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control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
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 APPLICATION NOTE
 

M16C/26 
Using EW1 Mode for Flash Programming 

1.0 Abstract 
The following article introduces and shows how to use the EW1 mode of the CPU Rewrite feature on the 

M16C/26 (M30262) Flash microcontroller (MCU).  The CPU Rewrite feature allows erasing and programming the 

on-chip (internal) user flash ROM area under control of a user’s program. A short program written for the 

MSV30262-SKP demonstrates how to use this convenient feature. 

2.0 Introduction 
The Renesas M16C/26 is a 16-bit MCU, based on the M16C/60 CPU core, with up to 64KB of user flash and 4KB 

of Virtual EEPROM. The device has the ability to erase and program the internal user flash ROM area under 

control of a user’s program with no external programming devices required. This feature is called “CPU Rewrite 

Mode”.  

The CPU Rewrite feature can be used in applications where data, such as registers, configuration status/ 

parameters, data log, etc., needs to be stored in non-volatile memory (i.e. flash memory) for future access.   

3.0 CPU Rewrite 
The M16C/26 has three flash programming modes: Parallel I/O Mode, Standard Serial I/O Mode, and CPU 

Rewrite Mode. The first two modes are mainly for programming the application code into the flash so details are 

not in the scope of this document.  

In order to use CPU Rewrite Mode, the memory structure and control registers involved need to be identified. 

The internal flash memory map of the M16C/26, based on part number, is shown in Figure 1. Note that the flash 

is divided into blocks such that certain erase/programming functions are done on a per block basis.  

Block B: 2KB

RESERVED

Block 3: 32KB

0F000H

0F800H

FFFFFH

Block A: 2KB

Block 2: 16KB

Block 1: 8KB

Block 1: 8KB
FE000H

FC000H

F8000H

F0000H

Part No.
M30262F3-GP
M30262F4-GP
M30262F6-GP
M30262F8-GP

Block 3 Size
0 KB
0 KB
16KB
32KB

Start Address
N/A
N/A

F4000H
F0000H

Block 2 Size
8KB
16KB
16KB
16KB

Part No.
M30262F3-GP
M30262F4-GP
M30262F6-GP
M30262F8-GP

Start Address
FA000H
F8000H
F8000H
F8000H

8KB

User ROM Area Boot ROM Area  
Figure 1 M16C/26 (M30262F8) Flash Memory 
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Note:  CPU Rewrite can only be used on the user ROM area but not the boot ROM area. The boot ROM area is used 
for serial I/O mode only and is not available for CPU Rewrite mode programming. 

CPU Rewrite has two modes: EW0 and EW1. In EW0, the re-write program is executed from RAM (after being 

transferred from user or boot ROM). In EW1 mode, the re-write program can be executed in flash memory. 

However, care should be taken so the memory block where the CPU Rewrite program is being executed is 

different from the memory block where data will be written.  

The registers used during CPU Rewrite mode are shown in  and . Another register, Flash 

Memory Control Register 4 (FMR4), which is for the Flash Erase-Suspend feature, is not discussed in this article.  

Figure 2

Figure 2 Flash Memory Control Register 0 (FMR0) 

Figure 3

Figure 3 Flash Memory Control Register 1 (FMR1) 

Note:  Currently, EW1 mode is only available for M16C/26 and M16C/62P MCU’s. Contact your Renesas 
representative for details about other M16C MCU’s or an article about Flash Erase-Suspend feature. 
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Figure 4

Figure 4 CPU Rewrite Process Flowchart 

 shows the CPU Rewrite process in EW1 mode. 

    

START

Slow down the processor

Change to EW (EW0) Mode

Change to EW1 Mode

Disable Lock Bit

Perform re-write operatioons
(erase, program, etc)

Disable EW (EW0) Mode

END

Main clock, BCLK, should be less than 6.25MHz with no
wait state or up to 10MHz with 1 wait state.

