

LCD Controller Setup Example

R01AN0307EJ0100 Rev.1.00 Oct 27, 2010

Introduction

This application note describes how to use the LCD controller (LCDC) of the SH7763, and shows a display example by the TFT-LCD module.

Target Device

SH7763

Contents

1.	Preface	2
2.	LCDC Operation	4
3.	LCD Module Sizes Displayable in this LCDC	. 15
4.	Description of the Sample Application	. 16
5.	Listing of the Sample Program	. 28
6.	Execution Results	. 42
7.	Documents for Reference	. 43

1. Preface

1.1 Specifications

• In this application note, section 2 gives a supplementary explanation of the LCDC description in the hardware manual, and section 3 describes the LCDC bus load factor necessary for system design. Section 4 shows an application example in which four types of images are alternately displayed on the TFT-LCD module and the TFTLCD module is repeatedly turned on and off.

1.2 Modules Used

• LCDC

1.3 Applicable Conditions

•	Evaluation board:	SH7763 Solution Engine (product code: MS7763SE02) manufactured by			
		Hitachi ULSI Systems Co., Ltd.			
		External memory	(area 0):	16-MB NOR-type flash memory: S29GL128M10TDIR90	
				from Spansion	
			(area 2, 3):	128-MB DDR-SDRAM: MT46V32M16TG-6T × 2	
				from Micron	
•	MCU:	SH7763 (R5S7763	0AY266BG	V)	
•	Operating frequency:	CPU clock:	266.6	MHz	
		SH bus clock:	133.3	MHz	
		Bus clock:	66.6 N	/Hz	
		DDR-SDRAM clo	ck: 133.3	MHz	
		Peripheral bus 0 cl	ock: 66.6 N	/Hz	
•	Bus width for area 0:	16-bit (with the M	D3 pin at the	low level, and MD4 pin at the high level)	
•	Clock operating mode:	Mode 0 (with the M	MD0 to MD2	2 pin at the low level)	
•	Endian:	Big endian (with th	he MD5 pin	at the low level)	
•	Toolchain:	SuperH RISC engi	ine Standard	Toolchain Ver.9.3.0.0 from Renesas Electronics	
•	Compiler options:	Default settings of	High-perfor	mance Embedded Workshop	
(-cpu=sh4aldsp -endian=little -include="\$(PROJDIR)\inc" -object="\$(CONFIGDIR)\\$(FILELEAF).obj" -debug -optimize=0 -gbr=auto				include="\$(PROJDIR)\inc"	
				LELEAF).obj" –debug -optimize=0 -gbr=auto	
		-chgincpath -errorpath -global volatile=0 -opt range=all -infinite loop=0			
		-del vacant loop=0-struct alloc=1-nologo)			

1.4 Terms Used in This Application Note

• Frame:

A frame is pixel information located in the memory in the same way the image is to be displayed on the screen. A buffer in which frame information is stored is called a frame buffer. The LCDC reads pixel information from the frame buffers and uses it to display images.

• Frame rate [Hz]:

Indicates how many times the LCD module connected to the LCDC rewrites the screen in 1 second.

1.5 Scope of This Application Note

This application note describes the basic usage method of the LCDC without an OS, that is, to continuously display images in the frame buffers onto the LCD module supporting the RGB interface mode.

1.6 Related Application Note

The operation of the reference program for this document was confirmed with the setting conditions described in the SH7763 Group application note, Example of Initialization (REJ06B0934). Please refer to that document in combination with this one.

2. LCDC Operation

2.1 Overview of LCDC

The LCDC is an image system module that can read image data from the frame buffers located in the external memory and display images onto the TFT-LCD module. This application note introduces a setup example in which RGB- or YCbCr-format image data is read and an image is displayed on the LCD module in RGB interface mode.

Figure 1 Image of LCDC Operation

2.1.1 Image Data Read

The LCDC reads from the frame buffer one pixel each rightward, starting from the base point of an image that is located at the top-left corner. The pixel information for the amount of the horizontal image size is called one line. After reading for one line has finished, reading is continued after returning to the left end one line down. Reading for one frame is completed when the number of lines equal to the vertical image size has been read. Reading of the next frame is started again from the base point.

Figure 2 Image Data Input

2.1.2 Image Data Output

The LCDC outputs image data in synchronization with the following three sync signals.

- Dot clock (DOTCLK):
- The information for one pixel is output in synchronization with the dot clock. (Pin name: LCD_CL2, LCDM_CL2)
- Horizontal sync signal (HSYNC): The information for a single horizontal line of an image is output in synchronization with the horizontal sync signal. The periods that are before and after the sync signal and in which no pixel information is output are referred to as the horizontal front porch and horizontal back porch, respectively. (Pin name: LCD_CL1, LCDM_CL1)
- Vertical sync signal (VSYNC): The information for a single frame of an image is output in synchronization with the vertical sync signal. The periods that are before and after the sync signal and in which no pixel information is output are referred to as the vertical front porch and vertical back porch, respectively. (Pin name: LCD_FLM, LCDM_FLM)

Figure 3 Input of Image Data and Sync Signals

Each cycle of the sync signal includes an image-display period and a non-display period. The non-display period in the horizontal direction starts from the end of displaying a single line from the left to the right and lasts until the beginning of displaying the next single line after returning to the left. This period is called the horizontal blanking period. The non-display period in the vertical direction starts from the end of displaying a single frame and lasts until the beginning of displaying the next single frame. This period is called the vertical blanking period.

2.2 LCDC Features

Table 1 lists the main features of the LCDC.

Table 1 LCDC Features

Item	Specifications
Display system configuration	Unified memory architecture: Display images are stored in the DDR-SDRAM in area 3 and no dedicated display memory is required. (Display is not available in areas other than the DDR-SDRAM in area 3.)
Supported display panel	 LCD type: STN, Dual STN, or TFT panel Bus width: 4, 8, 12, 16, or 18* bits
	 Note: * When a TFT panel with a bus width of 18 bits is connected, the lower unused bit signals should be connected to GND or the lowest data output bit.
Supported color display	 4-, 8-, 15-, or 16-bpp (bits per pixel) color mode 1-, 2-, 4-, or 6-bpp grayscale mode
Displayable LCD module size	16×1 to 1024×1024 LCD panel sizes are supported. Note: In actual applications, the bus occupation rate limits the displayable
	size because the display buffer is allocated in the external memory. In most cases, the displayable size will be around WVGA, but for details refer to the calculation shown in section 3.
Color control	The 24-bit color palette memory is used and 256 entries from among 16 million colors can be displayed at one time.

2.3 LCDC Setup

The LCDC functions and register setting methods are described here.

2.3.1 Setting the Frame Buffer

Figure 4 shows the frame buffer information required by the LCDC when reading image data from the memory.

Figure 4 Frame Buffer Configuration

- (1) Start address: Set a 512-byte aligned address for the base point address of the frame buffer. An address in a cachedisabled area that can be accessed by a physical address should be specified.
- (2) Actual data size: Specify the horizontal image size in pixel units. Note that this setting must be a multiple of 8 because the LCDC handles data in the horizontal direction in units of characters (1 character: 8 pixels). (refer to section 2.3.5)
- (3) Number of lines: Specify the vertical image size in pixel units. (refer to section 2.3.5)
- (4) Image format: For the data formats that can be handled by the LCDC, refer to section 37.4.4, Data Format, in the SH7763 Hardware Manual (REJ09B0256). Table 2 shows the registers for setting the LCDC display data.
- (5) Line address offset: Set the increment width for the Y coordinates of the frame buffer. The minimum alignment unit of LDLAOR is 16 bytes.

