カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

H8SX ファミリ

IRQ 割り込み

要旨

IRQ 端子の機能を設定します。

動作確認デバイス

H8SX/1653

目次

1.	仕様	2
2.	適用条件	2
3.	使用機能説明	3
4.	動作説明	4
5.	ソフトウェア説明	6
6.	参照ドキュメント(注意事項)	14

1. 仕様

H8SX/1653 マイコンの IRQ 割り込みは,入力端子,割り込み要求エッジの選択や,割り込み要求許可の設定などが必要です。

本例では,割り込み制御モード0のときのIRQ0割り込み動作を説明します。以下に仕様を示します。

- (1) P50 端子を IRQO-B 入力端子とします。
- (2) IRQ0 割り込み要求は, IRQ0-B 入力端子の立ち下がりエッジとします。
- (3) 図 1 に示すように , P20 端子は初期値 0 とし , IRQ0 割り込み処理でトグル出力します。

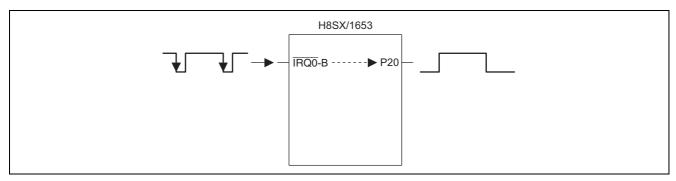


図1 IRQ割り込み

2. 適用条件

表 1 適用条件

項目	内容		
動作周波数	入力クロック:	16 MHz	
	システムクロック (Iφ):	32 MHz (入力クロックの 2 逓倍)	
	周辺モジュールクロック (Pφ):	32 MHz (入力クロックの 2 逓倍)*	
	外部バスクロック (Bφ):	32 MHz (入力クロックの 2 逓倍)	
動作モード	モード 6 (MD2 = 1, MD1 = 1, MD	00 = 0, MD_CLK = 0)	

【注】 * 上記設定では, USB モジュールは使用できません。

3. 使用機能説明

3.1 IRQ 割り込み

IRQn 割り込みは、 \overline{IRQn} 入力により割り込み要求を発生します $(n = 11 \sim 0)$ 。

IRQn 割り込みには以下の特長があります。

- IRQn 入力の Low レベル, 立ち下がりエッジ, 立ち上がりエッジおよび両エッジのいずれで割り込み要求を発生させるか, ISCR で選択できます。
- IROn 割り込み要求は、IER により選択できます。
- IPR により,割り込み要因の優先順位を設定できます。
- IRQn 割り込み要求のステータスは, ISR に表示されます。ISR のフラグは, ソフトウェアで 0 にクリアすることができます。ISR のフラグのクリアは, ビット操作命令, またはメモリ演算命令を使用してください。

IRQn 割り込みの検出は P1ICR, P2ICR, P5ICR の設定により有効となり, 当該端子の出力の設定に依存しません。したがって,外部割り込み入力端子として使用する場合には,対応する DDR を 0 にクリアして,そのほかの機能の入出力端子として使用しないでください。

IRQn 割り込みのブロック図を図2に示します。

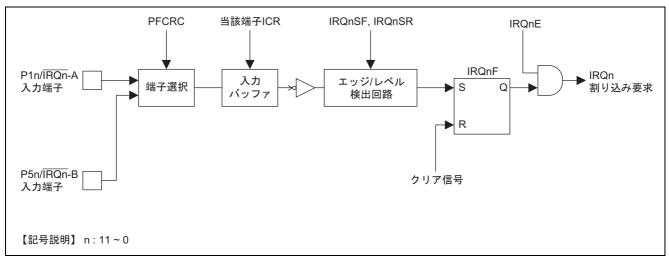


図2 IRQn 割り込みのブロック図

IRQn 割り込み要求を ISCR の設定により $\overline{\text{IRQn}}$ 入力の Low レベルで発生するようにした場合,割り込み要求時には当該 $\overline{\text{IRQn}}$ 入力を割り込み処理が開始されるまで Low レベルに保持してください。その後,割り込み処理ルーチン内で,当該 $\overline{\text{IRQn}}$ 入力を High レベルに戻し,かつ $\overline{\text{IRQn}}$ を $\overline{\text{IRQn}}$ 入力を High レベルに戻すと,当該割り込みが実行されない場合があります。