Enter EW mode by writing 0 then 1 to the EW entry bit,
FMR01, of Flash Memory Control Register 0.

Enter EW1 mode by writing 0 then 1 to the EW mode
select bit, FMR11, of Flash Memory Control Register 1.

Disable lock bit only if writing to Block 1. Skip this step if
writing to other blocks. If writing to virtual EEPROM, the
flash data block access bit, PM10, of Processor Mode
Register 1 must also be set (enabled) .

To exit EW mode, clear EW entry bit, FMR01, to 0 of the
Flash Memory Control Register 0 and return to normal
mode.

 

 

Table 1 lists the software commands that can be used in CPU Rewrite mode. 

 

3.1 CPU Rewrite Routine 
This section shows the different software routines that are used to implement the CPU Rewrite process as 

described in Figure 4.  The main program calls these routines (C functions), to perform erase, programming, 

status checks, etc. The software routines described here can be found in ‘flash-26-ew1.c’ file under the 

C:\MTOOL\MSV30262-SKP\Sample_Code\EW1 folder after MSV30262-SKP software installation. 
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3.1.1 Slow Down Processor 

The processor speed, main clock (BLCK), must meet some speed requirements when performing CPU Rewrite 

operations. The main clock cannot be set greater than 10MHz. The speed requirements for CPU Rewrite 

operations are as follows: 

• If main clock (BLCK) is greater than 6.25MHz but less than 10MHz, a wait state must be inserted. 

• If main clock (BCLK) is less than 6.25MHz, a wait state is not necessary. 

 

The code to slow down MCU speed is shown below. 

 
void SlowMCU(void) 
{ 
 asm("STC FLG,R0"); // Save contents of flag register 
 asm("MOV.W R0,_flags_saved"); 
 
 asm("FCLR I");  // Turn off maskable interrupts 
     cm0_saved = cm0; // Save current CPU clock setting 
     cm1_saved = cm1; 
     pm1_saved = pm1; 
 
     prcr = 3;  // Unprotect registers CM0 and PM0 
 cm1 = 0xA0;  // Use Xin, Xin drive HIGH, Xin/4 (f4): BCLK=5MHz 
// pm17 = 1;  // if BLCK > 6.25MHz, insert a wait state  
cm06 = 0;  // CM16 and CM17 are valid 
} 

3.1.2 Change to EW Mode and then EW1 Mode 
To switch to EW (EW0) mode ( or EW1 mode), a 0 is written to the bit and then followed by a 1. 

 
 fmcr01 = 0; 
 fmcr01 = 1;    // Set EW0 select bit 
 fmcr11 = 0; 
 fmcr11 = 1;    // Set to EW1 mode 

 

3.1.3 Disable Lock Bit 

Write a 0 and then a 1 to the 8KB EW Mode Enable bit, fmcr02, to disable “lock” if using the two Block 1 areas.  

 
 // disable flash memory lock bit (write-protect bit)  
 // only if re-write operations on the two Block 1 blocks 
 fmcr02 = 0; 
 fmcr02 = 1; 
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3.1.4 Perform CPU Rewrite Operations 

After completing CPU Rewrite initialization, flash erase or write operations can be executed on the specified user 

Flash ROM area. Care must be taken to ensure that the block where the CPU Rewrite program is running is 

different from the block operated on. For example, if the CPU Rewrite code is running in Block 3, erase/program 

operations is NOT performed on Block 3 but on other blocks (Blocks 1,2, A, or B). 

