FEATURES:

- Memory storage capacity:

$$
\begin{aligned}
& \text { IDT72V3626-256 x } 36 \times 2 \\
& \text { IDT72V3636-512 } \times 36 \times 2 \\
& \text { IDT72V3646-1,024 x } 36 \times 2
\end{aligned}
$$

- Clock frequencies up to 100 MHz (6.5 ns access time)
- Two independent FIFOs buffer data between one bidirectional 36-bit port and two unidirectional 18-bit ports (Port C receives and Port B transmits)
- 18-bit (word) and 9-bit (byte) bus sizing of 18 bits (word) on Ports B and C
- Select IDT Standard timing (using $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}, \overline{\mathrm{FFA}}$, and $\overline{\mathrm{FFC}}$ flag functions) or First Word Fall Through Timing (using ORA, ORB, IRA, and IRC flag functions)
- Programmable Almost-Empty and Almost-Full flags; each has
three default offsets (8, 16 and 64)
- Serial or parallel programming of partial flags
- Big- or Little-Endian format for word and byte bus sizes
- Master Reset clears data and configures FIFO, Partial Reset clears data but retains configuration settings
- Mailbox bypass registers for each FIFO
- Free-running CLKA, CLKB and CLKC may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Auto power down minimizes power dissipation
- Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)
- Pin and functionally compatible versions of 5V operating IDT723626/723636/723646
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The IDT72V3626/72V3636/72V3646 are pin and functionally compatible versions of the IDT723626/723636/723646, designed to run offa3.3V supply for exceptionally low-power consumption. These devices are a monolithic, high-speed, low-power, CMOS Triple Bus synchronous (clocked) FIFO memory which supports clock frequencies up to 100 MHz and has read access times as fastas 6.5 ns. Two independent $256 / 512 / 1,024 \times 36$ dual-portSRAM

FIFOs on board each chip buffer data between a bidirectional 36-bitbus (Port A) and two unidirectional 18-bitbuses (PortB transmits data, PortC receives data.) FIFO data can be read out of PortB and written into Port C using either 18-bitor 9-bitformats with a choice of Big-or Little-Endian configurations.

These devices are a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a portare gated to the LOW-to-HIGH transition of a port clock by enable signals. The clocks for

PIN CONFIGURATION

each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.

Communication betweeneach portmay bypass the FIFOs viatwo mailbox registers. The mailbox registers' width matches the selected bus width of ports B and C. Each mailbox register has a flag ($\overline{\mathrm{MBF} 1}$ and $\overline{\mathrm{MBF} 2}$) to signal when new mail has been stored.

Two kinds of resetare available on these FIFOs:MasterResetand Partial Reset. Master Resetinitializes the read and write pointers to the firstlocation of the memory array and selects serial flag programming, parallel flag programming, or one ofthree possible defaultflag offsetsettings, 8,16or64. EachFIFO has its own, independent Master Reset pin, $\overline{\mathrm{MRS}}$ and $\overline{\mathrm{MRS}}$.

Partial Resetalso sets the read and write pointers to the firstlocation of the memory. Unlike Master Reset, any settings existing prior to Partial Reset(i.e., programming method and partial flag defaultoffsets)are retained. Partial Reset is useful since it permits flushing of the FIFO memory without changing any configuration settings. Each FIFO has its own, independent Partial Resetpin, $\overline{\text { PRS1 }}$ and $\overline{\text { PRS2 }}$.

These devices have two modes of operation: In the IDT Standard mode, the first word written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing in memory). In the First Word Fall Through mode (FWFT), the first word written to an empty FIFO appears automatically on the outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate aformal read request). The state oftheBE/FWFT pinduring MasterReset determines the mode in use.

Each FIFO has a combined Empty/Output Ready Flag (EFA/ORA and $\overline{\mathrm{EFB}} / \mathrm{ORB}$) and a combined Full/Input Ready Flag ($\overline{\mathrm{FFA}} / \mathrm{IRA}$ and $\overline{\mathrm{FFC}} / \mathrm{IRC}$). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in the IDT Standard mode. $\overline{\mathrm{EF}}$ indicates whether or not the FIFO memory is empty. $\overline{\mathrm{FF}}$ shows whether the memory is
full or not. The IR and OR functions are selected in the FirstWord Fall Through mode. IR indicates whether or not the FIFO has available memory locations. OR shows whether the FIFO has data available for reading or not. It marks the presence of valid data on the outputs.

Each FIFO has a programmable Almost-Empty flag ($\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}})$ and a programmable Almost-Fullflag ($\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFC}})$. $\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$ indicate when aselected number of words remain inthe FIFO memory. $\overline{\text { AFA }}$ and $\overline{\text { AFC indicate }}$ when the FIFO contains more than a selected number of words.
$\overline{\mathrm{FFA}} /$ IRA, $\overline{\mathrm{FFC}} / \mathrm{IRC}, \overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFC}}$ are two-stage synchronized to the PortClock that writes datainto its array. $\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AEA}}$, and $\overline{\mathrm{AEB}}$ are two-stage synchronized to the Port Clock that reads data from its array. Programmable offsets for $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}, \overline{\mathrm{AFC}}$ are loaded in parallel using PortA or in serial via the SD input. The Serial Programming Mode pin ($\overline{\mathrm{SPM}})$ makes this selection. Three defaultoffset settings arealso provided. The $\overline{A E A}$ and $\overline{\mathrm{AEB}}$ threshold can be setat 8,16 or64 locations from the empty boundary and the $\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFC}}$ threshold can be set at 8,16 or 64 locations from the full boundary. All these choices are made using the FS0 and FS1 inputs during Master Reset.

Two or more FIFOs may be used in parallel to create wider data paths. Such a width expansion requires no additional, external components. Furthermore, two IDT72V3626/72V3636/72V3646 FIFOs can be combined with unidirectional FIFOs capable of First Word Fall Through timing (i.e. the SuperSync FIFO family) to form a depth expansion.

If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption(ICC) is ata minimum. Initiating any operation(by activating control inputs) will immediately take the device out of the power down state.

The IDT72V3626/72V3636/72V3646 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. They are fabricated using IDT's high speed, submicron CMOS technology.

Symbol	Name	I/0	Description
A0-A35	Port A Data	I/0	36-bitbidirectional data portforside A.
$\overline{\text { AEA }}$	PortAAImostEmpty Flag	0	Programmable Almost-Empty flag synchronized to CLKA. It is LOW when the number of words in FIFO2 is less than or equal to the value in the Almost-Empty A Offsetregister, X2.
$\overline{\mathrm{AEB}}$	PortBAlmostEmpty Flag	0	Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of words in FIFO1 is less than or equal to the value in the Almost-Empty B Offsetregister, X 1 .
$\overline{\text { AFA }}$	PortA AlmostFull Flag	0	Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of empty locations in FIFO1 is less than or equal to the value in the Almost-Full A Offset register, Y1.
$\overline{\text { AFC }}$	PortCAlmostFull Flag	0	Programmable Almost-Full flag synchronized to CLKC. It is LOW when the number of empty locations in FIFO 2 is less than or equal to the value in the Almost-Full C Offset register, Y 2 .
B0-B17	PortB Data	0	18-bitoutput data portforside B.
BE/FWFT	Big-Endian/ FirstWord Fall Through Select	I	This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big-Endian operation. In this case, depending on the bus size, the most significant byte or word on Port A is read from Port B first (A-to-B data flow) or is written to Port C first (C-to-A data flow). A LOW on BE will select Little-Endian operation. In this case, the least significant byte or word on Port A is read from Port B first (A-to-B data flow) or is written to Port C first (C-to-A data flow). After Master Reset, this pin selects the timing mode. A HIGH on FWFT selects IDT Standard mode, a LOW selects FirstWord Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static throughout device operation.
C0-C17	Port C Data	I	18-bit input data portfor side C.
CLKA	PortAClock	I	CLKA is a continuous clock that synchronizes all data transfers through Port A and can be asynchronous or coincident to CLKB. $\overline{\text { FFAIIRA, }} \overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{AFA}}$, and $\overline{\mathrm{AEA}}$ are all synchronized to the LOW-to-HIGHtransition of CLKA.
CLKB	PortBClock	I	CLKB is a continuous clock that synchronizes all data transfers through Port B and can be asynchronous or coincident to CLKA. $\overline{E F B} / O R B$ and $\overline{\mathrm{AEB}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
CLKC	Port C Clock	1	CLKC is a continuous clock that synchronizes all data transfers through Port C and can be asynchronous or coincident to CLKA. $\overline{F F C} / / R C$ and $\overline{\text { AFC }}$ are synchronized to the LOW-to-HIGH transition of CLKC.
$\overline{\mathrm{CSA}}$	PortA Chip Select	I	CSA must be LOW to enable to LOW-to-HIGH transition of CLKA to read or write on Port A. The A0-A35 outputs are in the high-impedance state when $\overline{\text { CSA }}$ is HIGH.
$\overline{\mathrm{CSB}}$	Port B Chip Select	I	$\overline{\mathrm{CSB}}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read data on Port B. The B0-B17 outputs are in the high-impedance state when $\overline{\mathrm{CSB}}$ is HIGH.
EFA/ORA	PortAEmpty/ OutputReady Flag	0	This is a dual function pin. In the IDT Standard mode, the EFA function is selected. EFA indicates whether or not the FIFO2 memory is empty. In the FWFT mode, the ORA function is selected. ORA indicates the presence of valid data on the A0-A35 outputs, available for reading. $\overline{E F A} / O R A$ is synchronized tothe LOW-to-HIGH transition of CLKA.
EFB/ORB	PortBEmpty/ OutputReady Flag	0	This is a dual function pin. In the IDT Standard mode, the EFB function is selected. EFB indicates whether or not the FIFO1 memory is empty. In the FWFT mode, the ORB function is selected. ORB indicates the presence of valid data on the $\mathrm{BO}-\mathrm{B} 17$ outputs, available for reading. $\overline{\mathrm{EFB}} / \mathrm{ORB}$ is synchronized tothe LOW-to-HIGH transition of CLKB.
ENA	PortAEnable	1	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on Port A.
$\overline{\text { FFA/IRA }}$	PortA Full/ Input Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the FFA function is selected. $\overline{\text { FFA }}$ indicates whether or not the FIFO1 memory is full. In the FWFT mode, the IRA function is selected. IRA indicates whether or not there is space available for writing to the FIFO1 memory. FFA/IRA is synchronized tothe LOW-to-HIGH transition of CLKA.
$\overline{\mathrm{FFC}} / \mathrm{IRC}$	Port C Full/ Input Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the FFC function is selected. $\overline{\text { FFC }}$ indicates whether or not the FIFO2 memory is full. In the FWFT mode, the IRC function is selected. IRC indicates whether or not there is space available for writing to the FIFO2 memory. $\overline{\mathrm{FFC}} / \mathrm{RC}$ is synchronized to the LOW-to-HIGH transition of CLKC.

