

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

V850E/ME2
32-Bit Single-Chip Microcontroller

USB Function Drivers

Application Note

µPD703111A

 2004
Printed in Japan

Document No. U17069EJ1V0AN00 (1st edition)
Date Published May 2004 N CP(K)

Application Note U17069EJ1V0AN 2

[MEMO]

Application Note U17069EJ1V0AN 3

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

NOTES FOR CMOS DEVICES

SolutionGear is a trademark of NEC Electronics Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or

other countries.

PC/AT is a trademark of International Business Machines Corporation.

Green Hills Software and MULTI are trademarks of Green Hills Software, Inc.

TRON stands for The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

Application Note U17069EJ1V0AN 4

The information in this document is current as of March, 2004. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its

majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as

defined above).

•

•

•

•

•

•

M8E 02. 11-1

Application Note U17069EJ1V0AN 5

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J04.1

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

Application Note U17069EJ1V0AN 6

INTRODUCTION

Readers This application note is intended for users who wish to understand the functions of the

V850E/ME2 to design application systems using the V850E/ME2.

Purpose The purpose of this application note is to help the user understand the composition of

the USB function drivers incorporated in the V850E/ME2, using three sample

programs.

Organization This application note is broadly divided into the following sections.

• V850E/ME2 introduction

• USB bus driver

• USB storage class driver

• USB communication class driver

Remark The sample programs of the drivers are available from the following website.

http://www.necel.com/micro/v850/devicedata/index.html#SAMPLE

How to Read This Manual It is assumed that the readers of this application note have general knowledge in the

fields of electrical engineering, logic circuits, and microcontrollers.

• To know the hardware functions and electrical specifications of the V850E/ME2

 → Refer to the V850E/ME2 Hardware User’s Manual (separately provided).

• To know the instruction functions of the V850E/ME2

 → Refer to the V850E1 Architecture User’s Manual (separately provided).

The “yyy bit of the xxx register” is described as the “xxx.yyy bit” in this manual. Note

with caution that if “xxx.yyy” is described as is in a program, however, the compiler/

assembler cannot recognize it correctly.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (overscore over pin or signal name) or /xxx (“/”

before signal name)

Memory map address: Top: higher, bottom: lower

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

 Decimal ... xxxx

 Hexadecimal ... xxxxH

Prefix indicating power of 2

(address space, memory

capacity): K (kilo) ... 210 = 1,024

 M (mega) ... 220 = 1,0242

 G (giga) ... 230 = 1,0243

Application Note U17069EJ1V0AN 7

Related documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to V850E/ME2

Document Name Document No.

V850E1 Architecture User’s Manual U14559E

V850E/ME2 Hardware User’s Manual U16031E

V850E/ME2 Hardware Application Note U16794E

V850E/ME2 USB Function Drivers Application Note This manual

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation U16053E

C Language U16054E

CA850 Ver. 2.50 C Compiler Package

Assembly Language U16042E

PM plus Ver. 5.10 U16569E

ID850 Ver. 2.50 Integrated Debugger Operation U16217E

ID850NW Ver. 2.51 Integrated Debugger Operation U16454E

Basics U13430E

Installation U13410E

RX850 Ver. 3.13 or Later Real-Time OS

Technical U13431E

Basics U13773E

Installation U13774E

RX850 Pro Ver. 3.15 Real-Time OS

Technical U13772E

RD850 Ver. 3.01 Task Debugger U13737E

RD850 Pro Ver. 3.01 Task Debugger U13916E

AZ850 Ver. 3.10 System Performance Analyzer U14410E

Application Note U17069EJ1V0AN 8

CONTENTS

CHAPTER 1 V850E/ME2 INTRODUCTION ... 11

1.1 Outline ...11
1.2 Features...12
1.3 Ordering Information..14
1.4 Pin Configuration ...15
1.5 Internal Block Diagram...19
1.6 Internal Memory..20

1.6.1 Internal instruction RAM ...20
1.6.2 Instruction cache function...20
1.6.3 Internal data RAM...20

1.7 Speculative Read Function (Read Buffer Function) ..21
1.8 Initialization Pins ..21

1.8.1 MODE0 and MODE1 pins...21
1.8.2 PLLSEL, SSEL0, and SSEL1 pins..22
1.8.3 JIT0 and JIT1 pins ..22

CHAPTER 2 USB BUS DRIVER ... 23

2.1 General ..23
2.1.1 Overview ..23
2.1.2 Development environment..24
2.1.3 Execution environment ...25

2.2 Execution of Load Module...26
2.2.1 Execution procedure of load module ..26
2.2.2 Directory configuration..28

2.3 System Configuration ..30
2.3.1 Overview ..30
2.3.2 Describing RX850 Pro-dependent processing module ...31
2.3.3 Describing board-dependent module..31
2.3.4 Describing USB bus driver processing-dependent module...31
2.3.5 Describing section map file...32
2.3.6 Creating load module..32

2.4 RX850 Pro-Dependent Processing Modules ..33
2.4.1 Overview ..33
2.4.2 CF definition file..33
2.4.3 Entry processing...34
2.4.4 System initialization processing..35
2.4.5 Time management function ..39

2.5 Section Map File ...40
2.5.1 Overview ..40
2.5.2 Address assignment by RX850 Pro..41
2.5.3 Other address assignment..42

2.6 Load Module ...43
2.6.1 Overview ..43
2.6.2 Creating load module..44

Application Note U17069EJ1V0AN 9

2.7 USB Bus Driver Functions...45
2.7.1 Overview ..45
2.7.2 Processing flows ..46
2.7.3 USB bus driver descriptor information..50
2.7.4 Data macro...53
2.7.5 Data structure...54
2.7.6 Description of functions ..54

CHAPTER 3 USB STORAGE CLASS DRIVER ...79

3.1 General ..79
3.1.1 Overview ..79
3.1.2 Development environment..80
3.1.3 Execution environment...81

3.2 Execution of Load Module...82
3.2.1 Execution procedure of load module ..82
3.2.2 Directory configuration ...84

3.3 System Configuration ..87
3.3.1 Overview ..87
3.3.2 Describing RX850 Pro-dependent processing module ...88
3.3.3 Describing board-dependent module..88
3.3.4 Describing USB storage class driver processing-dependent module ...89
3.3.5 Describing section map file...89
3.3.6 Creating load module ...89

3.4 RX850 Pro-Dependent Processing Modules..90
3.4.1 Overview ..90
3.4.2 CF definition file..90
3.4.3 Entry processing...91
3.4.4 System initialization processing..92
3.4.5 Time management function..96

3.5 Section Map File ...97
3.5.1 Overview ..97
3.5.2 Address assignment by RX850 Pro..98
3.5.3 Other address assignment ...99

3.6 Load Module ...100
3.6.1 Overview ..100
3.6.2 Creating load module ...101

3.7 USB Storage Class Driver Functions ...102
3.7.1 Overview ..102
3.7.2 Processing flows ..104
3.7.3 USB storage class driver descriptor information...128
3.7.4 Data macro...132
3.7.5 Data structure...133
3.7.6 Description of functions ..134

CHAPTER 4 USB COMMUNICATION CLASS DRIVER..200

4.1 General ..200
4.1.1 Overview ..200

Application Note U17069EJ1V0AN 10

4.1.2 Development environment..201
4.1.3 Execution environment ...202

4.2 Execution of Load Module...203
4.2.1 Execution procedure of load module ..203
4.2.2 Directory configuration..206

4.3 System Configuration ..209
4.3.1 Overview ..209
4.3.2 Describing RX850 Pro-dependent processing module ...210
4.3.3 Describing board-dependent module..210
4.3.4 Describing USB communication class driver processing-dependent module211
4.3.5 Describing section map file...211
4.3.6 Creating load module..211

4.4 RX850 Pro-Dependent Processing Modules ..212
4.4.1 Overview ..212
4.4.2 CF definition file..212
4.4.3 Entry processing...213
4.4.4 System initialization processing..214
4.4.5 Time management function ..218

4.5 Section Map File ...219
4.5.1 Overview ..219
4.5.2 Address assignment by RX850 Pro..220
4.5.3 Other address assignment..221

4.6 Load Module ...222
4.6.1 Overview ..222
4.6.2 Creating load module..223

4.7 USB Communication Class Driver Functions ..224
4.7.1 Overview ..224
4.7.2 Processing flows...226
4.7.3 USB communication class driver descriptor information...232
4.7.4 Data macro...238
4.7.5 Data structure ...239
4.7.6 Description of functions ..240

4.8 UART Processing Module..279
4.8.1 Overview ..279
4.8.2 Processing flow ..280
4.8.3 Operating mode..284
4.8.4 Description of functions ..285

APPENDIX A SG-703111-1 BOARD.. 296

A.1 Overview..296
A.2 Setting of DIP Switches (SW1 to SW7) ...297
A.3 Setting of Jumper Switches (JP1 to JP4, JP6)...298
A.4 File for Initializing Board at In-Circuit Emulator Startup...299

APPENDIX B FUNCTION INDEX... 300

Application Note U17069EJ1V0AN 11

CHAPTER 1 V850E/ME2 INTRODUCTION

The V850E/ME2 is a product of the NEC Electronics single-chip microcontroller “V850 Series”. This chapter gives

a simple outline of the V850E/ME2.

1.1 Outline

The V850E/ME2 is a 32-bit single-chip microcontroller that integrates the V850E1 CPU, which is a 32-bit RISC-

type CPU core for ASIC, newly developed as the CPU core central to system LSI for the current age of system-on-

chip. This device incorporates a cache, data RAM, instruction RAM, and various peripheral functions such as

memory controllers, a DMA controller, real-time pulse unit, serial interfaces, USB function controller (USBF), and an

A/D converter for realizing high-capacity data processing and sophisticated real-time control.

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 12

1.2 Features

 Number of instructions: 83

 Minimum instruction execution time: 10 ns/7.5 ns/6.7 ns (at internal 100 MHz/133 MHz/150 MHz operation)

 General-purpose registers: 32 bits × 32

 Instruction set: V850E1 CPU

 Signed multiplication (16 bits × 16 bits → 32 bits or 32 bits × 32 bits →

64 bits): 1 to 2 clocks

 Saturated operation instructions (with overflow/underflow detection

function)

 32-bit shift instructions: 1 clock

 Bit manipulation instructions

 Load/store instructions with long/short format

 Signed load instructions

 Memory space: 256 MB linear address space (common program/data use)

 Chip select output function: 8 spaces

 Memory block division function: 2, 4, 6, 8, 64 MB/block

 Programmable wait function

 Idle state insertion function

 External bus interface: 32-bit data bus (address/data separated)

 32-/16-/8-bit bus sizing function

 External bus division function: 1/1, 1/2, 1/3, 1/4 (66 MHz MAX.)

 Bus hold function

 External wait function

 Address setup wait function

 Endian control function

 Internal memory: Instruction RAM: 128 KB

 Data RAM: 16 KB

 Instruction cache: 8 KB 2-way set associative

 Interrupts/exceptions: External interrupts: 40 (including NMI)

 Internal interrupts: 59 sources

 Exceptions: 2 sources

 Eight levels of priorities can be set.

 Memory access controller: DRAM controller (compatible with SDRAM)

 Page ROM controller

 Speculative read/write buffer function

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 13

 DMA controller: 4 channels

 Transfer unit: 8 bits/16 bits/32 bits

 Maximum transfer count: 65,536 (216)

 Transfer type: Flyby (1-cycle)/2-cycle

 Transfer mode: Single/Single step/Block

 Transfer target: Memory ↔ memory, memory ↔ I/O

 Transfer request: External request/On-chip peripheral I/O/ Software

 DMA transfer terminate (terminal count) output signal

 Next address setting function

 I/O lines: Input ports: 1

 I/O ports: 77

 Real-time pulse unit: 16-bit timer/event counter: 6 channels (no capture operation for 2

 channels)

 16-bit timers: 6

 16-bit capture/compare registers: 12

 16-bit interval timer: 4 channels

 16-bit up/down counter/timer for 2-phase encoder input: 2 channels

 16-bit capture/compare registers: 4

 16-bit compare registers: 4

 Serial interfaces (SIO): Asynchronous serial interface B (UARTB)

 Clocked serial interface 3 (CSI3)

 CSI3/UARTB: 1 channel

 UARTB: 1 channel

 CSI3: 1 channel

 USB function controller (USBF): 1 channel

 Full speed (12 Mbps)

 Endpoint Control transfer: 64 bytes × 2

 Interrupt transfer: 8 bytes × 2

 Bulk transfer (IN): 64 bytes × 2 banks × 2

 Bulk transfer (OUT): 64 bytes × 2 banks × 2

 A/D converter: 10-bit resolution A/D converter: 8 channels

 PWM (Pulse Width Modulation): 16-bit resolution PWM: 2 channels

 Clock generator: ×8 function using SSCG

 Power-save function: HALT/IDLE/software STOP mode

 Package: 176-pin plastic LQFP (fine pitch) (24 × 24)

 240-pin plastic FBGA (16 × 16)

 CMOS technology: Fully static circuits

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 14

1.3 Ordering Information

Part Number Package Maximum Operating Frequency

µPD703111AGM-10-UEU 176-pin plastic LQFP (fine pitch) (24 × 24) 100 MHz

µPD703111AGM-13-UEU 176-pin plastic LQFP (fine pitch) (24 × 24) 133 MHz

µPD703111AGM-15-UEU 176-pin plastic LQFP (fine pitch) (24 × 24) 150 MHz

µPD703111AF1-10-GA3 240-pin plastic FBGA (16 × 16) 100 MHz

µPD703111AF1-13-GA3 240-pin plastic FBGA (16 × 16) 133 MHz

µPD703111AF1-15-GA3 240-pin plastic FBGA (16 × 16) 150 MHz

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 15

1.4 Pin Configuration

• 176-pin plastic LQFP (fine pitch) (24 × 24)

 µPD703111AGM-10-UEU

 µPD703111AGM-13-UEU

 µPD703111AGM-15-UEU

Top View

132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

99
98
97
96
95
94
93
92
91
90
89

TRCDATA3
PDH15/D31/INTPD15/PWM1
PDH14/D30/INTPD14/PWM0
EVSS

EVDD

PDH13/D29/INTPD13/TIUD11
PDH12/D28/INTPD12/TO11
PDH11/D27/INTPD11/INTP111/TCLR11
PDH10/D26/INTPD10/INTP110/TCUD11
PDH9/D25/INTPD9/TIUD10
PDH8/D24/INTPD8/TO10
PDH7/D23/INTPD7/INTP101/TCLR10
PDH6/D22/INTPD6/INTP100/TCUD10
PDH5/D21/INTPD5/TOC5
PDH4/D20/INTPD4
PDH3/D19/INTPD3
EVSS

EVDD

PDH2/D18/INTPD2/TOC4
PDH1/D17/INTPD1
PDH0/D16/INTPD0
D15
D14
D13
D12
D11
D10
D9
D8
IVSS

IVDD

EVSS

EVDD

D7
D6
D5
D4
D3
D2
D1
D0
SDCKE/PCD0
EVSS

EVDD

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

15
6

15
5

15
4

15
3

15
2

15
1

15
0

14
9

14
8

14
7

14
6

14
5

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

P
72

/D
M

A
R

Q
2/

IN
T

P
C

20
/T

IC
2

P
73

/D
M

A
A

K
2/

IN
T

P
C

21
P

74
/T

C
2/

T
O

C
2

P
75

/D
M

A
R

Q
3/

IN
T

P
C

30
/T

IC
3

P
76

/D
M

A
A

K
3/

IN
T

P
C

31
P

77
/T

C
3/

T
O

C
3

S
S

E
L0

S
S

E
L1

P
LL

V
S

S

P
LL

V
D

D

O
S

C
V

S
S

X
2

X
1

O
S

C
V

D
D

U
V

D
D

U
D

M
U

D
P

P
10

/U
C

LK
/IN

T
P

10
IV

S
S

IV
D

D

P
LL

S
E

L
P

11
/S

C
K

0/
IN

T
P

11
P

12
/R

X
D

0/
S

I0
P

13
/T

X
D

0/
S

O
0

P
20

/N
M

I
E

V
S

S

E
V

D
D

P
21

/R
X

D
1/

IN
T

P
21

P
22

/T
X

D
1/

IN
T

P
22

P
23

/S
C

K
1/

IN
T

P
23

P
24

/S
I1

/IN
T

P
24

P
25

/S
O

1/
IN

T
P

25
D

C
K

D
M

S
D

R
S

T
D

D
I

D
D

O
T

R
C

C
LK

T
R

C
E

N
D

T
R

C
D

A
T

A
0

T
R

C
D

A
T

A
1

IV
S

S

IV
D

D

T
R

C
D

A
T

A
2

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

A
25

/P
A

H
9

A
24

/P
A

H
8

A
23

/P
A

H
7

A
22

/P
A

H
6

A
21

/P
A

H
5

A
20

/P
A

H
4

A
19

/P
A

H
3

A
18

/P
A

H
2

E
V

D
D

E
V

S
S

IV
D

D

IV
S

S

A
17

/P
A

H
1

A
16

/P
A

H
0

A
15

A
14

A
13

A
12

A
11

A
10 A
9

A
8

A
7

A
6

A
5

E
V

D
D

E
V

S
S

A
4

A
3

A
2

IN
T

P
L1

/A
1/

P
A

L1
IN

T
P

L0
/A

0/
P

A
L0

B
C

Y
S

T
/P

C
T

7
W

E
/W

R
/P

C
T

5
R

D
/P

C
T

4
U

U
D

Q
M

/U
U

B
E

/U
U

W
R

/P
C

T
3

P
C

T
2/

U
LW

R
/U

LB
E

/U
LD

Q
M

P
C

T
1/

LU
W

R
/L

U
B

E
/L

U
D

Q
M

P
C

T
0/

LL
W

R
/L

LB
E

/L
LD

Q
M

IV
D

D

IV
S

S

S
D

R
A

S
/P

C
D

3
S

D
C

A
S

/P
C

D
2

B
U

S
C

LK
/P

C
D

1

JIT1
JIT0
AVDD

AVREFP

ANI0
ANI1
ANI2
ANI3
ANI4
ANI5
ANI6
ANI7

AVREFM

AVSS

MODE1
MODE0

INTP67/TOC1/P67
INTP66/INTPC11/P66

INTP65/TIC1/INTPC10/P65
TOC0/TC1/P55

INTPC01/DMAAK1/P54
INTPC00/TIC0/DMARQ1/P53

INTP52/TC0/P52
INTP51/DMAAK0/P51
INTP50/DMARQ0/P50

IVDD

IVSS

RESET
ADTRG/SELFREF/PCM5

REFRQ/PCM4
HLDRQ/PCM3
HLDAK/PCM2

PCM1
WAIT/PCM0

CS7/PCS7
CS6/PCS6

IORD/CS5/PCS5
EVDD

EVSS

CS4/PCS4
CS3/PCS3

IOWR/CS2/PCS2
CS1/PCS1
CS0/PCS0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 16

• 240-pin plastic FBGA (16 × 16)

 µPD703111AF1-10-GA3

 µPD703111AF1-13-GA3

 µPD703111AF1-15-GA3

Bottom View Top View

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

V U T R P N M L K J H G F E D C B A A B C D E F G H J K L M N P R T U V

Index mark

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 17

(1/2)
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

A1 − C12 IVDD G3 EVSS

A2 IVSS C13 PAH2/A18 G4 D7

A3 PCT0/LLWR/LLBE/LLDQM C14 PAH4/A20 G15 PCM1

A4 − C15 PAH6/A22 G16 PCM3/HLDRQ

A5 PCT4/RD C16 − G17 PCM4/REFRQ

A6 − C17 PCS0/CS0 G18 PCM5/ADTRG/SELFREF

A7 − C18 − H1 −

A8 EVDD D1 D0 H2 D8

A9 A9 D2 EVSS H3 D9

A10 − D3 PCD0/SDCKE H4 D10

A11 A14 D4 EVDD H5 IVSS

A12 IVSS D5 PCT1/LUWR/LUBE/LUDQM H14 −

A13 EVDD D6 − H15 RESET

A14 − D7 PAL0/INTPL0/A0 H16 IVSS

A15 PAH5/A21 D8 A4 H17 −

A16 PAH7/A23 D9 A6 H18 IVDD

A17 PAH9/A25 D10 − J1 −

A18 − D11 A13 J2 D11

B1 − D12 EVSS J3 D12

B2 PCD1/BUSCLK D13 PAH3/A19 J4 −

B3 PCD2/SDCAS D14 − J5 D13

B4 − D15 − J14 −

B5 PCT3/UUWR/UUBE/UUDQM D16 PCS2/CS2/IOWR J15 P50/INTP50/DMARQ0

B6 PCT7/BCYST D17 PCS3/CS3 J16 P51/INTP51/DMAAK0

B7 A2 D18 EVDD J17 P52/INTP52/TC0

B8 − E1 D3 J18 P53/INTPC00/TIC0/DMARQ1

B9 A8 E2 D2 K1 D14

B10 A12 E3 D1 K2 D15

B11 PAH0/A16 E4 − K3 PDH0/D16/INTPD0

B12 − E8 A3 K4 PDH1/D17/INTPD1

B13 − E9 A5 K5 PDH2/D18/INTPD2/TOC4

B14 − E10 A10 K14 P55/TOC0/TC1

B15 − E11 PAH1/A17 K15 P54/INTPC01/DMAAK1

B16 PAH8/A24 E15 PCS4/CS4 K16 P65/INTP65/INTPC10/TIC1

B17 − E16 EVSS K17 P66/INTP66/INTPC11

B18 PCS1/CS1 E17 PCS5/CS5/IORD K18 −

C1 − E18 PCS6/CS6 L1 EVDD

C2 − F1 D6 L2 −

C3 PCD3/SDRAS F2 D5 L3 EVSS

C4 IVDD F3 D4 L4 PDH3/D19/INTPD3

C5 PCT2/ULWR/ULBE/ULDQM F4 − L5 PDH4/D20/INTPD4

C6 PCT5/WE/WR F15 − L14 MODE1

C7 PAL1/INTPL1/A1 F16 PCS7/CS7 L15 −

C8 EVSS F17 PCM0/WAIT L16 MODE0

C9 A7 F18 PCM2/HLDAK L17 −

C10 A11 G1 IVDD L18 P67/INTP67/TOC1

C11 A15 G2 EVDD M1 −

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 18

(2/2)
Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

M2 PDH5/D21/INTPD5/TOC5 R7 DCK U4 −

M3 PDH6/D22/INTPD6/INTP100/TCUD10 R8 EVDD U5 TRCCLK

M4 − R9 P11/INTP11/SCK0 U6 DRST

M15 ANI6 R10 IVSS U7 P25/INTP25/SO1

M16 AVREFM R11 UDM U8 P22/INTP22/TXD1

M17 ANI7 R12 X2 U9 EVSS

M18 AVSS R13 PLLVDD U10 IVDD

N1 PDH7/D23/INTPD7/INTP101/TCLR10 R14 SSEL0 U11 −

N2 PDH8/D24/INTPD8/TO10 R15 − U12 OSCVDD

N3 PDH9/D25/INTPD9/TIUD10 R16 AVREFP U13 −

N4 PDH10/D26/INTPD10/INTP110/TCUD11 R17 AVDD U14 −

N15 ANI2 R18 − U15 P76/INTPC31/DMAAK3

N16 ANI3 T1 EVDD U16 P73/INTPC21/DMAAK2

N17 ANI4 T2 TRCDATA3 U17 P72/INTPC20/TIC2/DMARQ2

N18 ANI5 T3 − U18 −

P1 − T4 TRCDATA1 V1 −

P2 PDH11/D27/INTPD11/INTP111/TCLR11 T5 TRCEND V2 TRCDATA2

P3 PDH13/D29/INTPD13/TIUD11 T6 DDI V3 IVSS

P4 − T7 − V4 TRCDATA0

P8 P23/INTP23/SCK1 T8 P21/INTP21/RXD1 V5 −

P9 P12/SI0/RXD0 T9 P20/NMI V6 DMS

P10 − T10 − V7 P24/INTP24/SI1

P11 UVDD T11 UDP V8 −

P15 − T12 X1 V9 P13/SO0/TXD0

P16 ANI0 T13 OSCVSS V10 PLLSEL

P17 ANI1 T14 SSEL1 V11 P10/INTP10/UCLK

P18 − T15 P75/INTPC30/TIC3/DMARQ3 V12 −

R1 PDH12/D28/INTPD12/TO11 T16 − V13 −

R2 EVSS T17 JIT1 V14 −

R3 PDH14/D30/INTPD14/PWM0 T18 JIT0 V15 PLLVSS

R4 IVDD U1 PDH15/D31/INTPD15/PWM1 V16 P77/TOC3/TC3

R5 − U2 − V17 P74/TOC2/TC2

R6 DDO U3 − V18 −

Remark Leave the A1, A4, A6, A7, A10, A14, A18, B1, B4, B8, B12 to B15, B17, C1, C2, C16, C18, D6, D10,

D14, D15, E4, F4, F15, H1, H14, H17, J1, J4, J14, K18, L2, L15, L17, M1, M4, P1, P4, P10, P15, P18,

R5, R15, R18, T3, T7, T10, T16, U2 to U4, U11, U13, U14, U18, V1, V5, V8, V12 to V14, and V18 pins

open.

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 19

1.5 Internal Block Diagram

CPU

32-bit
barrel shifter

PC

System
registers

General-purpose
registers

(32 bits × 32)

ALU

Multiplier
(32 × 32 → 64)

Ports

P
10

 to
 P

13
P

20
P

21
 to

 P
25

P
50

 to
 P

55

P
65

 to
 P

67

P
72

 to
 P

77

P
A

L0
, P

A
L1

P
A

H
0

to
 P

A
H

9

P
C

D
0

to
 P

C
D

3

P
C

M
0

to
 P

C
M

5

P
C

S
0

to
 P

C
S

7

P
C

T
0

to
 P

C
T

5,
 P

C
T

7

P
D

H
0

to
 P

D
H

15

ADC

USBF

PWM

System
controller

BCU

Instruction
queue

MEMC

SRAM

ROM

SDRAM

DMA

SI0/RXD0

SO0/TXD0

SCK0

TOC4, TOC5

TOC0 to TOC3

TIC0 to TIC3

TO10, TO11

NMI

DRST, DCK,
DMS, DDI

WAIT
HLDRQ
HLDAK

A0 to A25

D0 to D31

DMARQ0 to DMARQ3

DMAAK0 to DMAAK3

TC0 to TC3

CS0, CS1, CS3,
CS4, CS6, CS7

CS2/IOWR
CS5/IORD
BCYST
RD

ANI0 to ANI7

ADTRG

AVREFP, AVREFM

AVDD

AVSS

RESET

MODE0, MODE1

IVDD

IVSS

EVDD

EVSS

PWM0, PWM1

UDP
UDM
UCLK
UVDD

xxWR/xxBE

WR
BUSCLK
SDCKE
SDRAS
SDCAS
WE
xxDQM
REFRQ
SELFREF

DDO, TRCCLK,
TRCDATA0 to TRCDATA3,

TRCEND

INTP100, INTP110
INTP101, INTP111

INTP10, INTP11
INTP21 to INTP25
INTP50 to INTP52
INTP65 to INTP67

INTPD0 to INTPD15
INTPL0, INTPL1

TCLR10, TCLR11
TIUD10, TIUD11

TCUD10, TCUD11

INTPC00, INTPC01,
INTPC10, INTPC11,
INTPC20, INTPC21,
INTPC30, INTPC31

SI1

SO1

SCK1

RXD1

TXD1

SSEL0, SSEL1
JIT0, JIT1

PLLSEL
X1
X2

OSCVDD

OSCVSS

PLLVDD

PLLVSS

TMC

TMC

TMENC1

INTC

DCU

TMD

CSI30/UARTB0

CSI31

UARTB1

CG

8 KB

Instruction
cache

128 KB

Instruction
RAM

16 KB

Data RAM

BBR

Remark xx: LL, LU, UL, UU

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 20

1.6 Internal Memory

The V850E/ME2 has a 128 KB (64 KB × 2 banks) instruction memory, 8 KB (2-way set associative) instruction

cache, and 16 KB data RAM.

1.6.1 Internal instruction RAM

The internal instruction RAM has two modes: read mode and write mode. These modes are selected by the

internal instruction RAM mode register (IRAMM).

After reset, the instruction RAM is initialized to the write mode. Therefore, the read mode is set after instruction

data is transferred to the internal instruction RAM by program or the DMA controller. In the read mode, an instruction

is fetched in one internal system clock.

Caution All interrupt/exception handlers, except the reset handler, are in bank 0 of the internal instruction

RAM. Do not generate any interrupt/exception until a write operation to this bank is completed.

Figure 1-1. Memory Map of Internal Instruction RAM

001FFFFH

0010000H
000FFFFH

0000000H

Instruction RAM bank 1
(64 KB)

Instruction RAM bank 0
(64 KB)

1.6.2 Instruction cache function

The CS0 to CS2 spaces are cacheable areas. It can be specified by the cache configuration register (BHC)

whether each space is used as a cacheable area or uncacheable area. The cache lock status of way 0, auto fill of

way 0, and tag clear of ways 0 and 1 are specified by using the instruction cache control register (ICC).

Cautions 1. Write the BHC register after reset. After writing a value to this register, do not change it.

 2. In an ordinary system, memories located in the CS0 to CS2 spaces are used as cacheable

areas. In a system where a program is downloaded by a boot program, they are set as

cacheable areas after downloading is completed.

 An area where the instruction that sets the BHC register exists cannot be changed from an

uncacheable area to cacheable area, or vice versa.

 To set this space as a cacheable area, first set it as another uncacheable area and then

change it to a cachable area, or set it using the internal instruction RAM area.

1.6.3 Internal data RAM

The internal data RAM area is allocated to the 16 KB area of addresses FFFB000H to FFFEFFFH. Instruction

codes cannot be allocated to this area.

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 21

1.7 Speculative Read Function (Read Buffer Function)

The V850E/ME2 has a 4-word (128-bit) read buffer used for a speculative read function to enable high-speed CPU

processing. The speculative timing can be set for each CSn space by line buffer control registers 0 and 1 (LBC0 and

LBC1) (n = 0 to 7).

Caution Generally, use of the speculative read function is prohibited for units that are not located at

contiguous addresses (such as I/O devices), or memory whose contents change asynchronously

to the CPU (such as a dual-port memory that is written by another bus master).

1.8 Initialization Pins

The V850E/ME2 has initialization pins that set various operation modes.

1.8.1 MODE0 and MODE1 pins

The operation mode is specified according to the status of the MODE0 and MODE1 pins. In an application system,

fix the specification of these pins and do not change them during operation. Operation is not guaranteed if these pins

are changed during operation.

Table 1-1. Setting of Data Bus

MODE1 MODE0 Operating Mode

L L 32-bit data bus

L H

Normal operation mode

16-bit data bus

Other than above Setting prohibited

Remark L: Low-level input

 H: High-level input

CHAPTER 1 V850E/ME2 INTRODUCTION

Application Note U17069EJ1V0AN 22

1.8.2 PLLSEL, SSEL0, and SSEL1 pins

These input pins are set according to the frequency (FX) input to the X1 and X2 pins. Set the PLLSEL, SSEL0, and

SSEL1 pins in accordance with the value of FX × 8 = fX (main clock).

Table 1-2. Frequency List

Multiplication

Factor

PLLSEL Pin SSEL1 Pin SSEL0 Pin Input Frequency (MHz)

(Target Value)

Main Clock (fX) Frequency

(MHz)

L H Setting prohibited Setting prohibited

H L 10.00 to 10.19 80.00 to 81.59

H

H H 10.20 to 11.99 81.60 to 95.99

L L 12.00 to 14.39 96.00 to 115.19

L H 14.40 to 17.39 115.20 to 139.19

H L 17.40 to 18.75 139.20 to 150.00

8

L

H H Setting prohibited Setting prohibited

Caution The maximum value of fCLK is 100 MHz in a 100 MHz product, 133 MHz in a 133 MHz product, and

150 MHz in a 150 MHz product.

 The operation is not guaranteed if fCLK (MAX.) < fX.

 Make sure that fX does not exceed the guaranteed operating frequency of each product.

Remark L: Low-level input

 H: High-level input

1.8.3 JIT0 and JIT1 pins

These input pins specify the frequency modulation rate (fDIT) of SSCG output. The default values (after reset) of

the ADJON and ADJ2 to ADJ0 bits of the SSCG control register (SSCGC) are changed as follows, depending on the

setting of these pins.

Table 1-3. Default Values of SSCGC.ADJON and SSCGC.ADJ2 to SSCGC.ADJ0 Bits

Default Value JIT1 Pin JIT0 Pin

ADJON Bit ADJ2 Bit ADJ1 Bit ADJ0 Bit

L L 0 0 0 0

L H 1 0 0 1

H L 1 0 1 1

H H 1 1 0 1

Remark L: Low-level input

 H: High-level input

Application Note U17069EJ1V0AN 23

CHAPTER 2 USB BUS DRIVER

2.1 General

2.1.1 Overview

The USB bus driver is a sample program for the USB function controller that is incorporated in the V850E/ME2. It

conforms to Universal Serial Bus Specification Revision 1.1 and operates on the embedded real-time control

operating system RX850 Pro (conforms to the µITRON 3.0 specifications).

This sample program uses the control endpoint (endpoint 0) only. The vendor-specific class is defined as the class,

and the driver performs enumeration processing (standard device request processing) when a USB device is

connected.

This sample program uses the emulation board SolutionGearTM MINI (SG-703111-1) as the hardware execution

environment. When using the SolutionGear MINI and sample program as is, create the execution object by following

the procedure described in 2.6 Load Module and confirm its operation by following the procedure described in 2.2

Execution of Load Module.

