Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300L SLP Series

Using Input-Capture Function to Measure Pulse Period

Introduction

The period of a pulse input to Input Capture Input Pin (TMIG) is measured using the Timer G input capture function. The maximum pulse period that can be measured is 3.277 ms and the measurement accuracy is 12.8 μ s.

Target Device

H8/38024

Contents

1.	Specifications	2
2.	Description of Functions	2
3.	Principle of Operation	4
4.	Description of Software	5
5.	Flowchart	7
6.	Program Listing	9

- 1. The period of a pulse input to Input Capture Input Pin (TMIG) is measured using the Timer G input capture function.
- 2. The counter value of Timer Counter G (TCG) between rising edges of an input pulse is stored in the RAM and the period of an input pulse is measured based on this counter value.
- 3. The maximum pulse period that can be measured is 3.277 ms and the measurement accuracy is 12.8 µs.

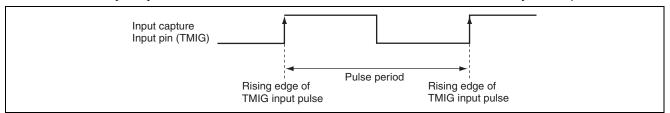


Figure 1.1 Measurement of Input Pulse Period

2. Description of Functions

- 1. In this task example, the period of pulses input to Input Capture Input Pin (TMIG) is measured using the Timer G input capture function.
 - A. Figure 2.1 shows the block diagram of the Timer G input capture function which is described below.
 - The system clock (φ) is a 5 MHz clock and is a reference clock to operate the CPU and its peripheral functions.
 - The Prescaler S (PSS) is a 13-bit counter using ϕ as its input clock and is counted up every cycle.
 - The Timer Counter G (TCG) is an 8-bit read/write up-counter and is counted up by an internal or external clock which is input. The input clock can be selected from four clocks obtained by dividing the system clock by 2, 32 and 64, and an external clock. In this task example, a clock obtained by dividing the system clock by 64 is selected as the TCG input clock.
 - The Timer Mode Register G (TMG) is an 8-bit read/write register. It selects TCG input clock, counter clearing, and the interrupt request edge of input capture input signal, and controls enable/disable of overflow interrupt request, and indicates the overflow flag.
 - The Input Capture Register GR (ICRGR) is an 8-bit read-only register. When the rising edge of an input pulse to the input capture pin is detected, the value of the TCG at that time is transferred to ICRGR. If IRRTG in IRR2 is set to 1, an interrupt request will be sent to the CPU.
 - A pulse, whose frequency is subject to measurement, is input through Input Capture Input Pin (TMIG).
 - The method to calculate input pulse periods in this task example is shown below. Pulse periods cannot be
 measured accurately if the TCG overflows. Input pulse period must therefore be shorter than the TCG
 overflow period (3.277 ms)
 - If the TCG overflows after the first rising edge of the input pulse is captured, the value of H'FF is stored in PDRHL.

Input pulse period = (TCG counter value stored in PDRHL) \times (TCG input clock period)

= (TCG counter value stored in PDRHL) \times 12.8 μ s (1/ (ϕ : 5 MHz/PSS:64))

