Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

Vector Table Address Switching

Introduction

This application note describes how to change the vector table address.

Target Devices

H8SX family

Contents

1.	Overview	2
2.	Applicable Conditions	2
3.	Configuration	3
4.	Sample Program	5

1. Overview

The H8SX CPU used in H8SX-family products has a function to allocate the exception handling vector table at a desired address. With the earlier H8/300, H8/300H, and H8S CPUs, the vector table is fixed at address 0. The H8SX CPU provides the vector base register (VBR) to change the vector table address. This application note describes an example of VBR usage.

2. Applicable Conditions

Table 1 Applicable Conditions

Item	Contents
Development tool	High-performance Embedded Workshop Version 4.00.03
C/C++ compiler	H8S, H8/300 Series C/C++ Compiler Version 6.01.01
	(from Renesas Technology Corp.)
Assembler	H8S, H8/300 Series Cross Assembler Version 6.01.01
	(from Renesas Technology Corp.)
H8S compiler options	-cpu = h8sxa:24:md, -code = asmcode, -optimize = 1, -regparam = 3
	-speed = (register,shift,struct,expression)

Table 2 Section Settings

Address	Section Name	Description
H'001000	Р	Program area

3. Configuration

VBR is a 32-bit register in which the upper 20 bits are valid. The lower 12 bits of this register are reserved and read as 0s.

As the upper 20 bits of VBR are valid, the address of the exception handling vector table can be specified as a multiple of H'1000. Different vector table address offsets (H'0000 to H'03FF) are assigned to different exception sources, and the address of each exception handling vector in the vector table is calculated from VBR contents and the vector table address offset for the exception source. Note that the vector addresses for the reset and CPU address error are fixed regardless of the VBR value. Table 3 shows the calculation method for exception handling vector addresses.

Table 3 Calculation Method for Exception Handling Vector Addresses

Exception Source	Instruction Length
Reset	Vector address
	= Vector table address offset (fixed value: H'0000 to H'0003)
CPU address error	Vector address
	= Vector table address offset (fixed value: H'0030 to H'0033)
Others	Vector address
	= VBR + vector table address offset

The capability of vector table allocation at a desired address using VBR provides the following advantages.

- The user program can dynamically change the location of the exception handling vector table. (The user program can dynamically switch between different interrupt handling routines.)
- Allocating the exception handling vector table in the on-chip RAM area can accelerate the response to interrupts (high-speed operation can be achieved even with the MCU without on-chip ROM).

Figure 1 shows an example of changing the address of the exception handling vector table through the VBR setting.

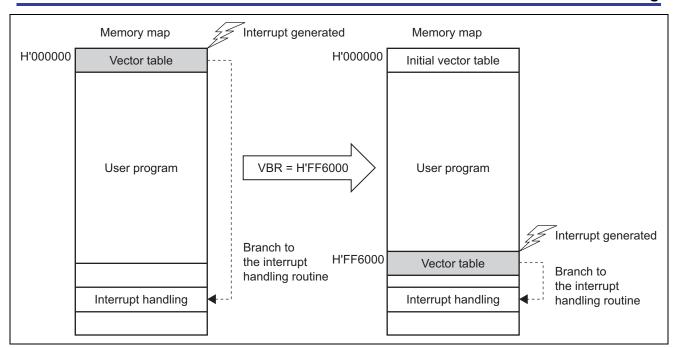
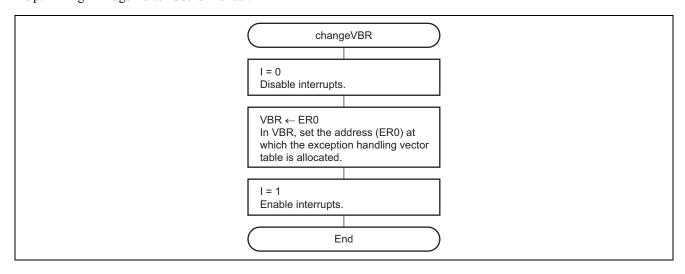


Figure 1 Example of VBR Setting


4. Sample Program

4.1 Flowchart

VBR should be accessed through assembly-language instructions because VBR cannot be directly accessed through the C programming language. This sample program is an example of writing assembly code within a C-language program.

The VBR value should be modified while interrupts are disabled. If an interrupt occurs while VBR is being modified with interrupts enabled, the H8SX CPU does not operate correctly.

The assembly code embedding function of the compiler allows assembly-language code to be written between #pragma asm and #pragma endasm. For details, refer to the H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual.

4.2 Program Listing

```
/* Application Note
#include
    <machine.h>
/* RAM allocation
#define VECTOR ADDRESS 0xFF6000
                            /* Vector table address */
/***********************
/* function prototype
void main ( void );
void changeVBR ( unsigned long vector adrs );
/************************
/* Vector Address
#pragma entry main(sp=0xFFC000, vect=0)
                            /* H'0000 : Reset
                                         */
#pragma section
                                         * /
/* Main Program
void main ( void )
 changeVBR( (unsigned long) VECTOR ADDRESS );
 while (1);
}
/* Change VBR
void changeVBR ( unsigned long vector adrs )
 set_imask_ccr(1);
                            /* Disable interrupts
                                         */
#pragma asm
 LDC.L ERO, VBR
                            ; set VBR
#pragma endasm
                            /* Enable interrupts
 set imask ccr(0);
```


Website and Support

Renesas Technology Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Descript	tion	
Rev.	Date	Page	Summary	
1.00	Sep.11.06	_	First edition issued	

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.