PIN DESCRIPTIONS (Continued)

Symbol	Name	I/O	
FS1/ $\overline{\text { SEN }}$	Flag OffsetSelect 1/ Serial Enable,	I	FS1/ $\overline{\text { SEN }}$ and FSO/SD are dual-purpose inputs used for flag Offset register programming. During Master Reset, FS1/SEN and FS0/SD, togetherwith $\overline{\text { SPM, }}$, select the flag offset programming method. Three Offsetregister Frogramming methods are available: automatically load one of three preset values (8, 16, or 64), parallel
FS0/SD	Flag OffsetSelect0/ load from Port A, and serial load.		

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)(1)

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{V} 1^{(2)}$	Input Voltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	OutputVoltage Range	-0.5 to Vcc+0.5	V
IIK	Input Clamp Current ($\mathrm{VI}<0$ or $\mathrm{VI}>\mathrm{Vcc}$)	± 20	mA
IOK	Output Clamp Current (Vo $=<0$ or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current (Vo = 0 to Vcc)	± 50	mA
IcC	Continuous Current Through Vcc or GND	± 400	mA
TstG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc $^{(1)}$	Supply Voltage	3.0	3.3	3.6	V
VIH	High-Level InputVoltage	2	-	Vcc +0.5	V
VIL	Low-Level InputVoltage	-	-	0.8	V
IOH	High-Level OutputCurrent	-	-	-4	mA
IOL	Low-Level OutputCurrent	-	-	8	mA
TA	OperatingTemperature	0	-	70	${ }^{\circ} \mathrm{C}$

NOTE:

1. For $10 \mathrm{~ns}\left(100 \mathrm{MHz}\right.$ operation), $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant.

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT72V3626 IDT72V3636 IDT72V3646 Commercial $\text { tCLK }=10^{(1)}, 15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(2)}$	Max.	
Vor	OutputLogic "1"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
VoL	OutputLogic "0" Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	InputLeakage Current(Any Input)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
$\mathrm{ICC2}{ }^{(3)}$	Standby Current (with CLKA, CLKB and CLKC running)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{V}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	5	mA
ICC3 ${ }^{(3)}$	Standby Current(no clocks running)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{V}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	1	mA
$\mathrm{ClN}^{(4)}$	InputCapacitance	$\mathrm{VI}=0$,	$f=1 \mathrm{MHz}$	-	4	-	pF
Cout ${ }^{(4)}$	OutputCapacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. For 10 ns speed grade only: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant.
2. All typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (ICc) vs. Clock Frequency (fs).
4. Characterized values, not currently tested.
5. Industrial temperature range is available by special order.

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT72V3626/72V3636/72V3646 with CLKA, CLKB and CLKC set to fs. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to azero capacitance load. Once the capacitance load per data-output channel and the number of these device's inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
\text { PT }=\operatorname{Vcc} x \operatorname{Icc}(f)+\Sigma\left(\operatorname{CL} x \operatorname{Vcc}^{2} x \text { fo }\right)
$$

N
where:

N	$=$	number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus size)
CL	$=$	outputcapacitanceload
fo	$=$	switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V}$; for $10 \mathrm{~ns}\left(100 \mathrm{MHz}\right.$) operation, $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$; $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	IDT72V3626L10 ${ }^{(1)}$ IDT72V3636L10 ${ }^{(1)}$ IDT72V3646L10 ${ }^{(1)}$		IDT72V3626L15 IDT72V3636L15 IDT72V3646L15		
		Min.	Max.	Min.	Max.	Unit
fs	Clock Frequency, CLKA, CLKB, or CLKC	-	100	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA, CLKB, or CLKC	10	-	15	-	ns
tCLKH	Pulse Duration, CLKA, CLKB, or CLKC HIGH	4.5	-	6	-	ns
tCLKL	Pulse Duration, CLKA, CLKB, OR CLKCLOW	4.5	-	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and C0-C17 before CLKC \uparrow	3	-	4	-	ns
tENS1	Setup Time, $\overline{\text { CSA }}$ before CLKA \uparrow	4	-	4.5	-	ns
tENS2	Setup Time, W/ $\bar{R} A$, ENA, and MBA beforeCLKA \uparrow;RENB and MBB beforeCLKB ; WENC and MBC before CLKC \uparrow	3	-	4.5	-	ns
tRSTS	Setup Time, $\overline{\text { MRS1 }}, \overline{\text { MRS2 }}$, $\overline{\mathrm{PRS} 1}$, or $\overline{\text { PRS2 }}$ LOW before CLKA \uparrow or CLKB $\uparrow^{(2)}$	5	-	5	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\mathrm{MRS1}}$ and $\overline{\mathrm{MRS2}} \mathrm{HIGH}$	7.5	-	8.5	-	ns
tBES	Setup Time, BE/ $\overline{\text { FWFT }}$ before $\overline{\mathrm{MRS1}}$ and $\overline{\mathrm{MRS} 2} \mathrm{HIGH}$	7.5	-	7.5	-	ns
tSPMS	Setup Time, $\overline{\text { SPM }}$ before $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }} \mathrm{HIGH}$	7.5	-	7.5	-	ns
tSDS	Setup Time, FS0/SD beforeCLKA \uparrow	3	-	4	-	ns
tSENS	Setup Time, FS1/ $\overline{\text { SEN }}$ before CLKA \uparrow	3	-	4	-	ns
tFWS	Setup Time, BE/FWFT before CLKA \uparrow	0	-	0	-	ns
tDH	Hold Time, A0-A35 after CLKA \uparrow and C0-C17 after CLKC \uparrow	0.5	-	1	-	ns
tenh	Hold Time, $\overline{C S A}, W / \bar{R} A, ~ E N A, ~ a n d ~ M B A ~ a f t e r ~ C L K A \uparrow ; ~ \overline{C S B}, ~ R E N B, ~ a n d ~ M B B ~ a f t e r ~$ CLKB \uparrow; WENC and MBC after CLKC \uparrow	0.5	-	1	-	ns
tRSTH	Hold Time, $\overline{\mathrm{MRS} 1}, \overline{\mathrm{MRS2}}, \overline{\mathrm{PRS1}}$ or $\overline{\text { PRS2 }} \mathrm{LOW}$ after CLKA \uparrow or CLKB $\uparrow^{(2)}$	4	-	4	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }} \mathrm{HIGH}$	2	-	2	-	ns
tBEH	Hold Time, BE/ $\overline{\text { FWFT }}$ after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ HIGH	2	-	2	-	ns
tSPMH	Hold Time, $\overline{\text { SPM }}$ after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ HIGH	2	-	2	-	ns
tSDH	Hold Time, FSO/SD after CLKA \uparrow	0.5	-	1	-	ns
tSENH	Hold Time, FS1/SEN HIGH after CLKA \uparrow	0.5	-	1	-	ns
tSPH	Hold Time, FS1/ $\overline{\text { SEN }}$ HIGH after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ HIGH	2	-	2	-	ns
tSKEW1 ${ }^{(3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EFB}} / \mathrm{ORB}$ and $\overline{\mathrm{FFA}} / \mathrm{IRA}$; between CLKA \uparrow and CLKC个 for EFA/ORA and FFC/IRC	5	-	7.5	-	ns
tSKEW ${ }^{(3,4)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AEB}}$ and $\overline{\mathrm{AFA}}$; between CLKA \uparrow and CLKC \uparrow for $\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AFC}}$	12	-	12	-	ns