Using Input-Capture Function to Measure Pulse Period

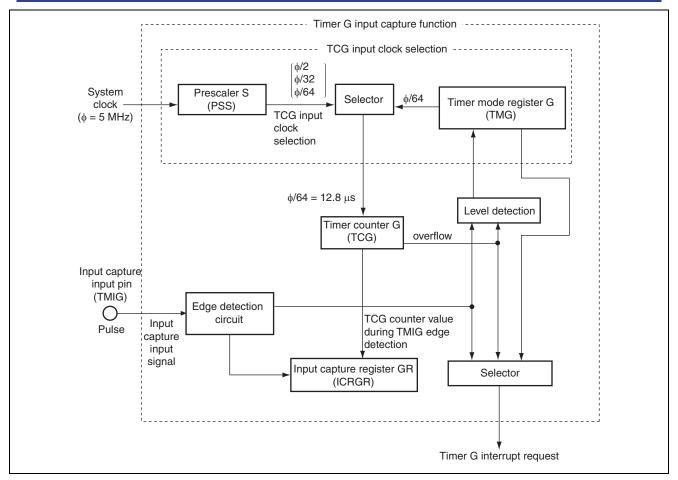


Figure 2.1 Block Diagram of Timer G Input Capture Function

2. Table 2.1 shows function assignment in this task example. The functions are assigned as shown in table 2.1 and frequencies are measured by the Timer G input capture function.

Table 2.1 Assignment of Functions

Function	Assignment
PSS	A 13-bit counter using the system clock as input
TMG	Selects the interrupt request edge of the input capture input signal, enables TCG overflow interrupts, and sets TCG input clock.
TCG	An 8-bit up counter using the system clock/64 as input
ICRGR	When rising edge of an TMIG input pulse is detected, the TCG counter value at this time is stored.
NCS	Controls noise cancellation function not to be used.
IENTG	Enables interrupt requests at the rising edge of TMIG pin input.
IRRTG	An interrupt flag of rising edge of TMIG pin input.
TMIG	Pulses to be measured are input.

3. Principle of Operation

1. Figure 3.1 illustrates the principle of operation of this sample task. As shown in figure 3.1, pulse periods are measured by the Timer G input capture function by means of hardware processing and software processing.

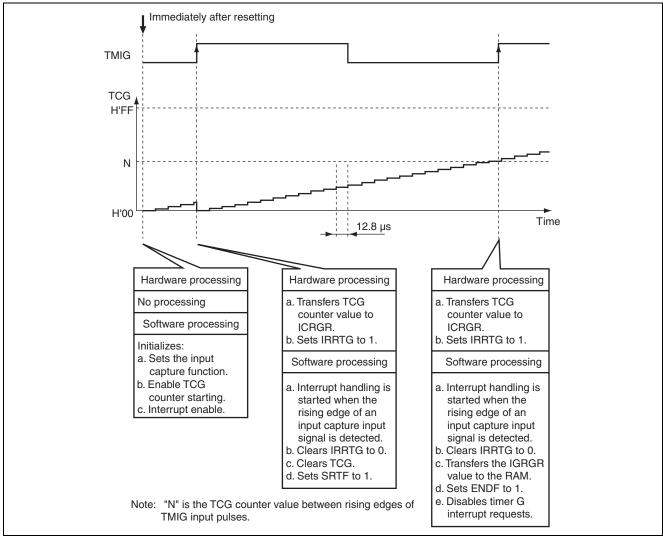


Figure 3.1 Operation Principle of Pulse Period Measurement by Timer G Input Capture Function

4. Description of Software

4.1 Modules

Table 4.1 describes the modules in this task example.

Table 4.1 Description of Modules

Module	Label	Function
Main Routine	main	Sets the timer G input capture function, and enables interrupts.
Period	tgint	During the Timer G interrupt handling, initializes TCG to H'00 when the first
Measurement		IRRTG interrupt occurs, stores ICRGR data in the RAM when the second
End		IRRTG interrupt occurs, and disables Timer G interrupt requests.

4.2 Arguments

The arguments used in this task example are described in table 4.2.

Table 4.2 Description of Arguments

Argument	Function	Used in	Data Length	Output
PRDHL	The counter value between rising edges of TMIG input pulse	Main Routine	1 byte	Output

4.3 Internal registers

Table 4.3 describes the internal registers in this task example.

