ReNESAS

CMOS SyncFIFO ${ }^{\text {TM }}$ WITH BUS-MATCHING

4,096 x 36
 8,192 x 36

IDT723663
IDT723673
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

FEATURES

- Memory storage capacity:

$$
\begin{aligned}
& \text { IDT723663 - 4,096 } \times 36 \\
& \text { IDT723673 }-8,192 \times 36
\end{aligned}
$$

- Clock frequencies up to 83 MHz (8 ns access time)
- Clocked FIFO buffering data from Port A to Port B
- IDT Standard timing (using EF and $\overline{\mathrm{FF}}$) or First Word Fall Through Timing (using OR and IR flag functions)
- Programmable Almost-Empty and Almost-Full flags; each has five default offsets ($8,16,64,256$ and 1,024)
- Serial or parallel programming of partial flags
- Port B bus sizing of 36 bits (long word), 18 bits (word) and 9 bits (byte)
- Big- or Little-Endian format for word and byte bus sizes
- Retransmit Capability
- Reset clears data and configures FIFO, Partial Reset clears data but retains configuration settings
- Mailbox bypass registers for each FIFO
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Easily expandable in width and depth
- Auto power down minimizes power dissipation
- Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)
- Pin compatible with the lower density parts, IDT723633/723643
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

The IDT723663/723673 is a monolithic, high-speed, low-power, CMOS unidirectional Synchronous (clocked) FIFO memory which supports clock frequencies up to 83MHz and has read accesstimes asfastas 8ns. The4,096/ $8,192 \times 36$ dual-portSRAM FIFO buffers datafrom Port A to PortB. FIFO data on PortB canoutputin36-bit, 18-bit, or 9-bitformatswith achoice of Big-or LittleEndianconfigurations.

These devices are synchronous (clocked) FIFOs, meaning each port employs a synchronous interface. All data transfers through a port are gated to the LOW-to-HIGH transition of a port clock by enable signals. The clocksfor each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.

PIN CONFIGURATION

TQFP (PK128, PKG128) Order code: PF

Communication between each port may bypass the FIFO via two mailbox registers. The mailbox registers' width matches the selected PortB bus width. Each mailbox register has a flag ($\overline{\mathrm{MBF} 1}$ and $\overline{\mathrm{MBF}}$) to signal when new mail has been stored.
Two kinds of reset are available on these FIFOs: Reset and Partial Reset. Resetinitializestheread and write pointerstothe firstlocation ofthememory array and selects serial flag programming, parallel flag programming, or one of five possible default flag offset settings, $8,16,64,256$ or 1,024.

Partial Reset also sets the read and write pointers to the first location of the memory. Unlike Reset, any settings existing prior to Partial Reset (i.e., programming method and partial flag defaultoffsets) are retained. Partial Reset is useful since it permits flushing of the FIFO memory without changing any configurationsettings.

TheFIFOhas Retransmitcapability, a Retransmitisperformed afterfourclock cycles of CLKA and CLKB, by taking the Retransmit pin, $\overline{R T}$ LOW while the Retransmit Mode pin, $\overline{\text { RTM }}$ is HIGH. Whena Retransmitis performed the read pointer is reset to the firstmemory location.

These devices have two modes of operation: Inthe IDT Standardmode, the firstword written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing in memory). Inthe FirstWord Fall Through mode(FWFT), the firstword written to an empty FIFO appears automatically on the outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate a formal read request). The state of the BE/FWFT pin during Reset determines the mode in use.
The FIFO has a combined Empty/Output Ready Flag (EF/OR) and a combined Full/InputReady Flag(产/IR). The $\overline{\mathrm{EF}}$ and $\overline{F F}$ functions are selected in the IDT Standard mode. $\overline{\text { EF }}$ indicates whether or not the FIFO memory is empty. $\overline{F F}$ shows whether the memory is full or not. The IR and OR functions are selected inthe FirstWord Fall Through mode. IR indicates whether or not
theFIFOhas availablememorylocations. ORshowswhethertheFIFO has data available for reading or not. Itmarks the presence of valid data on the outputs.
TheFIFO has aprogrammable Almost-Emptyflag ($\overline{\mathrm{AE}})$ and a programmable Almost-Full flag ($\overline{\mathrm{AF}}$). $\overline{\mathrm{AE}}$ indicates when a selected number of words remain inthe FIFO memory. $\overline{\text { AF indicates whentheFIFO contains morethanaselected }}$ number of words.
$\overline{\mathrm{FF}} / I R$ and $\overline{\mathrm{AF}}$ are two-stage synchronized to the port clock that writes data into its array. $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{AE}}$ are two-stage synchronized to the port clock that reads data from its array. Programmable offsets for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ are loaded in parallelusing PortA or in serial viathe SD input. Five defaultoffsetsettings are also provided. The $\overline{A E}$ threshold can be setat $8,16,64,256$ or 1,024locations from the empty boundary and the $\overline{\mathrm{AF}}$ threshold can be set at $8,16,64,256$ or 1,024 locationsfromthe full boundary. All thesechoices are made using theFS0, FS1 and FS2 inputs during Reset.
Interspersed Parity is available and can be selected during a Master Reset of the FIFO. If Interspersed Parity is selected then during parallel programming of the flag offset values, the device will ignore dataline A8. If Non-Interspersed Parity is selected then data line A8 will become a valid bit.

Two or more devices may be used in parallel to create wider data paths. In First Word Fall Through mode, more than one device may be connected in series to create greater word depths. The addition of external components is unnecessary.
If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption (ICC) is ata minimum. Initiating any operation (by activating control inputs) will immediately take the device out of the Power Down state.
The IDT723663/723673are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. They are fabricated using high speed, submicron CMOS technology.

