
 APPLICATION NOTE

R01AN1475EJ0100 Rev.1.00 Page 1 of 63
Mar. 18, 2013

V850E2/ML4
Updating Program Code by Using Flash Self Programming
with Asynchronous Serial Interface J (UARTJ)

Abstract
This document describes an example to update program code by reprogramming on-chip flash memory in V850E2/ML4
using flash self programming with serial communication.

The features of the example to update program code in this Application note are described below.

• Reprograms a program code in the flash memory area using update program file with Intel expanded hex format
received through serial communication.

• For the procedure in case of reprogram failure such as reprogram processing is aborted without intention, an error
control register by checksum is included.

Products
V850E2/ML4

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1475EJ0100
Rev.1.00

Mar. 18, 2013

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 2 of 63
Mar. 18, 2013

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 5

3. Reference Application Notes.. 6

4. Peripheral Functions... 6
4.1 Terms for Flash Self Programming.. 6
4.2 Notes for Flash Self Programming... 7

4.2.1 Setting for Link Directive File.. 8
4.2.2 Setting for Non-use of Prologue/Epilogue Library .. 10
4.2.3 Setting for ROMization of Section in RAM.. 11
4.2.4 Setting for Far Jump Function .. 12
4.2.5 Setting for Startup Routine ... 14
4.2.6 Precautions for Interrupts Generated During Use of FSL .. 16

5. Hardware .. 17
5.1 Pins Used... 17

6. Software ... 18
6.1 Operation Overview ... 18

6.1.1 Setting for Section Assignment .. 18
6.1.2 Overview of Reprogramming Flash Memory.. 19
6.1.3 Process from Startup to Normal Operation .. 20
6.1.4 Flash Reprogram Processing after INTP1 Interrupt Input .. 20
6.1.5 Data Receive Processing ... 20
6.1.6 Processing after Data Deception/Reprogramming... 21
6.1.7 Communication Control Sequence... 22

6.2 File Composition .. 23
6.3 Constants ... 24
6.4 Variables .. 26
6.5 Functions.. 27
6.6 Function Specifications .. 28
6.7 Flowcharts.. 35

6.7.1 Startup Routine Processing.. 35
6.7.2 Main Processing ... 36
6.7.3 Switching Processing of Exception Handler Address... 37
6.7.4 Checksum Judgment of Reprogram Area .. 38
6.7.5 Initialization of INTP1 Interrupt ... 39
6.7.6 INPT1 Interrupt Processing .. 40
6.7.7 Flash Reprogram Processing ... 41
6.7.8 Initialization of Flash Environment.. 43
6.7.9 Start Processing of Flash Environment .. 44
6.7.10 Checking Processing of FLMD0 Pin Using FSL.. 45
6.7.11 Erase Processing of Specified Block... 46

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 3 of 63
Mar. 18, 2013

6.7.12 Write Processing from Specified Address... 47
6.7.13 Internal Verification of Specified Block .. 48
6.7.14 Termination Processing of Flash Environment ... 49
6.7.15 Setting for FLMD0 Pin Level ... 50
6.7.16 Store Processing for Receive Data ... 51
6.7.17 Text Binary Conversion Processing .. 53
6.7.18 TAUA0 Initialization for LED Blink with Fixed Cycle (Sample Function in Reprogram Area

and Spare Area) ... 54
6.7.19 TAUA0 Interval Timer Interrupt Processing... 55
6.7.20 Initialization of UARTJ0 ... 56
6.7.21 Initialization of UARTJ0 Ports.. 57
6.7.22 UARTJ0 Message Transmit Processing ... 58
6.7.23 UARTJ0 Receive Interrupt Processing.. 59
6.7.24 UARTJ0 Status Interrupt Processing .. 60

7. Operation Overview.. 61

8. Sample Code.. 63

9. Reference Documents.. 63

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 4 of 63
Mar. 18, 2013

1. Specifications
In this Application note, a program code update is performed by reprogramming on-chip flash memory using flash self
programming.

Serial communication with an arbitrary device enables to receive a program file data for update with Intel expanded hex
format type and reprogram a program code in the on-chip flash memory area.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the System Configuration.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
Flash memory (on-chip flash memory) Program storage area
Flash macro service Reprogramming flash memory
Asynchronous serial interface J (UARTJ) Reprogramming data/Message communication

Flash memoryFlash macro service

On-chip RAM

Reprogram flash
Store receive data

UARTJ

P2_12/RXD0F
P2_13/TXD0F

FSL*

V850E2/ML4

V850E2/ML4 CPU board
(Type: R0K0F4022C000BR)

RS-232C
transceiver

Serial
communication
Program data

Message

Execute flash function

Operate

Readout

*FSL: Flash Self Programming Library

Serial
communication

Host device

Serial port
connector

(J5)

Figure 1.1 System Configuration

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 5 of 63
Mar. 18, 2013

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used V850E2/ML4
Operating frequency Internal system clock (fCLK) : 200MHz

P bus clock (fPCLK) : 66.667MHz
Operating voltage Positive power supply for external pins (EVDD) : 3.3V

Positive power supply for internal units (IVDD) : 1.2V
Integrated development
environment

Renesas Electronics Corporation
CubeSuite+ Ver.1.02.01
Renesas Electronics Corporation
CX compiler package Ver.1.21

C compiler

Compile option
-Cf4022 -oDefaultBuild\v850e2ml4_flash_update_uartj.lmf
-Xobj_path=DefaultBuild -g -Xpro_epi_runtime=off
-IC:\WorkSpace\v850e2ml4_flash_update_uartj\inc
-IC:\WorkSpace\v850e2ml4_flash_update_uartj\FSL -Xdef_var
-Xfar_jump=v850e2ml4_flash_update_uartj.fjp
-Xlink_directive=v850e2ml4_flash_update_uartj.dir
 -Xstartup=DefaultBuild\cstart.obj +Xide
-Xmap=DefaultBuild\v850e2ml4_flash_update_uartj.map
-lFSL_T05_REC_R32
-LC:\WorkSpace\v850e2ml4_flash_update_uartj\FSL\lib
-Xrompsec_text=FSL_CODE.text
-Xrompsec_text=FSL_CODE_ROMRAM.text
-Xrompsec_text=FSL_CODE_RAM.text
-Xrompsec_text=FSL_CODE_RAM_USRINT.text
-Xrompsec_text=FSL_CODE_RAM_USR.text
-Xrompsec_text=FSL_CODE_RAM_EX_PROT.text
-Xrompsec_text=INTP1RAM.text -Xrompsec_text=INTTAUA0I0RAM.text
-Xrompsec_text=INTUARTJ0IRRAM.text
-Xhex=DefaultBuild\v850e2ml4_flash_update_uartj.hex

Operating mode Normal operating mode
(Will be changed to flash memory programming mode at the time of reprogram)

Sample code version 1.00
Board used R0K0F4022C000BR
Device used Serial communication host device

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 6 of 63
Mar. 18, 2013

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

• V850 Microcontroller Flash Self Programming Library Type05 (R01AN0661EJ)

4. Peripheral Functions
This chapter provides supplementary information on the flash self programming library which is required to reprogram
the flash memory using the software operated on the V850E2/ML4. Refer to the "V850E2/ML4 User's Manual:
Hardware" and the "V850 Microcontroller Flash Self Programming Library Type05" for basic information.

4.1 Terms for Flash Self Programming
The terms for flash self programming used in this Application note are described as follows.

• Flash macro service
This refers to functions for manipulating the flash memory in devices.

• Flash environment

This refers to the state in which the code flash can be operated by using the flash macro service. There are
special restrictions different from execution of normal programs. A transition to other environment cannot occur
unless the flash environment is ended.

• Flash function

This refers to the individual functions comprising the self-library. They can be used with the C language.

• Internal verification

This refers to the action of internally checking the signal level and verifying that the signal can be read normally
following write to flash memory.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 7 of 63
Mar. 18, 2013

4.2 Notes for Flash Self Programming
The V850E2/ML4 has the flash macro service which operates the flash memory. This sample program describes how
to reprogram a program code using the flash self programing library (FSL) which enables to use the flash macro service
with C language. The following notes are provided to use this library.

• The program allocation in RAM executed during the flash environment (including runtime library)
⎯ Setting for a section to allocate the program in RAM

Creation and setting for the link directive file is required to set a section. Refer to "4.2.1 Setting for Link
Directive File" for more details.

⎯ Setting for non-use or allocation in RAM for the functional prologue/epilogue runtime library
This sample program runs the non-use setting of the prologue/epilogue runtime library. Refer to "4.2.2 Setting
for Non-use of Prologue/Epilogue Library" for more details.

⎯ Setting for the exception handler address switching function when using interrupts
The setting for the exception handler address switching function is executed by the software. Refer to "6.7.3
Switching Processing of Exception Handler Address" for more details.

⎯ Initialization of the program area in the RAM allocation destination
When allocating a program to RAM on the V850E2/ML4, the 16-byte boundary area (H'xxxx_xxx0 to
H'xxxx_xxxF) including the program area in the allocation destination is required to be initialized (cleared to
zero). In this sample program, the initialization is executed during the startup routine. Refer to "4.2.5 Setting for
Startup Routine" for its change, and "6.7.1 Startup Routine Processing" for its details.

⎯ Setting for ROMization of the section to expand the program in RAM
Regarding to the setting for ROMizaton on the CubeSuite+, refer to "4.2.3 Setting for ROMization of Section in
RAM".

• The execution of the flash functions are disabled in the interrupt handler

• The far jump specification for the CX compiler when calling function allocated to the address separated more than 2

MB
In this sample program, the far jump option is specified to the function allocated in RAM which is called from
the flash memory. Refer to "4.2.4 Setting for Far Jump Function" for more details.

• Saving, setting and restoring the gp register and the ep register when accessing to the global variables with C

language in the interrupt handler
The above mentioned operations might be required when accessing to the data section in the interrupt handler.
Refer to "4.2.6 Precautions for Interrupts Generated During Use of FSL" for more details.

In regard to the function specification and the system configuration of the FSL, refer to the reference application note,
"V850 Microcontroller Flash Self Programming Library Type05".

In regard to section specification to the CX compiler, allocation address setting, ROMization, and far jump option
specification on the CubeSuite+, refer to "CubeSuite+ V1.03.00 Integrated Development Environment User's manual:
Build (CX compiler)".

In regard to switching the exception handler address, refer to "V850E2 User's Manual: Architecture".

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 8 of 63
Mar. 18, 2013

4.2.1 Setting for Link Directive File
The link directive file creation and the CubeSuite+ setting are required to change the section assignment. When creating
the link directive file using text editor without the CubeSuite+ menu, the Cube Suite+ setting is required. Drag the link
directive file from explore, and drop it in blank area, the bottom part of the Project Tree. In the CubeSuite+, the file
which has extension of "dir" or "dr" is considered as the link directive file. Select "CX (Build Tool)" under the Project
Tree, and click "Link Options" tab in the Property. Open "Input File" to check "Using link directive file". Refer to
"CubeSuite+ V1.03.00 Integrated Development Environment User's manual: Coding (CX compiler)" for more details.