Code that performs programming operations (for the demo, Block B) is shown below. As can be seen below, 

status of the process can be checked using the software commands listed in Table 1.  

 
while(bytes) { 
 *flsh_addr = 0x50;  // Clear status register 
 *flsh_addr = 0x40;  // Send write command 
 *flsh_addr =  *data_buff; // Write next word of data 
 
 while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure 
writing is complete 
   
 // Read flash program status flag 
 if( *flash_status_addr & 0x4000 ){ // Write Ok/NG? - NG if true 
  fmcr01 = 0; // disable EW mode by clearing EW entry bit 
  RestoreMCU(); // Restore clock back to original speed 
    // and restores I flag back 
  return 0; // Write Fail (Cancel the rest of operation) 
 } 
 bytes -= 2;  // subtract 2 from byte counter 
 data_buff++;  // increase to next data index 
 flsh_addr++;  // increase to next flash index 
} 

 

3.1.5 Disable EW Mode and Return to Normal Operation 

After completing CPU Rewrite Operations, we need to disable CPU Rewrite mode and return to normal operation. 

To accomplish this, the EW Entry Bit is cleared to 0 and then the restore MCU function is called. 

 
 fmcr01 = 0;  // disable EW mode by clearing EW entry bit 
 RestoreMCU();  // Restore clock back to original speed 
    // and restores I flag back 

The code to restore MCU speed is shown below. 
void RestoreMCU(void)    
{ 
     pm1 = pm1_saved; 
     cm1 = cm1_saved;  
     cm0 = cm0_saved; 
     prcr = 0;  // Protection register back on 
 // Restore contents of flags (I flag in particular) 
 asm("MOV.W _flags_saved,R0"); 
 asm("LDC R0,FLG"); 
 asm("FSET I");  // Turn on maskable interrupts 
} 
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4.0 EW1 Demo Program 
The demo program was written to run on the MSV30262-SKP board and has two modes but both operate on 

Block B (addresses 0x0F000 to 0x0F0FF), one of the two data (virtual EEPROM) blocks. One mode writes 

incremental data (0 – F) while the other mode writes fixed data, ‘M16C/26 Firefly‘.  Pressing S4 will toggle 

between modes. The program has additional functions to erase data or display the data on the LCD for 

verification without the use of a debugger.  

A copy of the source files can be found under the C:\MTOOL\MSV30262-SKP\Sample_Code\EW1 folder after 

MSV30262-SKP software installation. The program was compiled using the KNC30 Compiler, which also came 

with the MSV30262-SKP. It can be modified to suit a user application.  

4.1 EW1 Demo – Mode 0 
Mode 0 is the default mode after running the program. The following CPU Rewrite operations on Block B 

(0x0F000 – 0x0F0FF) can be performed in Mode 0: 

• Pressing S2 will write incremental data, 0 – F.  

• Pressing S3 will write ‘M16C/26 Firefly ‘.  

• Pressing S4 will toggle to Mode 1. 

4.2 EW1 Demo – Mode 1 
Mode 1 allows the user to view the data in Block B (0x0F000 – 0x0F0FF) for verification purposes. The following 

functions are performed in Mode 1.  

• Pressing S2 will display data starting from 0x0F000. Pressing S2 again will display the data of the next address 

and so on. 

• Pressing S3 will erase the data.  

• Pressing S4 will toggle back to Mode 0. 

5.0 Conclusion 
CPU Rewrite Mode – EW1 allows a simpler method of saving data to on-chip user ROM area. It can be used in 

applications where data, such as configuration parameters, log, status, etc., needs to be stored in non-volatile 

memory for later access.  
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6.0 Reference 

Renesas Technology Corporation Semiconductor Home Page 

http://www.renesas.com 

 

E-mail Support 

support_apl@renesas.com 

 

Data Sheets 

• M16C/26 datasheets, M30262eds.pdf 

 

User’s Manual 

• M16C/20/60 C Language Programming Manual, 6020c.pdf 

• M16C/20/60 Software Manual, 6020software.pdf 

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf 

 

 

7.0 Software Code 
The EW1 demo’s CPU Rewrite routines (in flash-26-ew1.c) is shown below. The complete project, written in C, 

can be compiled/linked using the KNC30 Compiler and will be provided upon request. Please contact your 

Renesas representative for details. 