When using another target board instead of SolutionGear MINI, change the board referring to 2.3 System

Configuration, 2.4 RX850 Pro-Dependent Processing Modules, and 2.5 Section Map File, in accordance with

the board specifications.

When changing both SolutionGear MINI and sample program, change them referring to 2.3 System

Configuration, 2.4 RX850 Pro-Dependent Processing Modules, 2.5 Section Map File, 2.6 Load Module, and

2.7 USB Driver Functions.

The positioning of the USB bus driver is shown below.

Remark The descriptions in 2.2.1 Execution procedure of load module assume the user environment

described in 2.1.3 Execution environment.

Figure 2-1. Positioning of USB Bus Driver

RX850 Pro

SolutionGear MINI (RTE-V850E/ME2-CB)

USB bus driver

Host machine

USB function controller (hardware)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 24

2.1.2 Development environment

This section assumes the following hardware and software environments are used for system development using

the sample program.

• Hardware environment

 Host machine: PC/ATTM-compatible machines (OS: WindowsTM XP)

• Software environment

 Real-time OS: RX850 Pro Version 3.15

 USB bus driver: Sample program set described in this section

 C compiler package: MULTI2000

 (CCV850 Version 3.5 (made by Green Hills Software, Inc.))

Caution If the directory configuration of the user environment differs from that handled in the build file of

the sample program, adjust the build file to the user environment.

Remark Refer to the help of MULTITM (made by Green Hills Software, Inc.) for the description of the build file.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 25

2.1.3 Execution environment

This section assumes the following hardware and software environments are used for load module execution using

the sample program.

• Hardware environment

Host machine: PC/AT-compatible machines (OS: Windows XP)

IE control machine: PC/AT-compatible machines (OS: Windows XP)

Target board: SolutionGear MINI (SG-703111-1)

In-circuit emulator (IE): N-wire IE (RTE-2000-TP) (made by Midas Lab Inc.)

JTAG probe

USB cable

• Software environment

Software for IE: PARTNER Setup Program Version 1.242

Remarks 1. Refer to APPENDIX A SG-703111-1 BOARD and the SG-703111-1 User’s Manual for details of

how to set up the execution environment.

 2. Refer to the RTE-2000-TP Hardware User’s Manual for details of how to set up the in-circuit

emulator (RTE-2000-TP).

 3. Refer to the PARTNER User’s Manual V800 Series Common Edition and NB85E-TP Part Edition

for details of PARTNER.

Figure 2-2. Execution Environment

Host machine
(OS: Windows XP)

Machine for controlling
in-circuit emulator
(OS: Windows XP)

In-circuit
emulator

JTAG probe

USB cable

Target board

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 26

2.2 Execution of Load Module

2.2.1 Execution procedure of load module

The following shows the procedure for executing the load module under the environment described in 2.1.3

Execution environment, taking the load module using the sample program as an example.

(1) Preparation of machine for controlling in-circuit emulator (IE)

Turn on the power and start up the IE control machine and the in-circuit emulator.

(2) Preparation of host machine

Turn on the power and start up the host machine (the IE control machine can be used as the host machine,

but it is strongly recommended to provide an independent machine for development).

(3) Reset SG-703111-1 board

Press the RESET button of the SG-703111-1 board to reset the SG-703111-1 board.

(4) Startup of software for IE

Start up software for IE.

Select the [Start] button → “All Programs” → “PARTNER” → “RPTSETUP (NB85ET)” in Windows.

Click the [Open] button and specify a project file; the [Run] button is then selectable. Click the [Run] button to start

up PARTNER. Make the board settings after startup. It is useful to create at this time the setting file loaded at startup.

Refer to APPENDIX A SG-703111-1 BOARD, PARTNER User’s Manual V800 Series Common Edition and

NB85E-TP Part Edition for setup files for the sample described in this section.

Cautions 1. Be sure to apply power to the target board before starting up the in-circuit emulator.

 2. If you want to load the setting file for resetting the target board after the in-circuit emulator is

started up, load the setting file (init.mcr in the example below) by inputting a command to the

command window, as shown below.

[Command input example]

><init.mcr<Enter>

(5) Loading the load module

Load the load module to the board using the in-circuit emulator function.

The load module (usb_bus.out in the example below) can be loaded by selecting [Load] in the [File] menu on

the toolbar, or input the L command (loading file) in the command window.

[Command input example]

>l usb_bus.out<Enter>

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 27

(6) Execution

The code loaded to the board is executed by pressing the F5 key or the [Go] button.

Remark The same operation is performed by selecting [Go] in the [Run] menu on the toolbar.

(7) USB connection

Connect the USB cable.

Connect connector B to the board and connector A to the host machine.

Cautions 1. The USB cable can be connected before/after starting up the target board.

 2. When the device is detected by the host machine, the software installation screen

appears. Since no dedicated host driver is provided in this sample program, select the

[Cancel] button here.

(8) Startup of Device Manager

Open the Properties window from My computer and select the Hardware tab. Select the Device Manager to

start up the Device Manager.

Remark The Device Manager can also be started up from [Manage] menu of My computer or the Control

Panel.

(9) Confirmation of USB device connection

Make sure that “USB Device” is displayed under “Other devices” in the Device Manager screen.

Caution The driver included in this sample program only performs processing up to enumeration.

Therefore, the driver performs no more operations.

(10) Exiting program

Terminate the program under execution.

Click the forcible break button on the PARTNER screen, or select “Forcible Break” in the [Run] menu on the

toolbar to stop program execution.

(11) Shutting down in-circuit emulator

Shut down the in-circuit emulator and reset the target board by following the procedure described in (1).

Select [Exit] in the [File] menu on the toolbar to terminate PARTNER.

After terminating PARTNER, reset the target board by following the procedure described in (1).

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 28

2.2.2 Directory configuration

The directory configuration of files contained in this sample program set is shown below.

Caution It is recommended to place the directory of the USB bus driver files directly under the directory

where the RX850 Pro is installed (\nectools32).

Figure 2-3. Sample Program Directory Configuration

nectools32 V850USB_ BUS inc

rx85p

src

conf

src

USBF

The outline of each directory is shown below.

(1) nectools32

A directory created when the RX850 Pro is installed. Place the directory (directory name: V850USB_BUS) of

the driver directly under this directory.

(2) nectools32\V850USB_BUS

A directory for the USB bus driver.

• usb_bus.bld: Build file of USB bus driver

• common.lx: Section map file

(3) nectools32\V850USB_BUS\inc

A directory in which header files for the USB bus driver are stored.

• errno.h: Header file for return value

• types.h: Header file for data type

• sys.h: Header file for system information

Caution sys.h (header file for system information) is usually created by command input using the

configurator when build is executed. If a build file in the sample program is used, however,

users are not required to create this file because the command is automatically executed

when build is executed.

(4) nectools32\V850USB_BUS\rx85p

A directory in which files for the RX850 Pro are stored.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 29

(5) nectools32\V850USB_BUS\rx85p\conf

A directory in which system files for the RX850 Pro are stored.

• sit.850: System information table

• svc.850: System call table

• sysi.tbl: System information table

• sysc.tbl: System call table

Cautions 1. Files in this directory are usually created by command input using the configurator when

build is executed. If a build file in the sample program is used, however, users are not

required to create these files because the command is automatically executed when

build is executed.

 2. sit.850 and sysi.tbl, svc.850 and sysc.tbl differ only in their file extension.

(6) nectools32\V850USB_BUS\rx85p\src

A directory in which files for RX850 Pro are stored.

• boot.850: Assembler file for boot processing

• entry.850: Assembler file for entry processing

• init.c: Source file for hardware initialization module

• init.h: Header file for hardware initialization module

• sys.cf: CF definition file

• varfunc.c: Source file for software initialization module

(7) nectools32\V850USB_BUS\src

A directory in which files of the USB bus driver board-dependent module are stored.

• port.c: Source file for port setting

• port.h: Header file for port setting

(8) nectools32\V850USB_BUS\src\USBF

A directory in which files of the USB bus driver USB processing module are stored.

• usbf850.c: Source file for USB bus driver

• usbf850.h: Header file for USB bus driver

• usbf850desc.h: USB bus driver descriptor definition file

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 30

2.3 System Configuration

2.3.1 Overview

System configuration means creation of the load module using files that are installed in the user’s development

environment (the host machine) from the USB bus driver supply medium.

The system configuration procedure of USB bus drivers is shown below.

(1) Describing RX850 Pro-dependent processing module

(2) Describing board-dependent module

(3) Describing USB bus driver processing-dependent module

(4) Describing section map file

(5) Creating load module

Figure 2-4. System Configuration Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB bus driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task

Configurator

C compiler/assembler

Link editor

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 31

2.3.2 Describing RX850 Pro-dependent processing module

Some functions provided by the USB bus driver use the functions of the real-time OS (RX850 Pro), and the

processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

Remark Refer to 2.4 RX850 Pro-Dependent Processing Modules for details of the RX850 Pro-dependent

processing module.

2.3.3 Describing board-dependent module

The initialization processing, which is related to the processing dependent on the user’s execution environment

and application system, is provided as a board-dependent module in the USB bus driver source program.

The board-dependent module is as follows.

• CPU board-dependent module

 The port input/output manipulation required for the USB bus driver is provided as a CPU board-dependent

module.

Caution Since port setting is handled in the same manner as setting of other registers, no dedicated

function is provided.

 Refer to the RX850 Pro standard header file SFR.h stored in \nectools32\inc850\common\ for the

register definition. For detailed processing, refer to the source program for port setting (port.c)

called from the boot processing module (boot.850) and software initialization module.

2.3.4 Describing USB bus driver processing-dependent module

The driver functions, which are used to implement the USB bus driver functions, are provided as the USB bus

driver processing-dependent module in this sample program.

The USB bus driver processing-dependent modules are listed below.

• USB function controller initialization module

• USB function controller interrupt handlers

• USB function controller interrupt servicing tasks

• USB function controller general-purpose functions

Remark Refer to 2.7 USB Bus Driver Functions for details of the USB bus driver processing-dependent

module.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 32

2.3.5 Describing section map file

The section map file is used by the user to fix address assignment performed by the link editor.

The following five text areas are essential sections when using the RX850 Pro.

• Common part allocation area: .system section

• Interrupt servicing-related allocation area: .system_int section

• Scheduler-related allocation area: .system_cmn section

• System information area: .sit section

• Interface library/system call allocation area: .text section

Remark Refer to 2.5 Section Map File for details of the section map file.

2.3.6 Creating load module

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing modules, USB bus driver processing-dependent module, and section map file, that have been

coded.

Remark Refer to 2.6 Load Module for details of how to create the load module.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 33

2.4 RX850 Pro-Dependent Processing Modules

2.4.1 Overview

Some functions provided by the USB bus driver use the functions of the real-time OS (RX850 Pro), and the

processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

2.4.2 CF definition file

An information file (CF definition file) that contains data provided to the RX850 Pro is required to configure the

system in which the RX850 Pro is used.

The following information is required for using the USB bus driver function.

 Real-time OS information

• RX Series information

 SIT information

• System information

• System maximum value information

• System memory information

• Task information

• Interrupt handler information

• Initialization handler information

 SCT information

• Task management/task-associated synchronization system call information

• Interrupt servicing management system call information

• Time management system call information

Caution This sample program implements each functions using three tasks, three interrupt handlers, and

seven system calls. Therefore, the CF definition file, the maximum number of tasks to be created

must be set to three as the system’s maximum value information and the maximum number of

interrupt handlers to be created must be set to three for the USB bus driver and use of sta_tsk,

ext_tsk, slp_tsk, and wup_tsk system calls must be defined as task management/task-associated

synchronization system call information, use of the loc_cpu and unl_cpu system calls as

interrupt servicing management system call information, and use of the dly_tsk system call as

time management function system call information.

Remark Refer to the RX850 Pro Installation User’s Manual and the sample CF definition file (sys.cf) for details

of how to code the CF definition file.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 34

(1) Procedure for creating information files

A procedure for creating information files (system information table, system call table, and system information

header file) is shown below.

The information file can be created from the Windows command prompt.

Caution If a build file in the sample program is used, users are not required to create information

files in this procedure because they are automatically executed when build is executed.

<1> Change current directory

Move the current directory to the directory in which the CF definition file is stored using the cd command

of Windows.

A command input example when the directory in which the CF definition file is stored is C:\sample is

shown below.

[Command input example]

C:>cd C:\sample\rx850<Enter>

<2> Creating information files

Create the information file from the CF definition file that has been created in the specific description

format, using the configurator cf850pro.exe.

A command input example when creating three information files (system information table: sit.850,

system call table: svc.850, and system information header file: sys.h) from an input file (CF definition file

name: sys.cf) is shown below.

[Command input example]

C:>cf850pro –i sit.850 –c svc.850 –d sys.h sys.cf<Enter>

The information files are created from the CF definition file.

Caution A sample file (CF definition file) used for creating the information files is provided in the

sample program.

Remark Refer to the RX850 Pro Installation User’s Manual for details of the option to activate the

configurator cf850pro.exe and execution method.

2.4.3 Entry processing

This processing assigns a branch instruction to an interrupt handler to the handler address where control is forcibly

passed by the processor when a maskable interrupt occurs.

Assign the macro RTOS_ IntEntry_Indirect provided by the RX850 Pro (branch processing to interrupt servicing

management function provided by the RX850 Pro) to the handler address corresponding to the interrupt handler

(interrupt handler defined by interrupt handler information in the CF definition file) executed by the RX850 Pro.

Remark Refer to sample program entry.850 for details of how to code the entry processing.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 35

2.4.4 System initialization processing

The system initialization processing includes initialization processing (boot processing and hardware initialization

module) of hardware required for operating the RX850 Pro normally, and software initialization processing (nucleus

initialization module and Initialization handler).

The system initialization processing is performed first when the system is activated.

Caution Among the four types of system initialization processing, users are not required to describe the

nucleus initialization module because it is a function provided by the RX850 Pro.

The processing performed by the nucleus initialization module is shown below.

 Securement of system memory defined by CF definition file

• System pool 0

• User pool 0

 Generation and activation of management object defined by CF definition file

• Generation and activation of task

• Registration of interrupt handler

 Activation of initial task

 Generation and activation of idle task

 Calling software initialization module

 Passing control to scheduler

The idle task is a processing routine that is activated by the scheduler when a processing module (task) executed

by the RX850 Pro is no longer in the run or ready state, that is, no processing module targeted to the scheduling by

the RX850 Pro exist in the system. The idle task issues the HALT instruction.

(1) Boot processing

Boot processing is the function assigned to the processor reset entry, so it is executed first in the system

initialization processing.

The positioning of boot processing is shown below.

Figure 2-5. Positioning of Boot Processing

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 36

The processing executed by boot processing is shown below.

Remark Refer to sample program boot.850 for details of how to code boot processing.

• Setting tp, gp, and ep registers

 Values of the text pointer tp, global pointer gp, and stack pointer ep, which are required for execution of

each processing module (including boot processing), are undefined when a system is activated. Boot

processing first performs initial setting of these registers.

Caution In this chapter, it is recommended to set tp to “0”, gp to “global pointer symbol _gp

output by the compiler”, and ep to “element pointer symbol _ep output by the compiler”.

• Calling hardware initialization module

 Functions (hardware initialization module) are called to initialize the hardware on the target system.

 This step is not required if initialization of internal units is performed by other module.

Caution In this chapter, this step is not required because initialization of internal units is

performed by the software initialization module. Refer to the RX850 Pro Installation User’s

Manual for details.

• Passing control to nucleus initialization module

 The nucleus initialization module secures the system memory (system pool 0, user pool 0) and

creation/initialization of management objects, based on information described in the system information

table. Therefore, start address_sit of the system information table must be set to the r10 register before

passing control to the nucleus initialization module.

Caution The system information table is a table in which the CF definition file created in a specific

description format is converted to the assembly language format, using the utility tool

(configurator cf850pro.exe) provided by the RX850 Pro.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 37

(2) Hardware initialization module

The hardware initialization module is a function to initialize the hardware on the target system, and is called

from boot processing.

The positioning of the hardware initialization module is shown below.

Figure 2-6. Positioning of Hardware Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

The processing executed by the hardware initialization module is shown below.

Cautions 1. Users are not required to disable the maskable interrupts because they are masked at

initialization by default.

 2. Hardware initialization is performed by the software initialization module in the sample

program. Refer to the RX850 Pro Installation User’s Manual for details of the hardware

initialization module.

• Returning control to boot processing

 Control can be returned from the hardware initialization module to boot processing by issuing the “return();”

instruction, because the return address to the lp register is set when the hardware initialization module is

called from boot processing.

 If the hardware initialization module is described with the assembly language, this processing is

implemented by issuing the “jmp [lp]” instruction.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 38

(3) Software initialization module

The initialization handler is a function provided to enhance operability of the user software environment, and is

called from the nucleus initialization module.

The positioning of the software initialization module is shown below.

Figure 2-7. Positioning of Software Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Scheduler Initialization taskSoftware
initialization module

The processing executed by the software initialization module is shown below.

Remark Refer to sample program varfunc.c for how to code the software initialization module.

• Initialization of internal unit (real-time pulse unit (RPU))

 The RX850 Pro implements the timer operation functions (delay task wake-up, cyclic handler activation,

timeout, etc.) using the timer interrupt that occurs in a constant cycle. Therefore, the real-time pulse unit

must be initialized before the RX850 Pro starts processing.

 The compare register CMD0 included in the real-time pulse unit must be set so that timer interrupts occur in

a base clock cycle defined in system information in the CF definition file.

• Enabling timer interrupt acknowledgment

 Acknowledgment of timer interrupts is enabled. In addition, this enables the use of the timer operation

functions (delay task wake-up, cyclic handler activation, timeout, etc.) provided by the RX850 Pro when

processing by the nucleus initialization module ends.

• Passing control to nucleus initialization module

 Control can be returned from the initialization handler to the nucleus initialization module by issuing the

“return();” instruction, because the return address lp register is set when the initialization handler is called

from the nucleus initialization module.

 If the initialization handler is described with the assembly language, this processing is implemented by

issuing the “jmp [lp]” instruction.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 39

2.4.5 Time management function

The time management function of the RX850 Pro uses clock interrupts generated by the hardware (such as the

clock controller) in a constant cycle.

The RX850 Pro calls system clock processing when a clock interrupt occurs, and performs processing related to

the time such as updating the system clock, task delay wake-up, and activation of the cyclic handler.

The system clock is a software timer that holds the time used by the RX850 Pro for time management (48-bit width,

unit: ms).

After the system clock is set to “0H” by system initialization processing, it is updated by system clock processing in

base clock cycle units (specified at configuration).

Caution The system clock managed by the RX850 Pro is configured as 48 bits wide. Therefore,

overflowed numeric values (numeric values that cannot be expressed by 48 bits) are ignored by

the RX850 Pro. Refer to the RX850 Pro Basics User’s Manual for details of the time management

function of the RX850 Pro.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 40

2.5 Section Map File

2.5.1 Overview

The section map file is used by the user to fix address assignment performed by the link editor.

Required assignments for addresses other than the user processing program (such as .data and .bss sections) are

described in 2.5.2 Address assignment by RX850 Pro and 2.5.3 Other address assignment.

Address assignment performed in sample program common.lx is shown below.

Remark Refer to sample program common.lx for how to code the section map file.

Figure 2-8. Address Assignment Example

Processing module
Interface library/system call allocation area
MULTI reserved area
Common part allocation area
Interrupt servicing module
Scheduler-related allocation area
System information area

Interrupt vector table

Copy information storage area

SDRAM

Internal
instruction

RAM

.boot

.text

.syscall

.system

.system_int

.system_cmn

.sit

.rodata

.fixaddr

.fixtype

.rosdata

.data

.sdabase

.sdata

.sbss

.bss

.tdata

.heap

.secinfo

0 2 8 0 0 0 0 0 H
0 2 7 F F F F F H

0 0 8 0 8 0 0 0 H
0 0 8 0 7 F F F H

0 0 8 0 0 0 0 0 H
0 0 7 F F F F F H

0 0 0 2 0 0 0 0 H
0 0 0 1 F F F F H

0 0 0 0 1 0 0 0 H
0 0 0 0 0 F F F H

0 0 0 0 0 0 8 0 H
0 0 0 0 0 0 7 F H
0 0 0 0 0 0 0 0 H

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 41

2.5.2 Address assignment by RX850 Pro

The RX850 Pro consists of five text areas: common part allocation area, interrupt servicing-related allocation area,

scheduler-related allocation area, system information area, and interface library/system call allocation area. Using

these areas, memory areas for which a large space is required can be assigned to the external RAM, and memory

areas for which a high-speed access is required (interrupt servicing module, scheduling processing module) can be

assigned to the internal instruction RAM (00000000H to 0001FFFFH).

Caution All five text areas are allocated to the internal instruction RAM in the sample program.

• Common part allocation area (.system section)

 Processing of the RX850 Pro (such as task management function, task-associated synchronization function) is

assigned to this area.

• Interrupt servicing-related allocation area (.system_int section)

 Among the interrupt servicing management functions provided by the RX850 Pro, interrupt preprocessing that is

performed when control is passed to the interrupt handler and interrupt postprocessing that is performed when

control is handed back to the processing module in which a maskable interrupt occurs are assigned to this area.

 By assigning the interrupt servicing module to the internal instruction RAM, therefore, response performance to

the interrupt handler can be improved.

Caution It is recommended to assign the interrupt servicing module to the internal instruction RAM.

• Scheduler-related allocation area (.system_cmn section)

 Among the scheduling function provided by the RX850 Pro, task wake-up processing and task scheduling

processing are assigned to this area.

 By assigning the scheduling processing section to the internal instruction RAM, therefore, task wake-up

processing and task scheduling processing are accelerated, as well as system call processing involving

scheduling processing.

Caution It is recommended to assign the scheduling module to the internal instruction RAM.

• System information area (.sit section)

 The system information table created by executing the configurator cf850.exe on the CF definition file is assigned

to this area.

 The system information table includes various data required for executing the nucleus initialization module

(securement of the system memory and creation/initialization of management objects).

• Interface library/system call allocation area (.text section)

 The instructions including system calls are assigned to this area.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 42

• System memory

 Various management block required for implementing functions provided by the RX850 Pro (such as the task

management block, semaphore management block), area in which the stack used by the interrupt handler or

task is assigned (system pool 0), and area in which dynamic memory manipulation (such as acquisition/release

of memory blocks) from the processing module is enabled (user pool 0), are assigned to this area.

Cautions 1. The ”system memory start address” must be specified when creating the CF definition file.

Be sure to specify the address when defining the system memory in the section map file.

 2. The user can specify any section name in the system memory.

2.5.3 Other address assignment

The other sections for which address assignment is required are described below.

• MULTI reserved area (.syscall section)

 This area is used as a work area by the debugger MULTI (made by Green Hills Software, Inc.).

Cautions 1. The .syscall section must be defined regardless of whether or not MULTI is used.

 2. Be sure to specify 4-byte alignment when defining the .syscall section.

• Copy information storage area (.secinfo section)

 This area is used by the link editor to output information (start address, size) required for transferring program

(data, text) of a section for which the ROM identifier is specified in the section map file from ROM to RAM.

 Specification of the ROM identifier is required when performing ROMization of a processing module. Therefore,

definition of the .secinfo section is not required when ROMization is not performed.

Caution This section is empty in the sample program because ROM identifier specification is not

performed.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 43

2.6 Load Module

2.6.1 Overview

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing module, USB bus driver processing-dependent module, section map file, that have been coded.

The procedure for creating load modules is shown below.

Caution The load module corresponding to the sample program can be created by executing the .bld file

in the sample program. However, definition of the .bld file must be adjusted to the user

development environment.

Figure 2-9. Load Module Creation Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB bus driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task

Configurator

C compiler/assembler

Link editor

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 44

2.6.2 Creating load module

An ELF-format load module can be created from the RX850 Pro-dependent processing module, USB bus driver

processing-dependent module, and section map file, that have been coded, using the following procedure.

(1) Creation of system information table and system call table

Original CF definition file formats are excluded from the link processing performed by the link editor when

creating a load module.

Therefore, a file that can be assembled (system information table or system call table) must be created using

the utility tool (configurator cf850.exe) provided by the RX850 Pro.

Remark Refer to 2.4.2 (1) Procedure for creating information file for how to create the system

information table and system call table.

(2) Creation of object file

A relocatable object file is created by executing the C compiler/assembler for the processing module (file

described in the C language/assembly language) shown below.

 RX850 Pro-dependent processing module

• System information table

• System call table

• Entry processing

• Boot processing

• Hardware initialization module

• Initialization handler

 USB bus driver processing-dependent module

(3) Creation of load module

An ELF-format load module is created by executing the link editor for relocatable object file created in (2),

library files, and section map file.

libansi.a ANSI C library

libind.a C library made by Green Hills Software, Inc. (routines independent of target CPU)

libarch.a C library made by Green Hills Software, Inc. (routines dependent of target CPU)

libsys.a C library made by Green Hills Software, Inc. (system call, initialization routines)

rxcore.o Nucleus common part object

librxp.a Nucleus library

libchp.a Interface library

rxcore.o, librxp.a, and libchp.a are provided by the RX850 Pro, and libansi.a, libind.a, libarch.a, and libsys.a

are provided by the CCV850 (made by Green Hills Software, Inc.).

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 45

2.7 USB Bus Driver Functions

2.7.1 Overview

Initialization processing performed by the USB function controller, as well as tasks and interrupt handlers to

implement USB bus driver processing, must be described in the USB bus driver.

A list of USB bus driver processing-dependent modules is shown below.

• USB function controller initialization processing

 This module is called from the RX850 Pro software initialization module and initializes the USB function controller.

• USB function controller interrupt handlers

 This is an interrupt servicing-dedicated routine that is called each time an interrupt by the USB function controller

occurs, and is defined in the CF definition file.

Caution Interrupts other than required are masked in this sample program.

 Only the CPUDEC interrupt reported by the INTUSB0B signal (which indicates that there is a

request that is decoded by FW in the UF0E0ST register) is used in this sample program.

• USB function controller interrupt servicing task

 This task is called from the USB function controller interrupt handler and performs processing for each interrupt

source (such as register setting, data transmission/reception processing).

• USB function controller general-purpose function

 This is a general-purpose function used by the USB bus driver to perform the STALL response setting for each

endpoint and transmission/reception processing.

Remark Refer to sample program usbf850.c for how to code the USB bus driver processing-dependent module.

• USB suspend/resume processing

 Since the USB suspend/resume processing depends on the system, it is not supported in this sample program.

If this processing is necessary in your system, add the processing making allowances for the following points.

 The suspend/resume state is reported to the USB function controller incorporated in the V850E/ME2 by an

interrupt (INTUSB0B signal). Therefore, whether the current status is suspend or resume can be judged by

checking the UF0IS0. RSUSPD bit in the interrupt handler (for the INTUSB0B signal); if this bit is 1, the

UF0EPS1.RSUM bit is checked to judge the status.

 Processing can be added by adding the above code to judge the status to the interrupt handler (for the

INTUSB0B signal) and wakes up a task to perform necessary processing from the code.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 46

2.7.2 Processing flows

The processing flows of initialization processing and interrupt servicing in the sample program are shown below.

(1) Initialization processing

Initialization processing of the USB device is called and executed by the software initialization module.

The flow of USB device initialization processing (at power application) in the sample program is shown below.

Figure 2-10. Flowchart of Initialization Processing

Initialization processing started

Clock supplied

End

Interrupt mask released

Interrupt mask register set

Measure for floating disabled

Measure for floating enabled

NAK of control endpoint set

USB connection
(terminal resistor manipulation)

NAK setting of control
endpoint released

Initialize request data
register area

Interface and endpoint set

The processing executed by the initialization processing is shown below.

Caution Initialization processing is required except for processing of ports. The pin assignment may

differ if another target board is used. In such a case, read the descriptions in this manual

making changes as necessary to match the specifications of the target board to be used.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 47

• Clock supply

 Be sure to set the UCKC.UCKCNT bit to 1 before setting the USB function controller register. A clock to

USB is supplied by setting this bit to 1.

 The P10 pin is used for inputting a clock, so set the P10 pin to input mode to enable clock input.

• Release of interrupt mask

 Masking of the USB-related interrupt signal is released using the interrupt control register.

• Enabling floating measure

 The UF0BC.UBFIOR bit is cleared to 0 to prevent mis-recognition due to a bus reset caused by an

undefined value when the cable is disconnected.

• Setting of NAK for control endpoint

 A NAK response is sent to all the requests including automatic execution requests.

 This setting is made so that hardware does not return unexpected data in response to an automatic

execution request until registration of data used for the automatic execution request is complete.

• Initialization of request data register area

 Descriptor data used to respond to a Get Descriptor request is registered in a register.

 Data such as device status, endpoint 0 status, device descriptor, configuration descriptor, interface

descriptor, and endpoint descriptor are registered.

Caution Registration of the descriptor for the class may be required depending on the class.

The vendor-specific class is defined in this sample program, and only the USB standard

descriptor is used.

• Setting of interface and endpoint

 Information such as the number of supported interfaces, the state of alternative settings, relationship

between the interface and endpoints are set to a register.

• Release of NAK setting at control endpoint

 The NAK setting at control endpoint (endpoint 0) is released when registration of data for an automatic

execution request is complete.

• Setting of interrupt mask register

 Masking for each interrupt source shown in the interrupt status register of the USB function controller.

• USB connection (terminal resistor manipulation)

 The D+ signal is pulled up.

• Disabling floating measure

 The floating measure is disabled by setting the UF0BC.UBFIOR bit to 1.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 48

(2) Interrupt servicing

The sample program operates by interrupt events after initialization. The device is in the idle state as long as

no event occurs.

The following shows the interrupt servicing flow in the sample program.

Cautions 1. No dedicated host driver is provided in this sample program, so the driver only performs

processing up to enumeration of the USB (device inquiry). Since the host only issues an

automatic response request via the USB function controller incorporated in the

V850E/ME2, the device is always in the idle state.

 2. The flowchart in Figure 2-11 illustrates processing of the Get Descriptor (String

Descriptor) request, to which the USB function controller does not respond

automatically, and the device class-specific request.

 Refer to CHAPTER 3 USB STORAGE CLASS DRIVER and CHAPTER 4 USB

COMMUNICATION CLASS DRIVER for the transmit/receive processing at the bulk

endpoint.

Figure 2-11. Flowchart of Interrupt Servicing

Yes

No

Interrupt occurs

Interrupt servicing task activated

Interrupt handler

Interrupt servicing taskRequests analyzed

Request processed

Request data read
(data reception processing)

Interrupt source is
CPUDECNote?

Note Only the CPUDEC interrupt can be acknowledged using the INTUSB0B signal of the USB bus driver.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 49

The processing of an interrupt is shown below.

• Confirmation of interrupt source

 The analyzed interrupt status varies depending on the executed interrupt handler.

 Since only the CPUDEC interrupt can be acknowledged in this sample program, the interrupt handler is

activated by the INTUSB0B signal. This interrupt handler reads the UF0IS1 register and judges if the

interrupt source is CPUDEC interrupt or not.

Caution In this sample program, the interrupt handlers to be used are registered in the CF

definition file in advance.

• Activation of interrupt servicing task

 The task_usb0b task is activated if the interrupt source is CPUDEC.

Caution In this sample program, the tasks to be activated are registered in the CF definition file in

advance.

• Reading request data

 SETUP data is read from the UF0E0ST register.

• Analysis of request

 SETUP data that has been read is analyzed and the purpose of the request is confirmed.

• Processing of requests

 Processing of the analyzed request is performed.

 In the sample program, only the standard device request Get Descriptor (String Descriptor) is handled.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 50

2.7.3 USB bus driver descriptor information

The USB standard descriptors defined in this sample program are shown below.

Descriptors described in (a) to (d) are the minimum required descriptors.

Remark Refer to Universal Serial Bus Specification Revision 1.1 for details.

(a) Device descriptor

This descriptor holds general information of the device. One device descriptor must be prepared for each

device. The information contained in this descriptor is used for identifying a unique in the device configuration.

In the sample program, the driver performs enumeration processing (standard device request processing)

when a USB device is connected. The vendor-specific class is defined as the class.

Table 2-1. Device Descriptor

Offset Size (Byte) Value Description

0 1 12H Length value of this descriptor (byte)

1 1 01H Descriptor type (device)

2 2 10H/01H USB version (USB 1.1)

4 1 FFH Class code (vendor-specific class)

5 1 00H Sub-class code

6 1 00H Protocol code

7 1 40H Maximum packet size at endpoint 0

8 2 09H/04H Vendor ID (NEC Electronics)

10 2 FBH/FFH Product ID

12 2 01H/00H Device release number

14 1 01H Index to string descriptor (Manufacturer)

15 1 00H Index to string descriptor (Product)

16 1 00H Index to string descriptor (Serial Number)

17 1 01H Number of devices that can be configured

(b) Configuration descriptor

This descriptor holds information on concrete device configuration.

Table 2-2. Configuration Descriptor

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 02H Descriptor type (configuration)

2 2 12H/00H Total length value of descriptor returned together with configuration

descriptor in response to the Get Descriptor request

4 1 01H Number of interfaces supported in the configuration

5 1 01H Configuration value

6 1 00H Index to string descriptor (configuration)

7 1 C0H Configuration of device (self-powered/remote wakeup function)

8 1 00H Maximum power consumption of device

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 51

(c) Interface descriptor

This descriptor holds concrete interface information in the configuration.

The configuration provides one interface in this sample program.

This descriptor is always returned as a part of the configuration descriptor, and is not accessed directly by a

Get Descriptor request or Set Descriptor request.