NOTES:

1. For 10 ns speed grade only: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship among CLKA cycle, CLKB cycle, and CLKC cycle.
4. Design simulated, not tested.
5. Industrial temperature range is available by special order.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30PF
Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V}$; for $10 \mathrm{~ns}\left(100 \mathrm{MHz}\right.$) operation, $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	$\begin{array}{\|l\|} \text { IDT72V3626L10 } 0^{(1)} \\ \text { IDT72V3636L10 } \\ \text { IDT72V3646L10 } \\ \hline(1) \end{array}$		IDT72V3626L15 IDT72V3636L15 IDT72V3646L15		
		Min.	Max.	Min.	Max.	Unit
tA	Access Time, CLKA to A0-A35 and CLKB \uparrow to B0-B17	2	6.5	2	10	ns
twFF	Propagation Delay Time, CLKA to $\overline{\mathrm{FFA}} / \mathrm{IRA}$ and CLKC \uparrow to $\overline{\mathrm{FFC}} / \mathrm{IRC}$	2	6.5	2	8	ns
tREF	Propagation Delay Time, CLKA to $\overline{\mathrm{EFA}} / \mathrm{ORA}$ and CLKB\uparrow to $\overline{\mathrm{EFB}} / \mathrm{ORB}$	1	6.5	1	8	ns
tPAE	Propagation Delay Time, CLKA to $\overline{A E A}$ and CLKB \uparrow to $\overline{\mathrm{AEB}}$	1	6.5	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AFA}}$ and CLKC \uparrow to $\overline{\mathrm{AFC}}$	1	6.5	1	8	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }}$ HIGH, CLKB \uparrow to $\overline{\text { MBF1 }}$ HIGH, and CLKC个 to $\overline{\text { MBF2 }}$ LOW	0	6.5	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B0} 0-\mathrm{B} 17^{(2)}$ and CLKC \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(3)}$	2	8	2	10	ns
tMDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B17 valid	2	6.5	2	10	ns
tRSF	Propagation Delay Time, $\overline{\text { MRS1 }}$ or $\overline{\text { PRS1 }}$ LOW to $\overline{\text { AEB }}$ LOW, $\overline{\text { AFA }}$ HIGH, and $\overline{\text { MBF1 }}$ HIGH and $\overline{\mathrm{MRS} 2}$ or $\overline{\text { PRS2 }}$ LOW to $\overline{\mathrm{AEA}}$ LOW, $\overline{\mathrm{AFC}}$ HIGH, and $\overline{\mathrm{MBF2}}$ HIGH	1	10	1	15	ns
ten	Enable Time, $\overline{\text { CSA }}$ or W/RALOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW to B0-B17 Active	2	6	2	10	ns
tols	Disable Time, $\overline{\mathrm{CSA}}$ or W/RA HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH to B0-B17 atHIGH impedance	1	6	1	8	ns

NOTES:

1. For 10 ns speed grade only: $\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant.
2. Writing data to the mail1 register when the BO-B17 outputs are active and MBB is HIGH.
3. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH .
4. Industrial temperature range is available by special order.

SIGNAL DESCRIPTION

MASTER RESET ($\overline{\text { MRS1 }}, \overline{\text { MRS2 }})$

After powerup, a Master Resetoperation must be performed by providing a LOW pulse to $\overline{\mathrm{MRS}}$ and $\overline{\mathrm{MRS} 2}$ simultaneously. Afterwards, the FIFO1 memory of the IDT72V3626/72V3636/72V3646 undergoes a complete reset by taking its associated Master Reset($\overline{\mathrm{MRS} 1})$ inputLOW for atleast four Port AClock (CLKA) and four PortB Clock (CLKB) LOW-to-HIGH transitions. The FIFO2 memory undergoes a complete reset by taking its associated Master Reset ($\overline{\mathrm{MRS}} 2$) input LOW for at least four Port A Clock (CLKA) and four Port CClock(CLKC)LOW-to-HIGHtransitions. The MasterResetinputs can switch asynchronously to the clocks. AMaster Resetinitializestheassociatedreadand write pointers to the firstlocation ofthe memory and forces the Full/InputReady flag($\overline{\mathrm{FFA}} /$ IRA, $\overline{\mathrm{FFC}} / \mathrm{IRC})$ LOW, the Empty/OutputReadyflag ($\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} /$ ORB) LOW, the Almost-Empty flag ($\overline{\text { AEA }}, \overline{\mathrm{AEB}}$) LOW and the Almost-Full flag $(\overline{\mathrm{AFA}}, \overline{\mathrm{AFC}}) \mathrm{HIGH} . \mathrm{A}$ Master Reset also forces the associated Mailbox Flag (MBF1, $\overline{\text { MBF2 }}$) ofthe parallel mailbox register HIGH. AfteraMasterReset, the FIFO's Full/InputReady flag is setHIGH aftertwo WriteClock cycles. Thenthe FIFO is ready to be written to.

ALOW-to-HIGH transition on the FIFO1 MasterReset($\overline{\mathrm{MRS} 1}$) inputlatches the value ofthe Big-Endian (BE) inputfor determining the order by which bytes aretransferred through PortsBandC. Italsolatchesthe values ofthe FlagSelect (FS0, FS1) and Serial Programming Mode ($\overline{\mathrm{SPM}}$) inputs for choosing the Almost-Full and Almost-Empty offsetprogramming method.

ALOW-to-HIGH transition on the FIFO2 Master Reset ($\overline{\mathrm{MRS} 2}$) clears the flag offsetregisters ofFIFO2(X2, Y2). ALOW-to-HIGHtransitionontheFIFO2 Master Reset (MRS2) together with the FIFO1 Master Reset input (MRS1) latches the value oftheBig-Endian(BE) inputforPorts B and C and alsolatches the values ofthe Flag Select(FS0, FS1) and Serial Programming Mode($\overline{\text { SPM }})$ inputs for choosing the Almost-Full and Almost-Empty offset programming method (for details see Table 1, Flag Programming, and Almost-Empty and Almost-Full flag offsetprogramming section). The relevantMasterResettiming diagrams can be found in Figure 4 and 5.

Note thatMBC mustbeHIGH during MasterReset(until $\overline{\text { FFA }} /$ IRA and $\overline{\text { FFC/ }}$ IRC go HIGH). MBA and MBB are "don't care" inputs" during Master Reset.

PARTIAL RESET ($\overline{\text { PRS1 }}, \overline{\text { PRS2 }})$

The FIF01 memory of these devices undergoes a limited reset by taking its associated Partial Reset (ㄹRS1) input LOW for at least four Port A Clock (CLKA) and four Port B Clock (CLKB) LOW-to-HIGH transitions. The FIFO2 memory undergoes alimited resetbytaking its associated Partial Reset(िRS2) inputLOW for atleast four PortA Clock (CLKA) and four PortCClock (CLKC) LOW-to-HIGH transitions. The Partial Resetinputs can switchasynchronously to the clocks. A Partial Reset initializes the internal read and write pointers and forces the Full/Input Ready flag(群/IRA, $\overline{\mathrm{FFC}} / \mathrm{IRC}$) LOW, the Empty/Output Ready flag ($\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}$)LOW, the Almost-Empty flag ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$ LOW, and the Almost-Full flag ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFC}}$) HIGH. A Partial Reset also forces the Mailbox Flag (MBF1, MBF2) ofthe parallel mailbox registerHIGH. Aftera Partial Reset, theFIFO's Full/InputReady flag is setHIGH aftertwo WriteClock cycles.

