

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

SH7727 Group
USB Host Module
Application Note

32

A
pplication N

ote

 Rev.1.00 2003.4

Renesas 32 bit RISC
Microcomputer
SuperHTM RISC engine Family/
SH7700 Series

Rev. 1.0, 04/03, page ii of xii

Rev. 1.0, 04/03, page iii of vi

CautionsCautionsCautionsCautions

Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor

products better and more reliable, but there is always the possibility that trouble may occur
with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the

Renesas Technology Corporation product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in
a device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology
Corporation product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

Microsoft Windows 98 and Windows 2000 are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Rev. 1.0, 04/03, page iv of xii

Preface

This application note describes the firmware that uses the USB Host Module in the SH7727. This
is provided to be used as a reference when the user creates USB Host Module firmware.

This application note and the described software are application examples of the USB Host
Module, and their contents and operation are not guaranteed.

In addition to this application note, the manuals listed below are also available for reference when
developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.1

• Open Host Controller Interface Specification for USB Revision 1.0a

• SH7727 Hardware Manual

• SH7727 Solution Engine (MS7727SE01) Instruction Manual

• SH7727 E10A Emulator User’s Manual

[Caution] The sample programs described in this application note do not include firmware related
to isochronous transfer of USB transfer types. When using this transfer type, the user
needs to create the program for it.

Also, the hardware specifications of the SH7727 and SH7727 Solution Engine, which
will be necessary when developing the system described above, are described in this
application note, but more detailed information is available in the SH7727 Hardware
Manual and the SH7727 Solution Engine Instruction Manual.

Rev. 1.0, 04/03, Page v of vi

Contents

Section 1 Overview... 1

Section 2 Overview of the Open Host Controller Interface (OpenHCI)
Specification ... 3
2.1 OpenHCI Standard..3
2.2 Data-Transfer Types ...4
2.3 Host-Controller Interface ..4

2.3.1 Lists..4
2.3.2 Endpoint Descriptors (EDs) ...7
2.3.3 Transfer Descriptor (TD) ...9
2.3.4 Host Controller Communications Area (HCCA) ...17
2.3.5 List Processing ...18
2.3.6 Done Queue ...18
2.3.7 Communication Channels ..21

2.4 Responsibilities of Host Controller Drive...23
2.4.1 Management of Host Controller ..23
2.4.2 Bandwidth Allocation ..23
2.4.3 List Management ...23
2.4.4 Root Hub..24

2.5 Responsibilities of Host Controller ...24
2.5.1 USB State...24
2.5.2 Frame Management ...24
2.5.3 List Processing ...24

2.6 Register Specifications..26
2.6.1 Control and Status Partition ...27
2.6.2 Memory Pointer Partition...35
2.6.3 Frame Counter Partition...39
2.6.4 Root Hub Partition ...42

Section 3 Development Environment ... 53
3.1 Hardware Environment ...53
3.2 Software Environment ..55

3.2.1 Sample Program...55
3.2.2 Compiling and Linking ..55
3.2.3 Request Generator..56

3.3 Loading and Executing the Program...57
3.3.1 Loading the Program..57

3.4 Execution ..59

Rev. 1.0, 04/03, page vi of vi

Section 4 Overview of the Sample Program ...67
4.1 State-Transition Diagram.. 68
4.2 Types of Interrupts.. 70
4.3 File Structure... 71
4.4 Purposes of Functions ... 73

Section 5 Operation of Sample Program ...81
5.1 Reset State... 81
5.2 Main Loop (Connection-Wait and Steady States)... 82
5.3 Root-Hub Processing State ... 83
5.4 Connection-Processing State... 84
5.5 Serial Input State (RequestGeneratorDriver-Processing State)... 85
5.6 Transfer-Request Generation State ... 86
5.7 DoneQueue Processing State .. 87
5.8 Transfer-Result Processing State .. 88

Rev. 1.0, 04/03, page 1 of 88

Section 1 Overview

This application note describes how to use the USB host module that is incorporated in the
SH7727, and explanation of sample programs.

The features of the USB host module incorporated in the SH7727 are listed below.

• Conforming to the Open Host Controller Interface (OHCI) 1.0 register set

• Conforming to USB1.1

• Root hub function

• Low-speed (1.5 Mbps) and full-speed (12 Mbps) transfer supported

• Detection of overcurrent supported

• User memory area connected to the SH7727 can be used for transfer data and descriptor
storage

Figure 1.1 shows an example of a system configuration for executing a sample program.

Figure 1.1 System Configuration ExampleFigure 1.1 System Configuration ExampleFigure 1.1 System Configuration ExampleFigure 1.1 System Configuration Example

This system is configured with the SH7727 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the SH7727SE) and a PC running on Windows® 98/2000.

In this system, the host PC and the SH7727SE are connected through serial cable. USB packets
can be generated to the USB function devices connected to the SH7727SE by the USB packet
generation tool, RequestGenerator.

SH7727 Solution EngineSH7727 Solution EngineSH7727 Solution EngineSH7727 Solution Engine

Control PCControl PCControl PCControl PC

(Windows(Windows(Windows(Windows® 98/Windows 98/Windows 98/Windows 98/Windows® 2000) 2000) 2000) 2000)

Any USB functionAny USB functionAny USB functionAny USB function

devicedevicedevicedevice

Rev. 1.0, 04/03, page 2 of 88

This system offers the following features.

1. The sample program can be used to evaluate the USB host module of the SH7727 quickly.

2. The sample program supports control, bulk, and interrupt transfers.

3. Additional programs can be created to support isochronous transfer. *

Note: * Isochronous transfer program is not provided, and will need to be created by the user.

Rev. 1.0, 04/03, page 3 of 88

Section 2 Overview of the Open Host Controller
Interface (OpenHCI) Specification

The USB host module incorporated in the SH7727 supports to the Open Host Controller Interface
(hereafter referred to as OpenHCI) specification. The OpenHCI specification is explained in this
section. Refer to this section when developing a USB host system. For details of the OpenHCI
specification, see Revision 1.0a of the Open Host Controller Interface Specification for USB.

2.12.12.12.1 OpenHCI StandardOpenHCI StandardOpenHCI StandardOpenHCI Standard

The hierarchical structure of a USB-host system consists of the USB device, host controller (HC),
host controller driver (HCD), USB driver (USBD), and client-software levels. The OpenHCI
specification prescribes the functions of the HCD and HC and the interface between them: that is,
the interface between the software and hardware.

Client Software

Software

Hardware

Scope of
OpenHCI

USB Driver

Host Controller Driver

Host Controller

USB Device

Figure 2.1 USB Focus AreasFigure 2.1 USB Focus AreasFigure 2.1 USB Focus AreasFigure 2.1 USB Focus Areas

Rev. 1.0, 04/03, page 4 of 88

2.22.22.22.2 DataDataDataData----Transfer TypesTransfer TypesTransfer TypesTransfer Types

The four data-transfer types defined for the USB are listed below.

Interrupt Transfer:Interrupt Transfer:Interrupt Transfer:Interrupt Transfer: Small amounts of data are transferred periodically. The transfer interval can be
optimized to suit the requirements of the device.

Isochronous Transfer:Isochronous Transfer:Isochronous Transfer:Isochronous Transfer: Transfer is performed periodically with a constant data rate.

Control Transfer:Control Transfer:Control Transfer:Control Transfer: Configuration, command, and status information of the device is transferred
nonperiodically.

Bulk Transfer:Bulk Transfer:Bulk Transfer:Bulk Transfer: Large amounts of data are transferred nonperiodically.

In the OpenHCI specification, the four data-transfer types are classified into two categories:
periodic and non-periodic. Interrupt and isochronous transfers are classified as periodic, since they
are scheduled to run at periodic intervals. Control and bulk transfer are classified as non-periodic,
since they are not scheduled to run at periodic intervals.

2.32.32.32.3 HostHostHostHost----Controller InterfaceController InterfaceController InterfaceController Interface

Communication between the HCD and HC is through the transmission/reception of Endpoint
Descriptors (EDs) and Transfer Descriptors (TDs). An ED contains the information on an
endpoint: the device address, speed, and maximum packet size of the device to which the
corresponding endpoint belongs and the endpoint number. The TD contains the information on the
data packets to be transferred to an endpoint: PID, data-toggle information, address of
transmitted/received data in memory, and status information after the transfer has been completed.
The HCD gathers the descriptors and places them in lists according to the transfer type, then sends
the head addresses of the lists to the HC. The head address of a list is transmitted or received via
an internal register of the HC or the Host Controller Communications Area (HCCA) which is set
up in the memory. The HC passes each TD for which transfer has been completed to the HCD by
placing it at the head address of the Done Queue in the HCCA.

Details of the processing of lists, EDs, TDs, the HCCA, and the interface between the HCD and
HC are given below.

2.3.12.3.12.3.12.3.1 ListListListListssss

A maximum of 127 USB-function devices can be connected in a single USB system, and each
USB-function device has a maximum of 15 endpoints. As more than one endpoint can be
specified, one ED is prepared to gather the information for each endpoint. The OpenHCI
specification provides for groups of EDs, which include all EDs for a given transfer type. A group
thus linked is called a list. Each TD has to have a target endpoint, and so is placed in the queue of
the ED that corresponds to this endpoint. In other words, one or more TDs are linked, in an FIFO

Rev. 1.0, 04/03, page 5 of 88

queue, to each ED. The EDs and TDs for each transfer type are aggregated in lists of the type
shown in figure 2.2.

The HCD controls the address of the head ED of a list as a pointer to the list (the head pointer of
figure 2.2). Passing the head pointer of a list to the HC (writing the information to a register of the
HC) allows the HC to access that list.

Head Pointer ED

TD TD TD

TD

TD

TD

TD

ED ED ED

Figure 2.2 Typical List StructureFigure 2.2 Typical List StructureFigure 2.2 Typical List StructureFigure 2.2 Typical List Structure

Lists for Non-Periodic Transfer: Lists for Non-Periodic Transfer: Lists for Non-Periodic Transfer: Lists for Non-Periodic Transfer: Figure 2.2 shows the structure of the lists for bulk transfer and
control transfer, which are categorized as non-periodic. Each list has one head pointer and these
head pointers are stored in the registers of the HC (HcControlHeadED and HcBulkHeadED).
Although bulk transfer and control transfer are non-periodic, i.e., they occur asynchronously, the
HC still executes these forms of transfer by reading their head pointers.

Lists for Periodic Transfer: Lists for Periodic Transfer: Lists for Periodic Transfer: Lists for Periodic Transfer: Interrupt transfer and isochronous transfer are categorized as periodic
forms of transfer and their lists are treated as a single unit. The first ED of the isochronous-transfer
list is linked to the last ED of the interrupt-transfer list. The Open HCI specification thus has three
lists: the non-periodic control-transfer and bulk-transfer lists and the single periodic-transfer list.

The periodic-transfer list is as shown in figure 2.3. This list differs from those for non-periodic
transfer in the number of head pointers. There are 32 head pointers and each is referred to at a 32-
ms interval (i.e., 32-frame interval). Since the EDs for periodic transfer have to be referred to at
specific intervals, the list for periodic transfer is organized into the tree structure shown in figure
2.3.

The OpenHCI specification provides fixed polling rates of 32 ms, 16 ms, 8 ms, 4 ms, 2 ms, and 1
ms for interrupt transfer. The polling rate for each interrupt-transfer ED is chosen from among
these rates. Since the isochronous-transfer ED has to be accessed at 1-ms intervals, it is linked to
the interrupt-transfer ED which has a polling rate of 1 ms. As is shown in figure 2.3, each
interrupt-transfer ED, which is polled every 32 ms, is linked to a head pointer. Each of the
interrupt-transfer EDs with a 16-ms polling rate is obtained by linking it to two 32-ms head
pointers. These EDs are thus accessed twice in every 32-ms interval; i.e., once in every 16-ms

Rev. 1.0, 04/03, page 6 of 88

interval. The interrupt EDs with polling rates of 8, 4, and 2 ms are accessed from four, eight, and
16 head pointers, respectively. The interrupt-transfer ED polled every 1 ms is accessed from all of
the head pointers. The isochronous ED is linked with the tree after the interrupt ED that is polled
every 1 ms. The periodic-transfer EDs are thus organized into a tree structure.

0
16
8

24
4

20
12
28
2

18
10
26
6

22
14
30
1

17
9

25
5

21
13
29
3

19
11
27
7

23
15
31

32 16 8 4 2 1

Interrupt
Endpoint
Descriptor
Placeholder

Interrupt
Head
Pointers

Endpoint Poll Interval (ms)

Figure2.3 Interrupt List StructureFigure2.3 Interrupt List StructureFigure2.3 Interrupt List StructureFigure2.3 Interrupt List Structure

An example of a list for periodic transfer is shown in figure 2.4. This sample consists of a single
interrupt-transfer ED polled every 4 ms, two EDs each for polling every 32, 16, 8, 2, and 1 ms,
and the single isochronous ED.

Rev. 1.0, 04/03, page 7 of 88

0
16
8
24
4
20
12
28
2
18
10
26
6
22
14
30
1
17
9
25
5
21
13
29
3
19
11
27
7
23
15
31

32 16 8 4 2 1

Interrupt
Endpoint
Descriptor

Isochronous
Endpoint
Descriptor

Interrupt
Head
Pointers

Endpoint Poll Interval (ms)

Figure 2.4 Example of Periodic ED ListFigure 2.4 Example of Periodic ED ListFigure 2.4 Example of Periodic ED ListFigure 2.4 Example of Periodic ED List

2.3.22.3.22.3.22.3.2 Endpoint DescriptorEndpoint DescriptorEndpoint DescriptorEndpoint Descriptorssss ((((EDEDEDEDssss))))

The HCD prepares an Endpoint Descriptor (ED) for each endpoint of communications and gathers
the information necessary to communicate with the endpoints. An ED consists of 16 bytes and
must be aligned with a 16-byte boundary. Figure 2.5 shows the format of an ED and table 2.1 lists
the details of the individual fields.

As was explained in section 2.3.1, all EDs for a given transfer type are linked to form a list by
placing the address of the next ED in the NextED field of each ED. A zero in this field indicates
that the ED is not linked with any other ED.

After confirming that neither the sKip nor the Halted bit is set to 1, the HC compares TailP to
HeadP. If they are the same, the HC recognizes that no TD is queued for processing and starts
processing the next ED. If TailP and HeadP have different values, the TD indicated by HeadP will

Rev. 1.0, 04/03, page 8 of 88

be processed. Data is transmitted from the buffer area of the TD, packet-by-packet, or a received
packet is written to the buffer area. After processing of a TD has been completed, the value in the
NextTD field of this TD is copied to the HeadP field of ED, and the processed TD is moved to the
Done queue.

3
1

2
6

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
6

0
5

0
4

0
7

0
2

0
1

0
0

0
3

MPS
TD Queue Tail Pointer (TailP)

TD Queue Head Pointer (HeadP)
Next Endpoint Descriptor (NextED)

Dword 1
Dword 2
Dword 3

Dword 0 F K S D

0 C H

EN FA

1. Fields ' ' are not accessed or modified by the HC and are available for use by the HC for any purpose.
2. Fields '0' must be processed by the HC after clearing the HCD to 0.