PIN DESCRIPTIONS

Symbol	Name	$1 / 0$	Description
A0-A35	PortA Data	I/0	36-bitbidirectional data portforside A.
$\overline{\text { AE }}$	Almost-EmptyFlag (Port B)	0	Programmable Almost-Empty flag synchronized to CLKB. Itis LOW when the number of words in the FIFO is less than or equal to the value in the Almost-Empty B offset register, X .
$\overline{\mathrm{AF}}$	Almost-Full Flag (PortA)	0	Programmable Almost-Full flag synchronized to CLKA. Itis LOW when the number of empty locations in the FIFO is less than or equal to the value in the Almost-Full A offset register, Y .
B0-B35	Port B Data	I/0	36-bitbidirectional data portfor side B.
BE/FWFT	Big-Endian/ FirstWord Fall Through	I	This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big-Endian operation. In this case, depending on the bus size, the most significant byte or word written to Port A is read from PortB first. A LOW on BE will selectLittle-Endian operation. Inthis case, the leastsignificant byte or word written to Port A is read from Port B first. After Master Reset, this pin selects the timing mode. A HIGH on FWFT selects IDT Standard mode, a LOW selects First Word Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static throughout device operation.
$\mathrm{BM}^{(1)}$	Bus-MatchSelect (Port B)	I	A HIGH on this pin enables either byte or word bus width on Port B, depending on the state of SIZE. A LOW selects long word operation. BM works with SIZE and BE to select the bus size and endian arrangement for Port B. The level of BM must be static throughout device operation.
CLKA	PortAClock	1	CLKA is a continuous clock that synchronizes all data transfers through Port A and can be asynchronous or coincident to CLKB. $\overline{F F} / I R$ and $\overline{\mathrm{AF}}$ are synchronized to the LOW-to-HIGH transition of CLKA.
CLKB	Port B Clock	I	CLKB is a continuous clock that synchronizes all data transfers through Port B and can be asynchronous or coincident to CLKA. EF/OR and $\overline{\mathrm{AE}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
$\overline{\mathrm{CSA}}$	Port A Chip Select	I	$\overline{\text { CSA }}$ must be LOW to enable to LOW-to-HIGH transition of CLKA to read or write on PortA. The AO-A 35 outputs are in the high-impedance state when $\overline{\mathrm{CSA}}$ is HIGH.
$\overline{\mathrm{CSB}}$	Port B Chip Select	1	$\overline{\text { CSB }}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B. The BO-B35 outputs are in the high-impedance state when $\overline{\text { CSB }}$ is HIGH.
EF/OR	Empty/Output Ready Flag (Port B)	0	This is a dual function pin. In the IDT Standard mode, the $\overline{E F}$ function is selected. $\overline{\mathrm{EF}}$ indicates whether or notthe FIFO memory is empty. Inthe FWFT mode, the OR function is selected. OR indicates the presence of valid data on the BO-B35 outputs, available for reading. $\overline{\mathrm{EF}} / O R$ is synchronized to the LOW-to-HIGH transition of CLKB.
ENA	PortA Enable	I	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on Port A.
ENB	Port B Enable	1	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B.
FF/IR	Full/Input Ready Flag (Port A)	0	This is a dual function pin. In the IDT Standard mode, the $\overline{\text { FF }}$ function is selected. $\overline{\text { FF }}$ indicates whether or not the FIFO memory is full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available for writing to the FIFO memory. FFIIR is synchronized to the LOW-to-HIGHtransition of CLKA.
FSO/SD FS1/SEN FS2 ${ }^{(1)}$	Flag OffsetSelect0/ Serial Data, Flag OffsetSelect1/ Serial Enable Flag OffsetSelect2	1 । ।	FS1/SEN and FSO/SD are dual-purpose inputs used for flag offset register programming. During Reset, FS1/SEN and FS0/SD, togetherwith FS2 select the flag offsetprogramming method. Three offset register programming methods are available: automatically load one of five presetvalues (8 , $16,64,256$ or 1,024), parallel load from Port A, and serial load. When serial load is selected for flag offset register programming, $\mathrm{FS} 1 / \overline{\mathrm{SEN}}$ is used as an enable synchronous to the LOW-to-HIGHtransition of CLKA. When FS1/SEN is LOW, a rising edge on CLKA load the bit present on FSO/SD into the X and Y registers. The number of bit writes required to program the offset registers is 24 for the IDT723663, and 26 for the IDT723673. The first bit write stores the Y -register MSB and the last bitwrite stores the X -register LSB.
MBA	Port A Mailbox Select	1	A HIGH level on MBA chooses a mailbox register for a Port A read or write operation.
MBB	Port B Mailbox Select	I	A HIGH level on MBB chooses a mailbox register for a Port B read or write operation. When the BO-B35 outputs are active, a HIGH level on MBB selects data from the mail1 register for output and aLOWIevel selects FIFO data for output.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/0	Description
$\overline{\text { MBF1 }}$	Mail1 Register Flag	0	$\overline{\text { MBF1 }}$ is set LOW by aLOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the mail1 register are inhibited while $\overline{\text { MBF1 }}$ is LOW. $\overline{\text { MBF1 }}$ is set HIGH by a LOW-toHIGH transition of CLKB when a Port B read is selected and MBB is HIGH. MBF1 is set HIGH following either a Reset $(\overline{\mathrm{RS} 1})$ or Partial Reset $(\overline{\mathrm{PRS}})$.
$\overline{\text { MBF2 }}$	Mail2 Register Flag	0	$\overline{\mathrm{MBF}}$ is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{M B F 2}$ is LOW. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-toHIGH transition of CLKA when a Port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is set HIGH following either a Reset ($\overline{\mathrm{RS} 2}$) or Partial Reset ($\overline{\mathrm{PRS}})$.
$\overline{\mathrm{RS1}}, \overline{\mathrm{RS} 2}$	Resets	1	A LOW on both pins initializes the FIFO read and write pointers to the first location of memory and sets the Port B outputregister to all zeroes. ALOW-to-HIGH transition on $\overline{\mathrm{RS} 1}$ selects the programming method (serial or parallel) and one of five programmable flag default offsets. It also configures Port B for bus size and endian arrangement. Four LOW-to-HIGH transitions of CLKA and four LOW-toHIGH transitions of CLKB must occur while $\overline{\mathrm{RS} 1}$ is LOW.
$\begin{aligned} & \overline{\mathrm{PRS}} / \\ & \overline{\mathrm{RT}} \end{aligned}$	Partial Reset/ Retransmit	I	This pin muxed for both Partial Reset and Retransmitoperations, itis used in conjunction with the RTM pin. IfRTM is LOW, thenaLOW onthis pininitializes the FIFO read and write pointers tothe firstlocation of memory and sets the Port B output register to all zeroes. During Partial Reset, the currently selected bus size, endian arrangement, programming method (serial or parallel), and programmable flag settings are all retained. IfRTM is HIGH, thenaLOW onthis pin performs a Retransmitandinitializes the read pointer only, to the firstmemory location.
RTM	RetransmitMode	I	This pin is used in conjunction with the $\overline{\mathrm{RT}}$ pin. When RTM is HIGH a Retransmit is performed when $\overline{\mathrm{RT}}$ is taken HIGH.
SIZE ${ }^{(1)}$	BusSizeSelect (Port B)	I	A HIGH on this pin when BM is HIGH selects byte bus (9-bit) size on Port B. A LOW on this pin when BM is HIGH selects word (18-bit) bus size. SIZE works with BM and BE to select the bus size and endian arrangement for Port B. The level of SIZE must be static throughout device operation.
W/ $\bar{R} A$	PortAWrite/ Read Select	I	A HIGH selects a write operation and a LOW selects a read operation on Port A for a LOW-to-HIGH transition of CLKA. The A0-A35 outputs are in the HIGH impedance state when W/ $\bar{R} A$ is HIGH .
$\bar{W} / R B$	PortBWrite/ Read Select	1	A LOW selects a write operation and a HIGH selects a read operation on Port B for a LOW-to-HIGH transition of CLKB. The B0-B35 outputs are in the HIGH impedance state when $\bar{W} / R B$ is LOW.