4. 動作説明

4.1 概要フロー

以下に概要フローを示します。

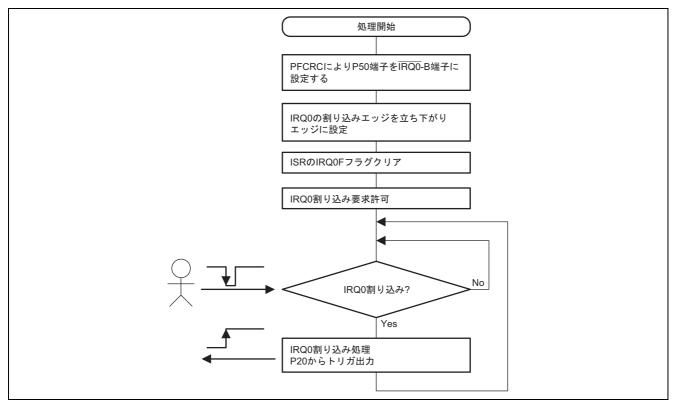


図3 概要フロー

4.2 動作説明

本例の動作タイミングを図 4 に示します。また図 4 の説明として,ハードウェアおよびソフトウェア処理の内容を表 2 に示します。

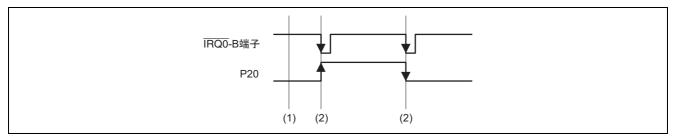


図4 割り込み制御モード2の動作例

表 2 処理内容

	ハードウェア処理	ソフトウェア処理
(1)	パワーオンリセット	初期設定*
(2)	(a) ISR Φ IRQ0F = 1	IRQ0 割り込み処理
		(a) IRQ0 割り込みフラグクリア (ISR の IRQ0F = 0)
		(b) P20 端子からトグル出力

【注】* 初期設定

- (a) P50 (IRQ0-B) 端子の入力バッファを有効に設定
- (b) IRQ0 の割り込み要因を IRQ0 入力の立ち下がりエッジに設定
- (c) P50 を IRQ0-B 入力端子に設定
- (d) IRQ0 割り込みフラグクリア (ISR の IRQ0F = 0)

5. ソフトウェア説明

5.1 動作環境

表 3 動作環境

項目	内容
開発ツール	High-performance Embedded Workshop Ver4.01.01
C/C++コンパイラ	ルネサス テクノロジ製
	H8S,H8/300 SERIES C/C++ Compiler Ver6.01.02
コンパイルオプション	-cpu = h8sxa:24:md, -code = machinecode, -optimize = 1, -regparam = 3
	-speed = (register, shift, struct, expression)

表 4 セクション設定

アドレス	セクション名	説明
H'001000	Р	プログラム領域

表 5 割り込み例外処理ベクタテーブル

例外処理要因 ベクタ番号		ベクタテーブルアドレス	割り込み先関数
リセット	0	H'000000	init
IRQ0	64	H'000100	irq0_int

5.2 関数一覧

表 6 main.c ファイル関数一覧

関数名	機能
init	初期化ルーチン
	CCR,クロック設定,モジュールストップ解除,main 関数のコール。
main	メインルーチン
	割り込み設定,IRQ0 割り込みの初期化を行う。
irq0_int	IRQ0 割り込み処理
	P20 端子から High トリガを出力する。

5.3 関数説明

5.3.1 init 関数

(1) 機能概要

初期化ルーチン。(モジュールストップ解除,クロック設定,main 関数のコール)

(2) 引数 なし

(3) 戻り値

なし

(4) 使用内部レジスタ説明

本例の使用内部レジスタを以下に示します。なお,設定値は本例において使用している値であり,初期値とは異なります。

• モードコントロールレジスタ (MDCR)