When creating the link directive file, in this sample program, the reprogram area section (MasterPRG.text), the spare
area section (SparePRG.text), and the FSL area (FSL.CONST) should be created in the flash memory other than the
default area. In addition, the FSL use area and user program area sections (FSL_DATA.bss, FSL_CODE.text,
FSL_CODE_ROMRAM.text, FSL_CODE_RAM.text, FSL_CODE_RAM_USRINT.text,
FSL_CODE_RAM_USR.text, and FSL_CODE_RAM_EX_PROT.text), and exception handler address sections
(INTP1RAM.text, INTTAUA0I0RAM.text, INTFCN0IERRRAM.text, and INTFCN0IRECRAM.text) should be
created in RAM.

In this sample program, the start address of the MasterPRG.text section is assumed to be H'0000 8000. Also the start
address of the exception handler address section is assumed to be the address that adds the respective interrupt handler
address to the transfer destination base address H'FEDF E000

Figure 4.1 shows the Location of Link Directive File.

Figure 4.2 shows the Example of Creation and Section Setting for Link Directive File.

Check hereDrag the link directive file which has "dir" or "dr"
for its extension from explore etc. and drop it in
the blank area under the Project Tree to register.

Figure 4.1 Location of Link Directive File

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 9 of 63
Mar. 18, 2013

SCONST:!LOAD ?R {
.sconst = $PROGBITS ?A .sconst ;

};
CONST:!LOAD ?R V0x00001100 {
.const = $PROGBITS ?A .const ;
FSL_CONST.const = $PROGBITS ?A FSL_CONST.const ; # FSL area

};
TEXT:!LOAD ?RX {
.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime ;
.text = $PROGBITS ?AX .text ;

};

Spare area
SparePRG:!LOAD ?RX V0x00006000 {
SparePRG.text = $PROGBITS ?AX V0x00006000 SparePRG.text ;

};

Reprogram area
MasterPRG:!LOAD ?RX V0x00008000 {
MasterPRG.text = $PROGBITS ?AX V0x00008000 MasterPRG.text ;

};

DATA:!LOAD ?RW V0xfedf0000 {
.data = $PROGBITS ?AW .data ;
.sdata = $PROGBITS ?AWG .sdata ;
.sbss = $NOBITS ?AWG .sbss ;
FSL_DATA.bss = $NOBITS ?AW FSL_DATA.bss ; # FSL use area
.bss = $NOBITS ?AW .bss ;

};
SEDATA:!LOAD ?RW {
.sedata = $PROGBITS ?AW .sedata ;
.sebss = $NOBITS ?AW .sebss ;

};
SIDATA:!LOAD ?RW {
.tidata.byte = $PROGBITS ?AW .tidata.byte ;
.tibss.byte = $NOBITS ?AW .tibss.byte ;
.tidata.word = $PROGBITS ?AW .tidata.word ;
.tibss.word = $NOBITS ?AW .tibss.word ;
.tidata = $PROGBITS ?AW .tidata ;
.tibss = $NOBITS ?AW .tibss ;
.sidata = $PROGBITS ?AW .sidata ;
.sibss = $NOBITS ?AW .sibss ;

};

Program area allocated to RAM
RAM_PROG:!LOAD ?RX V0xfedfc000 {
FSL_CODE.text = $PROGBITS ?AX FSL_CODE.text ;
FSL_CODE_ROMRAM.text = $PROGBITS ?AX FSL_CODE_ROMRAM.text ;
FSL_CODE_RAM.text = $PROGBITS ?AX FSL_CODE_RAM.text ;
FSL_CODE_RAM_USRINT.text = $PROGBITS ?AX FSL_CODE_RAM_USRINT.text ;
FSL_CODE_RAM_USR.text = $PROGBITS ?AX FSL_CODE_RAM_USR.text ;
FSL_CODE_RAM_EX_PROT.text = $PROGBITS ?AX FSL_CODE_RAM_EX_PROT.text ;

};

Exception handler area allocated to RAM
INTRAM:!LOAD ?RX V0xfedfe000 L0x00001080 {
INTP1RAM.text = $PROGBITS ?AX V0xfedfe170 H0x0000000a INTP1RAM.text ;
INTTAUA0I0RAM.text = $PROGBITS ?AX V0xfedfe3b0 H0x0000000a INTTAUA0I0RAM.text ;
INTUARTJ0ISRAM.text = $PROGBITS ?AX V0xfedfea50 H0x0000000a INTUARTJ0ISRAM.text ;
INTUARTJ0IRRAM.text = $PROGBITS ?AX V0xfedfea60 H0x0000000a INTUARTJ0IRRAM.text ;

};

__tp_TEXT@ %TP_SYMBOL ;
__gp_DATA@ %GP_SYMBOL &__tp_TEXT { DATA } ;
__ep_DATA@ %EP_SYMBOL ;

Create segment and section for reprogram area in ROM

Create segment and section for spare area in ROM

Create segment and section for FSL area
and user program area in RAM

Create segment and section
for exception handler in RAM

Create section for FSL use area in RAM

Create section for FSL area in ROM

Figure 4.2 Example of Creation and Section Setting for Link Directive File

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 10 of 63
Mar. 18, 2013

4.2.2 Setting for Non-use of Prologue/Epilogue Library
The CubeSuite+ executes setting for non-use of the prologue/epilogue library. Select "CX (Build Tool)" under the
Project Tree, and click "Compile Options" tab in the Property. Select "No (-Xpro_epi_runtime=off)" for "Use
prologue/epilogue library" in "Optimization (Details)".

Figure 4.3 shows the Location of Setting Non-Use of Prologue/Epilogue Library.

Figure 4.3 Location of Setting Non-Use of Prologue/Epilogue Library

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 11 of 63
Mar. 18, 2013

4.2.3 Setting for ROMization of Section in RAM
The setting for CubeSuite+ is required for ROMization to expand the section in RAM. Select "CX (Built Tool)" under
the Project Tree, and click "ROMize Options" tab in the "Property". From "Text sections included rompsec section",
specify the section required for ROMization out of the sections to be assigned in RAM. Write the section names (one
section per line) in the "Text Edit" window shown by clicking the "..." button on the right.

Figure 4.4 shows the Setting for Romization of Section in RAM.

Figure 4.4 Setting for Romization of Section in RAM

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 12 of 63
Mar. 18, 2013

4.2.4 Setting for Far Jump Function
In the V850E2/ML4, the end address of the flash memory and the start address of the on-chip RAM are separated more
than 2MB. In the CX compiler, when jumping to the area more than ±2MBs away at the time of function call, the far
jump option should be specified to the call destination function. In this sample code, the far jump option is specified to
the functions called from the ones on the flash memory out of the functions allocated in the on-chip RAM and all
interrupt handlers to be used.

To specify the far jump option, create the file which lists the functions to be specified (far jump calling function list file)
and specify the file name in the compile option "-Xfar_jump". To set in the CubeSuite+, select "CX (Built Tool)" under
the Project Tree, and click "Compile Options" tab in the Property. Click "..." button shown on the right side of "Far
Jump file names" in "Output Code", and write the path of the created far jump calling function list file. (Note that ".fjp"
is recommended for the extension of the far jump calling function list file.)

In the far jump calling function list file, write one function name per line. The function name should have "_
(underscore)" at the beginning of the function name with C language. Note that if "{all_interrupt}" is written, all
interrupt handler functions are subject for the far jump calling functions. For creation of far jump calling function file,
refer to "3.3.3 far jump function" in "CubeSuite+ V1.03.00 Integrated Development Environment User's manual:
Coding (CX compiler)"

Figure 4.5 shows the Location of Far Jump Calling Function File.

Figure 4.6 shows the Example of Creation of Far Jump Calling Function File.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 13 of 63
Mar. 18, 2013

Figure 4.5 Location of Far Jump Calling Function File

_uartj0_serial_tx_msg
_flash_reprogram
{all_interrupt}

Far jump option specification is required because the uartj0_serial_tx_msg
function allocated to RAM is also called by the main function in ROM.

Far jump option specification is required because the flash_reprogram
function allocated to RAM is also called by the main function in ROM.

All interrupt handler functions are subject for far jump specification.
The interrupt handler is allocated to RAM, but the far jump option specification is required because
the exception vector table is allocated to ROM with default (before changing base address).

Figure 4.6 Example of Creation of Far Jump Calling Function File

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 14 of 63
Mar. 18, 2013

4.2.5 Setting for Startup Routine
The stack used in this sample program requires larger area than the stack size (512 bytes) which is set in the standard
startup routine. In the standard startup routine, the function "_rcopy" (ROMize processing) is executed to develop the
data with initial value and the program allocated in RAM. However, when executing the ROMize processing for the
program area, initialize (clear to 0) the 16-byte boundary area of program destination before executing "_rcopy". In this
sample program, the initialization processing for the stack size change and the 16-byte boundary area of program
destination is added for the assembler source file "cstart.asm" in which the standard startup routine is written.

When switching the standard startup routine, create the user-created assembler source file in which the startup routine is
written to register on the CubeSuite+ project. Right click "startup" in "file" under the Project tree, then the menu will
appear to add the startup routine source file.

Figure 4.7 shows the Location of Startup Routine.

Figure 4.8 shows the Example of Startup Routine Preparation (Excerpt from cstart.asm).

Figure 4.7 Location of Startup Routine

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 15 of 63
Mar. 18, 2013

:
: (Excerpt from cstart.asm)
:

#---
system stack
#---
STACKSIZE .set 0x500

.dseg bss

.align 4
__stack: .ds (STACKSIZE)

#---
RESET vector
#---

RESET .cseg text
jr __start

.cseg text

.align 4
__start:

mov32 #__tp_TEXT, tp ; set tp register
mov32 #__gp_DATA, gp ; set gp register offset
add tp, gp ; set gp register
mov32 #__stack+STACKSIZE, sp ; set sp register
mov32 #__ep_DATA, ep ; set ep register

mov32 #___PROLOG_TABLE, r12 ; for prologue/epilogue runtime
ldsr r12, 20 ; set CTBP (CALLT base pointer)

jarl _hdwinit, lp ; initialize hardware

mov32 #__ssbss, r6 ; clear sbss section
mov32 #__esbss, r7
jarl __zeroclrw, lp

mov32 #__sbss, r6 ; clear bss section
mov32 #__ebss, r7
jarl __zeroclrw, lp

mov32 0xfedfc000, r6 ; clear ram_prog section for e2core prefetch processing
mov32 0xfedfffff, r7
jarl __zeroclrw, lp

:
: (Continued)
:

Clear the periphery of the area to be used
as a program in RAM to zero before
executing the _rcopy.

Change the stack size to the one required for
execution of FSL and user program

Figure 4.8 Example of Startup Routine Preparation (Excerpt from cstart.asm)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 16 of 63
Mar. 18, 2013

4.2.6 Precautions for Interrupts Generated During Use of FSL
When accessing to the data using the gp register or the ep register in the interrupt processing generated during the use of
the FSL, set appropriate values to the gp register or the ep register before accessing to the data. The saving process for
the gp register or the ep register is required before setting the appropriate values to the registers. Furthermore, the
restoring process for the gp register or the ep register is required before returning from the interrupt processing. If the
said measures are not executed, the data access using the gp register or the ep register cannot be operated properly.
• Sections when accessing to the gp register as a base address:

(The created global variables without section specification will be allocated to .sdata or .sbss.)
⎯ .data
⎯ .bss
⎯ .sdata
⎯ .sbss

• Sections when accessing to the ep register as a base address:

⎯ .sedata
⎯ .sebss
⎯ .sidata
⎯ .sibss
⎯ .tidata.byte
⎯ .tibss.byte
⎯ .tidata.word
⎯ .tibss.word

This sample program does not use a section which accesses to the ep register as a base address and therefore the saving,
setting, and restoring processes for the ep register are not executed in the interrupt processing. The V850E2/ML4 does
not require the saving, setting, and restoring of the gp register when using the FSL.