Table 2-3. Interface Descriptor

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 04H Descriptor type (interface)

2 1 00H Interface value

3 1 00H Alternate set value

4 1 00H Endpoint number (excluding endpoint 0)

5 1 FFH Interface class (vendor-specific class)

6 1 00H Interface sub-class

7 1 00H Interface protocol

8 1 00H Index to string descriptor (interface)

(d) Endpoint descriptor

This descriptor holds information required by the host for determining the bandwidth requirements for each

endpoint.

This descriptor is always returned as a part of the configuration information by a Get Descriptor (configuration)

request.

This descriptor is not accessed directly by a Get Descriptor request or Set Descriptor request.

Caution Since the driver in this sample program only performs processing up to enumeration, only

the control endpoint is used. Therefore, the endpoint descriptor is not defined in the

sample program.

(e) String descriptor

This descriptor holds information required by the host for determining the bandwidth requirement for each

endpoint.

Table 2-4. String Descriptor (1)

Offset Size (Byte) Value Description

0 1 04H Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 2 09H/04H Language type used by string descriptor (English/US)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 52

Table 2-5. String Descriptor (2)

Offset Size (Byte) Value Description

0 1 2AH Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 40 'N','E','C','','E','l','e','c','t','r','o','n','i','c','s',' ','C','o','.' Manufacturer:

NEC Electronics Co.

• Descriptor configuration

 The descriptor configuration in this sample program is shown below. This configuration consists of the five

descriptors described before.

Caution The device descriptor, configuration descriptor, and string descriptor are accessed by an

independent Get Descriptor request. The interface descriptor is accessed as part of the

configuration descriptor.

Figure 2-12. Descriptor Configuration

Device descriptor

Configuration descriptor

String descriptor

Interface descriptor
(Interface value 0/Alternate value 0)

Hierarchy (high) Hierarchy (low)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 53

2.7.4 Data macro

The data macros (data type, return value, etc.) used by the USB bus driver are shown below.

(1) Data type

Data type macro is defined in the header file types.h in nectools32\USB_BUS\inc.

A list of the data types is shown below.

Caution No special data type is used in the sample program.

(2) Return value

Macro of the return value is defined in the header file errno.h in nectools32\USB_BUS\inc.

A list of the return values is shown below.

Caution No special data type is used in the sample program.

Table 2-6. List of Return Values

Macro Type Description

DEV_OK 0 Normal termination

DEV_ERROR −1 Abnormal termination

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 54

2.7.5 Data structure

The data structure used by the USB bus driver is shown below.

• USB device request structure

 The USB device request structure is defined in USB header file usbf850.h in nectools32\V850USB_BUS\src

\USBF. The USB device request structure USB_SETUP is shown below.

typedef struct {

 unsigned char RequstType; /*bmRequestType */

 unsigned char Request; /*bRequest */

 unsigned short Value; /*wValue */

 unsigned short Index; /*wIndex */

 unsigned short Length; /*wLength */

 unsigned char* Data; /*index to Data */

} USB_SETUP;

2.7.6 Description of functions

(1) Overview

A list of the processing modules described in this chapter is shown below.

Table 2-7. List of Processing Modules in Sample Program (1/2)

Processing Module Name Function Name File Name Remark

RX850 Pro-dependent processing module

CF definition file − sys.cf −

Entry processing − entry.850 Assembly

language

Boot processing boot boot.850 Assembly

language

Hardware initialization module __InitSystemTimer init.c C language

Initialization handler varfunc varfunc.c C language

Header file − init.h −

Board-dependent processing module

Port initialization port850_reset port.c C language

Header file − port.h −

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 55

Table 2-7. List of Processing Modules in Sample Program (2/2)

Processing Module Name Function Name File Name Remark

USB bus driver processing module

Initialization function usbf850_init usbf850.c C language

Interrupt handler (INTUSB0B signal) usbf850_inthdr usbf850.c C language

Interrupt handler (INTUSB1B signal) usbf850_inthdr1 usbf850.c C language

Interrupt handler (INTUSB2B signal) usbf850_inthdr2 usbf850.c C language

Interrupt servicing task (INTUSB0B signal) task_usb0b usbf850.c C language

Interrupt servicing task (INTUSB1B signal) task_usb1b usbf850.c C language

Interrupt servicing task (INTUSB2B signal) task_usb2b usbf850.c C language

Data transmission function usbf850_data_send usbf850.c C language

Data reception function usbf850_data_receive usbf850.c C language

Null data transmission function (endpoint 0) usbf850_sendnullEP0 usbf850.c C language

Stall response processing function (endpoint 0) usbf850_sendstallEP0 usbf850.c C language

Stall response processing function (endpoint 1) usbf850_bulkin1_stall usbf850.c C language

Stall response processing function (endpoint 2) usbf850_bulkout1_stall usbf850.c C language

System call calling function (loc_cpu) usbf850_loc_cpu usbf850.c C language

System call calling function (unl_cpu) usbf850_unl_cpu usbf850.c C language

Request processing function usbf850_rxreq usbf850.c C language

Request data read function usbf850_rxreq_read usbf850.c C language

Standard request processing function usbf850_standardreq usbf850.c C language

Get Descriptor request processing function usbf850_getdesc usbf850.c C language

Stall response processing function for setting request

processing function (endpoint 0)

usbf850_sstall_ctrl usbf850.c C language

USB header file − usbf850.h −

USB descriptor declaration − usbf850desc.h −

Header file

Data type declaration − types.h −

Return value declaration − errno.h −

Build file − usb_bus.bld −

Section map file − common.lx −

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 56

(2) Function tree
The calling relationship (function tree) in the sample program is illustrated below.

Caution usbf850_init is called from the initialization handler.

Figure 2-13. Sample Program Function Tree

usbf850_inthdr

usbf850_rxreq

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_rxreq_read

usbf850_standardreq

usbf850_sendstallEP0

usbf850_sendstallEP0

usbf850_getdesc

usbf850_sendstallEP0

task_usb0b
(task activation)

Processing of INTUSB0B signal

usbf850_inthdr

Processing of INTUSB1B signal

task_usb1b
(task activation)

usbf850_inthdr

Processing of INTUSB2B signal

task_usb2b
(task activation)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 57

(3) Description of functions

The functions in this sample program are explained in the following format.

xxxx … <1> Valid caller: − − − − … <2>

[Outline] … <3>

−

−

[C language format] … <4>

− − − − − − − −

[Parameter] … <5>

I/O Parameter Description

[Operation] … <6>

−

−

[Return value] … <7>

−

−

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 58

<1> Name

Indicates the function name.

<2> Valid caller

Indicates the type of the processing module from which a function can be called.

Task: The function can be called only from a task.

Non-task: The function can be called only from a non-task.

Non-task | Task: The function can be called from a task or non-task.

−: Interrupt handler or task, and is not used to call functions.

<3> Outline

Shows the outline of a function operation.

<4> C language format

Shows the description format when calling a function from the processing module described in the C

language.

<5> Parameter

Shows the function parameter in the following format.

I/O Parameter Description

A B C

A: Parameter type

 I: Parameter input to the USB function controller

 O: Parameter output from the USB function controller

B: Parameter data type

C: Description of parameter

<6> Operation

Describes detailed operation of the function.

<7> Return value

Indicates the return value from a function using the data macro or numeric value.

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 59

usbf850_init Valid caller: Non-task | Task

[Outline]

This is a function that initializes the USB function controller incorporated in the V850E/ME2.

[C language format]

void usbf850_init (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called from the software initialization module and performs processing to initialize the USB function

controller incorporated in the V850E/ME2.

Remark Refer to 2.7.2 (1) Initialization processing for details of initialization processing.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 60

usbf850_inthdr Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB0B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This is the interrupt handler activated by the INTUSB0B signal (USB function status 0).

In this sample program, the interrupt handler checks the interrupt source and activates the interrupt servicing task

(task_usb0b) only when the source is the CPUDEC interrupt. This handler is defined in the CF definition file.

[Return value]

Object ID number (task ID number)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 61

usbf850_inthdr1 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB1B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr1 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB1B signal (USB function status 1).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb1b). This handler is

defined in the CF definition file.

Caution This function is not used in the sample program.

[Return value]

Object ID number (task ID number)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 62

usbf850_inthdr2 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB2B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr2 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB2B signal (USB function status 2).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb2b). This handler is

defined in the CF definition file.

Caution This function is not used in the sample program.

[Return value]

Object ID number (task ID number)

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 63

task_usb0b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB0B signal.

[C language format]

void task_usb0b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB0B interrupt signal (USB function status 0 interrupt).

In the sample program, this task calls the usbf850_rxreq function and performs processing of the USB standard

device request.

Caution In this sample program, the standard device request Get Descriptor (String Descriptor) that is not

responded automatically by the USB function controller incorporated in the V850E/ME2 is

handled.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 64

task_usb1b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB1B signal.

[C language format]

void task_usb1b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB1B interrupt signal (USB function status 1 interrupt).

This processing is not provided in the sample program, so the program returns without processing.

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 65

task_usb2b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB2B signal.

[C language format]

void task_usb2b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB2B interrupt signal (USB function status 2 interrupt).

This processing is not provided in the sample program, so the program returns without processing.

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 66

usbf850_data_send Valid caller: Non-task | Task

[Outline]

This is a data transmit function used by the USB function controller.

[C language format]

long usbf850_data_send (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of transmit data

I long len Data size

I char ep Endpoint number

[Operation]

This function transmits from the endpoint specified by ep data whose size is specified by len starting from the

address specified by data.

Caution This function is not used in the sample program.

 [Return value]

Status upon transmission

DEV_ERROR: Endpoint number is illegal

DEV_OK: Normal termination

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 67

usbf850_data_receive Valid caller: Non-task | Task

[Outline]

This is a data receive function used by the USB function controller.

[C language format]

long usbf850_data_receive (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of the buffer for receive data

I long len Data size

I char ep Endpoint number

[Operation]

This function reads data whose size is specified by len from the buffer at the endpoint specified by ep and stores it

to the address specified by specified data.

Caution This function is not used in the sample program.

[Return value]

Status upon reception

DEV_ERROR: Receive data size is illegal, or endpoint number is illegal.

DEV_OK: Normal termination

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 68

usbf850_sendnullEP0 Valid caller: Non-task | Task

[Outline]

This is a function that transmits Null data from the control endpoint (endpoint 0).

[C language format]

void usbf850_sendnullEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function transmits Null data (whose data size is 0) from the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 69

usb850_sendstallEP0 Valid caller: Non-task | Task

[Outline]

This is a function that sends a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sendstallEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 70

usbf850_bulkin1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 1).

[C language format]

void usbf850_bulkin1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 1).

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 71

usbf850_bulkout1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 2).

[C language format]

void usbf850_bulkout1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 2).

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 72

usbf850_loc_cpu Valid caller: Task

[Outline]

This is a function that disables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_loc_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the loc_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 73

usbf850_unl_cpu Valid caller: Task

[Outline]

This is a function that enables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_unl_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the unl_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 74

usbf850_rxreq Valid caller: Non-task | Task

[Outline]

This is a function that performs USB request processing.

[C language format]

void usbf850_rxreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the task_usb0b task that is activated by the INTUSB0B interrupt signal. This function

calls SETUP data read processing, analyzes the read data, and calls USB request processing based on the analysis

result.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 75

usbf850_rxreq_read Valid caller: Non-task | Task

[Outline]

This is a function that reads USB request data.

[C language format]

void usbf850_rxreq_read (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function reads SETUP data received subsequently to the Setup token at the control endpoint (endpoint 0).

The SETUP data is distinguished from normal data and is stored in a dedicated register. It is always read in 8-byte

units.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 76

usbf850_standardreq Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request.

[C language format]

void usbf850_standardreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called if the standard request is read from SETUP data and calls the usbf850_getdesc function

when the request type is confirmed as the Get Descriptor request.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 77

usbf850_getdesc Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request Get Descriptor (String Descriptor) processing.

[C language format]

void usbf850_getdesc (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the usbf850_standardreq function and performs the USB standard request Get Descriptor

(String Descriptor) processing. This function sets a STALL response for a request other than the Get Descriptor

(String Descriptor) request.

[Return value]

None

CHAPTER 2 USB BUS DRIVER

Application Note U17069EJ1V0AN 78

usbf850_sstall_ctrl Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sstall_ctrl (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response at the control endpoint (endpoint 0).

Caution This function is not used in the sample program.

[Return value]

None

Application Note U17069EJ1V0AN 79

CHAPTER 3 USB STORAGE CLASS DRIVER

3.1 General

3.1.1 Overview

The USB storage class driver is a sample program for the USB function controller that is incorporated in the

V850E/ME2. It conforms to Universal Serial Bus Specification Revision 1.1 and Universal Serial Bus Mass Storage

Class Bulk-Only Transport Revision 1.0, and operates on the embedded real-time control operating system RX850

Pro (conforms to the µITRON 3.0 specifications).

This sample program uses the control endpoint (endpoint 0) and IN and OUT of the bulk endpoint (endpoints 1 and

2), and is connected to the Windows XP standard storage class host driver to control a storage device (virtual device).

The Mass Storage class is defined as the class.

This sample program uses the emulation board SolutionGear MINI (SG-703111-1) as the hardware execution

environment. When using the SolutionGear MINI and sample program as is, create the execution object by following

the procedure described in 3.6 Load Module and confirm its operation by following the procedure described in 3.2

Execution of Load Module.

When using another target board instead of SolutionGear MINI, change the board referring to 3.3 System

Configuration, 3.4 RX850 Pro-Dependent Processing Modules, and 3.5 Section Map File, in accordance with

the board specifications.

When changing both SolutionGear MINI and sample program, change them referring to 3.3 System

Configuration, 3.4 RX850 Pro-Dependent Processing Modules, 3.5 Section Map File, 3.6 Load Module, and

3.7 USB Driver Functions.

The positioning of the USB storage class driver is shown below.

Caution This sample program operates as a mass-storage device (interface class: Mass Storage,

interface sub-class: SCSI, interface protocol: Bulk-Only Transport protocol). The storage device

used in this sample operates under the assumption that there are no logical units connected, the

memory area is secured, and a removable disk is connected (block size: 512 bytes, number of

logical blocks: 192, capacity: 96 KB).

Remarks 1. Refer to the following for details of the USB Mass Storage class.

 • Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1

 • Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0

 • Universal Serial Bus Mass Storage Class UFI Command Specification Revision 1.0

 2. The descriptions in 3.2.1 Execution procedure of load module assume the user environment

described in 3.1.3 Execution environment.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 80

Figure 3-1. Positioning of USB Storage Class Driver

RX850 Pro

SolutionGear MINI (RTE-V850E/ME2-CB)

USB storage class driver

Virtual storage device

Host machine

USB function controller (hardware)

3.1.2 Development environment

This section assumes the following hardware and software environments are used for system development using

the sample program.

• Hardware environment

 Host machine: PC/AT-compatible machines (OS: Windows XP)

• Software environment

 Real-time OS: RX850 Pro Version 3.15

 USB storage class driver: Sample program set described in this section

 C compiler package: MULTI2000

 (CCV850 Version 3.5 (made by Green Hills Software, Inc.))

Caution If the directory configuration of the user environment differs from that handled in the build file of

the sample program, adjust the build file to the user environment.

Remark Refer to the help of MULTI (made by Green Hills Software, Inc.) for the description of the build file.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 81

3.1.3 Execution environment

This section assumes the following hardware and software environments are used for load module execution using

the sample program.

• Hardware environment

Host machine: PC/AT-compatible machines (OS: Windows XP)

IE control machine: PC/AT-compatible machines (OS: Windows XP)

Target board: SolutionGear MINI (SG-703111-1)

In-circuit emulator (IE): N-wire IE (RTE-2000-TP) (made by Midas Lab Inc.)

JTAG probe

USB cable

• Software environment

Software for IE: PARTNER Setup Program Version 1.242

Remarks 1. Refer to APPENDIX A SG-703111-1 BOARD and the SG-703111-1 User’s Manual for details of

how to set up the execution environment.

 2. Refer to the RTE-2000-TP Hardware User’s Manual for details of how to set up the in-circuit

emulator (RTE-2000-TP).

 3. Refer to the PARTNER User’s Manual V800 Series Common Edition and NB85E-TP Part Edition

for details of PARTNER.

Figure 3-2. Execution Environment

Host machine
(OS: Windows XP)

Machine for controlling
in-circuit emulator
(OS: Windows XP)

In-circuit
emulator

JTAG probe

USB cable

Target board

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 82

3.2 Execution of Load Module

3.2.1 Execution procedure of load module

The following shows the procedure for executing the load module under the environment described in 3.1.3

Execution environment, taking the load module using the sample program as an example.

(1) Preparation of machine for controlling in-circuit emulator (IE)

Turn on the power and start up the IE control machine and the in-circuit emulator.

(2) Preparation of host machine

Turn on the power and start up the host machine (the IE control machine can be used as the host machine,

but it is strongly recommended to provide an independent machine for development).

(3) Reset SG-703111-1 board

Press the RESET button of the SG-703111-1 board to reset the SG-703111-1 board.

(4) Startup of software for IE

Start up software for IE.

Select the [Start] button → “All Programs” → “PARTNER” → “RPTSETUP (NB85ET)” in Windows.

Click the [Open] button and specify a project file; the [Run] button is then selectable. Click the [Run] button to start

up PARTNER. Make the board settings after startup. It is useful to create at this time the setting file loaded at startup.

Refer to APPENDIX A SG-703111-1 BOARD, PARTNER User’s Manual V800 Series Common Edition and

NB85E-TP Part Edition for setup files for the sample described in this section.

Cautions 1. Be sure to apply power to the target board before starting up the in-circuit emulator.

 2. If you want to load the setting file for resetting the target board after the in-circuit emulator is

started up, load the setting file (init.mcr in the example below) by inputting a command to the

command window, as shown below.

[Command input example]

><init.mcr<Enter>

(5) Loading the load module

Load the load module to the board using the in-circuit emulator function.

The load module (usb_storage.out in the example below) can be loaded by selecting [Load] in the [File] menu

on the toolbar, or input the L command (loading file) in the command window.

[Command input example]

>l usb_storage.out<Enter>

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 83

(6) Execution

The code loaded to the board is executed by pressing the F5 key or the [Go] button.

Remark The same operation is performed by selecting [Go] in the [Run] menu on the toolbar.

(7) USB connection

Connect the USB cable.

Connect connector B to the board and connector A to the host machine.

Cautions 1. The USB cable can be connected before/after starting up the target board.

 2. When the device is detected by the host machine, the Windows XP standard USB

storage class host driver is automatically installed. After the driver has been installed

normally, the device is displayed under “Removable disk” in My Computer.

(8) Startup of Device Manager

Open the Properties window from My computer and select the Hardware tab. Select the Device Manager to

start up the Device Manager.

Remark The Device Manager can also be started up from [Manage] menu of My computer or the Control

Panel.

(9) Confirmation of USB device connection

Make sure that “USB Mass Storage Device” is displayed under “Universal Serial Bus controllers”, and “NEC

corp StorageFncDriver USB Device” is displayed under “Disk Drives” in the Device Manager screen.

(10) How to use device

Select “Removable disk” in My Computer and execute “Open” on the right-click menu; a screen to prompt disk

formatting appears. Execute formatting following the instructions on the subsequent screens.

After formatting is completed normally, the disk can be used in the same manner as using ordinary disk

device, such as reading, writing or deleting files.

In addition, the disk contents are held until execution of a load module is stopped.

(11) Exiting program

Terminate the program under execution.

Click the forcible break button on the PARTNER screen, or select “Forcible Break” in the [Run] menu on the

toolbar to stop program execution.

(12) Shutting down in-circuit emulator

Shut down the in-circuit emulator and reset the target board by following the procedure described in (1).

Select [Exit] in the [File] menu on the toolbar to terminate PARTNER.

After terminating PARTNER, reset the target board by following the procedure described in (1).

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 84

3.2.2 Directory configuration

The directory configuration of files contained in this sample program set is shown below.

Caution It is recommended to place the directory of the USB storage class driver files directly under the

directory where the RX850 Pro is installed (\nectools32).

Figure 3-3. Sample Program Directory Configuration

nectools32 V850USB_Storage inc

rx85p

src

conf

src

USBF Storage

The outline of each directory is shown below.

(1) nectools32

A directory created when the RX850 Pro is installed. Place the directory (directory name: V850USB_Storage)

of the driver directly under this directory.

(2) nectools32\V850USB_Storage

A directory for the USB storage class driver.

• usb_storage.bld: Build file of USB storage class driver

• common.lx: Section map file

(3) nectools32\V850USB_Storage\inc

A directory in which header files for the USB storage class driver are stored.

• errno.h: Header file for return value

• types.h: Header file for data type

• sys.h: Header file for system information

Caution sys.h (header file for system information) is usually created by command input using the

configurator when build is executed. If a build file in the sample program is used, however,

users are not required to create this file because the command is automatically executed

when build is executed.

(4) nectools32\V850USB_Storage\rx85p

A directory in which files for the RX850 Pro are stored.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 85

(5) nectools32\V850USB_Storage\rx85p\conf

A directory in which system files for the RX850 Pro are stored.

• sit.850: System information table

• svc.850: System call table

• sysi.tbl: System information table

• sysc.tbl: System call table

Cautions 1. Files in this directory are usually created by command input using the configurator when

build is executed. If a build file in the sample program is used, however, users are not

required to create these files because the command is automatically executed when

build is executed.

 2. sit.850 and sysi.tbl, svc.850 and sysc.tbl differ only in their file extension.

(6) nectools32\V850USB_Storage\rx85p\src

A directory in which files for RX850 Pro are stored.

• boot.850: Assembler file for boot processing

• entry.850: Assembler file for entry processing

• init.c: Source file for hardware initialization module

• init.h: Header file for hardware initialization module

• sys.cf: CF definition file

• varfunc.c: Source file for software initialization module

(7) nectools32\V850USB_Storage\src

A directory in which files of the USB storage class driver board-dependent module are stored.

• port.c: Source file for port setting

• port.h: Header file for port setting

(8) nectools32\V850USB_Storage\src\USBF

A directory in which files of the USB storage class driver USB processing module are stored.

• usbf850.c: Source file for USB device

• usbf850.h: Header file for USB device

• usbf850desc.h: USB descriptor definition file

• usbf850_dma.c: Source file for DMA control

• usbf850_dma.h: Header file for DMA control

• usbf850_storage.c: Source file for USB-storage interface

• usbf850_storage.h: Header file for USB-storage interface

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 86

(9) nectools32\V850USB_Storage\src\USBF\Storage

A directory in which files of the USB storage class driver storage device processing module are stored.

• ata_ctrl.c: Source file for storage device control

• ata.h: Header file for storage device

• scsi_cmd.c: Source file for SCSI command processing

• scsi.h: Header file for SCSI command processing

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 87

3.3 System Configuration

3.3.1 Overview

System configuration means creation of the load module using files that are installed in the user’s development

environment (the host machine) from the USB storage class driver supply medium.

The system configuration procedure of USB storage class drivers is shown below.

(1) Describing RX850 Pro-dependent processing module

(2) Describing board-dependent module

(3) Describing USB storage class driver processing-dependent module

(4) Describing section map file

(5) Creating load module

Figure 3-4. System Configuration Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB storage class driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task
• DMA control module
• USB-storage interface module
• Storage device processing module

Configurator

C compiler/assembler

Link editor

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 88

3.3.2 Describing RX850 Pro-dependent processing module

Some functions provided by the USB storage class driver use the functions of the real-time OS (RX850 Pro), and

the processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

Remark Refer to 3.4 RX850 Pro-Dependent Processing Modules for details of the RX850 Pro-dependent

processing module.

3.3.3 Describing board-dependent module

The initialization processing, which is related to the processing dependent on the user’s execution environment

and application system, is provided as a board-dependent module in the USB storage class driver source program.

The board-dependent module is as follows.

• CPU board-dependent module

 The port input/output manipulation required for the USB storage class driver is provided as a CPU board-

dependent module.

Caution Since port setting is handled in the same manner as setting of other registers, no dedicated

function is provided.

 Refer to the RX850 Pro standard header file SFR.h stored in \nectools32\inc850\common\ for the

register definition. For detailed processing, refer to the source program for port setting (port.c)

called from the boot processing module (boot.850) and software initialization module.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 89

3.3.4 Describing USB storage class driver processing-dependent module

The driver functions, which are used to implement the USB storage class driver functions, are provided as the USB

storage class driver processing-dependent module in this sample program.

The USB storage class driver processing-dependent modules are listed below.

• USB function controller initialization module

• USB function controller interrupt handlers

• USB function controller interrupt servicing tasks

• USB function controller general-purpose functions

• DMA control module

• USB-storage interface module

• Storage device processing module

Remark Refer to 3.7 USB Storage Class Driver Functions for details of the USB storage class driver

processing-dependent module.

3.3.5 Describing section map file

The section map file is used by the user to fix address assignment performed by the link editor.

The following five text areas are essential sections when using the RX850 Pro.

• Common part allocation area: .system section

• Interrupt servicing-related allocation area: .system_int section

• Scheduler-related allocation area: .system_cmn section

• System information area: .sit section

• Interface library/system call allocation area: .text section

Remark Refer to 3.5 Section Map File for details of the section map file.

3.3.6 Creating load module

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing modules, USB storage class driver processing-dependent module, and section map file, that

have been coded.

Remark Refer to 3.6 Load Module for details of how to create the load module.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 90

3.4 RX850 Pro-Dependent Processing Modules

3.4.1 Overview

Some functions provided by the USB storage class driver use the functions of the real-time OS (RX850 Pro), and

the processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

3.4.2 CF definition file

An information file (CF definition file) that contains data provided to the RX850 Pro is required to configure the

system in which the RX850 Pro is used.

The following information is required for using the USB storage class driver function.

 Real-time OS information

• RX Series information

 SIT information

• System information

• System maximum value information

• System memory information

• Task information

• Interrupt handler information

• Initialization handler information

 SCT information

• Task management/task-associated synchronization system call information

• Interrupt servicing management system call information

• Time management system call information

Caution This sample program implements each functions using six tasks, three interrupt handlers, and

seven system calls. Therefore, the CF definition file, the maximum number of tasks to be created

must be set to six as the system’s maximum value information and the maximum number of

interrupt handlers to be created must be set to three for the USB storage class driver and use of

sta_tsk, ext_tsk, slp_tsk, and wup_tsk system calls must be defined as task management/task-

associated synchronization system call information, use of the loc_cpu and unl_cpu system

calls as interrupt servicing management system call information, and use of the dly_tsk system

call as time management function system call information.

Remark Refer to the RX850 Pro Installation User’s Manual and the sample CF definition file (sys.cf) for details

of how to code the CF definition file.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 91

(1) Procedure for creating information files

A procedure for creating information files (system information table, system call table, and system information

header file) is shown below.

The information file can be created from the Windows command prompt.

Caution If a build file in the sample program is used, users are not required to create information

files in this procedure because they are automatically executed when build is executed.

<1> Change current directory

Move the current directory to the directory in which the CF definition file is stored using the cd command

of Windows.

A command input example when the directory in which the CF definition file is stored is C:\sample is

shown below.

[Command input example]

C:>cd C:\sample\rx850<Enter>

<2> Creating information files

Create the information file from the CF definition file that has been created in the specific description

format, using the configurator cf850pro.exe.

A command input example when creating three information files (system information table: sit.850,

system call table: svc.850, and system information header file: sys.h) from an input file (CF definition file

name: sys.cf) is shown below.

[Command input example]

C:>cf850pro –i sit.850 –c svc.850 –d sys.h sys.cf<Enter>

The information files are created from the CF definition file.

Caution A sample file (CF definition file) used for creating the information files is provided in the

sample program.

Remark Refer to the RX850 Pro Installation User’s Manual for details of the option to activate the

configurator cf850pro.exe and execution method.

3.4.3 Entry processing

This processing assigns a branch instruction to an interrupt handler to the handler address where control is forcibly

passed by the processor when a maskable interrupt occurs.

Assign the macro RTOS_ IntEntry_Indirect provided by the RX850 Pro (branch processing to interrupt servicing

management function provided by the RX850 Pro) to the handler address corresponding to the interrupt handler

(interrupt handler defined by interrupt handler information in the CF definition file) executed by the RX850 Pro.

Remark Refer to sample program entry.850 for details of how to code the entry processing.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 92

3.4.4 System initialization processing

The system initialization processing includes initialization processing (boot processing and hardware initialization

module) of hardware required for operating the RX850 Pro normally, and software initialization processing (nucleus

initialization module and Initialization handler).

The system initialization processing is performed first when the system is activated.

Caution Among the four types of system initialization processing, users are not required to describe the

nucleus initialization module because it is a function provided by the RX850 Pro.

The processing performed by the nucleus initialization module is shown below.

 Securement of system memory defined by CF definition file

• System pool 0

• User pool 0

 Generation and activation of management object defined by CF definition file

• Generation and activation of task

• Registration of interrupt handler

 Activation of initial task

 Generation and activation of idle task

 Calling software initialization module

 Passing control to scheduler

The idle task is a processing routine that is activated by the scheduler when a processing module (task) executed

by the RX850 Pro is no longer in the run or ready state, that is, no processing module targeted to the scheduling by

the RX850 Pro exist in the system. The idle task issues the HALT instruction.

(1) Boot processing

Boot processing is the function assigned to the processor reset entry, so it is executed first in the system

initialization processing.

The positioning of boot processing is shown below.

Figure 3-5. Positioning of Boot Processing

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 93

The processing executed by boot processing is shown below.

Remark Refer to sample program boot.850 for details of how to code boot processing.

• Setting tp, gp, and ep registers

 Values of the text pointer tp, global pointer gp, and stack pointer ep, which are required for execution of

each processing module (including boot processing), are undefined when a system is activated. Boot

processing first performs initial setting of these registers.

Caution In this chapter, it is recommended to set tp to “0”, gp to “global pointer symbol _gp

output by the compiler”, and ep to “element pointer symbol _ep output by the compiler”.

• Calling hardware initialization module

 Functions (hardware initialization module) are called to initialize the hardware on the target system.

 This step is not required if initialization of internal units is performed by other module.

Caution In this chapter, this step is not required because initialization of internal units is

performed by the software initialization module. Refer to the RX850 Pro Installation User’s

Manual for details.

• Passing control to nucleus initialization module

 The nucleus initialization module secures the system memory (system pool 0, user pool 0) and

creation/initialization of management objects, based on information described in the system information

table. Therefore, start address_sit of the system information table must be set to the r10 register before

passing control to the nucleus initialization module.

Caution The system information table is a table in which the CF definition file created in a specific

description format is converted to the assembly language format, using the utility tool

(configurator cf850pro.exe) provided by the RX850 Pro.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 94

(2) Hardware initialization module

The hardware initialization module is a function to initialize the hardware on the target system, and is called

from boot processing.

The positioning of the hardware initialization module is shown below.

Figure 3-6. Positioning of Hardware Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

The processing executed by the hardware initialization module is shown below.

Cautions 1. Users are not required to disable the maskable interrupts because they are masked at

initialization by default.

 2. Hardware initialization is performed by the software initialization module in the sample

program. Refer to the RX850 Pro Installation User’s Manual for details of the hardware

initialization module.

• Returning control to boot processing

 Control can be returned from the hardware initialization module to boot processing by issuing the “return();”

instruction, because the return address to the lp register is set when the hardware initialization module is

called from boot processing.

 If the hardware initialization module is described with the assembly language, this processing is

implemented by issuing the “jmp [lp]” instruction.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 95

(3) Software initialization module

The initialization handler is a function provided to enhance operability of the user software environment, and is

called from the nucleus initialization module.

The positioning of the software initialization module is shown below.

Figure 3-7. Positioning of Software Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Scheduler Initialization taskSoftware
initialization module

The processing executed by the software initialization module is shown below.

Remark Refer to sample program varfunc.c for how to code the software initialization module.

• Initialization of internal unit (real-time pulse unit (RPU))

 The RX850 Pro implements the timer operation functions (delay task wake-up, cyclic handler activation,

timeout, etc.) using the timer interrupt that occurs in a constant cycle. Therefore, the real-time pulse unit

must be initialized before the RX850 Pro starts processing.

 The compare register CMD0 included in the real-time pulse unit must be set so that timer interrupts occur in

a base clock cycle defined in system information in the CF definition file.

• Enabling timer interrupt acknowledgment

 Acknowledgment of timer interrupts is enabled. In addition, this enables the use of the timer operation

functions (delay task wake-up, cyclic handler activation, timeout, etc.) provided by the RX850 Pro when

processing by the nucleus initialization module ends.

• Passing control to nucleus initialization module

 Control can be returned from the initialization handler to the nucleus initialization module by issuing the

“return();” instruction, because the return address lp register is set when the initialization handler is called

from the nucleus initialization module.

 If the initialization handler is described with the assembly language, this processing is implemented by

issuing the “jmp [lp]” instruction.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 96

3.4.5 Time management function

The time management function of the RX850 Pro uses clock interrupts generated by the hardware (such as the

clock controller) in a constant cycle.

The RX850 Pro calls system clock processing when a clock interrupt occurs, and performs processing related to

the time such as updating the system clock, task delay wake-up, and activation of the cyclic handler.

The system clock is a software timer that holds the time used by the RX850 Pro for time management (48-bit width,

unit: ms).

After the system clock is set to “0H” by system initialization processing, it is updated by system clock processing in

base clock cycle units (specified at configuration).

Caution The system clock managed by the RX850 Pro is configured as 48 bits wide. Therefore,

overflowed numeric values (numeric values that cannot be expressed by 48 bits) are ignored by

the RX850 Pro. Refer to the RX850 Pro Basics User’s Manual for details of the time management

function of the RX850 Pro.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 97

3.5 Section Map File

3.5.1 Overview

The section map file is used by the user to fix address assignment performed by the link editor.