Whatever flag offsets, programming method (parallel or serial), and timing mode(FWFTor IDT Standardmode) are currently selected atthe timea Partial Resetis initiated, those settings will remain unchanged upon completion ofthe resetoperation.APartial Resetmay be useful inthe case where reprogramming
a FIFO following a Master Reset would be inconvenient. See Figure 6 and 7 forPartial Resettiming diagrams.

BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)

- ENDIAN SELECTION

This is adual purposepin. Atthetime ofMaster Reset, the BE selectfunction is active, permitting a choice ofBig-orLittle-Endian byte arrangementfordata writtento PortCorread fromPortB. This selectiondetermines theorderby which bytes (orwords) of data are transferred through those ports. For the following illustrations, note that both ports B and C are configured to have a byte (or a word) bus size.

A HIGH on the BE/FWFT input when the Master Reset ($\overline{\mathrm{MRS1}}, \overline{\mathrm{MRS}}$) inputs go from LOW to HIGH will selecta Big-Endian arrangement. When data is moving in the direction from PortA to PortB, the most significantbyte (word) ofthe long word writtento PortA will be read from PortBfirst; the leastsignificant byte (word) ofthe long word written to PortA will be read from PortBlast. When data is moving in the direction from Port C to PortA, the byte (word) written to PortC firstwill be read from PortA as the mostsignificantbyte (word) of the long word; the byte (word) written to PortC lastwill be read from PortA as the least significant byte (word) of the long word.

ALOW ontheBE/FWFT inputwhenthe MasterReset($\overline{\mathrm{MRS1}}, \overline{\mathrm{MRS} 2})$ inputs go from LOW to HIGH will select a Little-Endian arrangement. When data is moving in the direction from PortA to PortB, the leastsignificantbyte (word) of the long word written to Port A will be read from Port B first; the mostsignificant byte (word) of the long word written to PortA will be read from PortB last. When data is moving in the direction from Port C to PortA, the byte (word) written to PortC firstwill be read from PortA as the least significant byte (word) of the long word; the byte (word) written to Port C last will be read from Port A as the most significant byte(word) of the long word. Refer to Figure 2 and 3 for illustrations of the BE function. See Figure 4 (FIFO1 Master Reset) and 5 (FIFO2 Master Reset) for Endian Selecttiming diagrams.

- TIMING MODE SELECTION

AfterMasterReset, theFWFT selectfunctionis available, permitting achoice between two possible timing modes: IDT Standard mode or First Word Fall Through(FWFT) mode. Once the MasterReset($\overline{\text { MRS1 }}, \overline{\text { MRS2 }}$) inputis HIGH, aHIGH ontheBE/FWFTinputduring thenextLOW-to-HIGHtransition ofCLKA (for FIFO1) and CLKC (for FIFO2) will selectIDT Standard mode. This mode uses the Empty Flag function ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}$) to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flag function ($\overline{\mathrm{FFA}}$, $\overline{\mathrm{FFC}})$ to indicate whetherornotthe FIFO memory has any free spaceforwriting. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.

Once the Master Reset ($\overline{\mathrm{MRS} 1}, \overline{\mathrm{MRS}})$ input is HIGH, a LOW on the BE/ FWFT input during the nextLOW-to-HIGHtransition of CLKA(for FIFO1) and CLKC (forFIFO2) will selectFWFT mode. This mode uses the Output Ready function (ORA, ORB) to indicate whether or not there is valid data at the data outputs (A0-A35 or B0-B17). It also uses the Input Ready function (IRA, IRC) to indicate whether or not the FIFO memory has any free space for writing. In theFWFT mode, the firstword written to an empty FIFO goes directly to the data outputs, no read request necessary. Subsequentwords mustbe accessed by performing a formal read operation.

[^0]Following Master Reset, the level applied to theBE/FWFT input to choose the desired timing mode mustremain static throughoutFIFO operation. Refer to Figure 4 (FIFO1 Master Reset) and Figure 5(FIFO2 Master Reset) for First Word Fall Through selecttiming diagrams.

PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULLFLAGS

Four registers in theseFIFOs are used tohold the offsetvalues forthe AlmostEmpty and Almost-Fullflags. The PortBAlmost-Emptyflag ($\overline{\mathrm{AEB}})$ Offsetregister is labeled X1 and the PortA Almost-Empty flag ($\overline{\mathrm{AEA}})$ Offsetregister is labeled X2. The PortAAlmost-Full flag ($\overline{\mathrm{AFA}})$ Offsetregister is labeled Y1 and the Port CAlmost-Full flag ($\overline{\mathrm{AFC}}$) Offsetregister is labeled Y2. The index ofeach register name corresponds to its FIFO number. The Offsetregisters canbeloaded with preset values during the reset of a FIFO, programmed in parallel using the FIFO's PortA data inputs, or programmed in serial using the Serial Data(SD) input (see Table 1).
$\overline{\text { SPM }}, \mathrm{FS} 0 / \mathrm{SD}$, and FS1/ $\overline{\text { SEN }}$ function the same way in both IDT Standard and FWFT modes.

— PRESET VALUES

ToloadaFIFO's Almost-Empty flag and Almost-Full flag Offsetregisters with one of the three preset values listed in Table 1, the Serial ProgramMode ($\overline{\mathrm{SPM}})$ and atleastone ofthe flag selectinputs mustbeHIGH during the LOW-to-HIGH transition of its Master Reset($\overline{\mathrm{MRS} 1}$ and $\overline{\mathrm{MRS} 2}$) input. For example, to load the presetvalue of64into X1 andY1, $\overline{\mathrm{SPM}}, \mathrm{FS} 0$ and FS1 mustbeHIGH whenFIFO1 reset (MRS1) returns HIGH. Flag Offset registers associated with FIFO2 are loaded with one of the preset values in the same way with FIFO2 Master Reset ($\overline{\text { MRS2 }}$) toggled simultaneously with FIFO1 Master Reset ($\overline{\text { MRS1 }})$. For relevant Preset value loading timing diagrams, see Figure 4 and 5.

-PARALLEL LOAD FROM PORT A

To program the $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$, and Y 2 registers from Port A, perform a Master Reseton both FIFOs simultaneously with $\overline{\text { SPM }}$ HIGH and FS0 and FS1 LOW during the LOW-to-HIGH transition of $\overline{\mathrm{MRS1}}$ and $\overline{\mathrm{MRS} 2}$. After this reset is complete, the firstfourwrites to FIFO1 donotstore datainRAMbutload the Offset registers in the order $\mathrm{Y} 1, \mathrm{X} 1, \mathrm{Y} 2, \mathrm{X} 2$. The Port A data inputs used by the Offset registers are (A7-A0), (A8-A0), or (A9-A0) for the IDT72V3626, IDT72V3636, or IDT72V3646, respectively. The highestnumbered inputis used as the most
significant bit of the binary number ineach case. Valid programming values for the registers range from 1 to 252 for the IDT72V3626; 1 to 508 for the IDT72V3636; and 1 to 1,020 for the IDT72V3646. After all the Offsetregisters are programmed from Port A, the Port C Full/Input Ready flag ($\overline{\mathrm{FFC}} / / \mathrm{RC}$) is setHIGH, and both FIFOs begin normal operation. Refer to Figure 8foratiming diagram illustration for parallel programming of the flag offset values.

— SERIAL LOAD

To program the $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$, and Y 2 registers serially, initiate a MasterReset with $\overline{\text { SPM }}$ LOW, FSO/SDLOW and FS1/SEN $H I G H$ during the LOW-to-HIGH transition of $\overline{\mathrm{MRS}}$ and $\overline{\mathrm{MRS} 2}$. After this reset is complete, the X and Y register values are loaded bit-wise through the FSO/SD inputon each LOW-to-HIGH transition of CLKA that the FS1/SEN input is LOW. There are 32 -, 36-, or 40bitwrites neededtocompletetheprogrammingfortheIDT72V3626, IDT72V3636, or IDT72V3646, respectively. The four registers are written in the order Y 1 , $\mathrm{X} 1, \mathrm{Y} 2$ and finally, X 2 . The first-bitwrite stores the most significantbit of the Y 1 registerand the last-bitwrite storestheleastsignificantbitofthe X 2 register. Each register value can be programmed from 1 to 252 (IDT72V3626), 1 to 508 (IDT72V3636), or 1 to 1,020 (IDT72V3646).

When the option to program the Offset registers serially is chosen, the Port AFull/InputReady ($\overline{\mathrm{FFA}} / \mathrm{IRA}$) flag remains LOW until all registerbits are written. $\overline{F F A} / I R A$ is set HIGH by the LOW-to-HIGH transition of CLKA after the last bit is loaded to allow normal FIFO1 operation. The PortB Full/InputReady (FFC/ IRC) flag also remains LOW throughout the serial programming process, until all registerbits arewritten. $\overline{\mathrm{FFC}} / \mathrm{IRC}$ is setHIGH by the LOW-to-HIGHtransition of CLKC after the last bit is loaded to allow normal FIFO2 operation.