NOTE:

1. FS2, BM and SIZE inputs are not TTL compatible. These inputs should be tied to GND or Vcc.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted) ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to +7.0	V
$\mathrm{V}^{(2)}$	InputVoltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	Output Voltage Range	-0.5 to Vcc +0.5	V
IIK	Input Clamp Current (V l < 0 or $\mathrm{VI}>\mathrm{V}$ Cc)	± 20	mA
Iok	Output Clamp Current (Vo $=<0$ or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current (Vo=0 to Vcc)	± 50	mA
Icc	Continuous Current Through Vcc or GND	± 400	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VCC	Supply Voltage	4.5	5.5	V
VIH	High-Level InputVoltage	2	-	V
VIL	Low-Level InputVoltage	-	0.8	V
IOH	High-LevelOutputCurrent	-	-4	mA
IoL	Low-Level OutputCurrent	-	8	mA
TA_{A}	OperatingTemperature	0	+70	${ }^{\circ} \mathrm{C}$

ELECTRICALCHARACTERISTICS OVER RECOMMENDED OPERATING FREEAIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT723663 IDT723673 Commercial $\text { tCLK }=12,15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
Vor	OutputLogic "1"Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	Output Logic "0" Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{loL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	InputLeakage Current(Any Input)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	V I $=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ILO	OutputLeakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
Icc2 ${ }^{(2)}$	Standby Current (with CLKA \& CLKB running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V	-	-	8	mA
Icc3 ${ }^{(2)}$	Standby Current(noclocks running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V	-	-	1	mA
$\mathrm{Cin}^{(3)}$	InputCapacitance	$V_{1}=0$,	$f=1 \mathrm{MHz}$	-	4	-	pF
Cout ${ }^{(3)}$	OutputCapacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).
3. Characterized values, not currently tested.
4. Industrial temperature range is available by special order.

CALCULATING POWER DISSIPATION

The ICC(f) Current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723663/723673 with CLKA and CLKB settofs. All datainputs and dataoutputs change state during each clockcycle to consume the highestsupply current. Dataoutputswere disconnected tonormalize the graph to a zero capacitance load. Once the capacitance load per data-output channel and the number of IDT723663/723673 inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
\mathrm{PT}=\operatorname{Vcc} \times[\operatorname{lcC}(f)+(\mathrm{N} \times \Delta \mathrm{Icc} \times \mathrm{dc})]+\Sigma\left(\mathrm{CL} \times \mathrm{Vcc}^{2} \times \mathrm{f}_{0}\right)
$$

where:
$\mathrm{N}=\quad$ number of inputs driven by TTL levels
$\Delta I C C=$ increase in power supply current for each input at a TTL HIGH level
dc $=$ duty cycle of inputs at a TTL HIGH level of 3.4 V
$\mathrm{CL}=$ outputcapacitanceload
fo $=$ switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE
(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial				Unit
		IDT723663L12 IDT723673L12		IDT723663L15 IDT723673L15		
		Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	83	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	12	-	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	5	-	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	5	-	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	3	-	4	-	ns
tENS1	Setup Time, $\overline{\mathrm{CSA}}$ and W/RA before CLKA \uparrow; $\overline{\mathrm{CSB}}$ and $\bar{W} /$ RB before CLKB \uparrow	4	-	4.5	-	ns
tENS2	Setup Time, ENA, and MBA before CLKA \uparrow; ENB and MBB before CLKB \uparrow	3	-	4.5	-	ns
tRSTS	Setup Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}} \mathrm{LOW}$ before CLKA \uparrow or CLKB $\uparrow{ }^{(1)}$	5	-	5	-	ns
tFSS	Setup Time, FS0, FS1 and FS2 before $\overline{\text { RS1 }}$ HIGH	7.5	-	7.5	-	ns
tBES	Setup Time, BE/FWFT before $\overline{\text { RS1 }}$ HIGH	7.5	-	7.5	-	ns
tSDS	Setup Time, FSO/SD before CLKA \uparrow	3	-	4	-	ns
tSENS	Setup Time, FS1/SEN before CLKA \uparrow	3	-	4	-	ns
tFWS	Setup Time, FWFT before CLKA \uparrow	0	-	0	-	ns
DH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	0.5	-	1	-	ns
tRTMS	Setup Time, RTM before $\overline{\mathrm{RT1}}$; RTM before $\overline{\mathrm{RT} 2}$	5	-	5	-	ns
tENH	Hold Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{ENA}$, and MBA after CLKA $\uparrow ; \overline{\mathrm{CSB}}, \overline{\mathrm{W}} / \mathrm{RB}, \mathrm{ENB}$, and MBB after CLKB \uparrow	0.5	-	1	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RS1}}$ or $\overline{\mathrm{PRS}} \mathrm{LOW}$ after CLKA \uparrow or CLKB $\uparrow^{(1)}$	4	-	4	-	ns
tFSH	Hold Time, FS0, FS1 and FS2 after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tBEH	Hold Time, BE/FWFT after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tSDH	Hold Time, FSO/SD after CLKA \uparrow	0.5	-	1	-	ns
tSENH	Hold Time, FS1/SEN HIGH after CLKA \uparrow	0.5	-	1	-	ns
tSPH	Hold Time, FS1/SEN HIG after $\overline{\mathrm{RS1}}$ HIGH	2	-	2	-	ns
tRTMH	Hold Time, RTM after $\overline{\text { RT1 }}$; RTM after $\overline{\text { RT2 }}$	5	-	5	-	ns
tSKEW1 ${ }^{(2)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{FF}} / \mathrm{IR}$	5	-	7.5	-	ns
tSKEW2 ${ }^{(2,3)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$	12	-	12	-	ns

NOTES:

1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
3. Design simulated, not tested.
4. Industrial temperature range is available by special order.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL $=30 \mathrm{pF}$
(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial				Unit
		IDT723663L12 IDT723673L12		IDT723663L15 IDT723673L15		
		Min.	Max.	Min.	Max.	
tA	Access Time, CLKA \uparrow to A0-A35 and CLKB \uparrow to B0-B35	2	8	2	10	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{FF}} / \mathrm{IR}$	2	8	2	8	ns
tREF	Propagation Delay Time, CLKB to $_{\text {EF/OR }}$	1	8	1	8	nS
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{AE}}$	1	8	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AF}}$	1	8	1	8	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\mathrm{MBF1}} \mathrm{LOW}$ or $\overline{\mathrm{MBF}}$ and CLKB \uparrow to $\overline{\mathrm{MBF} 2}$ LOW or $\overline{\text { MBF1 }}$ HIGH	0	8	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B0} 0-\mathrm{B} 35{ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	8	2	10	ns
tmDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 Valid	2	8	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}}$ LOW to $\overline{\mathrm{AE}}$ LOW, $\overline{\mathrm{AF}}$ HIGH, $\overline{\mathrm{MBF}} \mathrm{HIGH}$ and $\overline{\text { MBF2 }} \mathrm{HIGH}$	1	10	1	15	ns
tEN	Enable Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{R}}$ ALOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W}} / \mathrm{RB}$ HIGH to B0-B35 Active	2	6	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or W/ $\overline{\mathrm{R}}$ A HIGH to A0-A35 at highimpedance and $\overline{\mathrm{CSB}} \mathrm{HIGH}$ or $\bar{W} /$ RB LOW to B0-B35 at high impedance	1	6	1	8	ns

NOTES:

1. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.
3. Industrial temperature range is available by special order.

SIGN AL DESCRIPTION

RESET ($\overline{\operatorname{RS1}}, \overline{\mathrm{RS} 2})$

After power up, a Reset operation must be performed by providing a LOW pulse to $\overline{\mathrm{RS} 1}$ and $\overline{\mathrm{RS} 2}$ simultaneously. Afterwards, the FIFO memory of the IDT723663/723673 undergoes a complete reset by taking its Reset($\overline{\mathrm{RS} 1}$ and RS2) inputLOWfor atleastfour PortAclock(CLKA) andfourPortBclock(CLKB) LOW-to-HIGH transitions. The Resetinputs can switch asynchronously to the clocks. AResetinitializes the internal read and write pointers andforcesthe Full/ Input Ready flag ($\overline{\mathrm{FF}} / \mathrm{IR}$) LOW, the Empty/Output Ready flag ($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the Almost-Empty flag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Fullflag $(\overline{\mathrm{AF}})$ HIGH. AReset ($\overline{\mathrm{RS} 1}$) alsoforcesthe Mailboxflag ($\overline{\mathrm{MBF} 1}$) of the parallelmailbox registerHIGH, and at the same time the $\overline{\mathrm{RS} 2}$ and $\overline{\mathrm{MBF}}$ operate likewise. After a Reset, the FIFO's Full/Input Ready flag is set HIGH after two write clock cycles to begin normal operation.