ビット数:16 アドレス:H'FFFDC0

ビット	ビット名	設定値	R/W	機能
15	MDS7	不定*	R	モード端子 (MD3) により設定された値を示します。
				MDCR をリードすると MD3 端子の入力レベルがラッチされま
				す。このラッチはリセットで解除されます。
11	MDS3	不定*	R	モードセレクト3~0
10	MDS2	不定*	R	モード端子 (MD2~MD0) により設定された動作モードに対
9	MDS1	不定*	R	応した値を示します (表 7 参照)。MDCR をリードすると,
8	MDS0	不定*	R	MD2~MD0 端子の入力レベルがこれらのビットにラッチさ
				れます。このラッチはリセットで解除されます。

【注】 * MD3~MD0 端子の設定により決定されます。

表 7 MDS3~MDS0ビットの値

MCU		モード端子		MDCR				
動作モード	MD2	MD1	MD0	MDS3	MDS2	MDS1	MDS0	
2	0	1	0	1	1	0	0	
4	1	0	0	0	0	1	0	
5	1	0	1	0	0	0	1	
6	1	1	0	0	1	0	1	
7	1	1	1	0	1	0	0	

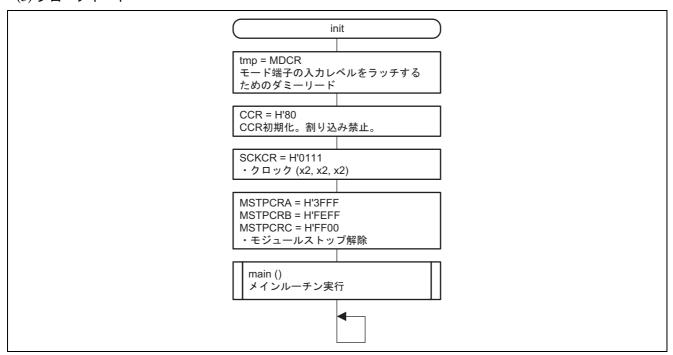
● システムクロックコントロールレジスタ (SCKCR) ビット数:16 アドレス:HFFFDC4

				(belief) 2) X 10) (billing)
ビット	ビット名	設定値	R/W	機能
10	ICK2	0	R/W	システムクロック (lφ) セレクト
9	ICK1	0	R/W	CPU, DMAC, DTC モジュールとシステムクロックの周波数
8	ICK0	1	R/W	を選択します。
				001:入力クロック × 2
6	PCK2	0	R/W	周辺モジュールクロック (Pφ) セレクト
5	PCK1	0	R/W	周辺モジュールクロックの周波数を選択します。
4	PCK0	1	R/W	001:入力クロック × 2
2	BCK2	0	R/W	外部バスクロック (Bφ) セレクト
1	BCK1	0	R/W	外部バスクロックの周波数を選択します。
0	BCK0	1	R/W	001:入力クロック × 2

- MSTPCRA, B, C はモジュールストップモードの制御を行います。1 のとき対応するモジュールはモジュールストップモードになり, クリアするとモジュールストップモードは解除されます。
- モジュールストップコントロールレジスタ A (MSTPCRA) ビット数: 16 アドレス: H'FFFDC8

ビット	ビット名	設定値	R/W	機能
15	ACSE	0	R/W	全モジュールクロックストップモードイネーブル
				MSTPCR で制御されるすべてのモジュールがモジュールス
				トップモードに設定された上で,CPU が SLEEP 命令を実行
				した場合にバスコントローラと I/O ポートも動作をストップ
				して,消費電流を低減する全モジュールクロックストップ
				モードの許可または禁止を設定します。
				0 : 全モジュールクロックストップモード禁止
				1:全モジュールクロックストップモード許可
13	MSTPA13	1	R/W	DMA コントローラ (DMAC)
12	MSTPA12	1	R/W	データトランスファコントローラ (DTC)
9	MSTPA9	1	R/W	8 ビットタイマ (TMR_3, TMR_2)
8	MSTPA8	1	R/W	8 ビットタイマ (TMR_1, TMR_0)
5	MSTPA5	1	R/W	D/A コンバータ (チャネル 1, 0)
3	MSTPA3	1	R/W	A/D コンバータ (ユニット 0)
0	MSTPA0	1	R/W	16 ビットタイマパルスユニット (TPU チャネル 5~0)