Notes:

Figure 2.5 Endpoint DescriptorFigure 2.5 Endpoint DescriptorFigure 2.5 Endpoint DescriptorFigure 2.5 Endpoint Descriptor

Table 2.1Table 2.1Table 2.1Table 2.1 Field Definitions for Endpoint DescriptorField Definitions for Endpoint DescriptorField Definitions for Endpoint DescriptorField Definitions for Endpoint Descriptor

NameNameNameName HC AccessHC AccessHC AccessHC Access DescriptionDescriptionDescriptionDescription

FA R FunctionAddress

Address of a USB-function device

EN R EndpointNumber

Number of the corresponding endpoint

D R Direction

This field indicates the direction of data flow (IN or OUT). The direction
may also be determined by using the PID field of the TD.

00b
01b
10b
11b

Get direction from TD
OUT
IN
Get direction from TD

Code Direction

S R Speed

Indicates the speed of the endpoint: full-speed (S = 0) or low-speed
(S = 1)

K R sKip

When this bit is set, HC continues on to the next ED without attempting
communication for this endpoint.

F R Format

This bit indicates the format of the TDs linked to this ED. If this is a
control, bulk, or interrupt endpoint, then F = 0, indicating that the General
TD format is used. If this is an isochronous endpoint, then F = 1, indicating
that the Isochronous TD format is used.

Rev. 1.0, 04/03, page 9 of 88

NameNameNameName HC AccessHC AccessHC AccessHC Access DescriptionDescriptionDescriptionDescription

MPS R MaximumPacketSize

This field indicates the maximum number of bytes that can be sent to or
received from the endpoint in a single USB packet.

TailP R TDQueueTailPointer

The address of the last TD linked with this ED is stored.

If TailP and HeadP are the same, this ED contains no TD that the HC can
process. If TailP and HeadP are different, this ED contains a TD to be
processed by the HC.

H R/W Halted

This bit is set by the HC to halt the processing of ED. This bit is set,
usually due to an error in processing a TD.

C R/W ToggleCarry

Whenever a TD is retired, this bit is written to contain the last data toggle
value (LSb of DataToggle field) from the retired TD. This field is not used
for Isochronous Endpoints.

Head P R/W TDQueueHeadPointer

The first TD linked with this ED. Whenever the processing of TD indicated
by this field has been completed, the value set to the address of next TD
linked with this TD is incremented.

NextED R NextED

Address of the ED linked with this ED. If no ED to link, clear this bit to 0.

The HCD sets the sKip bit to stop processing of an ED. When a sKip bit is set to 1, the HC skips
processing of that ED and begins processing the ED indicated by NextED.

If an error occurs during the processing of a TD, the Halt bit is set, the TD that caused the error is
moved to the Done Queue, and the HeadP bit is updated by the HC. After the source of the error
has been eliminated, the HCD clears the Halt bit and processing of the ED recommences.

2.3.32.3.32.3.32.3.3 Transfer Descriptor (TD)Transfer Descriptor (TD)Transfer Descriptor (TD)Transfer Descriptor (TD)

A TD is a data structure placed in memory by the HC to define the packets of data that are
transmitted to/received from an endpoint. TDs are categorized into General Transfer Descriptors
(GTDs) and Isochronous Transfer Descriptors (ITDs). The GTD is used in control transfer, bulk
transfer, and interrupt transfer, while the ITD is used in isochronous transfer. Both the GTD and
ITD specify a buffer with a length of 0 to 8192 bytes.

A TD is linked to the ED which corresponds to the endpoint for the transfer. The HCD generates
TDs and links TDs to EDs. The HC processes each TD and, after the processing has been
completed, the TD is moved from the ED to the Done Queue.

Rev. 1.0, 04/03, page 10 of 88

The details of the GTD and ITD are explained below.

General Transfer Descriptor (GTD): General Transfer Descriptor (GTD): General Transfer Descriptor (GTD): General Transfer Descriptor (GTD): The Transfer Descriptors (TDs) that are used in control, bulk,
and interrupt transfer all have the same format and are called General TDs (GTDs). The format
and individual fields of the GDT are shown in figure 2.6 and table 2.2, respectively. The GTD is
16 bytes long and should be aligned with a 16-byte boundary.

3
1

2
8

2
6

2
7

2
4

2
3

2
1

2
0

2
5

1
8

1
9

0
0

0
3

DI
Current Buffer Pointer (CBP)

Next TD (NextTD)
Buffer End (BE)

DPCC EC T R
Dword 1
Dword 2
Dword 3

Dword 0

0

1. The all fields should not be modified while a TD is accessed by the HC.
2. Fields ' ' are not written to nor changed the values by the HC.

Notes:

Figure 2.6 General Transfer DescriptorFigure 2.6 General Transfer DescriptorFigure 2.6 General Transfer DescriptorFigure 2.6 General Transfer Descriptor

Rev. 1.0, 04/03, page 11 of 88

Table 2.2Table 2.2Table 2.2Table 2.2 Field Definitions for General TDField Definitions for General TDField Definitions for General TDField Definitions for General TD

NameNameNameName HC AccessHC AccessHC AccessHC Access DescriptionDescriptionDescriptionDescription

R R bufferRounding

If the last packet generated by GTD is short packet, a DataUnderrun
error is generated. When this field is set to 1, a DataUnderrun error is
neglected.

DP R Direction/PID

Direction of transfer and PID are set.

00b
01b
10b
11b

SETUP
OUT
IN
Reserved

to endpoint
to endpoint
from endpoint

Code PID Type Data Direction

DI R DelayInterrupt

The timing of an interrupt (WriteBackDoneHead) generation which is
generated after the TD has been completed is defined. The HC waits
for frames set by this field before generating an interrupt. If setting value
is 0, an interrupt is generated immediately. If the setting value is 1, an
interrupt is generated after waiting for one frame. If setting value is
111b, no interrupt is generated.

T R/W DataToggle

Sets the PID (DATA0/DATA1) of data packet by LSb. It is updated after
each successful transmission/reception of a data packet. The MSb of
this bit is 0 when the data toggle value is acquired from the toggleCarry
field in the ED. The MSb of this bit is 1 when the data toggle value is
acquired from this field.

EC R/W ErrorCount

For each transmission error, this value is incremented. If ErrorCount is
2 and another transfer error occurs, the error type is recorded in the
ConditionCode field and placed on the Done Queue. When a
transaction completes without error, ErrorCount is reset to 0.

CC R/W ConditionCode

Indicates the status of the last transfer generated by GTD.

CBP R/W CurrentBufferPointer

Indicates the buffer area for transfer to/from the endpoint. The address
of buffer to be accessed next is always indicated. When
CurrentBufferPointer is 0, data of size 0 will be transferred or the
transfer has been completed.

NextTD R/W NextTD

Points the next TD.

BE R BufferEnd

Indicates the last address of the buffer area.

Rev. 1.0, 04/03, page 12 of 88

The CurrentBufferPointer of the GTD indicates the address of the data buffer and is referred to
when the HC generates a data packet for the endpoint indicated by the ED with which the GTD is
linked. On completion of the transfer of each packet generated from the GTD, the result of the
transfer is written to the ConditionCode field. When the transfer has been completed without error,
the value of the CurrentBufferPointer is updated by the amount transferred.

The MSb of the DataToggle field indicates the source of the data PID value of the first data packet
generated from this TD. When MSb = 0, the source is the toggleCarry bit of the ED and is not LSb
of DataToggle field of the GTD. When MSb is 0, the source is the LSb of DataToggle field.

Bulk and interrupt transfers usually start with the DataToggle field set to 00b. When a TD is
retired and processing switches to the next TD, the toggle information is carried over; the LSb of
the DataToggle field is copied to the toggleCarry bit and then to the LSb of the DataToggle field
in the next TD. Toggle information is thus carried over and the DataPID is toggled when
processing moves from one TD to the next.

For a control transfer, the DataPacketPID is Data0 in the Setup stage, Data1 in the first packet of
the Data stage, and Data1 in the status stage. Therefore, the more significant bit of DataToggle is
set to 1 in the TD of each stage, so that information is obtained from the less significant bit of the
DataToggle field rather than from the previous TD via the ED.

Processing of the TD is completed in either of two ways: all data between the
CurrentBufferPointer and BufferEnd specifications of the TD has been transferred or a data packet
from the endpoint was smaller than MaxPacketSize. In the former case, the TD is moved from the
ED to the Done Queue. In the latter case, if BufferRounding is set, normal transfer-completion
processing is performed. If BufferRounding is not set, a DataUnderrun error occurs and the Halt
field in the ED is set.

Isochronous Transfer Descriptor (ITD): Isochronous Transfer Descriptor (ITD): Isochronous Transfer Descriptor (ITD): Isochronous Transfer Descriptor (ITD): The Isochronous TD replaces the General TD in transfer
to/from the isochronous endpoints. The format of the ITD and details of its fields are shown in
figure 2.7 and table 2.3, respectively.

3
1

2
8

2
6

2
7

2
4

2
3

2
1

2
0

1
6

1
5

1
2

1
1

0
5

0
0

0
4

DI SF
Buffer Page 0 (BP0)

Next TD
Buffer End (BE)

Offset7/PSW7
Offset5/PSW5
Offset3/PSW3
Offset1/PSW1

Offset6/PSW6
Offset4/PSW4
Offset2/PSW2
Offset0/PSW0

CC FC
Dword 1
Dword 2
Dword 3

Dword 0

Dword 5
Dword 6
Dword 7

Dword 4

0

Figure 2.7 Figure 2.7 Figure 2.7 Figure 2.7 Isochronous TD FormatIsochronous TD FormatIsochronous TD FormatIsochronous TD Format

The data packets generated from an Isochronous TD have to be transferred within specific frames.
From 1 to 8 consecutive frames of data to be transferred are set in an Isochronous TD,
FrameCount +1 frames of data are consecutively transferred, with the first packet placed in the

Rev. 1.0, 04/03, page 13 of 88

frame specified by StartingFrame. When the difference between the HcFmNumber register and the
StartingFrame is R, data packets are isochronously transferred until R has been incremented from
0 to the number in FrameCount. Offset[R] determines the first buffer address of each frame. The
lower 12 bits are always specified by Offset[R]. The upper 20 bits are given by BufferPage0 when
the 12th bit of Offset[R] is 0 and by the 20 higher-order bits of BufferEnd when the 12th bit of
Offset [R] is 1. The last address in the buffer for each frame from R = 0 to FrameCount−1 is
defined by Offset[R+1] −1 and the same 20 higher-order bits as are defined for the first address.
The last address of the last data packet (R = FrameCount) is BufferEnd. On completion of the
transfer of each frame, the Offset/PSWN fields of the frame become PSWN fields; the
ConditionCode and SizeOfPacket data are written to these fields.

Table 2.3Table 2.3Table 2.3Table 2.3 Field DefinitioField DefinitioField DefinitioField Definitions for ns for ns for ns for Isochronous TDIsochronous TDIsochronous TDIsochronous TD

NameNameNameName HC AccessHC AccessHC AccessHC Access DescriptionDescriptionDescriptionDescription

SF R StartingFrame

Indicates the transfer start frame of data packet.

DI R DelayInterrupt

As the field of GTD, indicates how long the interrupt generation is
delayed when ITD is completed.

FC R FrameCount

Indicates the number of data packet transferred (the number of frame to
be transferred) from ITD.

FrameCount = 0: One data packet

FrameCount = 7: Eight data packets

CC R/W ConditionCode

Stores the condition code when the Isochronous TD is moved to the
Done Queue.

BP0 R BufferPage0

Indicates the first address of the data buffer.

NextTD R/W NextTD

Indicates the address of the next IsochronousTD.

BE R BufferEnd

Indicates the last address of a buffer.

Rev. 1.0, 04/03, page 14 of 88

NameNameNameName HC AccessHC AccessHC AccessHC Access DescriptionDescriptionDescriptionDescription

OffsetN R Offset

Indicates the head address of Isochronous Data Packets.

1
5

1
3

1
2

Offset R
13 bits. Set the lower 12-bit of transfer start address by lower 12-bit of
Offset. The way of obtaining the value of upper 20-bit is selected by
the 12th bit. When the value is 0, the value of the upper 20-bit of
BufferPage0 is used. When the value is 1, the value of the upper
20-bit of BufferEnd is used.

0
0

Offset7

Name HC R/W Description

Offset

PSWN W PacketStatusWord

Stores the condition code when Isochronous Data Packets are
transferred completely.

1
5

1
1

1
2

Size R Size of Packet
11 bits. Indicates the size of reception on an IN transfer. This bit is 0,
on an OUT transfer.

0
0

SizeCC

Name HC R/W Description

Condition Code
When this field indicates NotAccessed, format of OffsetN/PSWN is
Offset. When this field indicates other than NotAccessed, format of
OffsetN/PSWN is PacketStatusWord.

1
0

CC R

0

Condition Code: Condition Code: Condition Code: Condition Code: The values that can be set in ConditionCode fields of TDs are listed in table 2.4.
The ConditionCode for a General TD is set when the TD is moved to the Done Queue. Condition
codes appear in two places within an Isochronous TD: in the ConditionCode field of Dword0 and
the Offset/PacketStatusWord fields. After each data packet has been transferred, the condition
code is placed in the corresponding Offset/PacketStatusWord. When the TD is moved to the Done
Queue, condition codes are placed in the ConditionCode field of Dword0.

Rev. 1.0, 04/03, page 15 of 88

Table 2.4Table 2.4Table 2.4Table 2.4 Condition CodeCondition CodeCondition CodeCondition Code

CodeCodeCodeCode MeaningMeaningMeaningMeaning DescriptionDescriptionDescriptionDescription

0000 NOERROR Data packet processing completed with no detected
errors.

0001 CRC Last data packet from endpoint contained a CRC error.

0010 BITSTUFFING Last data packet from endpoint contained a bit stuffing
violation.

0011 DATATOGGLEMISMATCH Last packet from endpoint had data toggle PID that did
not match the expected value.

0100 STALL TD was moved to the Done Queue because the endpoint
returned a STALL PID.

0101 DEVICENOTRESPONDING Device did not respond to token (IN) or did not provide a
handshake (OUT).

0110 PIDCHECKFAILURE DataPID (IN) and Handshake (OUT) are error PID.

0111 UNEXPECTEDPID Receive PID was not valid.

1000 DATAOVERRUN The amount of data packet more than MaxPacketSize of
endpoint has been received or the amount of total
receive size is more than that was expected.

1001 DATAUNDERRUN The amount of data less than MaxPacketSize has been
received or the amount of total transfer size is less than
that was expected.

1010 Reserved

1011 Reserved

1100 BUFFEROVERRUN During an IN transfer, received data from endpoint faster
than it could be written to system memory. Only for the
isochronous TD.

1101 BUFFERUNDERRUN During an OUT transfer, read access to the system
memory can not be executed fast enough to keep up
with USB transfer rate.

111x NOTACCESSED This code is set by software before TD is generated and
listed. If the value of the ConditionCode is not changed,
processing have not be done by the HC.

When an error occurs, the corresponding Condition Code is set in the ConditionCode field of the
TD and the Halt bit of the ED is set.

Rev. 1.0, 04/03, page 16 of 88

Errors are categorized into the four types shown below:

• Transmission Errors

• Sequence Errors

• System Errors

• Time Errors

Transmission errors are errors that occur in communicating information over the USB wires and
manifest themselves as CRC errors, BITSTUFFING errors, DEVICENOTRESPONDING errors.
When this error occurs, the TD is not immediately moved to the Done Queue and a transaction is
retried. If, however, this error occurs three times in a row, or another error occurs after two
transmission errors, the TD is moved to the Done Queue.