Table 2 LCDC Display Data Setting

Function	Register		
Sets the endian	LCDC data format register (LDDFR)		
Sets the data format			
Sets the start address for display data fetch	LCDC start address register for upper display data fetch (LDSARU)		
Sets the start address for lower display data fetch (only for DSTN)	LCDC start address register for lower display data fetch (LDSARL)		
Sets the increment width for the Y coordinates of the frame buffer	LCDC line address offset register for display data fetch (LDLAOR)		

2.3.2 Setting the LCDC Output Pins

The LCDC output pins are provided in two groups — normal output group and mirror output group, as shown in table 3 — in order to enable the LCDC output functions and other pin functions multiplexed with the LCDC output pins. Use the pin select registers in the general purpose I/O port (GPIO) to select the pin group; no setting is required in the LCDC.

As pins in the two groups have different output timing, mixed use of pins in the two groups is not allowed.

Table 3 shows the LCDC input/output pin groups.

Table 3 LCDC Input/Output Pins

Pin Group Name	Pin Name
Normal output group	LCD_D15 to LCD_D0, LCD_DON, LCD_CL1, LCD_CL2,
	LCD_M_DISP, LCD_FLM, LCD_VCPWC, and LCD_VEPWC
Mirror output group	LCDM_D15 to LCDM_D0, LCDM_DON, LCDM_CL1, LCDM_CL2,
	LCDM_M_DISP, LCDM_FLM, LCDM_VCPWC, and LCDM_VEPWC
Common input pin	LCD_CLK

2.3.3 Setting the LCDC Input Clock

The operating clock source for the LCDC and the frequency division ratio for the input clock should be specified.

The specified clock is supplied as DOTCLK from LCD_CL2 (LCDM_CL2 when the mirror output pin is used) to the LCD module (when a TFT panel is used). Specify an appropriate clock according to the specifications of the connected LCD module.

Note that the clock should be specified so that the frequency input to the LCDC becomes 66 MHz or lower.

(1) Input clock select: Select peripheral clock 0 or an external clock as the LCDC input clock source.

(2) Clock division ratio: Set the frequency division ratio for the input clock.

Table 4 shows the register for setting the LCDC input clock.

Table 4 LCDC Input Clock Setting

Function	Register
Sets the LCD input clock	LCDC input clock register (LDICKR)

2.3.4 Setting the LCD Module Type

The LCD module interface, signal polarity, etc. should be set according to the specifications of the LCD module used. Set each value with reference to the datasheet for the LCD module used.

- (1) Module interface: Selects the LCD panel type (STN, DSTN, or TFT) and the bus width of output data to the LCD panel. This application note shows settings for a case in which a TFT color module with a 16-bit data bus is selected.
- (2) Sync signal polarity: Sets the vertical sync signal (LCD_FLM (VSYNC)) and horizontal sync signal (LCD_CL1 (HSYNC)) to low-active or high-active. When low-active is set, a low-level signal is output during the period of the sync signal (HSYNW/VSYNW in section 2.3.5). In contrast, a high-level signal is output when high-active is set.
- (3) Horizontal sync signal output control: Sets whether or not to output horizontal sync signal (LCD_CL1 (HSYNC)) during the VSYNC blanking period.
- (4) Dot clock control: Sets whether or not to output the dot clock (LCD_CL2) during the blanking period of VSYNC and HSYNC.
- (5) Display enable signal polarity: Sets the display enable signal (LCD_M_DISP) to low-active or high-active.
- (6) Display enable signal output control: Sets whether or not to output the display enable signal (LCD_M_DISP).
- (7) Display data polarity: Sets the display data to high-active (bit value is output without change) or low-active (bit value is output after being inverted).

For details, please refer to the section 37.3.2 "LCDC Module Type Register (LDMTR)" in the SH7763 Group Hardware Manual (REJ09B0256)

Table 5 shows the LCDC registers used for setting the LCD module type.

Table 5 Setting the LCD Interface

Function		Register
•	Setting the LCD module type	LCDC module type register (LDMTR)
•	VSYNC polarity	
•	HSYNC polarity	
•	DISP (display enable) polarity	
•	Display data polarity	
•	M signal (LCD current-	
	alternating signal) control	
•	HSYNC control	
•	DOTCLK control	

2.3.5 Setting the Sync Signals

The sync signal parameters in figure 5 should be set according to the characteristics (A) to (E) and (a) to (e) in figure 3 of the LCD module used.

Figure 5 Sync Signal Configuration

- (1) HTCN: Sets "horizontal cycle -1" in units of characters.
- (2) HDCN: Sets "horizontal display period -1" in units of characters.
- (3) HSYNW: Sets "horizontal sync signal width -1" in units of characters.
- (4) HSYNP: Sets "(horizontal display period + horizontal front porch width) 1" in units of characters.
- (5) VTLN: Sets "vertical cycle 1" in units of horizontal sync signals.
- (6) VDLN: Sets "vertical display period 1" in units of horizontal sync signals.
- (7) VSYNW: Sets "vertical sync signal width 1" in units of horizontal sync signals.
- (8) VSYNP: Sets "(vertical display period + vertical front porch width) -2" in units of horizontal sync signals.

[Notes on Horizontal Direction Settings]

- 1 character = 8 pixels (8 dot clocks). Accordingly, each parameter in the horizontal direction can be set only in dot clock cycles as a multiple of 8. In some cases, a parameter in the horizontal direction needs to be set in dot clock cycles as a value other than a multiple of 8, depending on the LCD module used. However, in such a case, specify the nearest multiple of 8, convert that value into units of characters (change it to 1/8 of the value), and set the converted value. Confirm thoroughly that this setting does not cause trouble in the LCD module used. Confirm thoroughly that this setting does not cause trouble in the LCD module does not support the specified parameters, there may be an undisplayed range at either the left or right end.
- Make a setting to satisfy the expression of "HTCN \geq HDCN".
- Make a setting to satisfy the expression of "HTCN \geq HSYNP + HSYNW + 1".
- Make a setting to satisfy the expression of "HSYNP \geq HDCN + 1".
- The HDCN setting has restrictions depending on the resolution of the panel used. For details, refer to the description of the corresponding registers in the hardware manual.

[Notes on Vertical Direction Settings]

• Make a setting to satisfy the expression of "VTLN \ge VDLN" and "VTLN \ge 1".

Table 6 shows the LCDC registers used for setting the sync signals.

Function	Register
Sets the horizontal sync signal	LCDC horizontal character number register (LDHCNR)
	LCDC horizontal sync signal register (LDHSYNR)
Sets the vertical sync signal	LCDC vertical display line number register (LDVDLNR)
	LCDC vertical total line number register (LDVTLNR)
	LCDC vertical sync signal register (LDVSYNR)

Table 6 Sync Signal Setting

2.3.6 Setting the Power Management

The LCDC has a function to operate, in accordance with the specified sequence, three control signals for managing the power supply of the LCD module. Using this function enables power control of the LCD module to be synchronized with the display start and display stop of the LCDC. The external pins that can be controlled by this function are the following three pins (hereafter expressed as power management pins).