● モジュールストップコントロールレジスタ B (MSTPCRB) ビット数:16 アドレス:H'FFFDCA


ビット	ビット名	設定値	R/W	機能
15	MSTPB15	1	R/W	プログラマブルパルスジェネレータ (PPG)
12	MSTPB12	1	R/W	シリアルコミュニケーションインタフェース_4 (SCI_4)
10	MSTPB10	1	R/W	シリアルコミュニケーションインタフェース_2 (SCI_2)
9	MSTPB9	1	R/W	シリアルコミュニケーションインタフェース_1 (SCI_1)
8	MSTPB8	1	R/W	シリアルコミュニケーションインタフェース_0 (SCI_0)
7	MSTPB7	1	R/W	l ² C バスインタフェース_1 (IIC_1)
6	MSTPB6	1	R/W	l ² C バスインタフェース_0 (IIC_0)

• モジュールストップコントロールレジスタ C (MSTPCRC) ビット数:16 アドレス:H'FFFDCC

ビット	ビット名	設定値	R/W	機能
15	MSTPC15	1	R/W	シリアルコミュニケーションインタフェース_5 (SCI_5), (IrDA)
14	MSTPC14	1	R/W	シリアルコミュニケーションインタフェース_6 (SCI_6)
13	MSTPC13	1	R/W	8 ビットタイマ (TMR_4, TMR_5)
12	MSTPC12	1	R/W	8 ビットタイマ (TMR_6, TMR_7)
11	MSTPC11	1	R/W	ユニバーサルシリアルバスインタフェース (USB)
10	MSTPC10	1	R/W	CRC 演算器
4	MSTPC4	0	R/W	内蔵 RAM_4 (H'FF2000~H'FF3FFF)
3	MSTPC3	0	R/W	内蔵 RAM_3 (H'FF4000~H'FF5FFF)
2	MSTPC2	0	R/W	内蔵 RAM_2 (H'FF6000 ~ H'FF7FFF)
1	MSTPC1	0	R/W	内蔵 RAM_1 (H'FF8000~H'FF9FFF)
0	MSTPC0	0	R/W	内蔵 RAM_0 (H'FFA000~H'FFBFFF)

(5) フローチャート

5.3.2 main 関数

(1) 機能概要

割り込み設定, IRQ0割り込みの初期化を行う。

(2) 引数

なし

(3) 戻り値

なし

(4) 使用内部レジスタ説明

本例の使用内部レジスタを以下に示します。なお,設定値は本例において使用している値であり,初期値とは異なります。

● ポート 2 データディレクションレジスタ (P2DDR)

ビット数:8 アドレス:H'FFFB81

機能: P2DDR は, P20 端子を出力端子に設定

設定值:H'01

● ポート 5 入力バッファコントロールレジスタ (P5ICR) ビット数:8 アドレス: H'FFFB94

ビット	ビット名	設定値	R/W	機能
0	P50ICR	1	R/W	0:P50(IRQO-B) 端子の入力バッファは無効
				1:P50 (IRQ0-B) 端子の入力バッファは有効

• ポートファンクションコントロールレジスタ C (PFCRC) ビット数:8 アドレス:H'FFFBCC

ビット	ビット名	設定値	R/W	機能
0	ITS0	1	R/W	IRQ0 端子セレクト
				0:P10 を ĪRQŌ-A 入力端子として設定
				1:P50 を ĪRQ0-B 入力端子として設定

● IRQ センスコントロールレジスタ L (ISCRL) ビット数: 16 アドレス: H'FFFD6A

ビット	ビット名	設定値	R/W	機能
1	IRQ0SR	0	R/W	IRQ0 センスコントロールライズ
0	IRQ0SF	1	R/W	IRQ0 センスコントロールフォール
				01:IRQ0 入力の立ち下がりエッジで割り込み要求を発生