ALOW-to-HIGH transition on the FIFO Reset ($\overline{\mathrm{RS} 1})$ inputlatches the value of the Big-Endian (BE) input for determining the order by which bytes are transferred through Port B.

ALOW-to-HIGH transition on the FIFO Reset ($\overline{\mathrm{RS} 1})$ input also latches the values of the Flag Select(FS0, FS1 and FS2) inputs for choosing the AlmostFull and Almost-Empty offsetprogramming method (fordetailsseeTable1, Flag Programming, and Almost-Empty and Almost-Full flag offset programming section). The relevant Reset timing diagram can be found in Figure 3.

PARTIAL RESET ($\overline{\text { PRS }})$

The FIFO memory of the IDT723663/723673 undergoes alimited reset by taking its Partial Reset ($\overline{\mathrm{PRS}})$ input LOW for at least four Port A clock (CLKA) and four PortB clock (CLKB) LOW-to-HIGH transitions. The RTM pin mustbe LOW during the time of Partial Reset. The Partial Reset input can switch asynchronously to the clocks. A Partial Reset initializes the internal read and write pointers and forces the Full/Input Ready flag ($\overline{\mathrm{FF}} / \mathrm{IR}$) LOW, the Empty/ OutputReady flag ($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the Almost-Empty flag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Fullflag ($\overline{\mathrm{AF}})$ HIGH. A Partial Resetalsoforces the Mailboxflag (MBF1, $\overline{\text { MBF2) }}$ of the parallel mailbox register HIGH. After a Partial Reset, the FIFO's Full/InputReady flag is setHIGH after two Write Clock cycles to begin normal operation. See Figure 4, Partial Reset (IDT Standard and FWFT Modes) for the relevanttiming diagram.

Whatever flag offsets, programming method (parallel or serial), and timing mode(FWFT or IDT Standard mode) are currently selected atthe time a Partial Reset is initiated, those settings will be remain unchanged upon completion of the reset operation. A Partial Reset may be useful in the case where reprogramming a FIFO following a Reset would be inconvenient.

RETRANSMIT ($\overline{\mathrm{RT}}$)

The FIFO memory of these devices undergoes a Retransmit by taking its associated Retransmit $(\overline{\mathrm{RT}})$ inputLOW for atleastfourPortAClock (CLKA) and four PortBClock (CLKB) LOW-to-HIGH transitions. The Retransmitinitializes the read pointer of FIFO to the firstmemory location.

The RTM pin mustbe HIGH during the time of Retransmit. Note that the $\overline{R T}$ inputis muxed with the $\overline{\mathrm{PRS}}$ input, the state ofthe RTM pin determining whether this pin performs a RetransmitoraPartial Reset. See Figure 19 for Retransmit (Standard IDT mode) and Figure 20 for Retransmit (FWFT mode) timing diagrams.

BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)

- ENDIAN SELECTION

This is adual purpose pin. Atthetime ofReset, the BE selectfunctionis active, permitting achoice of Big- or Little-Endian byte arrangementfor data read from PortB. This selection determines the order by which bytes (or words) of data are transferred through this port. For the following illustrations, assume thata byte (or word) bus size has been selected for Port B. (Note that when Port B is configured for a long word size, the Big-Endian function has no application and the BE input is a "don't care" ${ }^{1}$.)
AHIGH onthe BE/FWFT inputwhenthe Reset($\overline{\mathrm{RS} 1})$ input goes from LOW to HIGH will selectaBig-Endian arrangement. Inthis case, the mostsignificant byte (word) of the long word written to Port A will be read from Port B first; the leastsignificant byte(word) of the long word written to Port A will be read from PortBlast.
ALOW ontheBE/FWFT inputwhen the Reset($\overline{\mathrm{RS} 1})$ input goes from LOW toHIGH will selectaLittle-Endian arrangement. Inthis case, the leastsignificant byte (word) of the long word written to Port A will be read from Port B first; the mostsignificant byte (word) of the long word written to Port A will be read from Port B last. Refer to Figure 2 for an illustration of the BE function. See Figure 3(Reset) for an Endian selecttiming diagram.

- TIMING MODE SELECTION

After Reset, the FWFT selectfunction is active, permitting achoice between two possible timing modes: IDT Standard mode or First Word Fall Through (FWFT) mode. Once the Reset($\overline{\mathrm{RS} 1}$) input is HIGH, aHIGH on the BE/FWFT inputduring thenextLOW-to-HIGHtransition ofCLKA andCLKB will selectIDT Standard mode. This mode uses the Empty Flag function ($\overline{\mathrm{EF}}$) to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flagfunction $(\overline{\mathrm{FF}})$ toindicate whether or not theFIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.
Once the Reset($\overline{\mathrm{RS} 1}$) input is HIGH, aLOW on the BE/FWFT input during the nextLOW-to-HIGH transition of CLKA and CLKB will select FWFT mode. This modeusesthe OutputReady function(OR)to indicate whether or notthere is valid data atthe data outputs(B0-B35). Italso uses the Input Ready function (IR) to indicate whether or not the FIFO memory has any free space for writing. Inthe FWFT mode, the firstword written to anempty FIFO goes directly to data outputs, no read requestnecessary. Subsequentwords mustbe accessed by performing a formal read operation.
Following Reset, the level applied to the BE/FWFT input to choose the desired timing mode must remain static throughoutFIFO operation. Refer to Figure 3 (Reset) for a First Word Fall Through select timing diagram.

PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS

Two registers inthe IDT723663/723673 are used to hold the offset values for the Almost-Empty and Almost-Fullflags. The Almost-Empty flag ($\overline{\mathrm{AE}})$ Offset register is labeled X and Almost-Full flag $(\overline{\mathrm{AF}})$ Offset register is labeled Y. The offset registers can be loaded with preset values during the reset of the FIFO, programmed in parallel using the FIFO's Port A datainputs, or programmed in serial using the Serial Data(SD) input(see Table 1). FS2FS0/SD, and FS1/ SEN function the same way in both IDT Standard and FWFT modes.

NOTE:

1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.

TABLE 1 - FLAG PROGRAMMING

FS2	FS1/SEN	FS0/SD	$\overline{\mathrm{RS} 1}$	X AND Y REGISTERS ${ }^{(1)}$
H	H	H	\uparrow	64
H	H	L	\uparrow	16
H	L	H	\uparrow	8
L	H	H	\uparrow	256
L	L	H	\uparrow	1,024
L	H	L	\uparrow	Serial programming via SD
H	L	L	\uparrow	Parallel programming via Port ${ }^{(2,4)}$
L	L	L	\uparrow	IP Mode ${ }^{(3,4)}$

NOTES:

1. X register holds the offset for $\overline{\mathrm{AE}} ; \mathrm{Y}$ register holds the offset for $\overline{\mathrm{AF}}$.
2. When this method of parallel programming is selected, Port A will assume Non-Interspersed Parity.
3. When IP Mode is selected, only parallel programming of the offset values via Port A, can be performed and Port A will assume Interspersed Parity.
4. IF parallel programming is selected during a Master Reset, then FSO \& FS1 must remain LOW during FIFO operation.