See Figure 9 timing diagram, Serial Programming ofthe Almost-Full Flag and Almost-Empty Flag Offset Values afterReset (IDT Standard and FWFT Modes).

FIFO WRITE/READ OPERATION

The state of the Port A data (A0-A35) outputs is controlled by Port A Chip Select ($\overline{\mathrm{CSA}})$ and PortA Write/Read Select (W/RA). The A0-A35 outputs are in the high-impedance state when either $\overline{\mathrm{CSA}}$ or W/RA is HIGH. The A0-A35 outputs are active when both $\overline{C S A}$ and W/RA are LOW.

Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is

TABLE 1 - FLAG PROGRAMMING

SPM	FS1/SEN	FS0/SD	$\overline{\text { MRS1 }}$	$\overline{\text { MRS2 }}$	X1 AND Y1 REGISTERS ${ }^{(1)}$	X2 AND Y2 REGISTERS ${ }^{(2)}$
H	H	H	\uparrow	X	64	X
H	H	H	\uparrow	\uparrow	64	64
H	H	L	\uparrow	X	16	X
H	H	L	\uparrow	\uparrow	16	16
H	L	H	\uparrow	X	8	X
H	L	H	\uparrow	\uparrow	8	8
H	L	L	\uparrow	\uparrow	Parallel programming via PortA	Parallel programming via PortA
L	H	L	\uparrow	\uparrow	Serial programming via SD	Serial programming via SD
L	H	H	\uparrow	\uparrow	Reserved	Reserved
L	L	H	\uparrow	\uparrow	Reserved	Reserved
L	L	L	\uparrow	\uparrow	Reserved	Reserved

NOTES:

1. X1 register holds the offset for $\overline{\operatorname{AEB}} ; \mathrm{Y} 1$ register holds the offset for $\overline{\mathrm{AF}}$.
2. X2 register holds the offset for $\overline{\mathrm{AEA}} ; \mathrm{Y} 2$ register holds the offset for $\overline{\mathrm{AFC}}$.

TABLE 2 - PORT A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/RA	ENA	MBA	CLKA	Data A(A0-A35) I/O	PORT FUNCTION
H	X	X	X	X	High-Impedance	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	Input
L	H	H	H	\uparrow	Output	Mail1 write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	FIFO2 read
L	L	L	H	X	Output	None
L	L	H	H	\uparrow		Mail2 read (set $\overline{\text { MBF2 }} \mathrm{HIGH})$

TABLE 3 - PORT B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	RENB	MBB	CLKB	Data B (B0-B17) Outputs	PORT FUNCTION
H	X	X	X	High-Impedance	None
L	L	L	X	Output	None
L	H	L	\uparrow	Output	FIFO1 read
L	L	H	X	Output	None
L	H	H	\uparrow	Output	Mail read (set $\overline{\text { MBF1 HIGH) }}$

TABLE 4 - PORT C ENABLE FUNCTION TABLE

WENC	MBC	CLKC	Data C (C0-C17) Inputs	PORT FUNCTION
H	L	\uparrow	Input	FIFO2 write
H	H	Input	Mail2 write	
L	L	X	Input	None
L	H	X	Input	None

LOW, and $\overline{F F A}$ IIRA is HIGH. Data is read from FIFO2 to the AO-A35 outputs byaLOW-to-HIGH transition of CLKA when $\overline{\text { CSA }}$ is LOW, W/R̄A is LOW,ENA is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table 2). FIFO reads and writes on PortA are independentofany concurrentPortB and PortC operation.

The state ofthe PortBdata(BO-B17) outputs is controlled bythe PortBChip Select ($\overline{\mathrm{CSB}}$). The BO-B17 outputs are inthe high-impedance state when $\overline{C S B}$ is HIGH . The BO-B17 outputs are active when $\overline{\mathrm{CSB}}$ is LOW.

Datais read from FIFO1 tothe BO-B17 outputs byaLOW-to-HIGHtransition of CLKB when CSB is LOW, RENB is HIGH, MBB is LOW and EFB/ORB is HIGH (see Table3). FIFO reads on PortB are independent of any concurrent Port A and Port C operations.

Data is loaded into FIFO2 from the C0-C17 inputs on a LOW-to-HIGH transition of CLKC when WENB is HIGH, MBC is LOW, and FFC/IRC is HIGH (see Table 4). FIFO writes on PortC are independent of any concurrent Port A and Port B operation.

The setup and hold time constraints for $\overline{C S A}$ and $W / \bar{R} A$ with regard to CLKA as well as $\overline{C S B}$ with regard to CLKB are only for enabling write and read operations and are notrelated to high-impedance control of the data outputs.

If ENA is LOW during a clock cycle, either $\overline{C S A}$ or $W \bar{R} A$ may change states during the setup and hold time window of the cycle. This is also true for $\overline{C S B}$ when RENB is LOW.

Whenoperatingthe FIFO in FWFT mode and the OutputReadyflagis LOW, the next word written is automatically sentto the FIFO's outputregister by the LOW-to-HIGH transition of the portclock thatsets the Output Ready flag HIGH. When the Output Ready flag is HIGH, subsequent datais clocked to the output registers only when a read is selected using $\overline{C S A}, W / \bar{R} A, E N A$ andMBA atPort A or using $\overline{C S B}$, RENB and MBB at Port B.

When operating the FIFO in IDT Standard mode, the first word will cause the Empty Flag to change state on the second LOW-to-HIGH transition of the ReadClock. The data word will notbe automatically sentto the outputregister. Instead, data residing in the FIFO's memory array is clocked to the output register only when a read is selected using $\overline{C S A}, W / \bar{R} A, E N A$ and MBA at Port A or using $\overline{C S B}$, RENB and MBB at Port B. Relevant write and read timing diagrams forPortA can befound in Figure 10 and 15 . Relevantread and write timing diagrams for PortB and PortC, togetherwith Bus-Matching and Endian select operation, can be found in Figure 11 to 14.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronized to its port clock through at least two flip-flop stages. This is doneto improve flag signal reliability by reducing the probability of metastable events when CLKA operates asynchronously with respect to eitherCLKB orCLKC. $\overline{\mathrm{EFA}} / O R A, \overline{\mathrm{AEA}}, \overline{\mathrm{FFA}} / \mathrm{IRA}$, and $\overline{\mathrm{AFA}}$ are synchronized to $C L K A . \overline{\mathrm{EFB}} / O R B$ and $\overline{\mathrm{AEB}}$ are synchronized to $\mathrm{CLKB} . \overline{\mathrm{FFC}} / I R C$ and $\overline{\mathrm{AFC}}$ are synchronized to CLKC. Tables 5 and 6 show the relationship of each port flag to FIFO1 and FIFO2.

EMPTY/OUTPUT READYFLAGS(EFA/ORA, $\overline{\text { EFB }} /$ /ORB)

These are dual purpose flags. In the FWFT mode, the Output Ready (ORA, ORB) function is selected. When the Output Ready flag is HIGH, new data is present in the FIFO output register. When the Output Ready flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

In the IDT Standard mode, the Empty Flag ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$ function is selected. When the Empty Flag is HIGH, data is available in the FIFO's RAM memory for reading to the output register. When the Empty Flag is LOW, the previous data word is present in the FIFO outputregister and attempted FIFO reads are ignored.

The Empty/Output Ready flag of a FIFO is synchronized to the port clock that reads data fromits array. For both the FWFT and IDT Standard modes, the FIFO read pointer is incremented each time a new word is clocked to its output register. The state machine that controls an Output Ready flag monitors a write
pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty +1 , or empty +2 .

InFWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO output register in a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, an Output Ready flag is LOW if a word in memory is the next data to be sent to the FIFO output register and three cycles of the portclock that reads data from the FIFO have notelapsed since the time the word was written. The OutputReady flag ofthe FIFO remains LOW until the third LOW-to-HIGH transition ofthe synchronizing clockoccurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO output register.

In IDT Standard mode, from the time a word is written to a FIFO, the Empty Flag will indicate the presence of data available for reading in a minimum oftwo cycles oftheEmpty Flag synchronizing clock. Therefore, anEmpty Flag is LOW if a word in memory is the next data to be sent to the FIFO output register and two cycles ofthe portClock thatreads datafrom theFIFO havenotelapsed since the time the word was written. The Empty Flag ofthe FIFO remains LOW until the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing the Empty Flag HIGH; only then can data be read.