Sequence errors occur when the amount of data received from an endpoint does not match the
expected amount. The categories of sequence error are STALL, DATAOVERRUN, and
DATAUNDERRUN. Once such errors have occurred, the corresponding TDs are moved to the
Done Queue.

A system error is the occurrence of trouble to do with the system environment of the HC. The
categories of system error are BUFFEROVERRUN and BUFFERUNDERRUN. Such errors only
occur in the processing of Isochronous TDs. Those do not occur in the processing of General TDs.

Time errors also only occur in the processing of Isochronous TDs. The categories of time error are
skipped packets and late retirement. Since each data packet of an Isochronous TD has to be
transferred in a specific frame, the situation can arise where it is impossible to transfer an
isochronous data packet in the corresponding frame. If it’s not possible to send a data packet in the
frame in which it should have been sent, that transfer is skipped and the condition code for the
data packet is set to NOTACCESSED. The packet is skipped and the next one is processed. When
a packet has been skipped but processing of the last data packet is completed, the ConditionCode
in Dword0 is set to NOERROR and the TD is retired. However, if the last data packet is skipped,
the ConditionCode DATAOVERRUN is placed in Dword0, and the TD is retired. In this case,
processing of the ED is not halted and processing of the next Isochronous TD soon starts.

Rev. 1.0, 04/03, page 17 of 88

2.3.42.3.42.3.42.3.4 Host Controller CoHost Controller CoHost Controller CoHost Controller Communicationmmunicationmmunicationmmunicationssss Area (HCCA) Area (HCCA) Area (HCCA) Area (HCCA)

The Host Controller Communications Area (HCCA) is used to transfer various information
between the HCD and HC. The format of the HCCA is shown in table 2.5. The HCCA consists of
256 bytes and should be located on a 256-byte boundary. The HCD is able to get information from
the HCCA through memory access alone, i.e., without directly accessing the HC.

Table 2.5Table 2.5Table 2.5Table 2.5 Host Controller Communications AreaHost Controller Communications AreaHost Controller Communications AreaHost Controller Communications Area

OffsetOffsetOffsetOffset
SizeSizeSizeSize
(bytes)(bytes)(bytes)(bytes) NameNameNameName R/WR/WR/WR/W DescriptionDescriptionDescriptionDescription

0 128 HccaInterruptTable R 32 pointers to Interrupt ED

0x80 2 HccaFrameNumber W Current frame number. This field is updated by
the HC before it begins processing EDs of
each frame.

0x82 2 HccaPad1 W When the HC updates HccaFrameNumber, it
sets this word to 0.

0x84 4 HccaDoneHead W When the HC reaches the end of a frame and
WriteBackDoneHead interrupt is enabled, the
HC writes the value of HcDoneHead in this
field. Once the HC writes in this field, the HC
never write in this field until software clears the
WD bit in the HcInterruptStatus.

When LSb of this field is set to1, indicates that
interrupts other than WriteBackDoneHead are
generated when this field is written by the HC.

0x88 116 reserved R/W Reserved

Pointers to the 32 Interrupt EDs are placed in the HccaInterruptTable. As was explained in section
2.3.1, the list for periodic transfer has 32 head pointers. The HccaInterruptTable is used to store
these pointers. The HC accesses the HccaInterruptTable once per frame and obtains the
corresponding pointer.

The HccaFrameNumber field is updated by the HC on every frame. The HC updates
HcFrameNumber before issuing the start-of-frame packet (SOF). After that, the HC updates the
HccaFrameNumber and then reads the ED to be processed first in that frame.

The value of HcDoneHead is written to the HccaDoneHead field. After a TD has been processed
and the number of frame-periods indicated by the DelayInterrupt field has passed, processing of
the next frame starts and the value in HcDoneHead is written to the HccaDoneHead.

Rev. 1.0, 04/03, page 18 of 88

2.3.52.3.52.3.52.3.5 List ProcessingList ProcessingList ProcessingList Processing

Figure 2.8 shows a situation where there are four EDs (ED1, ED2, ED3, and ED4), with one or
more TDs linked to each ED. The HC neither processes a single ED until all TDs linked to that
ED have been retired nor processes a single TD until the TD has been retired. The HC repeatedly
generates single data packets for transfer from the first TD of each ED, so that processing is shared
among the EDs.

Head Pointer ED1

TD1-1 TD2-1

TD3-2

TD3-1 TD4-1

TD1-2

TD1-3

ED2 ED3 ED4

Flow of processing

One USB packet is generated from the TD indicated by the HeadP of ED1, and processed

One USB packet is generated from the TD indicated by the HeadP of ED2, and processed

One USB packet is generated from the TD indicated by the HeadP of ED3, and processed

One USB packet is generated from the TD indicated by the HeadP of ED4, and processed

Figure 2.8 List ProcessingFigure 2.8 List ProcessingFigure 2.8 List ProcessingFigure 2.8 List Processing

2.3.62.3.62.3.62.3.6 Done QueueDone QueueDone QueueDone Queue

The HC links TDs for which transfer has been completed in another list. This is called the Done
Queue. An example of a Done Queue is shown in figure 2.9.

Consider the situation where the list indicated by List as the one to be processed by the HC (initial
condition) and transfer for TD1-1, TD2-1, TD3-1, and TD4-1 in the list is completed during
Frame-R processing. Each time the transfer for a TD is completed, that TD is linked to the Done
Queue. As is shown in figure 2.11, the latest transfer-completed TD for which processing has most
recently been completed is always linked to the head of the Done Queue. The oldest transfer-
completed TD is always at the end of the queue.

Rev. 1.0, 04/03, page 19 of 88

Head
Pointer

Head
Pointer

ED1

TD1-1

TD1-1

TD2-1

TD3-2

TD3-1 TD4-1

TD1-2

TD1-3

ED2 ED3 ED4

TD3-1

TD2-1

TD1-1

Head
Pointer ED1

TD3-2TD1-2

TD1-3

ED2 ED3

Time

Frame (R-1) Frame (R) Frame (R+1)

TD1-1
Completion

of processing

TD2-1
Completion

of processing

TD3-1
Completion

of processing

TD4-1
Completion

of processing

ED4

List

Done Queue

List (initial condition) List (after transfer for TD4-1)

Done Queue (after transfer for TD1-1) Head
Pointer

TD4-1

Done Queue (after transfer for TD4-1)

Figure 2.9 Figure 2.9 Figure 2.9 Figure 2.9 The The The The DoneDoneDoneDone QueueQueueQueueQueue

Figure 2.10 shows the flow for the linking of TDs to the Done Queue on completion of the
corresponding transfers. On completion of the transfer for TD1 in figure 2.10, processing by the
HC is as listed below.

1. The value of the NextTD of the transfer-completed TD (TD1) is written to the HeadP field of
ED (ED1).

2. The value of the HcDoneHead register is written to the NextTD field of TD1.

3. The first address of the TD1 is written to the HcDoneHead register.

TD1 is thus linked to the Done Queue on completion of the corresponding transfer. On completion
of transfer for TD2, processes 1 to 3 are applied to link TD2 to the Done Queue.

The HC links the transfer-completed TD to the Done Queue. When a WriteBackDoneHead
interrupt is generated, the value of HcDoneHead is written to the HccaDoneHead field by the HC.
The HCD is able to recognize the TDs in the Done Queue by reading the HccaDoneHead field
after having detected the WriteBackDoneHead interrupt.

Rev. 1.0, 04/03, page 20 of 88

ED DoneQueue

TD1

TD2

TD2

TD1

TD2

TD1

HccaHeadP
 = TD1 head address

NextTD
= TD2 head address

NextTD = 0

HeadP
 = TD2 head address

NextTD
= TD1 head address

NextTD = 0

NextTD
 = TD1 head address

NextTD = 0

HcDoneHead = 0 HccaDoneHead = 0

Processing for TD1 is completed

ED DoneQueue

TD2

TD1

HccaHeadP
 = TD2 head address

NextTD = 0

NextTD = 0

HcDoneHead
 = TD1 head address

HccaDoneHead = 0

Processing for TD2 is completed

ED DoneQueue HccaHeadP = 0

HeadP = 0

HccaDoneHead = 0

WriteBackDoneHead interrupt generated

ED DoneQueue HccaHcDoneHead = 0
HccaDoneHead
= TD2 head address

Figure 2.10 Operation Figure 2.10 Operation Figure 2.10 Operation Figure 2.10 Operation of of of of The Done QueueThe Done QueueThe Done QueueThe Done Queue

Rev. 1.0, 04/03, page 21 of 88

2.3.72.3.72.3.72.3.7 Communication ChannelCommunication ChannelCommunication ChannelCommunication Channelssss

There are two channels for communication between the HC and the HCCA. Communications are
performed via registers in the HC or via the HCCA in memory.

EDs and TDs are transferred between the HCD and HC. The HCD creates an ED for a transfer and
the TDs for the data to be transferred, links them in a list, and then sends the list to the HC. The
HC generates USB packets from the received ED and TDs and transfers the packets to the
endpoint indicated by the ED. The HC places the transfer-completed TDs in the Done Queue and
sends the head pointer to the Done Queue of completed TDs back to the HCD at specified
intervals.

Four items of information are transferred between the HCD and HC: the control list and bulk list
for nonperiodic transfer, the list for periodic transfer, and the Done Queue. Communication
between the HCD and HC is through the transfer of pointers to the respective head addresses. The
two head pointers for nonperiodic transfer are transferred via registers, while the head pointers for
periodic transfer and the Done Queue are transferred via the HCCA; in other words, the latter two
lists are transferred via memory. This is shown in figure 2.11.

Rev. 1.0, 04/03, page 22 of 88

Mode

Device registers
in USB host module

Operational
registers

OpenHCI

Device enumeration

Shared RAM ED

TD

Host Controller
Communications Area

HCCA

Status

Interrupt 0

Interrupt 1

Interrupt 2

Interrupt 31

Done

....

....

....

Event

Frame Int

Ratio

Control

Bulk

Figure 2.11 Communication ChannelsFigure 2.11 Communication ChannelsFigure 2.11 Communication ChannelsFigure 2.11 Communication Channels

Rev. 1.0, 04/03, page 23 of 88

2.42.42.42.4 ResponsibilitieResponsibilitieResponsibilitieResponsibilities s s s of of of of HostHostHostHost Controller DriveController DriveController DriveController Drive

2.4.12.4.12.4.12.4.1 Management Management Management Management ofofofof Host Host Host Host ControllerControllerControllerController

The HCD maintains and controls the HC. The HCD controls the HC by directly accessing the
registers of the HC and registering the head pointers in the interrupt Endpoint Descriptor list of the
HCCA.

The HCD thus maintains the state of the HC, head pointers to each list, enabling and disabling of
list processing, and enabling and disabling of interrupts.

2.4.22.4.22.4.22.4.2 Bandwidth AllocationBandwidth AllocationBandwidth AllocationBandwidth Allocation

In the USB, a frame is generated every 1.0 ms. As is shown in figure 2.12, in the OpenHCI, a
frame is internally divided into three parts, with periods for the processing of nonperiodic and
periodic lists. On completion of SOF-packet generation, nonperiodic transfers are carried out until
the value of the Frame Remaining field in HcFmRemaining reaches that of the Frame Interval
field in HcFmInterval. Periodic transfer begins when the value in the Frame Remaining field has
exceeded the value in the Interval field. After all of the periodic transfers have been completed,
nonperiodic transfers are again carried out. The HCD determines whether or not to accept requests
for periodic transfer by judging whether or not there is sufficient bandwidth for the transfers.

SOF NP1 Periodic

1.0ms

Time NP : Non-Periodic

NP2

Figure 2.12 Frame Bandwidth AllocationFigure 2.12 Frame Bandwidth AllocationFigure 2.12 Frame Bandwidth AllocationFigure 2.12 Frame Bandwidth Allocation

2.4.32.4.32.4.32.4.3 List ManagementList ManagementList ManagementList Management

The USB data packets are generated from the TDs, which are linked to the EDs. The HCD creates
the structures of linked EDs and TDs, i.e., lists.

A new ED can easily be added to the end of a list without halting list processing by the HC. On
the other hand, deleting an existing ED requires a halt to list processing by the HC; the ED is then
deleted, after which list processing is enabled again. List processing is enabled and disabled by the
ControlListEnable, BulkListEnable, PeriodicListEnable, and IsochronousListEnable bits in the
HcControl register. List processing stops after all of these bits have been cleared to 0 and the next
SOF has been transferred. TDs are added and deleted in the same way as EDs.

Rev. 1.0, 04/03, page 24 of 88

2.4.42.4.42.4.42.4.4 Root HubRoot HubRoot HubRoot Hub

The HC includes the registers for the Root Hub. The HCD needs to control both the HC and the
Root Hub.

2.52.52.52.5 Responsibilities Responsibilities Responsibilities Responsibilities of of of of Host ControllerHost ControllerHost ControllerHost Controller

2.5.12.5.12.5.12.5.1 USB StateUSB StateUSB StateUSB State

Four USB states are defined in the OpenHCI specification: Operational, Reset, Suspend, and
Resume. The HC places the USB bus in the proper state.

Operational State:Operational State:Operational State:Operational State: SOF Tokens can be generated and processing of the respective lists proceeds.

Reset State:Reset State:Reset State:Reset State: This state follows a hardware reset. The USB bus is in the reset state. No SOF Token
generation, list processing, or frame-number incrementation is carried out.

Suspend State:Suspend State:Suspend State:Suspend State: No SOF Token generation, list processing, or frame-number incrementation is
carried out. The HC’s remote wakeup circuit waits to be activated by the wakeup signal.

Resume State:Resume State:Resume State:Resume State: This state is only entered from the ‘Suspend’ state. Register access by the HCD or
acceptance of a remote-wakeup signal makes the system enter this state.

2.5.22.5.22.5.22.5.2 Frame ManagementFrame ManagementFrame ManagementFrame Management

At the beginning of the processing of each frame, an SOF packet is generated and the frame
counter in memory is incremented.

2.5.32.5.32.5.32.5.3 List ProcessingList ProcessingList ProcessingList Processing

The HC implements transfer defined by the EDs and TDs generated by the HCD. During the
periodic-transfer period of each frame, the HC reads one of the 32 interrupt-list head pointers from
the HCCA and processes the interrupt list and isochronous list. A USB packet is generated from
the head TD linked to each ED of the lists.

The lists for control and bulk transfer are processed during the nonperiodic-transfer period. These
lists are processed in succession. The timing of the changeover is set by the HCD. The HC
continues to process the control and bulk lists throughout the nonperiodic-transfer period,
transferring n control packets to 1 bulk packet, followed by n control packets, and so on; the value
of n is set by the HCD.

A TD for which processing has been completed is moved from its ED to the Done Queue, whether
or not the transfer was successful. A completed TD is linked to the Done Queue, with the most
recently completed TD at the head of the queue. The HC sets the NextTD field of a transfer-
completed TD to the head TD of the Done Queue, thus placing the most recently completed TD in

Rev. 1.0, 04/03, page 25 of 88

the Done Queue. Information on the Done Queue is periodically sent from the HC to the HCD via
the HCCA.

Rev. 1.0, 04/03, page 26 of 88

2.62.62.62.6 Register SpecificationsRegister SpecificationsRegister SpecificationsRegister Specifications

The HC contains registers as shown in table 2.6. Every register is accessed as a 32-bit unit by the
HCD. The registers of the HC are divided into four partitions, specifically for Control and Status,
Memory Pointer, Frame Counter and Root Hub.