IRQ イネーブルレジスタ (IER)ビット数: 16 アドレス: H'FFFF34

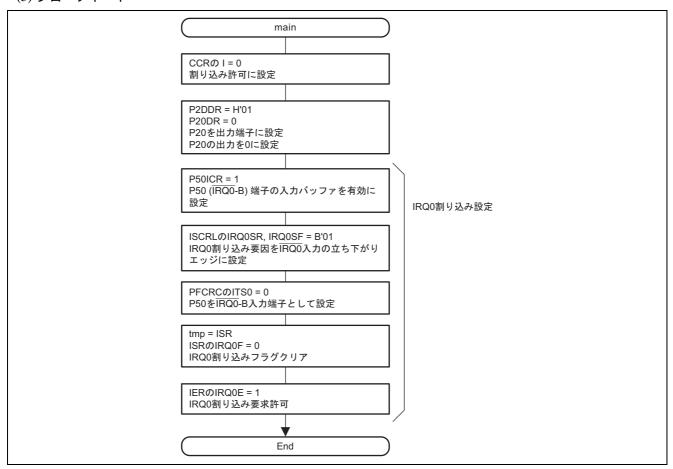
ビット	ビット名	設定値	R/W	機能
0	IRQ0E	0	R/W	IRQ0 イネーブル
				0:IRQ0 割り込み要求禁止
				1:IRQ0 割り込み要求許可

• IRQ ステータスレジスタ (ISR)

ビット数:16 アドレス:H'FFFF36

		, ,		
ビット	ビット名	設定値	R/W	機能
0	IRQ0F	0	R/(W)*	 [セット条件] ISCR で選択した割り込み要因が発生したとき [クリア条件] 1 の状態をリードした後,0をライトしたとき Low レベル検出設定の状態,かつ IRQn 入力が High レベルの状態で割り込み例外処理を実行したとき (n = 11 ~ 0) 立ち下がりエッジ,立ち上がりエッジ,両エッジ検出設定時の状態で IRQn 割り込み例外処理を実行したとき IRQn 割り込みにより DTC が起動され,DTC の MRB のDISEL が 0 のとき

【注】 * フラグをクリアするための0ライトのみ可能です。


• ポート2データレジスタ (P2DR)

ビッ	ト数・8	アドレス	: H'FFFF5

	ビット	ビット名	設定値	R/W	機能
ſ	0	P20DR	0	R/W	0: P20 端子は Low レベル
L					1:P20 端子は High レベル

(5) フローチャート

5.3.3 irq0_int 関数

(1) 機能概要

IRQ0割り込み処理。P20端子からトグル出力する。

(2) 引数

なし

(3) 戻り値

なし

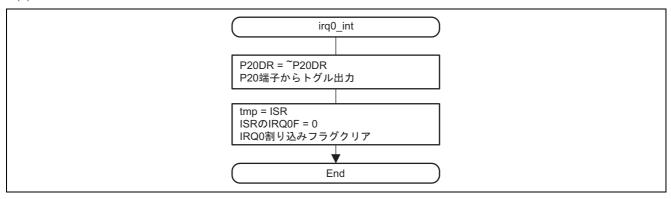
(4) 使用内部レジスタ説明

本例の使用内部レジスタを以下に示します。なお,設定値は本例において使用している値であり,初期値とは異なります。

• ポート2データレジスタ (P2DR)

ビット数:8 アドレス:H'FFFF51

ビット	ビット名	設定値	R/W	機能
0	P20DR	0/1	R/W	0: P20 端子は Low レベル
				1:P20 端子は High レベル


IRQ ステータスレジスタ (ISR)

ビット数:16 アドレス:H'FFFF36

ビット	ビット名	設定値	R/W	機能
0	IRQ0F	0	R/(W)*	[セット条件] • ISCR で選択した割り込み要因が発生したとき [クリア条件] • 1 の状態をリードした後,0をライトしたとき • Low レベル検出設定の状態,かつ IRQn 入力が High レベルの状態で割り込み例外処理を実行したとき (n = 11 ~ 0) • 立ち下がりエッジ,立ち上がりエッジ,両エッジ検出設定時の状態で IRQn 割り込み例外処理を実行したとき • IRQn 割り込みにより DTC が起動され,DTC の MRB のDISEL が 0 のとき

【注】 * フラグをクリアするための0ライトのみ可能です。

(5) フローチャート

- 6. 参照ドキュメント(注意事項)
- ハードウェアマニュアル H8SX/1653 グループハードウェアマニュアル (最新版をルネサス テクノロジホームページから入手してください。)
- テクニカルニュース/テクニカルアップデート (最新の情報をルネサス テクノロジホームページから入手してください。)