Required assignments for addresses other than the user processing program (such as .data and .bss sections) are

described in 3.5.2 Address assignment by RX850 Pro and 3.5.3 Other address assignment.

Address assignment performed in sample program common.lx is shown below.

Remark Refer to sample program common.lx for how to code the section map file.

Figure 3-8. Address Assignment Example

Processing module
Interface library/system call allocation area
MULTI reserved area
Common part allocation area
Interrupt servicing module
Scheduler-related allocation area
System information area

Interrupt vector table

Copy information storage area

SDRAM

Internal
instruction

RAM

.boot

.text

.syscall

.system

.system_int

.system_cmn

.sit

.rodata

.fixaddr

.fixtype

.rosdata

.data

.sdabase

.sdata

.sbss

.bss

.tdata

.heap

.secinfo

0 2 8 0 0 0 0 0 H
0 2 7 F F F F F H

0 0 8 0 8 0 0 0 H
0 0 8 0 7 F F F H

0 0 8 0 0 0 0 0 H
0 0 7 F F F F F H

0 0 0 2 0 0 0 0 H
0 0 0 1 F F F F H

0 0 0 0 1 0 0 0 H
0 0 0 0 0 F F F H

0 0 0 0 0 0 8 0 H
0 0 0 0 0 0 7 F H
0 0 0 0 0 0 0 0 H

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 98

3.5.2 Address assignment by RX850 Pro

The RX850 Pro consists of five text areas: common part allocation area, interrupt servicing-related allocation area,

scheduler-related allocation area, system information area, and interface library/system call allocation area. Using

these areas, memory areas for which a large space is required can be assigned to the external RAM, and memory

areas for which a high-speed access is required (interrupt servicing module, scheduling processing module) can be

assigned to the internal instruction RAM (00000000H to 0001FFFFH).

Caution All five text areas are allocated to the internal instruction RAM in the sample program.

• Common part allocation area (.system section)

 Processing of the RX850 Pro (such as task management function, task-associated synchronization function) is

assigned to this area.

• Interrupt servicing-related allocation area (.system_int section)

 Among the interrupt servicing management functions provided by the RX850 Pro, interrupt preprocessing that is

performed when control is passed to the interrupt handler and interrupt postprocessing that is performed when

control is handed back to the processing module in which a maskable interrupt occurs are assigned to this area.

 By assigning the interrupt servicing module to the internal instruction RAM, therefore, response performance to

the interrupt handler can be improved.

Caution It is recommended to assign the interrupt servicing module to the internal instruction RAM.

• Scheduler-related allocation area (.system_cmn section)

 Among the scheduling function provided by the RX850 Pro, task wake-up processing and task scheduling

processing are assigned to this area.

 By assigning the scheduling processing section to the internal instruction RAM, therefore, task wake-up

processing and task scheduling processing are accelerated, as well as system call processing involving

scheduling processing.

Caution It is recommended to assign the scheduling module to the internal instruction RAM.

• System information area (.sit section)

 The system information table created by executing the configurator cf850.exe on the CF definition file is assigned

to this area.

 The system information table includes various data required for executing the nucleus initialization module

(securement of the system memory and creation/initialization of management objects).

• Interface library/system call allocation area (.text section)

 The instructions including system calls are assigned to this area.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 99

• System memory

 Various management block required for implementing functions provided by the RX850 Pro (such as the task

management block, semaphore management block), area in which the stack used by the interrupt handler or

task is assigned (system pool 0), and area in which dynamic memory manipulation (such as acquisition/release

of memory blocks) from the processing module is enabled (user pool 0), are assigned to this area.

Cautions 1. The ”system memory start address” must be specified when creating the CF definition file.

Be sure to specify the address when defining the system memory in the section map file.

 2. The user can specify any section name in the system memory.

3.5.3 Other address assignment

The other sections for which address assignment is required are described below.

• MULTI reserved area (.syscall section)

 This area is used as a work area by the debugger MULTI (made by Green Hills Software, Inc.).

Cautions 1. The .syscall section must be defined regardless of whether or not MULTI is used.

 2. Be sure to specify 4-byte alignment when defining the .syscall section.

• Copy information storage area (.secinfo section)

 This area is used by the link editor to output information (start address, size) required for transferring program

(data, text) of a section for which the ROM identifier is specified in the section map file from ROM to RAM.

 Specification of the ROM identifier is required when performing ROMization of a processing module. Therefore,

definition of the .secinfo section is not required when ROMization is not performed.

Caution This section is empty in the sample program because ROM identifier specification is not

performed.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 100

3.6 Load Module

3.6.1 Overview

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing module, USB storage class driver processing-dependent module, section map file, that have

been coded.

The procedure for creating load modules is shown below.

Caution The load module corresponding to the sample program can be created by executing the .bld file

in the sample program. However, definition of the .bld file must be adjusted to the user

development environment.

Figure 3-9. Load Module Creation Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB storage class driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task
• DMA control module
• USB-storage interface module
• Storage device processing module

Configurator

C compiler/assembler

Link editor

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 101

3.6.2 Creating load module

An ELF-format load module can be created from the RX850 Pro-dependent processing module, USB storage class

driver processing-dependent module, and section map file, that have been coded, using the following procedure.

(1) Creation of system information table and system call table

Original CF definition file formats are excluded from the link processing performed by the link editor when

creating a load module.

Therefore, a file that can be assembled (system information table or system call table) must be created using

the utility tool (configurator cf850.exe) provided by the RX850 Pro.

Remark Refer to 3.4.2 (1) Procedure for creating information file for how to create the system

information table and system call table.

(2) Creation of object file

A relocatable object file is created by executing the C compiler/assembler for the processing module (file

described in the C language/assembly language) shown below.

 RX850 Pro-dependent processing module

• System information table

• System call table

• Entry processing

• Boot processing

• Hardware initialization module

• Initialization handler

 USB storage class driver processing-dependent module

(3) Creation of load module

An ELF-format load module is created by executing the link editor for relocatable object file created in (2),

library files, and section map file.

libansi.a ANSI C library

libind.a C library made by Green Hills Software, Inc. (routines independent of target CPU)

libarch.a C library made by Green Hills Software, Inc. (routines dependent of target CPU)

libsys.a C library made by Green Hills Software, Inc. (system call, initialization routines)

rxcore.o Nucleus common part object

librxp.a Nucleus library

libchp.a Interface library

rxcore.o, librxp.a, and libchp.a are provided by the RX850 Pro, and libansi.a, libind.a, libarch.a, and libsys.a

are provided by the CCV850 (made by Green Hills Software, Inc.).

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 102

3.7 USB Storage Class Driver Functions

3.7.1 Overview

Initialization processing performed by the USB function controller, as well as tasks and interrupt handlers to

implement USB storage class driver processing, must be described in the USB storage class driver.

A list of USB storage class driver processing-dependent modules is shown below.

• USB function controller initialization processing

 This module is called from the RX850 Pro software initialization module and initializes the USB function controller.

• USB function controller interrupt handlers

 This is an interrupt servicing-dedicated routine that is called each time an interrupt by the USB function controller

occurs, and is defined in the CF definition file.

Caution Interrupts other than required are masked in this sample program.

 The following four interrupts are used in this sample program.

• SHORT interrupt reported by INTUSB0B signal

 (Indicates that data was read from the FIFO of the UF0BO1 or UF0BO2 register when the FIFO

was not full in DMA mode, and the USBSPnB signal (n = 2 or 4) has been activated.)

• DMAED interrupt reported by INTUSB0B signal

 (Indicates that the DMA end signal for endpoint n (n = 1 to 4, 7, or 8) has been activated.)

• CPUDEC interrupt reported by INTUSB0B signal

 (Indicates that there is a request that is decoded by FW in the UF0E0ST register)

• BKO1DT interrupt reported by INTUSB1B signal

 (Indicates that data has been received normally by the UF0BO1 register)

• USB function controller interrupt servicing task

 This task is called from the USB function controller interrupt handler and performs processing for each interrupt

source (such as register setting, data transmission/reception processing).

• USB function controller general-purpose function

 This is a general-purpose function used by the USB storage class driver to perform the STALL response setting

for each endpoint and transmission/reception processing.

Remark Refer to sample program usbf850.c for how to code the USB storage class driver processing-

dependent module.

• DMA control module

 This module performs DMA initialization and activation processing.

 In this sample program, DMA transfer is used if the size of data at the bulk endpoint exceeds the MaxPacket size

(40 bytes).

Remark Refer to sample program usbf850_dma.c for details of how to code the DMA control module.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 103

• Bulk-Only Transport processing module

 This module performs processing of USB storage class requests specific to device class, CBW, and CSW

transmission.

Caution The following two requests specific to device class can be acknowledged in this sample

program. Refer to Universal Serial Bus Mass Storage Class Bulk-Only Transport Revision 1.0

for details of each request.

• Bulk-Only Mass Storage Reset request

• Get Max LUN request

Remark Refer to sample program usbf850_storage.c for how to code the Bulk-Only Transport processing

module.

• Storage device processing module

 This module performs storage device initialization and SCSI command processing.

Cautions 1. This sample program operates as a mass-storage device (interface class: Mass Storage,

interface sub-class: SCSI, interface protocol: Bulk-Only Transport protocol). The storage

device used in this sample operates under the assumption that there are no logical units

connected, the memory area is secured, and a removable disk is connected (block size: 512

bytes, number of logical blocks: 192, capacity: 96 KB). The memory area for the virtual

device is secured as an array named storage_data. Refer to sample program ata.h for

details.

 2. When controlling the actual device instead of the virtual device, the data and data

processing used in the sample program must be modified. Adjust the data to the user

environment.

Remark Refer to sample programs ata_ctrl.c and scsi_cmd.c for details of how to code the storage device

processing module.

• USB suspend/resume processing

 Since the USB suspend/resume processing depends on the system, it is not supported in this sample program.

If this processing is necessary in your system, add the processing making allowances for the following points.

 The suspend/resume state is reported to the USB function controller incorporated in the V850E/ME2 by an

interrupt (INTUSB0B signal). Therefore, whether the current status is suspend or resume can be judged by

checking the UF0IS0. RSUSPD bit in the interrupt handler (for the INTUSB0B signal); if this bit is 1, the

UF0EPS1.RSUM bit is checked to judge the status.

 Processing can be added by adding the above code to judge the status to the interrupt handler (for the

INTUSB0B signal) and wakes up a task to perform necessary processing from the code.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 104

3.7.2 Processing flows

The processing flows of initialization processing, interrupt servicing, and CBW data processing in the sample

program are shown below.

(1) Initialization processing

Initialization processing of the USB device is called and executed by the software initialization module.

The flow of USB device initialization processing (at power application) in the sample program is shown below.

Figure 3-10. Flowchart of Initialization Processing

Initialization processing started

Clock supplied

End

Interrupt mask released

Interrupt mask register set

DMA register initial setting

Measure for floating disabled

Measure for floating enabled

NAK of control endpoint set

USB connection
(terminal resistor manipulation)

Initialize request data
register area

Interface and endpoint set

NAK setting of control
endpoint released

The processing executed by the initialization processing is shown below.

Caution Initialization processing is required except for processing of ports. The pin assignment may

differ if another target board is used. In such a case, read the descriptions in this manual

making changes as necessary to match the specifications of the target board to be used.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 105

• Clock supply

 Be sure to set the UCKC.UCKCNT bit to 1 before setting the USB function controller register. A clock to

USB is supplied by setting this bit to 1.

 The P10 pin is used for inputting a clock, so set the P10 pin to input mode to enable clock input.

• Release of interrupt mask

 Masking of the USB-related interrupt signal is released using the interrupt control register.

• Enabling floating measure

 The UF0BC.UBFIOR bit is cleared to 0 to prevent mis-recognition due to a bus reset caused by an

undefined value when the cable is disconnected.

• Setting of NAK for control endpoint

 A NAK response is sent to all the requests including automatic execution requests.

 This setting is made so that hardware does not return unexpected data in response to an automatic

execution request until registration of data used for the automatic execution request is complete.

• Initialization of request data register area

 Descriptor data used to respond to a Get Descriptor request is registered in a register.

 Data such as device status, endpoint 0 status, device descriptor, configuration descriptor, interface

descriptor, and endpoint descriptor are registered.

Caution Registration of the descriptor for the class may be required depending on the class.

Descriptors other than the USB standard descriptors are not used by the USB storage

class.

• Setting of interface and endpoint

 Information such as the number of supported interfaces, the state of alternative settings, relationship

between the interface and endpoints are set to a register.

• Release of NAK setting at control endpoint

 The NAK setting at control endpoint (endpoint 0) is released when registration of data for an automatic

execution request is complete.

• Setting of interrupt mask register

 Masking for each interrupt source shown in the interrupt status register of the USB function controller.

• Setting of DMA register initialization

 The DMA initialization module is called for each endpoint that uses DMA and initialization is performed.

• USB connection (terminal resistor manipulation)

 The D+ signal is pulled up.

• Disabling floating measure

 The floating measure is disabled by setting the UF0BC.UBFIOR bit to 1.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 106

(2) Interrupt servicing

The sample program operates by interrupt events after initialization. The device is in the idle state as long as

no event occurs. No events are activated from the storage device; all the events are activated by the host

driver.

Figures 3-11 and 3-12 show the interrupt servicing flows in the sample program.

Caution The flowchart in Figure 3-11 illustrates the flow of interrupt servicing reported by the

INTUSB0B signal of the USB function controller.

 The flowchart in Figure 3-12 illustrates the flow of interrupt servicing reported by the

INTUSB1B signal of the USB function controller.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 107

Figure 3-11. Flowchart of Interrupt Servicing (1)

Yes

No

Yes

DEDE1

DSPE2 or DEDE2

No

Interrupt occurs on INTUSB0B signal

Interrupt servicing task activated

Interrupt handler

Interrupt servicing task
(task_usb0b)

Requests analyzed

Request processed

Request data read
(data reception processing)

DMAED/SHORT interrupt cleared

Interrupt source is
CPUDECNote?

Interrupt source is
DMAED or SHORT?

UF0DMS1 read
Interrupt source confirmed

Interrupt handler

OUT-direction data processing task
(usbf850_data_out) woken up

IN-direction data processing task
(usbf850_data_in) woken up

Note The CPUDEC, DMAED, and SHORT interrupts can be acknowledged using the INTUSB0B signal of

the USB storage class driver.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 108

The processing of an interrupt by the INTUSB0B signal in the sample program is shown below.

[Processing in interrupt handler]

• Confirmation of interrupt source

 In this sample program, the analyzed interrupt status varies depending on the executed interrupt handler.

 The CPUDEC, DMAED, and SHORT interrupts can be acknowledged using the INTUSB0B signal. When

these interrupts occur, the interrupt handler is activated by the INTUSB0B signal. This interrupt handler

reads the UF0IS1 register and judges if the interrupt source is CPUDEC interrupt or not. Furthermore, the

interrupt handler reads the UF0IS0 register to confirm whether or not the interrupt source is DMAED or

SHORT.

Caution In this sample program, the interrupt handlers to be used are registered in the CF

definition file in advance.

• Activation of interrupt servicing task

 The task_usb0b task is activated if the interrupt source is CPUDEC.

Caution In this sample program, the tasks to be activated are registered in the CF definition file in

advance.

• Wake-up of usbf850_data_in and usbf850_data_out tasks

 The usbf850_no_data, usbf850_data_in, and usbf850_data_out tasks perform SCSI command processing.

These tasks are activated when a normal CBW is received by the BKO1DT interrupt. Among them, the

usbf850_data_in and usbf850_data_out tasks enter sleep mode after DMA is activated. If the interrupt

source is DMAED or SHORT, the interrupt handler for the INTUSB0B signal reads the UF0DMS1 register

and checks if the source is DEDE1, DSPE2, or DEDE2.

 The usbf850_data_in task is woken up if the source is DEDE1, and the usbf850_ data_out task is woken up

if the source is DSPE2 or DEDE2.

[Processing in task_usb0b task]

• Reading request data

 SETUP data is read from the UF0E0ST register.

• Analysis of request

 SETUP data that has been read is analyzed and the purpose of the request is confirmed.

• Processing of requests

 Processing of the analyzed request is performed.

 In the sample program, the standard device request Get Descriptor (String Descriptor) and device class-

specific request are handled.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 109

Figure 3-12. Flowchart of Interrupt Servicing (2)

No

Yes

Interrupt occurs on INTUSB1B signal

BKO1DT

Interrupt handler

Interrupt servicing task
(task_usb1b)

Interrupt servicing task activated

Interrupt source confirmedNote

Other than
BKO1DT

CBW data reception processing

Interrupt cleared

Receive data size checked

Equal to CBW data size?

Note Only the BKO1DT interrupt can be acknowledged using the INTUSB1B signal of the USB storage class

driver.

The processing of an interrupt by the INTUSB1B signal in the sample program is shown below.

• Activation of interrupt servicing task

 The task_usb1b task is activated without confirming the interrupt source.

Caution In this sample program, the tasks to be activated are registered in the CF definition file in

advance.

• Confirmation of interrupt source

 Only the BKO1DT interrupt can be acknowledged using the INTUSB1B signal. When this interrupt occurs,

the interrupt handler is activated by the INTUSB1B signal.

 The interrupt handler does not check the interrupt source, but the activated task confirms that the interrupt

source is BKO1DT.

Caution In this sample program, the interrupt handlers to be used are registered in the CF

definition file in advance.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 110

• Checking receive data size

 The UF0BO1L register is read if the interrupt source is BKO1DT, and whether the receive data length is

equal to the CBW data length is checked. If it is equal to the CBW data length, the usbf850_rx_cbw

function is called and CBW data processing is started.

Remark Refer to (3) CBW data processing for details of CBW processing.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 111

(3) CBW data processing

CBW data processing is started when CBW data is received via the USB.

A flow of CBW data processing is shown below.

Table 3-1 shows the CBW data format, and Table 3-2 shows the CSW data format.

Figure 3-13. Flowchart of CBW Data Processing

CBW reception processing started

Yes

Yes

No

No

No
(NO DATA command)

End

Processing to read data
 from storage device

Processing to write data
 to storage device

CBW command analyzed

Data transfer processing started

Response
processing

CSW issued

SCSI CDB command?

READ command?

Yes

Error processing

WRITE command?

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 112

CBW data processing in the sample program is shown below.

• Analysis of CBW command

 After CBW data reception, the contents of CBW data are analyzed.

 The CBW tag is saved, the number of valid CBWCB data and the command direction is checked, and a task

for processing the READ, WRITE, or NO DATA command is activated.

• READ command processing

 A task (usbf850_data_in) that performs processing of an SCSI READ command is activated.

 This task calls the SCSI command processing module, judges the CSW data transmit status according to

the execution result, and calls CSW issuance processing.

• WRITE command processing

 A task (usbf850_data_out) that performs processing of an SCSI WRITE command is activated.

 This task calls the SCSI command processing module, judges the CSW data transmit status according to

the execution result, and calls CSW issuance processing.

• NO DATA command processing

 A task (usbf850_no_data) that performs processing of an SCSI NO DATA command is activated.

 This task calls the SCSI command processing module, judges the CSW data transmit status according to

the execution result, and calls CSW issuance processing.

• Issuance of CSW

 This processing is called by each command processing task with the command execution result as an

argument.

 This processing generates CSW data from the argument and transmits it.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 113

[CBW format]

 CBW consists of 31-byte data as shown below.

 The processing performed by the host can be judged using the CBWCB value.

Table 3-1. CBW Data Format

 Bit

Byte

7 6 5 4 3 2 1 0

0 dCBWSignature (55H)

1 dCBWSignature (53H)

2 dCBWSignature (42H)

3 dCBWSignature (43H)

4 to 7 dCBWTag (tag of CBW subject to processing)

8 to 11 dCBWDataTransferLength (transfer data length)

12 bmCBWFlag (Data-OUT/IN specification)

13 Reserved bCBWLUN (target device number)

14 Reserved bCBWCBLength (number of valid bytes of CBWCB)

15 to 30 CBWCB (command)

[CSW format]

 CSW consists of 13-byte data as shown below.

Table 3-2. CSW Data Format

 Bit

Byte

7 6 5 4 3 2 1 0

0 dCSWSignature (53H)

1 dCSWSignature (42H)

2 dCSWSignature (53H)

3 dCSWSignature (55H)

4 to 7 dCSWTag (tag of CBW subject to processing)

8 to 11 dCSWDataResidue (difference between transfer data length specified for CBW and processed data length)

12 bmCSWStatus (status after CBW processing)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 114

(4) SCSI command processing

SCSI command processing is started when CBW data reception processing is performed on the USB side.

In the sample program, the 19 types of SCSI CDB commands shown in Table 3-3 are supported.

Figure 3-14 shows the flow of SCSI command (READ command) processing.

Caution The sample program only provides the minimum commands required for the sample

program operation. Add the necessary processing concerning commands not included in

the sample program and how to generate response data and its processing according to the

user environment.

Table 3-3. SCSI Command List

Command Code Operation

READ

REQUEST SENSE 03H Transfers SENSE data to the host.

READ (6) 08H Transfers data in the specified range of the logical data block to the host.

INQUIRY 12H Reports configuration information and attributes of the target and logical unit to the

host.

MODE SENSE (6) 1AH Reads the mode select parameter value and attributes of the logical unit.

READ FORMAT CAPACITIES 23H Reports the logical unit capacity (number of blocks and block length) to the host.

READ CAPACITY 25H Reports the data capacity in the logical unit to the host.

READ (10) 28H Same as READ (6).

MODE SENSE (10) 5AH Same as MODE SENSE (6).

WRITE

WRITE (6) 0AH Writes data sent from the host to a specified block in the medium.

MODE SELECT (6) 15H Sets and changes parameters such as the data format of the logical unit.

WRITE (10) 2AH Same as WRITE (6).

WRITE VERIFY 2EH Writes data to the medium and reads it to check the data validity.

VERIFY 2FH Checks the validity of data in the medium of the drive unit.

WRITE_ BUFF 3BH Writes data to the memory in the target.

MODE_SELECT (10) 55H Same as MODE SELECT (6).

NO DATA

TEST UNIT READY 00H Reports the logical unit status to the initiator (host device).

SEEK 0BH Performs seek operation on the specified position in the record medium.

START STOP UNIT 1BH Enables/disables access to the logical unit medium.

SYNCHRONIZE CACHE 35H Matches the value of the cache memory and medium for the specified range of the

block.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 115

Figure 3-14. Flowchart of READ Command Processing (1/2)

READ command processing started

Yes

3

No

No

REQUEST_SENSE data
prepared as transmit data

Transmit data buffer prepared

Transfer data length set
Yes

YesTransfer data length set

Transfer data length set

REQUEST SENSE?

Data in specified range
prepared as transmit data

INQUIRY data
prepared as transmit data

No

READ (6)?

INQUIRY?

1

Yes

3

No

No

MODE SENSE data
prepared as transmit data

Transfer data length set
Yes

YesTransfer data length set

Transfer data length set

MODE SENSE (6)?

Device capacity
(number of blocks, block length)

prepared as transmit data

Device data capacity
prepared as transmit data

No

READ FORMAT
CAPACITIES?

READ CAPACITY?

1

2

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 116

Figure 3-14. Flowchart of READ Command Processing (2/2)

Yes

No

No

Data in specified range
prepared as transmit data

Transfer data length set

Data transmitted

Yes

Transfer data length set

READ (10)?

Device mode select parameter and
attribute prepared as transmit data

MODE SENSE (10)?

23

End

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 117

[REQUEST SENSE command processing]

 Sense data is reported to the host.

 The sense data format and data values used in the sample program are shown below. Since the virtual

device is used in the sample program, the data values shown below are returned.

Table 3-4. Sense Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 VALID Error code 70H

1 Reserved 00H

2 Reserved ILI Reserved Sense key 00H

3 Information 00H

4 Information 00H

5 Information 00H

6 Information 00H

7 Additional sense data length (n-7) 0AH

8 Command-specific information 00H

9 Command-specific information 00H

10 Command-specific information 00H

11 Command-specific information 00H

12 Additional sense code (ASC) 00H

13 Additional sense code qualifier (ASCQ) 00H

14 FRU (Field Replaceable Unit) code 00H

15 SKSV Sense key-specific information 00H

16 Sense key-specific information 00H

17 Sense key-specific information 00H

 A list of sense keys transmitted to the host in the sample program is shown below.

Table 3-5. Sense Key List

Sense Key ASC ASCQ Description of Error

00 00 00 NO SENSE

05 00 00 ILLEGAL REQUEST

05 20 00 INVALID COMMAND OPERATION CODE

05 24 00 INVALID FIELD IN COMMAND PACKET

[READ (6) command processing]

 Data is read from the specified range in the storage device and sent to the host.

 In the sample program, data read from the virtual device is sent to the host.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 118

[INQUIRY command processing]

 Information on the device is reported to the host.

 The INQUIRY data format is shown below. Since the virtual device is used in the sample program, the data

values shown below are returned.

Table 3-6. INQUIRY Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Qualifier Device type code 00H

1 RMB Device type modifier 80H

2 ISO version ECMA version 00H 00H

3 AENC TrmIOP 01H 01H 02H

4 Additional data length (n-4 bytes) 1FH

5 Reserved 00H

6 Reserved 00H

7 Reserved 00H

8 Vendor ID (ASCII) Note 1

: : Note 1

15 Vendor ID (ASCII) Note 1

16 Product ID (ASCII) Note 2

: : Note 2

31 Product ID (ASCII) Note 2

32 Product version (ASCII) Note 3

: : Note 3

35 Product version (ASCII) Note 3

36 Vendor-specific information None

: : None

55 Vendor-specific information None

56 Reserved None

: : None

95 Reserved None

96 Vendor-specific information None

: : None

n Vendor-specific information None

Notes 1. ASCII character code for “NEC Corp”

 2. ASCII character code for “StorageFncDriver”

 3. ASCII character code for “0.12”

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 119

[MODE SENSE (6) command processing]

 The mode select parameters and attributes for the device are reported to the host.

 The MODE SENSE data format is shown below. Since the virtual device is used in the sample program, the

data values shown below are returned. The supported page code is 01H only, so 01H is returned

regardless of the command page code.

Table 3-7. MODE SENSE Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Mode parameter length Note 1

1 Media type 00H

2 Device-specific parameter 00H

3 Block descriptor length 08H

4 Density code 00H

5 00H 00H

6 00H 00H

7 C0H C0H

8 Reserved 00H

9 00H 00H

10 00H 02H

11 00H 00H

12 PS Reserved Page code Note 2

13 Page length (n-13) 0AH

14 Mode parameter Note 3

: : Note 3

n Mode parameter Note 3

Notes 1. The smaller number of bytes between the parameter list specified by the page code of CDB and DBD

and the parameter list specified by the allocation length

 2. Page code for CDB

 3. 08H, 0BH, 00H, 00H, 00H, 00H, 00H, 00H, 00H, 00H

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 120

[READ FORMAT CAPACITY command processing]

 The capacity (number of blocks and block length) of the device is reported to the host.

 The READ FORMAT CAPACITY data format is shown below. Since the virtual device is used in the sample

program, the data values shown below are returned.

Table 3-8. READ FORMAT CAPACITY Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Reserved 00H

1 Reserved 00H

2 Reserved 00H

3 Capacity list length (byte) 08H

4 Number of blocks 00H

5 Number of blocks 00H

6 Number of blocks 00H

7 Number of blocks C0H

8 Reserved Descriptor code 01H

9 Block length 00H

10 Block length 02H

11 Block length 00H

12 Number of blocks 00H

13 Number of blocks 00H

14 Number of blocks 00H

15 Number of blocks C0H

16 Reserved 00H

17 Block length 00H

18 Block length 02H

19 Block length 00H

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 121

[READ CAPACITY command processing]

 The data capacity of the device is reported to the host.

 The READ CAPACITY data format is shown below. Since the virtual device is used in the sample program,

the data values shown below are returned.

Table 3-9. READ CAPACITY Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Logical block address 00H

1 Logical block address 00H

2 Logical block address 00H

3 Logical block address BFH

4 Block length 00H

5 Block length 00H

6 Block length 02H

7 Block length 00H

[READ (10) command processing]

 Data is read from the specified range in the storage device and sent to the host.

 In the sample program, data read from the virtual device is sent to the host.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 122

[MODE SENSE (10) command processing]

 The mode select parameters and attributes for the device are reported to the host.

The MODE SENSE (10) data format is shown below. Since the virtual device is used in the sample program,

the data values shown below are returned. The supported page code is 01H only, so 01H is returned

regardless of the command page code.

Table 3-10. MODE SENSE (10) Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Mode parameter length Note 1

1 Mode parameter length Note 1

2 Media type 00H

3 Device-specific parameter 00H

4 Reserved 00H

5 Reserved 00H

6 Block descriptor length 00H

7 Block descriptor length 08H

8 Density code 00H

9 Number of blocks 00H

10 Number of blocks 00H

11 Number of blocks C0H

12 Reserved 00H

13 Block length 00H

14 Block length 02H

15 Block length 00H

16 PS Reserved Page code Note 2

17 Page length (n-17) 0AH

18 Mode parameter Note 3

: : Note 3

n Mode parameter Note 3

Notes 1. The smaller number of bytes between the parameter list specified by the page code of CDB and DBD

and the parameter list specified by the allocation length

 2. Page code for CDB

 3. 08H, 0BH, 00H, 00H, 00H, 00H, 00H, 00H, 00H, 00H

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 123

The flow of SCSI command (WRITE command) processing is shown below.

Figure 3-15. Flowchart of WRITE Command Processing

Yes

1

No

No

Write data prepared

Write destination prepared

Yes

Yes

Write data prepared

WRITE (6)?

Parameter for received
MODE SELECT prepared

No

MODE
SELECT (6)?

WRITE (10)?

2

WRITE command processing started

Yes

2

No

No

Write data prepared

Data written

Yes

Yes

Data written

WRITE VERIFY?

Parameter for received
MODE SELECT prepared

Error in written data checked

No

MODE
SELECT (10)?

WRITE BUFF?
1

End

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 124

[WRITE (6) command processing]

 Receive data is written to the specified area in the storage device.

 In the sample program, receive data is written to the specified area in the virtual device.

[MODE SELECT (6) command processing]

 Parameters such as the physical attribute of the logical unit, data format on the recording medium, and how

to recover from errors are set or changed

 The MODE SELECT data format is shown below. Since the virtual device is used in the sample program,

the program just writes the receive data to the MODE SELECT TABLE regardless of the command page

code, and terminates normally. The program supposes the data values shown below are used as the initial

values of the table.

Table 3-11. MODE SELECT (6) Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Mode parameter length 17H

1 Media type 00H

2 Device-specific parameter 00H

3 Block descriptor length 08H

4 Density code 00H

5 00H 00H

6 00H 00H

7 C0H C0H

8 Reserved 00H

9 00H 00H

10 00H 02H

11 00H 00H

12 PS 1 Page code Note 1

13 Page length (n-13) 0AH

14 Mode parameter Note 2

: : Note 2

n Mode parameter Note 2

Notes 1. Page code for CDB

 2. 08H, 0BH, 00H, 00H, 00H, 00H, 00H, 00H, 00H, 00H

[WRITE (10) command processing]

 Receive data is written to the specified area in the storage device.

 In the sample program, receive data is written to the specified area in the virtual device.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 125

[WRITE VERIFY command processing]

 Receive data is written to the storage device. The written data is checked for errors. In the sample

program, receive data is written to the virtual device but a data error check is not performed and the

program terminates normally.

[VERIFY command processing]

 The validity of data in the storage device is checked. Since the virtual device is used in the sample program,

the program performs no processing and terminates normally.

[WRITE BUFF command processing]

 Data is written to the memory (data buffer). Since the virtual device is used in the sample program, the

program performs no processing and terminates normally.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 126

[MODE SELECT (10) command processing]

 Parameters such as the physical attribute of the logical unit, data format on the recording medium, and how

to recover from errors are set or changed.

 The MODE SELECT (10) data format is shown below. Since the virtual device is used in the sample

program, the program just writes the receive data to the MODE SELECT (10) TABLE regardless of the

command page code, and terminates normally. The program supposes the data values shown below are

used as the initial values of the table.

Table 3-12. MODE SELECT (10) Data Format

Bit

Byte

7 6 5 4 3 2 1 0 Data

Value

0 Mode parameter length 00H

1 Mode parameter length 1AH

2 Media type 00H

3 Device-specific parameter 00H

4 Reserved 00H

5 Reserved 00H

6 Block descriptor length 00H

7 Block descriptor length 08H

8 Density code 00H

9 Number of blocks 00H

10 Number of blocks 00H

11 Number of blocks C0H

12 Reserved 00H

13 Block length 00H

14 Block length 02H

15 Block length 00H

16 PS Reserved Page code Note 1

17 Page length (n-17) 0AH

18 Mode parameter Note 2

: : Note 2

n Mode parameter Note 2

Notes 1. Page code for CDB

 2. 08H, 0BH, 00H, 00H, 00H, 00H, 00H, 00H, 00H, 00H

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 127

The flow of SCSI command (NO DATA command) processing is shown below.

Figure 3-16. Flowchart of NO DATA Command Processing

Yes

No

No

Yes

Yes

TEST UNIT READY?

No

SEEK?

START STOP UNIT?

Yes

No
SYNCHRONIZE CACHE?

NO DATA command processing started

End

[TEST UNIT READY command processing]

 The unit status is reported. Since the virtual device is used in the sample program, the program performs

no processing and terminates normally.

[SEEK command processing]

 A seek operation is performed on the specified block position. Since the virtual device is used in the sample

program, the program performs no processing and terminates normally.