- LCDVCPWC pin: First pin to become high at display start and last pin to become low at display stop.
- LCDVEPWC pin: Second pin to become high at display start and second pin to become low at display stop.
- LCDDON pin: Last pin to become high at display start and first pin to become low at display stop.

Table 7 shows the LCDC registers used for setting the power management.

Table 7 Power Management Setting

Function	Register
Sets the timing for the power	LCDC power management mode register (LDPMMR)
management pins	LCDC power-supply sequence period register (LDPSPR)

Transitions of the signal levels of the power management pins at LCDC activation and termination are shown in figure 6.

Figure 6 Transition Example of Power Management Pins

The delay between each signal is a number of frames equal to the value of the bits in LDPMMR and LDPSPR for setting the sequence interval. For details, please refer to the section 37.4.6 "Power-Supply Control Sequence" in the SH7763 Group Hardware Manual (REJ09B0256).

2.4 Activation and Termination of LCDC

Figure 7 shows a flowchart of activating the LCDC and starting display on the LCD module.

Figure 7 LCDC Activation Flow

Figure 8 shows a flowchart of terminating the LCDC and stopping display on the LCD module.

Figure 8 LCDC Termination Flow

- LCDC setup which is described in section 2.3 can be made in a random order. The setup can be started from any setting.
- When using an LCDC interrupt, start LCD display after enabling interrupts to be generated. If generation of an LCDC interrupt is enabled (interrupt mask is cleared, etc.) after display has already been started, an interrupt may occur at an undesired timing.
- To stop display, write 0x0000 to LDCNTR.
- Display start and display stop can be confirmed by the LPS bits in the LCDC power management mode register (LDPMMR), regardless of whether the power management function is used.

2.5 LCDC Synchronous Design

If there is only one frame buffer when the image data to be displayed by the LCDC is updated, while the LCDC is reading data from the frame buffer, new frame information is drawn to that same frame buffer. This causes the image to be distorted, such as, screen tearing. The necessary operations to avoid this are to prepare several frame buffers, and change the LCDC reading destination upon completion of drawing to the frame buffer whose contents are to be displayed next.

Figure 9 Overview of Plane Switching Operation

2.5.1 Multiple Buffer Switching by Changing the Fetch Start Address Register Setting

In this section, the plane being displayed is called the used plane and the plane not being displayed is called the unused plane. The information on the frame buffer to be displayed next is set to the unused plane, and upon completion of drawing to the frame buffer of the unused plane, the used plane and unused plane are switched and the new frame buffer is displayed.

[Plane Switching Method]

To switch the used plane, change the setting of the LCDC start address register for upper display data fetch (LDSARU) to the start address of the buffer of the unused plane within the interrupt handling routine with the LCDC interrupt timing.

• Figure 10 shows the timing chart for hardware switching. Shown here is an example of flag usage by software in order to achieve synchronization with the previous-stage processing.

Figure 10 Timing of Software Switching Occurrence

The drawing end flag is set when the previous-stage processing has completed drawing. The LCDC monitors the drawing end flag by the frame end interrupt processing. If the flag is set, LDSARU is set to the start address of the unused-plane buffer. The LCDC updates the display image in the next frame after LDSARU is changed.

2.6 Usage Notes

2.6.1 Procedure for Halting Access to Display Data Storage VRAM

Follow the procedure below to halt access to VRAM for storing display data (DDR-SDRAM in area 3).

(1) Confirm that the LPS1 and LPS0 bits in LDPMMR are currently set to 1.

- (2) Clear the DON bit in LDCNTR to 0 (display-off mode).
- (3) Confirm that the LPS1 and LPS0 bits in LDPMMR have changed to 0.
- (4) Wait for the display time for a single frame to elapse.

2.6.2 Writing to LDCNTR

Only 0x0011 and 0x0000 can be written to LDCNTR to start and stop display, respectively; do not write any other value to LDCNTR.

If 0x0011 or another value is overwritten to LDCNTR in any case other than when display is started, the LCDC will execute unstable and unexpected operations; correct operation is not guaranteed.

3. LCD Module Sizes Displayable in this LCDC

This LCDC is capable of controlling displays with up to 1024×1024 dots and 16 bpp. However, the image data for display is stored in the DDR-SDRAM connected to area 3, which is shared with the CPU and some peripheral functions. Accordingly, there may be some problems with the display when the CPU or other peripheral functions also access the DDR-SDRAM in area 3.

As a rough standard for the displayable LCD size, the bus occupation ratio shown below should not exceed 40%.

Overhead coefficient \times Total number of display pixels ((HDCN + 1) \times 8 \times (VDLN + 1))

Bus occupation rate (%) = CLKOUT (Hz) × Bus width (bit) × 100

Bus width (DDR-SDRAM in area 3, fixed): 32 bits Overhead coefficient (fixed): 1.375

[Calculation Example]

Display size: 640 × 480 pixels HDCN: 79 VDLN: 479 Frame rate: 60 Hz Number of colors: 16 bpp CLKOUT: 66 MHz

 $(1.375 \times (79 + 1) \times 8 \times (479 + 1) \times 60 \times 16 \times 100) / (66000000 \times 32) = 19.2\%$

4. Description of the Sample Application

This section describes an example of pin connection and various settings as a sample application that uses the LCDC to display graphic images.

4.1 TFT-LCD Panel Specifications

The following shows the specifications of the TFT-LCD panel used in this sample application. As the details of the specifications differ depending on the TFT-LCD panel actually used in your system, please refer to the datasheet for the target LCD panel.

4.1.1 General Specifications

Table 8 lists the general specifications of the TFT-LCD panel used in this application.

Table 8	TFT-LCD Panel	General S	pecifications	(Excerp	ot from	Datasheet)
---------	---------------	------------------	---------------	---------	---------	--------------------

Item	Specifications
Resolution	VGA or QVGA (VGA is used in this application)
Pixel format	H 480 \times V 640 (Number of dots: H (480 \times 3) \times V640)
	* 1 pixel = $R + G + B$ dots
Pixel configuration	R, G, B vertical stripe
Input signal	CMOS RGB (6 bits each, digital)

4.1.2 Pin Functions

Table 9 lists the pin functions of the TFT-LCD panel used in this application.

Table 9 TFT-LCD Panel Pin Functions (Excerpt from Datasheet)

Symbol	Description
RESB	Reset signal
INI	Power on control
DEN	Data enable signal
HSYNC	Horizontal synchronizing signal
VSYNC	Vertical synchronizing signal
CLKIN	System clock signal
R5-0	Red data signals (6 bits, MSB: R5, LSB: R0)
G5-0	Green data signals (6 bits, MSB: G5, LSB: G0)
B5-0	Blue data signals (6 bits, MSB: B5, LSB: B0)

4.1.3 Interface Timing

Table 10 lists the interface timing and characteristics of the TFT-LCD panel used in this application.