Table 2.6Table 2.6Table 2.6Table 2.6 Host Controlled Operational RegistersHost Controlled Operational RegistersHost Controlled Operational RegistersHost Controlled Operational Registers

3 0

Offset 1 0

0 HcRevision

4 HcControl

8 HcCommandStatus

C HcInterruptStatus

10 HcInterruptEnable

14 HcInterruptDisable

18 HcHCCA

1C HcPeriodCurrentED

20 HcControlHeadED

24 HcControlCurrentED

28 HcBulkHeadED

2C HcBulkCurrentED

30 HcDoneHead

34 HcFmInterval

38 HcFmRemaining

3C HcFmNumber

40 HcPeriodicStart

44 HcLSThreshold

48 HcRhDescriptorA

4C HcRhDescriptorB

50 HcRhStatus

54 HcRhPortStatus[1]

... ...

54 + 4*NDP HcRhPortStatus[NDP]

Legend
NDP: Number Downstream Ports (NDP = 2 for the SH7727 Series)

Rev. 1.0, 04/03, page 27 of 88

2.6.12.6.12.6.12.6.1 Control and Status PartitionControl and Status PartitionControl and Status PartitionControl and Status Partition

HcRevision Register:HcRevision Register:HcRevision Register:HcRevision Register:

3
1

0
8

0
0

0
7

REVreserved

Figure 2.13 Figure 2.13 Figure 2.13 Figure 2.13 HcRevision RegisterHcRevision RegisterHcRevision RegisterHcRevision Register

Table 2.7Table 2.7Table 2.7Table 2.7 HcRevision RegisterHcRevision RegisterHcRevision RegisterHcRevision Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

REV 10h R R Revision

This read-only field contains the BCD representation of the
version of the HCI specification that is implemented by this
HC. For example, a value of H'11 corresponds to version 1.1.
All of the HC implementations that are compliant with this
specification will have a value of H'10.

HcControl Register: HcControl Register: HcControl Register: HcControl Register: This register defines the operating modes for the HC.

3
1

0
8

0
0

0
7

1
0

1
1

0
9

0
5

0
4

0
3

0
2

0
1

0
6

reserved

R
W
E

R
W
C

I
R

H
C
F
S

B
L
E

C
L
E

I
E

P
L
E

C
B
S
R

Figure 2.14 Figure 2.14 Figure 2.14 Figure 2.14 HcControl RegisterHcControl RegisterHcControl RegisterHcControl Register

Rev. 1.0, 04/03, page 28 of 88

Table 2.8Table 2.8Table 2.8Table 2.8 HcControl RegisterHcControl RegisterHcControl RegisterHcControl Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CBSR 00b R/W R ControlBulkServiceRatio

This specifies the ratio between Control ED and Bulk EDs.
During processing the nonperiodic lists, HC processes one to
four Control EDs according to the ratio specified for this field
before processing a Bulk ED. During processing the
nonperiodic lists, this process is repeated. After a Control ED
has been processed, according to the ratio for this field, HC
decides whether to continue serving another Control ED or
switching to Bulk EDs.

0
1
2
3

1:1
2:1
3:1
4:1

CBSR No. of Control EDs Over Bulk EDs Served

PLE 0b R/W R PeriodicListEnable

This bit is set to enable the processing of the periodic list in
the next frame. If cleared by HCD, processing of the periodic
list does not occur after the next SOF. HC must check this bit
before it starts processing the list.

IE 0b R/W R IsochronousEnable

This bit is used by HCD to enable/disable processing of
isochronous EDs. While processing the periodic list in a
Frame, HC checks the status of this bit when it finds an
Isochronous ED (F=1). If set (enabled), HC continues
processing the EDs. If cleared (disabled), HC halts
processing of the periodic list (which now contains only
isochronous EDs) and begins processing the Bulk/Control
lists.

CLE 0b R/W R ControlListEnable

This bit is set to enable the processing of the Control list in
the next Frame. If cleared by HCD, processing of the Control
list does not occur after the next SOF. HC must check this bit
whenever it determines to process the list. When disabled,
HCD may modify the list. If HcControlCurrentED is pointing to
an ED to be removed, HCD must advance the pointer by
updating HcControlCurrentED before re-enabling processing
of the list.

Rev. 1.0, 04/03, page 29 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

BLE 0b R/W R BulkListEnable

This bit is set to enable the processing of the Bulk list in the
next Frame. If cleared by HCD, processing of the Bulk list
does not occur after the next SOF. HC checks this bit
whenever it determines to process the list. If
HcBulkCurrentED is pointing to an ED to be removed, HCD
must advance the pointer by updating HcBulkCurrentED
before re-enabling processing of the list.

HCFS 00b R/W R/W HostControllerFunctionalState

Defines the state of the HC.

00b: USBRESET

01b: USBRESUME

10b: USBOPERATIONAL

11b: USBSUSPEND

A transition to USBOPERATIONAL from another state causes
SOF generation to begin 1 ms later.

This field may be changed by HC only when in the
USBSUSPEND state. HC may move from the USBSUSPEND state
to the USBRESUME state after detecting the resume signaling
from a downstream port.

HC enters USBSUSPEND after a software reset, whereas it
enters USBRESET after a hardware reset. The latter also
resets the Root Hub.

IR 0b R/W R InterruptRouting

This bit determines the routing of interrupts generated by
events registered in HcInterruptStatus. If clear, all interrupts
are routed to the normal host bus interrupt mechanism. If set,
interrupts are routed to the System Management Interrupt.
HCD uses this bit as a tag to indicate the ownership of HC.

RWC 0b R/W R/W RemoteWakeupConnected

This bit indicates whether HC supports remote wakeup
signaling. If remote wakeup is supported and used by the
system it is the responsibility of system firmware to set this bit
during POST. HC clears the bit upon a hardware reset but
does not alter it upon a software reset.

RWE 0b R/W R RemoteWakeupEnable

This bit is used by HCD to enable or disable the remote
wakeup feature upon the detection of upstream resume
signaling. When this bit is set and the ResumeDetectedResumeDetectedResumeDetectedResumeDetected bit in
HcInterruptStatus is set, a remote wakeup is signaled to the
host system.

Rev. 1.0, 04/03, page 30 of 88

HcCommandStatus Register: HcCommandStatus Register: HcCommandStatus Register: HcCommandStatus Register: The HCD requests the list processing, HC reset, and honor ship
change to the HC by using this register. The number of frames with which the HC has detected the
scheduling overrun error is counted by this register.

3
1

0
0

1
8

1
7

1
6

1
5

0
4

0
3

0
2

0
1

reserved reserved
O
C
R

B
L
F

S
O
C

C
L
F

H
C
R

Figure 2.15 Figure 2.15 Figure 2.15 Figure 2.15 HcCommandStatus RegisterHcCommandStatus RegisterHcCommandStatus RegisterHcCommandStatus Register

Table 2.9Table 2.9Table 2.9Table 2.9 HcCommandStatus RegisterHcCommandStatus RegisterHcCommandStatus RegisterHcCommandStatus Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

HCR 0b R/W R/W HostControllerReset

This bit is set by HCD to initiate a software reset of HC.
Regardless of the functional state of HC, it moves to the
USBSUSPEND state in which most of the operational registers
are reset except those stated otherwise; e.g., the
InterruptRouting field of HcControl, and no Host bus
accesses are allowed. This bit is cleared by HC upon the
completion of the reset operation. The reset operation must
be completed within 10 µs. This bit, when set, should not
cause a reset to the Root Hub and no subsequent reset
signaling should be asserted to its downstream ports.

CLF 0b R/W R/W ControlListFilled

This bit is used to indicate whether there are any TDs on the
Control list. It is set by HCD whenever it adds a TD to an ED
in the Control list.

When HC begins to process the head of the Control list, it
checks CLF. As long as ControlListFilled is 0, HC will not
start processing the Control list. If CF is 1, HC will start
processing the Control list and will set ControlListFilled to 0.
If HC finds a TD on the list, then HC will set ControlListFilled
to 1 causing the Control list processing to continue. If no TD
is found on the Control list, and if the HCD does not set
ControlListFilled, then ControlListFilled will still be 0 when
HC completes processing the Control list and Control list
processing will stop.

Rev. 1.0, 04/03, page 31 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

BLF 0b R/W R/W BulkListFilled

This bit is used to indicate whether there are any TDs on the
Bulk list. It is set by HCD whenever it adds a TD to an ED in
the Bulk list.

When HC begins to process the head of the Bulk list, it
checks BF. As long as BulkListFilled is 0, HC will not start
processing the Bulk list. If BulkListFilled is 1, HC will start
processing the Bulk list and will set BF to 0. If HC finds a TD
on the list, then HC will set BulkListFilled to 1 causing the
Bulk list processing to continue. If no TD is found on the Bulk
list, and if HCD does not set BulkListFilled, then
BulkListFilled will still be 0 when HC completes processing
the Bulk list and Bulk list processing will stop.

OCR 0b R/W R/W OwnershipChangeRequest

This bit is set by an OS HCD to request a change of control
of the HC. When set HC will set the OwnershipChange field
in HcInterruptStatus. After the changeover, this bit is cleared
and remains so until the next request from OS HCD.

SOC 00b R R/W SchedulingOverrunCount

These bits are incremented on each scheduling overrun
error. It is initialized to B'00b and wraps around at B'11. This
will be incremented when a scheduling overrun is detected
even if SchedulingOverrun in HcInterruptStatus has already
been set. This is used by HCD to monitor any persistent
scheduling problems.

HcInterruptStatus Register: HcInterruptStatus Register: HcInterruptStatus Register: HcInterruptStatus Register: This register provides status on various events that cause hardware
interrupts. When an event occurs, corresponding bit is set. When a bit is set, if the event is enabled
in the HcInterruptEnable register and the MasterInterruptEnable bit is set, a hardware interrupt is
generated. To clear specific bits in this register, write a 1 to the bit by the HCD. The HCD can
clear but not set any of these bits. While, the HC can set but not clear the bit.

3
1

0
0

3
0

2
9

0
4

0
3

0
2

0
7

0
6

0
5

0
1

reserved
R
D

S
F

0 O
C

W
D
H

S
O

R
H
S
C

F
N
O

U
E

Figure 2.16 Figure 2.16 Figure 2.16 Figure 2.16 HcInterruptStatus RegisterHcInterruptStatus RegisterHcInterruptStatus RegisterHcInterruptStatus Register

Rev. 1.0, 04/03, page 32 of 88

Table 2.10Table 2.10Table 2.10Table 2.10 HcInterruptStatus RegisterHcInterruptStatus RegisterHcInterruptStatus RegisterHcInterruptStatus Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

SO 0b R/W R/W SchedulingOverrun

This bit is set when the USB schedule for the current Frame
overruns and after the update of HccaFrameNumber. A
scheduling overrun will also cause the
SchedulingOverrunCount of HcCommandStatus to be
incremented.

WDH 0b R/W R/W WritebackDoneHead

This bit is set immediately after HC has written HcDoneHead
to HccaDoneHead. Further updates of the HccaDoneHead
will not occur until this bit has been cleared. HCD should only
clear this bit after it has saved the content of HccaDoneHead.

SF 0b R/W R/W StartofFrame

This bit is set by HC at each start of a frame and after the
update of HccaFrameNumber. HC also generates a SOF
token at the same time.

RD 0b R/W R/W ResumeDetected

This bit is set when HC detects that a device on the USB bus
is asserting resume signaling. This bit is not set when HCD
sets HC in USBResume state by modifying the
HostControllerFunctionalState field in the HcControl register.

UE 0b R/W R/W UnrecoverableError

This bit is set when HC detects a system error not related to
USB. HC should not proceed with any processing nor
signaling before the system error has been corrected. HCD
clears this bit after HC has been reset.

FNO 0b R/W R/W FrameNumberOverflow

This bit is set when the MSb of HcFmNumber (bit 15)
changes value, from 0 to 1 or from 1 to 0, and after
HccaFrameNumber has been updated.

RHSC 0b R/W R/W RootHubStatusChange

This bit is set when the content of HcRhStatus or the content
of any of HcRhPortStatus[NumberofDownstreamPort] has
changed.

OC 0b R/W R/W OwnershipChange

This bit is set by HC when HCD sets the
OwnershipChangeRequest field in HcCommandStatus. This
event, when unmasked, will always generate a System
Management Interrupt (SMI) immediately.

This bit is tied to 0b when the SMI pin is not implemented.

Rev. 1.0, 04/03, page 33 of 88

HcInterruptEnable Register: HcInterruptEnable Register: HcInterruptEnable Register: HcInterruptEnable Register: Each bit in the HcInterruptEnable register corresponds to each bit in
the HcInterruptStatus register. The HcInterruptEnable register is used to control which events
generate a hardware interrupt. When a bit is set in the HcInterruptStatus register and the
corresponding bit in the HcInterruptEnable register is set and the MasterInterruptEnable bit is set,
a hardware interrupt is generated.

Writing a 1 to a bit in this register sets the corresponding bit. Writing a 0 to a bit in this register
leaves the corresponding bit unchanged. To clear the corresponding bit, write 1 to a bit in the
HcInterruptDisable register.

3
1

0
0

3
0

2
9

0
4

0
3

0
2

0
7

0
6

0
5

0
1

reserved
R
D

S
F

M
I
E

O
C

W
D
H

S
O

R
H
S
C

F
N
O

U
E

Figure 2.17 Figure 2.17 Figure 2.17 Figure 2.17 HcInterruptEnable RegisterHcInterruptEnable RegisterHcInterruptEnable RegisterHcInterruptEnable Register

Rev. 1.0, 04/03, page 34 of 88

Table 2.11Table 2.11Table 2.11Table 2.11 HcInterruptEnable RegisterHcInterruptEnable RegisterHcInterruptEnable RegisterHcInterruptEnable Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

SO 0b R/W R 0: Ignore

1: Enable interrupt generation due to Scheduling Overrun.

WDH 0b R/W R 0: Ignore

1: Enable interrupt generation due to HcDoneHead
Writeback.

SF 0b R/W R 0: Ignore

1: Enable interrupt generation due to Start of Frame.

RD 0b R/W R 0: Ignore

1: Enable interrupt generation due to Resume Detect.

UE 0b R/W R 0: Ignore

1: Enable interrupt generation due to Unrecoverable Error.

FNO 0b R/W R 0: Ignore

1: Enable interrupt generation due to Frame Number
Overflow.

RHSC 0b R/W R 0: Ignore

1: Enable interrupt generation due to Root Hub Status
Change.

OC 0b R/W R 0: Ignore

1: Enables interrupt generation due to Ownership Change.

MIE 0b R/W R 0: Ignored

1: Enables interrupt generation due to other bits of this
register. This is used by HCD as a Master Interrupt Enable.

HcInterruptDisable Register: HcInterruptDisable Register: HcInterruptDisable Register: HcInterruptDisable Register: Each bit in the HcInterruptDisable register corresponds to each bit in
the HcInterruptStatus register. The HcInterruptDisable register is coupled with the
HcInterruptEnable register. Writing a 1 to a bit in the HcInterruptDisable register clears the
corresponding bit in the HcInterruptEnable register. Writing a 0 to a bit in the HcInterruptDisable
register leaves the corresponding bit in the HcInterruptEnable register unchanged. On read, the
current value of the HcInterruptEnable register is returned.