[START STOP UNIT command processing]

 A setting to restrict access to the unit is performed. Since the virtual device is used in the sample program,

the program performs no processing and terminates normally.

[SYNCHRONIZE CACHE command processing]

 Data in the unit and cache are matched. Since the virtual device is used in the sample program, the

program performs no processing and terminates normally.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 128

3.7.3 USB storage class driver descriptor information

The USB standard descriptors defined in this sample program are shown below.

Descriptors described in (a) to (d) are the minimum required descriptors.

Remark Refer to Universal Serial Bus Specification Revision 1.1 for details.

(a) Device descriptor

This descriptor holds general information of the device. One device descriptor must be prepared for each

device. The information contained in this descriptor is used for identifying a unique in the device configuration.

Concrete information is not used at the device level in the current USB storage class driver.

Table 3-13. Device Descriptor

Offset Size (Byte) Value Description

0 1 12H Length value of this descriptor (byte)

1 1 01H Descriptor type (device)

2 2 10H/01H USB version (USB 1.1)

4 1 00H Class code

5 1 00H Sub-class code

6 1 00H Protocol code

7 1 40H Maximum packet size at endpoint 0

8 2 09H/04H Vendor ID (NEC Electronics)

10 2 FCH/FFH Product ID

12 2 01H/00H Device release number

14 1 01H Index to string descriptor (Manufacturer)

15 1 00H Index to string descriptor (Product)

16 1 00H Index to string descriptor (Serial Number)

17 1 01H Number of devices that can be configured

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 129

(b) Configuration descriptor

This descriptor holds information on concrete device configuration.

Concrete information is not used at the configuration level in the current USB storage class driver.

Table 3-14. Configuration Descriptor

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 02H Descriptor type (configuration)

2 2 20H/00H Total length value of descriptor returned together with configuration

descriptor in response to the Get Descriptor request

4 1 01H Number of interfaces supported in the configuration

5 1 01H Configuration value

6 1 00H Index to string descriptor (configuration)

7 1 C0H Configuration of device (self-powered/remote wakeup function)

8 1 00H Maximum power consumption of device

(c) Interface descriptor

This descriptor holds concrete interface information in the configuration.

The configuration provides one interface in this sample program. This interface supports two endpoints, and

therefore has two endpoint descriptors.

This descriptor is always returned as a part of the configuration descriptor, and is not accessed directly by a

Get Descriptor request or Set Descriptor request.

Table 3-15. Interface Descriptor

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 04H Descriptor type (interface)

2 1 00H Interface value

3 1 00H Alternate set value

4 1 02H Endpoint number (excluding endpoint 0)

5 1 08H Interface class (mass storage class)

6 1 06H Interface sub-class (SCSI)

7 1 50H Interface protocol (Bulk-Only)

8 1 00H Index to string descriptor (interface)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 130

(d) Endpoint descriptor

This descriptor holds information required by the host for determining the bandwidth requirements for each

endpoint.

This descriptor is always returned as a part of the configuration descriptor, and is not accessed directly by a

Get Descriptor request or Set Descriptor request.

Table 3-16. Endpoint Descriptor (Bulk IN)

Offset Size (Byte) Value Description

0 1 07H Length value of this descriptor (byte)

1 1 05H Descriptor type (endpoint)

2 1 81H Endpoint address value

3 1 02H Endpoint transfer type

4 2 40H/00H Maximum packet size at endpoint

6 1 00H Interval (ms): Valid only for isochronous and interrupt endpoints

Table 3-17. Endpoint Descriptor (Bulk OUT)

Offset Size (Byte) Value Description

0 1 07H Length value of this descriptor (byte)

1 1 05H Descriptor type (endpoint)

2 1 02H Endpoint address value

3 1 02H Endpoint transfer type

4 2 40H/00H Maximum packet size at endpoint

6 1 00H Interval (ms): Valid only for isochronous and interrupt endpoints

(e) String descriptor

This descriptor holds information on the manufacturer of the device in this sample program.

Table 3-18. String Descriptor (1)

Offset Size (Byte) Value Description

0 1 04H Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 2 09H/04H Language type used by string descriptor (English/US)

Table 3-19. String Descriptor (2)

Offset Size (Byte) Value Description

0 1 2AH Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 40 'N','E','C','','E','l','e','c','t','r','o','n','i','c','s',' ','C','o','.' Manufacturer:

NEC Electronics Co.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 131

• Descriptor configuration

The descriptor configuration in this sample program is shown below. This configuration consists of the five

descriptors described before.

Caution The device descriptor, configuration descriptor, and string descriptor are accessed by an

independent Get Descriptor request. The interface descriptor and endpoint descriptor are

accessed as part of the configuration descriptor.

Figure 3-17. Descriptor Configuration

Device descriptor

Configuration descriptor

String descriptor Endpoint descriptor
(Bulk IN)

Endpoint descriptor
(Bulk OUT)

Hierarchy (high) Hierarchy (low)

Interface descriptor
(Interface value 0/Alternate value 0)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 132

3.7.4 Data macro

The data macros (data type, return value, etc.) used by the USB storage class driver are shown below.

(1) Data type

Data type macro for parameters specified when a USB storage class driver function is called is defined in the

header file types.h in nectools32\USB_Storage\inc.

A list of the data types is shown below.

Table 3-20. List of Data Types

Macro Type Description

ULONG unsigned long 32-bit unsigned integer

WORD unsigned long 32-bit unsigned integer

HWORD unsigned short 16-bit unsigned integer

BYTE unsigned char 8-bit unsigned integer

(*PFV) () void Processing module activation address

(2) Return value

Macro of the return value from USB storage class driver function is defined in the header file errno.h in

nectools32\USB_Storage\inc.

A list of the return values is shown below.

Table 3-21. List of Return Values

Macro Type Description

DEV_OK 0 Normal termination

DEV_ERROR −1 Abnormal termination

DEV_ERR_NODATA −2 Error in transfer direction for NO DATA command

DEV_ERR_READ −3 Error in transfer direction for READ command

DEV_ERR_WRITE −4 Error in transfer direction for WRITE command

DEV_ERR_VERIFY −5 Verify error

DEV_ERR_CBWLENGTH −6 CBW length error

DEV_ERR_CBWCBW −7 CBW is received during CBW processing (error)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 133

3.7.5 Data structure

The data structure used by the USB storage class driver is shown below.

(1) USB device request structure

The USB device request structure is defined in USB header file usbf850.h in

nectools32\V850USB_Storage\src\USBF. The USB device request structure USB_SETUP is shown below.

typedef struct {

 unsigned char RequstType; /*bmRequestType */

 unsigned char Request; /*bRequest */

 unsigned short Value; /*wValue */

 unsigned short Index; /*wIndex */

 unsigned short Length; /*wLength */

 unsigned char* Data; /*index to Data */

} USB_SETUP;

(2) CBW data structure

The CBW (Command Block Wrapper) data structure handled in the USB storage class driver is defined in

header file types.h in nectools32\USB_Storage\inc. The CBW data structure is shown below.

typedef struct {

 unsigned char dCBWSignature[4]; /*CBW signature*/

 unsigned char dCBWTag[4]; /*CBW tag*/

 unsigned char dCBWDataTransferLength[4]; /*transfer data length*/

 unsigned char bmCBWFlags; /*data direction (OUT/IN)

 specification*/

 unsigned char bCBWLUN; /*target device number*/

 unsigned char bCBWCBLength; /*number of valid bytes of

 CBWCB*/

 unsigned char CBWCB[16]; /*CBWCB (command) */

} CBW_INFO,*PCBW_INFO;

(3) CSW data structure

The CSW (Command Status Wrapper) data structure handled in the USB storage class driver is defined in

header file types.h in nectools32\USB_Storage\inc. CSW data structure is shown below.

typedef struct {

 unsigned char dCSWSignature[4]; /*CSW signature */

 unsigned char dCSWTag[4]; /*CSW tag */

 unsigned char dCSWDataResidue[4]; /*difference between transfer data

 length specified for CBW and

 processed data length */

 unsigned char bmCSWStatus; /*status after CBW processing*/

} CSW_INFO,*PCSW_INFO;

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 134

3.7.6 Description of functions

(1) Overview

A list of the processing modules described in this chapter is shown below.

Table 3-22. List of Processing Modules in Sample Program (1/3)

Processing Module Name Function Name File Name Remark

RX850 Pro-dependent processing module

CF definition file − sys.cf −

Entry processing − entry.850 Assembly

language

Boot processing boot boot.850 Assembly

language

Hardware initialization module __InitSystemTimer init.c C language

Initialization handler varfunc varfunc.c C language

Header file − init.h −

Board-dependent processing module

Port initialization port850_reset port.c C language

Header file − port.h −

Header file

Data type declaration − types.h −

Return value declaration − errno.h −

Build file − usb_bus.bld −

Section map file − common.lx −

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 135

Table 3-22. List of Processing Modules in Sample Program (2/3)

Processing Module Name Function Name File Name Remark

USB storage class driver processing module (USB processing module)

Initialization function usbf850_init usbf850.c C language

Interrupt handler (INTUSB0B signal) usbf850_inthdr usbf850.c C language

Interrupt handler (INTUSB1B signal) usbf850_inthdr1 usbf850.c C language

Interrupt handler (INTUSB2B signal) usbf850_inthdr2 usbf850.c C language

Interrupt servicing task (INTUSB0B signal) task_usb0b usbf850.c C language

Interrupt servicing task (INTUSB1B signal) task_usb1b usbf850.c C language

Interrupt servicing task (INTUSB2B signal) task_usb2b usbf850.c C language

Data transmission function usbf850_data_send usbf850.c C language

Data reception function usbf850_data_receive usbf850.c C language

Null data transmission function (endpoint 0) usbf850_sendnullEP0 usbf850.c C language

Stall response processing function (endpoint 0) usbf850_sendstallEP0 usbf850.c C language

Stall response processing function (endpoint 1) usbf850_bulkin1_stall usbf850.c C language

Stall response processing function (endpoint 2) usbf850_bulkout1_stall usbf850.c C language

System call calling function (loc_cpu) usbf850_loc_cpu usbf850.c C language

System call calling function (unl_cpu) usbf850_unl_cpu usbf850.c C language

Request processing function usbf850_rxreq usbf850.c C language

Request data read function usbf850_rxreq_read usbf850.c C language

Standard request processing function usbf850_standardreq usbf850.c C language

Get Descriptor request processing function usbf850_getdesc usbf850.c C language

Stall response processing function for setting request

processing function (endpoint 0)

usbf850_sstall_ctrl usbf850.c C language

USB header file − usbf850.h −

USB descriptor declaration − usbf850desc.h −

Bulk-Only Mass Storage Reset request processing function

(processing of device class-specific request)

usbf850_blkonly_mass_

storage_reset

usbf850_storage.c C language

Max LUN request processing function

(processing of device class-specific request)

usbf850_max_lun usbf850_storage.c C language

Registration processing function of USB storage class
device class-specific request processing function

usbf850_setfunction_
storage

usbf850_storage.c C language

CBW reception processing function usbf850_rx_cbw usbf850_storage.c C language

CBW check function usbf850_storage_ cbwchk usbf850_storage.c C language

CBW error processing function usbf850_cbw_error usbf850_storage.c C language

CBW NO DATA command processing function usbf850_no_data usbf850_storage.c C language

CBW DATA IN command processing function usbf850_data_in usbf850_storage.c C language

CBW DATA OUT command processing function usbf850_data_out usbf850_storage.c C language

CSW transmission processing function usbf850_csw_ret usbf850_storage.c C language

USB-storage interface function header file − usbf850_storage.h −

DMA initialization module function for USB usbf850_dma_init usbf850_dma.c C language

DMA start processing function for USB usbf850_dma_start usbf850_dma.c C language

DMA header file − usbf850_dma.h −

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 136

Table 3-22. List of Processing Modules in Sample Program (3/3)

Processing Module Name Function Name File Name Remark

Storage device processing modules

Storage device initialization module storageDev_Init ata_ctrl.c C language

Storage device header file − ata.h −

CBWCB command analysis processing function scsi_command_to_ata scsi_cmd.c C language

TEST UNIT READY command processing function ata_test_unit_ready scsi_cmd.c C language

SEEK command processing function ata_seek scsi_cmd.c C language

START STOP UNIT command processing function ata_start_stop_unit scsi_cmd.c C language

SYNCHRONIZE CACHE command processing function ata_synchronize_cache scsi_cmd.c C language

REQUEST SENSE command processing function ata_request_sense scsi_cmd.c C language

INQUIRY command processing function ata_inquiry scsi_cmd.c C language

MODE SELECT command processing function ata_mode_select scsi_cmd.c C language

MODE SELECT (10) command processing function ata_mode_select10 scsi_cmd.c C language

MODE SENSE command processing function ata_mode_sense scsi_cmd.c C language

MODE SENSE (10) command processing function ata_mode_sense10 scsi_cmd.c C language

READ FORMAT CAPACITIES command processing function ata_read_format_capacities scsi_cmd.c C language

READ CAPACITY command processing function ata_read_capacity scsi_cmd.c C language

READ (6) command processing function ata_read6 scsi_cmd.c C language

READ (10) command processing function ata_read10 scsi_cmd.c C language

WRITE (6) command processing function ata_write6 scsi_cmd.c C language

WRITE (10) command processing function ata_write10 scsi_cmd.c C language

VERIFY command processing function ata_verify scsi_cmd.c C language

WRITE VERIFY command processing function ata_write_verify scsi_cmd.c C language

WRITE BUFF command processing function ata_write_buff scsi_cmd.c C language

Function for processing of data transmission from SCSI to

USB

scsi_to_usb scsi_cmd.c C language

SCSI command processing header file − scsi.h −

Function macro

V850E/ME2 peripheral I/O register setting function (1-byte
units: 8 bits)

USBF850REG_SET usbf850.h C language

V850E/ME2 peripheral I/O register read function (1-byte units:
8 bits)

USBF850REG_READ usbf850.h C language

V850E/ME2 peripheral I/O register setting function (1-word
units: 16 bits)

USBF850REG_SET_W usbf850.h C language

V850E/ME2 peripheral I/O register read function (1-word
units: 16 bits)

USBF850REG_READ_W usbf850.h C language

(2) Function tree
The function calling relationship in the sample program is illustrated below.

Caution usbf850_init and storageDev_Init are called from the initialization handler.

usbf850_dma_init is called from usbf850_init.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 137

Figure 3-18. Sample Program Function Tree (1/4)

usbf850_init

usbf850_dma_init

usbf850_setfunction_storage

USBF850REG_SET

usbf850_inthdr

usbf850_rxreq

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_rxreq_read

usbf850_standardreq

usbf850_sendstallEP0

usbf850_sendstallEP0

usbf850_getdesc

usbf850_sendstallEP0

usbf850_usb0b
(task activation)

usbf850_data_in
(task wakeup)

usbf850_data_out
(task wakeup)

usbf850_blkonly_mass_storage_reset

usbf850_sendnullEP0

usbf850_sendstallEP0

usbf850_max_lun

usbf850_data_send

usbf850_sendstallEP0

usbf850_sstall_ctrl

usbf850_sendstallEP0

Processing of INTUSB0B signal

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 138

Figure 3-18. Sample Program Function Tree (2/4)

usbf850_inthdr1

usbf850_rx_cbw

usbf850_cbw_error

usbf850_data_receive

usbf850_storage_cbwchk

task_usb1b
(task activation)

Processing of INTUSB1B signal

usbf850_inthdr

Processing of INTUSB2B signal

usbf850_bulkout1_stall

usbf850_bulkin1_stall

usbf850_cbw_error

usbf850_bulkout1_stall

usbf850_bulkin1_stall

USBF850REG_READ

usbf850_sendstallEP0

task_usb2b
(task activation)

usbf850_no_data
(task activation)

scsi_command_to_ata

usbf850_bulkout1_stall

usbf850_csw_ret usbf850_data_send USBF850REG_SET

1

usbf850_data_in
(task activation)

scsi_command_to_ata

usbf850_bulkout1_stall

usbf850_csw_ret usbf850_data_send USBF850REG_SET

1

usbf850_data_out
(task activation)

scsi_command_to_ata

usbf850_bulkout1_stall

usbf850_csw_ret

usbf850_sendnullEP0

usbf850_bulkin1_stall

usbf850_data_send USBF850REG_SET

1

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 139

Figure 3-18. Sample Program Function Tree (3/4)

ata_request_sense

ata_test_unit_ready

ata_seek

scsi_to_usb

ata_start_stop_unit

ata_synchronize_cache

scsi_command_to_ata

ata_inquiry scsi_to_usb

ata_read6 usbf850_dma_start

scsi_to_usb

1

2

ata_mode_sense scsi_to_usb 2

ata_read_capacity scsi_to_usb 2

ata_mode_select

ata_mode_sense10 scsi_to_usb 2

ata_read_format_capacities scsi_to_usb 2

2

3

2

ata_write6 usbf850_dma_start

usbf850_data_receive

usbf850_data_receive

usbf850_data_receive

3

4

ata_write_verify usbf850_dma_start

usbf850_data_receive

3

4

4

ata_mode_select10 usbf850_data_receive 4

ata_read10 usbf850_dma_start

scsi_to_usb

3

2

ata_write10 usbf850_dma_start 3

4

usbf850_data_receive

ata_verify usbf850_dma_start 3

4

usbf850_data_receive

ata_write_data_buff usbf850_dma_start 3

4

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 140

Figure 3-18. Sample Program Function Tree (4/4)

scsi_to_usb USBF850REG_SETusbf850_data_send2

usbf850_dma_start USBF850REG_SEW_W

USBF850REG_SET

3

usbf850_data_receive usbf850_sendstallEP0

USBF850REG_READ

4

(3) Description of functions

The functions in this sample program are explained in the following format.

xxxx … <1> Valid caller: − − − − … <2>

[Outline] … <3>

−

−

[C language format] … <4>

− − − − − − − −

[Parameter] … <5>

I/O Parameter Description

[Operation] … <6>

−

−

[Return value] … <7>

−

−

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 141

<1> Name

Indicates the function name.

<2> Valid caller

Indicates the type of the processing module from which a function can be called.

Task: The function can be called only from a task.

Non-task: The function can be called only from a non-task.

Non-task | Task: The function can be called from a task or non-task.

−: Interrupt handler or task, and is not used to call functions.

<3> Outline

Shows the outline of a function operation.

<4> C language format

Shows the description format when calling a function from the processing module described in the C

language.

<5> Parameter

Shows the function parameter in the following format.

I/O Parameter Description

A B C

A: Parameter type

 I: Parameter input to the USB function controller

 O: Parameter output from the USB function controller

B: Parameter data type

C: Description of parameter

<6> Operation

Describes detailed operation of the function.

<7> Return value

Indicates the return value from a function using the data macro or numeric value.

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 142

usbf850_init Valid caller: Non-task | Task

[Outline]

This is a function that initializes the USB function controller incorporated in the V850E/ME2.

[C language format]

void usbf850_init (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called from the software initialization module and performs processing to initialize the USB function

controller incorporated in the V850E/ME2.

Remark Refer to 3.7.2 (1) Initialization processing for details of initialization processing.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 143

usbf850_inthdr Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB0B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This is the interrupt handler activated by the INTUSB0B signal (USB function status 0).

In this sample program, the interrupt handler checks the interrupt source and activates the interrupt servicing task

(task_usb0b) only when the source is the CPUDEC interrupt. If the source is the DMAED or SHORT interrupt, the

interrupt handler reads the UF0DMS1 register (DMA status 1 register) to confirm the interrupt source, and wakes up

the corresponding task (usbf850_data_in and usbf850_data_out are in the sleep state after DMA is started up). This

handler is defined in the CF definition file.

Remark Refer to 3.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 144

usbf850_inthdr1 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB1B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr1 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB1B signal (USB function status 1).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb1b). This handler is

defined in the CF definition file.

Remark Refer to 3.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 145

usbf850_inthdr2 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB2B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr2 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB2B signal (USB function status 2).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb2b). This handler is

defined in the CF definition file.

Caution This handler is not called because all the interrupts reported by the INTUSB2B signal are masked

in this sample program.

[Return value]

Object ID number (task ID number)

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 146

task_usb0b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB0B signal.

[C language format]

void task_usb0b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB0B interrupt signal (USB function status 0 interrupt).

In the sample program, this task calls the usbf850_rxreq function and performs processing of the USB standard

device request and device class-specific request.

Caution In this sample program, the standard device request Get Descriptor (String Descriptor) that is not

responded automatically by the USB function controller incorporated in the V850E/ME2 is

handled.

Remark Refer to 3.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 147

task_usb1b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB1B signal.

[C language format]

void task_usb1b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB1B interrupt signal (USB function status 1 interrupt).

In the sample program, this task confirms the interrupt source and calls the function (usbf850_rx_cbw) if the interrupt

source is BKO1DT and the length of the receive data is equal to the size of the CBW data.

Remark Refer to 3.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 148

task_usb2b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB2B signal.

[C language format]

void task_usb2b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB2B interrupt signal (USB function status 2 interrupt).

This processing is not provided in the sample program, so the program returns without processing.

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 149

usbf850_data_send Valid caller: Non-task | Task

[Outline]

This is a data transmit function used by the USB function controller.

[C language format]

long usbf850_data_send (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of transmit data

I long len Data size

I char ep Endpoint number

[Operation]

This function transmits from the endpoint specified by ep data whose size is specified by len starting from the

address specified by data.

[Return value]

Status upon transmission

DEV_ERROR: Endpoint number is illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 150

usbf850_data_receive Valid caller: Non-task | Task

[Outline]

This is a data receive function used by the USB function controller.

[C language format]

long usbf850_data_receive (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of the buffer for receive data

I long len Data size

I char ep Endpoint number

[Operation]

This function reads data whose size is specified by len from the buffer at the endpoint specified by ep and stores it

to the address specified by specified data.

[Return value]

Status upon reception

DEV_ERROR: Receive data size is illegal, or endpoint number is illegal.

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 151

usbf850_sendnullEP0 Valid caller: Non-task | Task

[Outline]

This is a function that transmits Null data from the control endpoint (endpoint 0).

[C language format]

void usbf850_sendnullEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function transmits Null data (whose data size is 0) from the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 152

usb850_sendstallEP0 Valid caller: Non-task | Task

[Outline]

This is a function that sends a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sendstallEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 153

usbf850_bulkin1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 1).

[C language format]

void usbf850_bulkin1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 1).

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 154

usbf850_bulkout1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 2).

[C language format]

void usbf850_bulkout1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 2).

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 155

usbf850_loc_cpu Valid caller: Task

[Outline]

This is a function that disables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_loc_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the loc_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 156

usbf850_unl_cpu Valid caller: Task

[Outline]

This is a function that enables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_unl_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the unl_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 157

usbf850_rxreq Valid caller: Non-task | Task

[Outline]

This is a function that performs USB request processing.

[C language format]

void usbf850_rxreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the task_usb0b task that is activated by the INTUSB0B interrupt signal. This function

calls SETUP data read processing, analyzes the read data, and calls USB request processing based on the analysis

result.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 158

usbf850_rxreq_read Valid caller: Non-task | Task

[Outline]

This is a function that reads USB request data.

[C language format]

void usbf850_rxreq_read (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function reads SETUP data received subsequently to the Setup token at the control endpoint (endpoint 0).

The SETUP data is distinguished from normal data and is stored in a dedicated register. It is always read in 8-byte

units.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 159

usbf850_standardreq Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request.

[C language format]

void usbf850_standardreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called if the standard request is read from SETUP data and calls the usbf850_getdesc function

when the request type is confirmed as the Get Descriptor request.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 160

usbf850_getdesc Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request Get Descriptor (String Descriptor) processing.

[C language format]

void usbf850_getdesc (void)

[Parameter]

I/O Parameter Description

－ － －

[Operation]

This function is called by the usbf850_standardreq function and performs the USB standard request Get Descriptor

(String Descriptor) processing. This function sets a STALL response for a request other than the Get Descriptor

(String Descriptor) request.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 161

usbf850_sstall_ctrl Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sstall_ctrl (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response at the control endpoint (endpoint 0).

With the usbf850_setfunction_storage function, when a class request processing function is prepared as the

function pointer for an array, this function uses a request code as a subscript for array. If this function is registered to

a location where is no relevant request, a STALL response can be set when an unsupported request code is sent.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 162

usbf850_blkonly_mass_storage_reset Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB Mass Storage class-specific request Bulk-Only Mass Storage Reset.

[C language format]

void usbf850_blkonly_mass_storage_reset (void)

[Parameter]

I/O Parameter Description

– – –

[Operation]

This function performs Bulk-Only Mass Storage Reset request processing. When this request is received, this

function initializes the storage device. In the sample program, this function clears buffers at the bulk endpoint

(endpoints 1 and 2) and sets a STALL response for the bulk endpoint.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 163

usbf850_max_lun Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB Mass Storage class-specific request Get Max LUN.

[C language format]

void usbf850_max_lun (void)

[Parameter]

I/O Parameter Description

– – –

[Operation]

This function performs Get Max LUN request processing. When this request is received, this function returns 1-

byte data for the total number of logical units supported by the device. Since the virtual storage device is used in the

sample program, 00H is prepared as data and transmitted from the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 164

usbf850_setfunction_storage Valid caller: Non-task | Task

[Outline]

This is a function that registers a USB Mass Storage class-specific request processing function to an array as the

function pointer.

[C language format]

void usbf850_setfunction_storage (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called from USB initialization processing, and registers a USB Mass Storage class-specific request

processing function as a function pointer to an array (array name: Req_Func_C).

This function registers the usbf850_sstall_ctrl function for an unsupported request code to send a STALL response

when an unsupported request is sent.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 165

usbf850_rx_cbw Valid caller: Non-task | Task

[Outline]

This is a function that performs CBW data reception processing.

[C language format]

void usbf850_rx_cbw (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the interrupt servicing task, reads CBW data, and then calls the usbf850_storage_cbwchk

function.

Remark Refer to 3.7.2 (3) CBW data processing for details of CBW reception processing.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 166

usbf850_storage_cbwchk Valid caller: Non-task | Task

[Outline]

This is a function that performs CBW data command analysis processing.

[C language format]

int usbf850_storage_cbwchk (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function analyzes the CBW data that has been read and activates a task that performs processing of the

corresponding data direction.

Remark Refer to 3.7.2 (3) CBW data processing for details of CBW reception processing.

[Return value]

Status upon CBW check

DEV_ERROR: CBWCB length is illegal.

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 167

usbf850_cbw_error Valid caller: Non-task | Task

[Outline]

This is a function that performs CBW data error processing.

[C language format]

void usbf850_cbw_error (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoints 1 and 2) when a CBW error is detected.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 168

usbf850_no_data Valid caller: Non-task | Task

[Outline]

This is a task that performs SCSI NO DATA command processing.

[C language format]

void usbf850_no_data (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task performs SCSI NO DATA command processing. This task calls the scsi_command_to_ata function and

passes the CBW processing status (GOOD, FAIL, or PHASE) to the CSW response processing function, according to

the execution result.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 169

usbf850_data_in Valid caller: Non-task | Task

[Outline]

This is a task that performs SCSI DATA IN command processing.

[C language format]

void usbf850_data_in (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task performs SCSI DATA IN command processing. This task calls the scsi_command_to_ata function and

passes the CBW processing status (GOOD, FAIL, or PHASE) to the CSW response processing function, according to

the execution result.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 170

usbf850_data_out Valid caller: Non-task | Task

[Outline]

This is a task that performs SCSI DATA OUT command processing.

[C language format]

void usbf850_data_out (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task performs SCSI DATA OUT command processing. This task calls the scsi_command_to_ata function and

passes the CBW processing status (GOOD, FAIL, or PHASE) to the CSW response processing function, according to

the execution result.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 171

usbf850_csw_ret Valid caller: Non-task | Task

[Outline]

This is a function that performs CSW response processing.

[C language format]

long usbf850_csw_ret (BYTE status)

[Parameter]

I/O Parameter Description

I BYTE status Transmitted status (GOOD, FAIL, PHASE)

[Operation]

This function performs CSW response processing. This function sends the CBW processing status (GOOD, FAIL,

or PHASE) passed via an argument to the host.

[Return value]

Status upon transmission

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 172

usbf850_dma_init Valid caller: Non-task | Task

[Outline]

This is a function that initializes DMA.

[C language format]

void usbf850_dma_init (char ep)

[Parameter]

I/O Parameter Description

I char ep No. of endpoint that is used for DMA

[Operation]

This function performs DMA initialization processing for the endpoint specified by the argument.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 173

usbf850_dma_start Valid caller: Non-task | Task

[Outline]

This is a function that activates DMA.

[C language format]

void usbf850_dma_start (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Pointer of buffer in which transmit/receive data is stored

I long len Data length

I char ep No. of endpoint that is used for DMA

[Operation]

If ep is 1, data whose size is specified by len is transferred from the buffer specified by data to the UF0BI1 register,

via DMA.

If ep is 2, data whose size is specified by len is transferred from the buffer specified by data to the UF0BO1

register, via DMA.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 174

storageDev_Init Valid caller: Non-task | Task

[Outline]

This is a function that performs storage device initialization processing.

[C language format]

void storageDev_Init (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function initializes the storage device. Since the virtual device that just secures the storage area in the

memory is used in the sample program, the program simply clears the secured memory area to 0.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 175

scsi_command_to_ata Valid caller: Non-task | Task

[Outline]

This is a function that performs SCSI command processing.

[C language format]

long scsi_command_to_ata

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Transfer direction

[Operation]

This function calls the command processing function from the SCSI command reported by CBW.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERR_WRITE: Error in transfer direction for WRITE command

DEV_ERROR: Execution of each command is other than the above three statuses, or request is illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 176

ata_test_unit_ready Valid caller: Non-task | Task

[Outline]

This is a function that performs TEST UNIT READY command processing.

[C language format]

long ata_test_unit_ready (long TransFlag)

[Parameter]

I/O Parameter Description

I long TransFlag Data transfer direction

[Operation]

This function performs TEST UNIT READY command processing. Since the virtual device is used in the sample

program, the program performs no processing, just returns OK, and terminates normally.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 177

ata_seek Valid caller: Non-task | Task

[Outline]

This is a function that performs SEEK command processing.

[C language format]

long ata_seek (long TransFlag)

[Parameter]

I/O Parameter Description

I long TransFlag Data transfer direction

[Operation]

This function performs SEEK command processing. Since the virtual device is used in the sample program, the

program performs no processing, just returns OK, and terminates normally.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 178

ata_start_stop_unit Valid caller: Non-task | Task

[Outline]

This is a function that performs START STOP UNIT command processing.

[C language format]

long ata_start_stop_unit (long TransFlag)

[Parameter]

I/O Parameter Description

I long TransFlag Data transfer direction

[Operation]

This function performs START STOP UNIT command processing. Since the virtual device is used in the sample

program, the program performs no processing, just returns OK, and terminates normally.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 179

ata_synchronize_cache Valid caller: Non-task | Task

[Outline]

This is a function that performs SYNCHRONIZE CACHE command processing.

[C language format]

long ata_synchronize_cache (long TransFlag)

[Parameter]

I/O Parameter Description

I long TransFlag Data transfer direction

[Operation]

This function performs SYNCHRONIZE CACHE command processing. Since the virtual device is used in the

sample program, the program performs no processing, just returns OK, and terminates normally.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 180

ata_request_sense Valid caller: Non-task | Task

[Outline]

This is a function that performs REQUEST SENSE command processing.

[C language format]

long ata_request_sense

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs REQUEST SENSE command processing. Since the virtual device is used in the sample

program, the program performs no processing, just returns OK, and terminates normally if the transmit data size

specified by the command is 0. If the transmit data size specified by the command is not 0, that size of REQUEST

SENSE data is prepared and transmitted. However, the amount exceeding the specified size is not transmitted.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_ERR_READ: Error in transfer direction for READ command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 181

ata_inquiry Valid caller: Non-task | Task

[Outline]

This is a function that performs INQUIRY command processing.

[C language format]

long ata_inquiry (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long

TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs INQUIRY command processing. In the sample program, this function prepares and

transmits INQUIRY data whose size is specified by the command. If an attempt is made to transmit the data whose

size exceeds the specified INQUIRY data size, the amount exceeding the specified size is not transmitted.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: Request is illegal, or scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 182

ata_mode_select Valid caller: Non-task | Task

[Outline]

This is a function that performs MODE SELECT (6) command processing.

[C language format]

long ata_mode_select

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs MODE SELECT (6) command processing. In the sample program, this function loads the

specified amount of data to the MODE SELECT table. If the size of the loaded data exceeds the data length of the

MODE SELECT table, the amount exceeding the specified size is not loaded.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_WRITE: Error in transfer direction for WRITE command

DEV_ERROR: CDB contents are illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 183

ata_mode_select10 Valid caller: Non-task | Task

[Outline]

This is a function that performs MODE SELECT (10) command processing.

[C language format]

long ata_mode_select10

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs MODE SELECT (10) command processing. In the sample program, this function loads the

specified amount of data to the MODE SELECT (10) table. If the size of the loaded data exceeds the data length of

the MODE SELECT (10) table, the amount exceeding the specified size is not loaded.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_WRITE: Error in transfer direction for WRITE command

DEV_ERROR: CDB contents are illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 184

ata_mode_sense Valid caller: Non-task | Task

[Outline]

This is a function that performs MODE SENSE (6) command processing.

[C language format]

long ata_mode_sense

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs MODE SENSE (6) command processing. In the sample program, this function prepares

and transmits the specified amount of MODE SENSE data. If the size of the loaded data exceeds the specified

MODE SENSE size, the amount exceeding the specified size is not loaded.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 185

ata_mode_sense10 Valid caller: Non-task | Task

[Outline]

This is a function that performs MODE SENSE (10) command processing.