—PRESET VALUES

ToloadaFIFO'sAlmost-Emptyflag and Almost-Full flag Offsetregisterswith one ofthe five presetvalues listed inTable 1, the flag selectinputs mustbe HIGH or LOW during a reset. For example, to load the preset value of 64 into X and Y, FS0, FS1 and FS2 mustbe HIGH when $\overline{\mathrm{RS} 1}$ returns HIGH. For the relevant preset value loading timing diagram, see Figure 3.

—PARALLEL LOAD FROM PORT A

Toprogramthe Xand Y registersfromPortA, performaResetwithFS2HIGH or LOW and FSO and FS1 LOW during the LOW-to-HIGH transition of $\overline{\mathrm{RS} 1}$. The state of FS2 at this point of reset will determine whether the parallel programming method has Interspersed Parity or Non-Interspersed Parity. Referto Table 1 for Flag Programming Flag Offsetsetup. Itis importantto note that once parallel programming has been selected during a Master Reset by holding both FS0 \& FS1 LOW, these inputs must remain LOW during all subsequent FIFO operation. They can only be toggled HIGH when future Master Resets are performed and other programming methods are desired.
After this reset is complete, the first two writes to the FIFO do not store data in RAM. The firsttwo write cycles load the offset registers in the order Y, X. On the third write cycle the FIFO is ready to be loaded with a dataword. SeeFigure 5, Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT modes), for a detailed timing diagram. For Non-Interspersed Parity modethe Port Adatainputsused by the Offset registers are (A11-A0), or (A12-A0) for the IDT723663, or IDT723673, respectively. For Interspersed Parity mode the Port A datainputs used by the Offset registers are (A12-A9, A7-A0), or (A13-A9, A7-A0) for the IDT723663, or IDT723673, respectively. The highest numbered inputisused asthemostsignificantbitofthe binary number ineach case. Valid programming values for the registers range from 1 to 4,092 for the IDT723663; and1 to8,188 for the IDT723673. After all the offset registers are programmed from PortA, the FIFO begins normal operation.

INTERSPERSED PARITY

Interspersed Parity is selected during a Master Reset of the FIFO. Refer to Table 1 for the set-up configuration of Interspersed Parity. The Interspersed Parity function allows the userto selectthe location of the parity bits in the word loaded into the parallel port (A0-An) during programming of the flag offset values. If Interspersed Parity is selected then during parallel programming of
the flag offset values, the device will ignore dataline A8. If Non-Interspersed Parity is selected then dataline A8 will become a valid bit. If Interspersed Parity is selected serial programming of the offsetvalues is notpermitted, only parallel programming can be done.

- SERIAL LOAD

Toprogram the Xand Y registersserially, initiateaResetwithFS2LOW,FSO/ SDLOW and FS1//SEN HIGH during the LOW-to-HIGHtransition of $\overline{\mathrm{RS} 1}$. After this reset is complete, the X and Y register values are loaded bit-wise through the FSO/SD inputoneach LOW-to-HIGH transition of CLKA that theFS1/SEN inputis LOW. There are 24- or 26-bitwrites needed to complete the programming for the IDT723663 or the IDT723673, respectively. The two registers are written inthe order Y, X. Each registervalue can be programmed from1 to 4,092 (IDT723663) or 1 to 8,188 (IDT723673).
When the option to program the offset registers serially is chosen, the Full/ Input Ready ($\overline{\mathrm{FF}} / \mathrm{IR}$) flag remains LOW until all register bits are written. $\overline{\mathrm{FF}} / \mathrm{IR}$ is setHIGH by the LOW-to-HIGH transition of CLKA after the lastbitis loaded to allow normal FIFO operation.

See Figure 6, Serial Programming of the Almost-Full Flag and AlmostEmpty Flag Offset Values after Reset (IDT Standard and FWFT Modes).

FIFO WRITE/READ OPERATION

The state of the PortA data(A0-A35) lines is controlled by PortAChip Select $(\overline{\mathrm{CSA}})$ and PortAWrite/Read select(W/RA). The A0-A35 lines are in the Highimpedance statewheneither $\overline{C S A}$ orW/RAisHIGH. TheA0-A35linesare active outputs when both $\overline{C S A}$ and $W / \bar{R} A$ are LOW.

Data is loaded into the FIFO from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and FF/IR is HIGH (see Table2). FIFO writes on Port A are independent of any concurrent reads on Port B.

The Port B control signals are identical to those of Port A with the exception that the PortBWrite/Read select ($\bar{W} / R B$) isthe inverse ofthe PortAWrite/Read select (W/ $\bar{R} A)$. The state of the Port B data ($B 0-B 35$) line is controlled by the Port B Chip Select ($\overline{\mathrm{CSB}}$) and Port B Write/Read select ($\overline{\mathrm{W}} / \mathrm{RB}$). The B0-B35 lines are inthehigh-impedance statewheneither $\overline{C S B}$ is $H I G H o r \bar{W} / R B$ is $L O W$. The B0-B35 lines are active outputs when $\overline{\mathrm{CSB}}$ is LOW and $\bar{W} / R B$ is HIGH.

Datais readfromtheFIFO totheB0-B35 outputsbyaLOW-to-HIGHtransition of CLKB when $\overline{C S B}$ is LOW, $\bar{W} / R B$ is HIGH, ENB is HIGH, MBB is LOW, and

TABLE 2 - PORT-A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/İRA	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Functions
H	X	X	X	X	High-Impedance	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFOWrite
L	H	H	H	\uparrow	Input	Mail1Write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 Read (Set $\overline{\text { MBF2 HIGH) }}$

TABLE 3 - PORT-B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	$\overline{\text { W } / R B ~}$	ENB	MBB	CLKB	Data B (B0-B35) I/O	Port Functions
H	X	X	X	X	High-Impedance	None
L	L	L	X	X	Input	None
L	L	H	L	\uparrow	Input	None
L	L	H	H	\uparrow	Input	Mail2Write
L	H	L	L	X	Output	None
L	H	H	L	\uparrow	Output	FIFO read
L	H	L	H	X	Output	None
L	H	H	H	\uparrow	Output	Mail1 Read (Set MBF1 HIGH)

TABLE 4 - FIFO FLAG OPERATION (IDT STANDARD AND FWFT MODES)

Number of Words in FIFO ${ }^{(1,2)}$		Synchronized to CLKB		Synchronize to CLKA	
IDT723663 ${ }^{(3)}$	IDT723673 ${ }^{(3)}$	$\overline{\text { EF/OR }}$	$\overline{\mathrm{AE}}$	$\overline{\mathrm{AF}}$	$\overline{\mathrm{FF} / I R}$
0	0	L	L	H	H
1 to X	1 to X	H	L	H	H
$(\mathrm{X}+1)$ to $[4,096-(\mathrm{Y}+1)]$	$(\mathrm{X}+1)$ to $[8,192-(\mathrm{Y}+1)]$	H	H	H	H
$(4,096-\mathrm{Y})$ to 4,095	$(8,192-\mathrm{Y})$ to8,191	H	H	L	H
4,096	8,192	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the memory count.
3. X is the Almost-Empty offset used by $\overline{\mathrm{AE}}$. Y is the Almost-Full offset used by $\overline{\mathrm{AF}}$. Both X and Y are selected during a FIFO reset or Port A programming.