3
1

0
0

3
0

2
9

0
4

0
3

0
2

0
7

0
6

0
5

0
1

reserved
R
D

S
F

M
I
E

O
C

W
D
H

S
O

R
H
S
C

F
N
O

U
E

Figure 2.18 Figure 2.18 Figure 2.18 Figure 2.18 HcInterruptDisable RegisterHcInterruptDisable RegisterHcInterruptDisable RegisterHcInterruptDisable Register

Rev. 1.0, 04/03, page 35 of 88

Table 2.12Table 2.12Table 2.12Table 2.12 HcInterruptDisable RegisterHcInterruptDisable RegisterHcInterruptDisable RegisterHcInterruptDisable Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

SO 0b R/W R 0: Ignore

1: Disable interrupt generation due to Scheduling Overrun.

WDH 0b R/W R 0: Ignore

1: Disable interrupt generation due to HcDoneHead
Writeback.

SF 0b R/W R 0: Ignore

1: Disable interrupt generation due to Start of Frame.

RD 0b R/W R 0: Ignore

1: Disable interrupt generation due to Resume Detect.

UE 0b R/W R 0: Ignore

1: Disable interrupt generation due to Unrecoverable Error.

FNO 0b R/W R 0: Ignore

1: Disable interrupt generation due to Frame Number
Overflow.

RHSC 0b R/W R 0: Ignore

1: Disable interrupt generation due to Root Hub Status
Change.

OC 0b R/W R 0: Ignore

1: Disable interrupt generation due to Ownership Change.

MIE 0b R/W R 0: Ignore

1: Disables interrupt generation due to other bits of this
register. This field is set after a hardware or software reset.

2.6.22.6.22.6.22.6.2 Memory Pointer PartitionMemory Pointer PartitionMemory Pointer PartitionMemory Pointer Partition

HcHCCA Register: HcHCCA Register: HcHCCA Register: HcHCCA Register: The HcHCCA register contains the physical address of the Host Controller
Communications Area (HCCA). The HCCA should be aligned to a 256-byte boundary. Therefore,
the lower 8-bit of this register is always read as 0.

3
1

0
0

0
7

0
8

HCCA 0

Figure 2.19 Figure 2.19 Figure 2.19 Figure 2.19 HcHCCA RegisterHcHCCA RegisterHcHCCA RegisterHcHCCA Register

Rev. 1.0, 04/03, page 36 of 88

Table 2.13Table 2.13Table 2.13Table 2.13 HcHCCA RegisterHcHCCA RegisterHcHCCA RegisterHcHCCA Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

HCCA 0h R/W R Indicates the base address of the Host Controller
Communications Area.

HcPeriodCurrentED Register: HcPeriodCurrentED Register: HcPeriodCurrentED Register: HcPeriodCurrentED Register: The HcPeriodCurrentED register indicates the physical address of
the current Isochronous ED or Interrupt ED.

3
1

0
0

0
3

0
4

PCED 0

Figure 2.20 Figure 2.20 Figure 2.20 Figure 2.20 HcPeriodCurrentED RegisterHcPeriodCurrentED RegisterHcPeriodCurrentED RegisterHcPeriodCurrentED Register

Table 2.14Table 2.14Table 2.14Table 2.14 HcPeriodCurrentED RegisterHcPeriodCurrentED RegisterHcPeriodCurrentED RegisterHcPeriodCurrentED Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

PCED 0h R R/W PeriodCurrentED

This is used by HC to point to the head of one of the Periodic
lists which will be processed in the current Frame. The
content of this register is updated by HC after a periodic ED
has been processed. HCD may read the content in
determining which ED is currently being processed at the time
of reading.

HcControlHeadED Register: HcControlHeadED Register: HcControlHeadED Register: HcControlHeadED Register: The HcControlHeadED register indicates the physical address of the
first ED of the Control list.

3
1

0
0

0
3

0
4

CHED 0

Figure 2.21 Figure 2.21 Figure 2.21 Figure 2.21 HcControlHeadED RegisterHcControlHeadED RegisterHcControlHeadED RegisterHcControlHeadED Register

Table 2.15Table 2.15Table 2.15Table 2.15 HcControlHeadED RegisterHcControlHeadED RegisterHcControlHeadED RegisterHcControlHeadED Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CHED 0h R/W R ControlHeadED

HC traverses the Control list starting with the
HcControlHeadED pointer.

Rev. 1.0, 04/03, page 37 of 88

HcControlCurrentED Register: HcControlCurrentED Register: HcControlCurrentED Register: HcControlCurrentED Register: The HcControlCurrentED register indicates the physical address of
the current Control ED.

3
1

0
0

0
3

0
4

CCED 0

Figure 2.22 Figure 2.22 Figure 2.22 Figure 2.22 HcControlCurrentED RegisterHcControlCurrentED RegisterHcControlCurrentED RegisterHcControlCurrentED Register

Table 2.16Table 2.16Table 2.16Table 2.16 HcControlCurrentED RegisterHcControlCurrentED RegisterHcControlCurrentED RegisterHcControlCurrentED Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CCED 0h R/W R/W ControlCurrentED

This field indicates a pointer of the current ED. This pointer is
advanced to the next ED after serving the present one. When
it reaches the end of the Control list, HC checks the
ControlListFilled of in HcCommandStatus. If set, it copies the
content of HcControlHeadED to HcControlCurrentED and
clears the bit. If not set, it does nothing. HCD is allowed to
modify this register only when the ControlListEnable of
HcControl is cleared. When set, HCD only reads the
instantaneous value of this register.

HcBulkHeadED Register: HcBulkHeadED Register: HcBulkHeadED Register: HcBulkHeadED Register: The HcBulkHeadED register indicates the physical address of the first
ED of the Bulk list.

3
1

0
0

0
3

0
4

BHED 0

Figure 2.23 Figure 2.23 Figure 2.23 Figure 2.23 HcBulkHeadED RegisterHcBulkHeadED RegisterHcBulkHeadED RegisterHcBulkHeadED Register

Table 2.17Table 2.17Table 2.17Table 2.17 HcBulkHeadED RegisterHcBulkHeadED RegisterHcBulkHeadED RegisterHcBulkHeadED Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

BHED 0h R/W R BulkHeadED

HC traverses the Bulk list starting with the HcBulkHeadED
pointer.

HcBulkCurrentED Register: HcBulkCurrentED Register: HcBulkCurrentED Register: HcBulkCurrentED Register: The HcBulkCurrentED register indicates the physical address of the
current Bulk ED.

Rev. 1.0, 04/03, page 38 of 88

3
1

0
0

0
3

0
4

BCED 0

Figure 2.24 Figure 2.24 Figure 2.24 Figure 2.24 HcBulkCurrentED RegisterHcBulkCurrentED RegisterHcBulkCurrentED RegisterHcBulkCurrentED Register

Table 2.18Table 2.18Table 2.18Table 2.18 HcBulkCurrentED RegisterHcBulkCurrentED RegisterHcBulkCurrentED RegisterHcBulkCurrentED Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

BCED 0h R/W R/W BulkCurrentED

This field indicates a pointer of the current ED. This is
advanced to the next ED after the HC has served the present
one. When it reaches the end of the Bulk list, HC checks the
BulkListFilled of HcControl. If set, it copies the content of
HcBulkHeadED to HcBulkCurrentED and clears the bit. If it is
not set, it does nothing. HCD is only allowed to modify this
register when the BulkListEnableBulkListEnableBulkListEnableBulkListEnable of HcControl is cleared.
When set, the HCD only reads the instantaneous value of this
register.

HcDoneHead Register: HcDoneHead Register: HcDoneHead Register: HcDoneHead Register: The HcDoneHead register indicates the physical address of the last
completed TD that was added to the Done queue. As the value of this register is gained from the
HCCA, usually this register is not accessed by HCD.

3
1

0
0

0
3

0
4

DH 0

Figure 2.25 Figure 2.25 Figure 2.25 Figure 2.25 HcDoneHead RegisterHcDoneHead RegisterHcDoneHead RegisterHcDoneHead Register

Table 2.19Table 2.19Table 2.19Table 2.19 HcDoneHead RegisterHcDoneHead RegisterHcDoneHead RegisterHcDoneHead Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

DH 0h R R/W DoneHead

When a TD is completed, HC writes the content of
HcDoneHead to the NextTD field of the TD. HC then
overwrites the content of HcDoneHead with the address of
this TD.

This is set to zero whenever HC writes the content of this
register to HCCA. It also sets the WritebackDoneHead of
HcInterruptStatus.

Rev. 1.0, 04/03, page 39 of 88

2.6.32.6.32.6.32.6.3 Frame Counter PartitionFrame Counter PartitionFrame Counter PartitionFrame Counter Partition

HcFmInterval Register: HcFmInterval Register: HcFmInterval Register: HcFmInterval Register: The HcFmInterval register contains a 14-bit value which indicates the bit
time interval in a frame (between two consecutive SOFs), and a 15-bit value indicating the
maximum packet size that the HC can transfer without causing scheduling overrun. The HCD can
carry out minor adjustment on the frame interval. This register provides the programmability
necessary for the HC to synchronize with an external clock source and to adjust any unknown
local clock.

3
1
F
I
T

0
0

1
3

1
4

1
5

1
6

FSMPS reserved FI

Figure 2.26 Figure 2.26 Figure 2.26 Figure 2.26 HcFmInterval RegisterHcFmInterval RegisterHcFmInterval RegisterHcFmInterval Register

Table 2.20Table 2.20Table 2.20Table 2.20 HcFmInterval RegisterHcFmInterval RegisterHcFmInterval RegisterHcFmInterval Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

FI 2EDFh R/W R FrameInterval

This specifies the interval between two consecutive SOFs in
bit times. The nominal value is set to be 11,999.

HCD should store the current value of this field before
resetting HC. By setting the HostControllerReset field of
HcCommandStatus as this will cause the HC to reset this
field to its nominal value.

FSMPS TBD R/W R FSLargestDataPacket

This field specifies a value which is loaded into the Largest
Data Packet Counter at the beginning of each frame. The
counter value represents the largest amount of data in bits
which can be sent or received by the HC in a single
transaction at any given time without causing scheduling
overrun. The field value is calculated by the HCD.

FIT 0b R/W R FrameIntervalToggle

HCD toggles this bit whenever it loads a new value to
FrameInterval.

HcFmRemaining Register: HcFmRemaining Register: HcFmRemaining Register: HcFmRemaining Register: The HcFmRemaining register is a 14-bit down counter which shows
the bit time remaining in the current frame.

Rev. 1.0, 04/03, page 40 of 88

3
1
F
R
T

0
0

1
3

1
4

reserved FR

Figure2.27 Figure2.27 Figure2.27 Figure2.27 HcFmRemaining RegisterHcFmRemaining RegisterHcFmRemaining RegisterHcFmRemaining Register

Table2.21Table2.21Table2.21Table2.21 HcFmRemaining RegisterHcFmRemaining RegisterHcFmRemaining RegisterHcFmRemaining Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

FR 0h R R/W FrameRemaining

Indicates bit time. When it reaches zero, it is reset by loading
the FrameInterval value specified in HcFmInterval at the next
bit time boundary. When entering the USBOPERATIONAL state,
HC re-loads the content with the FrameInterval of
HcFmInterval and uses the updated value from the next SOF.

FRT 0b R R/W FrameRemainingToggle

This bit is loaded from the FrameIntervalToggle field of
HcFmInterval whenever FrameRemaining reaches 0. This bit
is used by HCD for the synchronization between
FrameInterval and FrameRemaining.

HcFmNumber Register: HcFmNumber Register: HcFmNumber Register: HcFmNumber Register: The HcFmNumber register is a 16-bit counter which indicates the current
frame number. The HCD can generate a 32-bit frame number by using the FrameNumberOverrun
interrupt.

3
1

0
0

1
5

1
6

reserved FN

Figure2.28 Figure2.28 Figure2.28 Figure2.28 HcFmNumber RegisterHcFmNumber RegisterHcFmNumber RegisterHcFmNumber Register

Table2.22Table2.22Table2.22Table2.22 HcFmNumber RegisterHcFmNumber RegisterHcFmNumber RegisterHcFmNumber Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

FN 0h R R/W FrameNumber

This is incremented when HcFmRemaining is re-loaded. It will
be rolled over to H'0 after H'FFFF. When entering the
USBOPERATIONAL state, this will be incremented automatically.
The content will be written to HCCA after HC has incremented
the FrameNumber at each frame boundary and sent a SOF
but before HC reads the first ED in that Frame. After writing to
HCCA, HC will set the StartofFrame in HcInterruptStatus.

Rev. 1.0, 04/03, page 41 of 88

HcPeriodicStart Register: HcPeriodicStart Register: HcPeriodicStart Register: HcPeriodicStart Register: The HcPeriodicStart register determines when is the earliest time HC
should start processing the periodic list.

3
1

0
0

1
3

1
4

reserved PS

Figure 2.29 Figure 2.29 Figure 2.29 Figure 2.29 HcPeriodicStart RegisterHcPeriodicStart RegisterHcPeriodicStart RegisterHcPeriodicStart Register

Table 2.23Table 2.23Table 2.23Table 2.23 HcPeriodicStart RegisterHcPeriodicStart RegisterHcPeriodicStart RegisterHcPeriodicStart Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

PS 0h R/W R PeriodicStart

After a hardware reset, this field is cleared. The value is
calculated roughly as 10% off from HcFmInterval. A typical
value will be H'3E67. When HcFmRemaining reaches the
value specified, HC will start processing the Periodic list after
having completed the current Control or Bulk transaction.

HcLSThreshold Register: HcLSThreshold Register: HcLSThreshold Register: HcLSThreshold Register: The HcLSThreshold register referred when the HC to decide whether to
transfer a maximum of 8-byte LS packet before EOF.

3
1

0
0

1
1

1
2

reserved LST

Figure 2.30 Figure 2.30 Figure 2.30 Figure 2.30 HcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA Regis

Table 2.24Table 2.24Table 2.24Table 2.24 HcLSThreshold RegisHcLSThreshold RegisHcLSThreshold RegisHcLSThreshold Regis

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

LST 0628h R/W R LSThreshold

This field contains a value which is compared to the
FrameRemaining field prior to initiating a Low Speed
transaction. The transaction is started only if
FrameRemaining ≥ this field. The value is calculated by HCD
with the consideration of transmission and setup overhead.

Rev. 1.0, 04/03, page 42 of 88

2.6.42.6.42.6.42.6.4 Root Hub PartitionRoot Hub PartitionRoot Hub PartitionRoot Hub Partition

HcRhDescriptorA Register: HcRhDescriptorA Register: HcRhDescriptorA Register: HcRhDescriptorA Register: The HcRhDescriptorA register is the first register of two describing
the characteristics of the Root Hub.

3
1

0
0

2
4

2
3

1
3

1
2

1
1

1
0

0
9

0
8

0
7

reservedPOTPGT NDPN
O
C
P

O
C
P
M

D
T

N
P
S

P
S
M

Figure 2.31 Figure 2.31 Figure 2.31 Figure 2.31 HcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA Regis

Table 2.25Table 2.25Table 2.25Table 2.25 HcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA RegisHcRhDescriptorA Regis

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

NDP IS R R NumberDownstreamPorts

These bits specify the number of downstream ports supported
by the Root Hub. The minimum number of ports is 1. The
maximum number of ports supported by OpenHCI is 15.

NPS IS R/W R NoPowerSwitching

These bits are used to specify whether power switching is
supported or port are always powered. When this bit is
cleared, in other words, power switching is enabled, the
PowerSwitchingMode specifies global or per-port switching.