When changing the microcomputer or using the above sections, the saving, setting, and restoring of the gp register or ep
register may be necessary in the interrupt processing. Cautions are required when applying.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 17 of 63
Mar. 18, 2013

5. Hardware

5.1 Pins Used
Table 5.1 lists the Pins Used and Their Functions.

Table 5.1 Pins Used and Their Functions

Pin Name I/O Function
P2_12/RXD0F Input Serial data input
P2_13/TXD0F Output Serial data output
P2_3/INTP1 Input INTP1 interrupt

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 18 of 63
Mar. 18, 2013

6. Software

6.1 Operation Overview
This sample program receives a program file data for update with Intel expanded hex format using serial
communication, and reprograms the program in the flash memory area. This section describes its operation overview.

6.1.1 Setting for Section Assignment
The access to the flash memory is prohibited while the flash memory is reprogrammed. All programs that are used
during the reprogram of flash memory should be transferred to the area except flash memory. This sample program sets
section assignment to transfer all the sections used during the reprogram to the on-chip RAM.

Table 6.1 lists the Sections Used During Flash Memory Reprogram.

Table 6.1 Sections Used During Flash Memory Reprogram

Section Name Program Details Function Name
FSL_CODE_ROMRAM.text,
FSL_CODE_RAM.text,
FSL_CODE_RAM_EX_PROT.text

FSL area Flash function

FSL_CODE_RAM_USRINT.text User program interrupt section for
RAM

uartj0_serial_rx_isr,
flash_store_serial_data, hex2bin,
intp1_isr,
taua0_ch0_interval_timer_isr

FSL_CODE_RAM_USR.text User program section RAM uartj0_serial_tx_msg,
flash_reprogram, flash_init,
flash_activate, flash_modecheck,
flash_erase, flash_write,
flash_iverify, flash_end,
flash_set_flmd0

INTP1RAM.text,
INTTAUA0I0RAM.text,
INTUARTJ0ISRAM.text,
INTUARTJ0IRRAM.text

Jump instruction to interrupt
handler function

None

This sample program additionally assigns a section area to store a spare program as a solution when the flash memory
reprogram processing failed to reprogram properly such as abort without any intention. For the reprogram area and the
spare area before receiving data (initial state), the programs which have the same processing are stored in respective
area.

Table 6.2 lists the Functions and Sections Specifying Addresses on Flash Memory.

Table 6.2 Functions and Sections Specifying Addresses on Flash Memory

Area Start Address (block number) Store Function Name ROM Section Name
Reprogram area H'0000 8000 (8) taua0_led_sample MasterPRG.text
Spare area H'0000 6000 (6) taua0_led_spare SparePRG.text

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 19 of 63
Mar. 18, 2013

6.1.2 Overview of Reprogramming Flash Memory
Figure 6.1 shows the Overview of Reprogramming Flash Memory.

Flash memory

Exception handler

Checksum area, reprogram area

Reprogram area

Spare area

H'0000 0000

H'0000 8000

H'0000 6000

Functions

Constants

ROMized functions allocated to RAM

On-chip RAM

Flash macro service use area
H'FEDF F190

Variables

FSL function

Reprogram processing, interrupt
processing etc. for functions

allocated to RAM

Exception handler
H'FEDF E000

H'FEDF 0000

H'FEDF C000

(1)
(4)

(2)(3)

H'000F FFFF

H'FEDF FFFF

H'0000 8FFF
H'0000 8FF0

H'0000 1100

Buffer 0

Buffer 1

Transmit to on-
chip RAM area at

startup

Binarize serial
communication
receive data

Execute reprogram
processing using flash

macro service

Instruction to
reprogram using flash

library

Figure 6.1 Overview of Reprogramming Flash Memory

1. After cancelling the reset, the __S_romp (ROMized section group) is copied to the on-chip RAM during the

cstart.asm processing before starting the main function.

2. The Intel Extend Hex format data received via serial communication is stored to the on-chip RAM with the state of
binary data which executes writing.

3. The operation for the flash macro service is executed by the flash library function which is assigned to the on-chip
RAM.

4. The flash macro service executes the reprogram processing of on-chip flash memory.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 20 of 63
Mar. 18, 2013

6.1.3 Process from Startup to Normal Operation
After the system activation, execute initializations in the main processing, and transmit a message "Generate INTP1
interrupt for transition to flash programming event." to the host. Then call the checksum judgment function to judge the
program code in the reprogram area.

The checksum of this sample program uses "Program code size" and "Checksum data" that a program was added to one
byte at a time. The checksum judgment function adds a program one byte at a time with the start address (H'0000 8000)
in the reprogram area for the number of program data size. The calculation result is compared with the checksum
judgment data calculated when received a data (Stored in the last 16-byte area of MasterPRG.text. Refer to 6.1.6 for the
details). The program in the reprogram area will be executed when the calculation result matches the said data, and the
one in the spare area will be executed if there is a difference.

6.1.4 Flash Reprogram Processing after INTP1 Interrupt Input
When the INTP1 interrupt (rising edge detection/ INTP1 switch push down on the board) is generated, moves to flash
reprogram processing.

In the flash reprogram processing, the message "--> INTP1 detected!" is transmitted to the host to erase the reprogram
area. Then the message "Send subroutine code to update program in Intel expanded hex format." is transmitted to the
host to enter wait state for data reception from the host.

In the wait state for data reception, flag variables are used by polling to detect if the flash write is enabled or disabled.
When receiving program file data for update with Intel expanded hex format from the host, the data receive processing
(later described) is executed, and the data is stored into the write data store buffer (write buffer). When the write buffer
becomes full, the buffer data will be written to the flash memory.

This sample program provides a double structured write buffer. Regarding "Storing write data during data receive
processing" and "Writing to the flash memory", each processing should be executed by switching the write buffer to be
used.

6.1.5 Data Receive Processing
After entering in the wait state for data reception, the UARTJ0 receive interrupt is generated every time the serial
communication data is received from the host. When the UARTJ0 interrupt is generated, the received data will be
stored into the serial receive data store buffer (receive buffer) in the order received. When receiving the line feed code,
the data that has been stored in the receive buffer is considered as a record data for one-line. The following data receive
processing is executed to extract write data necessary for updating.

The data receive processing is described as follows referring to Figure 6.2 that shows the Example of Data with Inter
Expanded Hex Format. (The data shown in Figure 6.2 is color coded depending on its function.)

:04000005000013C81C
:020000040000FA
:20800000E0570584CA5EEFFF605F0484E0670583CC6EEFFF606F0483407640FF2E7F054609
:20802000CF86EFFF408E40FF71870546E0970580929E1000609F0480405681FF6A070082E5
:208040002B06FAFF0000406681FF6C5F4082206EFF3F606F00C44076FFFF0E7F66608F86C8
:1A8060000F00408EFFFF518766604096FFFFD2BF6660019A609FC4C57F00C0
:00000001FF

Figure 6.2 Example of Data with Inter Expanded Hex Format

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 21 of 63
Mar. 18, 2013

• For the processing of each line, determine if the 1st character of the data in the receive buffer shows ":". If it shows
":", judge the 8th and 9th characters (red) as Intel expanded hex format. If the 1st character does not show ":", the
record data become invalid, and returns to wait state for receive data. When the 8th character does not show "0", the
record data also become invalid, and returns to wait state.

• The 8th and 9th characters (red) of the first line show "05". This "05" indicates the start linear address record which
does not have a program data. When received the start linear address record, return to the wait state for receive data
until the next entire record (line data) will be displayed.

• The 8th and 9th characters (red) of the second line show "04". This "04" indicates the extended linear address record
which does not have a program data. When received the extended linear address record, return to the wait state for
receive data until the next entire record will be displayed.

• When the entire 3rd line of the record is displayed, the line is determined as a "data record" because the 8th and 9th
characters (red) show "00". The type of the record can be determined by the numbers from the start to 9th of each
record with Intel expanded hex format.

• The 2th and 3rd characters (blue) of the record indicate the hex for 1-byte of the record size. The four characters
from 4th to 8th (green) indicate the lower 2 bytes of the start data store address of the record.

• Regarding the 10th and later characters (orange) of the record, each two characters indicates 1 byte. In the data
receive processing, the 10th and later characters (orange) is converted into binary data every 2 characters (call "text
binary conversion processing"), store the 1 byte data after the conversion into the write buffer in the order converted.
Add the one byte data for the checksum judgment (checksum data), and count the amounts of the data as a program
code size. When repeated these processing before the last two characters (black) of the record, return to the wait
state for receive data until the next entire record will be displayed.

• When the 8th and 9th (red) characters of the record data show "01", it means "end record" (the bottom line in Figure
6.2). When the end record is shown, terminate the data receive processing without storing receive data. However, if
the data size in the write buffer is less than 16 bytes (unit of flash write) at this point, add H'FF to make the buffer
size 16 bytes.

This sample program provides a double structured write buffer with 16-byte size. Every time the store data in a write
buffer becomes full at 16 bytes, the store destination is switched to another write buffer during the data receive
processing. When the said buffer becomes full, the buffer data is written to the flash memory during flash reprogram
event processing. Writing to the flash memory is executed by polling waiting for receive data, not by an interrupt
processing. When switching the buffer at full, set flag variables which indicate writability.

6.1.6 Processing after Data Deception/Reprogramming
When the end record is determined during data receive processing and the write of flash memory for the receive data is
terminated, the V850E2/ML4 leaves from the wait state for data reception in the flash reprogram event processing, and
writes the data for checksum judgment calculated at the time of data reception (program code size and checksum data/ 2
bytes for each) the flash memory. In this sample program, the data for checksum judgment is stored the last 4 bytes of
the reprogram area H'0000 8FF0 to H'0000 8FF3 (H'0000 8FF0 to H'0000 8FF1 for the program code size and H'0000
8FF2 to H'0000 8FF3 for the checksum data).

After writing the data for checksum judgment, a message is transmitted to the host and the V850E2/ML4 enters wait
state for reset.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 22 of 63
Mar. 18, 2013

6.1.7 Communication Control Sequence
Figure 6.3 shows the Communication Control Sequence.

Yes

No

Generate INTP1 interrupt for
transition to flash programming event.

Repeat until switch interrupt is generated.

Output message

Output message

Infinite loop for reset wait

Initializations

Checksum judgment

Execute program for reprogram area
or spare area

Start writing flash memory?

Start reprogramming
after switch interrupt

Transmit message

Erase flash

Receive data

Write flash memory

Successfully Finish Writing Program
Data. Please Reset.

Output message
Transmit message

Write checksum data

Send subroutine code to update
program in Intel expanded hex format.

Output messageTransmit message

Serial communication host

Message processing

Message processing

Message processing

Push interrupt INTP1
switch SW4

Transmit updating program file data

Reset

Message processing

V850E2/ML4

User operation

User operation

Repeat

--> INTP1 detected!