EF/OR is HIGH (see Table 3). FIFO reads on PortB are independent of any concurrentwrites on Port A.
The setup and hold time constraintstothe portclocks fortheportChipSelects and Write/Read selects are only for enabling write and read operations and are notrelated to high-impedance control of the data outputs. If a portenable is LOW during a clock cycle, the port's Chip Selectand Write/Read selectmay change states during the setup and hold time window of the cycle.
When operatingthe FIFO in FWFT mode and the OutputReadyflag is LOW, the next word written is automatically senttothe FIFO's outputregister by the LOW-to-HIGH transition ofthe portclockthatsetsthe OutputReadyflag HIGH.

Whenthe OutputReadyflag is HIGH, dataresiding inthe FIFO's memory array is clocked to the output register only when a read is selected using the port's ChipSelect, Write/Read select, Enable, and Mailboxselect.
When operating the FIFO in IDT Standard mode, regardless of whether the Empty Flag is LOW or HIGH, data residing in the FIFO's memory array is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select. Port A Write timing diagram can be found in Figure 7. Relevant Port B Read timing diagrams together with Bus-Matching and Endian select can be found in Figure 8, 9 and 10 .

SYNCHRONIZED FIFO FLAGS

EachFIFO issynchronizedto its portclockthrough atleasttwo flip-flopstages. This is done to improve flag-signal reliability by reducing the probability of metastable events when CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{FF}} / \mathrm{IR}$, and $\overline{\mathrm{AF}}$ are synchronized to CLKA. $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{AE}}$ are synchronized to CLKB. Table 4 shows the relationship of each port flag to the number of words stored in memory.

EMPTY/OUTPUTREADY FLAGS (EF/OR)

These are dual purpose flags. In the FWFT mode, the Output Ready (OR) function is selected. When the Output-Ready flag is HIGH, new datais present in the FIFO output register. When the Output Ready flag is LOW, the previous dataword is present inthe FIFO output register and attempted FIFO reads are ignored.

In the IDT Standard mode, the Empty Flag ($\overline{\mathrm{EF}}$) function is selected. When the Empty Flag is HIGH, data is available in the FIFO's memory for reading to the output register. When the Empty Flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

The Empty/Output Ready flag of aFIFO is synchronized to the portclock that reads datafromits array (CLKB). Forboththe FWFT and IDT Standardmodes, theFIFO read pointer is incremented eachtime anewword is clockedtoits output register. The state machinethat controls an Output Ready flag monitors a write pointer and read pointer comparator thatindicateswhentheFIFO memory status is empty, empty+1, or empty+2.

InFWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO output register in a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, anOutputReady flag is LOWifaword inmemory is the next datato be sentto the FIFO output register and three cycles of the port Clock that reads data from the FIFO have not elapsed since the time the word waswritten. The OutputReady flag oftheFIFO remains LOW until thethird LOW-to-HIGHtransition of the synchronizing clockoccurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO output register.

In IDT Standard mode, from the time a word is written to a FIFO, the Empty Flag will indicate the presence of data available for reading in a minimum of two cycles ofthe Empty Flag synchronizing clock. Therefore, anEmpty Flag is LOW if a word in memory is the next data to be sent to the FIFO output register and two cycles of the portClock thatreads datafromtheFIFO have notelapsedsince the time the word was written. The Empty Flag of the FIFO remains LOW until the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing the Empty Flag HIGH; only then can data be read.

A LOW-to-HIGH transition on an Empty/Output Ready flag synchronizing clockbeginsthe firstsynchronization cycle of a write ifthe clock transition occurs attimetSKEW1 or greater after the write. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 11 and 12).

FULLIINPUT READY FLAGS (FF/IR)

This is a dual purpose flag. In FWFT mode, the Input Ready (IR) function is selected. InIDT Standard mode, the Full Flag $(\overline{\mathrm{FF}})$ function is selected. For both timing modes, whenthe Full/Input Ready flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free when the Full/ Input Ready flag is LOW and attempted writes to the FIFO are ignored.

TheFull/InputReady flag ofaFIFO is synchronized tothe portclock thatwrites data to its array (CLKA). For both FWFT and IDT Standard modes, each time a word is written to a FIFO, its write pointer is incremented. The state machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read from aFIFO, its previous memory location is ready
to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizingclock. Therefore, anFull/InputReady flag is LOW iflessthantwo cycles of the Full/Input Ready flag synchronizing clockhave elapsed since the next memory write location has been read. The second LOW-to-HIGH transition on the Full/InputReady flag synchronizing clock after the read sets the Full/Input Ready flag HIGH.
ALOW-to-HIGH transition on aFull/Input Ready flag synchronizing clock begins the firstsynchronization cycle of a read ifthe clock transition occurs at time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 13 and 14).

ALMOST-EMPTY FLAG ($\overline{\mathrm{AE}})$

The Almost-Empty flag of aFIFO is synchronized to the portclock that reads data from its array (CLKB). The state machine that controls an Almost-Empty flag monitors a write pointer and read pointer comparator that indicates when theFIFO memory status is almost-empty, almost-empty+1, or almost-empty+2. The Almost-Emptystate is defined by the contents of registerX. These registers are loaded with preset values during a FIFO reset, programmed from PortA, or programmed serially (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Empty flag is LOW when its FIFO contains Xorlesswords and is HIGH whenitsFIFO contains (X+1)ormorewords. Note thatadataword presentintheFIFO outputregister has been read frommemory.

Two LOW-to-HIGH transitions ofthe Almost-Empty flag synchronizing clock are required after aFIFO write for its Almost-Empty flag to reflect the newlevel of fill. Therefore, the Almost-Empty flag of a FIFO containing $(X+1)$ or more words remains LOW iftwo cycles of its synchronizing clock have notelapsed since the write that filled the memory to the ($\mathrm{X}+1$) level. An Almost-Empty flag is setHIGH by the second LOW-to-HIGH transition of its synchronizing clock aftertheFIFO writethatfillsmemorytothe (X+1)level. ALOW-to-HIGHtransition of an Almost-Empty flag synchronizing clock begins the firstsynchronization cycle ifitoccurs attimetSKEW2 or greater after the write thatfillstheFIFOto(X+1) words. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle. (See Figure 15).

