

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

M16C/26
Using EW1 Mode for Flash Programming

1.0 Abstract
The following article introduces and shows how to use the EW1 mode of the CPU Rewrite feature on the

M16C/26 (M30262) Flash microcontroller (MCU). The CPU Rewrite feature allows erasing and programming the

on-chip (internal) user flash ROM area under control of a user’s program. A short program written for the

MSV30262-SKP demonstrates how to use this convenient feature.

2.0 Introduction
The Renesas M16C/26 is a 16-bit MCU, based on the M16C/60 CPU core, with up to 64KB of user flash and 4KB

of Virtual EEPROM. The device has the ability to erase and program the internal user flash ROM area under

control of a user’s program with no external programming devices required. This feature is called “CPU Rewrite

Mode”.

The CPU Rewrite feature can be used in applications where data, such as registers, configuration status/

parameters, data log, etc., needs to be stored in non-volatile memory (i.e. flash memory) for future access.

3.0 CPU Rewrite
The M16C/26 has three flash programming modes: Parallel I/O Mode, Standard Serial I/O Mode, and CPU

Rewrite Mode. The first two modes are mainly for programming the application code into the flash so details are

not in the scope of this document.

In order to use CPU Rewrite Mode, the memory structure and control registers involved need to be identified.

The internal flash memory map of the M16C/26, based on part number, is shown in Figure 1. Note that the flash

is divided into blocks such that certain erase/programming functions are done on a per block basis.

Block B: 2KB

RESERVED

Block 3: 32KB

0F000H

0F800H

FFFFFH

Block A: 2KB

Block 2: 16KB

Block 1: 8KB

Block 1: 8KB
FE000H

FC000H

F8000H

F0000H

Part No.
M30262F3-GP
M30262F4-GP
M30262F6-GP
M30262F8-GP

Block 3 Size
0 KB
0 KB
16KB
32KB

Start Address
N/A
N/A

F4000H
F0000H

Block 2 Size
8KB
16KB
16KB
16KB

Part No.
M30262F3-GP
M30262F4-GP
M30262F6-GP
M30262F8-GP

Start Address
FA000H
F8000H
F8000H
F8000H

8KB

User ROM Area Boot ROM Area
Figure 1 M16C/26 (M30262F8) Flash Memory

REU05B0051-0100Z June 2003 Page 1 of 11

M16C/26
Using EW1 Mode for Flash Programming

Note: CPU Rewrite can only be used on the user ROM area but not the boot ROM area. The boot ROM area is used
for serial I/O mode only and is not available for CPU Rewrite mode programming.

CPU Rewrite has two modes: EW0 and EW1. In EW0, the re-write program is executed from RAM (after being

transferred from user or boot ROM). In EW1 mode, the re-write program can be executed in flash memory.

However, care should be taken so the memory block where the CPU Rewrite program is being executed is

different from the memory block where data will be written.

The registers used during CPU Rewrite mode are shown in and . Another register, Flash

Memory Control Register 4 (FMR4), which is for the Flash Erase-Suspend feature, is not discussed in this article.

Figure 2

Figure 2 Flash Memory Control Register 0 (FMR0)

Figure 3

Figure 3 Flash Memory Control Register 1 (FMR1)

Note: Currently, EW1 mode is only available for M16C/26 and M16C/62P MCU’s. Contact your Renesas
representative for details about other M16C MCU’s or an article about Flash Erase-Suspend feature.

REU05B0051-0100Z June 2003 Page 2 of 11

M16C/26
Using EW1 Mode for Flash Programming

Figure 4

Figure 4 CPU Rewrite Process Flowchart

 shows the CPU Rewrite process in EW1 mode.

START

Slow down the processor

Change to EW (EW0) Mode

Change to EW1 Mode

Disable Lock Bit

Perform re-write operatioons
(erase, program, etc)

Disable EW (EW0) Mode

END

Main clock, BCLK, should be less than 6.25MHz with no
wait state or up to 10MHz with 1 wait state.

Enter EW mode by writing 0 then 1 to the EW entry bit,
FMR01, of Flash Memory Control Register 0.

Enter EW1 mode by writing 0 then 1 to the EW mode
select bit, FMR11, of Flash Memory Control Register 1.

Disable lock bit only if writing to Block 1. Skip this step if
writing to other blocks. If writing to virtual EEPROM, the
flash data block access bit, PM10, of Processor Mode
Register 1 must also be set (enabled) .

To exit EW mode, clear EW entry bit, FMR01, to 0 of the
Flash Memory Control Register 0 and return to normal
mode.