[C language format]

long ata_mode_sense10

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs MODE SENSE (10) command processing. In the sample program, this function prepares

and transmits the specified amount of MODE SENSE (10) data. If the size of the loaded data exceeds the specified

MODE SENSE (10) size, the amount exceeding the specified size is not loaded.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 186

ata_read_format_capacities Valid caller: Non-task | Task

[Outline]

This is a function that performs READ FORMAT CAPACITIES command processing.

[C language format]

long ata_read_format_capacities

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs READ FORMAT CAPACITIES command processing. In the sample program, this function

prepares and transmits the specified amount of READ FORMAT CAPACITIES data. If an attempt is made to transmit

data whose size exceeds the specified READ FORMAT CAPACITIES data size, the amount exceeding the specified

size is not transmitted.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 187

ata_read_capacity Valid caller: Non-task | Task

[Outline]

This is a function that performs READ CAPACITY command processing.

[C language format]

long ata_read_capacity

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs READ CAPACITY command processing. In the sample program, this function prepares

and transmits the specified amount of READ CAPACITY data. If an attempt is made to transmit data whose size

exceeds the specified READ CAPACITY data size, the amount exceeding the specified size is not transmitted.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 188

ata_read6 Valid caller: Non-task | Task

[Outline]

This is a function that performs READ (6) command processing.

[C language format]

long ata_read6 (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs READ (6) command processing. This function reads the specified amount of data starting

from the specified address in the storage device. In the sample program, data in the virtual device is read.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: CDB contents are illegal, or scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 189

ata_read10 Valid caller: Non-task | Task

[Outline]

This is a function that performs READ (10) command processing function.

[C language format]

long ata_read10 (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs READ (10) command processing. This function reads the specified amount of data starting

from the specified address in the storage device. In the sample program, data in the virtual device is read.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_ERROR: CDB contents are illegal, or scsi_to_usb execution is terminated abnormally

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 190

ata_write6 Valid caller: Non-task | Task

[Outline]

This is a function that performs WRITE (6) command processing.

[C language format]

long ata_write6 (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs WRITE (6) command processing. This function writes the specified amount of receive data

starting from the specified address, to the storage device. In the sample program, data is written to the virtual device.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_WRITE: Error in transfer direction for WRITE command

DEV_ERROR: CDB contents are illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 191

ata_write10 Valid caller: Non-task | Task

[Outline]

This is a function that performs WRITE (10) command processing.

[C language format]

long ata_write10 (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs WRITE (10) command processing. This function writes the specified amount of receive

data starting from the specified address, to the storage device. In the sample program, data is written to the virtual

device.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_WRITE: Error in transfer direction for WRITE command

DEV_ERROR: CDB contents are illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 192

ata_verify Valid caller: Non-task | Task

[Outline]

This is a function that performs VERIFY command processing.

[C language format]

long ata_verify (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs VERIFY command processing. This function checks the specified amount of data starting

from the specified address in the storage device. Since the virtual device is used in the sample program, the program

does not check the data.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_ERR_NODATA: Error in transfer direction for NO DATA command

DEV_ERROR: CDB contents are illegal

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 193

ata_write_verify Valid caller: Non-task | Task

[Outline]

This is a function that performs WRITE VERIFY command processing.

[C language format]

long ata_write_verify

(BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs WRITE VERIFY command processing. This function writes the specified amount of data

starting from the specified address to the storage device and checks whether or not the written data is correct. Since

the virtual device is used in the sample program, the program simply writes data to the specified memory but does not

check the written data.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 194

ata_write_buff Valid caller: Non-task | Task

[Outline]

This is a function that performs WRITE BUFF command processing.

[C language format]

long ata_write_buff (BYTE *ScsiCommandBuf, BYTE *pbData, long lDataSize, long

TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *ScsiCommandBuf CBWCB when using SCSI protocol

I BYTE *pbData Address of data register for each endpoint

I long lDataSize Transmit/receive data size

I long TransFlag Data transfer direction

[Operation]

This function performs WRITE BUFF command processing. This function writes data to the memory (data buffer).

Since the virtual device is used in the sample program, the program performs no processing and terminates normally.

Remark Refer to 3.7.2 (4) SCSI command processing for details of SCSI commands.

[Return value]

Status upon command processing

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 195

scsi_to_usb Valid caller: Non-task | Task

[Outline]

This is a function used to transfer data from the virtual device to the USB device.

[C language format]

long scsi_to_usb (BYTE *pbData, long TransFlag)

[Parameter]

I/O Parameter Description

I BYTE *pbData Start address of transmit data

I long TransFlag Data transfer direction

[Operation]

This function performs data transmission from the virtual device to the USB device.

[Return value]

Status upon command processing

DEV_ERR_READ: Error in transfer direction for READ command

DEV_OK: Normal termination

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 196

USBF850REG_SET Valid caller: Non-task | Task

[Outline]

This is a function that sets the V850E/ME2 peripheral I/O registers (1-byte units: 8 bits).

[C language format]

USBF850REG_SET (offset, val)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

I val Data for setting

[Operation]

This function sets data specified by val to the V850E/ME2 peripheral I/O registers (register address specified by

offset). This macro is valid only for registers that can be accessed in 1-byte (8-bit) units.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 197

USBF850REG_READ Valid caller: Non-task | Task

[Outline]

This is a function that reads the V850E/ME2 peripheral I/O registers (1-byte units: 8 bits).

[C language format]

USBF850REG_READ (offset)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

[Operation]

This function reads the value in the V850E/ME2 peripheral I/O registers (register address specified by offset). This

macro is valid only for registers that can be accessed in 1-byte (8-bit) units.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 198

USBF850REG_SET_W Valid caller: Non-task | Task

[Outline]

This is a function that sets the V850E/ME2 peripheral I/O registers (1-word units: 16 bits).

[C language format]

USBF850REG_SET_W (offset, val)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

I val Data for setting

[Operation]

This function sets data specified by val to the V850E/ME2 peripheral I/O registers (register address specified by

offset). This macro is valid only for registers that can be accessed in 1-word (16-bit) units.

[Return value]

None

CHAPTER 3 USB STORAGE CLASS DRIVER

Application Note U17069EJ1V0AN 199

USBF850REG_READ_W Valid caller: Non-task | Task

[Outline]

This is a function that reads the V850E/ME2 peripheral I/O registers (1-word units: 16 bits).

[C language format]

USBF850REG_READ_W (offset)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

[Operation]

This function reads the value in the V850E/ME2 peripheral I/O registers (register address specified by offset). This

macro is valid only for registers that can be accessed in 1-word (16-bit) units.

[Return value]

None

Application Note U17069EJ1V0AN 200

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

4.1 General

4.1.1 Overview

The USB communication class driver is a sample program for the USB function controller that is incorporated in the

V850E/ME2. It conforms to Universal Serial Bus Specification Revision 1.1 and operates on the embedded real-time

control operating system RX850 Pro (conforms to the µITRON 3.0 specifications).

This sample program uses the control endpoint (endpoint 0), IN and OUT of the bulk endpoint (endpoints 3 and 4),

and IN of the interrupt endpoint (endpoint 7), and is connected to the Windows XP standard communication class host

driver to operate as a virtual COM port. The communication class is defined as the class.

This sample program uses the emulation board SolutionGear MINI (SG-703111-1) as the hardware execution

environment. When using the SolutionGear MINI and sample program as is, create the execution object by following

the procedure described in 4.6 Load Module and confirm its operation by following the procedure described in 4.2

Execution of Load Module.

When using another target board instead of SolutionGear MINI, change the board referring to 4.3 System

Configuration, 4.4 RX850 Pro-Dependent Processing Modules, and 4.5 Section Map File, in accordance with

the board specifications.

When changing both SolutionGear MINI and sample program, change them referring to 4.3 System

Configuration, 4.4 RX850 Pro-Dependent Processing Modules, 4.5 Section Map File, 4.6 Load Module, and

4.7 USB Driver Functions.

The positioning of the USB communication class driver is shown below.

Caution Since the Windows XP communication class host driver is not supported officially, users have to

create an inf file for calling the driver module. For the inf file, refer to the description under

Device Classes in USB Developers FAQ on http://www.lvr.com/usbfaq.htm.

Remarks 1. Refer to Universal Serial Bus Class Definitions for Communication Devices Version 1.1 for details of

the USB communication class.

 2. The descriptions in 4.2.1 Execution procedure of load module assume the user environment

described in 4.1.3 Execution environment.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 201

Figure 4-1. Positioning of USB Communication Class Driver

USB communication class driver

Host machine

RX850 Pro

SolutionGear MINI (RTE-V850E/ME2-CB)

USB function controller (hardware)

UART
processing
module

UART
(hardware)

Host
machine

4.1.2 Development environment

This section assumes the following hardware and software environments are used for system development using

the sample program.

• Hardware environment

 Host machine: PC/AT-compatible machines (OS: Windows XP)

• Software environment

 Real-time OS: RX850 Pro Version 3.15

 USB communication class driver: Sample program set described in this section

 C compiler package: MULTI2000

 (CCV850 Version 3.5 (made by Green Hills Software, Inc.))

Caution If the directory configuration of the user environment differs from that handled in the build file of

the sample program, adjust the build file to the user environment.

Remark Refer to the help of MULTI (made by Green Hills Software, Inc.) for the description of the build file.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 202

4.1.3 Execution environment

This section assumes the following hardware and software environments are used for load module execution using

the sample program.

• Hardware environment

Host machine: PC/AT-compatible machines (OS: Windows XP)

IE control machine: PC/AT-compatible machines (OS: Windows XP)

Target board: SolutionGear MINI (SG-703111-1)

In-circuit emulator (IE): N-wire IE (RTE-2000-TP) (made by Midas Lab Inc.)

JTAG probe

USB cable

RS-232C cable: RS-232C cable included with SolutionGear MINI

• Software environment

Software for IE: PARTNER Setup Program Version 1.242

Remarks 1. Refer to APPENDIX A SG-703111-1 BOARD and the SG-703111-1 User’s Manual for details of

how to set up the execution environment.

 2. Refer to the RTE-2000-TP Hardware User’s Manual for details of how to set up the in-circuit

emulator (RTE-2000-TP).

 3. Refer to the PARTNER User’s Manual V800 Series Common Edition and NB85E-TP Part Edition

for details of PARTNER.

 4. The RS-232C cable is used to connect the serial connector JSIO2 on the target board and the host

machine communicating with UART, using the conversion connector. Refer to the SG-703111-1

User’s Manual for details of the relevant connector.

 5. In Figure 4-2, the IE control machine is used as the host machine communicating with UART.

Figure 4-2. Execution Environment

Host machine
(OS: Windows XP)

Machine for controlling
in-circuit emulator
(OS: Windows XP)

In-circuit
emulator

JTAG probe

USB cable

RS-232C
cable

Target board

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 203

4.2 Execution of Load Module

4.2.1 Execution procedure of load module

The following shows the procedure for executing the load module under the environment described in 4.1.3

Execution environment, taking the load module using the sample program as an example.

(1) Preparation of machine for controlling in-circuit emulator (IE)

Turn on the power and start up the IE control machine and the in-circuit emulator.

(2) Preparation of host machine

Turn on the power and start up the host machine (the IE control machine can be used as the host machine,

but it is strongly recommended to provide an independent machine for development).

(3) Reset SG-703111-1 board

Press the RESET button of the SG-703111-1 board to reset the SG-703111-1 board.

(4) Startup of software for IE

Start up software for IE.

Select the [Start] button → “All Programs” → “PARTNER” → “RPTSETUP (NB85ET)” in Windows.

Click the [Open] button and specify a project file; the [Run] button is then selectable. Click the [Run] button to start

up PARTNER. Make the board settings after startup. It is useful to create at this time the setting file loaded at startup.

Refer to APPENDIX A SG-703111-1 BOARD, PARTNER User’s Manual V800 Series Common Edition and

NB85E-TP Part Edition for setup files for the sample described in this section.

Cautions 1. Be sure to apply power to the target board before starting up the in-circuit emulator.

 2. If you want to load the setting file for resetting the target board after the in-circuit emulator is

started up, load the setting file (init.mcr in the example below) by inputting a command to the

command window, as shown below.

[Command input example]

><init.mcr<Enter>

(5) Loading the load module

Load the load module to the board using the in-circuit emulator function.

The load module (usb_communication.out in the example below) can be loaded by selecting [Load] in the

[File] menu on the toolbar, or input the L command (loading file) in the command window.

[Command input example]

>l usb_communication.out<Enter>

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 204

(6) Execution

The code loaded to the board is executed by pressing the F5 key or the [Go] button.

Remark The same operation is performed by selecting [Go] in the [Run] menu on the toolbar.

(7) USB connection

Connect the USB cable.

Connect connector B to the board and connector A to the host machine.

Cautions 1. The USB cable can be connected before/after starting up the target board.

 2. When the device is detected by the host machine, the software installation screen

appears. Install the Windows XP standard USB communication class host driver in this

sample program. Since the Windows XP communication class host driver is not

supported officially, users have to create an inf file for calling the driver module. For the

inf file, refer to the description under Device Classes in USB Developers FAQ on

http://www.lvr.com/usbfaq.htm.

(8) Startup of Device Manager

Open the Properties window from My computer and select the Hardware tab. Select the Device Manager to

start up the Device Manager.

Remark The Device Manager can also be started up from [Manage] menu of My computer or the Control

Panel.

(9) Confirmation of USB device connection

Make sure that “COM-USB xxx (COM3)” is displayed under Port (COM and LPT) in the Device Manager

screen. (“xxx” is the connection name set by the user.)

Caution An item other than COM3 (such as COM4) may be displayed depending on the usage state

of the COM port.

(10) Connection of RS-232C cable

Connect UARTB0 that is incorporated in the V850E/ME2 and the IE control machine using the RS-232C cable.

Cautions 1. The RS-232C cable can be connected before/after starting up the target board.

 2. The RS-232C cable is used to connect the serial connector JSIO2 on the target board and

the IE control machine. Refer to the SG-703111-1 User’s Manual for details of the

relevant connector, using the conversion connector.

(11) Confirmation of operation

Start up the terminal software, such as Hyper Terminal, in the host machine and IE control machine. The

following description uses an example that UARTB0 incorporated in the V850E/ME2 is connected to COM1.

How to set the host machine is described below. Read UARTB0 as COM1 for setting. Set the same values

to the host machine and IE control machine for the transfer rate, etc.; otherwise the system does not operate

normally.

Select ”All Programs” → “Accessories” → “Communications” → “Hyper Terminal”.

When the Hyper Terminal is started up, input the name for the new connection.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 205

The [Setting Connection] screen is then displayed. Select COM3 as the connection method on the USB side,

and COM1 on the UARTB0 side.

When the connection method is determined, the [Setting Port] screen is displayed. Select the transfer rate,

data length, parity, and stop bit.

When setting is complete, data transmission /reception can be checked.

To change the setting value of UART transfer rate, etc., disconnect from the line, select [Modem

Configuration] in the Properties menu of Hyper Terminal, and then change the setting on the setup screen. At

this time, change the setting in the same manner in the communicating device.

(12) Exiting program

Terminate the program under execution.

Click the forcible break button on the PARTNER screen, or select “Forcible Break” in the [Run] menu on the

toolbar to stop program execution.

(13) Shutting down in-circuit emulator

Shut down the in-circuit emulator and reset the target board by following the procedure described in (1).

Select [Exit] in the [File] menu on the toolbar to terminate PARTNER.

After terminating PARTNER, reset the target board by following the procedure described in (1).

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 206

4.2.2 Directory configuration

The directory configuration of files contained in this sample program set is shown below.

Caution It is recommended to place the directory of the USB communication class driver files directly

under the directory where the RX850 Pro is installed (\nectools32).

Figure 4-3. Sample Program Directory Configuration

nectools32 V850USB_CDC inc

rx85p

src

conf

src

USBF UART

The outline of each directory is shown below.

(1) nectools32

A directory created when the RX850 Pro is installed. Place the directory (directory name: V850USB_CDC) of

the driver directly under this directory.

(2) nectools32\V850USB_CDC

A directory for the USB communication class driver.

• usb_communication.bld: Build file of USB communication class driver

• common.lx: Section map file

(3) nectools32\V850USB_CDC\inc

A directory in which header files for the USB communication class driver are stored.

• errno.h: Header file for return value

• types.h: Header file for data type

• sys.h: Header file for system information

Caution sys.h (header file for system information) is usually created by command input using the

configurator when build is executed. If a build file in the sample program is used, however,

users are not required to create this file because the command is automatically executed

when build is executed.

(4) nectools32\V850USB_CDC\rx85p

A directory in which files for the RX850 Pro are stored.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 207

(5) nectools32\V850USB_CDC\rx85p\conf

A directory in which system files for the RX850 Pro are stored.

• sit.850: System information table

• svc.850: System call table

• sysi.tbl: System information table

• sysc.tbl: System call table

Cautions 1. Files in this directory are usually created by command input using the configurator when

build is executed. If a build file in the sample program is used, however, users are not

required to create these files because the command is automatically executed when

build is executed.

 2. sit.850 and sysi.tbl, svc.850 and sysc.tbl differ only in their file extension.

(6) nectools32\V850USB_CDC\rx85p\src

A directory in which files for RX850 Pro are stored.

• boot.850: Assembler file for boot processing

• entry.850: Assembler file for entry processing

• init.c: Source file for hardware initialization module

• init.h: Header file for hardware initialization module

• sys.cf: CF definition file

• varfunc.c: Source file for software initialization module

(7) nectools32\V850USB_CDC\src

A directory in which files of the USB communication class driver board-dependent module are stored.

• port.c: Source file for port setting

• port.h: Header file for port setting

(8) nectools32\V850USB_CDC\src\USBF

A directory in which files of the USB communication class driver USB processing module are stored.

• usbf850.c: Source file for USB device

• usbf850.h: Header file for USB device

• usbf850desc.h: USB descriptor definition file

• usbf850_communication.c: Source file for USB-UART interface

• usbf850_communication.h: Header file for USB-UART interface

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 208

(9) nectools32\V850USB_CDC\src\USBF\UART

A directory in which files of the USB communication class driver UART processing module are stored.

• uart_ctrl.c: Source file for UART processing module

• uart_ctrl.h: Header file for UART processing module

Caution Refer to 4.8 UART Processing Module for details of the UART processing module. The

UART processing module contained in the sample program only supports the minimum

functions required in this sample program. Therefore, the operation of this UART

processing module is not guaranteed when used as a general UART driver.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 209

4.3 System Configuration

4.3.1 Overview

System configuration means creation of the load module using files that are installed in the user’s development

environment (the host machine) from the USB communication class driver supply medium.

The system configuration procedure of USB communication class drivers is shown below.

(1) Describing RX850 Pro-dependent processing module

(2) Describing board-dependent module

(3) Describing USB communication class driver processing-dependent module

(4) Describing section map file

(5) Creating load module

Figure 4-4. System Configuration Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB communication class driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task
• USB-UART interface module
• UART processing module

Configurator

C compiler/assembler

Link editor

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 210

4.3.2 Describing RX850 Pro-dependent processing module

Some functions provided by the USB communication class driver use the functions of the real-time OS (RX850

Pro), and the processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

Remark Refer to 4.4 RX850 Pro-Dependent Processing Modules for details of the RX850 Pro-dependent

processing module.

4.3.3 Describing board-dependent module

The initialization processing, which is related to the processing dependent on the user’s execution environment

and application system, is provided as a board-dependent module in the USB communication class driver source

program.

The board-dependent module is as follows.

• CPU board-dependent module

 The port input/output manipulation required for the USB communication class driver is provided as a CPU board-

dependent module.

Caution Since port setting is handled in the same manner as setting of other registers, no dedicated

function is provided.

 Refer to the RX850 Pro standard header file SFR.h stored in \nectools32\inc850\common\ for the

register definition. For detailed processing, refer to the source program for port setting (port.c)

called from the boot processing module (boot.850) and software initialization module.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 211

4.3.4 Describing USB communication class driver processing-dependent module

The driver functions, which are used to implement the USB communication class driver functions, are provided as

the USB communication class driver processing-dependent module in this sample program.

The USB communication class driver processing-dependent modules are listed below.

• USB function controller initialization module

• USB function controller interrupt handlers

• USB function controller interrupt servicing tasks

• USB function controller general-purpose functions

• USB-UART interface module

• UART processing module

Remark Refer to 4.7 USB Communication Class Driver Functions for details of the USB communication class

driver processing-dependent module, and refer to 4.8 UART Processing Module for details of the

UART processing module.

4.3.5 Describing section map file

The section map file is used by the user to fix address assignment performed by the link editor.

The following five text areas are essential sections when using the RX850 Pro.

• Common part allocation area: .system section

• Interrupt servicing-related allocation area: .system_int section

• Scheduler-related allocation area: .system_cmn section

• System information area: .sit section

• Interface library/system call allocation area: .text section

Remark Refer to 4.5 Section Map File for details of the section map file.

4.3.6 Creating load module

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing modules, USB communication class driver processing-dependent module, and section map file,

that have been coded.

Remark Refer to 4.6 Load Module for details of how to create the load module.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 212

4.4 RX850 Pro-Dependent Processing Modules

4.4.1 Overview

Some functions provided by the USB communication class driver use the functions of the real-time OS (RX850

Pro), and the processing modules described by the user are executed under RX850 Pro control.

Therefore, it is necessary to describe the RX850 Pro-dependent processing modules for normal RX850 Pro

operation.

The RX850 Pro-dependent processing modules are listed below.

 CF definition file

 Entry processing

 System initialization processing

• Boot processing

• Hardware initialization module

• Software initialization module

4.4.2 CF definition file

An information file (CF definition file) that contains data provided to the RX850 Pro is required to configure the

system in which the RX850 Pro is used.

The following information is required for using the USB communication class driver function.

 Real-time OS information

• RX Series information

 SIT information

• System information

• System maximum value information

• System memory information

• Task information

• Interrupt handler information

• Initialization handler information

 SCT information

• Task management/task-associated synchronization system call information

• Interrupt servicing management system call information

• Time management system call information

Caution This sample program implements each functions using four tasks, six interrupt handlers, and

seven system calls. Therefore, the CF definition file, the maximum number of tasks to be created

must be set to four as the system’s maximum value information and the maximum number of

interrupt handlers to be created must be set to six for the USB communication class driver and

use of sta_tsk, ext_tsk, slp_tsk, and wup_tsk system calls must be defined as task

management/task-associated synchronization system call information, use of the loc_cpu and

unl_cpu system calls as interrupt servicing management system call information, and use of the

dly_tsk system call as time management function system call information. Of the six interrupt

handlers, three are used by the UART interrupt.

Remark Refer to the RX850 Pro Installation User’s Manual and the sample CF definition file (sys.cf) for details

of how to code the CF definition file.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 213

(1) Procedure for creating information files

A procedure for creating information files (system information table, system call table, and system information

header file) is shown below.

The information file can be created from the Windows command prompt.

Caution If a build file in the sample program is used, users are not required to create information

files in this procedure because they are automatically executed when build is executed.

<1> Change current directory

Move the current directory to the directory in which the CF definition file is stored using the cd command

of Windows.

A command input example when the directory in which the CF definition file is stored is C:\sample is

shown below.

[Command input example]

C:>cd C:\sample\rx850<Enter>

<2> Creating information files

Create the information file from the CF definition file that has been created in the specific description

format, using the configurator cf850pro.exe.

A command input example when creating three information files (system information table: sit.850,

system call table: svc.850, and system information header file: sys.h) from an input file (CF definition file

name: sys.cf) is shown below.

[Command input example]

C:>cf850pro –i sit.850 –c svc.850 –d sys.h sys.cf<Enter>

The information files are created from the CF definition file.

Caution A sample file (CF definition file) used for creating the information files is provided in the

sample program.

Remark Refer to the RX850 Pro Installation User’s Manual for details of the option to activate the

configurator cf850pro.exe and execution method.

4.4.3 Entry processing

This processing assigns a branch instruction to an interrupt handler to the handler address where control is forcibly

passed by the processor when a maskable interrupt occurs.

Assign the macro RTOS_ IntEntry_Indirect provided by the RX850 Pro (branch processing to interrupt servicing

management function provided by the RX850 Pro) to the handler address corresponding to the interrupt handler

(interrupt handler defined by interrupt handler information in the CF definition file) executed by the RX850 Pro.

Remark Refer to sample program entry.850 for details of how to code the entry processing.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 214

4.4.4 System initialization processing

The system initialization processing includes initialization processing (boot processing and hardware initialization

module) of hardware required for operating the RX850 Pro normally, and software initialization processing (nucleus

initialization module and Initialization handler).

The system initialization processing is performed first when the system is activated.

Caution Among the four types of system initialization processing, users are not required to describe the

nucleus initialization module because it is a function provided by the RX850 Pro.

The processing performed by the nucleus initialization module is shown below.

 Securement of system memory defined by CF definition file

• System pool 0

• User pool 0

 Generation and activation of management object defined by CF definition file

• Generation and activation of task

• Registration of interrupt handler

 Activation of initial task

 Generation and activation of idle task

 Calling software initialization module

 Passing control to scheduler

The idle task is a processing routine that is activated by the scheduler when a processing module (task) executed

by the RX850 Pro is no longer in the run or ready state, that is, no processing module targeted to the scheduling by

the RX850 Pro exist in the system. The idle task issues the HALT instruction.

(1) Boot processing

Boot processing is the function assigned to the processor reset entry, so it is executed first in the system

initialization processing.

The positioning of boot processing is shown below.

Figure 4-5. Positioning of Boot Processing

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 215

The processing executed by boot processing is shown below.

Remark Refer to sample program boot.850 for details of how to code boot processing.

• Setting tp, gp, and ep registers

 Values of the text pointer tp, global pointer gp, and stack pointer ep, which are required for execution of

each processing module (including boot processing), are undefined when a system is activated. Boot

processing first performs initial setting of these registers.

Caution In this chapter, it is recommended to set tp to “0”, gp to “global pointer symbol _gp

output by the compiler”, and ep to “element pointer symbol _ep output by the compiler”.

• Calling hardware initialization module

 Functions (hardware initialization module) are called to initialize the hardware on the target system.

 This step is not required if initialization of internal units is performed by other module.

Caution In this chapter, this step is not required because initialization of internal units is

performed by the software initialization module. Refer to the RX850 Pro Installation User’s

Manual for details.

• Passing control to nucleus initialization module

 The nucleus initialization module secures the system memory (system pool 0, user pool 0) and

creation/initialization of management objects, based on information described in the system information

table. Therefore, start address_sit of the system information table must be set to the r10 register before

passing control to the nucleus initialization module.

Caution The system information table is a table in which the CF definition file created in a specific

description format is converted to the assembly language format, using the utility tool

(configurator cf850pro.exe) provided by the RX850 Pro.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 216

(2) Hardware initialization module

The hardware initialization module is a function to initialize the hardware on the target system, and is called

from boot processing.

The positioning of the hardware initialization module is shown below.

Figure 4-6. Positioning of Hardware Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Software
initialization module

Scheduler Initialization task

The processing executed by the hardware initialization module is shown below.

Cautions 1. Users are not required to disable the maskable interrupts because they are masked at

initialization by default.

 2. Hardware initialization is performed by the software initialization module in the sample

program. Refer to the RX850 Pro Installation User’s Manual for details of the hardware

initialization module.

• Returning control to boot processing

 Control can be returned from the hardware initialization module to boot processing by issuing the “return();”

instruction, because the return address to the lp register is set when the hardware initialization module is

called from boot processing.

 If the hardware initialization module is described with the assembly language, this processing is

implemented by issuing the “jmp [lp]” instruction.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 217

(3) Software initialization module

The initialization handler is a function provided to enhance operability of the user software environment, and is

called from the nucleus initialization module.

The positioning of the software initialization module is shown below.

Figure 4-7. Positioning of Software Initialization Module

Processor reset entry

Boot processing

Hardware
initialization module

Nucleus
initialization module

Scheduler Initialization taskSoftware
initialization module

The processing executed by the software initialization module is shown below.

Remark Refer to sample program varfunc.c for how to code the software initialization module.

• Initialization of internal unit (real-time pulse unit (RPU))

 The RX850 Pro implements the timer operation functions (delay task wake-up, cyclic handler activation,

timeout, etc.) using the timer interrupt that occurs in a constant cycle. Therefore, the real-time pulse unit

must be initialized before the RX850 Pro starts processing.

 The compare register CMD0 included in the real-time pulse unit must be set so that timer interrupts occur in

a base clock cycle defined in system information in the CF definition file.

• Enabling timer interrupt acknowledgment

 Acknowledgment of timer interrupts is enabled. In addition, this enables the use of the timer operation

functions (delay task wake-up, cyclic handler activation, timeout, etc.) provided by the RX850 Pro when

processing by the nucleus initialization module ends.

• Passing control to nucleus initialization module

 Control can be returned from the initialization handler to the nucleus initialization module by issuing the

“return();” instruction, because the return address lp register is set when the initialization handler is called

from the nucleus initialization module.

 If the initialization handler is described with the assembly language, this processing is implemented by

issuing the “jmp [lp]” instruction.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 218

4.4.5 Time management function

The time management function of the RX850 Pro uses clock interrupts generated by the hardware (such as the

clock controller) in a constant cycle.

The RX850 Pro calls system clock processing when a clock interrupt occurs, and performs processing related to

the time such as updating the system clock, task delay wake-up, and activation of the cyclic handler.

The system clock is a software timer that holds the time used by the RX850 Pro for time management (48-bit width,

unit: ms).

After the system clock is set to “0H” by system initialization processing, it is updated by system clock processing in

base clock cycle units (specified at configuration).

Caution The system clock managed by the RX850 Pro is configured as 48 bits wide. Therefore,

overflowed numeric values (numeric values that cannot be expressed by 48 bits) are ignored by

the RX850 Pro. Refer to the RX850 Pro Basics User’s Manual for details of the time management

function of the RX850 Pro.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 219

4.5 Section Map File

4.5.1 Overview

The section map file is used by the user to fix address assignment performed by the link editor.

Required assignments for addresses other than the user processing program (such as .data and .bss sections) are

described in 4.5.2 Address assignment by RX850 Pro and 4.5.3 Other address assignment.

Address assignment performed in sample program common.lx is shown below.

Remark Refer to sample program common.lx for how to code the section map file.

Figure 4-8. Address Assignment Example

Processing module
Interface library/system call allocation area
MULTI reserved area
Common part allocation area
Interrupt servicing module
Scheduler-related allocation area
System information area

Interrupt vector table

Copy information storage area

SDRAM

Internal
instruction

RAM

.boot

.text

.syscall

.system

.system_int

.system_cmn

.sit

.rodata

.fixaddr

.fixtype

.rosdata

.data

.sdabase

.sdata

.sbss

.bss

.tdata

.heap

.secinfo

0 2 8 0 0 0 0 0 H
0 2 7 F F F F F H

0 0 8 0 8 0 0 0 H
0 0 8 0 7 F F F H

0 0 8 0 0 0 0 0 H
0 0 7 F F F F F H

0 0 0 2 0 0 0 0 H
0 0 0 1 F F F F H

0 0 0 0 1 0 0 0 H
0 0 0 0 0 F F F H

0 0 0 0 0 0 8 0 H
0 0 0 0 0 0 7 F H
0 0 0 0 0 0 0 0 H

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 220

4.5.2 Address assignment by RX850 Pro

The RX850 Pro consists of five text areas: common part allocation area, interrupt servicing-related allocation area,

scheduler-related allocation area, system information area, and interface library/system call allocation area. Using

these areas, memory areas for which a large space is required can be assigned to the external RAM, and memory

areas for which a high-speed access is required (interrupt servicing module, scheduling processing module) can be

assigned to the internal instruction RAM (00000000H to 0001FFFFH).

Caution All five text areas are allocated to the internal instruction RAM in the sample program.

• Common part allocation area (.system section)

 Processing of the RX850 Pro (such as task management function, task-associated synchronization function) is

assigned to this area.

• Interrupt servicing-related allocation area (.system_int section)

 Among the interrupt servicing management functions provided by the RX850 Pro, interrupt preprocessing that is

performed when control is passed to the interrupt handler and interrupt postprocessing that is performed when

control is handed back to the processing module in which a maskable interrupt occurs are assigned to this area.

 By assigning the interrupt servicing module to the internal instruction RAM, therefore, response performance to

the interrupt handler can be improved.

Caution It is recommended to assign the interrupt servicing module to the internal instruction RAM.

• Scheduler-related allocation area (.system_cmn section)

 Among the scheduling function provided by the RX850 Pro, task wake-up processing and task scheduling

processing are assigned to this area.

 By assigning the scheduling processing section to the internal instruction RAM, therefore, task wake-up

processing and task scheduling processing are accelerated, as well as system call processing involving

scheduling processing.

Caution It is recommended to assign the scheduling module to the internal instruction RAM.

• System information area (.sit section)

 The system information table created by executing the configurator cf850.exe on the CF definition file is assigned

to this area.

 The system information table includes various data required for executing the nucleus initialization module

(securement of the system memory and creation/initialization of management objects).

• Interface library/system call allocation area (.text section)

 The instructions including system calls are assigned to this area.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 221

• System memory

 Various management block required for implementing functions provided by the RX850 Pro (such as the task

management block, semaphore management block), area in which the stack used by the interrupt handler or

task is assigned (system pool 0), and area in which dynamic memory manipulation (such as acquisition/release

of memory blocks) from the processing module is enabled (user pool 0), are assigned to this area.

Cautions 1. The ”system memory start address” must be specified when creating the CF definition file.

Be sure to specify the address when defining the system memory in the section map file.