0: Ports are power switched

1: Ports are always powered on when the HC is powered on

PSM IS R/W R PowerSwitchingMode

This bit is used to specify how the power switching of the
Root Hub ports is controlled. This field is only valid if the
NoPowerSwitching field is cleared.

0: All ports are powered at the same time.

1: Each port is powered individually. This mode allows port
power to be controlled by either the global switch or per-
port switching. If the PortPowerControlMask bit is set, the
port responds only to port power commands
(Set/ClearPortPower). If the port mask is cleared, then the
port is controlled only by the global power switch
(Set/ClearGlobalPower).

Rev. 1.0, 04/03, page 43 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

DT 0b R R DeviceType

This bit specifies that the Root Hub is not a compound device.
The Root Hub is not permitted to be a compound device. This
field should always read/write 0.

OCPM IS R/W R OverCurrentProtectionMode

This bit describes how the overcurrent status for the Root Hub
ports are reported. At reset, this fields should reflect the same
mode as PowerSwitchingMode. This field is valid only if the
NoOverCurrentProtection field is cleared.

0: Over-current status is reported collectively for all
downstream ports

1: Over-current status is reported on a per-port basis

NOCP IS R/W R NoOverCurrentProtection

This bit describes how the overcurrent status for the Root Hub
ports are reported. When this bit is cleared, the
OverCurrentProtectionMode field specifies global or per-port
reporting.

0: Over-current status is reported collectively for all
downstream ports

1: No overcurrent protection supported

POTPGT IS R/W R PowerOnToPowerGoodTime

This byte specifies the duration HCD has to wait before
accessing a powered-on port of the Root Hub. The unit of
time is 2 ms. The duration is calculated as POTPGT × 2 ms.

HcRhDescriptorB Register: HcRhDescriptorB Register: HcRhDescriptorB Register: HcRhDescriptorB Register: The HcRhDescriptorB register is the second register of two describing
the characteristics of the Root Hub.

3
1

0
0

1
5

1
6

PPCM DR

Figure 2.32 Figure 2.32 Figure 2.32 Figure 2.32 HcRhDescriptor RegisterHcRhDescriptor RegisterHcRhDescriptor RegisterHcRhDescriptor Register

Rev. 1.0, 04/03, page 44 of 88

Table 2.26Table 2.26Table 2.26Table 2.26 HcRhDescriptor RegisterHcRhDescriptor RegisterHcRhDescriptor RegisterHcRhDescriptor Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

DR IS R/W R DeviceRemovable

Each bit is dedicated to a port of the Root Hub. When cleared,
the attached device is removable. When set, the attached
device is not removable.

bit 0: Reserved

bit 1: Device attached to Port #1

bit 2: Device attached to Port #2

...

bit15: Device attached to Port #15

PPCM IS R/W R PortPowerControlMask

Each bit indicates if a port is affected by a global power
control command when PowerSwitchingMode is set. When
set, the port's power state is only affected by per-port power
control (Set/ClearPortPower). When cleared, the port is
controlled by the global power switch (Set/ClearGlobalPower).
If the device is configured to global switching mode
(PowerSwitchingMode=0), this field is not valid.

bit 0: Reserved

bit 1: Ganged-power mask on Port #1

bit 2: Ganged-power mask on Port #2

...

bit15: Ganged-power mask on Port #15

HcRhStatus Register: HcRhStatus Register: HcRhStatus Register: HcRhStatus Register: The HcRhStatus register specifies the status of the Root Hub.

3
1

0
0

1
8

1
7

1
6

1
5

1
4

0
2

0
1

reserved reservedO
C
I
C

L
P
S
C

D
R
W
E

C
R
W
E

O
C
I

L
P
S

Figure 2.33 Figure 2.33 Figure 2.33 Figure 2.33 HcRhStatus RegisterHcRhStatus RegisterHcRhStatus RegisterHcRhStatus Register

Rev. 1.0, 04/03, page 45 of 88

Table 2.27Table 2.27Table 2.27Table 2.27 HcRhStatus RegisterHcRhStatus RegisterHcRhStatus RegisterHcRhStatus Register

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

LPS 0b R/W R (read) LocalPowerStatus

The Root Hub does not support the local power status
feature; thus, this bit is always read as ‘0’.

(write) ClearGlobalPower

In global power mode (PowerSwitchingMode=0), this bit is
written to ‘1’ to turn off power to all ports (clear
PortPowerStatus). In per-port power mode, it clears
PortPowerStatus only on ports whose PortPowerControlMask
bit is not set. Writing a ‘0’ has no effect.

OCI 0b R R/W OverCurrentIndicator

This bit reports overcurrent conditions when the global
reporting is implemented. When set, an overcurrent condition
exists. When cleared, all power operations are normal. If per-
port overcurrent protection is implemented this bit is always
‘0’

DRWE 0b R/W R (read) DeviceRemoteWakeupEnable

This bit enables or disables remote wakeup. This bit enables
a ConnectStatusChange bit as a resume event, causing a
USBSUSPEND to USBRESUME state transition and setting the
ResumeDetected interrupt.

0: ConnectStatusChange is not a remote wakeup event.

1: ConnectStatusChange is a remote wakeup event.

(write) SetRemoteWakeupEnable

Writing a ‘1’ sets DeviceRemoveWakeupEnable. Writing a ‘0’
has no effect.

LPSC 0b R/W R (read) LocalPowerStatusChange

The Root Hub does not support the local power status
feature; thus, this bit is always read as ‘0’.

(write) SetGlobalPower

In global power mode (PowerSwitchingMode=0), this bit is
written to ‘1’ to turn on power to all ports (clear
PortPowerStatus). In per-port power mode, it sets
PortPowerStatus only on ports whose PortPowerControlMask
bit is not set. Writing a ‘0’ has no effect.

Rev. 1.0, 04/03, page 46 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CCIC 0b R/W R/W OverCurrentIndicatorChange

This bit is set by the HC when a change has occurred to the
OCI field of this register. The HCD clears this bit by writing a
‘1’. Writing a ‘0’ has no effect.

CRWE  W R (write) ClearRemoteWakeupEnable

Writing a ‘1’ clears DeviceRemoveWakeupEnable. Writing a
‘0’ has no effect.

HcRhPortStatus 1 and NDP Registers:HcRhPortStatus 1 and NDP Registers:HcRhPortStatus 1 and NDP Registers:HcRhPortStatus 1 and NDP Registers: The HcRhPortStatus register is used to control and report
port events on a per-port basis. The lower word is used to set the port status. Whereas, the upper
word monitors the status change of ports.

3
1

0
0

1
8

1
9

2
0

2
1

1
7

1
6

1
5

0
4

0
5

0
7

0
8

0
9

1
0

0
3

0
2

0
1

reserved reserved rsvd P
R
S

P
O
C
I

C
S
C

P
E
S
C

P
P
S

L
S
D
A

P
S
S
C

O
C
I
C

P
R
S
C

P
S
S

P
E
S

C
C
S

Figure 2.34 Figure 2.34 Figure 2.34 Figure 2.34 HcRhPortStatus HcRhPortStatus HcRhPortStatus HcRhPortStatus RegisteRegisteRegisteRegiste

Table 2.28Table 2.28Table 2.28Table 2.28 HcRhPortStatus HcRhPortStatus HcRhPortStatus HcRhPortStatus RegisteRegisteRegisteRegiste

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CCS 0b R/W R/W (read) CurrentConnectStatus

This bit reflects the current state of the downstream port.

0: No device connected

1: Device connected

(write) ClearPortEnable

The HCD writes a ‘1’ to this bit to clear the PortEnableStatus
bit. Writing a ‘0’ has no effect. The CurrentConnectStatus is
not affected by any write.

Note: This bit is always read ‘1b’ when the attached device is
nonremovable (DeviceRemoveable[NDP]).

Rev. 1.0, 04/03, page 47 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

PES 0b R/W R/W (read) PortEnableStatusPortEnableStatusPortEnableStatusPortEnableStatus

This bit indicates whether the port is enabled or disabled. The
Root Hub may clear this bit when an overcurrent condition,
disconnect event, switched-off power, or operational bus error
such as babble is detected. This change also causes
PortEnabledStatusChange to be set. HCD sets this bit by
writing SetPortEnable and clears it by writing
ClearPortEnable. This bit cannot be set when
CurrentConnectStatus is cleared. This bit is also set, if not
already, at the completion of a port reset when
ResetStatusChange is set or port suspend when
SuspendStatusChange is set.

0: Port is disabled

1: Port is enabled

(write) SetPortEnable

The HCD sets PortEnableStatus by writing a ‘1’. Writing a ‘0’
has no effect. If CurrentConnectStatus is cleared, this write
does not set PortEnableStatus, but instead sets
ConnectStatusChange. This informs the driver that it
attempted to enable a disconnected port.

PSS 0b R/W R/W (read) PortSuspendStatus

This bit indicates the port is suspended or in the resume
sequence. It is set by a SetSuspendState write and cleared
when PortSuspendStatusChange is set at the end of the
resume interval. This bit cannot be set if
CurrentConnectStatus is cleared. This bit is also cleared
when PortResetStatusChange is set at the end of the port
reset or when the HC is placed in the USBRESUME state. If an
upstream resume is in progress, it should propagate to the
HC.

0: Port is not suspended

1: Port is suspended

(write) SetPortSuspend

The HCD sets the PortSuspendStatus bit by writing a ‘1’ to
this bit. Writing a ‘0’ has no effect. If CurrentConnectStatus is
cleared, this write does not set PortSuspendStatus; instead it
sets ConnectStatusChange. This informs the driver that it
attempted to suspend a disconnected port.

Rev. 1.0, 04/03, page 48 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

POCI 0b R/W R/W (read) PortOverCurrentIndicator

This bit is only valid when the Root Hub is configured in such
a way that overcurrent conditions are reported on a per-port
basis. If per-port overcurrent reporting is not supported, this
bit is set to 0. If cleared, all power operations are normal for
this port. If set, an overcurrent condition exists on this port.
This bit always reflects the overcurrent input signal

0: No overcurrent condition.

1: Overcurrent condition detected.

(write) ClearSuspendStatus

The HCD writes a ‘1’ to initiate a resume. Writing a ‘0’ has no
effect. A resume is initiated only if PortSuspendStatus is set.

PRS 0b R/W R/W (read) PortResetStatus

When this bit is set by a write to SetPortReset, port reset
signaling is asserted. When reset is completed, this bit is
cleared when PortResetStatusChange is set. This bit cannot
be set if CurrentConnectStatus is cleared.

0: Port reset signal is not active

1: Port reset signal is active

(write) SetPortReset

The HCD sets the port reset signaling by writing a ‘1’ to this
bit. Writing a ‘0’ has no effect. If CurrentConnectStatus is
cleared, this write does not set PortResetStatus, but instead
sets ConnectStatusChange. This informs the driver that it
attempted to reset a disconnected port.

Rev. 1.0, 04/03, page 49 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

PPS 0b R/W R/W (read) PortPowerStatus

This bit reflects the port’s power status, regardless of the type
of power switching implemented. This bit is cleared if an
overcurrent condition is detected. HCD sets this bit by writing
SetPortPower or SetGlobalPower. HCD clears this bit by
writing ClearPortPower or ClearGlobalPower. Which power
control switches are enabled is determined by
PowerSwitchingMode and PortPortControlMask[NDP]. In
global switching mode (PowerSwitchingMode=0), only
Set/ClearGlobalPower controls this bit. In per-port power
switching (PowerSwitchingMode=1), if the
PortPowerControlMask[NDP] bit for the port is set, only
Set/ClearPortPower commands are enabled. If the mask is
not set, only Set/ClearGlobalPower commands are enabled.
When port power is disabled, CurrentConnectStatus,
PortEnableStatus, PortSuspendStatus, and PortResetStatus
should be reset.

0: port power is off

1: port power is on

(write) SetPortPower

The HCD writes a ‘1’ to set the PortPowerStatus bit. Writing a
‘0’ has no effect.

Note: This bit is always reads ‘1b’ if power switching is not
supported.

LSDA Xb R/W R/W (read) LowSpeedDeviceAttached

This bit indicates the speed of the device attached to this port.
When set, a Low Speed device is attached to this port. When
clear, a Full Speed device is attached to this port. This field is
valid only when the CurrentConnectStatus is set.

0: Full speed device attached

1: Low speed device attached

(write) ClearPortPower

The HCD clears the PortPowerStatus bit by writing a ‘1’ to this
bit. Writing a ‘0’ has no effect.

Rev. 1.0, 04/03, page 50 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

CSC 0b R/W R/W ConnectStatusChange

This bit is set whenever a connect or disconnect event
occurs. The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has
no effect. If CurrentConnectStatus is cleared when a
SetPortReset, SetPortEnable, or SetPortSuspend write
occurs, this bit is set to force the driver to re-evaluate the
connection status since these writes should not occur if the
port is disconnected.

0: No change in CurrentConnectStatus

1: Change in CurrentConnectStatus

Note: If the DeviceRemovable[NDP] bit is set, this bit is set
only after a Root Hub reset to inform the system that the
device is attached.

PESC 0b R/W R/W PortEnableStatusChange

This bit is set when hardware events cause the
PortEnableStatus bit to be cleared. Changes from HCD writes
do not set this bit. The HCD writes a ‘1’ to clear this bit.
Writing a ‘0’ has no effect.

0: No change in PortEnableStatus

1: Change in PortEnableStatus

PSSC 0b R/W R/W PortSuspendStatusChange

This bit is set when the full resume sequence has been
completed. This sequence includes the 20-msec resume
pulse, LS EOP, and 3-mssec resychronization delay. The
HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect.
This bit is also cleared when ResetStatusChange is set.

0: Resume is not completed

1: Resume completed

OCIC 0b R/W R/W PortOverCurrentIndicatorChange

This bit is valid only if overcurrent conditions are reported on
a per-port basis. This bit is set when Root Hub changes the
PortOverCurrentIndicator bit. The HCD writes a ‘1’ to clear
this bit. Writing a ‘0’ has no effect.

0: no change in PortOverCurrentIndicator

1: PortOverCurrentIndicator has changed

Rev. 1.0, 04/03, page 51 of 88

Read/WriteRead/WriteRead/WriteRead/Write

KeyKeyKeyKey ResetResetResetReset HCDHCDHCDHCD HCHCHCHC DescriptionDescriptionDescriptionDescription

PRSC 0b R/W R/W PortResetStatusChange

This bit is set at the end of the 10-ms port reset signal.

The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no
effect.

0: port reset is not complete

1: port reset is complete

Rev. 1.0, 04/03, page 52 of 88

Rev. 1.0, 04/03, page 53 of 88

Section 3 Development Environment

This section describes the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• SH7727 Solution Engine (type number: MS7727SE01, hereafter referred to as SH7727SE)
manufactured by Hitachi ULSI Systems Co., Ltd.

• SH7727 E10A Emulator manufactured by Renesas Technology Corp.

• PC (Windows® 95/98) equipped with a PCMCIA slot

• Control PC (Windows® 98/Windows® 2000)

• Serial cable (cross cable)

• USB cable

• High-Performance Debugging Interface (hereafter called HDI) manufactured by Renesas
Technology Corp.

• High-Performance Embedded Workshop (hereafter called HEW) manufactured by Renesas
Technology Corp.