Change exception handler address

Transmit message

Figure 6.3 Communication Control Sequence

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 23 of 63
Mar. 18, 2013

6.2 File Composition
Table 6.3 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 6.3 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing
intp1.c INTP1 interrupt processing
flash.c Processing related to flash reprogram
uartj0_serial.c Processing related to UARTJ
taua0_led_sample.c Sample program for updating,

LED blink port processing

flash.h Common header for flash memory
reprogram processing

r_typedefs.h Fixed length integer type definition
header

FSL.h FSL header file
except_handler_ram.asm Exception handler in RAM* Jump to interrupt processing

function from RAM
cstart.asm Startup routine Change stack size by

standard startup routine, and
add initialization of program
area in RAM

libFSL_T05_REC_R32.lib FSL library (32 register mode)
v850e2ml4_flash_update_uartj.dir Link directive setting file
v850e2ml4_flash_update_uartj.fjp Far jump calling functions file
[Note] * Defines the jump instruction from the interrupt handler address to the interrupt handler function to be

allocated on the exception handler.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 24 of 63
Mar. 18, 2013

6.3 Constants
Table 6.4 and Table 6.5 list the Constants Used in the Sample Code.

Table 6.4 Constants Used in the Sample Code

Constant Name Setting Value Contents
RET_OK 0 Normal end
RET_ERR -1 Error end
RET_ERR_FLASH_ACTIVATE -1 Failure to start flash environment
RET_ERR_FLASH_MODECHECK -2 Failure to check FLMD0 pin
RET_ERR_FLASH_ERASE -3 Failure of erase processing
RET_ERR_FLASH_WRITE -4 Failure to write
RET_ERR_FLASH_IVERIFY -5 Failure of internal verification
RET_ERR_FLASH_DEACTIVATE -6 Failure to terminate flash environment
RET_ERR_FLASH_FLMD0_HIGH -7 Failure to set High level for FLMD0 pin
RET_ERR_FLASH_FLMD0_LOW -8 Failure to set Low level for FLMD0 pin
RET_ERR_FLASH_HEX_LINESIZE -9 Abnormal numbers of hex file line data
RET_ERR_FLASH_HEX_DATA -10 Abnormal hex file program data
BLOCK_MASTER_PRG 8 Block number of reprogram area
TOP_ADDR_MASTER_PRG H'00008000 Start address of reprogram area
SIZE_MASTER_PRG H'1000 Reprogram area size (4KB)
SIZE_WRITE 16 Write specification size
TOP_ADDR_MASTER_PRG_CHKSUM TOP_ADDR_MASTER

_PRG
+ SIZE_MASTER_PRG
- SIZE_WRITE

Start address of checksum area
(H'00008FF0)

TOP_ADDR_EXT_HANDLER H'FEDF E000 Start address of exception handler
address for transfer destination

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 25 of 63
Mar. 18, 2013

Table 6.5 Constants Used in the Sample Code

Constant Name Setting
Value

Contents

FLASH_STATUS_FLMD0_HIGH H'01 FLMD0 High setting completion status (valid pull-up)
FLASH_STATUS_FSL_ACTIVE H'02 FSL start status
HEXDATA_POS_RECMARK 0 Record mark position of hex data
HEXDATA_POS_BYTE_NUM 1 Position for the number of bytes of hex data
HEXDATA_POS_RECTYPE_UPPER 7 The upper digit position of hex data record type
HEXDATA_POS_RECTYPE_LOWER 8 The lower digit position of hex data record type
HEXDATA_POS_CODE_TOP 9 Start position of hex data code
SIZE_BUF_RX_DATA 525 Receive data store buffer size (total of the followings)

Record mark: 1 character
The number of bytes: 2 characters
Location address: 4 characters
Record type: 2 characters
Code: 512 characters (max)
Checksum: 2 characters
Return (\r) + New line (\n): 2 characters

PORT_BIT_P1_4 H'0010 Bit position of port function setting P1_4
PORT_BIT_P2_3 H'0008 Bit position of port function setting P2_3
PORT_BIT_P2_12 H'1000 Bit position of port function setting P2_12
PORT_BIT_P2_13 H'2000 Bit position of port function setting P2_13

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 26 of 63
Mar. 18, 2013

6.4 Variables
Table 6.6 lists the Global Variables.

Table 6.6 Global Variables

Type Variable Name Contents Function Used
uint8_t g_flag_start_flash_reprog Start flag for writing flash memory main,

intp1_isr
fsl_status_t g_error_fsl_status Store FSL error main, flash_activate,

flash_modecheck,
flash_erase,
flash_write, flash_iverify

uint32_t g_addr_write_error Write error address main, flash_write
uint8_t g_flag_w_data_buf0_full Write buffer 0 full flag flash_reprogram,

flash_store_serial_data
uint8_t g_flag_w_data_buf1_full Write buffer 1 full flag flash_reprogram,

flash_store_serial_data
uint8_t g_status_end_record End record receive flag flash_reprogram,

flash_store_serial_data
uint16_t g_chksm_size Program code size for write data flash_reprogram,

flash_store_serial_data
uint16_t g_chksm_data Checksum data of write data flash_reprogram,

flash_store_serial_data
uint8_t g_buf_write_data0

[SIZE_WRITE]
Write data store buffer 0 flash_reprogram,

flash_store_serial_data
uint32_t g_cnt_store_buf_w_data0 Data counts of write data store buffer 0 flash_reprogram,

flash_store_serial_data
uint8_t g_buf_write_data1

[SIZE_WRITE]
Write data store buffer 1 flash_reprogram,

flash_store_serial_data
uint32_t g_cnt_store_buf_w_data1 Data counts of write data store buffer 1 flash_reprogram,

flash_store_serial_data
uint32_t g_index_rx_data Receive data storage location index flash_reprogram,

flash_store_serial_data
uint8_t g_buf_rx_data

[SIZE_BUF_RX_DATA]
Receive data store buffer flash_store_serial_data

int8_t g_status_store_error Error flag flash_reprogram,
flash_store_serial_data

uint8_t g_flag_flash_status Flash environment status flash_init,
flash_activate,
flash_end

char g_msg_sendcode[] Program transmit request message flash_reprogram

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 27 of 63
Mar. 18, 2013

6.5 Functions
Table 6.7 lists the Functions.

Table 6.7 Functions

Function Name Outline
main Main processing
except_handler_addr_set Switching processing of exception handler base address
check_sum_check Checksum judgment of reprogram area
intp1_init Initialization of INTP1 interrupt
intp1_isr NTP1 interrupt processing
flash_reprogram Flash reprogram processing
flash_init Initialization of flash environment
flash_activate Start processing of flash environment
flash_modecheck Checking processing of FLMD0 pin using FSL
flash_erase Erase processing for specified block
flash_write Write processing from specified address
flash_iverify Internal verification of specified block
flash_end Termination processing of flash environment
flash_set_flmd0 Setting for FLMD0 pin level
flash_store_serial_data Store processing of receive data conversion
hex2bin Text binary conversion processing
taua0_led_sample Initialization of TAUA0 for LED blink with fixed cycle

(sample function in reprogram area)
taua0_led_spare Initialization of TAUA0 for LED blink with fixed cycle

(sample function in spare area)
taua0_i0_interval_timer_isr * TAUA0 interval timer interrupt processing
uartj0_serial_init Initialization of UARTJ0
uartj0_serial_port_init Initialization of UARTJ0 ports
uartj0_serial_tx_msg UARTJ0 message transmit processing
uartj0_serial_rx_isr UARTJ0 receive interrupt processing
uartj0_serial_status_isr UARTJ0 status interrupt processing
[Notes] * To set the store processing for received program data by serial communication above the LED flash

processing, the interrupt handler function taua0_ch0_interval_timer_isr enables multiple interrupts.
TAUA0 interval timer interrupt is set to the lower priority than FCN0 reception completion interrupt.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 28 of 63
Mar. 18, 2013

6.6 Function Specifications
The following tables list the sample code function specifications.

main

Outline Main processing
Header

Declaration void main (void)
Description After initializing the variables, the exception handler address, INTP1 interrupt, and

UARTJ, executes the program allocated in the reprogram area or the spare area
according to the checksum judgment. Enables interrupts and outputs INTP1 interrupt
request message, then execute the flash reprogram processing when INTP1
interrupt is generated. Outputs the reset request message for successful reprogram,
or the error message for failure.

Arguments None
Return Value None

except_handler_addr_set

Outline Switching processing of exception handler base address
Header

Declaration int32_t except_handler_addr_set (uint32_t base_addr)
Description After setting the value specified by the argument to the SW_BASE register, sets 1 to

SET bit of the SW_CTL register. Then transfers the contents of SW_BASE register to
the exception handler base address register (EH_BASE).

Arguments uint32_t base_addr : Exception handler base address setting value
 (The lower 12-bit should be 0.)

Return Value 0 (RET_OK) : Normal end
-1 (RET_ERR) : Argument error (The lower 12-bit is not 0.)

check_sum_check

Outline Checksum judgment of reprogram area
Header

Declaration int32_t check_sum_check (void)
Description Based on the program code size or checksum data stored in the last 4 bytes (H'0000

8FF0 to H'0000 8FF3) of reprogram area, calculates sum value from the start
address (H'0000 8000) of reprogram area to judge the consistency with the
checksum data.

Arguments None
Return Value 0 (RET_OK) : Checksum matched

-1 (RET_ERR) : Checksum unmatched

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 29 of 63
Mar. 18, 2013

intp1_init

Outline Initialization of INTP1 interrupt
Header

Declaration void intp1_init (void)
Description Initializes INTP1 interrupt. After setting P2_3 pin function to INTP1 input, sets the

interrupt request to be detected at the falling edge for input using interrupt controller.
Then sets INTP1 interrupt priority level.

Arguments None
Return Value None

intp1_isr

Outline INTP1 interrupt processing
Header

Declaration void intp1_isr (void)
Description Sets the flag which indicates that INTP1 interrupt has been generated.
Arguments None

Return Value None

flash_reprogram
Outline Flash reprogram processing
Header flash.h

Declaration int32_t flash_reprogram (void)
Description Executes initialization of the flash environment, start processing of the flash

environment, checking processing of FLMD0 pin, and reprogram block erase
processing. Then transmits the program transmit request message and enters into
the loop for program receive wait and flash writing. When the program has been
received to the last, executes the flash reprogram termination processing by writing
the checksum data.

Arguments None
Return Value 0 (RET_OK) : Normal end

-1 (RET_ERR_FLASH_ACTIVATE) : Failure to start flash environment
-2 (RET_ERR_FLASH_MODECHECK) : Failure to check FLMD0 pin
-3 (RET_ERR_FLASH_ERASE) : Failure of erase processing
-4 (RET_ERR_FLASH_WRITE) : Failure of write processing
-5 (RET_ERR_FLASH_IVERIFY) : Failure of internal verification
-6 (RET_ERR_FLASH_DEACTIVATE) : Failure to terminate flash environment
-7 (RET_ERR_FLASH_FLMD0_HIGH) : Failure to set FLMD0 pin to High level
-8 (RET_ERR_FLASH_FLMD0_LOW) : Failure to set FLMD0 pin to Low level
-9 (RET_ERR_FLASH_HEX_LINESIZE) : Abnormal numbers of hex file data
-10 (RET_ERR_FLASH_HEX_DATA) : Abnormal program data of hex file

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 30 of 63
Mar. 18, 2013

flash_init

Outline Initialization of flash environment
Header

Declaration int32_t flash_init (void)
Description After executing FLMD0 pin level setting function and setting FLMD0 pin to High level,

initializes the self library by executing the FSL_Init function. When the
flash_set_flmd0 function becomes an error, the RET_ERR_FLASH_FLMD0_HIGH
will be returned.