 
/********************************************************************** 
* File Name:  flash-26-ew1.c                                          
*                                                                   
* Content: CPU Re-write functions for M16C/26 that includes erase, program,  
*       CPU speed slow down and CPU speed restore. 
*                                                                   
* Revision 1.1  2003-02-21 
***********************************************************************/ 
#include "flash-26-ew1.h" 
#include "sfr262.h" 
 
/* We want to read the fmcr0 register (address 0x1B7), but the spec says that we should only 
read the status bits in the flash memory control register using even addressing when in EW1 
Mode. Therefore, we will read address 0x1B6 and only use the upper byte */ 
 
const unsigned int * flash_status_addr = (unsigned int *)0x1B6;  
 
/* Variables for saving the Processor Mode and Clock Mode registers */ 
static unsigned char pm1_saved, cm0_saved, cm1_saved; 
static unsigned int flags_saved; 
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/* List of highest even addresses for each block for M16C/26 */ 
const unsigned long block_addresses[6] = { 
  0xFFFFE,0xFDFFE,0xFBFFE,0xF7FFE, // Code Blocks 0, 1, 2, & 3 
  0xFFFE, 0xF7FE    // Data Flash (Virtual EEPROM) Blocks 
4 & 5 
  }; 
 
/* Prototypes of functions only used by this file */ 
void SlowMCU(void); 
void RestoreMCU(void); 
 
/***************************************************************************** 
Name: FlashErase 
Parameters:  
block 
The block number to erase (0 - 5) 
Returns:  
1 = Erase Successful 
 0 = Erase error reported by flash memory control register 0 
Description: 
 Erases an entire flash block using EW1 Mode 
******************************************************************************/ 
int FlashErase( int block ) { 
  
 far unsigned int * flsh_addr; 
 
 // Get highest even block address 
 flsh_addr = (far unsigned int *) block_addresses[ block ]; 
 SlowMCU();   // Must change main clock speed to meet flash  
     // requirements as well as turn off maskable  
     // interrupts 
 fmcr01 = 0; 
 fmcr01 = 1;   // Set EW0 select bit 
 fmcr11 = 0; 
 fmcr11 = 1;   // Set to EW1 mode 
 
 // disable flash memory lock bit (write-protect bit)  
 // only if re-write operations on the two Block 1 blocks 
 fmcr02 = 0; 
 fmcr02 = 1; 
 
 *flsh_addr = 0x50;   // Clear status register 
 *flsh_addr = 0x20;   // Send erase command 
 *flsh_addr = 0xD0;   // Send erase confirm command 
 
 while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure erase is complete 
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 if( *flash_status_addr & 0x8000 ){ // Erasing error? 
  fmcr01 = 0;   // disable EW mode by clearing EW entry bit 
  RestoreMCU();   // Restore clock back to original speed 
      // and restores I flag back 
  return 0;   // Erase Fail 
 }  
 fmcr01 = 0;    // disable EW mode by clearing EW entry bit 
 RestoreMCU();    // Restore clock back to original speed 
      // and restores I flag back 
 return 1;    // Erase Pass 
} 
/***************************************************************************** 
Name: FlashWrite 
Parameters: flash_addr 
Flash address location to write to. Must be an EVEN address! 
 buffer_addr 
  Address location of data buffer to write to flash bytes 
  The number of bytes to write. Must be an EVEN number! 
Returns: 
 1 = Operation Successful 
 0 = Write Error reported by flash control register 
Description: 
  Writes bytes into flash. The number of bytes to write MUST be an even  
  number because the flash controller has to write a WORD at a time. The 
  flash address MUST be an even number as well because the flash 
  controller needs to write WORDS to even addresses only. 
*****************************************************************************/ 
int FlashWrite( unsigned long flash_addr, 
  far unsigned char * buffer_addr, 
  unsigned int bytes) { 
 
 far unsigned int * flsh_addr; 
 far unsigned int * data_buff; 
  
 flsh_addr = (far unsigned int *) flash_addr; 
 data_buff = (far unsigned int *) buffer_addr; 
 