ALMOST-FULL FLAG ($\overline{\mathrm{AF}}$)

The Almost-Full flag of aFIFO is synchronized to the port clock that writes data to its array. The state machine that controls an Almost-Fullflag monitors a write pointer and read pointer comparator that indicates when the FIFO memorystatus is almost-full, almost-full-1, oralmost-full-2. The Almost-Full state is defined by the contents of register Y. These registers are loaded with preset values during a FIFO reset or, programmed from Port A, or programmed serially (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Full flag is LOW when the number of words in its FIFO is greater than or equal to $(4,096-Y)$, or $(8,192-Y)$ for the IDT723663, or IDT723673 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to [4,096-(Y+1)], or [8,192-($\mathrm{Y}+1)]$ for the IDT723663, or IDT723673 respectively. Note that a dataword present in the FIFO output register has been read from memory.
TwoLOW-to-HIGHtransitions ofthe Almost-Fullflagsynchronizing clock are required after aFIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag ofaFIFO containing[4,096/8,192-(Y+1)]orless words remains LOW iftwo cycles of its synchronizing clock have notelapsed since the read that reduced the number of words in memory to [4,096/8,192$(\mathrm{Y}+1)$]. An Almost-Full flag is setHIGH by the second LOW-to-HIGH transition of its synchronizing clock after the FIFO read that reduces the number of words in memoryto[4,096/8,192-(Y+1)]. ALOW-to-HIGHtransition of anAlmost-Full flag synchronizing clockbeginsthe firstsynchronization cycle ifitoccurs attime
tSKEW2 or greater after the read that reduces the number of words in memory to $[4,096 / 8,192-(\mathrm{Y}+1)]$. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle (see Figure 16).

MAILBOX REGISTERS

Two 36-bit bypass registers are on the IDT723663/723673 to pass command and control information between Port A and Port B without putting it in queue. The Mailbox select (MBA, MBB) inputs choose between a mail register and aFIFO for a port datatransfer operation. The usable width of both the Mail1 and Mail2 Registers matches the selected bus size for Port B.
ALOW-to-HIGH transition onCLKA writes data to the Mail1 Register when a Port A write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. If the selectedPortBbussize is 36 bits, the usable width oftheMail1Registeremploys datalinesA0-A35. Ifthe selected PortBbussize is 18bits, thentheusable width of the Mail1 Register employs data lines A0-A17. (Inthis case, A18-A35 are don'tcare inputs.) Ifthe selected Port B bus size is 9 bits, then the usable width of the Mail1 Register employs datalines A0-A8. (Inthis case, A9-A35 are don't care inputs.)
ALOW-to-HIGHtransition onCLKB writesB0-B35datatotheMail2Register when a Port B write is selected by $\overline{C S B}, \bar{W} / R B$, and ENB with MBB HIGH. If the selected Port B bus size is 36 bits, the usable width of the Mail2 employs datalines $\mathrm{B} 0-\mathrm{B} 35$. Ifthe selected PortB bus size is 18 bits, thenthe usable width of the Mail2 Register employs data lines B0-B17. (In this case, B18-B35 are don'tcare inputs.) Ifthe selected PortB bus size is 9 bits, then the usable width of the Mail2Register employsdatalines B0-B8. (Inthis case,B9-B35aredon't care inputs.)
Writing data to a mail register sets its corresponding flag ($\overline{\mathrm{MBF}}$ or $\overline{\mathrm{MBF}}$) LOW. Attempted writestoa mail register are ignored whilethe mail flag is LOW.
When data outputs of a port are active, the data on the bus comes from the FIFO output register when the port Mailbox select input is LOW and from the mail register when the port Mailbox select input is HIGH.
The Mail1 Register Flag ($\overline{\mathrm{MBF}}$) is setHIGH by aLOW-to-HIGH transition on CLKB when a Port B read is selected by $\overline{C S B}, \bar{W} / R B$, and ENB with MBB HIGH. For a36-bitbus size, 36 bits of mailbox data are placed on B0-B35. For an 18-bitbus size, 18 bits of mailbox data are placed on B0-B17. (In this case, B18-B35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are placed on B0-B8. (In this case, B9-B35 are indeterminate.)
The Mail2 Register Flag (MBF2) is setHIGH by aLOW-to-HIGH transition on CLKA when a Port A read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH.

For a36-bitbus size, 36 bits of mailbox data are placed on A0-A35. For an 18-bitbussize,18bits of mailboxdataare placed onA0-A17. (Inthiscase, A18A35 are indeterminate.) For a 9-bitbus size, 9 bits of mailbox data are placed on A0-A8. (In this case, A9-A35 are indeterminate.)

The datain a mail register remains intactafteritis read andchanges only when new data is written to the register. The Endian select feature has no effect on mailboxdata. Formail register and mail registerflag timing diagrams, see Figure 17 and 18.

BUS SIZING

The Port B bus can be configured in a 36-bit long word, 18 -bit word, or 9bitbyte format for data read from the FIFO. The levels applied to the PortBBus Size select(SIZE) andtheBus-Matchselect(BM) determine the PortB bussize. These levels should be static throughout FIFO operation. Both bus size selections areimplemented atthe completion of Reset, bythe timetheFull/Input Ready flag is set HIGH, as shown in Figure 2.
Two differentmethods for sequencing datatransfer are available for PortB when the bus size selection is either byte-or word-size. They are referred to asBig-Endian(mostsignificantbytefirst)and Little-Endian (leastsignificantbyte first). The level applied to the Big-Endian select(BE) input during the LOW-toHIGHtransition of $\overline{R S 1}$ selectstheendian method that will be active during FIFO operation. BE is a don'tcare inputwhenthe bus size selected for PortB is long word. The endian method isimplemented atthe completion of Reset, by the time the Full/Input Ready flag is set HIGH, as shown in Figure 2.

Only 36 -bitlong word data is written to or read from the FIFO memory onthe IDT723663/723673. Bus-matching operations are done after datais read from the FIFO RAM. These bus-matching operations are not available when transferring data via mailbox registers. Furthermore, both the word- and bytesize busselections limitthe width ofthe databusthat canbe used formail register operations. Inthis case, only those byte lanes belonging to the selected wordor byte-size bus can carry mailbox data. The remaining data outputs will be indeterminate. The remaining datainputs will be don'tcare inputs. For example, when a word-size bus is selected, then mailbox data can be transmitted only between A0-A17 and B0-B17. When abyte-size bus is selected, then mailbox data can be transmitted only between A0-A8 and B0-B8. (See Figures 17 and 18).

BUS-MATCHING FIFO READS

Datais read fromthe FIFORAM in 36-bitlong word increments. Ifalong word bussize is implemented, theentirelongwordimmediately shiftstotheFIFO output register. If byte or word size is implemented on Port B, only the firstone or two bytes appear on the selected portion of the FIFO output register, with the rest of the long word stored in auxiliary registers. In this case, subsequent FIFO reads output the rest of the long word to the FIFO output register in the order shown by Figure 2.
When reading data from FIFO in byte or word format, the unused B0-B35 outputs are indeterminate.

BYTE ORDER ON PORT A:

Write to FIFO

BYTE ORDER ON PORT B:

BE	BM	SIZE
\mathbf{X}	L	X

BE	BM	SIZE
H	H	L

Read from FIFO
(a) LONG WORD SIZE

(b) WORD SIZE — BIG-ENDIAN

BE	BM	SIZE
\mathbf{L}	H	L

BE	BM	SIZE
\mathbf{H}	\mathbf{H}	\mathbf{H}

B26-B18

B26-B18

B26-B18

B17-B9

4th: Read from FIFO
(d) BYTE SIZE — BIG-ENDIAN

BE	BM	SIZE
L	H	H

B35-B27

B17-B9

tTLE-ENDIAN

Figure 2. Bus sizing

NOTES:

1. $\overline{\text { PRS }}$ must be HIGH during Reset
2. If $B E / \overline{F W F T}$ is HIGH , then $\overline{\mathrm{EF} / O R}$ will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.