• USB function device (any device)

3.3.3.3.1111 Hardware EnvironmentHardware EnvironmentHardware EnvironmentHardware Environment

Figure 3.1 shows the device connections.

1. SH7727SE

The DIP switch settings on the SH7727SE board must be changed from those at shipment.
Before turning on the power, ensure that the DIP switches are set as shown in table 3.1. There
is no need to change any other DIP switches.

Table Table Table Table 3.3.3.3.1111 DIP Switch SettingDIP Switch SettingDIP Switch SettingDIP Switch Settingssss

SwitchSwitchSwitchSwitch
At At At At Time ofTime ofTime ofTime of
ShipmentShipmentShipmentShipment After ChangeAfter ChangeAfter ChangeAfter Change DIP SwitchDIP SwitchDIP SwitchDIP Switch Function Function Function Function

Baseboard SW1-6 OFF ON Select endian mode

Baseboard SW1-8 OFF ON Select E10A emulator mode

2. Control PC

A PC with Windows® 98/Windows® 2000 installed, and with a serial interface, is used as a
PC for USB packet generation tool, RequestGenerator.

3. PC equipped with a PCMCIA slot (E10A PC)

The E10A should be inserted into a PC card slot and connected to the SH7727SE via an
interface cable. After connection, start the HDI and perform emulation.

Rev. 1.0, 04/03, page 54 of 88

Figure Figure Figure Figure 3.3.3.3.1111 Device ConnectionsDevice ConnectionsDevice ConnectionsDevice Connections

USB cableUSB cableUSB cableUSB cable

Control PCControl PCControl PCControl PC
(Windows(Windows(Windows(Windows® 98/Windows 98/Windows 98/Windows 98/Windows® 2000) 2000) 2000) 2000)
As a PC for serial connection,
requests generation of USB packet
from RequestGenerator

Serial cross cableSerial cross cableSerial cross cableSerial cross cable

E10A cableE10A cableE10A cableE10A cable

E10A PCE10A PCE10A PCE10A PC
(Windows(Windows(Windows(Windows® 95/Windows 95/Windows 95/Windows 95/Windows® 98) 98) 98) 98)
User firmware can be developed
by using HDI, HEW

Any USB function deviceAny USB function deviceAny USB function deviceAny USB function device
Transfer USB function
device

Rev. 1.0, 04/03, page 55 of 88

3.23.23.23.2 Software EnvironmentSoftware EnvironmentSoftware EnvironmentSoftware Environment

A sample program, as well as the compiler and linker used, are explained.

3.3.3.3.2.12.12.12.1 Sample ProgramSample ProgramSample ProgramSample Program

Files required for the sample program are all stored in the SH7727 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 3.2.

SH7727

Usbh_App_Link.h Usbh_Dr_ReqGenDr.h Usbh_App_Link.c Usbh_Dr_ReqGenDr.c

StartUp.c AsmFunction.src Sct.src SH7727.h

Usbh _Common.h Usbh_dr_EnuDrDefs.h Usbh_ Dr_DrList.h
Usbh_Usbd_Defs.h Usbh_Hcd_TypeDef.h Usbh_Hcd_ProType.h Usbh_Hcd_Defs.h
Usbh_Usbd_Common.c Usbh_Hcd_Tasks.c Usbh_Hcd_Main.c Usbh_Hcd_Main.c
Usbh_Dr_Interrupt.c Usbh_Dr_StorageDr.c

debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf (folder)
BuildOfHew.bat lnkSet1.sub

USBHost folder

ReqGen folder

FigFigFigFigureureureure 3.3.3.3.2222 Files Included in Files Included in Files Included in Files Included in SH7727SH7727SH7727SH7727 Folder Folder Folder Folder

3.3.3.3.2.22.22.22.2 Compiling and Compiling and Compiling and Compiling and LLLLinkinginkinginkinginking

The sample program is compiled and linked using the following software: High-Performance
Embedded Workshop Version 1.0 (release 9) (hereafter called HEW).

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

Firstly, a folder named Tmp should be created below the C:\Hew folder for use in compiling
(figure 3.3).

C:\

\Hew

\Tmp

Figure 3.3 Creating a Working FolderFigure 3.3 Creating a Working FolderFigure 3.3 Creating a Working FolderFigure 3.3 Creating a Working Folder

Rev. 1.0, 04/03, page 56 of 88

Next, the folder in which the sample program is stored (SH7727) should be copied to any drive. In
addition to the sample program, this folder contains a batch file named BuildOfHew.bat. This
batch file sets the path, specifies compile options, specifies a log file indicating the compile and
linking results, and performs other operations. When BuildOfHew.bat is executed, compiling and
linking are performed. As a result, a file named debugger.ABS, which is an executable file, is
created within the folder. At the same time, a map file named debugger.MAP and a log file named
log.txt are created. The map file indicates the program size and variable addresses. The compile
results (whether there are any errors, etc.) are recorded in the log file (figure 3.4).

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BuildOfHew.bat, as well as
the library settings in InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of shc.exe, and the setting for the environment variable
shc_lib used by the compiler should be set to the folder of shc.exe, the shc_inc setting
should be changed to the folder of machine.h, and the setting of shc_tmp should
specify the working folder for the compiler. The path of shcpic.lib should be specified
for the library.

Batch file

BuildOfHew.bat
Execution

Execution result

debugger.ABS

debugger.MOT

debugger.MAP

log.txt

SH7727

Figure Figure Figure Figure 3.3.3.3.4 Compile Results4 Compile Results4 Compile Results4 Compile Results

3.3.3.3.2.2.2.2.3333 Request GeneratorRequest GeneratorRequest GeneratorRequest Generator

Files required for the USB packet generation tool, RequestGenerator, are all stored in the ReqGen
folder.

ReqGen

ReqGen.exe MSCOMM32.OCX TABCTL32.OCX mscomctl.ocx comdlg32.ocx

SampleScenario_Control.txt SampleScenario_Control2.txt

SampleScenario_Interrupt.txt SampleScenario_Bulk.txt

FigFigFigFigureureureure 3.53.53.53.5 Files Included in Files Included in Files Included in Files Included in ReqGenReqGenReqGenReqGen Folder Folder Folder Folder

Rev. 1.0, 04/03, page 57 of 88

3.3.3.3.3333 Loading and Executing the ProgramLoading and Executing the ProgramLoading and Executing the ProgramLoading and Executing the Program

Figure 3.6 shows the memory map for the sample program.

PResetException area

PGeneralExceptions area

PTLBMissException area

PNonCash area

HCCA areas

ED and TD areas

 Stack area

PInterrupt area

P, C, D areas

R and B areas

AC00 0000
AC00 003C

AC00 0100

AC00 013F

AC00 0400
AC00 048B

AD70 0000
AD70 00FB

AD50 0000
AD59 0BFF

A501 7000

A501 8FFC

AC00 0600

AC00 0653

AC00 1000

AC00 1083

CC01 B8CF

CC01 0000

AC20 0000
AC21 540F

196 bytes

256 bytes

64 bytes

140 bytes

84 bytes

132 bytes

47312 bytes

87055 bytes

592896 bytes

8 kbytes

Notes:

*

The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.
Placed in the P3 cache write-through space. Consequently the address bits A31
to A29 are 110.

SH7727SE

*

Figure Figure Figure Figure 3.6 3.6 3.6 3.6 Memory MapMemory MapMemory MapMemory Map

As shown in figure 3.6, this sample program allocates areas of P, C, D, R, and B to the SDRAM.
In order to use the E10A for break and other functions, the program must be placed in RAM in this
way. These memory allocations are specified by the InkSet1.sub file in the SH7727 folder. When
incorporating the program in ROM by writing it to flash memory or some other media, this file
must be modified.

3.3.3.3.3.13.13.13.1 LoadingLoadingLoadingLoading the Programthe Programthe Programthe Program

In order to load the sample program into the SDRAM of the SH7727SE, the following procedure
is used.

Rev. 1.0, 04/03, page 58 of 88

• Insert the E10A in which the HDI has been installed into the E10A PC, connect the E10A to
the SH7727SE via a user cable, and connect the COM1 port of serially-connected PC to the
SH7727SE via a serial cable.

• Turn on the power to the E10A PC and serially-connected PC for start up.

• Initiate the HDI.

• Turn on the power to the SH7727SE.

• A dialog (figure 3.7) is displayed on the PC screen; turn the SH7727SE reset switch (SW1) on,
and after resetting the CPU, click the OK button or press the Enter key.

• Select CommandLine in the View menu to open a window (figure 3.8), click the BatchFile
button on the upper left, and specify the 7727e10a.hdc file in the SH7727 folder. As a result,
the BSC is set and access to the SDRAM is enabled.

• Select LoadProgram... from the File menu; in the Load Program dialog box, specify
debugger.ABS in the SH7727 folder.

• Select Go from the Run menu bar to execute the program

Through the above procedure, the sample program can be loaded into the RAM of the SH7727SE.

Figure 3.7 Reset Request DialogFigure 3.7 Reset Request DialogFigure 3.7 Reset Request DialogFigure 3.7 Reset Request Dialog

Figure 3.8 Command Line InputFigure 3.8 Command Line InputFigure 3.8 Command Line InputFigure 3.8 Command Line Input

Batch file

Rev. 1.0, 04/03, page 59 of 88

3.43.43.43.4 ExecutionExecutionExecutionExecution

Activation of Activation of Activation of Activation of RequestGeneratorRequestGeneratorRequestGeneratorRequestGenerator

1. Execute the sample program according to the procedure of section 3.3.1. After successful
launching of the sample program, “0xAA” is displayed on the SH7727SE’s 8-bit LEDs.

2. Copy the .ocx file from the ReqGen folder to the Windows\System32 folder (Windows®98) or
WinNT\System32 (Windows®2000).

3. Execute ReqGen.exe, which is in the ReqGen folder. This opens the COM1 port.

Figure 3.9 Initial Screen of Figure 3.9 Initial Screen of Figure 3.9 Initial Screen of Figure 3.9 Initial Screen of the the the the RequestGeneratorRequestGeneratorRequestGeneratorRequestGenerator

4. Click Start.

Rev. 1.0, 04/03, page 60 of 88

Figure 3.10 Screen when Figure 3.10 Screen when Figure 3.10 Screen when Figure 3.10 Screen when the the the the RequestGenerator RequestGenerator RequestGenerator RequestGenerator is is is is ActiveActiveActiveActive

5. Connect the USB-function device to the USB-A connector of the SH7727 SE. When the
connection is detected, the GetDescriptor(Device) command is executed and the
MaxPacketSize information on endpoint0 is obtained. Information on the speed of the
connected device can also be obtained.

Note: To use the RequestGenerator, click Start before connecting the device.

Rev. 1.0, 04/03, page 61 of 88

Figure 3.11 Figure 3.11 Figure 3.11 Figure 3.11 RequestGenerator (Screen when RequestGenerator (Screen when RequestGenerator (Screen when RequestGenerator (Screen when a a a a Device is Connected)Device is Connected)Device is Connected)Device is Connected)

6. Perform the desired operation.

7. Pull the plug for the USB-function device from the SH7727SE’s USB-A socket.

8. Click the Finish button.

9. Various USB-function devices can be placed under the control of the RequestGenerator by
repeating steps 4 to 8.

The functions of the Request Generator’s buttons are explained below.

• Start

Activate the RequestGenerator by clicking the Start button. When the Request Generator is
activated, the status display against “RequestGenerator” changes from Disable to Enable.

• Finish

Click the Finish button to close the RequestGenerator. When the RequestGenerator is closed,
the status display against “RequestGenerator” changes from Enable to Disable.

• SetAddress

Click the SetAddress button to issue a SetAddress command. Input a USB device address (2 or
greater) for allocation on the parameter-input screen.

• SetConfig

Click the SetConfig button to issue a SetConfig command. Input the value for the required
configuration on the parameter-input screen.

Rev. 1.0, 04/03, page 62 of 88

• GetDesc

Click the GetDesc button to issue a GetDescriptor command. Input the descriptor type (only
the Device and Configuration are supported) and size on the parameter-input screen.

• Control

Any control transfer can be executed by clicking the Control button. Specify an 8-byte
DeviceRequest value, the transfer direction for the data stage, and data and amount of data to
be transferred in the data stage (this setting is prohibited with “In” transfers) on the parameter-
input screen. Set the direction of data-stage transfer for commands that have no DataStage,
such as SetAddress and SetConfiguration, as “Out”.

Notes: The SetAddress command cannot be executed through this function. Execute this
command by clicking the SetAddress button.
Erroneous settings may lead to incorrect operation.

• Interrupt

Click the Interrupt button to execute an interrupt transfer. Specify the endpoint number for the
transfer, the direction of transfer, MaxPacketSize, PollingRate, amount of data to be
transferred, the data to be transferred (setting data is unnecessary for “In” transfers), and the
number of interrupt packets to be generated on the parameter-input screen.

• Bulk

Click the Bulk button to execute a bulk transfer. Specify the endpoint number for the transfer,
the direction of transfer, MaxPacketSize, PollingRate, amount of data to be transferred, and the
data to be transferred (setting data is unnecessary for “In” transfers) on the parameter-input
screen.

• MemoryRead

Data can be read from a specified address of the SH7727SE by clicking the MemoryRead
button. Specify the address, amount of data to be read, and access width (byte, word, or
longword) on the parameter-input screen.

• Scenario

Clicking the Scenario button allows you to set up a text file containing a list of processes for
execution. Any button function other than Start, Finish, and Scenario can be included in the
text file.
The command names that correspond to the respective buttons, along with their parameters,
are listed in table 3.2. Spaces must be included between the command name and parameters
and between the individual parameters, and the line must end with a line-feed. For example, to
include SetConfig for execution, enter “SC 1” then begin a new line. Table 3.3 gives some
examples and descriptions.
Parameters should be written in the order shown in figure 3.2. The listed parameters are the
same as are specified by clicking the individual buttons on the parameter-input screen. The
order of parameters is also the same as on the parameter-input screen.

Rev. 1.0, 04/03, page 63 of 88

Table 3.2Table 3.2Table 3.2Table 3.2 Commands in Commands in Commands in Commands in the the the the Scenario FunctionScenario FunctionScenario FunctionScenario Function

ButtonButtonButtonButton CommandCommandCommandCommand Parameter (D: Parameter (D: Parameter (D: Parameter (D: decimaldecimaldecimaldecimal, H: , H: , H: , H: hexadecimalhexadecimalhexadecimalhexadecimal))))

SetAddress SA USB device address (D, 2 or greater)

SetConfig SC Configuration value (D)

GetDesc DeviceDescriptor: GDD
ConfigDescriptor: GDC

Amount to be transferred (H)

Interrupt INT Endpoint number (D), amount to be transferred (H),
polling rate (D), direction of transfer (D, 1: OUT, 2:
IN), data for transfer (H), MaxPacketSize (H), transfer
count (H)

Control CNT DeviceRequest (H), amount to be transferred (H),
direction of transfer (D, 1: OUT, 2: IN), data for
transfer (H)

Bulk BLK Amount to be transferred (H), direction of transfer (D,
1: OUT, 2: IN), data for transfer (H), Endpoint number
(D), MaxPacketSize (H)

MemoryRead MR Address to be accessed (H), amount of data (D),
access unit (D, 1 : byte, 2 : word, 3 : longword)

Rev. 1.0, 04/03, page 64 of 88

Table 3.3Table 3.3Table 3.3Table 3.3 Examples of ScenarioExamples of ScenarioExamples of ScenarioExamples of Scenario----File File File File EntriesEntriesEntriesEntries

Examples of WritingExamples of WritingExamples of WritingExamples of Writing TransferTransferTransferTransfer

SA 2 (line feed) Issues the SetAddress command for address = 2

SC 1 (line feed) Issues the SetConfig command for configuration = 1

GDD 12 (line feed) Issues the GetDescriptor (Device) command for transfer
size = 0x12

GDC 400 (line feed) Issues the GetDescriptor(Config) command for transfer size
= 0x400

CNT 0009010000000000 0 1
(line feed)

Issues the SetConfig command for configuration = 1

CNT 8006000100001200 12 2
(line feed)

Issues the GetDescriptor (Device) command for transfer
size = 0x12

CNT 8006000200000004 0400 2
(line feed)

Issues the GetDescriptor(Config) command for transfer size
= 0x400

INT 1 4 10 2 0 4 20 (line feed) Interrupt transfer is carried out with the following settings.