Item		MODE	Symbol	Min.	Тур.	Max.	Unit
CLK	Cycle time	VGA	t _{CLK}	38	39.7	41.7	ns
		QVGA	_	152	158.8	167	
HSYNC	Cycle time	VGA	t _{HS}	_	648	_	CLK
		QVGA		_	324	_	
	Horizontal back porch	VGA	t _{HBP}	28	78	166	
		QVGA		14	38	82	
	Horizontal front porch	VGA	t _{HFP}	0	88	138	
		QVGA		0	44	68	
	Valid display period	VGA	t _{HHW}	_	480	_	
		QVGA		_	240	_	
	Sync signal width		t _{HSW}	_	2		
VSYNC	Cycle time	VGA	t _{VS}	_	648		HSYNC
		QVGA		_	324		
	Vertical back porch	VGA	_	_	(1)		
		QVGA		_	(1)		
	Vertical front porch	VGA	_	_	(6)		
		QVGA		_	(2)		
	Valid display period	VGA		_	640	_	
		QVGA	_	_	320		
	Sync signal width		t _{VSW}	_	1		

Table 10 TFT-LCD Panel Timing Characteristics (Excerpt from Datasheet)

Note: The vertical back porch and vertical front porch times are estimated from the timing chart because they are not specified in the AC characteristics table.

Table 11 shows an example of LCDC timing settings for VGA display calculated from the characteristics listed in table 10.

			Number of	Setting Value
Function	Register	Bit Name	Dot Clock	Example
Horizontal	LCDC horizontal character	HTCN:	648/8–1 = 80	0x50
timing	number register (LDHCNR)	Horizontal cycle – 1		
settings		HDCN:	480/8–1 = 59	0x3B
		Horizontal display period – 1		
	LCDC horizontal sync signal	HSYNW:	8/8–1 = 0 * ¹	0x0
	register (LDHSYNR)	Horizontal sync signal width – 1		
		HSYNP:	568/8–1 = 70	0x46
		(Horizontal display period +		
		horizontal front porch) – 1		
Vertical	LCDC vertical total line number	VTLN:	648–1 = 647	0x287
timing	register (LDVTLNR)	Vertical cycle – 1		
settings	LCDC vertical display line	VDLN:	640–1 = 639	0x27F
	number register (LDVDLNR)	Vertical display period – 1		
	LCDC vertical sync signal	VSYNW:	1–1	0x0
	register (LDVSYNR)	Vertical sync signal width – 1		
		VSYNP:	648 - 1 - 2 = 645	0x285
		(Vertical display period +		
		vertical front porch) – 2 $*^2$		

Table 11 Example of VGA Timing Settings

Notes: *1 As the sync signal width for the TFT panel is 2, the minimum specifiable width (8) is used for this calculation.

*2 The vertical front porch width is calculated as (vertical period - vertical sync signal width) - 2 because it is not specified in the data sheet of the TFT panel.

4.2 TFT-LCD Panel Connection Circuit Example

4.2.1 Pin Connection Example

Figure 11 shows the TFT-LCD panel connection circuit example in this application.

In this example, five bits are connected for R, six bits for G, and five bits for B in the 18-bit bus of the TFT panel.

Figure 11 TFT-LCD Panel Connection Circuit Example

4.2.2 Power Management Setting

The LCDC power management function is specified as follows according to the power control timing requirements of the TFT-LCD panel used in this application.

[To Turn on the Power]

- Requirement (1): VCC (+3.3 V) should settle within a 2-frame period:

 → ONA is set to 1: The RESB timing is generated by the FPGA on the board, so this period should match the period used in the sample software provided with the board.
- Requirement (2): The sync signals and RGB data should be output before INI is driven high:
 → The RESB timing is generated by the FPGA on the board.
- Requirement (3): The RESB signal should be kept low for at least 20 µs after VCC (+3.3 V) has settled:
 → ONB is set to 6: The RESB timing is generated by the FPGA on the board, so this period should match the period used in the sample software provided with the board.
- Requirement (4): RESB should be driven high before INI:
 → The RESB timing is generated by the FPGA on the board.

[To Turn Off the Power]

- Requirement (5): The sync signal and RGB data output should be stopped and RESB should be driven low after 5-frame period has passed since INI is driven low:
 → OFFE is set to 6.
- Requirement (6): OFFF is set to 1 in this application although the TFT-LCD panel specifications do not prescribe such requirements.

Figure 12 Example of Power Management Setting

4.3 Sample Program Specifications

This section describes the specifications of the sample program and shows the flowchart of each processing.

4.3.1 Specifications

- (1) Displays in turn gradation images (gray-scale, red, green, and blue) drawn by the CPU on the VGA portrait (W480 × H640) TFT-LCD panel.
- (2)Activates the LCDC, displays the images in turn with switching among four frame buffers, and then stops the LCDC.
- (3) Repeats step (2) infinitely.
- (4) Switches the planes by software.

4.3.2 Main Flowchart of the Sample Program

Figure 13 shows the main flowchart of the sample program.

Figure 13 Main Flowchart of Sample Program

4.3.3 Initial Setting of the LCDC

Figure 14 to 16 shows the flowchart for initial setting of the LCDC.

Figure 14 Flowchart for LCDC Initial Setting in Sample Program (1)

Figure 15 Flowchart for LCDC Initial Setting in Sample Program (2)

Figure 16 Flowchart for LCDC Initial Setting in Sample Program (3)

4.3.4 Starting and Stopping LCDC Display

Figure 17 shows the flowchart for starting LCDC display.

Figure 18 shows the flowchart for stopping LCDC display.

Figure 18 Flowchart for LCDC Termination in Sample Program

4.3.5 LCDC Plane Switching Settings

Figure 19 shows the flowchart for switching LCDC planes. This processing only sets the plane switching flag. The settings necessary for LCDC plane switching are made in the frame end interrupt processing.

Figure 19 Flowchart for LCDC Plane Switching in Sample Program

4.3.6 LCDC Frame End Interrupt Settings

Figure 20 shows the flowchart for LCDC frame end interrupt processing. When the plane switching flag is set, this processing makes the necessary settings for plane switching in the LCDC. Plane switching is actually done at the end of the next frame. A wait is inserted for the INTC priority decision period (5 P ϕ clock cycles) so that clearing of end interrupt bit FINTS is reflected in the INTC.

Figure 20 Flowchart for LCDC Frame End Interrupt in Sample Program

4.3.7 Section Allocation

Table 12 shows the allocation of the sections used in this application.