Table 4.3 Description of Internal Registers

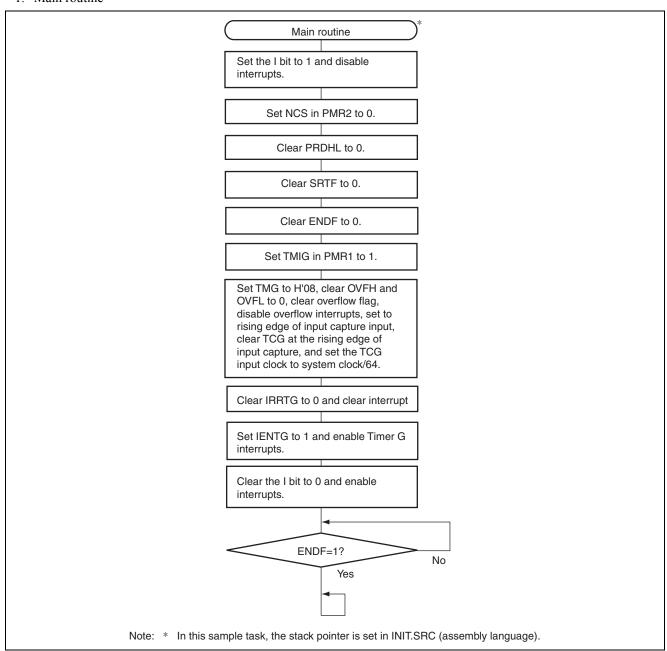
Register		Function		Setting
TMG	OVFH	Timer Mode Register G (Timer Overflow Flag H) If OVFH = 0, the level of input capture input signal is high and TCG does not overflow. If OVFH = 1, the level of input capture input signal is high and TCG overflows.	H'FFBC Bit 7	0
	OVFL Timer Mode Register G (Timer Overflow Flag L) If OVFL = 0, the level of input capture input signal is low and TCG does not overflow. If OVFL = 1, the level of input capture input signal is low and TCG overflows.		H'FFBC Bit 6	0
	OVIE	Timer Mode Register G(Timer Overflow Interrupt Enable) If OVIE = 0, TCG overflow interrupt requests are disabled. If OVIE = 1, TCG overflow interrupt requests are enabled.	H'FFBC Bit 5	0
	IIEGS	Timer Mode Register G (Input Capture Interrupt Edge Select) If IIEGS = 0, an interrupt is generated at the rising edge of input capture signal. If IIEGS = 1, an interrupt is generated at the falling edge of input capture signal.	H'FFBC Bit 4	0