Arguments None
Return Value 0 (RET_OK) : Normal end

-7 (RET_ERR_FLASH_FLMD0_HIGH) : Failure to set FLMD0 pin to High level

flash_activate

Outline Start processing of flash environment
Header

Declaration int32_t flash_activate (void)
Description Starts the flash environment by calling the FSL_FlashEnv_Activate function. In case

of normal end, sets the bit which indicates that the flash environment has been
started to the g_flag_flash_status of the global variable, and then the RET_OK is
returned to terminate. When the FSL_FlashEnv_Activate function returns the value
other than the FSL_OK, the return value will be stored in the g_error_fsl_status of the
global variable. The RET_ERR_FLASH_ACTIVATE is returned to terminate.

Arguments None
Return Value 0 (RET_OK) : Normal end

-1 (RET_ERR_FLASH_ACTIVATE) : Failure to start flash environment

flash_modecheck

Outline Checking processing of FLMD0 pin using FSL
Header

Declaration int32_t flash_modecheck (void)
Description Executes checking of FLMD0 pin by calling the FSL_ModeCheck function. In case of

normal end, the RET_OK will be returned to terminate. When the FSL_ModeCheck
function returns other than the FSL_OK, the return value will be stored in the
g_error_fsl_status of the global variable. The RET_ERR_FLASH_MODECHECK is
returned to terminate.

Arguments None
Return Value 0 (RET_OK) : Normal end

-2 (RET_ERR_FLASH_MODECHECK) : Failure to check FLMD0 pin

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 31 of 63
Mar. 18, 2013

flash_erase

Outline Erase processing of specified block
Header

Declaration int32_t flash_erase (uint32_t start_block, uint32_t end_block)
Description Executes the block erase by calling the FSL_Erase function according to the

specified argument. After executing the FSL_Erase function, calls the
FSL_StatusCheck function and waits until the erase processing has been completed.
When the FSL_Erase function or the FSL_StatusCheck function returns the error
value, the return value will be stored in the g_error_fsl_status of the global variable.
The RET_ERR_FLASH_ERASE is returned to terminate.

Arguments uint32_t start_block
uint32_t end_block

: Start block number of the range to be erased
: End block number of the range to be erased

Return Value 0 (RET_OK) : Normal end
-3 (RET_ERR_FLASH_ERASE) : Failure to erase

flash_write

Outline Write processing from specified address
Header

Declaration int32_t flash_write (uint8_t ∗ src_data_addr, uint32_t dst_write_addr, uint32_t length)
Description Executes writing to the flash memory by calling the FSL_Write function according to

the specified argument. After executing the FSL_Write function, calls the
FSL_StatusCheck function and waits until the write processing has been completed.
When the FSL_Write function or the FSL_StatusCheck function returns the error
value, the value will be stored in the g_error_fsl_status of the global variable. The
RET_ERR_FLASH_WRITE is returned to terminate.

Arguments uint8_t ∗ src_data_addr
uint32_t dst_write_addr
uint32_t length

: Start address of write data (outside the on-chip RAM)
: Destination address of write data (4-word boundary)
: Write data length
 (word unit, 4-word boundary, MAX: on-chip ROM size)

Return Value 0 (RET_OK) : Normal end
-4 (RET_ERR_FLASH_WRITE) : Failure to write

flash_iverify

Outline Internal verification of specified block
Header

Declaration int32_t flash_iverify (uint32_t start_block, uint32_t end_block)
Description Calls the FSL_IVerify function according to the argument to execute the internal

verification of specified block. After executing the FSL_IVerify function, calls the
FSL_StatusCheck function and waits until the internal verification has been
completed. When the FSL_IVerify function or the FSL_StatusCheck function returns
the error value, the return value will be stored in the g_error_fsl_status of global
variable. Returns the RET_ERR_FLASH_IVERIFY to terminate.

Arguments uint32_t start_block
uint32_t end_block

: Start block number of the range for verify check
: End block number of the range for verify check

Return Value 0 (RET_OK) : Normal end
-5 (RET_ERR_FLASH_IVERIFY) : Failure of internal verification

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 32 of 63
Mar. 18, 2013

flash_end

Outline Termination processing of flash environment
Header

Declaration int32_t flash_end (void)
Description After terminating the flash environment by calling the FSL_FlashEnv_Deactivate

function, sets FLMD0 pin to Low level by calling the flash_set_flmd0 function. When
the FSL_FlashEnv_Deactivate returns the error value, the
RET_ERR_FLASH_DEACTIVATE will be returned. When the flash_set_flmd0
function returns the value other than 0, the RET_ERR_FLASH_FLMD0_LOW will be
returned to terminate.

Arguments None
Return Value 0 (RET_OK) : Normal end

-6 (RET_ERR_FLASH_DEACTIVATE) : Failure to terminate flash environment
-8 (RET_ERR_FLASH_FLMD0_LOW) : Failure to set FLMD0 pin to High level

flash_set_flmd0

Outline Setting for FLMD0 pin level
Header

Declaration int32_t flash_set_flmd0 (uint8_t level)
Description Sets FLMD control register to switch FLMD0 pull-up/pull-down control. According to

the reprogram sequence for the protect register, substitutes H'A5 for FLMD protect
command register, and then substitutes the value specified by the argument for
FLMD control register. After substituting the invert value, substitutes the value
specified again by the argument. Checks that the register value has been changed to
terminate.

Arguments uint8_t level : 0x00 : Set FLMD0 pin to Low level
0x01 : Set FLMD0 pin to High level

Return Value 0 (RET_OK) : Normal end
-1 (RET_ERR) : Error in writing operation to FLMDCNT register

flash_store_serial_data

Outline Store processing of receive data conversion
Header flash.h

Declaration void flash_store_serial_data (uint8_t rx_data)
Description Converts the hex data to binary data every line and stores the converted data in the

buffer. When the hex data for one-line is the data record, converts the data in binary
form and saves it until the buffer becomes full. When the hex data for on-line is the
end record, pads the remaining bytes with H'FF and sets the flag which indicates the
receiving has been completed.

Arguments uint8_t rx_data : Receive hex data
Return Value None

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 33 of 63
Mar. 18, 2013

hex2bin

Outline Text binary conversion processing
Header

Declaration int32_t hex2bin(uint8_t upper, uint8_t lower)
Description Converts the text data (2 characters) to the binary data with 1 byte.

When the data given to the argument is the text data with "0" to "9" or "A" to "F", it is
considered as the valid data and will be converted to the binary data with "H'0 to
H'F". After shifting the conversion result of the first argument (upper) to left by 4 bits
and implementing the OR with the conversion result of the second argument (lower),
returns it as the binary data with 1 byte.

Arguments uint8_t upper
uint8_t lower

: Text data for the upper 4-bit
: Text data for the lower 4-bit

Return Value 0 to 255 : Binary data with 1 byte
-1 (RET_ERR) : Input data error

taua0_led_sample

Outline Initialization of TAUA0 for LED blink with fixed cycle
(sample function in reprogram area)

Header
Declaration void taua0_led_sample (void)
Description Sets the port connected to the LEDs to output to blink them. Sets TAUA0 to the

interval timer which generates interrupts with fixed cycle.
Arguments None

Return Value None

taua0_led_spare

Outline Initialization of TAUA0 for LED blink with fixed cycle
(sample function in spare area)

Header
Declaration void taua0_led_spare (void)
Description Sets the port connected to the LEDs to output to blink them. Sets TAUA0 to the

interval timer which generates interrupts with fixed cycle.
Arguments None

Return Value None

taua0_i0_interval_timer_isr

Outline TAUA0 interval timer interrupt processing
Header

Declaration void taua0_i0_interval_timer_isr (void)
Description Inverts P1_4 output for LED blink.
Arguments None

Return Value None

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 34 of 63
Mar. 18, 2013

uartj0_serial_init

Outline Initialization of UARTJ0
Header flash.h

Declaration void uartj0_serial_init (void)
Description After initializing the ports of UARTJ0, executes initial setting for UARTJ0. Then sets

the interrupt level and enables the interrupts to enable UARTJ0 operation.
Arguments None

Return Value None

uartj0_serial_port_init

Outline Initialization of UARTJ0 ports
Header

Declaration void uartj0_serial_port_init (void)
Description Initializes the ports to use P2_12 pin for reception and P2_13 for transmission in

serial communication.
Arguments None

Return Value None

uartj0_serial_tx_msg

Outline UARTJ0 message transmit processing
Header flash.h

Declaration void uartj0_serial_rx_isr (void)
Description Provides serial output of the character string specified by the argument from

UARTJ0.
Arguments char * msg : Transmit message character string

Return Value None

uartj0_serial_rx_isr

Outline UARTJ0 receive interrupt processing
Header

Declaration void uartj0_serial_rx_isr (void)
Description Specifies the received data to the argument and executes program data store

processing (flash_store_serial_data function).
Arguments None

Return Value None

uartj0_serial_status_isr

Outline UARTJ0 status interrupt processing
Header

Declaration void uartj0_serial_status_isr (void)
Description Clears the status as UARTJ0 interrupt processing.
Arguments None

Return Value None

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 35 of 63
Mar. 18, 2013

6.7 Flowcharts
6.7.1 Startup Routine Processing
Figure 6.4 shows the Startup Routine Processing.

Startup processing

Execute main processing
main

Initialize hardware
hdwinit

Copy ROMized data
_rcopy

Initialize sbss section
_zeroclrw

Clear program area in RAM
_zeroclrw

Initialize pointer registers Initialize the following criterial pointer registers
when accessing to memories (data and instructions).

tp register
gp register
sp register
ep register
CTBP register

Initialize bss section
_zeroclrw

Figure 6.4 Startup Routine Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 36 of 63
Mar. 18, 2013

6.7.2 Main Processing
Figure 6.5 shows the Main Processing.

main

Transmit message
uartj0_serial_tx_msg

Checksum error?

Program in spare area
port_led_spare

Program in reprogram
areaport_led_sample

Yes

No

Yes

No

Generate INTP1 interrupt for transition to flash programming event.

[Global variable]
int8_t g_flag_start_flash_reprog : Start writing flash memory

Initialize INTP1 interrupt
intp1_init

Initialize UARTJ0
uartj0_serial_init

Checksum judgment
check_sum_check

Start writing flash memory?

Flash reprogram processing
flash_reprogram

Repeat until switch interrupt is generated.

Output message (interrupt switch request)

Initialize global variable g_flag_start_flash_reprog ← false

Infinite loop for reset wait

Enable interrupts
__EI

Transmit message
uartj0_serial_tx_msg --> INTP1 detected!

Output message (INTP1 interrupt detection)

Return value of flash
reprogram processing?

RET_OK

Error

Error code
Write error address

Change exception handler address
except_handler_addr_set

When failed to reprogram, output debug
information.

g_flag_start_flash_reprog == false?

Transmit message
uartj0_serial_tx_msg

Transmit message
uartj0_serial_tx_msg

Messages according to reprogram result;
- Reset request for success
- Message corresponding to an error.