Table 12 Section Allocation

Section Name	Description	Area Address (Virtual Address)		
Р	Program area (with no specification)	ROM	0x00002000	P0 area
С	Constant area	ROM		(caching enabled and
C\$BSEC	Structure for uninitialized data area	ROM		MMU address
	addresses			translation enabled)
C\$DSEC	Structure for initialized data area	ROM		
	addresses			
D	Initialized data (initial values)	ROM		
В	Uninitialized data area	RAM	0x0800000	
R	Initialized data area	RAM		
S	Stack area	RAM	0x0FFFF9F0	
PINTHandler	Exception and interrupt handlers	ROM	0x80000400	P1 area
VECTTBL	Reset vector table	ROM		(caching enabled and
	Interrupt vector table			MMU address
INTTBL	Interrupt mask table	ROM		translation disabled)
PIntPRG	Interrupt functions	ROM		
SP_S	Stack dedicated for TLB-miss handler	RAM	0x8FFFFDF0	
RSTHandler	Reset handlers	ROM	0xA0000000	P2 area
PResetPRG	Reset programs	ROM		(caching disabled and
PnonCACHE	Program area (cache-disabled access)	ROM	-	MMU address
B_LCD_BUFF	LCDC frame buffers	RAM	0xAE000000	translation disabled)

5. Listing of the Sample Program

(1) Sample Program Listing: "main.c"

```
1
     * DISCLAIMER
2
3
     * This software is supplied by Renesas Electronics Corporation. and is only
4
5
     * intended for use with Renesas products. No other uses are authorized.
6
     * This software is owned by Renesas Electronics Corporation. and is protected under
7
     * all applicable laws, including copyright laws.
8
9
10
    * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
    * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
    * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
    * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
     * DISCLAIMED.
14
15
16
    * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19
     * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
20
21
    * Renesas reserves the right, without notice, to make changes to this
22
23
    * software and to discontinue the availability of this software.
    * By using this software, you agree to the additional terms and
24
25
    * conditions found by accessing the following link:
    * http://www.renesas.com/disclaimer
26
     27
    /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved. */
28
    29
30
    * System Name : SH7763 Sample Program
    * File Name
31
                 : main.c
    * Abstract
32
                 : Sample Program for SH7763 LCDC Display
    * Version
33
                 : Ver 1.00
34
    * Device
                 : SH7763
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
35
36
                 : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * 0S
                : None
37
    * H/W Platform : MS7763SE02
38
   * Description : Sample Program for SH7763 LCDC Display
39
40
    * Operation
41
                 :
42
    * Limitation :
43
    44
    * History : 08.July.2010 Ver. 1.00 First Release
45
    46
47
48
    #include <machine.h>
49
    #include "iodefine.h"
50
    #include "lcdc.h"
51
    #include "framebuf.h"
52
53
    /* ==== Prototype declaration ==== */
    void main(void);
54
55
56
     57
58
     * ID
59
     * Outline
                           : Sample program main
```


60	*	: (Display by LCDC)
61	* Include	
62	* Declaration	void main(void)
63	* Description	Displays a VGA image on the main LCD. After a software
64	*	wait defined by LCDC_WAIT_CHGSIDE, repeats switching of
65	*	display planes, and then stops the display.
66	*	The display is restarted after a software wait defined
67	*	: by LCDC_WAIT_STOP.
68	*	
69	* Limitation	
70	*	
71	* Argument	None
72	* Return Value	None
73	* Calling Functions	
74	*""FUNC COMMENT END""*****	***************************************
75	void main(void)	
76	{	
77	unsigned long j;	
78		
79	/* Draws an image in the	e frame buffer. */
80	<pre>make_gradation();</pre>	
81		
82	/* LCDC initialization	Displays a VGA image on the main LCD */
83	<pre>lcdc_init();</pre>	
84		
85	while(1)	
86	{	
87	/* LCDC activation : S	tarts display on the main LCD */
88	<pre>lcdc_start();</pre>	
89		
90	for(g_tbl_num=0;g_tbl_	num <d_lcdc_frame_num;g_tbl_num++)< td=""></d_lcdc_frame_num;g_tbl_num++)<>
91	{	
92		
93	/* Switches LCD0	C display planes */
94	<pre>lcdc_chgadr();</pre>	
95		
96	/* Wait */	
97	for(j=0;j <d_lcdc_w< td=""><td>AIT_CHGSIDE;j++)</td></d_lcdc_w<>	AIT_CHGSIDE;j++)
98	{	
99		
100	}	
101	}	
102	/* Stopping the LCD	C : Stops display on the main LCD */
103	<pre>lcdc_stop();</pre>	
104		
105	/* Wait */	
106	for(j=0;j <d_lcdc_wa< td=""><td>IT_STOP;j++)</td></d_lcdc_wa<>	IT_STOP;j++)
107	{	
108		
109	}	
110	}	
112	1	
114	}	
114 115		
115	/ ^ ENd OI FILE */	

(2) Sample Program Listing: "framebuf.c"

```
1
2
     * DISCLAIMER
3
     * This software is supplied by Renesas Electronics Corporation. and is only
4
5
     * intended for use with Renesas products. No other uses are authorized.
6
7
     * This software is owned by Renesas Electronics Corporation. and is protected under
8
     * all applicable laws, including copyright laws.
9
10
     * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
11
    * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
     * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
     * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
14
    * DISCLAIMED.
15
16
     * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
    * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
19
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
20
21
22
    * Renesas reserves the right, without notice, to make changes to this
    * software and to discontinue the availability of this software.
23
24
    * By using this software, you agree to the additional terms and
    * conditions found by accessing the following link:
25
     * http://www.renesas.com/disclaimer
26
     27
28
     /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved. */
     29
30
     * System Name : SH7763 Sample Program
31
     * File Name : framebuf.c
32
     * Abstract : Sample Program for SH7763 LCDC Display
     * Version
                 : Ver 1.00
33
     * Device
                  : SH7763
34
35
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
36
                  : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * 0S
37
                  : None
    * H/W Platform : MS7763SE02
38
    * Description : Sample Program for SH7763 LCDC Display
39
40
    * Operation :
41
    * Limitation :
42
43
    44
     * History : 08.July.2010 Ver. 1.00 First Release
45
     46
47
48
    #include <machine.h>
49
    #include "iodefine.h"
50
     #include "framebuf.h"
51
52
    unsigned long g_tbl_num = 0;
53
54
     /* ==== Frame buffer ==== */
55
56
     #pragma section _LCD_BUFF
     unsigned short lcdc_buf0[D_LCDC_HEIGHT][D_LCDC_WIDTH];
57
     unsigned short lcdc_buf1[D_LCDC_HEIGHT][D_LCDC_WIDTH];
58
59
     unsigned short lcdc_buf2[D_LCDC_HEIGHT][D_LCDC_WIDTH];
60
     unsigned short lcdc_buf3[D_LCDC_HEIGHT][D_LCDC_WIDTH];
61
     #pragma section
62
```



```
/* ==== Frame buffer table ==== */
63
     void* tbl_lcdc_buf[4] = {
64
       lcdc_buf0,
65
66
       lcdc_buf1,
       lcdc_buf2,
67
68
       lcdc_buf3
69
    };
70
     /* ==== Prototype declaration ==== */
71
72
     void make_gradation(void);
73
74
     75
     * ID
76
                             :
    * Outline
77
                            : Sample program main
                            : (Display by LCDC)
78
79
    * Include
                            :
    * Declaration
80
                            : void make_gradation(void)
    * Description
81
                            : Creates an image with gradation in RGB565 16-bpp format
82
                            : in the frame buffer.
83
                             :
     * Limitation
84
                             :
85
                             :
     * Argument
86
                             : None
    * Return Value
87
                             : None
     * Calling Functions
88
                             :
    89
    void make_gradation(void)
90
91
    {
       static unsigned long i;
92
93
       static unsigned long j;
       unsigned short pixel0 = 0;
94
95
       unsigned short pixel1 = 0;
96
        unsigned short pixel2 = 0;
97
        unsigned short pixel3 = 0;
98
99
        for(i=0;i<D_LCDC_HEIGHT;i++)</pre>
100
        {
101
            for(j=0;j<D_LCDC_WIDTH;j++)</pre>
102
            {
                lcdc_buf0[i][j] = pixel0;
103
104
                lcdc_buf1[i][j] = pixel1;
                lcdc_buf2[i][j] = pixel2;
105
106
                lcdc_buf3[i][j] = pixel3;
107
108
                if( ( j != 0 ) && ( (j%60) == 0 ) )
109
                {
110
                   pixel0 += D_LCDC_PATTERN0;
                   pixel1 += D_LCDC_PATTERN1;
111
112
                   pixel2 += D_LCDC_PATTERN2;
113
                   pixel3 += D_LCDC_PATTERN3;
114
                }
115
            }
           pixel0 = 0;
116
           pixell = 0;
117
           pixel2 = 0;
118
119
            pixel3 = 0;
        }
120
121 }
122
123
124
    /* End of File */
```