Table 1 lists the software commands that can be used in CPU Rewrite mode.

3.1 CPU Rewrite Routine
This section shows the different software routines that are used to implement the CPU Rewrite process as

described in Figure 4. The main program calls these routines (C functions), to perform erase, programming,

status checks, etc. The software routines described here can be found in ‘flash-26-ew1.c’ file under the

C:\MTOOL\MSV30262-SKP\Sample_Code\EW1 folder after MSV30262-SKP software installation.

REU05B0051-0100Z June 2003 Page 3 of 11

M16C/26
Using EW1 Mode for Flash Programming

3.1.1 Slow Down Processor

The processor speed, main clock (BLCK), must meet some speed requirements when performing CPU Rewrite

operations. The main clock cannot be set greater than 10MHz. The speed requirements for CPU Rewrite

operations are as follows:

• If main clock (BLCK) is greater than 6.25MHz but less than 10MHz, a wait state must be inserted.

• If main clock (BCLK) is less than 6.25MHz, a wait state is not necessary.

The code to slow down MCU speed is shown below.

void SlowMCU(void)
{
 asm("STC FLG,R0"); // Save contents of flag register
 asm("MOV.W R0,_flags_saved");

 asm("FCLR I"); // Turn off maskable interrupts
 cm0_saved = cm0; // Save current CPU clock setting
 cm1_saved = cm1;
 pm1_saved = pm1;

 prcr = 3; // Unprotect registers CM0 and PM0
 cm1 = 0xA0; // Use Xin, Xin drive HIGH, Xin/4 (f4): BCLK=5MHz
// pm17 = 1; // if BLCK > 6.25MHz, insert a wait state
cm06 = 0; // CM16 and CM17 are valid
}

3.1.2 Change to EW Mode and then EW1 Mode
To switch to EW (EW0) mode (or EW1 mode), a 0 is written to the bit and then followed by a 1.

 fmcr01 = 0;
 fmcr01 = 1; // Set EW0 select bit
 fmcr11 = 0;
 fmcr11 = 1; // Set to EW1 mode

3.1.3 Disable Lock Bit

Write a 0 and then a 1 to the 8KB EW Mode Enable bit, fmcr02, to disable “lock” if using the two Block 1 areas.

 // disable flash memory lock bit (write-protect bit)
 // only if re-write operations on the two Block 1 blocks
 fmcr02 = 0;
 fmcr02 = 1;

REU05B0051-0100Z June 2003 Page 4 of 11

M16C/26
Using EW1 Mode for Flash Programming

3.1.4 Perform CPU Rewrite Operations

After completing CPU Rewrite initialization, flash erase or write operations can be executed on the specified user

Flash ROM area. Care must be taken to ensure that the block where the CPU Rewrite program is running is

different from the block operated on. For example, if the CPU Rewrite code is running in Block 3, erase/program

operations is NOT performed on Block 3 but on other blocks (Blocks 1,2, A, or B).

Code that performs programming operations (for the demo, Block B) is shown below. As can be seen below,

status of the process can be checked using the software commands listed in Table 1.

while(bytes) {
 *flsh_addr = 0x50; // Clear status register
 *flsh_addr = 0x40; // Send write command
 *flsh_addr = *data_buff; // Write next word of data

 while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure
writing is complete

 // Read flash program status flag
 if(*flash_status_addr & 0x4000){ // Write Ok/NG? - NG if true
 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back
 return 0; // Write Fail (Cancel the rest of operation)
 }
 bytes -= 2; // subtract 2 from byte counter
 data_buff++; // increase to next data index
 flsh_addr++; // increase to next flash index
}

3.1.5 Disable EW Mode and Return to Normal Operation

After completing CPU Rewrite Operations, we need to disable CPU Rewrite mode and return to normal operation.

To accomplish this, the EW Entry Bit is cleared to 0 and then the restore MCU function is called.

 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back

The code to restore MCU speed is shown below.
void RestoreMCU(void)
{
 pm1 = pm1_saved;
 cm1 = cm1_saved;
 cm0 = cm0_saved;
 prcr = 0; // Protection register back on
 // Restore contents of flags (I flag in particular)
 asm("MOV.W _flags_saved,R0");
 asm("LDC R0,FLG");
 asm("FSET I"); // Turn on maskable interrupts
}

REU05B0051-0100Z June 2003 Page 5 of 11

M16C/26
Using EW1 Mode for Flash Programming

4.0 EW1 Demo Program
The demo program was written to run on the MSV30262-SKP board and has two modes but both operate on

Block B (addresses 0x0F000 to 0x0F0FF), one of the two data (virtual EEPROM) blocks. One mode writes

incremental data (0 – F) while the other mode writes fixed data, ‘M16C/26 Firefly‘. Pressing S4 will toggle

between modes. The program has additional functions to erase data or display the data on the LCD for

verification without the use of a debugger.