ALOW-to-HIGH transition on an Empty/Output Ready flag synchronizing clockbegins thefirstsynchronization cycle of a write ifthe clock transition occurs attime tSKEW1 or greater after the write. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figure 16, 17, 18 and 19).

TABLE 5 - FIF01 FLAG OPERATION (IDT Standard and FWFT modes)

Number of Words in FIFO Memory (1,2)			Synchronized to CLKB		Synchronized to CLKA	
IDT72V3626 ${ }^{(3)}$	IDT72V3636 ${ }^{(3)}$	IDT72V3646 ${ }^{(3)}$	$\overline{\mathrm{EFB}} / \mathrm{ORB}$	$\overline{\mathrm{AEB}}$	$\overline{\mathrm{AFA}}$	$\overline{\mathrm{FFA} / \mathrm{RA}}$
0	0	0	L	L	H	H
1 toX1	1 toX1	1 toX1	H	L	H	H
$(\mathrm{X} 1+1)$ to $[256-(\mathrm{Y} 1+1)]$	$(\mathrm{X} 1+1)$ to $[512-(\mathrm{Y} 1+1)]$	$(\mathrm{X} 1+1)$ to $[1,024-(\mathrm{Y} 1+1)]$	H	H	H	H
$(256-\mathrm{Y} 1)$ to255	$(512-\mathrm{Y} 1)$ to 511	$(1,024-\mathrm{Y} 1)$ to 1,023	H	H	L	H
256	512	1,024	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 1 is the almost-empty offset for $\mathrm{FIFO1}$ used by $\overline{\mathrm{AEB}}$. Y 1 is the almost-full offset for FIFO1 used by $\overline{\mathrm{AFA}}$. Both X 1 and Y 1 are selected during a $\mathrm{FIFO1}$ reset or port A programming.
4. The ORB and IRA functions are active during FWFT mode; the $\overline{\text { EFB }}$ and $\overline{\text { FFA }}$ functions are active in IDT Standard mode.

TABLE 6 - FIFO2 FLAG OPERATION (IDT Standard and FWFT modes)

Number of Words in FIFO Memory ${ }^{(1,2)}$			Synchronized to CLKA		Synchronized to CLKC	
IDT72V3626 ${ }^{(3)}$	IDT72V3636 ${ }^{(3)}$	IDT72V3646 ${ }^{(3)}$	EFA/ORA	$\overline{\mathrm{AE}} \overline{\mathrm{A}}$	$\overline{\text { AFC }}$	$\overline{\text { FFC/IRC }}$
0	0	0	L	L	H	H
1 to X2	1 to X2	1 to X2	H	L	H	H
(X2+1) to [256-(Y2+1)]	(X2+1)to [512-(Y2+1)]	(X2+1) to [1,024-(Y2+1)]	H	H	H	H
(256-Y2) to 255	(512-Y2) to 511	(1,024-Y2) to 1,023	H	H	L	H
256	512	1,024	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 2 is the almost-empty offset for FIFO2 used by $\overline{\text { AEA. }} \mathrm{Y} 2$ is the almost-full offset for FIFO2 used by $\overline{\mathrm{AFC}}$. Both X 2 and Y 2 are selected during a FIFO2 reset or port A programming.
4. The ORA and IRC functions are active during FWFT mode; the EFA and FFC functions are active in IDT Standard mode.

FULLIINPUT READY FLAGS (FFA/IRA, FFC/IRC)

These are dual purpose flags. In FWFT mode, the Input Ready (IRA and IRC) function is selected. In IDT Standard mode, the Full Flag ($\overline{\mathrm{FFA}}$ and $\overline{\mathrm{FFC}}$) function is selected. For both timing modes, when the Full/Input Ready flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free whenthe Full/InputReady flag is LOW and attempted writes to the FIFO are ignored.

The Full/Input Ready flag of a FIFO is synchronized to the port clock that writes data to its array. For both FWFT and IDT Standard modes, each time a word is written to a FIFO, its write pointer is incremented. The state machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read fromaFIFO, its previous memorylocation is ready to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizing clock. Therefore, an Full/InputReady flag is LOW ifless thantwo cycles of the Full/Input Ready flag synchronizing clock haveelapsed since the nextmemory write location has been read. The second LOW-to-HIGHtransition ontheFull/InputReady flag synchronizing clock after the read sets the Full/Input Ready flag HIGH.

ALOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock begins the first synchronization cycle of a read if the clock transition occurs at timetSKEW1 orgreaterafterthe read. Otherwise, the subsequentclock cycle can be the first synchronization cycle (see Figure 20, 21, 22, and 23).

ALMOST-EMPTY FLAGS ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}$)

The Almost-Empty flag of aFIFO is synchronized to the portclock thatreads datafromitsarray. ThestatemachinethatcontrolsanAlmost-Emptyflagmonitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-empty state is defined by the contents of registerX1 for $\overline{\mathrm{AEB}}$ and register X 2 for $\overline{\mathrm{AEA}}$. These registers are loaded with preset values during aFIFO reset, programmed from PortA, or programmed serially (see the Almost-Empty flag and Almost-Full flag offsetprogramming section). AnAlmost-Empty flagisLOW when its FIFO contains X or less words and is HIGH when its FIFO contains (X+1) or more words. A data word present in the FIFO outputregister has been read from memory.

TwoLOW-to-HIGHtransitions ofthe Almost-Empty flag synchronizing clock are required after aFIFO write for its Almost-Empty flag to reflectthe new level offill. Therefore, the Almost-Full flag of aFIFO containing $(X+1)$ or more words remainsLOWiftwo cycles of its synchronizing clock have notelapsed since the write that filled the memory to the (X+1) level. An Almost-Empty flag is setHIGH by the second LOW-to-HIGH transition of its synchronizing clock aftertheFIFO write thatfillsmemory tothe (X+1)level.ALOW-to-HIGH transition of an AlmostEmpty flag synchronizing clock begins the firstsynchronization cycle ifitoccurs at time tSKEW2 or greater after the write that fills the FIFO to ($\mathrm{X}+1$) words. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle. (See Figure 24 and 25).

ALMOST-FULL FLAGS ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFC}}$)

The Almost-Full flag of aFIFO is synchronized to the port clock that writes data to its array. The state machine that controls an Almost-Full flag monitors a write pointer and read pointer comparator that indicates whentheFIFO memory status is almost-full, almost-full-1, oralmost-full-2. Thealmost-full state is defined by the contents of register Y 1 for $\overline{\mathrm{AFA}}$ and register Y 2 for $\overline{\mathrm{AFC}}$. These registers are loaded with preset values during a FIFO reset, programmed from PortA, or programmed serially (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Full flag is LOW when the number of words
in its FIFO is greater than or equal to (256-Y), (512-Y), or (1,024-Y) for the IDT72V3626, IDT72V3636, or IDT72V3646 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to [256$(\mathrm{Y}+1)]$, $[512-(\mathrm{Y}+1)]$, or $[1,024-(\mathrm{Y}+1)]$ for the IDT72V3626, IDT72V3636, or IDT72V3646 respectively. Note that a data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGH transitions ofthe Almost-Full flag synchronizing clockare required aftera FIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Fullflag of a FIFO containing [256/512/1,024-(Y+1)]or lesswords remainsLOWiftwo cycles ofits synchronizing clockhavenotelapsed since the read thatreduced the number of words in memory to [256/512/1,024(Y+1)]. AnAlmost-Full flag is setHIGH by the second LOW-to-HIGHtransition of its synchronizing clock afterthe FIFO read that reduces the number of words in memory to [256/512/1,024-(Y+1)].ALOW-to-HIGHtransition of an AlmostFull flag synchronizing clock begins the first synchronization cycle ifitoccurs at time tSKEW2 or greater after the read that reduces the number of words in memory to [256/512/1,024-(Y+1)]. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle (see Figure 26 and 27).

MAILBOX REGISTERS

Each FIFO has an 18-bitbypass register allowing the passage of command and control informationfromPortAtoPortBorfromPortCto PortA withoutputting itinqueue. The Mailbox Select(MBA, MBB andMBC) inputs choose between a mail register and aFIFO for a port data transfer operation. The usable width of both the Mail1 and Mail2 registers matches the selected bus size for ports B and C .

Whensending datafrom PortA to PortB viathe Mail1 Register, the following isthe case: ALOW-to-HIGHtransition onCLKAwrites datatotheMail1 Register when a Port A write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. If the selected PortBbus size is 18 bits, then the usable width ofthe Mail1 Register employs datalines A0-A17. (Inthis case,A18-A35 are don't care inputs.) Ifthe selected Port B bus size is 9 bits, then the usable width of the Mail1 Register employs data lines A0-A8. (In this case, A9-A35 are don't care inputs.)