(3) Sample Program Listing: "framebuf.h"

```
1
2
     * DISCLAIMER
3
4
     * This software is supplied by Renesas Electronics Corporation. and is only
5
     * intended for use with Renesas products. No other uses are authorized.
6
     * This software is owned by Renesas Electronics Corporation. and is protected under
7
8
    * all applicable laws, including copyright laws.
9
     * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
10
     * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
     * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
     * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
14
     * DISCLAIMED.
15
     * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
16
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19
    * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
20
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
     * Renesas reserves the right, without notice, to make changes to this
22
     * software and to discontinue the availability of this software.
23
     \ast By using this software, you agree to the additional terms and
24
    * conditions found by accessing the following link:
25
     * http://www.renesas.com/disclaimer
26
     27
28
    /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved.
    29
     * System Name : SH7763 Sample Program
30
    * File Name : framebuf.h
31
32
    * Abstract
                : Sample Program for SH7763 LCDC Display
33
    * Version
                : Ver 1.00
34
    * Device
                 : SH7763
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
35
36
                : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * OS
37
                 : None
38
    * H/W Platform : MS7763SE02
39
    * Description : Sample Program for SH7763 LCDC Display
40
41
    * Operation
42
    * Limitation
43
     44
                : 08.July.2010 Ver. 1.00 First Release
45
     * History
     46
47
     #ifndef _FRAMEBUF_H_
48
49
     #define _FRAMEBUF_H_
50
    /* ==== Macro definition ==== */
51
52
    #define D_LCDC_FRAME_NUM
53
                            480 /* Width of the image */
54
     #define D_LCDC_WIDTH
     #define D_LCDC_HEIGHT
                             640 /* Height of the image */
55
56
57
    #define D_LCDC_PATTERN0 0x2000
58
    #define D_LCDC_PATTERN1 0x0100
59
     #define D_LCDC_PATTERN2 0x0004
     #define D_LCDC_PATTERN3 0x2104
60
61
```


LCD Controller Setup Example

SH7763 Group

```
62 /* ==== Frame buffer ==== */
63 extern void* tbl_lcdc_buf[D_LCDC_FRAME_NUM];
64
65 /* ==== Variable declaration ==== */
66 extern unsigned long g_tbl_num;
67
68 #endif /* _FRAMEBUF_H_ */
69 /* End of File */
```