 2. The user can specify any section name in the system memory.

4.5.3 Other address assignment

The other sections for which address assignment is required are described below.

• MULTI reserved area (.syscall section)

 This area is used as a work area by the debugger MULTI (made by Green Hills Software, Inc.).

Cautions 1. The .syscall section must be defined regardless of whether or not MULTI is used.

 2. Be sure to specify 4-byte alignment when defining the .syscall section.

• Copy information storage area (.secinfo section)

 This area is used by the link editor to output information (start address, size) required for transferring program

(data, text) of a section for which the ROM identifier is specified in the section map file from ROM to RAM.

 Specification of the ROM identifier is required when performing ROMization of a processing module. Therefore,

definition of the .secinfo section is not required when ROMization is not performed.

Caution This section is empty in the sample program because ROM identifier specification is not

performed.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 222

4.6 Load Module

4.6.1 Overview

An ELF-format load module is created by executing the C compiler, assembler, or linker for the RX850 Pro-

dependent processing module, USB communication class driver processing-dependent module, section map file, that

have been coded.

The procedure for creating load modules is shown below.

Caution The load module corresponding to the sample program can be created by executing the .bld file

in the sample program. However, definition of the .bld file must be adjusted to the user

development environment.

Figure 4-9. Load Module Creation Procedure

CF definition file

Load module (ELF format)

Relocatable object files
Section map file

Library file

Information files
• System information table
• System call table

RX850 Pro-dependent processing modules
• Entry processing
• Boot processing
• Hardware initialization module
• Software initialization module

USB communication class driver processing-dependent modules
• USB function controller initialization module
• USB function controller interrupt servicing handler
• USB function controller interrupt servicing task
• USB-UART interface module
• UART processing module

Configurator

C compiler/assembler

Link editor

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 223

4.6.2 Creating load module

An ELF-format load module can be created from the RX850 Pro-dependent processing module, USB

communication class driver processing-dependent module, and section map file, that have been coded, using the

following procedure.

(1) Creation of system information table and system call table

Original CF definition file formats are excluded from the link processing performed by the link editor when

creating a load module.

Therefore, a file that can be assembled (system information table or system call table) must be created using

the utility tool (configurator cf850.exe) provided by the RX850 Pro.

Remark Refer to 4.4.2 (1) Procedure for creating information file for how to create the system

information table and system call table.

(2) Creation of object file

A relocatable object file is created by executing the C compiler/assembler for the processing module (file

described in the C language/assembly language) shown below.

 RX850 Pro-dependent processing module

• System information table

• System call table

• Entry processing

• Boot processing

• Hardware initialization module

• Initialization handler

 USB communication class driver processing-dependent module

 UART processing module

(3) Creation of load module

An ELF-format load module is created by executing the link editor for relocatable object file created in (2),

library files, and section map file.

libansi.a ANSI C library

libind.a C library made by Green Hills Software, Inc. (routines independent of target CPU)

libarch.a C library made by Green Hills Software, Inc. (routines dependent of target CPU)

libsys.a C library made by Green Hills Software, Inc. (system call, initialization routines)

rxcore.o Nucleus common part object

librxp.a Nucleus library

libchp.a Interface library

rxcore.o, librxp.a, and libchp.a are provided by the RX850 Pro, and libansi.a, libind.a, libarch.a, and libsys.a

are provided by the CCV850 (made by Green Hills Software, Inc.).

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 224

4.7 USB Communication Class Driver Functions

4.7.1 Overview

Initialization processing performed by the USB function controller, as well as tasks and interrupt handlers to

implement USB communication class driver processing, must be described in the USB communication class driver.

A list of USB communication class driver processing-dependent modules is shown below.

• USB function controller initialization processing

 This module is called from the RX850 Pro software initialization module and initializes the USB function controller.

• USB function controller interrupt handlers

 This is an interrupt servicing-dedicated routine that is called each time an interrupt by the USB function controller

occurs, and is defined in the CF definition file.

Caution Interrupts other than required are masked in this sample program.

 The following three interrupts are used in this sample program.

• SETRQ interrupt reported by INTUSB0B signal

 (Receives a SET_XXXX request to be handled automatically and indicates it is automatically

handled)

• CPUDEC interrupt reported by INTUSB0B signal

 (Indicates that there is a request that is decoded by FW in the UF0E0ST register)

• BKO2DT interrupt reported by INTUSB1B signal

 (Indicates that data has been received normally by the UF0BO2 register)

• USB function controller interrupt servicing task

 This task is called from the USB function controller interrupt handler and performs processing for each interrupt

source (such as register setting, data transmission/reception processing).

• USB function controller general-purpose function

 This is a general-purpose function used by the USB communication class driver to perform the STALL response

setting for each endpoint and transmission/reception processing.

Remark Refer to sample program usbf850.c for how to code the USB communication class driver processing-

dependent module.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 225

• USB-UART interface module

 This module performs processing of USB communication class requests specific to device class, and USB-UART

data transmission/reception.

Caution The following five requests specific to device class can be acknowledged in this sample

program. Refer to Universal Serial Bus Class Definitions for communication Devices Version

1.1 for details of each request.

• SEND ENCAPSULATED COMMAND request

• GET ENCAPSULATED RESPONSE request

• SET LINE CODING request

• GET LINE CODING request

• SET CONTROL LINE STATE request

Remark Refer to sample program usbf850_communication.c for how to code the USB-UART interface module.

• USB suspend/resume processing

 Since the USB suspend/resume processing depends on the system, it is not supported in this sample program.

If this processing is necessary in your system, add the processing making allowances for the following points.

 The suspend/resume state is reported to the USB function controller incorporated in the V850E/ME2 by an

interrupt (INTUSB0B signal). Therefore, whether the current status is suspend or resume can be judged by

checking the UF0IS0. RSUSPD bit in the interrupt handler (for the INTUSB0B signal); if this bit is 1, the

UF0EPS1.RSUM bit is checked to judge the status.

 Processing can be added by adding the above code to judge the status to the interrupt handler (for the

INTUSB0B signal) and wakes up a task to perform necessary processing from the code.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 226

4.7.2 Processing flows

The processing flows of initialization processing and interrupt servicing in the sample program are shown below.

(1) Initialization processing

Initialization processing of the USB device is called and executed by the software initialization module.

The flow of USB device initialization processing (at power application) in the sample program is shown below.

Figure 4-10. Flowchart of Initialization Processing

Initialization processing started

Clock supplied

End

Interrupt mask released

Interrupt mask register set

Measure for floating disabled

Measure for floating enabled

NAK of control endpoint set

USB connection
(terminal resistor manipulation)

Initialize request data
register area

Interface and endpoint set

The processing executed by the initialization processing is shown below.

Caution Initialization processing is required except for processing of ports. The pin assignment may

differ if another target board is used. In such a case, read the descriptions in this manual

making changes as necessary to match the specifications of the target board to be used.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 227

• Clock supply

 Be sure to set the UCKC.UCKCNT bit to 1 before setting the USB function controller register. A clock to

USB is supplied by setting this bit to 1.

 The P10 pin is used for inputting a clock, so set the P10 pin to input mode to enable clock input.

• Release of interrupt mask

 Masking of the USB-related interrupt signal is released using the interrupt control register.

• Enabling floating measure

 The UF0BC.UBFIOR bit is cleared to 0 to prevent mis-recognition due to a bus reset caused by an

undefined value when the cable is disconnected.

• Setting of NAK for control endpoint

 A NAK response is sent to all the requests including automatic execution requests.

 This setting is made so that hardware does not return unexpected data in response to an automatic

execution request until registration of data used for the automatic execution request is complete.

• Initialization of request data register area

 Descriptor data used to respond to a Get Descriptor request is registered in a register.

 Data such as device status, endpoint 0 status, device descriptor, configuration descriptor, interface

descriptor, and endpoint descriptor are registered.

Caution Registration of the descriptor for the class may be required depending on the class.

The USB communication class is defined in this sample program, and only the USB

standard descriptor is used.

• Setting of interface and endpoint

 Information such as the number of supported interfaces, the state of alternative settings, relationship

between the interface and endpoints are set to a register.

• Release of NAK setting at control endpoint

 The NAK setting at control endpoint (endpoint 0) is released when registration of data for an automatic

execution request is complete.

• Setting of interrupt mask register

 Masking for each interrupt source shown in the interrupt status register of the USB function controller.

• USB connection (terminal resistor manipulation)

 The D+ signal is pulled up.

• Disabling floating measure

 The floating measure is disabled by setting the UF0BC.UBFIOR bit to 1.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 228

(2) Interrupt servicing

The sample program operates by interrupt events after initialization. The device is in the idle state as long as

no event occurs. However, interrupts are reported by UART, as well as by the USB function controller.

Figures 4-11 and 4-12 show the interrupt servicing flows in the sample program.

Caution The flowchart in Figure 4-11 illustrates the flow of interrupt servicing reported by the

INTUSB0B signal of the USB function controller.

 The flowchart in Figure 4-12 illustrates the flow of interrupt servicing reported by the

INTUSB1B signal of the USB function controller.

 Refer to 4.8 UART Processing Module for details of UART interrupt servicing.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 229

Figure 4-11. Flowchart of Interrupt Servicing (1)

Interrupt occurs on INTUSB0B signal

Yes

No

Interrupt servicing task activated

Interrupt handler

Interrupt servicing task
(task_usb0b)

Requests analyzed

Request processed

Request data read
(data reception processing)

SETRQ interrupt cleared

UART initialized
(usb_cdc_uart_init called)

Interrupt source is
CPUDECNote?

Yes

Yes

No

No

Interrupt source is
SETRQ?

UF0MODS
CONF == 1?

Interrupt handler

Note The CPUDEC and SETRQ interrupts can be acknowledged using the INTUSB0B signal of the USB

communication class driver.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 230

The processing of an interrupt by the INTUSB0B signal in the sample program is shown below.

[Processing in interrupt handler]

• Confirmation of interrupt source

 In this sample program, the analyzed interrupt status varies depending on the executed interrupt handler.

 The CPUDEC and SETRQ interrupts can be acknowledged using the INTUSB0B signal. When these

interrupts occur, the interrupt handler is activated by the INTUSB0B signal. This interrupt handler reads the

UF0IS1 register and judges if the interrupt source is CPUDEC interrupt or not. Furthermore, the interrupt

handler reads the UF0IS0 register to confirm whether or not the CONF bit is set to 1.

Caution In this sample program, the interrupt handlers to be used are registered in the CF

definition file in advance.

• Activation of interrupt servicing task

 The task_usb0b task is activated if the interrupt source is CPUDEC.

Caution In this sample program, the tasks to be activated are registered in the CF definition file in

advance.

• Initialization of UART

 If the interrupt source is SETRQ, the interrupt handler reads the UF0IS0 register to confirm whether or not

the CONF bit is set to 1. If the CONF bit 1, the interrupt handler calls the usb_cdc_uart_init function to

initialize UART.

[Processing in task_usb0b task]

• Reading request data

 SETUP data is read from the UF0E0ST register.

• Analysis of request

 SETUP data that has been read is analyzed and the purpose of the request is confirmed.

• Processing of requests

 Processing of the analyzed request is performed.

 In the sample program, the standard device request Get Descriptor (String Descriptor) and device class-

specific request are handled.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 231

Figure 4-12. Flowchart of Interrupt Servicing (2)

Interrupt occurs on INTUSB1B signal

BKO2DT

Interrupt handler

Interrupt servicing task
(task_usb1b)

Interrupt servicing task activated

Interrupt source confirmedNote

Other than
BKO2DT

Data reception processing
(usbf850_usb_to_uart called)

Note Only the BKO2DT interrupt can be acknowledged using the INTUSB1B signal of the USB

communication class driver.

The processing of an interrupt by the INTUSB1B signal in the sample program is shown below.

• Activation of interrupt servicing task

 The task_usb1b task is activated without confirming the interrupt source.

Caution In this sample program, the tasks to be activated are registered in the CF definition file in

advance.

• Confirmation of interrupt source

 Only the BKO2DT interrupt can be acknowledged using the INTUSB1B signal. When this interrupt occurs,

the interrupt handler is activated by the INTUSB1B signal.

 The interrupt handler does not check the interrupt source, but the activated task confirms that the interrupt

source is BKO2DT.

Caution In this sample program, the interrupt handlers to be used are registered in the CF

definition file in advance.

• Data reception processing

 If the interrupt source is BKO2DT, the function to transfer data to UART (usbf850_usb_to_uart) is called

from the USB device.

Remark Refer to 4.8 UART Processing Module for details of UART processing.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 232

4.7.3 USB communication class driver descriptor information

The USB standard descriptors defined in this sample program are shown below.

Descriptors described in (a) to (d) are the minimum required descriptors.

Remark Refer to Universal Serial Bus Specification Revision 1.1 for details.

(a) Device descriptor

This descriptor holds general information of the device. One device descriptor must be prepared for each

device. The information contained in this descriptor is used for identifying a unique in the device configuration.

The USB communication class is defined in this sample program.

Table 4-1. Device Descriptor

Offset Size (Byte) Value Description

0 1 12H Length value of this descriptor (byte)

1 1 01H Descriptor type (device)

2 2 10H/01H USB version (USB 1.1)

4 1 02H Class code (communication device class)

5 1 00H Sub-class code

6 1 00H Protocol code

7 1 40H Maximum packet size at endpoint 0

8 2 09H/04H Vendor ID (NEC Electronics)

10 2 FDH/FFH Product ID

12 2 01H/00H Device release number

14 1 01H Index to string descriptor (Manufacturer)

15 1 02H Index to string descriptor (Product)

16 1 03H Index to string descriptor (Serial Number)

17 1 01H Number of devices that can be configured

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 233

(b) Configuration descriptor

This descriptor holds information on concrete device configuration.

Table 4-2. Configuration Descriptor

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 02H Descriptor type (configuration)

2 2 30H/00H Total length value of descriptor returned together with configuration

descriptor in response to the Get Descriptor request

4 1 02H Number of interfaces supported in the configuration

5 1 01H Configuration value

6 1 00H Index to string descriptor (configuration)

7 1 C0H Configuration of device (self-powered/remote wakeup function)

8 1 00H Maximum power consumption of device

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 234

(c) Interface descriptor

This descriptor holds concrete interface information in the configuration.

The configuration provides two interfaces in this sample program.

This descriptor is always returned as a part of the configuration descriptor, and is not accessed directly by a

Get Descriptor request or Set Descriptor request.

Table 4-3. Interface Descriptor (1)

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 04H Descriptor type (interface)

2 1 00H Interface value

3 1 00H Alternate set value

4 1 01H Endpoint number (excluding endpoint 0)

5 1 02H Interface class (communication interface class)

6 1 02H Interface sub-class (abstract control model)

7 1 00H Interface protocol (No Class: USB specification)

8 1 00H Index to string descriptor (interface)

Table 4-4. Interface Descriptor (2)

Offset Size (Byte) Value Description

0 1 09H Length value of this descriptor (byte)

1 1 04H Descriptor type (interface)

2 1 01H Interface value

3 1 00H Alternate set value

4 1 02H Endpoint number (excluding endpoint 0)

5 1 0aH Interface class (data interface class)

6 1 00H Interface sub-class (data class)

7 1 00H Interface protocol (No Class: USB specification)

8 1 00H Index to string descriptor (interface)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 235

(d) Endpoint descriptor

This descriptor holds information required by the host for determining the bandwidth requirements for each

endpoint.

This descriptor is always returned as a part of the configuration descriptor, and is not accessed directly by a

Get Descriptor request or Set Descriptor request.

Table 4-5. Endpoint Descriptor (Interrupt IN)

Offset Size (Byte) Value Description

0 1 07H Length value of this descriptor (byte)

1 1 05H Descriptor type (endpoint)

2 1 87H Endpoint address value

3 1 03H Endpoint transfer type

4 2 08H/00H Maximum packet size at endpoint

6 1 0AH Interval (ms): Valid only for isochronous and interrupt endpoints

Table 4-6. Endpoint Descriptor (Bulk IN)

Offset Size (Byte) Value Description

0 1 07H Length value of this descriptor (byte)

1 1 05H Descriptor type (endpoint)

2 1 83H Endpoint address value

3 1 02H Endpoint transfer type

4 2 40H/00H Maximum packet size at endpoint

6 1 00H Interval (ms): Valid only for isochronous and interrupt endpoints

Table 4-7. Endpoint Descriptor (Bulk OUT)

Offset Size (Byte) Value Description

0 1 07H Length value of this descriptor (byte)

1 1 05H Descriptor type (endpoint)

2 1 04H Endpoint address value

3 1 02H Endpoint transfer type

4 2 40H/00H Maximum packet size at endpoint

6 1 00H Interval (ms): Valid only for isochronous and interrupt endpoints

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 236

(e) String descriptor

This descriptor holds information on the manufacturer of the device in this sample program.

Table 4-8. String Descriptor (1)

Offset Size (Byte) Value Description

0 1 04H Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 2 09H/04H Language type used by string descriptor (English/US)

Table 4-9. String Descriptor (2)

Offset Size (Byte) Value Description

0 1 2AH Length value of this descriptor (byte)

1 1 03H Descriptor type (string)

2 40 'N','E','C','','E','l','e','c','t','r','o','n','i','c','s',' ','C','o','.' Manufacturer:

NEC Electronics Co.

Table 4-10. String Descriptor (3)

Offset Size (Byte) Value Description

0 1 16H Length value of this descriptor (byte)

1 1 06H Descriptor type (string)

2 20 'C','o','m','m','u','n','i','D','r','v' Product:

CommuniDrv

Table 4-11. String Descriptor (4)

Offset Size (Byte) Value Description

0 1 16H Length value of this descriptor (byte)

1 1 06H Descriptor type (string)

2 20 '0','_','9','8','7','6','5','4','3','2' Serial number:

0_98765432

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 237

• Descriptor configuration

The descriptor configuration in this sample program is shown below. This configuration consists of the five

descriptors described before.

Caution The device descriptor, configuration descriptor, and string descriptor are accessed by an

independent Get Descriptor request. The interface descriptor and endpoint descriptor are

accessed as part of the configuration descriptor.

Figure 4-13. Descriptor Configuration

Device descriptor

Configuration descriptor

Interface descriptor
(Interface value 0/Alternate value 0)

String descriptor Endpoint descriptor
(Interrupt IN)

Interface descriptor
(Interface value 1/Alternate value 0)

Endpoint descriptor
(Bulk IN)

Endpoint descriptor
(Bulk OUT)

Hierarchy (high) Hierarchy (low)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 238

4.7.4 Data macro

The data macros (data type, return value, etc.) used by the USB communication class driver are shown below.

(1) Data type

Data type macro for parameters specified when a USB communication class driver function is called is

defined in the header file types.h in nectools32\USB_CDC\inc.

A list of the data types is shown below.

Table 4-12. List of Data Types

Macro Type Description

(*PFV) () void Processing module activation address

(2) Return value

Macro of the return value from USB communication class driver function is defined in the header file errno.h in

nectools32\USB_CDC\inc.

A list of the return values is shown below.

Table 4-13. List of Return Values

Macro Type Description

DEV_OK 0 Normal termination

DEV_ERROR −1 Abnormal termination

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 239

4.7.5 Data structure

The data structure used by the USB communication class driver is shown below.

(1) USB device request structure

The USB device request structure is defined in USB header file usbf850.h in nectools32\V850USB_CDC\src

\USBF. The USB device request structure USB_SETUP is shown below.

typedef struct {

 unsigned char RequstType; /*bmRequestType */

 unsigned char Request; /*bRequest */

 unsigned short Value; /*wValue */

 unsigned short Index; /*wIndex */

 unsigned short Length; /*wLength */

 unsigned char* Data; /*index to Data */

} USB_SETUP;

(2) UART mode table structure

The UART mode table structure is defined in header file types.h in nectools32\V850USB_CDC\inc. The

UART mode table structure UART_MODE_TBL is shown below.

typedef struct _UART_MODE_TBL{

 char DTERate[4]; /*transfer rate(bps)*/

 char STOPBIT; /*length of the stop bit - 0:1bit (1:1.5bits) 2:2bits*/

 char PARITYType; /*parity bit - 0:None 1:Odd 2:Even (3:Mark) 4:Space */

 char DATABits; /*data size (number of the bits:5,6,7,8,16) */

} UART_MODE_TBL , *PUART_MODE_TBL;

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 240

4.7.6 Description of functions

(1) Overview

A list of the processing modules described in this chapter is shown below.

Caution Functions starting with “usbf850” are used by the USB function controller incorporated in

the V850E/ME2. Functions starting with “uartb0850” are used by UARTB0 incorporated in

the V850E/ME2. Refer to 4.8.4 Description of functions for details of UARTB0 functions.

Table 4-14. List of Processing Modules in Sample Program (1/3)

Processing Module Name Function Name File Name Remark

RX850 Pro-dependent processing module

CF definition file − sys.cf −

Entry processing − entry.850 Assembly

language

Boot processing boot boot.850 Assembly

language

Hardware initialization module __InitSystemTimer init.c C language

Initialization handler varfunc varfunc.c C language

Header file − init.h −

Board-dependent processing module

Port initialization port850_reset port.c C language

Header file − port.h −

Header file

Data type declaration − types.h −

Return value declaration − errno.h −

Build file − usb_bus.bld −

Section map file − common.lx −

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 241

Table 4-14. List of Processing Modules in Sample Program (2/3)

Processing Module Name Function Name File Name Remark

USB communication class driver processing module (USB processing module)

Initialization function usbf850_init usbf850.c C language

Interrupt handler (INTUSB0B signal) usbf850_inthdr usbf850.c C language

Interrupt handler (INTUSB1B signal) usbf850_inthdr1 usbf850.c C language

Interrupt handler (INTUSB2B signal) usbf850_inthdr2 usbf850.c C language

Interrupt servicing task (INTUSB0B signal) task_usb0b usbf850.c C language

Interrupt servicing task (INTUSB1B signal) task_usb1b usbf850.c C language

Interrupt servicing task (INTUSB2B signal) task_usb2b usbf850.c C language

Data transmission function usbf850_data_send usbf850.c C language

Data reception function usbf850_data_receive usbf850.c C language

Null data transmission function (endpoint 0) usbf850_sendnullEP0 usbf850.c C language

Stall response processing function (endpoint 0) usbf850_sendstallEP0 usbf850.c C language

Stall response processing function (endpoint 1) usbf850_bulkin1_stall usbf850.c C language

Stall response processing function (endpoint 2) usbf850_bulkout1_stall usbf850.c C language

System call calling function (loc_cpu) usbf850_loc_cpu usbf850.c C language

System call calling function (unl_cpu) usbf850_unl_cpu usbf850.c C language

Request processing function usbf850_rxreq usbf850.c C language

Request data read function usbf850_rxreq_read usbf850.c C language

Standard request processing function usbf850_standardreq usbf850.c C language

Get Descriptor request processing function usbf850_getdesc usbf850.c C language

Stall response processing function for setting request

processing function (endpoint 0)

usbf850_sstall_ctrl usbf850.c C language

USB header file − usbf850.h −

USB descriptor declaration − usbf850desc.h −

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 242

Table 4-14. List of Processing Modules in Sample Program (3/3)

Processing Module Name Function Name File Name Remark

USB communication class driver processing module (USB-UART interface module)

USB-UART interface initialization
function

usb_cdc_init usbf850_communication.c C language

SEND ENCAPSULATED COMMAND

request processing function

usbf850_send_encapsulated_command usbf850_communication.c C language

GET ENCAPSULATED RESPONSE

request processing function

usbf850_get_encapsulated_response usbf850_communication.c C language

SET LINE CODING request
processing function

usbf850_set_line_coding usbf850_communication.c C language

GET LINE CODING request
processing function

usbf850_get_line_coding usbf850_communication.c C language

SET CONTROL LINE STATE
request processing function

usbf850_set_control_line_state usbf850_communication.c C language

USB-UART data transmission
function

usbf850_usb_to_uart usbf850_communication.c C language

USB-UART data transmission
function

usbf850_uart_to_usb usbf850_communication.c C language

Registration processing function of
device class-specific request
processing function for USB
communication class

usbf850_setfunction_communication usbf850_communication.c C language

Header file for USB-UART interface
function

− usbf850_ communication.h −

Function macro

V850E/ME2 peripheral I/O register
setting function (1-byte units: 8 bits)

USBF850REG_SET usbf850.h C language

V850E/ME2 peripheral I/O register
read function (1-byte units: 8 bits)

USBF850REG_READ usbf850.h C language

V850E/ME2 peripheral I/O register
setting function (1-word units: 16 bits)

USBF850REG_SET_W usbf850.h C language

V850E/ME2 peripheral I/O register
read function (1-word units: 16 bits)

USBF850REG_READ_W usbf850.h C language

(2) Function tree

The calling relationship between the USB communication class driver processing-dependent modules

(function tree) is illustrated below.

Remark Refer to 4.8.4 (2) Function tree for details of the calling processing of the UART processing

module.

Figure 4-14. Sample Program Function Tree (1/3)

usbf850_init

USBF850REG_SET

usbf850_setfunction_communication

Caution usbf850_init is called from the initialization handler.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 243

Figure 4-14. Sample Program Function Tree (2/3)

usbf850_inthdr

usbf850_rxreq

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_loc_cpu System call
loc_cpu

System call
unl_cpu

usbf850_unl_cpu

usbf850_rxreq_read

usbf850_standardreq

usbf850_sendstallEP0

usbf850_sendstallEP0

usbf850_getdesc

usbf850_sendstallEP0

usbf850_usb0b
(task activation)

Processing of INTUSB0B signal

usbf850_get_line_coding usbf850_data_send

usbf850_sstall_ctrl

uartb0850_uart_init

usbf850_sendstallEP0

usbf850_set_control_line_state usbf850_sendnullEP0

usbf850_send_encapsulated_command

uartb0850_data_send

usbf850_data_receive

usbf850_set_line_coding

uartb0850_uartmode_set

usbf850_data_receive

usbf850_sendnullEP0

uartb0850_uartmode_set

usbf850_get_encapsulated_response

Remark The shaded portions in this figure indicate the USB-UART interface functions described in this

section. The portions enclosed by the dashed lines indicate the UART processing module functions.

Refer to 4.8 UART Processing Module for details of the UART processing module function.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 244

Figure 4-14. Sample Program Function Tree (3/3)

usbf850_inthdr1

usbf850_data_receive

uartb0850_data_send

usbf850_usb_to_uart

task_usb1b
(task activation)

Processing of INTUSB1B signal

usbf850_sendstallEP0

USBF850REG_READ

usbf850_uart_to_usb

usbf850_data_send

USBF850REG_SET

Processing of INTUSB2B signal

usbf850_inthdr2 task_usb1b
(task activation)

Remark The shaded portions in this figure indicate the USB-UART interface functions described in this

section. The portions enclosed by the dashed lines indicate the UART processing module functions.

Refer to 4.8 UART Processing Module for details of the UART processing module function.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 245

(3) Description of functions

The functions of the USB communication class driver processing-dependent module are explained in the

following format.

Remark The functions of the UART processing module are explained in the same format as described in

4.8.4 (3) Description of functions.

xxxx … <1> Valid caller: − − − − … <2>

[Outline] … <3>

−

−

[C language format] … <4>

− − − − − − − −

[Parameter] … <5>

I/O Parameter Description

[Operation] … <6>

−

−

[Return value] … <7>

−

−

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 246

<1> Name

Indicates the function name.

<2> Valid caller

Indicates the type of the processing module from which a function can be called.

Task: The function can be called only from a task.

Non-task: The function can be called only from a non-task.

Non-task | Task: The function can be called from a task or non-task.

−: Interrupt handler or task, and is not used to call functions.

<3> Outline

Shows the outline of a function operation.

<4> C language format

Shows the description format when calling a function from the processing module described in the C

language.

<5> Parameter

Shows the function parameter in the following format.

I/O Parameter Description

A B C

A: Parameter type

 I: Parameter input to the USB function controller

 O: Parameter output from the USB function controller

B: Parameter data type

C: Description of parameter

<6> Operation

Describes detailed operation of the function.

<7> Return value

Indicates the return value from a function using the data macro or numeric value.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 247

usbf850_init Valid caller: Non-task | Task

[Outline]

This is a function that initializes the USB function controller incorporated in the V850E/ME2.

[C language format]

void usbf850_init (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called from the software initialization module and performs processing to initialize the USB function

controller incorporated in the V850E/ME2.

Remark Refer to 4.7.2 (1) Initialization processing for details of initialization processing.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 248

usbf850_inthdr Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB0B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This is the interrupt handler activated by the INTUSB0B signal (USB function status 0).

In this sample program, the interrupt handler checks the interrupt source and activates the interrupt servicing task

(task_usb0b) only when the source is the CPUDEC interrupt. If the source is the SETRQ interrupt, the interrupt

handler calls the USB-UART interface initialization processing function (uartb0850_uart_init). This handler is defined

in the CF definition file.

Remark Refer to 4.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 249

usbf850_inthdr1 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB1B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr1 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB1B signal (USB function status 1).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb1b). This handler is

defined in the CF definition file.

Remark Refer to 4.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 250

usbf850_inthdr2 Valid caller: −

[Outline]

This is an interrupt handler (for the INTUSB2B signal) used by the USB function controller incorporated in the

V850E/ME2.

[C language format]

ID usbf850_inthdr2 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the INTUSB2B signal (USB function status 2).

In this sample program, the interrupt handler activates the interrupt servicing task (task_usb2b). This handler is

defined in the CF definition file.

Caution This handler is not called because all the interrupts reported by the INTUSB2B signal are masked

in this sample program.

[Return value]

Object ID number (task ID number)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 251

task_usb0b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB0B signal.

[C language format]

void task_usb0b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB0B interrupt signal (USB function status 0 interrupt).

In the sample program, this task calls the usbf850_rxreq function and performs processing of the USB standard

device request and device class-specific request.

Caution In this sample program, the standard device request Get Descriptor (String Descriptor) that is not

responded automatically by the USB function controller incorporated in the V850E/ME2 is

handled.

Remark Refer to 4.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 252

task_usb1b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB1B signal.

[C language format]

void task_usb1b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB1B interrupt signal (USB function status 1 interrupt).

In the sample program, this task confirms the interrupt source and calls the function (usbf850_usb_to_uart) to transfer

data from the USB device to UART, if the interrupt source is BKO2DT.

Remark Refer to 4.7.2 (2) Interrupt servicing for details of interrupt servicing.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 253

task_usb2b Valid caller: −

[Outline]

This is a task that performs interrupt servicing by the INTUSB2B signal.

[C language format]

void task_usb2b (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the INTUSB2B interrupt signal (USB function status 2 interrupt).

This processing is not provided in the sample program, so the program returns without processing.

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 254

usbf850_data_send Valid caller: Non-task | Task

[Outline]

This is a data transmit function used by the USB function controller.

[C language format]

long usbf850_data_send (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of transmit data

I long len Data size

I char ep Endpoint number

[Operation]

This function transmits from the endpoint specified by ep data whose size is specified by len starting from the

address specified by data.

[Return value]

Status upon transmission

DEV_ERROR: Endpoint number is illegal

DEV_OK: Normal termination

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 255

usbf850_data_receive Valid caller: Non-task | Task

[Outline]

This is a data receive function used by the USB function controller.

[C language format]

long usbf850_data_receive (unsigned char* data, long len, char ep)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of the buffer for receive data

I long len Data size

I char ep Endpoint number

[Operation]

This function reads data whose size is specified by len from the buffer at the endpoint specified by ep and stores it

to the address specified by specified data.

[Return value]

Status upon reception

DEV_ERROR: Receive data size is illegal, or endpoint number is illegal.

DEV_OK: Normal termination

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 256

usbf850_sendnullEP0 Valid caller: Non-task | Task

[Outline]

This is a function that transmits Null data from the control endpoint (endpoint 0).

[C language format]

void usbf850_sendnullEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function transmits Null data (whose data size is 0) from the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 257

usb850_sendstallEP0 Valid caller: Non-task | Task

[Outline]

This is a function that sends a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sendstallEP0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the control endpoint (endpoint 0).

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 258

usbf850_bulkin1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 1).

[C language format]

void usbf850_bulkin1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 1).

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 259

usbf850_bulkout1_stall Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the bulk endpoint (endpoint 2).

[C language format]

void usbf850_bulkout1_stall (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response for the bulk endpoint (endpoint 2).

Caution This function is not used in the sample program.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 260

usbf850_loc_cpu Valid caller: Task

[Outline]

This is a function that disables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_loc_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the loc_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 261

usbf850_unl_cpu Valid caller: Task

[Outline]

This is a function that enables acknowledgment of maskable interrupts and dispatch processing.

[C language format]

void usbf850_unl_cpu (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls the unl_cpu system call.

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 262

usbf850_rxreq Valid caller: Non-task | Task

[Outline]

This is a function that performs USB request processing.

[C language format]

void usbf850_rxreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the task_usb0b task that is activated by the INTUSB0B interrupt signal. This function

calls SETUP data read processing, analyzes the read data, and calls USB request processing based on the analysis

result.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 263

usbf850_rxreq_read Valid caller: Non-task | Task

[Outline]

This is a function that reads USB request data.

[C language format]

void usbf850_rxreq_read (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function reads SETUP data received subsequently to the Setup token at the control endpoint (endpoint 0).

The SETUP data is distinguished from normal data and is stored in a dedicated register. It is always read in 8-byte

units.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 264

usbf850_standardreq Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request.

[C language format]

void usbf850_standardreq (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called if the standard request is read from SETUP data and calls the usbf850_getdesc function

when the request type is confirmed as the Get Descriptor request.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 265

usbf850_getdesc Valid caller: Non-task | Task

[Outline]

This is a function that performs the USB standard request Get Descriptor (String Descriptor) processing.