ホームページとサポート窓口

ルネサス テクノロジホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/inquiry

csc@renesas.com

改訂記録

			改訂内容
Rev.	発行日	ページ	ポイント
1.00	2007.09.25	_	初版発行

本資料ご利用に際しての留意事項・

- 1. 本資料は、お客様に用途に応じた適切な弊社製品をご購入いただくための参考資料であり、本資料中に記載の技術情報について弊社または第三者の知的財産権その他の権利の実施、使用を許諾または保証するものではありません。
- 2. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例など全ての情報の使用に起因する損害、第三者の知的財産権その他の権利に対する侵害に関し、弊社は責任を負いません。
- 3. 本資料に記載の製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目 的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、 それらの定めるところにより必要な手続を行ってください。
- 4. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例などの全ての情報は本資料発行時点のものであり、弊社は本資料に記載した製品または仕様等を予告なしに変更することがあります。弊社の半導体製品のご購入およびご使用に当たりましては、事前に弊社営業窓口で最新の情報をご確認頂きますとともに、弊社ホームページ(http://www.renesas.com)などを通じて公開される情報に常にご注意下さい。
- 5. 本資料に記載した情報は、正確を期すため慎重に制作したものですが、万一本資料の記述の誤りに起因する損害がお客様に生じた場合においても、弊社はその責任を負いません。
- 6. 本資料に記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例など の情報を流用する場合は、流用する情報を単独で評価するだけでなく、システム全体で十分に評価し、お客様の 責任において適用可否を判断して下さい。弊社は、適用可否に対する責任は負いません。
- 7. 本資料に記載された製品は、各種安全装置や運輸・交通用、医療用、燃焼制御用、航空宇宙用、原子力、海底中継用の機器・システムなど、その故障や誤動作が直接人命を脅かしあるいは人体に危害を及ぼすおそれのあるような機器・システムや特に高度な品質・信頼性が要求される機器・システムでの使用を意図して設計、製造されたものではありません(弊社が自動車用と指定する製品を自動車に使用する場合を除きます)。これらの用途に利用されることをご検討の際には、必ず事前に弊社営業窓口へご照会下さい。なお、上記用途に使用されたことにより発生した損害等について弊社はその責任を負いかねますのでご了承願います。
- 8. 第7項にかかわらず、本資料に記載された製品は、下記の用途には使用しないで下さい。これらの用途に使用されたことにより発生した損害等につきましては、弊社は一切の責任を負いません。
 - 1) 生命維持装置。
 - 2) 人体に埋め込み使用するもの。
 - 3) 治療行為(患部切り出し、薬剤投与等)を行なうもの。
 - 4) その他、直接人命に影響を与えるもの。
- 9. 本資料に記載された製品のご使用につき、特に最大定格、動作電源電圧範囲、放熱特性、実装条件およびその他諸条件につきましては、弊社保証範囲内でご使用ください。弊社保証値を越えて製品をご使用された場合の故障および事故につきましては、弊社はその責任を負いません。
- 10. 弊社は製品の品質及および信頼性の向上に努めておりますが、特に半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。弊社製品の故障または誤動作が生じた場合も人身事故、火災事故、社会的損害などを生じさせないよう、お客様の責任において冗長設計、延焼対策設計、誤動作防止設計などの安全設計(含むハードウエアおよびソフトウエア)およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特にマイコンソフトウエアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願い致します。
- 11. 本資料に記載の製品は、これを搭載した製品から剥がれた場合、幼児が口に入れて誤飲する等の事故の危険性があります。お客様の製品への実装後に容易に本製品が剥がれることがなきよう、お客様の責任において十分な安全設計をお願いします。お客様の製品から剥がれた場合の事故につきましては、弊社はその責任を負いません。
- 12. 本資料の全部または一部を弊社の文書による事前の承諾なしに転載または複製することを固くお断り致します。
- 13. 本資料に関する詳細についてのお問い合わせ、その他お気付きの点等がございましたら弊社営業窓口までご照会下さい。

© 2007. Renesas Technology Corp., All rights reserved.