(4) Sample Program Listing: "lcdc.c"

```
1
2
     * DISCLAIMER
3
4
     * This software is supplied by Renesas Electronics Corporation. and is only
5
    * intended for use with Renesas products. No other uses are authorized.
6
    * This software is owned by Renesas Electronics Corporation. and is protected under
7
8
    * all applicable laws, including copyright laws.
9
    * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
10
    * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
    * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
    * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
    * DISCLAIMED.
14
15
    * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
16
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19
    * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
20
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
    * Renesas reserves the right, without notice, to make changes to this
22
    * software and to discontinue the availability of this software.
23
     \ast By using this software, you agree to the additional terms and
24
    * conditions found by accessing the following link:
25
26
    * http://www.renesas.com/disclaimer
    27
28
    /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved. */
    29
    * System Name : SH7763 Sample Program
30
    * File Name : lcdc.c
31
32
    * Abstract
                : Sample Program for SH7763 LCDC Display
33
    * Version
                : Ver 1.00
34
    * Device
                : SH7763
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
35
36
    *
                : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * OS
37
                 : None
38
    * H/W Platform : MS7763SE02
39
    * Description : Sample Program for SH7763 LCDC Display
40
    * Operation
41
42
    * Limitation
43
    44
    * History : 08.July.2010 Ver. 1.00 First Release
45
    46
47
48
49
    #include <machine.h>
    #include "iodefine.h"
50
    #include "lcdc.h"
51
52
    #include "framebuf.h"
53
54
55
    long g_flg_chg = D_LCDC_SIDECHG_OFF;
56
57
    58
    * TD
59
     * Outline
                           : Sample program main
60
61
                          : (Display by LCDC)
```



```
62
      * Include
                                 :
63
      * Declaration
                                 : void lcdc_init(void)
     * Description
64
                                 : Initializes the LCDC.
                                 : Makes necessary settings to enable display on the main LCD.
65
66
67
68
      *
69
      * Limitation
70
     * Argument
71
                               : None
     * Return Value
72
                               : None
     * Calling Functions
73
                               :
     74
75
     void lcdc_init()
76
     {
77
         unsigned long dummy;
78
         /* GPIO setting */
79
         /* ---- Pin select registers ---- */
80
         GPIO.PSEL2.BIT.PTSEL25 = 0;
81
         GPIO.PSEL2.BIT.PTSEL24 = 0;
82
83
         GPIO.PSEL2.BIT.PTSEL22 = 0;
84
         GPIO.PSEL3.BIT.PTSEL33 = 0;
85
         GPIO.PSEL3.BIT.PTSEL31 = 0;
86
         GPIO.PSEL3.BIT.PTSEL30 = 0;
87
         /* ---- Port control registers --- */
88
         GPIO.PICR.BIT.PI5MD = 0;
89
         GPIO.PJCR.WORD = 0x0000;
90
         GPIO.PKCR.WORD = 0x0000;
91
92
         GPTO_PLCR_WORD = 0 \times 0.000;
93
94
         /* ---- Clock selection and division ratio setting ---- */
95
         LCDC.LDICKR.WORD = 0x2101;
          /* bits 13:12 (ICKSEL) = 01: Uses LCD_CLK (external pin). */
96
97
           /* bits 5:0 (DCDR) = 000001: Specifies division ratio 1/1. */
98
99
         /* ---- Pin polarity selection ---- */
100
        LCDC.LDMTR.WORD = 0xC42B;
101
         /* bit 15 (FLMPOL) = 1
                                       Sets Vsync to active-low. */
102
           /* bit 14 (CL1POL) = 1
                                        Sets Hsync to active-low. */
103
           /* bit 13 (DISPPOL) = 0
                                         Sets DEN to active-high. */
           /* bit 12 (DPOL) = 0
                                        Sets DATA to active-high. */
104
           /* bit 10 (MCNT) = 1
105
                                        Does not output the M signal. */
           /* bit 9 (CL1CNT) = 0 Outputs Hsync during vertical blanking period. */
/* bit 8 (CL2CNT) = 0 Outputs DotCLK during vertical blanking period. */
106
107
           /* bits 5:0 (MIFTYP) = 101011 16-bit color TFT */
108
109
         /* ---- Data format setting ---- */
110
111
         LCDC.LDDFR.WORD = 0x002D;
         /* bit 8 (PABD) = 0
112
                                         Big endian */
          /* bits 6:0 (DSPCOLOR) = 0101101 64k colors (RGB5-6-5) */
113
114
         /* ---- Scan mode setting ---- */
115
116
        LCDC.LDSMR.WORD = 0x0000;
         /* No rotation */
117
118
119
         /* Setting for reading image from external memory ----*/
120
         LCDC.LDSARU = (void *)(unsigned long )tbl_lcdc_buf[0];
121
          /* ---- Line offset setting ----*/
122
123
         LCDC.LDLAOR = LINE_OFFSET * DATA_FORMAT;
124
```



```
/* ---- Horizontal display character and total character number setting ---- */
125
126
         LCDC.LDHCNR.BIT.HDCN = (TFT_PANEL_CLOCK / 8) - 1;
127
        LCDC.LDHCNR.BIT.HTCN = (TFT_TOTAL_CLOCK / 8) - 1;
128
        /* ---- Vertical display line and total line number setting ---- */
129
       LCDC.LDVDLNR.BIT.VDLN = TFT_PANEL_LINE - 1;
130
131
       LCDC.LDVTLNR.BIT.VTLN = TFT_TOTAL_LINE - 1;
132
133
        /* ---- Horizontal and vertical sync signal timing setting ---- */
134
       LCDC.LDHSYNR.BIT.HSYNW = (TFT_HSYNC_WIDTH / 8) - 1;
       LCDC.LDHSYNR.BIT.HSYNP = (TFT_HSYNC_START / 8) - 1;
135
       LCDC.LDVSYNR.BIT.VSYNW = TFT_VSYNC_WIDTH - 1;
136
       LCDC.LDVSYNR.BIT.VSYNP = (TFT_TOTAL_LINE - TFT_VSYNC_WIDTH) - 2;
137
138
        /* ---- Power control pin setting ---- */
139
       LCDC.LDPMMR.WORD = 0xFF60;
140
         /* bits [15:12] (ONC) = 1111 ONC: 0xVSYNC */
141
         /* bits [11:8] (OFFD) = 1111 OFFD: 0xVSYNC */
142
         /* bit [6] (VCPE) = 1 Uses the LCD_VCPWC pin. */
143
          /* bit [5] (VEPE) = 1
                                  Uses the LCD VEPWC pin. */
144
       LCDC.LDPSPR.WORD = 0x0550;
145
146
          /* bits [15:12] (ONA) = 0000 ONA: 1xVSYNC */
          /* bits [11:8] (ONB) = 0101 ONB: 6xVSYNC */
147
148
          /* bits [7:4] (OFFE) = 0101
                                     OFFE: 6xVSYNC */
          /* bits [3:0] (OFFF) = 0000 OFFF: 1xVSYNC */
149
150
        /* ---- VRAM read clock cycle interval setting ---- */
151
        LCDC.LDLIRNR.WORD = 0x0000;
152
153
        /* Interrupt setting */
154
        /* LCDC interrupt masking */
155
        INTC.INT2MSKR1.BIT._LCDC = 1;
156
        /* LCDC interrupt priority setting */
157
158
       INTC.INT2PRI9.BIT._LCDC = 5;
159
        /* LCDC module interrupt setting */
       LCDC.LDINTR.WORD = D_LCDC_INT_ON;
160
        /* LCDC module interrupt source clearing */
161
162
       LCDC.LDINTR.WORD &= ~D_LCDC_INT_FLG;
163
       /* LCDC interrupt mask clearing */
164
       INTC.INT2MSKCR1.BIT._LCDC = 1;
165
166
    }
167
     168
     * ID
169
                              :
     * Outline
170
                              : Sample program main
171
                              : (Display by LCDC)
     * Include
172
    * Declaration
                              : void lcdc_start(void)
173
174
     * Description
                             : Activates the LCDC.
175
    * Limitation
176
                              •
177
    * Argument
                             : None
178
    * Return Value
179
                             : None
    * Calling Functions
180
                             :
    181
182 void lcdc_start(void)
183 {
        /* ---- Starting LCDC display ---- */
184
        LCDC.LDCNTR = 0 \times 0011;
185
         /* bit [4] (DON2) = 1 Starts LCDC display operation. */
186
          /* bit [0] (DON) = 1 Display-on mode */
187
```



```
188
189
       /* Waits until the status changes to "displaying". */
      while( LCDC.LDPMMR.BIT.LPS != 3 )
190
191
       {
192
          /* DO NOTHING */
193
      }
194 }
195
197 * ID
                        :
198 * Outline
                       : Sample program main
199 *
                       : (Display by LCDC)
200 * Include
                       :
                    : void lcdc_chgadr(void)
201 * Declaration
202 * Description
                       : Sets the LCDC plane switching flag.
   *
203
                        :
   * Limitation
204
                        :
    *
205
                        :
206
    * Argument
                       : None
207
    * Return Value
                        : None
208
    * Calling Functions
                        :
    209
210
   void lcdc_chgadr(void)
211
   {
212
       /* Sets the display start address change timing flag. */
213
       g_flg_chg = D_LCDC_SIDECHG_ON;
   }
214
215
   216
   * ID
                        :
217
218 * Outline
                       : Sample program main
                       : (Display by LCDC)
219 *
220 * Include
                       :
221 * Declaration
                       : void lcdc_stop(void)
222 * Description
                       : Stops the LCDC.
223 *
                        :
224 * Limitation
                        :
225 *
                        :
226 * Argument
                       : None
227 * Return Value
                       : None
228 * Calling Functions
                        :
230 void lcdc_stop(void)
231 {
   /* ---- Stops LCDC display operation ---- */
232
233
      LCDC.LDCNTR = 0 \times 0000;
       /* bit [0] (DON) = 0 Display-off mode */
234
235
     /* Waits until the status changes to "stopped". */
while( LCDC.LDPMMR.BIT.LPS != 0 )
236
237
      {
238
          /* DO NOTHING */
239
240
       }
   }
241
242
243 /* End of File */
```