TENESAS Using Input-Capture Function to Measure Pulse Period

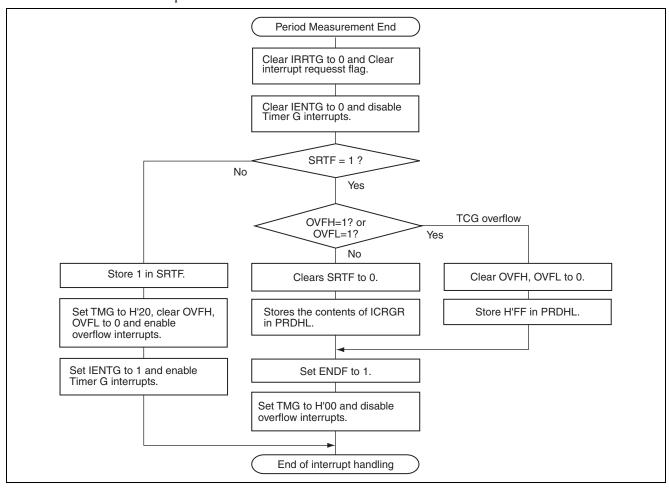
Register		Function		Setting
CCLR0		Timer Mode Register G (Counter Clear 1,0) If CCLR1 = 1 and CCLR0 = 0, TCG is cleared at the rising edge	H'FFBC Bit 3	CCLR1 = 1 CCLR0 = 0
		of input capture input signal.	Bit 2	
	5 (, , ,		H'FFBC	CKS1 = 0
	CKSH0	If CKS1 = 0 and CKS0 = 0, TCG input count is set to $\phi/64$.	Bit 1 Bit 0	CKS0 = 0
TCG		Timer Counter G	_	
		An 8-bit register which cannot be read from or written to. It is counted up by input clock. When the rising edge of input capture input signal is detected, the value of TCG at that time is transferred to Input Capture Register GR (ICRGR).		
ICRGR		Input Capture Register GR	H'FFBE	_
		An 8-bit read-only register. When the rising edge of input capture input signal is detected, the value of TCG at that time is transferred to ICRGR.		
PMR1	TMIG	Port Mode Register 1 (P13/TMIG Pin Function Switch)	H'FFC8	1
		If TMIG = 0, P13/TMIG pin functions as P13 input/output pin. If TMIG = 1, P13/TMIG pin functions as TMIG input pin.	Bit 3	
PMR2	NCS	Port Mode Register 2 (TMIG Noise Canceler Select)	H'FFC9	0
T WINZ INCO		If NCS = 0, the noise cancellation function of input capture input signal is not used.	Bit 1	v
		If NCS = 1, the noise cancellation function of input capture input signal is used.		
IENR2	IENTG	Interrupt Enable Register 2 (Timer G Interrupt Enable)	H'FFF4	1
		Controls enable/disable of Timer G interrupt requests.	Bit 4	
		If IENTG = 0, Timer G interrupt requests are disabled.		
-		If IENTG = 1, Timer G interrupt requests are enabled.		
IRR2	IRRTG	Interrupt Request Register 2 (Timer G Interrupt Request Flag)	H'FFF7	0
		Indicates whether or not a Timer G interrupt is requested.	Bit 4	
		If IRRTG = 0, a Timer G interrupt is not requested.		
		If IENTG = 1, a Timer G interrupt is requested.		

Description of RAM 4.4

The RAMs used in this task example are described in table 4.4.


Table 4.4 Description of RAM

Label		Function	Address	Used in
PRDHL		Stores the TCG count value between rising edges of H'		Period
		the TMIG input captuer input signal		Measurement End
USRF	SRTF	Flag to indicate whether or not the interrupt is the	H'FB81	Period
		second Timer G interrupt	Bit 1	Measurement End
	ENDF	Flag to indicate whether or not period measurement	H'FB81	Main Routine
		has ended	Bit 0	Period
				Measurement End


5. **Flowchart**

1. Main routine

2. Timer G Overflow Interrupt routine

6. Program Listing

```
/* H8/300L Super Low Power Series
/* -H8/38024 Series-
/* Application Note
/* 'Pulse Period Measurement by Input
   Caputure Function'
/* Function
/* : Timer G Input Capture
/* External Clock: 10MHz
/* Internal Clock: 5MHz
/* Sub Clock : 32.768kHz
#include
       <machine.h>
/* Symbol Definition
struct BIT {
  unsigned char b7:1; /* bit7 */
  unsigned char b6:1; /* bit6 */
  unsigned char b5:1; /* bit5 */
  unsigned char b4:1; /* bit4 */
  unsigned char b3:1; /* bit3 */
  unsigned char b2:1;
                      /* bit2 */
  unsigned char b1:1;
                      /* bit1 */
  unsigned char b0:1;
                       /* bit0 */
};
#define TMG *(volatile unsigned char *)0xFFBC /* Timer Mode Register G
                                              /* Timer Mode Register G
#define TMG BIT (*(struct BIT *)0xFFBC)
#define OVFH TMG_BIT.b7
                                              /* Timer Overflow Flag H
#define OVFL
                TMG BIT.b6
                                              /* Timer Overflow Flag L
#define OVIE
                TMG BIT.b5
                                               /* Timer Overflow Interrupt Enable
#define IIEGS
                TMG BIT.b4
                                               /* Input Caputure Interrupt Edge Select
                                               /* Counter Clear 1
                                                                                */
#define CCLR1
                TMG BIT.b3
       CCLR0
                                                                                */
#define
                 TMG BIT.b2
                                               /* Counter Clear 0
       CKS1
                                                                                */
#define
                 TMG BIT.b1
                                               /* Clock Select 1
#define CKS0
                 TMG BIT.b0
                                               /* Clock Select 0
```