 SlowMCU();   // Must change main clock speed to meet flash  
     // requirements as well as turn off maskable  
     // interrupts 
 fmcr01 = 0; 
 fmcr01 = 1;   // Set EW0 select bit 
 fmcr11 = 0; 
 fmcr11 = 1;   // Set to EW1 mode 
 
 // disable flash memory lock bit (write-protect bit)  
 // only if re-write operations on the two Block 1 blocks 
 fmcr02 = 0; 
 fmcr02 = 1; 
 
 while(bytes) { 
  *flsh_addr = 0x50;   // Clear status register 
  *flsh_addr = 0x40;   // Send write command 
  *flsh_addr =  *data_buff;  // Write next word of data 
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  while (!(*flash_status_addr & 0x0100)); // check ready bit to ensure writing 
is complete 
   
  // Read flash program status flag 
  if( *flash_status_addr & 0x4000 ){ // Write Ok/NG? - NG if true 
 
   fmcr01 = 0;  // disable EW mode by clearing EW entry bit 
   RestoreMCU();  // Restore clock back to original speed 
      // and restores I flag back 
   return 0;  // Write Fail (Cancel the rest of operation) 
  } 
  bytes -= 2;   // subtract 2 from byte counter 
  data_buff++;   // increase to next data index 
  flsh_addr++;   // increase to next flash index 
 } 
 fmcr01 = 0;    // disable EW mode by clearing EW entry bit 
 RestoreMCU();    // Restore clock back to original speed 
      // and restores I flag back 
 return 1;    // Write Pass 
} 
/***************************************************************************** 
Name:        SlowMCU 
Parameters:  none                      
Returns:     nothing      
Description: Sets the processor mode for programming flash and saves current 
         settings to restore later. When programming the M16C/26, you 
      cannot run the processor faster than 6.25MHz (without wait state) 
      when performing flash commands. See spec for more details. 
**************************************************************************** */ 
void SlowMCU(void) 
{ 
 asm("STC FLG,R0"); // Save contents of flag register 
 asm("MOV.W R0,_flags_saved"); 
 asm("FCLR I");  // Turn off maskable interrupts 
 
     cm0_saved = cm0; // Save current CPU clock setting 
     cm1_saved = cm1; 
     pm1_saved = pm1; 
 
     prcr = 3;  // Unprotect registers CM0 and PM0 
 cm1 = 0xA0;  // Use Xin, Xin drive HIGH, Xin/4 (f4): 20MHz/4 = 5MHz 
// pm17 = 1;  // if Xin/2 (f2): 20MHz/2 = 10MHz, a wait state must be inserted 
 cm06 = 0;  // CM16 and CM17 are valid 
} 
/***************************************************************************** 
Name:        RestoreMCU 
Parameters:  none                      
Returns:     nothing 
Description: Restores the processor mode back to original settings. 
*****************************************************************************/ 
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void RestoreMCU(void)    
{ 
     pm1 = pm1_saved; 
     cm1 = cm1_saved;  
 cm0 = cm0_saved; 
 
     prcr = 0;   // Protection register back on 
 
     // Restore contents of flags (I flag in particular) 
 asm("MOV.W _flags_saved,R0"); 
 asm("LDC R0,FLG"); 
 asm("FSET I");   // Turn on maskable interrupts 
} 
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Keep safety first in your circuit designs! 

 
• Renesas Technology Corporation puts the maximum effort into making semiconductor products 

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap. 
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device or system that is used under circumstances in which human life is potentially at stake. Please 
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distributor when considering the use of a product contained herein for any specific purposes, such as 
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea 
repeater use. 

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in 
whole or in part these materials. 

• If these products or technologies are subject to the Japanese export control restrictions, they must be 
exported under a license from the Japanese government and cannot be imported into a country other 
than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
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• Please contact Renesas Technology Corporation for further details on these materials or the 
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