(5) Sample Program Listing: "lcdc.h"

```
1
2
     * DISCLAIMER
3
4
     * This software is supplied by Renesas Electronics Corporation. and is only
5
     * intended for use with Renesas products. No other uses are authorized.
6
     * This software is owned by Renesas Electronics Corporation. and is protected under
7
8
    * all applicable laws, including copyright laws.
9
     * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
10
    * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
     * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
     * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
14
     * DISCLAIMED.
15
16
     * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19
    * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
20
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
     * Renesas reserves the right, without notice, to make changes to this
22
     * software and to discontinue the availability of this software.
23
     \ast By using this software, you agree to the additional terms and
24
    * conditions found by accessing the following link:
25
     * http://www.renesas.com/disclaimer
26
     27
28
    /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved. */
    29
     * System Name : SH7763 Sample Program
30
    * File Name : lcdc.h
31
32
    * Abstract
                : Sample Program for SH7763 LCDC Display
33
    * Version
                : Ver 1.00
34
    * Device
                : SH7763
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
35
36
                : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * OS
37
                 : None
38
    * H/W Platform : MS7763SE02
39
    * Description : Sample Program for SH7763 LCDC Display
40
41
    * Operation
42
    * Limitation
43
     44
              : 08.July.2010 Ver. 1.00 First Release
45
     * History
    46
47
     #ifndef _LCDC_H_
48
49
     #define _LCDC_H_
50
51
    /* ==== Macro definition ==== */
52
    /* ---- TFT LCD module ---- */
53
    #define
              TFT_TOTAL_CLOCK 648 /* Width including blanking period
                                                                          */
              TFT_TOTAL_LINE 648 /* Height including blanking period */
54
    #define
    #define
              TFT_PANEL_CLOCK 480 /* Number of pixels in horizontal direction */
55
    #define
              TFT_PANEL_LINE 640 /* Number of pixels in vertical direction */
56
              TFT_H_FRONT_PORCH 88
57
    #define
                                      /* Horizontal front porch
                                                                 */
58
   #define
              TFT_HSYNC_START (TFT_PANEL_CLOCK + TFT_H_FRONT_PORCH)
                         /* Horizontal display start position */
59
     #define
              TFT_HSYNC_WIDTH 8 /* Hsync pulse width (8 dots min.) */
60
     #define
                                1
                                      /* Vsync pulse width */
61
                TFT_VSYNC_WIDTH
```

```
62
                                     480 /* Line offset */
      #define
                  LINE_OFFSET
63
     #define
                 DATA_FORMAT
                                     2 /* Display data size (bytes) */
64
     /* ---- Wait time setting ---- */
65
     #define D_LCDC_WAIT_CHGSIDE
                                        (266000000/2*1) /* Frequency / (number of instructions
66
67
                                          in the for loop) x seconds */
                                         (266000000/2*1) /* Frequency / (number of instructions
     #define D_LCDC_WAIT_STOP
68
69
                                          in the for loop) x seconds */
70
71
     /* ---- LCDC interrupts ---- */
72
     #define D_LCDC_INT_ON 0x4000
73
     #define D_LCDC_INT_FLG 0x0400
74
75
     enum {
       D\_LCDC\_SIDECHG\_OFF = 0,
76
77
         D_LCDC_SIDECHG_ON,
     };
78
79
80
     /* ==== Function declaration ==== */
81
     void lcdc_init(void);
82
     void lcdc_start(void);
83
     void lcdc_chgadr(void);
84
     void lcdc_stop(void);
85
     void lcdc_int(void);
86
     /* ==== Variable declaration ==== */
87
88
     extern long g_flg_chg;
89
   #endif /* _LCDC_H_ */
90
    /* End of File */
91
```


(6) Sample Program Listing: "intprg.c"

```
1
2
     * DISCLAIMER
3
4
     * This software is supplied by Renesas Electronics Corporation. and is only
5
     * intended for use with Renesas products. No other uses are authorized.
6
     * This software is owned by Renesas Electronics Corporation. and is protected under
7
8
    * all applicable laws, including copyright laws.
9
     * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
10
    * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
     * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
     * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
     * DISCLAIMED.
14
15
16
     * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17
    * TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
    * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19
    * FOR ANY REASON RELATED TO THE THIS SOFTWARE, EVEN IF RENESAS OR ITS
20
    * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
     * Renesas reserves the right, without notice, to make changes to this
22
     * software and to discontinue the availability of this software.
23
     \ast By using this software, you agree to the additional terms and
24
    * conditions found by accessing the following link:
25
     * http://www.renesas.com/disclaimer
26
     27
28
    /* Copyright (C) 2010. Renesas Electronics Corporation., All Rights Reserved. */
    29
     * System Name : SH7763 Sample Program
30
    * File Name : intprg.c
31
32
    * Abstract
                : Sample Program for SH7763 LCDC Display
33
    * Version
                : Ver 1.00
34
    * Device
                : SH7763
    * Tool-Chain : High-performance Embedded Workshop (Version 4.05.01.001)
35
36
                : C/C++ Compiler Package for SuperH Family (V.9.03 release00)
    * OS
37
                 : None
38
    * H/W Platform : MS7763SE02
39
    * Description : Sample Program for SH7763 LCDC Display
40
    * Operation
41
42
    * Limitation
43
     44
     * History : 08.July.2010 Ver. 1.00 First Release
45
    46
47
    #include <machine.h>
48
    #include "iodefine.h"
49
    #include "framebuf.h"
50
    #include "lcdc.h"
51
52
                     4 /* Ick:Pck0 = 4:1 */
53
    #define I_DIV_P
    #define INST_NUM
                       2 /* instruction number of for loop */
54
    #define PCLK_5CYC
                        ( 5 * I_DIV_P / 2)
55
     Omitted
```


255	/* H'620 LCDC */		
256	/*""FUNC COMMENT""*******	* * * * * * * * * * * * * * * * * * * *	
257	* ID	:	
258	* Outline	: Sample program main	
259	*	: (Display by LCDC)	
260	* Include	:	
261	* Declaration	: void INT_LCDCI(void)	
262	* Description	: Initializes the LCDC.	
263	*	: Makes necessary settings to enable display on the main LCD.	
264	*	:	
265	*	:	
266	*	:	
267	* Limitation	:	
268	*	:	
269	* Argument	: None	
270	* Return Value	: None	
271	* Calling Functions	:	
272	*""FUNC COMMENT END""*****	* * * * * * * * * * * * * * * * * * * *	
273	void INT_LCDCI(void)		
274	{		
275	unsigned long i;		
276			
277			
278	if(LCDC.LDINTR.WORD & 1	D_LCDC_INT_FLG)	
279	{		
280	LCDC.LDINTR.WORD &=	~D_LCDC_INT_FLG;	
281			
282	if(g_flg_chg == D_1	LCDC_SIDECHG_ON)	
283	{		
284	LCDC.LDSARU = t	bl lcdc buf[q tbl num]; /* Updates the display start address. */	
285	g flg chg = D LCDC	SIDECHG OFF;	
286	}		
287	,		
288	/* Waits for the INTC	priority determination time. */	
289	for $(i=0;i$		
290	{		
291	/* DO NOTHING */		
292	}		
293	}		
294	}		
	-		
	Omitted		

6. Execution Results

When the above sample application is executed, the following processes will be repeated.

- The power for the LCD module is turned on.
- The red gradation pattern is displayed.
- The green gradation pattern is displayed.
- The blue gradation pattern is displayed.
- The gray gradation pattern is displayed.
- The power for the LCD module is turned off.
- The power for the LCD module is turned on (the above steps are repeated infinitely).

7. Documents for Reference

 Software Manual SH-4A Software Manual (REJ09B0003) (The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

 Hardware Manual SH7763 Group Hardware Manual (REJ09B0256) (The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description		
Rev.	Date	Page	Summary	
1.00	Oct 27, 2010	_	First edition issued	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

 All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

 Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application consent of Renesas Electronics and and without the prior written consent of Renesas Electronics and using a for any application categorized as "Specific" or for which it is not intended without the prior written consent of Renesas Electronics and using a form the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics data sheets or data books, etc.
 "Standard". Computers: office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic applicace; machine tools;
 - personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-598-3220
Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tei: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C. Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tei: +82-2-568-3737, Fax: +82-2-568-5141