

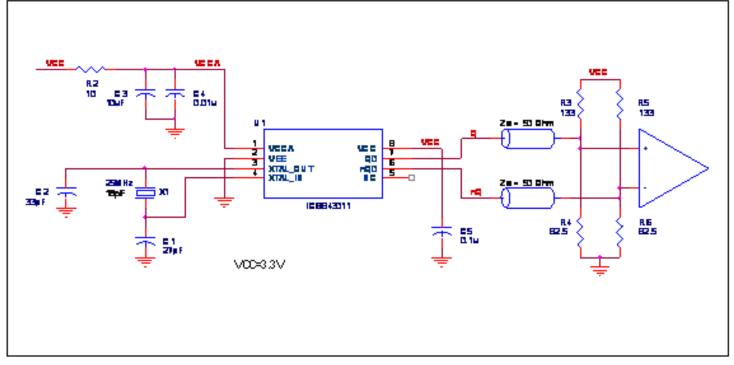


Figure 5. 843021 Schematic Example

Schematic Example

Figure 5B shows an example of 843021 P.C. board layout. The crystal X1 footprint shown in this example allows installation of either surface mount HC49S or through-hole HC49 package. The footprints of other components in this example are listed in the *Table 7* There should be

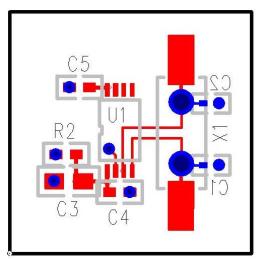


Figure 5B. 843021 PC Board Layout Example

at least one decoupling capacitor per power pin. The decoupling capacitors should be located as close as possible to the power pins. The layout assumes that the board has clean analog power ground plane.

Table 7. Footprint Table

Reference	Size
C1, C2	0402
C3	0805
C4, C5	0603
R2	0603

NOTE: Table 7 lists component sizes shown in this layout example.

Power Considerations

This section provides information on power dissipation and junction temperature for the 843021. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843021 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for V_{CC} = 3.3V + 10% = 3.63V, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.63V * 85mA = 308.6mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power_MAX (3.63V, with all outputs switching) = 308.6mW + 30mW = 338.6mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

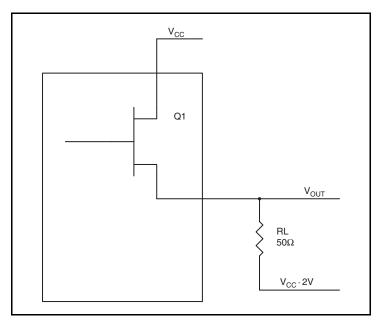
 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 90.5°C/W per Table 8 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.339W * 90.5^{\circ}C/W = 100.7^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Table 8. Thermal Resitance θ_{JA} for 8 Lead TSSOP, Forced Convection

$ heta_{JA}$ vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5°C/W	89.8°C/W	

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 6.

Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.9V
- For logic low, V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V (V_{CC_MAX} - V_{OL_MAX}) = 1.7V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

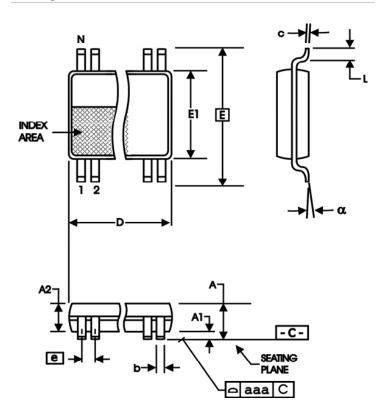
 $\begin{array}{l} \mathsf{Pd}_{-}\mathsf{H} = [(\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - 0.9\mathsf{V})/50\Omega] * 0.9\mathsf{V} = 19.8\mathsf{mW} \end{array}$

 $\mathsf{Pd}_{L} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.7\mathsf{V})/50\Omega] * 1.7\mathsf{V} = \mathbf{10.2mW}$

Total Power Dissipation per output pair = Pd_H + Pd_L = **30mW**

Reliability Information

Table 9. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


θ_{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5°C/W	89.8°C/W	

Transistor Count

The transistor count for 843021 is: 1928

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 10. Package Dimensions

All Dimensions in Millimeters						
Symbol	Minimum	Maximum				
N	8					
Α		1.20				
A1	0.5	0.15				
A2	0.80	1.05				
b	0.19	0.30				
С	0.09	0.20				
D	2.90	3.10				
E	6.40 Basic					
E1	4.30	4.50				
е	0.65 Basic					
L	0.45	0.75				
α	0°	8 °				
aaa		0.10				

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 11. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843021AGLF	021AL	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
843021AGLFT	021AL	"Lead-Free" 8 Lead TSSOP	Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date	
В	1	1	Added Function Table. Features section - updated Crystal, Output Frequency & VCO range bullets.		
	T5	3	Crystal Characteristics Table - changed Frequency from 25MHz typical to 14MHz min. and 40MHz max. Added Note 1.	10/6/04	
	T6	4	AC Characteristics Table - changed Output Frequency from 125MHz typical to 112MHz min. and 140MHz max.		
В	T11	12	Ordering Information Table - corrected count from 154 per tube to 100	10/15/04	
С	T4A	3	Power Supply Table - increased V_{CC} to 3.3V \pm 10% from 5% and is reflected throughout the datasheet.	11/3/04	
		3	Absolute Maximum Ratings - corrected Package Thermal Impedance air flow.		
С	T8	9	Thermal Resistance Table - corrected air flow.	11/30/04	
Ū	T9	11	Corrected air flow in table.	11/00/01	
	T11	12	Ordering Information Table - corrected marking.		
С		1	Features Section - added Lead-Free bullet.	3/31/05	
C	T11	12	Ordering Information Table - added Lead-Free part number.	3/31/05	
		1	Features section - changed RMS phase jitter spec.		
	T6	4	AC Characteristics Table - added maximum RMS Phase Jitter spec of 0.65ps.		
D		7	Added LVCMOS to XTAL Interface section.	11/21/07	
		7	Added <i>Termination for 3.3V LVPECL Output</i> section. Updated datasheet to new format.		
D	T4B	3	LVPECL DC Characteristics Table - corrected V _{OH} /V _{OL} parameters from "Current" to "Voltage" and units from "uA" to "V".		
	T6	3	AC Characteristics Table - added thermal note.		
		6	Updated text in "Power Supply Filtering Techniques".	10/12/10	
	T11	7 13	Updated "Overdriving the Crystal Interface" section. Ordering Information Table - deleted "ICS" prefix for part/order column.		
		10	Updated header/footer.		
D	T11	13	Ordering Information - removed leaded devices. Updated data sheet format.	9/25/15	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.