A copy of the source files can be found under the C:\MTOOL\MSV30262-SKP\Sample_Code\EW1 folder after

MSV30262-SKP software installation. The program was compiled using the KNC30 Compiler, which also came

with the MSV30262-SKP. It can be modified to suit a user application.

4.1 EW1 Demo – Mode 0
Mode 0 is the default mode after running the program. The following CPU Rewrite operations on Block B

(0x0F000 – 0x0F0FF) can be performed in Mode 0:

• Pressing S2 will write incremental data, 0 – F.

• Pressing S3 will write ‘M16C/26 Firefly ‘.

• Pressing S4 will toggle to Mode 1.

4.2 EW1 Demo – Mode 1
Mode 1 allows the user to view the data in Block B (0x0F000 – 0x0F0FF) for verification purposes. The following

functions are performed in Mode 1.

• Pressing S2 will display data starting from 0x0F000. Pressing S2 again will display the data of the next address

and so on.

• Pressing S3 will erase the data.

• Pressing S4 will toggle back to Mode 0.

5.0 Conclusion
CPU Rewrite Mode – EW1 allows a simpler method of saving data to on-chip user ROM area. It can be used in

applications where data, such as configuration parameters, log, status, etc., needs to be stored in non-volatile

memory for later access.

REU05B0051-0100Z June 2003 Page 6 of 11

M16C/26
Using EW1 Mode for Flash Programming

6.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/26 datasheets, M30262eds.pdf

User’s Manual

• M16C/20/60 C Language Programming Manual, 6020c.pdf

• M16C/20/60 Software Manual, 6020software.pdf

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf

7.0 Software Code
The EW1 demo’s CPU Rewrite routines (in flash-26-ew1.c) is shown below. The complete project, written in C,

can be compiled/linked using the KNC30 Compiler and will be provided upon request. Please contact your

Renesas representative for details.

/**
* File Name: flash-26-ew1.c
*
* Content: CPU Re-write functions for M16C/26 that includes erase, program,
* CPU speed slow down and CPU speed restore.
*
* Revision 1.1 2003-02-21
***/
#include "flash-26-ew1.h"
#include "sfr262.h"

/* We want to read the fmcr0 register (address 0x1B7), but the spec says that we should only
read the status bits in the flash memory control register using even addressing when in EW1
Mode. Therefore, we will read address 0x1B6 and only use the upper byte */

const unsigned int * flash_status_addr = (unsigned int *)0x1B6;

/* Variables for saving the Processor Mode and Clock Mode registers */
static unsigned char pm1_saved, cm0_saved, cm1_saved;
static unsigned int flags_saved;

REU05B0051-0100Z June 2003 Page 7 of 11

M16C/26
Using EW1 Mode for Flash Programming

/* List of highest even addresses for each block for M16C/26 */
const unsigned long block_addresses[6] = {
 0xFFFFE,0xFDFFE,0xFBFFE,0xF7FFE, // Code Blocks 0, 1, 2, & 3
 0xFFFE, 0xF7FE // Data Flash (Virtual EEPROM) Blocks
4 & 5
 };

/* Prototypes of functions only used by this file */
void SlowMCU(void);
void RestoreMCU(void);

/***
Name: FlashErase
Parameters:
block
The block number to erase (0 - 5)
Returns:
1 = Erase Successful
 0 = Erase error reported by flash memory control register 0
Description:
 Erases an entire flash block using EW1 Mode
**/
int FlashErase(int block) {

 far unsigned int * flsh_addr;

 // Get highest even block address
 flsh_addr = (far unsigned int *) block_addresses[block];
 SlowMCU(); // Must change main clock speed to meet flash
 // requirements as well as turn off maskable
 // interrupts
 fmcr01 = 0;
 fmcr01 = 1; // Set EW0 select bit
 fmcr11 = 0;
 fmcr11 = 1; // Set to EW1 mode

 // disable flash memory lock bit (write-protect bit)
 // only if re-write operations on the two Block 1 blocks
 fmcr02 = 0;
 fmcr02 = 1;