Output message (message corresponds to reprogram result)

Figure 6.5 Main Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 37 of 63
Mar. 18, 2013

6.7.3 Switching Processing of Exception Handler Address
Figure 6.6 shows the Switching Processing of Exception Handler Address.

except_handler_addr_set

Switch to EHSW0 bank
Set register bank to H'10

return (RET_OK)

Set transfer value for EH_BASE register
Set SW_BASE register

Transfer
Write 1 into SW_CTL.SET

__ldsr(31,H'00000010)

__ldsr(3,base_addr)

__ldsr(0,H'00000001)

[Argument]
uint32_t base_addr : Setting value of exception handler base address

return (RET_ERR)

Lower 12-bit of
base_addr is 0?

Yes

No

[Note] When switching the exception handler address, the period from the startup of switching procedure to
the termination thereof must be free from exceptions, or any problem in case that an exception was
generated. This sample program has a program that operates properly for any exception handler
address of before/after switching.

 If the program cannot be located at the time of application, settings such as interrupt disable will be
required.

Figure 6.6 Switching Processing of Exception Handler Address

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 38 of 63
Mar. 18, 2013

6.7.4 Checksum Judgment of Reprogram Area
Figure 6.7 shows the Checksum Judgment of Reprogram Area.

check_sum_check

Write data size falls within
effective range?

Yes

Set start address of reprogram area

Read checksum judgment data

return(RET_OK)

Read data (1 byte) in reprogram
area for calculation

Complete reading for
write data size?

Calculation result matches
with checksum data?

Increment read address
of reprogram area

Read the following data calculated at the time of last
activation (when data received) and stored in the last
16-byte area of reprogram area;
- Checksum data
- Write data (program code) size

Ensure that the size does not excceed
4080 bytes (=4K bytes ? 16 bytes) No

No

Yes

Yes

No

return(RET_ERR)

Figure 6.7 Checksum Judgment of Reprogram Area

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 39 of 63
Mar. 18, 2013

6.7.5 Initialization of INTP1 Interrupt
Figure 6.8 shows the Initialization of INTP1 Interrupt.

intp1_init

return

Initialize ports
Port input mode and input buffer in

disabled state

Set port filter
Initialize FCLA15CTL2 register

Initialize PU2 register

Initialize PD2 register

Set ALT1-IN input of P2_3
(to be used for INTP1 interrupt)

PIBC2 &= ~H'0008
PBDC2 &= ~H'0008
PM2 |= H'0008
PMC2 &= ~H'0008
PIPC2 &= ~H'0008

FCLA15CTL2 ← H'02

PIS2 |= H'0008
PISE2 &= ~H'0008
PISA2 &= ~H'0008
PFC2 &= ~H'0008
PFCE2 &= ~H'0008
PMC2 |= H'0008
PIBC2 |= H'0008

PU2 &= ~H'0008

PD2 &= ~H'0008

Enable interrupt level setting
__set_il

__set_il(2, "INTP1")
__set_il(0, "INTP1")

Figure 6.8 Initialization of INTP1 Interrupt

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 40 of 63
Mar. 18, 2013

6.7.6 INPT1 Interrupt Processing
Figure 6.9 shows the INTP1 Interrupt Processing.

intp1_isr

Set flag to start reprogramming
flash memory

return

[Global variable]
int8_t g_flag_start_flash_reprog: Start reprogramming flash memory

g_flag_start_flash_reprog ← 1

[Note] Refer to "4.2.6 Precautions for Interrupts Generated During Use of FSL" for application.

Figure 6.9 INTP1 Interrupt Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 41 of 63
Mar. 18, 2013

6.7.7 Flash Reprogram Processing
Figure 6.10 and Figure 6.11 show the Flash Reprogram Processing.

flash_reprogram

Output message

Initialize variables

g_flag_w_data_buf0_full ← false
g_flag_w_data_buf1_full ← false
g_status_data_buff ← 0
g_status_end_record ← 0

Initialize flash environment
flash_init

Start processing for flash environment
flash_activate

Erase block in reprogram area
flash_erase

Write checksum data
flash_write

Internal verification of reprogram area
flash_iverify

Succeed?

Yes

No

Succeed?

Yes

Succeed?

Yes

Succeed?No

Yes

Create checksum data

g_buf_write_data0[0] ← (g_chksm_size & 0x00ff)
g_buf_write_data0[1] ← ((g_chksm_size & 0xff00) >> 8)
g_buf_write_data0[2] ← (g_chksm_data & 0x00ff)
g_buf_write_data0[3] ← ((g_chksm_data & 0xff00) >> 8)

ret ← flash_write(g_buf_write_data0, TOP_ADDR_MASTER_PRG_CHKSUM, SIZE_WRITE/4)

return(ret)

ret ← flash_iverify(BLOCK_MASTER_PRG, BLOCK_MASTER_PRG)

ret_end ← flash_end()

Erase block 8
ret ← flash_erase(BLOCK_MASTER_PRG, BLOCK_MASTER_PRG)

ret ← flash_activate()

Check FLMD0 pinflash_modecheck

Succeed?

Yes

Flash reprogram termination processing
flash_end

ret == RET_OK?

Yes

No

Change return value to error in
termination processing

ret ← ret_end

No

No

No

ret ← flash_moecheck()

Return without change when
an error occurs before
termination processing

Transmit message
uartj_serial_tx_msg Send subroutine code to update program in Intel expanded hex format.

A

BCDE

[Global variables]
uint8_t g_flag_w_data_buf0_full : Write buffer 0 full flag
uint8_t g_flag_w_data_buf1_full : Write buffer 1 full flag
uint8_t g_status_data_buff : Write buffer status
uint8_t g_status_end_record; : End record receive flag
uint16_t g_chksm_size : Program code size of write data
uint16_t g_chksm_data : Checksum data of write data
uint8_t g_buf_write_data0[SIZE_WRITE] : Write data store buffer 0
uint32_t g_cnt_store_buf_w_data0 : Data counts of write data store buffer 0
uint8_t g_buf_write_data1[SIZE_WRITE] : Write data store buffer 1
uint32_t g_cnt_store_buf_w_data1 : Data counts of write data store buffer 1
uint32_t g_index_recv_data; : Specify receive data storage location
[Local variable]
fsl_u32 write_addr : Write address

ret ← flash_init()

g_chksm_size ← 0
g_chksm_data ← 0
g_cnt_store_buf_w_data0 ← 0
g_cnt_store_buf_w_data1 ← 0

Failed to write program Succeed

g_index_recv_data ← 0
write_addr ← TOP_ADDR_MASTER_PRG

Figure 6.10 Flash Reprogram Processing (1/2)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 42 of 63
Mar. 18, 2013

Buffer 0 can be written
into flash memory?

Yes

No

Buffer 1 can be written
into flash memory?

No data to be written
Receive end record?

Yes

No

No

Write buffer 0 into flash memory
flash_write Write buffer 1 into flash memory

flash_write

Succeed? No

Yes

Succeed? No

Yes

ret ← flash_write(g_buf_write_data0,
 write_addr,
 SIZE_WRITE/4)

ret ← flash_write(g_buf_write_data1,
 write_addr,
 SIZE_WRITE/4);

Update flash write address

g_flag_w_data_buf0_full ← false
write_addr += SIZE_WRITE g_flag_w_data_buf0_full ← false

write_addr += SIZE_WRITE

Update flash write address

Yes

Error in receive data?
Yes

No
Change return value to error in

termination processing
ret ← g_status_store_error

A

B

C

D E

[Global variables]
uint8_t g_flag_w_data_buf0_full : Write buffer 0 full flag
uint8_t g_flag_w_data_buf1_full : Write buffer 1 full flag
uint8_t g_status_data_buff : Write buffer status
uint8_t g_status_end_record; : End record receive flag
uint16_t g_chksm_size : Program code size of write data
uint16_t g_chksm_data : Checksum data of write data
uint8_t g_buf_write_data0[SIZE_WRITE] : Write data store buffer 0
uint32_t g_cnt_store_buf_w_data0 : Data counts of write data store buffer 0
uint8_t g_buf_write_data1[SIZE_WRITE] : Write data store buffer 1
uint32_t g_cnt_store_buf_w_data1 : Data counts of write data store buffer 1
uint32_t g_index_recv_data; : Specify receive data storage location
[Local variable]
fsl_u32 write_addr : Write address

Figure 6.11 Flash Reprogram Processing (2/2)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 43 of 63
Mar. 18, 2013

6.7.8 Initialization of Flash Environment
Figure 6.12 shows the Initialization of Flash Environment.

flash_init

Return value of
flash_set_flmd0 is 0?

Yes

 Set FLMD0 pin to High level
flash_set_flmd0

Update flash environment status

return(RET_OK)

No

[Global variable]
uint8_t g_flag_flash_status : Flash environment status

return(RET_ERR_FLASH_FLMD0_HIGH)

Initialize self library
FSL_Init

g_flag_flash_status |= FLASH_STATUS_FLMD0_HIGH

Figure 6.12 Initialization of Flash Environment

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 44 of 63
Mar. 18, 2013

6.7.9 Start Processing of Flash Environment
Figure 6.13 shows the Start Processing of Flash Environment.

flash_activate

Return value of
FSL_FlashEnv_Activate is

FSL_OK?

Yes

return(RET_OK)

No

[Global variables]
uint8_t g_flag_flash_status : Flash environment status
fsl_status_t g_error_fsl_status : Store FSL error

Update flash environment status

return(RET_ERR_FLASH_ACTIVATE)

g_error_fsl_status ← Return value of FSL_FlashEnv_Activate()

g_flag_flash_status |= FLASH_STATUS_FSL_ACTIVATE

Start flash environment
FSL_FlashEnv_Activate

Store error state

Figure 6.13 Start Processing of Flash Environment

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 45 of 63
Mar. 18, 2013

6.7.10 Checking Processing of FLMD0 Pin Using FSL
Figure 6.14 shows the Checking Processing of FLMD0 Pin Using FSL.

flash_modecheck

Return value of
FSL_ModeCheck is

FSL_OK?

Yes

return(RET_OK)

No

[Global variable]
fsl_status_t g_error_fsl_status : Store FSL error

return(RET_ERR_FLASH_MODECHECK)

g_error_fsl_status ← Return value of FSL_ModeCheck()

Check FLMD0 pin
FSL_ModeCheck

Store error state

Figure 6.14 Checking Processing of FLMD0 Pin Using FSL

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 46 of 63
Mar. 18, 2013

6.7.11 Erase Processing of Specified Block
Figure 6.15 shows the Erase Processing of Specified Block.

flash_erase

fsl_status != FSL_OK?

Yes

return(RET_OK)

No

[Arguments]
uint32_t start_block : Start block number of the range to be erased
uint32_t end_block : End block number of the range to be erased

return(RET_ERR_FLASH_ERASE)

g_error_fsl_status ← fsl_status

Erase specified block
FSL_Erase

Store error state

fsl_status == FSL_BUSY?

fsl_status ← Return value of FSL_Erase(start_block, end_block)

Check previously specified
statusFSL_StatusCheck

fsl_status ← Return value of FSL_StatusCheck()

Yes

No

Wait for erase completion

[Global variable]
fsl_status_t g_error_fsl_status : Store FSL error
[Local variable]
fsl_status_t fsl_status : Return value of FSL function

Figure 6.15 Erase Processing of Specified Block

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 47 of 63
Mar. 18, 2013

6.7.12 Write Processing from Specified Address
Figure 6.16 shows the Write Processing from Specified Address.

flash_write

fsl_status != FSL_OK?