[C language format]

void usbf850_getdesc (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called by the usbf850_standardreq function and performs the USB standard request Get Descriptor

(String Descriptor) processing. This function sets a STALL response for a request other than the Get Descriptor

(String Descriptor) request.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 266

usbf850_sstall_ctrl Valid caller: Non-task | Task

[Outline]

This is a function that sets a STALL response for the control endpoint (endpoint 0).

[C language format]

void usbf850_sstall_ctrl (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets a STALL response at the control endpoint (endpoint 0).

With the usbf850_setfunction_communication function, when a class request processing function is prepared as

the function pointer for an array, this function uses a request code as a subscript for array. If this function is

registered to a location where is no relevant request, a STALL response can be set when an unsupported request

code is sent.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 267

usbf850_send_encapsulated_command Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB communication class-specific request (SEND ENCAPSULATED

COMMAND).

[C language format]

void usbf850_send_encapsulated_command (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function performs SEND ENCAPSULATED COMMAND request processing. Command data sent from the

host is passed to the CDC device. When this request is received, this function in the sample program receives data

reported subsequently to the request from the host, transmits the data to UART, and sends a NULL response.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 268

usbf850_get_encapsulated_response Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB communication class-specific request (GET ENCAPSULATED

RESPONSE).

[C language format]

void usbf850_get_encapsulated_response (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function performs GET ENCAPSULATED RESPONSE request processing. Command data sent from the

host is passed to the CDC device. When this request is received, this function in the sample program performs no

processing and ends normally.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 269

usbf850_set_line_coding Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB communication class-specific request (SET LINE CODING).

[C language format]

void usbf850_set_line_coding (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function performs SET LINE CODING request processing. This function sets the transfer rate, stop bit, parity

bit, and data length. When this request is received, this function in the sample program receives data reported

subsequently to the request from the host, and writes the data to the UART_MODE_INFO structure. In addition, this

function sets the mode of UART based on the value written to the UART_MODE_ INFO structure and sends a NULL

response.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 270

usbf850_get_line_coding Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB communication class-specific request (GET LINE CODING).

[C language format]

void usbf850_get_line_coding (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function performs GET LINE CODING request processing. This function sends the current values set for the

transfer rate, stop bit, parity bit, and data length to the host. When this request is received, this function in the sample

program sends the current UART set values set to the UART_ MODE_INFO structure to the host.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 271

usbf850_set_control_line_state Valid caller: Non-task | Task

[Outline]

This is a function that handles the USB communication class-specific request (SET CONTROL LINE STATE).

[C language format]

void usbf850_set_control_line_state (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function performs SET CONTROL LINE STATE request processing. This function sets the RS-232/V.24

control signal (RTS/DTR). However, this setting is not possible because the RTS/DTR pin is not provided in the

V850E/ME2. In this sample program, therefore, this function sends a NULL response and ends normally.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 272

usbf850_usb_to_uart Valid caller: Non-task | Task

[Outline]

This is a function that transfers data from USB to UART.

[C language format]

void usbf850_usb_to_uart (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function calls USB data reception processing function (usbf850_data_receive) and performs data reception

processing. This function then calls the function to transmit data to UART (usbf850_cdc_data_send) and transmits

data to UART.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 273

usbf850_uart_to_usb Valid caller: Non-task | Task

[Outline]

This is a function to transfer data from UART to USB.

[C language format]

void usbf850_uart_to_usb (unsigned char* data, int len)

[Parameter]

I/O Parameter Description

I unsigned char* data Start address of transmit data

I int len data size

[Operation]

This function calls the function to transmit data to USB (usbf850_data_send) and transmit the UART receive data

to USB.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 274

usbf850_setfunction_communication Valid caller: Non-task | Task

[Outline]

This is a function that registers a USB communication class-specific request processing function to an array as the

function pointer.

[C language format]

void usbf850_setfunction_communication (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function is called from USB initialization processing, and registers a USB communication class-specific

request processing function as a function pointer to an array (array name: Req_Func_C).

This function registers the usbf850_sstall_ctrl function for an unsupported request code to send a STALL response

when an unsupported request is sent.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 275

USBF850REG_SET Valid caller: Non-task | Task

[Outline]

This is a function that sets the V850E/ME2 peripheral I/O registers (1-byte units: 8 bits).

[C language format]

USBF850REG_SET (offset, val)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

I val Data for setting

[Operation]

This function sets data specified by val to the V850E/ME2 peripheral I/O registers (register address specified by

offset). This macro is valid only for registers that can be accessed in 1-byte (8-bit) units.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 276

USBF850REG_READ Valid caller: Non-task | Task

[Outline]

This is a function that reads the V850E/ME2 peripheral I/O registers (1-byte units: 8 bits).

[C language format]

USBF850REG_READ (offset)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

[Operation]

This function reads the value in the V850E/ME2 peripheral I/O registers (register address specified by offset). This

macro is valid only for registers that can be accessed in 1-byte (8-bit) units.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 277

USBF850REG_SET_W Valid caller: Non-task | Task

[Outline]

This is a function that sets the V850E/ME2 peripheral I/O registers (1-word units: 16 bits).

[C language format]

USBF850REG_SET_W (offset, val)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

I val Data for setting

[Operation]

This function sets data specified by val to the V850E/ME2 peripheral I/O registers (register address specified by

offset). This macro is valid only for registers that can be accessed in 1-word (16-bit) units.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 278

USBF850REG_READ_W Valid caller: Non-task | Task

[Outline]

This is a function that reads the V850E/ME2 peripheral I/O registers (1-word units: 16 bits).

[C language format]

USBF850REG_READ_W (offset)

[Parameter]

I/O Parameter Description

I offset Peripheral I/O register address

[Operation]

This function reads the value in the V850E/ME2 peripheral I/O registers (register address specified by offset). This

macro is valid only for registers that can be accessed in 1-word (16-bit) units.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 279

4.8 UART Processing Module

4.8.1 Overview

A simple driver that is used to operate UARTB0 incorporated in the V850E/ME2 is provided as the UART

processing module in this sample program. This section explains the UART processing module.

A list of UART processing modules is shown below.

Caution The UART processing module incorporated in the V850E/ME2 is provided in the sample program,

but it is only provided for performing minimum processing, so the operation as a general-

purpose UART driver is not guaranteed.

Remark Refer to 4.7 USB Communication Class Driver Functions for details of the USB communication class

driver processing-dependent module.

• UART initialization processing

 This is called from the RX850 Pro software initialization module and performs UARTB0 initialization processing.

• UART interrupt handler

 This is an interrupt servicing-dedicated routine called each time a UART interrupt occurs, and is defined in the

CF definition file.

Caution Interrupts other than required are masked in this sample program.

 The following three interrupts are used in this sample program

• UARTB0 reception error interrupt reported by the UBTIRE signal

• UARTB0 reception end interrupt reported by the UBTIR0 signal

• UARTB0 reception timeout interrupt reported by the UBTITO0 signal

• UART interrupt servicing task

 This task is called from the UART interrupt handler and performs data reception processing.

• UART general-purpose function

 The UART data transmission function and operation mode setting function are provided as a general-purpose

function used by the UART processing module.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 280

4.8.2 Processing flow

(1) Interrupt servicing

The sample program operates by interrupt events after initialization. It is in the idle state as long as no event

occurs. However, interrupts are reported by the USB function controller, as well as by UART.

The flow of UART interrupt servicing in the sample program is shown below.

Remark Refer to 4.7.2 (2) Interrupt servicing for details of interrupt servicing by the USB function

controller.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 281

Figure 4-15. Flowchart of Interrupt Servicing (1)

UART reception error interrupt servicing started

No

Yes

End

Interrupt disabled

Interrupt enabled

UART reception end
interrupt cleared

UART reception enabled

UART reception disabled

UART
FIFO clear completed?

UART receive FIFO cleared

The processing of an interrupt by the UBTIRE0 signal in the sample program is shown below.

• Disabling UART reception

 UART receive operation is disabled using the UB0CTL0.UB0RXE bit.

• Clearing UART receive FIFO

 The receive FIFO is cleared by the UB0FIC0 register.

• Clearing UART reception end interrupt

 The UART reception end interrupt is cleared by the URIC0 register.

• Enabling UART reception

 UART receive operation is enabled using the UB0CTL0.UB0RXE bit.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 282

Figure 4-16. Flowchart of Interrupt Servicing (2)

UART normal reception interrupt

No

Yes

End

Interrupt disabled

Interrupt handler

Reception processing task
(uartb0850_data_recv)

Interrupt disabled

Receive data read

usbf850_data_send
function is called

UART reception processing task
(uartb0850_data_recv) activated

Receive FIFO confirmed
FIFO is empty?

The processing of an interrupt by the UBTIR0 signal in the sample program is shown below.

• Activation of UART reception processing task

 The UART reception processing task (uartb0850_data_recv) is activated.

• Confirmation of UART receive FIFO

 Data storage status in the UART receive FIFO is confirmed; data is read if there is receive data, and the

processing ends if there is no receive data.

• Calling usbf850_data_send function

 The receive data that has been read is sent to the host.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 283

Figure 4-17. Flowchart of Interrupt Servicing (3)

UART reception timeout interrupt

No

No

Yes

Yes

End

UART reception disabled

usbf850_uart_to_usb
function is called

Receive data read

UART receive FIFO cleared

UART reception enabled

UART normal reception
interrupt cleared

Receive FIFO confirmed
FIFO is empty?

UART
FIFO clear completed?

Interrupt disabled

Interrupt enabled

The processing of an interrupt by the UBTITO0 signal in the sample program is shown below.

• Confirming UART receive FIFO

 Data storage status in the UART receive FIFO is confirmed; UART reception is disabled if there is receive

data, and the processing ends if there is no receive data

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 284

• Disabling UART reception

 UART receive operation is disabled using the UB0CTL0.UB0RXE bit.

• Reading UART receive data

 Data is read from the UART receive FIFO.

• Calling usbf850_uart_to_usb function

 The receive data that has been read is sent to the host.

• Clearing UART receive FIFO

 The receive FIFO is cleared by the UB0FIC0 register.

• Clearing UART reception end interrupt

 The UART reception end interrupt is cleared by the URIC0 register.

• Enabling UART reception

 UART receive operation is enabled using the UB0CTL0.UB0RXE bit.

4.8.3 Operating mode

Some values valid for setting as UART operating mode are limited in the sample program.

Set values valid in the sample program are shown below.

Table 4-15. List of UART Set Values

Parameter Set Value Remark

9,600 bps −

19,200 bps Initial setting value

38,400 bps −

57,600 bps −

115,200 bps −

Transfer rate

Other than above Set to 9,600 bps.

None Initial setting value

Odd number −

Even number −

Space −

Parity bit

Other than above Set as a space.

7 bits −

8 bits Initial setting value

Data length

Other than above Set to 8 bits.

1 bit Initial setting value

2 bits

Stop bit

Other than above Set to 2 bits.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 285

4.8.4 Description of functions

(1) Overview

A list of the UART processing modules in the sample program is shown below.

Caution Functions starting with “usbf850” are used by the USB function controller incorporated in

the V850E/ME2. Functions starting with “uartb0850” are used by UARTB0 incorporated in

the V850E/ME2. Refer to 4.7.6 Description of functions for details of the USB function

controller functions.

Table 4-16. List of UART Processing Modules

Processing Module Name Function Name File Name Remark

UART processing module

UART initialization function uartb0850_enable uart_ctrl.c C language

UART setting initialization function uartb0850_uart_init uart_ctrl.c C language

Interrupt servicing task (for UBTIR0 signal processing) uartb0850_data_recv uart_ctrl.c C language

Data transmission function uartb0850_data_send uart_ctrl.c C language

UART FIFO clear function uartb0850_buffer_clear uart_ctrl.c C language

UART mode setting function uartb0850_uartmode_set uart_ctrl.c C language

Interrupt handler (UBTIRE0 signal: UARTB0 reception error) uartb0850_int_ubtire0 uart_ctrl.c C language

Interrupt handler (UBTIR0 signal: UARTB0 reception end) uartb0850_int_ubtir0 uart_ctrl.c C language

Interrupt handler (UBTITO0 signal: UARTB0 reception

timeout)

uartb0850_int_ubtito0 uart_ctrl.c C language

UART header file − uart_ctrl.h −

(2) Function tree

The calling relationship between the UART processing modules (function tree) in the sample program is

illustrated below.

Remark Refer to 4.7.6 (2) Function tree for the calling relationship in the USB communication class driver

processing-dependent module.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 286

Figure 4-18. Sample Program Function Tree of UART Processing Module

uartb0850_int_ubtire0

uartb0850_uart_init uartb0850_uartmode_set

Processing of UBTIRE0 signal

uartb0850_int_ubtir0

Processing of UBTIR0 signal

usb_cdc_init uartb0850_buffer_clear

usbf850_data_receive

uartb0850_data_send

usbf850_data_receive

uartb0850_data_send

usbf850_sendstallEP0

USBF850REG_READ

uartb0850_data_recv
(task activation)

uartb0850_int_ubtito0

usbf850_usb_to_uart

usbf850_send_encapsulated_command

usbf850_data_receive

uartb0850_uartmode_set

usbf850_sendnullEP0

usbf850_set_line_coding

usbf850_uart_to_usb

usbf850_data_send

USBF850REG_SET

Processing of UBTITO0 signal

Caution uartb0850_enable and usb_cdc_init are called from the initialization handler.

Remark The shaded portions in this figure indicate the USB-UART interface functions described. The

portions enclosed by the dashed lines indicate the communication class driver processing-

dependent module functions. Refer to 4.7 USB Communication Class Driver Functions for

details of the USB communication class driver processing-dependent module functions and USB-

UART interface functions.

(3) Description of functions

The functions of the UART processing module are explained in the same format as described in 4.7.6 (3)

Description of functions.

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 287

uartb0850_enable Valid caller: Non-task | Task

[Outline]

This is a function that initializes UART.

[C language format]

void uartb0850_enable (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets ports and enables interrupts as UART initialization processing.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 288

uartb0850_uart_init Valid caller: Non-task | Task

[Outline]

This is a function that initializes the UART settings.

[C language format]

void uartb0850_uart_init (void)

[Parameter]

I/O Parameter Description

－ － －

[Operation]

This function sets UART with the initial setting value shown below.

• Transfer rate: 19,200 bps

• Data bit: 8 bits

• Parity: None

• Stop bit: 1 bit

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 289

uartb0850_data_recv Valid caller: −

[Outline]

This is a function that handles interrupt servicing by the UART UBTIR0 signal.

[C language format]

void uartb0850_data_recv (VP exinf)

[Parameter]

I/O Parameter Description

I VP exinf Extended information

This is the area for storing information specifically defined by the user for the target task, so the user can freely use

this area.

Information set to exinf can be acquired dynamically by issuing the ref_tsk system call from the processing module

(task or non-task).

Remark Refer to the RX850 Pro Basics User’s Manual for details of system calls.

[Operation]

This task is activated by the interrupt handler for the UBTIR0 interrupt signal. In the sample program, this task

reads data if data exists in the receive FIFO and calls the USB data transmission function (usbf850_data_send). If

there is no data in the receive FIFO, this task performs nothing and ends normally.

Remark Refer to 4.8.2 (1) interrupt servicing for details of interrupt servicing.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 290

uartb0850_data_send Valid caller: Non-task | Task

[Outline]

This is a function that transmits UART data.

[C language format]

void uartb0850_data_send (unsigned char* buffer, int size)

[Parameter]

I/O Parameter Description

I unsigned char* buffer Start address of transmit data

I int size Data size

[Operation]

This function transmits data whose size is specified by size starting from the address specified by buffer to UART.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 291

uartb0850_buffer_clear Valid caller: Non-task | Task

[Outline]

This is a function that clears the UART transmit/receive buffer.

[C language format]

void uartb0850_buffer_clear (char* buffer, int size)

[Parameter]

I/O Parameter Description

I char* buffer Start address of the buffer

I int size Size of the buffer to be cleared

[Operation]

This function clears data whose size is specified by size starting from the address specified by buffer in the

transmit/receive data buffer.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 292

uartb0850_uartmode_set Valid caller: Non-task | Task

[Outline]

This is a function that sets the UART operation mode.

[C language format]

void uartb0850_cdc_uartmode_set (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This function sets UART operating mode based on the current set values stored in the UART_MODE_INFO

structure. The set values of the transfer rate, parity bit, data length, and stop bit. An initial setting value described in

Table 4-15 List of UART Set Values is set to the UART_MODE_INFO structure. This value is changed by the host

using the SET LINE CODING request. This function is called when this request is received and changes the UART

operating mode.

Remarks 1. Refer to 4.7.5 (2) UART mode table structure for details of the UART_MODE_INFO structure.

 2. Refer to 4.8.3 Operating mode for the UART set value valid in the sample program.

[Return value]

None

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 293

uartb0850_int_ubtire0 Valid caller: −

[Outline]

This is an interrupt handler (for the UBTIRE0 signal) used by UART incorporated in the V850E/ME2.

[C language format]

ID uartb0850_int_ubtire0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the UBTIRE0 signal (UARTB0 reception error interrupt) and performs error

processing. This handler is defined in the CF definition file.

Remark Refer to 4.8.2 (1) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 294

uartb0850_int_ubtir0 Valid caller: −

[Outline]

This is an interrupt handler (for the UBTIR0 signal) used by UART incorporated in the V850E/ME2.

[C language format]

ID uartb0850_int_ubtir0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the UBTIR0 signal (UARTB0 reception end interrupt). In this sample program,

it activates the interrupt servicing task (usbf850_cdc_data_recv). This handler is defined in the CF definition file.

Remark Refer to 4.8.2 (1) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

CHAPTER 4 USB COMMUNICATION CLASS DRIVER

Application Note U17069EJ1V0AN 295

uartb0850_int_ubtito0 Valid caller: −

[Outline]

This is an interrupt handler (for the UBTITO0 signal) used by UART incorporated in the V850E/ME2.

[C language format]

ID uartb0850_int_ubtito0 (void)

[Parameter]

I/O Parameter Description

− − −

[Operation]

This interrupt handler is activated by the UBTITO0 signal (UARTB0 reception timeout interrupt) and performs

reception timeout processing. This handler is defined in the CF definition file.

Remark Refer to 4.8.2 (1) Interrupt servicing for details of interrupt servicing.

[Return value]

Object ID number (task ID number)

Application Note U17069EJ1V0AN 296

APPENDIX A SG-703111-1 BOARD

A.1 Overview

The sample programs of the USB function drivers operate on the SG-703111-1 board.

This section explains how to set up the SG-703111-1 board.

Figure A-1. Configuration of SG-703111-1

JUSB2
RESET

JLAN

JUSB1

JSIO1

JP4

SW7

SW1 SW2 SW3 SW4 SW6

JP3

JP2

JP6

JP1

SW5

APPENDIX A SG-703111-1 BOARD

Application Note U17069EJ1V0AN 297

A.2 Setting of DIP Switches (SW1 to SW7)

There are seven DIP switches (SW1 to SW7) on the SG-703111-1 board.

An example of the DIP switch settings is shown below.

Table A-1. Setting of DIP Switches (SW1 to SW7) (1/2)

Switch
Name

Setting Remark

1: OFF

2: ON

3: ON

4: ON

5: OFF

6: OFF

7: OFF

SW1

8: OFF

Settings related to the monitor ROM (setting not required).

1: OFF Activates the monitor (setting not required).

2: OFF Always use at OFF.

3: OFF Sets to use NMI.

4: ON Sets CS0 to CS2 to uncached.

5: ON Sets the SDRAM bus size to 32 bits.

6: OFF Always use at OFF.

7: ON

SW2

8: ON

Start the user program.

1: ON

2: ON

3: ON

4: OFF

5: OFF

6: OFF

7: OFF

SW3

8: OFF

Normally use the factory settings.

1: ON

2: ON

3: OFF

SW4

4: ON

Normally use the factory settings.

Remark Refer to the SG-703111-1 User’s Manual for details of the DIP switch settings (SW1 to SW7).

APPENDIX A SG-703111-1 BOARD

Application Note U17069EJ1V0AN 298

Table A-1. Setting of DIP Switches (SW1 to SW7) (2/2)

Switch

Name

Setting Remark

1: OFF

2: ON

Set the bus size at activation to 16 bits.

3: OFF Sets the input level of the SSEL0 pin of the V850E/ME2 to high.

4: ON Sets the input level of the SSEL1 pin of the V850E/ME2 to low.

5: OFF Sets the input level of the JIT0 pin of the V850E/ME2 to high.

6: OFF Sets the input level of the JIT1 pin of the V850E/ME2 to high.

7: ON Sets the input level of the PLLSEL pin of the V850E/ME2 to low.

SW5

8: OFF Always use at OFF.

1: OFF

2: OFF

3: OFF

4: OFF

5: ON

6: ON

7: OFF

SW6

8: OFF

Normally use the factory settings.

1: ON

2: ON

3: ON

SW7

4: OFF

Do not change the factory settings.

Remark Refer to the SG-703111-1 User’s Manual for details of the DIP switch settings (SW1 to SW7).

A.3 Setting of Jumper Switches (JP1 to JP4, JP6)

There are five jumper switches (JP1 to JP4 and JP6) on the SG-703111-1 board.

An example of the jumper switch settings is shown below.

Table A-2. Setting of Jumper Switches (JP1 to JP4 and JP6)

Switch

Name

Setting Remark

JP1 1-2: Shorted Supplies the power (AVDD) to the A/D converter of the V850E/ME2 from the board.

JP2 1-2: Shorted Factory setting

JP3 1-2: Open Factory setting

JP4 1-2: Open Factory setting

JP6 1-2: Shorted Factory setting

Remark Refer to the SG-703111-1 User’s Manual for details of the jumper switch settings (JP1 to JP4 and JP6).

APPENDIX A SG-703111-1 BOARD

Application Note U17069EJ1V0AN 299

A.4 File for Initializing Board at In-Circuit Emulator Startup

Since the execution file is written to the memory on the target board using the in-circuit emulator, it is required to

initialize the target board (particularly the registers that control the memory) before program execution.

Prepare the automatic execution file (init. mcr) that automatically reads and executes the initialization program

when the in-circuit emulator is started up. This file must be placed in the same directory as the one where the project

file of the in-circuit emulator is stored.

An example of init.mcr for the V850E/ME2 is shown below.

Remark Refer to the PARTNER User’s Manual V800 Series Common Edition and NB85E-TP Part Edition for

details of the file format.

reset

_PC=0x00100000

POW 0xffff060,0x000f * CSC0

POW 0xffff062,0x000f * CSC1

POB 0xffff06E,0x33 * VSWC

POW 0xffff480,0x88b8 * BCT0

POW 0xffff482,0x8888 * BCT1

POW 0xffff484,0x1116 * DWC0

POW 0xffff486,0x1111 * DWC1

POW 0xffff488,0x0002 * BCC

POW 0xffff48A,0x0000 * ASC

POW 0xffff48e,0x6aa9 * LBS

POB 0xffff06E,0x37 * VSWC

POB 0xffff498,0x02 * BMC

POB 0xffff06E,0x33 * VSWC

POB 0xffff6c0,0x00 * OSTS

POW 0xffff4A4,0x20a5 *SCR1

POW 0xffff4A6,0x8203 *RFS1

POB 0xffff1fc,0xff * PRCMD

POB 0xffff822,0x03 * CKC

POB 0xffff1fc,0xff * PRCMD

POB 0xffff82c,0x01 * CKS

POW 0xffff056,0x01 * PFCDH *0x00

POW 0xffff040,0x0003 * PMCAL

POB 0xffff80a,0x00 * IRAMM

POB 0xffff04b,0x0f * PFCCT

Application Note U17069EJ1V0AN 300

APPENDIX B FUNCTION INDEX

(1/4)

Function Name Driver Name Page

ata_inquiry USB storage class driver 181

ata_mode_select USB storage class driver 182

ata_mode_select10 USB storage class driver 183

ata_mode_sense USB storage class driver 184

ata_mode_sense10 USB storage class driver 185

ata_read_capacity USB storage class driver 187

ata_read_format_capacities USB storage class driver 186

ata_read10 USB storage class driver 189

ata_read6 USB storage class driver 188

ata_request_sense USB storage class driver 180

ata_seek USB storage class driver 177

ata_start_stop_unit USB storage class driver 178

ata_synchronize_cache USB storage class driver 179

ata_test_unit_ready USB storage class driver 176

ata_verify USB storage class driver 192

ata_write_buff USB storage class driver 194

ata_write_verify USB storage class driver 193

ata_write10 USB storage class driver 191

ata_write6 USB storage class driver 190

scsi_command_to_ata USB storage class driver 175

scsi_to_usb USB storage class driver 195

storageDev_Init USB storage class driver 174

task_usb0b USB bus driver 63

 USB storage class driver 146

 USB communication class driver 251

task_usb1b USB bus driver 64

 USB storage class driver 147

 USB communication class driver 252

task_usb2b USB bus driver 65

 USB storage class driver 148

 USB communication class driver 253

uartb0850_buffer_clear USB communication class driver 291

uartb0850_cdc_uartmode_set USB communication class driver 292

uartb0850_data_recv USB communication class driver 289

uartb0850_data_send USB communication class driver 290

APPENDIX B FUNCTION INDEX

Application Note U17069EJ1V0AN 301

(2/4)

Function Name Driver Name Page

uartb0850_enable USB communication class driver 287

uartb0850_int_ubtir0 USB communication class driver 294

uartb0850_int_ubtire0 USB communication class driver 293

uartb0850_int_ubtito0 USB communication class driver 295

uartb0850_uart_init USB communication class driver 288

usbf850_blkonly_mass_storage_reset USB storage class driver 162

usbf850_bulkin1_stall USB bus driver 70

 USB storage class driver 153

 USB communication class driver 258

usbf850_bulkout1_stall USB bus driver 71

 USB storage class driver 154

 USB communication class driver 259

usbf850_cbw_error USB storage class driver 167

usbf850_csw_ret USB storage class driver 171

usbf850_data_in USB storage class driver 169

usbf850_data_out USB storage class driver 170

usbf850_data_receive USB bus driver 67

 USB storage class driver 150

 USB communication class driver 255

usbf850_data_send USB bus driver 66

 USB storage class driver 149

 USB communication class driver 254

usbf850_dma_init USB storage class driver 172

usbf850_dma_start USB storage class driver 173

usbf850_get_encapsulated_response USB communication class driver 268

usbf850_get_line_coding USB communication class driver 270

usbf850_getdesc USB bus driver 77

 USB storage class driver 160

 USB communication class driver 265

usbf850_init USB bus driver 59

 USB storage class driver 142

 USB communication class driver 247

usbf850_inthdr USB bus driver 60

 USB storage class driver 143

 USB communication class driver 248

usbf850_inthdr1 USB bus driver 61

 USB storage class driver 144

 USB communication class driver 249

APPENDIX B FUNCTION INDEX

Application Note U17069EJ1V0AN 302

(3/4)

Function Name Driver Name Page

usbf850_inthdr2 USB bus driver 62

 USB storage class driver 145

 USB communication class driver 250

usbf850_loc_cpu USB bus driver 72

 USB storage class driver 155

 USB communication class driver 260

usbf850_max_lun USB storage class driver 163

usbf850_no_data USB storage class driver 168

usbf850_rx_cbw USB storage class driver 165

usbf850_rxreq USB bus driver 74

 USB storage class driver 157

 USB communication class driver 262

usbf850_rxreq_read USB bus driver 75

 USB storage class driver 158

 USB communication class driver 263

usbf850_send_encapsulated_command USB communication class driver 267

usbf850_sendnullEP0 USB bus driver 68

 USB storage class driver 151

 USB communication class driver 256

usbf850_sendstallEP0 USB bus driver 69

 USB storage class driver 152

 USB communication class driver 257

usbf850_set_control_line_state USB communication class driver 271

usbf850_set_line_coding USB communication class driver 269

usbf850_setfunction_communication USB communication class driver 274

usbf850_setfunction_storage USB storage class driver 164

usbf850_sstall_ctrl USB bus driver 78

 USB storage class driver 161

 USB communication class driver 266

usbf850_standardreq USB bus driver 76

 USB storage class driver 159

 USB communication class driver 264

usbf850_storage_cbwchk USB storage class driver 166

usbf850_uart_to_usb USB communication class driver 273

usbf850_unl_cpu USB bus driver 73

 USB storage class driver 156

 USB communication class driver 261

usbf850_usb_to_uart USB communication class driver 272

APPENDIX B FUNCTION INDEX

Application Note U17069EJ1V0AN 303

(4/4)

Function Name Driver Name Page

USBF850REG_READ USB storage class driver 197

 USB communication class driver 276

USBF850REG_READ_W USB storage class driver 199

 USB communication class driver 278

USBF850REG_SET USB storage class driver 196

 USB communication class driver 275

USBF850REG_SET_W USB storage class driver 198

 USB communication class driver 277

	COVER
	INTRODUCTION
	CHAPTER 1 V850E/ME2 INTRODUCTION
	1.1 Outline
	1.2 Features
	1.3 Ordering Information
	1.4 Pin Configuration
	1.5 Internal Block Diagram
	1.6 Internal Memory
	1.6.1 Internal instruction RAM
	1.6.2 Instruction cache function
	1.6.3 Internal data RAM

	1.7 Speculative Read Function (Read Buffer Function)
	1.8 Initialization Pins
	1.8.1 MODE0 and MODE1 pins
	1.8.2 PLLSEL, SSEL0, and SSEL1 pins
	1.8.3 JIT0 and JIT1 pins

	CHAPTER 2 USB BUS DRIVER
	2.1 General
	2.1.1 Overview
	2.1.2 Development environment
	2.1.3 Execution environment

	2.2 Execution of Load Module
	2.2.1 Execution procedure of load module
	2.2.2 Directory configuration

	2.3 System Configuration
	2.3.1 Overview
	2.3.2 Describing RX850 Pro-dependent processing module
	2.3.3 Describing board-dependent module
	2.3.4 Describing USB bus driver processing-dependent module
	2.3.5 Describing section map file
	2.3.6 Creating load module

	2.4 RX850 Pro-Dependent Processing Modules
	2.4.1 Overview
	2.4.2 CF definition file
	2.4.3 Entry processing
	2.4.4 System initialization processing
	2.4.5 Time management function

	2.5 Section Map File
	2.5.1 Overview
	2.5.2 Address assignment by RX850 Pro
	2.5.3 Other address assignment

	2.6 Load Module
	2.6.1 Overview
	2.6.2 Creating load module

	2.7 USB Bus Driver Functions
	2.7.1 Overview
	2.7.2 Processing flows
	2.7.3 USB bus driver descriptor information
	2.7.4 Data macro
	2.7.5 Data structure
	2.7.6 Description of functions

	CHAPTER 3 USB STORAGE CLASS DRIVER
	3.1 General
	3.1.1 Overview
	3.1.2 Development environment
	3.1.3 Execution environment

	3.2 Execution of Load Module
	3.2.1 Execution procedure of load module
	3.2.2 Directory configuration

	3.3 System Configuration
	3.3.1 Overview
	3.3.2 Describing RX850 Pro-dependent processing module
	3.3.3 Describing board-dependent module
	3.3.4 Describing USB storage class driver processing-dependent module
	3.3.5 Describing section map file
	3.3.6 Creating load module

	3.4 RX850 Pro-Dependent Processing Modules
	3.4.1 Overview
	3.4.2 CF definition file
	3.4.3 Entry processing
	3.4.4 System initialization processing
	3.4.5 Time management function

	3.5 Section Map File
	3.5.1 Overview
	3.5.2 Address assignment by RX850 Pro
	3.5.3 Other address assignment

	3.6 Load Module
	3.6.1 Overview
	3.6.2 Creating load module

	3.7 USB Storage Class Driver Functions
	3.7.1 Overview
	3.7.2 Processing flows
	3.7.3 USB storage class driver descriptor information
	3.7.4 Data macro
	3.7.5 Data structure
	3.7.6 Description of functions

	CHAPTER 4 USB COMMUNICATION CLASS DRIVER
	4.1 General
	4.1.1 Overview
	4.1.2 Development environment
	4.1.3 Execution environment

	4.2 Execution of Load Module
	4.2.1 Execution procedure of load module
	4.2.2 Directory configuration

	4.3 System Configuration
	4.3.1 Overview
	4.3.2 Describing RX850 Pro-dependent processing module
	4.3.3 Describing board-dependent module
	4.3.4 Describing USB communication class driver processing-dependent module
	4.3.5 Describing section map file
	4.3.6 Creating load module

	4.4 RX850 Pro-Dependent Processing Modules
	4.4.1 Overview
	4.4.2 CF definition file
	4.4.3 Entry processing
	4.4.4 System initialization processing
	4.4.5 Time management function

	4.5 Section Map File
	4.5.1 Overview
	4.5.2 Address assignment by RX850 Pro
	4.5.3 Other address assignment

	4.6 Load Module
	4.6.1 Overview
	4.6.2 Creating load module

	4.7 USB Communication Class Driver Functions
	4.7.1 Overview
	4.7.2 Processing flows
	4.7.3 USB communication class driver descriptor information
	4.7.4 Data macro
	4.7.5 Data structure
	4.7.6 Description of functions

	4.8 UART Processing Module
	4.8.1 Overview
	4.8.2 Processing flow
	4.8.3 Operating mode
	4.8.4 Description of functions

	APPENDIX A SG-703111-1 BOARD
	A.1 Overview
	A.2 Setting of DIP Switches (SW1 to SW7)
	A.3 Setting of Jumper Switches (JP1 to JP4, JP6)
	A.4 File for Initializing Board at In-Circuit Emulator Startup

	APPENDIX B FUNCTION INDEX