H8/300L SLP Series Using Input-Capture Function to Measure Pulse Period

```
* /
                                                             */
                                                             */
                                                             */
                                   /* Timer G Interrupt Request Flag
#pragma interrupt (tgint)
/* Function define
extern void INIT ( void );
                                    /* SP Set
void main ( void );
void
      tgint ( void );
/* RAM define
unsigned char PRDHL;
                                    /* Period Higher & Lower
                                                             * /
unsigned char USRF;
                                    /* User Flag Area
                                                             * /
#define USRF BIT (*(struct BIT *)&USRF)
#define SRTF USRF_BIT.b1
#define ENDF USRF_BIT.b0
                                   /* Start Flag
                                    /* End Flag
#pragma section V1
                                    /* Vector Section Set
                                                             */
void (*const VEC TBL1[])(void) = {
                                    /* 0x0000 - 0x000F
                                                             */
  TNTT
                                    /* 0x0000 Reset Vector
                                                             * /
};
#pragma section V2
                                    /* Vector Section Set
void (*const VEC TBL2[])(void) = {
  taint
                                    /* 0x0020 Timer G Interrupt Vector
}:
#pragma section
/* Main Program
void main ( void )
  int tmp;
  set imask ccr(1);
                                    /* Interrupt Disable
  NCS = 0;
                                    /* No noise Cancellation circuit
  PRDHT = 0:
                                    /* Caputure Data Ramcopy
                                                             * /
  SRTF = 0;
  ENDF = 0;
  TMTG = 1:
                                    /* P13/TMIG input selectb
                                                             */
```

H8/300L SLP Series Using Input-Capture Function to Measure Pulse Period

```
tmp = TMG;
                                                       /* Dummy Read for Flag Clear
   TMG = 0x08;
                                                       /* Timer Mode Register Set
                                                                                             */
   IRRTG = 0;
                                                       /* Clear IRRTG
   IENTG = 1;
                                                       /* Timer G Interrupt Enable
   set_imask_ccr(0);
                                                       /* Interrupt Enable
   while (ENDF ! = 1) {
                                                       /* ENDF = 1 ?
   while(1){
/* Timer G Interrupt
void tgint ( void )
  int tmp;
                                                                                             */
  IRRTG = 0;
                                                       /* Clear IRRTG
  IENTG = 0;
                                                       /* Timer G Interrupt Disable
                                                                                             */
   if ( SRTF == 1 ) {
      if((OVFH == 1)|(OVFL == 1)){
         tmp = TMG;
                                                       /* Dummy Read for Flag Clear
         TMG = 0;
                                                       /* Timer Mode Register Set
         PRDHL = 0xFF;
      }
      else{
        SRTF = 0;
                                                       /* Clear SRTF
         PRDHL = ICRGR;
                                                       /* Caputure Data Ramcopy
      ENDF = 1;
                                                       /* Set ENDF
      TMG = 0;
                                                       /* Overflow Interrupt Disable
   }
   else{
                                                       /* Set SRTF
      SRTF = 1;
                                                       /* Dummy Read for Flag Clear
                                                                                             */
      tmp = TMG;
      TMG = 0x20;
                                                       /* Overflow Interrupt Enable
      IENTG = 1;
                                                       /* Timer G Interrupt Enable
   }
}
```

Link address specifications

Section Name	Address
CV1	H'0000
CV2	H'0020
Р	H'0100
В	H'FB80

H8/300L SLP Series Using Input-Capture Function to Measure Pulse Period H8/300L SLP Series

Revision Record

		Descript	tion	
Rev.	Date	Page	Summary	
1.00	Dec.19.03	_	First edition issued	

Using Input-Capture Function to Measure Pulse Period H8/300L SLP Series

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.