 *flsh_addr = 0x50; // Clear status register
 *flsh_addr = 0x20; // Send erase command
 *flsh_addr = 0xD0; // Send erase confirm command

 while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure erase is complete

REU05B0051-0100Z June 2003 Page 8 of 11

M16C/26
Using EW1 Mode for Flash Programming

 if(*flash_status_addr & 0x8000){ // Erasing error?
 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back
 return 0; // Erase Fail
 }
 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back
 return 1; // Erase Pass
}
/***
Name: FlashWrite
Parameters: flash_addr
Flash address location to write to. Must be an EVEN address!
 buffer_addr
 Address location of data buffer to write to flash bytes
 The number of bytes to write. Must be an EVEN number!
Returns:
 1 = Operation Successful
 0 = Write Error reported by flash control register
Description:
 Writes bytes into flash. The number of bytes to write MUST be an even
 number because the flash controller has to write a WORD at a time. The
 flash address MUST be an even number as well because the flash
 controller needs to write WORDS to even addresses only.
***/
int FlashWrite(unsigned long flash_addr,
 far unsigned char * buffer_addr,
 unsigned int bytes) {

 far unsigned int * flsh_addr;
 far unsigned int * data_buff;

 flsh_addr = (far unsigned int *) flash_addr;
 data_buff = (far unsigned int *) buffer_addr;

 SlowMCU(); // Must change main clock speed to meet flash
 // requirements as well as turn off maskable
 // interrupts
 fmcr01 = 0;
 fmcr01 = 1; // Set EW0 select bit
 fmcr11 = 0;
 fmcr11 = 1; // Set to EW1 mode

 // disable flash memory lock bit (write-protect bit)
 // only if re-write operations on the two Block 1 blocks
 fmcr02 = 0;
 fmcr02 = 1;

 while(bytes) {
 *flsh_addr = 0x50; // Clear status register
 *flsh_addr = 0x40; // Send write command
 *flsh_addr = *data_buff; // Write next word of data

REU05B0051-0100Z June 2003 Page 9 of 11

M16C/26
Using EW1 Mode for Flash Programming

 while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure writing
is complete

 // Read flash program status flag
 if(*flash_status_addr & 0x4000){ // Write Ok/NG? - NG if true

 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back
 return 0; // Write Fail (Cancel the rest of operation)
 }
 bytes -= 2; // subtract 2 from byte counter
 data_buff++; // increase to next data index
 flsh_addr++; // increase to next flash index
 }
 fmcr01 = 0; // disable EW mode by clearing EW entry bit
 RestoreMCU(); // Restore clock back to original speed
 // and restores I flag back
 return 1; // Write Pass
}
/***
Name: SlowMCU
Parameters: none
Returns: nothing
Description: Sets the processor mode for programming flash and saves current
 settings to restore later. When programming the M16C/26, you
 cannot run the processor faster than 6.25MHz (without wait state)
 when performing flash commands. See spec for more details.
** */
void SlowMCU(void)
{
 asm("STC FLG,R0"); // Save contents of flag register
 asm("MOV.W R0,_flags_saved");
 asm("FCLR I"); // Turn off maskable interrupts

 cm0_saved = cm0; // Save current CPU clock setting
 cm1_saved = cm1;
 pm1_saved = pm1;

 prcr = 3; // Unprotect registers CM0 and PM0
 cm1 = 0xA0; // Use Xin, Xin drive HIGH, Xin/4 (f4): 20MHz/4 = 5MHz
// pm17 = 1; // if Xin/2 (f2): 20MHz/2 = 10MHz, a wait state must be inserted
 cm06 = 0; // CM16 and CM17 are valid
}
/***
Name: RestoreMCU
Parameters: none
Returns: nothing
Description: Restores the processor mode back to original settings.
***/

REU05B0051-0100Z June 2003 Page 10 of 11

M16C/26
Using EW1 Mode for Flash Programming

void RestoreMCU(void)
{
 pm1 = pm1_saved;
 cm1 = cm1_saved;
 cm0 = cm0_saved;

 prcr = 0; // Protection register back on

 // Restore contents of flags (I flag in particular)
 asm("MOV.W _flags_saved,R0");
 asm("LDC R0,FLG");
 asm("FSET I"); // Turn on maskable interrupts
}

REU05B0051-0100Z June 2003 Page 11 of 11

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	CPU Rewrite
	CPU Rewrite Routine
	Change to EW Mode and then EW1 Mode
	EW1 Demo Program
	EW1 Demo – Mode 0
	EW1 Demo – Mode 1
	Conclusion
	Reference
	Software Code