Figure 3. Reset and Loading X and Y with a Preset Value of Eight (IDT Standard and FWFT Modes)

NOTES:

1. RS1 must be HIGH during Partial Reset
2. If $B E / \overline{F W F T}$ is HIGH, then $\overline{E F} / O R$ will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.

Figure 4. Partial Reset (IDT Standard and FWFT Modes)

NOTE:

1. $\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W$.

Figure 5. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

NOTES:

1. It is not necessary to program offset register bits on consecutive clock cycles. FIFO write attempts are ignored until FFIR is set HIGH.
2. Programmable offsets are written serially to the $S D$ input in the order $\overline{A F}$ offset (Y) and $\overline{A E}$ offset (X).

Figure 6. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

Figure 7. Port A Write Cycle Timing for FIFO (IDT Standard and FWFT Modes)

NOTE:

1. Data read from the FIFO

DATA SIZE TABLE FOR FIFO LONG-WORD READS

SIZE MODE $^{(1)}$			DATA WRITTEN TO FIFO (SELECT AT RESET)				DATA READ FROM FIFO			
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0	B35-B27	B26-B18	B17-B9	B8-B0
L	X	X	A	B	C	D	A	B	C	D

NOTE:

1. $B E$ is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 8. Port B Long-Word Read Cycle (IDT Standard and FWFT Modes)

NOTE:

1. Unused word B18-B35 are indeterminate.

DATA SIZE TABLE FOR WORD READS

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO 1				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFO	
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		B17-B9	B8-B0
H	L	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	A	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$
H	L	L	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$

NOTE:

1. $B E$ is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 9. Port B Word Read Cycle Timing (IDT Standard and FWFT Modes)

NOTE:

1. Unused bytes B9-B17, B18-B26, and B27-B35 are indeterminate.

DATA SIZE TABLE FOR BYTE READS

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO				$\begin{aligned} & \hline \text { READ } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \hline \text { DATA READ } \\ & \text { FROM FIFO } \\ & \hline \text { B8-B0 } \end{aligned}$
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		
H	H	H	A	B	C	D	1	A
							2	B
							3	C
							4	D
H	H	L	A	B	C	D	1	D
							2	C
							3	B
							4	A

NOTE:

1. BE is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 10. Port B Byte Read Cycle Timing (IDT Standard and FWFT Modes)

NOTES:

1. tskew1 is the minimum time between a rising CLKA edge and a rising CLKB edge for OR to transition HIGH and to clock the next word to the FIFO output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw1, then the transition of OR HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, OR is set LOW by the last word or byte read from the FIFO, respectively.

Figure 11. OR Flag Timing and First Data Word Fall Through when FIFO is Empty (FWFT Mode)

NOTES:

1. tskEw is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then the transition of EF HIGH may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{\mathrm{EF}}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 12. $\overline{\text { EF }}$ Flag Timing and First Data Read when FIFO is Empty (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IR to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskew1, then IR may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tskew1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively.

Figure 13. IR Flag Timing and First Available Write when FIFO is Full (FWFT Mode)

NOTES:

1. tSKEw1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{FF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskew1, then $\overline{\mathrm{FF}}$ may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tSKEW1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 14. FF Flag Timing and First Available Write when FIFO is Full (IDT Standard Mode)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AE}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew2, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO Write ($\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$, FIFO read ($\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. If Port B size is word or byte, $\overline{A E}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 15. Timing for $\overline{\mathrm{AE}}$ when the FIFO is Almost-Empty (IDT Standard and FWFT Modes).

NOTES:

1. tsKEw2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew2, then $\overline{\mathrm{AF}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO Write $(\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. $\mathrm{D}=$ Maximum FIFO Depth $=4,096$ for the IDT723663, 8,192 for the IDT723673.
4. If Port B size is word or byte, tskew2 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 16. Timing for $\overline{\mathrm{AF}}$ when the FIFO is Almost-Full (IDT Standard and FWFT Modes).

1. If Port B is configured for word size, data can be written to the Mail1 Register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data (B18B35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B35 will be indeterminate).

Figure 17. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag (IDT Standard and FWFT Modes)

NOTE:

1. If Port B is configured for word size, data can be written to the Mail2 Register using B0-B17 (B18-B35 are don't care inputs). In this first case A0-A17 will have valid data (A18A35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail2 Register using B0-B8 (B9-B35 are don't care inputs). In this second case, A0-A8 will have valid data (A9-A35 will be indeterminate).

Figure 18. Timing for Mail2 Register and $\overline{\text { MBF2 }}$ Flag (IDT Standard and FWFT Modes)

NOTES:

1. $\overline{C S B}=$ LOW; $\bar{W} / R B$ is HIGH
2. Retransmit setup is complete after $\overline{\mathrm{EF}}$ returns HIGH, only then can a read operation begin.
3. W1 = first word written to the FIFO after Master Reset.
4. No more than D-2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathrm{FF}}$ will be LOW throughout the Retransmit setup procedure. $D=4,096$ and 8,192 for the IDT723663 and IDT723673 respectively.

Figure 19. Retransmit Timing (IDT Standard Mode)

NOTES:

1. $\overline{C S B}=L O W ; \bar{W} / R B$ is $H I G H$
2. Retransmit setup is complete after OR returns HIGH, only then can a read operation begin.
3. W1 = first word written to the FIFO after Master Reset.
4. No more than D-2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathrm{R}}$ will be LOW throughout the Retransmit setup procedure. D $=4,096$ and 8,192 for the IDT723663 and IDT723673 respectively.

Figure 20. Retransmit Timing (FWFT Mode)

NOTES:

1. Mailbox feature is not supported in depth expansion applications. (MBA + MBB tie to GND)
2. Transfer clock should be set either to the Write Port Clock (CLKA) or the Read Port Clock (CLKB), whichever is faster.
3. The amount of time it takes for $\overline{E F} / O R$ of the last FIFO in the chain to go HIGH (i.e. valid data to appear on the last FIFO's outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO: ($\mathrm{N}-1)^{*}\left(4^{*}\right.$ transfer clock) $+3^{*}$ TrCLK, where N is the number of FIFOs in the expansion and TrCLk is the CLKB period.
4. The amount of time it takes for $\overline{\text { FF }}$ IR of the first FIFO in the chain to go HIGH after a word has been read from the last FIFO is the sum of the delays for each individual FIFO: $(\mathrm{N}-1)^{*}\left(3^{*}\right.$ transfer clock $)+2^{*}$ TwcLk, where N is the number of FIFOs in the expansion and TwcLk is the CLKA period.

Figure 21. Block Diagram of $512 \times 36,1,024 \times 36$ Synchronous FIFO Memory with Programmable Flags used in Depth Expansion Configuration

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY
LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

NOTE

1. Includes probe and jig capacitance.

Figure 22. Load Circuit and Voltage Waveforms.

ORDERING INFORMATION

5610 drw25

NOTES:

1. Industrial temperature range is available by special order.
2. Green parts available. For specific speeds and packages contact your sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN\# SP-17-02

DATASHEET DOCUMENT HISTORY

12/20/2000
03/21/2001
08/01/2001
11/03/2003
02/05/2009
01/11/2017
02/05/2018
pgs. 12 and 28.
pgs. 6 and 7 .
pgs. 6, 8, 9 and 29.
pg. 1.
pgs. 1 and 29.
pgs. 1-29.
Product Discontinuation Notice-PDN\# SP-17-02
Last time buy expires June 15, 2018.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