When sending datafrom PortCto PortA viatheMail2Register, the following is the case: ALOW-to-HIGHtransition onCLKC writes data to the Mail2Register when a Port C write is selected by WENC with MBC HIGH. Ifthe selected Port C bus size is 18 bits, then the usable width of the Mail2 Registeremploys data lines C0-C17. If the selected Port C bus size is 9 bits, then the usable width of the Mail2 Register employs datalines C0-C8. (Inthis case, C9-C17 are don't care inputs.)

Writing data to a mail register sets its corresponding flag ($\overline{\mathrm{MBF} 1}$ or $\overline{\mathrm{MBF} 2}$) LOW. Attempted writes to a mail register are ignored while the mail flag is LOW.

When data outputs of a port are active, the data on the bus comes from the FIFO output register when the port Mailbox select input is LOW and from the mail register when the port mailbox select input is HIGH.

The Mail1 Register Flag ($\overline{\mathrm{MBF}}$) is setHIGH by a LOW-to-HIGH transition on CLKB when a Port B read is selected by $\overline{C S B}$, and RENB with MBB HIGH. For an 18-bit bus size, 18 bits of mailbox data are placed on $\mathrm{B0}$-B17. For the 9-bitbus size, 9bits ofmailbox data are placed onB0-B8. (Inthis case, B9-B17 are indeterminate.)

The Mail2 Register Flag ($\overline{\mathrm{MBF} 2}$) is setHIGH by a LOW-to-HIGH transition on CLKA when a Port A read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. The datain a mail register remains intactafteritis read and changes only when new data is written to the register. Foran 18-bitbus size, 18bits of mailbox data appear on A18-A35. (In this case, A0-A17 are indeterminate.) For a 9bit bus size, 9 bits of mailbox data appear on A18-A26. (In this case, A0-A17 and A27-A35 are indeterminate.)

The data in a mail register remains intact after it is read and changes only when new datais writtentothe register. TheEndianSelectfeaturehas noeffect on mailboxdata.

NotethatMBC mustbeHIGH during Master Reset (until $\overline{\mathrm{FFA}} / \mathrm{IRA}$ and $\overline{\mathrm{FFC}} /$ IRC go HIGH. MBA and MBB are don't care inputs during Master Reset. For mail register and mail register flag timing diagrams, see Figure 28 and 29.

BUS SIZING

PortB may be configured in either an 18-bitword or a 9-bitbyte format for data read from FIF01. Port C may be configured in either an 18-bit word or a 9-bit byte format for data written to FIFO2. The bus size can be selected independently for Ports B and C. The level applied to the Port B Size Select (SIZEB) input determines the Port B bus size and the level applied to the Port CSizeSelect(SIZEC)inputdetermines the PortCbussize. Theselevels should bestatic throughoutFIFOoperation. Bothbussize selections areimplemented at the completion of Master Reset, by the time the Full/Input Ready flag is set HIGH, as shown in Figure 2 and 3.

Two differentmethods for sequencing data transfer are available for Ports B andCregardless of whetherthebus size selection is byte-orword-size. They are referred toas Big-Endian (mostsignificant bytefirst) and Little-Endian(least significantbytefirst). Thelevel applied totheBig-EndianSelect(BE)inputduring the LOW-to-HIGH transition of $\overline{M R S} 1$ and $\overline{\text { MRS2 }}$ selects the endian method that will be active during FIFO operation. This selection applies to both ports B and C. Theendian method is implemented atthe completion of MasterReset, by the time the Full/Input Ready flag is set HIGH, as shown in Figure 2 and 3 (see Endian Selection section).

Only 36-bitlong word data is written to o r read from the two FIFO memories on these devices. Bus-Matching operations are done after data is read from the FIF01 RAM (PortB) and before data is written to the FIFO2RAM (PortC). The Endian select operations are not available when transferring data via
mailbox registers. Furthermore, both the word-and byte-size bus selections limit the width of the data bus that can be used for mail register operations. In this case, only those byte lanes belonging to the selected word- or byte-size bus can carry mailbox data. The remaining data outputs will be indeterminate. The remaining datainputs will be don'tcare inputs. For example, when a wordsize bus is selected on PortB, then mailbox data can be transmitted only from A0-A17 to B0-B17. When a byte-size bus is selected on Port B, then mailbox data can be transmitted only from A0-A8 to B0-B8. Similarly, when a word-size bus is selected on PortC, then mailbox data can be transmitted only from CO C17 toA18-A35. When abyte-sizebus is selected on PortC, then mailboxdata can be transmitted only from $\mathrm{C} 0-\mathrm{C} 8$ to $\mathrm{A} 18-\mathrm{A} 26$.

BUS-MATCHING FIFO1 READS

Datais read fromtheFIFO1 RAM in 36-bitlong word increments. Since Port B can have a byte or word size, only the first one or two bytes appear on the selected portion ofthe FIFO1 outputregister, withthe restofthe long word stored in auxiliary registers. Inthis case, subsequent FIFO1 reads outputthe rest of the long word to the FIFO1 output register in the order shown by Figure 2.

When reading data fromFIFO1 in byte format, the unused B9-B17 outputs are indeterminate.

BUS-MATCHING FIFO2 WRITES

Datais writtentotheFIFO2RAMin36-bitlongword increments. Datawritten to FIFO2 with a byteorword bussize stores the initial bytes or words in auxiliary registers. TheCLKC rising edge that writes the fourth byte or the second word of long word to FIFO2 also stores the entire long word in the FIFO2 memory. The bytes are arranged in the manner shown in Figure 3.

When writing data to FIFO2 in byte format, the unused C9-C17 inputs are don't care inputs.
BYTE ORDER ON PORT A:
BYTE ORDER ON PORT B:

BE	SIZEB
H	L

BE	SIZEB
\mathbf{L}	\mathbf{L}

(c) WORD SIZE - LITTLE ENDIAN

(d) BYTE SIZE — BIG ENDIAN

BE	SIZEB
\mathbf{L}	H

> (e) BYTE SIZE — LITTLE ENDIAN

Figure 2. Port B Bus Sizing

BYTE ORDER ON PORT A:
 Read from FIFO2

BYTE ORDER ON PORT C:

BE	SIZEC
H	L

(e) BYTE SIZE — LITTLE ENDIAN

(b) WORD SIZE - BIG ENDIAN

(c) WORD SIZE - LITTLE ENDIAN

4th: Write to FIFO2
(d) BYTE SIZE — BIG ENDIAN

1st: Write to FIFO2

2nd: Write to FIFO2

1st: Write to FIFO2 2nd: Write to FIFO2 1st: Write to FIFO2 2nd: Write to FIFO2 3rd: Write to FIFO2 C17-C9

群 1st: Write to FIFO2 2nd: Write to FIFO2 3rd: Write to FIFO2 4th: Write to FIFO2

Figure 3. Port C Bus Sizing

NOTES:

1. $\overline{\text { PRS1 }}$ and MBC must be HIGH during Master Reset until the rising edge of $\overline{F F A} / / R A$ goes HIGH.
2. If $\mathrm{BE} / \overline{\mathrm{FWFT}}$ is HIGH , then $\overline{\mathrm{EFB}} / \mathrm{ORB}$ will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.

Figure 4. FIF01 Master Reset and Loading X1 and Y1 with a Preset Value of Eight (IDT Standard and FWFT Modes)

Figure 5. FIFO2 Master Reset and Loading X2 and Y2 with a Preset Value of Eight (IDT Standard and FWFT Modes)

NOTES:

1. $\overline{\text { MRS1 }}$ must be HIGH during Partial Reset.
2. If $B E / \overline{F W F T}$ is $H I G H$, then $\overline{E F B} / O R B$ will go LOW one CLKB cycle earlier than in this case where $B E / \overline{F W F T}$ is LOW.

Figure 6. FIF01 Partial Reset (IDT Standard and FWFT Modes)

Figure 7. FIFO2 Partial Reset (IDT Standard and FWFT Modes)

NOTES:

1. tskEw1 is the minimum time between the rising CLKA edge and a rising CLKC edge for $\overline{\mathrm{FFC}} / \mathrm{IRC}$ to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising edge of CLKC is less than tsKEw1, then FFC/IRC may transition HIGH one CLKC cycle later than shown.
2. $\overline{C S A}=$ LOW, W/RA $=$ HIGH, MBA $=$ LOW. It is not necessary to program Offset register on consecutive clock cycles.