Yes

return(RET_OK)

No

[Global variables]
fsl_status_t g_error_fsl_status : Store FSL error
uint32_t g_addr_write_error : Write error address
[Local variable]
fsl_status_t fsl_status : Return value of FSL function

return(RET_ERR_FLASH_WRITE)

g_error_fsl_status ← fsl_status
g_addr_write_error ← dst_write_addr

Write from specified address
FSL_Write

Store error state

fsl_status == FSL_BUSY?

fsl_status ← Return value of FSL_Write(src_data_addr, dst_write_addr, length)

Check previously specified
statusFSL_StatusCheck

fsl_status ← Return value of FSL_StatusCheck()

Yes

No

Wait for write completion

[Arguments]
uint8_t ∗ src_data_addr : Write source RAM address
uint32_t dst_write_addr : Write destination flash address
uint32_t length : Write size

Figure 6.16 Write Processing from Specified Address

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 48 of 63
Mar. 18, 2013

6.7.13 Internal Verification of Specified Block
Figure 6.17 shows the Internal Verification of Specified Block.

flash_iverify

fsl_status != FSL_OK?

Yes

return(RET_OK)

No

[Global variable]
fsl_status_t g_error_fsl_status : Store FSL error
[Local variable]
fsl_status_t fsl_status : Return value of FSL function

return(RET_ERR_FLASH_IVERIFY)

g_error_fsl_status ← fsl_status

Write from specified address
FSL_IVerify

Store error state

fsl_status == FSL_BUSY?

fsl_status ← Return value of FSL_IVerify(start_block, end_block)

Check previously specified
statusFSL_StatusCheck

fsl_status ← Return value of
 FSL_StatusCheck()

Yes

No

Wait for write completion

[Arguments]
uint32_t start_block : Start block number of internal verification
uint32_t end_block : End block number of internal verification

Figure 6.17 Internal Verification of Specified Block

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 49 of 63
Mar. 18, 2013

6.7.14 Termination Processing of Flash Environment
Figure 6.18 shows the Termination Processing of Flash Environment.

flash_end

Set FLMD0 pin to Low level
flash_set_flmd0

Terminate flash environment
FSL_FlashEnv_Deactivate

[Global variable]
uint8_t g_flag_flash_status : Flash environment status

Flash environment
has been started?

Succeed?

Initialize return value

Set error to return value

Update flash environment status

FLMD0 pin has been
 set to High?

Succeed?

Set error to return value

Update flash environment status

return(ret)

Yes

No

No

Yes

(g_flag_flash_status & FLASH_STATUS_FSL_ACTIVATE != 0)

(g_flag_flash_status & FLASH_STATUS_FLMD0_HIGH != 0)

Yes

Yes

No

No

ret ← RET_OK

ret ← RET_ERR_FLASH_DEACTIVATE

ret ← RET_ERR_FLASH_FLMD0_LOW

ret ← flash_set_flmd0(0)

g_flag_flash_status &=
 ~FLASH_STATUS_FSL_ACTIVATE

g_flag_flash_status &=
 ~FLASH_STATUS_FLMD0_HIGH

[Local variable]
int32_t ret : Return value

Figure 6.18 Termination Processing of Flash Environment

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 50 of 63
Mar. 18, 2013

6.7.15 Setting for FLMD0 Pin Level
Figure 6.19 shows the Setting for FLMD0 Pin Level.

flash_set_flmd0

Enable writing FLMD protection
command register

[Argument]
uint8_t level : FLMD0 pin level

FLMDPCMD ← H'A5

Write FLMD control register FLMDCNT ← level
FLMDCNT ← ~level
FLMDCNT ← level

Succeed in writing?

return(RET_OK) return(RET_ERR)

Yes

No
((0x00 != FLMDPS) || (level != FLMDCNT)) ?

Figure 6.19 Setting for FLMD0 Pin Level

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 51 of 63
Mar. 18, 2013

6.7.16 Store Processing for Receive Data
Figure 6.20 and Figure 6.21 show the Store Processing for Receive Data.

flash_store_serial_data

No

return
Yes

[Local variable]
uint8_t i : Loop counter

[Global variables]
uint8_t g_buf_recv_data[] : Receive data store buffer
uint32_t g_index_rx_data : Receive data storage location index

g_buf_rx_data[g_index_rx_data] ← rx_data
g_index_rx_data ++

Line feed?

Type of records?

Data record

End record

Extended address record
Start address record
Extended linear address record
Start linear address record

default

2
3
4
5

1

0

Unexpected data

Do Nothing Do Nothing

AB

CD

Restore buffer storage position
to the initial position

Termination
Processing

Store receive data from the serial

g_index_rx_data ← 0

return

[Argument]
uint8_t rx_data : Serial receive data

('\r' != ∗addr_buf) && ('\n' != ∗addr_buf)

Start of line data is ':'?

The upper digit of record is 0?

return

Restore buffer storage position
to the initial position

g_index_rx_data ← 0

Yes

Yes

No

No

Data conversion
store processing

Figure 6.20 Store Processing for Receive Data (1/2)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 52 of 63
Mar. 18, 2013

for loop
i = 0; i<bin_size; i++

for loop End

Obtain data length
by using binary conversion

hex2bin

Write buffer is 0?

Obtain data
by using binary conversion

hex2bin

Buffer 1 is full?

Store in write data store buffer 1

Change of write buffer 1

Buffer 0 is full?

Change of write buffer 0

Store in write data store buffer0

Checksum size calculation

NoNo

YesYes

A

C

Yes

No

g_cnt_store_buf_w_data0 ← 0
g_flag_w_data_buf0_full ← true
g_status_data_buff ←1

g_cnt_store_buf_w_data1 ← 0
g_flag_w_data_buf1_full ← true
g_status_data_buff ← 0

g_buf_write_data0[g_cnt_store_buf_w_data0] ← bin_data
g_cnt_store_buf_w_data0++

g_buf_write_data1[g_cnt_store_buf_w_data1] ← bin_data
g_cnt_store_buf_w_data1++

bin_size ← hex2bin(g_buf_rx_data[HEXDATA_POS_BYTE_NUM],
g_buf_rx_data[HEXDATA_POS_BYTE_NUM+1])

bin_data ← hex2bin(g_buf_rx_data[HEXDATA_POS_CODE_TOP+2*i],
g_buf_rx_data[HEXDATA_POS_CODE_TOP+2*i+1])

Repeat for binary data size

Checksum calculation

g_chksm_size += bin_size

g_chksm_data += bin_data

(g_status_data_buff == 0)

[Local variables]
uint8_t bin_data : Program data
int8_t bin_size : Data size included in a line
uint8_t i : Loop counter

[Global variables]
uint8_t g_buf_rx_data[] : Receive data store buffer
uint8_t g_buf_write_data0[SIZE_WRITE]

: Write data store buffer 0
uint8_t g_buf_write_data1[SIZE_WRITE]

: Write data store buffer 1
uint8_t g_flag_w_data_buf0_full : Write buffer 0 full flag
uint8_t g_flag_w_data_buf1_full : Write buffer 1 full flag
uint32_t g_cnt_store_buf_w_data0 : Data counts of buffer 0
uint32_t g_cnt_store_buf_w_data1 : Data counts of buffer 1
uint8_t g_status_data_buff : Write buffer status

B

D

Write buffer is 0?

Pad the remaining of write data store
buffer 0 with H'FF

Change of write buffer 0

Yes

No

Pad the remaining of write data store
buffer with H'FF

Change of write buffer 1

g_cnt_store_buf_w_data0 ← 0
g_flag_w_data_buf0_full ← true
g_status_data_buff ← 1

g_cnt_store_buf_w_data1 ← 0
g_flag_w_data_buf1_full ← true
g_status_data_buff ← 0

Figure 6.21 Store Processing for Receive Data (2/2)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 53 of 63
Mar. 18, 2013

6.7.17 Text Binary Conversion Processing
Figure 6.22 shows the Text Binary Conversion Processing.

hex2bin

The lower is numeric data?

Yes
The upper indicates '0' to '9' or 'A' to 'F' ?

Shift upper to left by 4 bits

return (upper | lower)

Convert the upper into binary data and
store conversion result in the upper

Convert the lower into binary data and
store conversion result in the lower

The upper is numeric data?

[Arguments]
uint8_t upper : Text binary data for the upper 4-bit
uint8_t lower : Text binary data for the lower 4-bit

return (RET_ERR)

No

No

upper <<= 4

The lower indicates '0' to '9' or 'A' to 'F' ?

Yes

Figure 6.22 Text Binary Conversion Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 54 of 63
Mar. 18, 2013

6.7.18 TAUA0 Initialization for LED Blink with Fixed Cycle (Sample Function in
Reprogram Area and Spare Area)

Figure 6.23 shows the TAUA0 Initialization for LED blink with Fixed Cycle (Sample Function in Reprogram Area and
Spare Area).

taua0_led_sample,
taua0_led_spare

__set_il(16, "INTTAUA0I0")
__set_il(0, "INTTAUA0I0")

TAUA0CMOR0 ← H'0000
 TAUA0CKS bit = B'00 : Select operation clock CK0
 TAUA0STS bit = B'000 : Software trigger
 TAUA0MD bit = B'0000 : Interval timer mode

 Do not output INTTAUA0Im

Set TAUA0CMOR0 register

Set TAUA0TPS register

Set TAUA0CDR0 register

return

TAUA0TPS0 ← H'FFF7
 TAUA0PRS0 bit = B'0111 : Specify CK0 clock division ratio PCLK/2^7

TAUA0CDR0 ← H'FFFF : Compare value setting

Enable interrupt level setting
__set_il

Set port functions
Output mode setting for LED0 port P1_4

PMC1 &= ~PORT_BIT_P1_4
PM1 &= ~PORT_BIT_P1_4
PDSC1 &= ~PORT_BIT_P1_4
P1 |= PORT_BIT_P1_4

Figure 6.23 TAUA0 Initialization for LED blink with Fixed Cycle (Sample Function in Reprogram Area
and Spare Area)

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 55 of 63
Mar. 18, 2013

6.7.19 TAUA0 Interval Timer Interrupt Processing
Figure 6.24 shows the TAUA0 Interval Timer Interrupt Processing.

taua0_i0_interval_timer_isr

return

LED port output inversion P1 ^= PORT_BIT_P1_4

[Note] Refer to "4.2.6 Precautions for Interrupts Generated During Use of FSL" for application.

Figure 6.24 TAUA0 Interval Timer Interrupt Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 56 of 63
Mar. 18, 2013

6.7.20 Initialization of UARTJ0
Figure 6.25 shows the Initialization of UARTJ0.

uartj0_serial_init

Initialize UARTJ0 port
uartj0_serial_port_init

Set UARTJ

return

Enable UARTJ0 operation

Enable interrupt level setting
__set_il

URTJ0CTL2 ← H'0D90 : Baud rate 9600bps
URTJ0CTL1 ← H'5102 : Data bit length ? 8 bits,

 No parity bit,
 The number of stop bits ? 1 bit,
 LSB first transfer

__set_il(1, "INTUARTJ0IS")
__set_il(0, "INTUARTJ0IS")
__set_il(2, "INTUARTJ0IR")
__set_il(0, "INTUARTJ0IR")

URTJ0CTL0 ← H'E0

Figure 6.25 Initialization of UARTJ0

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 57 of 63
Mar. 18, 2013

6.7.21 Initialization of UARTJ0 Ports
Figure 6.26 shows the Initialization of UARTJ0 Ports.

uartj0_serial_port_init

Initialize ports

return

[Local variable]
uint32_t set_pdsc2 : Setting value for PDSC2 register

Reprogram PDSC2 register
for protection

PIBC2 &= ~(PORT_BIT_P2_12 | PORT_BIT_P2_13);
PBDC2 &= ~(PORT_BIT_P2_12 | PORT_BIT_P2_13);
PM2 |= (PORT_BIT_P2_12 | PORT_BIT_P2_13);
PMC2 &= ~(PORT_BIT_P2_12 | PORT_BIT_P2_13);
PIPC2 &= ~(PORT_BIT_P2_12 | PORT_BIT_P2_13);

set_pdsc2 ← PDSC2 & ~PORT_BIT_P2_13
PPCMD2 ← H'A5
PDSC2 ← set_pdsc2
PDSC2 ← ~set_pdsc2
PDSC2 ← set_pdsc2

Set pull-up/pull-down resistors PU2 &= ~PORT_BIT_P2_12 : P2_12 does not connect internal pull-up resistor.
PD2 &= ~PORT_BIT_P2_12 : P2_12 does not connect internal pull-down resistor.

PIS2 |= PORT_BIT_P2_12
PISE2 &= ~PORT_BIT_P2_12
PISA2 &= ~PORT_BIT_P2_12
PFC2 |= (PORT_BIT_P2_12 | PORT_BIT_P2_13)
PFCE2 |= (PORT_BIT_P2_12 | PORT_BIT_P2_13)
PMC2 |= (PORT_BIT_P2_12 | PORT_BIT_P2_13)
PM2 |= PORT_BIT_P2_12
PM2 &= ~PORT_BIT_P2_13
PIBC2 |= PORT_BIT_P2_12

Set port functions

Figure 6.26 Initialization of UARTJ0 Ports

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 58 of 63
Mar. 18, 2013

6.7.22 UARTJ0 Message Transmit Processing
Figure 6.27 shows the UARTJ0 Message Transmit Processing.

uartj0_serial_tx_msg

Initialize processing position

return

[Local variable]
uint8_t ∗ pt : Processing position pointer

[Argument]
char ∗ msg : The number of character strings in character string group

Serial output from UARTJ0
Update processing position

pt ← msg

Termination character
of character string?

Transmission has
been completed?

Yes

No

URTJ0FTX ← *pt++

((URTJ0STR0 & 0x01) != 0)

(*pt != '\0')

Yes

No

Figure 6.27 UARTJ0 Message Transmit Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 59 of 63
Mar. 18, 2013

6.7.23 UARTJ0 Receive Interrupt Processing
Figure 6.28 shows the UARTJ0 Receive Interrupt Processing.

uartj0_serial_rx_isr

return

Program data store processing
flash_store_serial_data

Read receive data rx_data ← URTJ0FRX

flash_store_serial_data(rx_data)

[Local variable]
uint8_t rx_data : Receive data

[Note] Refer to "4.2.6 Precautions for Interrupts Generated During Use of FSL" for application.

Figure 6.28 UARTJ0 Receive Interrupt Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 60 of 63
Mar. 18, 2013

6.7.24 UARTJ0 Status Interrupt Processing
Figure 6.29 shows the UARTJ0 Status Interrupt Processing.

uartj0_serial_status_isr

return

Read URTJ0STR1 register reg_urtj0str1 ← URTJ0STR1

[Local variables]
uint8_t reg_urtj0str1 : Read value of URTJ0STR1
uint8_t reg_urtj0fstr1 : Read value of URTJ0FSTR1
uint16_t dummy_read : Variable to read URTJ0FRX
uint16_t rx_num : The number of remaining receive data in receive FIFO
uint16_t I : Loop counter

Read URTJ0FSTR1 register reg_urtj0fstr1 ← URTJ0FSTR1

Read the number of remaining
receive data in receive FIFO

rx_num ← (URTJ0FSTR0 & H'1F00) >> 8

for loop
i = 0; i<rx_num; i++

Read URTJ0FSTR1 register dummy_read ← URTJ0FRX

Read remaining receive data
in receive FIFO

Detect inconsistency of
transmit data and receive data?

The number of remaining data
in receive FIFO is 0?

Receive overrun error processing*
with receive FIFO empty

Receive overrun error processing*
with receive FIFO full

Clear status flag URTJ0STC ← H'1E
URTJ0FSTC ← H'E3

Detect receive FIFO overrun?

Yes (reg_urtj0str1 & H'04)?

Yes (reg_urtj0fstr1 & H'20)?

No

No

(rx_num == 0)?

Processing for status

Clear transmit FIFO pointer URTJ0FSTC ← H'02

Yes

No

for loop End

[Note] This sample program does not provide the status handling processing. The processing which
corresponds to various statuses should be added according to the user system. Refer to "4.2.6 Precautions
for Interrupts Generated During Use of FSL" when applying this function.

Figure 6.29 UARTJ0 Status Interrupt Processing

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 61 of 63
Mar. 18, 2013

7. Operation Overview
In this sample program, the updating program is transmitted by using the serial communication host device. This
chapter describes an example of controlling the data transmission using the PC as a serial communication host device.

Figure 7.1 shows the Hardware Configuration Example for Sample Code.

Serial cable

Serial communication
Application software

Message

Program data
transfer

Host PC

V850E2/ML4 CPU board
(Type: R0K0F4022C000BR)

Program data

Message

Input file
from menu

V850E2/ML4
This sample code

Figure 7.1 Hardware Configuration Example for Sample Code

JP1 for signal selection of the CPU board should be switched to 2-3 to use the INTP1.

The CPU board (serial port connector (J5)) and the host PC should be connected by the serial cable.

Refer to "V850E2/ML4 CPU board R0K0F4022C000BR User's Manual" for more details about the CPU board jumper
settings and connectors.

Table 7.1 Jumper List

Jumper 1-2 (default) 2-3 (used in this program)
JP1 VBUS P2_3

An operation procedure with the VT100 compatible terminal emulator is described as follows. First of all, activate the
terminal emulator and set for serial port connection. Select the number connected to the board for the serial port number
of the terminal emulator. The setting values for serial ports are listed in Table 7.2.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 62 of 63
Mar. 18, 2013

Table 7.2 Serial Port Setting

Item Setting Value
Bit/sec 9600bps
Data bit 8bit
Parity None
Stop bit 1bit
Flow control None

After the above setting is completed, turn on the through board and the board for this sample program.

When the board for this sample program is activated, the V850E2/ML4 transmits a message "Generate INTP1 interrupt
for transition to flash programming event." to the host.

Then the V850E2/ML4 executes the program stored in the reprogram area, and flashes the LEDs on the board with the
fixed period.

When the INTP1 switch (SW4) on the board is pushed in this condition, the V850E2/ML4 transmits a message "-->
INTP1 detected!" to the host. When the INTP1 interrupt is generate, the V850E2/ML4 enters into flash reprogram
processing, and erases the update area. After the erasing is completed, the V850E2/ML4 transmits a message "Send
subroutine code to update program in Intel expanded Hex format." to the host, and enters into wait state for data
reception from the host.
In case of transmitting a file with Intel expanded hex format as a program data from the host, the terminal emulator
transmit function should be used. When choosing and transmitting the said file (such as
v850e2ml4_sample_host_send.hex), in this sample program, the received file is converted to program data and written
to the flash memory.
After the writing is completed, the V850E2/ML4 transmits a message "Successfully Finish Writing Program Data.
Please Reset." to the host, it enters into wait state for reset. Reset the board.
When restarting, the LEDs on the board flash with the different period from previous one. If the data reception/flash
reprogram (update) prior to restart was failed to execute properly, the V850E2/ML4 finds a checksum error at the time
of restarting by reset input. The V850E2/ML4 executes the program in the spare area.

V850E2/ML4 Updating Program Code Using Flash Self Programming
 with Asynchronous Serial Interface J (UARTJ)

R01AN1475EJ0100 Rev.1.00 Page 63 of 63
Mar. 18, 2013

8. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents
User's Manual: Hardware

V850E2/ML4 User's Manual: Hardware Rev.2.00 (R01UH0262EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

CubeSuite+ V1.03.00 Integrated Development Environment User's Manual: Coding for CX compiler Rev.1.00
(R20UT2139EJ)
CubeSuite+ V1.03.00 Integrated Development Environment User's Manual: Build for CX compiler Rev.1.00
(R20UT2142EJ)
V850E2/ML4 CPU Board R0K0F4022C000BR User's Manual Rev.1.00 (R20UT0778EJ)
The latest version can be downloaded from the Renesas Electronics website.

User's Manual: Software
 V850E2/ML4 User's Manual: Architecture Rev.1.00 (R01US0001EJ)
 The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY
V850E2/ML4 Application Note Updating Program Code Using
Flash Self Programming with Asynchronous Serial Interface J

(UARTJ)

Description Rev. Date
Page Summary

1.00 Mar. 18, 2013 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different part numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Peripheral Functions
	4.1 Terms for Flash Self Programming
	4.2 Notes for Flash Self Programming
	4.2.1 Setting for Link Directive File
	4.2.2 Setting for Non-use of Prologue/Epilogue Library
	4.2.3 Setting for ROMization of Section in RAM
	4.2.4 Setting for Far Jump Function
	4.2.5 Setting for Startup Routine
	4.2.6 Precautions for Interrupts Generated During Use of FSL

	5. Hardware
	5.1 Pins Used

	6. Software
	6.1 Operation Overview
	6.1.1 Setting for Section Assignment
	6.1.2 Overview of Reprogramming Flash Memory
	6.1.3 Process from Startup to Normal Operation
	6.1.4 Flash Reprogram Processing after INTP1 Interrupt Input
	6.1.5 Data Receive Processing
	6.1.6 Processing after Data Deception/Reprogramming
	6.1.7 Communication Control Sequence

	6.2 File Composition
	6.3 Constants
	6.4 Variables
	6.5 Functions
	6.6 Function Specifications
	6.7 Flowcharts
	6.7.1 Startup Routine Processing
	6.7.2 Main Processing
	6.7.3 Switching Processing of Exception Handler Address
	6.7.4 Checksum Judgment of Reprogram Area
	6.7.5 Initialization of INTP1 Interrupt
	6.7.6 INPT1 Interrupt Processing
	6.7.7 Flash Reprogram Processing
	6.7.8 Initialization of Flash Environment
	6.7.9 Start Processing of Flash Environment
	6.7.10 Checking Processing of FLMD0 Pin Using FSL
	6.7.11 Erase Processing of Specified Block
	6.7.12 Write Processing from Specified Address
	6.7.13 Internal Verification of Specified Block
	6.7.14 Termination Processing of Flash Environment
	6.7.15 Setting for FLMD0 Pin Level
	6.7.16 Store Processing for Receive Data
	6.7.17 Text Binary Conversion Processing
	6.7.18 TAUA0 Initialization for LED Blink with Fixed Cycle (Sample Function in Reprogram Area and Spare Area)
	6.7.19 TAUA0 Interval Timer Interrupt Processing
	6.7.20 Initialization of UARTJ0
	6.7.21 Initialization of UARTJ0 Ports
	6.7.22 UARTJ0 Message Transmit Processing
	6.7.23 UARTJ0 Receive Interrupt Processing
	6.7.24 UARTJ0 Status Interrupt Processing

	7. Operation Overview
	8. Sample Code
	9. Reference Documents