Figure 8. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKC edge for $\overline{\mathrm{FFC}} / \mathrm{IRC}$ to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising edge of CLKC is less than tskew1, then FFC/IRC may transition HIGH one CLKC cycle later than shown.
2. It is not necessary to program Offset register bits on consecutive clock cycles. FIFO write attempts are ignored until $\overline{\mathrm{FFA}} / \mathrm{IRA}, \overline{\mathrm{FFC}} / \mathrm{IRC}$ is set HIGH.
3. Programmable offsets are written serially to the SD input in the order $\overline{\mathrm{AFA}}$ offset (Y1), $\overline{\mathrm{AEB}}$ offset (X1), $\overline{\mathrm{AFC}}$ offset (Y2), and $\overline{\mathrm{AEA}}$ offset (X2).

Figure 9. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

NOTE:

1. Written to FIFO1.

Figure 10. Port A Write Cycle Timing for FIF01 (IDT Standard and FWFT Modes)

DATA SIZE TABLE FOR WORD WRITES TO FIFO2

SIZE MODE ${ }^{(1)}$		WRITE NO.	DATA WRITTEN TO FIFO2		DATA READ FROM FIFO2			
SIZEC	BE		C17-C9	C8-C0	A35-A27	A26-A18	A17-A9	A8-A0
L	H	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	A	B	C	D
L	L	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	A	B	C	D

NOTE:

1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.

Figure 11. Port C Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

SIZE MODE ${ }^{(1)}$		WRITE NO.	$\begin{gathered} \hline \text { DATA WRITTEN } \\ \text { TO FIFO2 } \\ \hline \text { C8-C0 } \\ \hline \end{gathered}$	DATA READ FROM FIFO2			
SIZEC	BE			A35-A27	A26-A18	A17-A9	A8-A0
H	H	1	A	A	B	C	D
		2	B				
		3	C				
		4	D				
H	L	1	D	A	B	C	D
		2	C				
		3	B				
		4	A				

NOTE:

1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.

Figure 12. Port C Byte Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

DATA SIZE TABLE FOR WORD READS FROM FIF01

SIZE MODE ${ }^{(1)}$		DATA WRITTEN TO FIFO1				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFO1	
SIZEB	BE	A35-A27	A26-A18	A17-A9	A8-A0		B17-B9	B8-B0
H	H	A	B	C	D	1	A	B
						2	C	D
H	L	A	B	C	D	1	C	D
						2	A	B

NOTE:

1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.

Figure 13. Port B Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Unused bytes B9-B17 are indeterminate for byte-size reads.

DATA SIZE TABLE FOR BYTE READS FROM FIFO1

SIZE MODE ${ }^{(1)}$		DATA WRITTEN TO FIFO1				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFO1B8-B0
SIZEB	BE	A35-A27	A26-A18	A17-A9	A8-A0		
H	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
H	L	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$

NOTE:

1. BE is selected at Master Reset; SIZEB must be static throughout device operation.

Figure 14. Port B Byte Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Read From FIFO2.

Figure 15. Port A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

NOTES:

1. tskEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, ORB is set LOW by the last word or byte read from FIFO1, respectively (the word-size case is shown).

Figure 16. ORB Flag Timing and First Data Word Fall Through when FIF01 is Empty (FWFT Mode)

NOTES:

1. tskEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{\mathrm{EFB}}$ is set LOW by the last word or byte read from FIFO1, respectively (the word-size case is shown).

Figure 17. $\overline{\text { EFB }}$ Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles. If the time between the CLKC edge and the rising CLKA edge is less than tSKEW1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA cycle later than shown.
2. If Port C size is word or byte, tsKEw1 is referenced to the rising CLKC edge that writes the last word or byte write of the long word, respectively.

Figure 18. ORA Flag Timing and First Data Word Fall through when FIFO2 is Empty (FWFT Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKA edge for $\overline{\mathrm{EFA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKC edge and rising CLKA edge is less than tskew1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.
2. If Port C size is word or byte, tsKEw1 is referenced to the rising CLKC edge that writes the last word or byte of the long word, respectively.

Figure 19. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)

NOTES:

1. tskEw is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then IRA may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tskEw1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively (the word-size case is shown).

Figure 20. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)

NOTES:

1. tsKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\text { FFA }}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tsKEW1, then FFA may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tskew1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively (the word-size case is shown).

Figure 21. FFA Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)

NOTES:

1. tskew 1 is the minimum time between a rising CLKC edge and a rising CLKC edge for IRC to transition HIGH in the next CLKC cycle. If the time between the rising CLKA edge and rising CLKC edge is less than tSKEW1, then IRC may transition HIGH one CLKC cycle later than shown.
2. If Port C size is word or byte, IRC is set LOW by the last word or byte write of the long word, respectively (the word-size case is shown).

Figure 22. IRC Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)

NOTES:

1. tskew1 is the minimum time between a rising CLKA edge and a rising CLKC edge for $\overline{\mathrm{FFC}}$ to transition HIGH in the next CLKC cycle. If the time between the rising CLKA edge and rising CLKC edge is less than tskew1, then $\overline{\text { FFC may transition HIGH one CLKC cycle later than shown. }}$
2. If Port C size is word or byte, $\overline{\mathrm{FFC}}$ is set LOW by the last word or byte write of the long word, respectively (the word-size case is shown).

Figure 23. $\overline{\text { FFC }}$ Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)

CLKA

NOTES:

1. tskew2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AEB}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew2, then $\overline{\mathrm{AEB}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO1 Write $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$, FIFO1 read $(\overline{C S B}=L O W, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO.
3. If Port B size is word or byte, $\overline{\mathrm{AEB}}$ is set LOW by the last word or byte read from FIFO1, respectively.

Figure 24. Timing for $\overline{A E B}$ when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKC edge and a rising CLKA edge for $\overline{A E A}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKC edge and rising CLKA edge is less than tsKEW2, then AEA may transition HIGH one CLKA cycle later than shown.
2. FIFO2 Write (MBC = LOW), FIFO2 read $\overline{(C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$. Data in the FIFO2 output register has been read from the FIFO.
3. If Port C size is word or byte, tsKEW2 is referenced to the rising CLKC edge that writes the last word or byte of the long word, respectively.

Figure 25. Timing for $\overline{A E A}$ when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)

NOTES:

1. tsKEw2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\operatorname{AFA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewz, then $\overline{\text { AFA }}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO1 Write ($\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO1 read ($\overline{C S B}=$ LOW, MBB $=$ LOW $)$. Data in the FIF01 output register has been read from the FIFO.
3. $D=$ Maximum FIFO Depth $=256$ for the IDT72V3626, 512 for the IDT72V3636, 1,024 for the IDT72V3646.
4. If Port B size is word or byte, tskew2 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 26. Timing for $\overline{\text { AFA }}$ when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)

NOTES:

1. tsKEw2 is the minimum time between a rising CLKC edge and a rising CLKA edge for $\overline{\mathrm{AFC}}$ to transition HIGH in the next CLKC cycle. If the time between the rising CLKC edge and rising CLKA edge is less than tskEw2, then $\overline{\text { AFC }}$ may transition HIGH one CLKC cycle later than shown.
2. FIFO2 write (MBC $=$ LOW $)$, FIFO2 read $(\overline{C S A}=$ LOW, W/RA $=$ LOW, MBA $=$ LOW $)$. Data in the FIFO2 output register has been read from the FIFO.
3. $D=$ Maximum FIFO Depth $=256$ for the IDT72V3626, 512 for the IDT72V3636, 1,024 for the IDT72V3646.
4. Port C size is word or byte, $\overline{\mathrm{AFC}}$ is set LOW by the last word or byte write of the long word, respectively.

Figure 27. Timing for $\overline{\operatorname{AFC}}$ when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)

NOTE:

1. If Port B is configured for word size, data can be written to the Mail1 register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data. If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B17 will be indeterminate).

Figure 28. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag (IDT Standard and FWFT Modes)

NOTE:

1. If Port C is configured for word size, data can be written to the Mail2 register using $\mathrm{C} 0-\mathrm{C} 17$. In this first case, $\mathrm{A} 18-\mathrm{A} 35$ will have valid data (A0-A17 will be indeterminate). If Port C is configured for byte size, data can be written to the Mail2 register using C0-C8 (C9-C17 are don't care inputs). In this second case, A18-A26 will have valid data (A0-A17 and A27-A35 will be indeterminate).

Figure 29. Timing for Mail2 Register and MBF2 Flag (IDT Standard and FWFT Modes)

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY
LOAD CIRCUIT

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

Note:

1. Includes probe and jig capacitance.

Figure 30. Load Circuit and Voltage Waveforms

ORDERING INFORMATION

NOTES:

1. Industrial temperature range is available by special order.
2. Green parts available. For specific speeds and packages contact your sales office.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: NOTE:

 1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.