Endpoint = 1, amount for transfer = 0x4 bytes, polling rate =
10 msec, direction of transfer = 2 (IN), data for transfer = 0,
MaxPacketSize = 0x4 bytes, transfer count = 0x20 times

BLK 40 1 (transfer data) 1 40
(line feed)

Bulk transfer is carried out with the following settings.

Amount for transfer = 0x40 bytes, direction of transfer = 1
(OUT), data for transfer = (omitted), endpoint = 1,
MaxPacketSize = 0x40 bytes

BLK 40 2 0 2 40 (line feed) Bulk transfer is carried out on following settings.

Amount for transfer = 0x40 bytes, direction of transfer = 2
(IN), data for transfer = 0, endpoint = 2, MaxPacketSize =
0x40 bytes

Notes: Write the command from the first column of each line.
Characters after // are ignored (treated as comments).

Tab codes are ignored.
The line feed must be included. A command that does not end with a line feed is not
processed.
SetAddress is not executable by the CNT command. Set Address must be executed by
using the SA command.

Other functions and points to note are explained below.

• Descriptor display function

Select the Show Descriptor tab. Click the Descriptor button to view Descriptor information
that has been obtained by clicking the GetDesc button .

Rev. 1.0, 04/03, page 65 of 88

Figure 3.12 Request Generator (Descriptor Display)Figure 3.12 Request Generator (Descriptor Display)Figure 3.12 Request Generator (Descriptor Display)Figure 3.12 Request Generator (Descriptor Display)

A Descriptor’s information can only be displayed when the Descriptor has been obtained
through the GetDesc button. Information on Descriptors that is gained by the Control button or
Scenario button cannot be displayed.

• Register browsing function

Select the HC Info tab. The latest values of the USB host-module registers are displayed
whenever the HC_Regs item is clicked. Double-click on HC_Regs to view the values in the
fields of HcControlHeadED, HcControlCurrentED, HcBulkHeadED, and HcBulkCurrentED.

Rev. 1.0, 04/03, page 66 of 88

Figure 3.13-1 Figure 3.13-1 Figure 3.13-1 Figure 3.13-1 RequestGenerator (Register Display)RequestGenerator (Register Display)RequestGenerator (Register Display)RequestGenerator (Register Display)

Figure 3.13-2 Figure 3.13-2 Figure 3.13-2 Figure 3.13-2 RequestGenerator (Register Display)RequestGenerator (Register Display)RequestGenerator (Register Display)RequestGenerator (Register Display)

Rev. 1.0, 04/03, page 67 of 88

Section 4 Overview of the Sample Program

The features and structure of the sample program are explained in this section. The sample
program runs on the SH7727SE and handles USB-host processing in response to interrupts from
the USB-host module and branches from the main routine. The SCIF module handles
communication with the RequestGenerator, which is the USB-packet generation tool. Of the
interrupts from modules in the SH7727, the three that concern the USB-host module are
RootHubStatusChange, WritebackDoneHead, and FrameNumberOverflow. Three other interrupts
concern the SCIF module: ERI2 (receive error), BRI2 (break error), and RXI2 (receive-error FIFO
full).

Features of this sample program are as follows:

• Control transfer can be performed.

• Bulk transfer can be used.

• Interrupt transfer can be performed.

• Transfer requests can be generated by using the RequestGenerator packet-generation tool on
the PC which is connected to the SH7727SE with serial cable.

Note: Isochronous transfer is not supported.
The Suspend and Resume states are not supported.

Rev. 1.0, 04/03, page 68 of 88

4.14.14.14.1 StateStateStateState----Transition DiagramTransition DiagramTransition DiagramTransition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between six states.

• Reset State

Upon power-on reset and manual reset, this state is entered. In this reset state, the SH7727
mainly performs initial settings.

• Connection-Wait State

This state is entered after initial settings have been completed in the reset state. The program
returns to this state when a device is disconnected from the Root Hub while the program is in
the steady state. In this state, the program waits for a RootHubStatusChange interrupt. When
this interrupt is generated by the connection of a device to the Root Hub, processing for
connection is carried out, and the steady state is then entered.

• Steady State

The program enters this state after a device has been connected to the Root Hub while the
program was in the connection-wait state. In this state, EDs and TDs are generated and transfer
requests are generated for the HC. Processing for the requested transfer is then completed. The
program also controls the SCIF module to perform serial output.

• Root Hub Processing

The program enters this state in response to a RootHubStatusChange interrupt that occurs
while the program is in the connection-wait or steady state. Since this interrupt occurs when
the root hub condition changes, the program decides the interrupt source and handles the
following: connection processing when the root hub condition changes from the disconnection
state to connection state, disconnection processing when the root hub condition changes from
the connection state to the disconnection state, and overcurrent clearing processing when the
overcurrent state is entered.

• Done-Queue Processing

The program enters this state in response to a WriteBackDoneHead interrupt that occurs while
the program is in the steady state. The Done Queue, which is the list of completed TDs, is
received in this state.

• Serial-Communications State

The program enters this state in response to a serial-receive interrupt that occurs while the
program is in the steady state. Communications with the RequestGenerator, which is a tool
running on the PC, take place in this state.

Rev. 1.0, 04/03, page 69 of 88

Main loop

Reset state

Connection-wait sate

Steady state

Serial communications state

Root Hub
processing state

Done Queue
processing state

Transfer-result
processing state

Serial output state

Connection
processing state

Disconnection
processing state

OverCurrent
processing state

Serial input state

Transfer-request
generation state

Initial setting
completed

Connection

Disconnection

RootHubStatusChange
intgerrupt generated

WriteBackDoneHead
interrupt generated

Serial-receive-interrupt generated
(RXI2, ERI2, BRI2)

USB host interrupt priority: 15

SCIF2 interrupt priority: 14

RootHubStatusChange
interrupt generated

Figure 4.1 StateFigure 4.1 StateFigure 4.1 StateFigure 4.1 State----Transition DiagramTransition DiagramTransition DiagramTransition Diagram

Rev. 1.0, 04/03, page 70 of 88

4.24.24.24.2 Types of InterruptsTypes of InterruptsTypes of InterruptsTypes of Interrupts

As was explained at the beginning of section 4, the USB host module and SCIF interrupts are used
in this sample program. The interrupt sources in use are indicated by the HcInterruptStatus register
of the USB host module and the serial status register, SCSSR2, for the SCIF; there are three
interrupts for each. When an interrupt occurs, the flag bit for the corresponding interrupt source is
set to 1 and an interrupt request is sent to the CPU. The sample program includes appropriate
interrupt handling. Figure 4.2 shows the types of interrupts.

HcInterruptStatus

SCSSR register

Bit :

Bit name :

Bit :

Bit name :

Bit :

Bit name :

FNO

7 6 5 4 3 2 1 0

RootHubStatusChange FrameNumberOverrun WriteBackDoneHead

UE RD

Receive error
(serial reception)

PER PER

RHSC SF WDH SO

TDF

PER PER FER FER FER FER

ER BRK FERTEN PER RDF DR

15 14 13 12 11 10 9 8

Receive FIFO data full
(serial reception)

7 6 5 4 3 2 1 0

Break
(serial reception)

Figure 4.2 Types of InterruptsFigure 4.2 Types of InterruptsFigure 4.2 Types of InterruptsFigure 4.2 Types of Interrupts

Rev. 1.0, 04/03, page 71 of 88

4.34.34.34.3 File StructureFile StructureFile StructureFile Structure

This sample program consists of nine source files and ten header files. The overall file structure is
shown in table 4.1. The relationships among files are shown as layered configuration in figure 4.3.

Table 4.1Table 4.1Table 4.1Table 4.1 File StructureFile StructureFile StructureFile Structure

File NameFile NameFile NameFile Name Principle RolePrinciple RolePrinciple RolePrinciple Role

StartUp.c Microcomputer initial setttings

Usbh_Hcd_Tasks.c OpenHCI specification functions

Usbh_Hcd_Others.c HCD layer common function

Usbh_Hcd_Main.c Main routine of HCD layer, interrupt functions, etc.

Usbh_Usbd_Common.c USBD layer common function

Usbh_Dr_EnuDr.c Driver layer function for Enumeration processing

Usbh_Dr_ReqGenDr.c Driver layer function for RequestGenerator

Usbh_App_Log.c Serial output function

Usbh_App_Link.c Function for USB host module and SCIF module conjunction
processing

SH7727.h SH7727 register definition

Usbh_Hcd_TypeDef.h HCD layer structure declaration

Usbh_Hcd_ProType.h Prototype declaration of HCD layer

Usbh_Hcd_Defs.h Various declarations of HCD layer

Usbh_Usbd_Defs.h Various declarations of USBD layer

Usbh_Dr_EmuDrDefs.h Various declarations of EnumerationDriver

Usbh_Dr_DrList.h DeviceDriver list called by EnumerationDriver

Usbh_Dr_ReqGenDr.h Various declarations of ReqGenDr

Usbh_App_Link.h Various declarations required for USB host module and SCIF
module conjunction processing

Usbh_Common.h Common declaration of whole USB host

Rev. 1.0, 04/03, page 72 of 88

USB hostSCIF conjunction processing part

SCIF firmware

Driver layer

USB host module

SCIF module

Software

Hardware

USB Drive (USBD) layer

Host Controller Driver (HCD) layer

Host Controller (HC)

Enumeration
Driver

RequestGenerator
Driver

RootHub

Usbh_App_xxx.c

Usbh_Dr_xxx.c

Usbh_App_Link.c

Usbh_Usbd_xxx.c

Usbh_Hcd_xxx.c

Figure 4.3 Layer Structure of FirmwareFigure 4.3 Layer Structure of FirmwareFigure 4.3 Layer Structure of FirmwareFigure 4.3 Layer Structure of Firmware

Rev. 1.0, 04/03, page 73 of 88

4.44.44.44.4 Purposes of FunctionsPurposes of FunctionsPurposes of FunctionsPurposes of Functions

Table 4.2 shows functions contained in each file and their purposes.

Table 4.2-1Table 4.2-1Table 4.2-1Table 4.2-1 StartUp.cStartUp.cStartUp.cStartUp.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

StartUp.c CallReseException Operates for reset exception and calls
function to be executed

CallGeneralException Calls function corresponding to general
exception other than TLB miss occurrence

CallTLBMissException Calls function corresponding to TLB miss
occurrence

CallInterrupt Calls function corresponding to interrupt
request

SetPowerOnSection Module and memory initialization, and shift
to main loop

_INITSCT Copies variables that have initial settings to
the RAM work area

InitMemory Clears RAM area used in bulk transfer

InitSystem Pull-up control of the USB bus

SciInit SCIF module initialization

When a power-on reset or manual reset is carried out, SetPowerOnSection in StartUp.c is called.
At this point, the SH7727 initial settings are carried out. After that, the RAM area used for the
transfers is cleared.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-2 2 2 2 UsbUsbUsbUsbh_Hcd_h_Hcd_h_Hcd_h_Hcd_Main.cMain.cMain.cMain.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Hcd_Main.c HCD_Setup Initializes the HCD

HCD_IntRoutine Interrupt processing routine

HCD_MainRoutine HCD layer main routine

HCD_ControlRootHub Control RootHub

In Usbh_Hcd_Main.c, the HCD is initialized and various interrupts are processed when they are
occurred. Also, when the RootHubStatusChange interrupt is occurred, Root Hub is controlled.

Rev. 1.0, 04/03, page 74 of 88

Table 4.2-3Table 4.2-3Table 4.2-3Table 4.2-3 UsbUsbUsbUsb_Hcd__Hcd__Hcd__Hcd_Tasks.cTasks.cTasks.cTasks.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

InsertEDForEndpoint Generate ED and add it to listUsbh_Hcd_Tasks.c

QueueGeneralRequest Generate TD and link it to ED

ProcessDoneQueue DoneQueue processing

InitializeInterruptLists Build Interrupt list

OpenPipe Generate periodic ED and add it to list

CheckBandwidth Check bandwidth

PauseED Pause ED

ProcessPausedED Pause ED

RemoveED Delete existing ED

CancelRequest Cancel processing of existing
USBDRequest. Delete generated TD.

UnscheduleIsochronousOr
InterruptEndpoint

Delete periodic ED

SetFrameInterval Arrange value of frame interval

Get32BitFrameNumber Generate 32-bit frame number from 16-bit
length HccaFrameNumber

Functions of Usbh_Hcd_Tasks.c are all based on the sample codes in section 5 of the OpenHCI
specification. The function carries out generation and deletion of EDs and TDs.

Table 4.2-4 Usbh_Hcd_Others.cTable 4.2-4 Usbh_Hcd_Others.cTable 4.2-4 Usbh_Hcd_Others.cTable 4.2-4 Usbh_Hcd_Others.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Hcd_Others.c HCD_CreateDeviceData Initialize DeviceData structure variable

HCD_CreateEndPoint Initialize Endpoint structure variable

HCD_SetupEndpoint Setup Endpoint structure variable

AllocateEndpointDescriptor Reserve ED variable

PhysicalAddressOf Obtain address

IsListEmply Define whether List_Entry variable is null or
not

AllocateTransferDescriptor Reserve TD variable

InsertHeadList Insert List_Entry variable in start of List

InsertTailList Insert List_Entry variable in end of List

Containing_Record Find ED and TD which meet condition

InitializeListHead Initialize List_Entry variable

Rev. 1.0, 04/03, page 75 of 88

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Hcd_Others.c min Define minimum value

CompleteUsbdRequest Send completed USBDRequest variable to
USBD layer

FreeTransferDescriptor Delete TD variable

RemoveListHead Delete LIST_ENTRY variable

RemoveListEntry Delete LIST_ENTRY

VirtualAddressOf Obtain address

HCD_InitializeEndpoint Generate Endpoint variable and make ED
variable

HCD_GetRootDeviceSpeed Obtain information of device speed
connected to RootHub

HCD_ScanEndpoint Access to array for Endpoint control

HCD_StoreEndpoint Access to array for Endpoint control

HCD_Request Generate Endpoint variable, ED variable,
and TD variable from received
USBDRequest

HCD_CheckDiffEPs Confirm whether setting of Endpoint has
changed

HCD_CheckRemainedTDs Check the number of remaining TD variable

HCD_CheckRemainedEDs Check the number of remaining ED variable

HCD_CheckRemainedEPs Check the number of remaining Endpoint

HCD_PauseEndpoint Pause ED processing

HCD_RemoveEndpoint Delete Endpoint variable and ED variable

HCD_CancelRequest Delete transfer requested USBDRequest

HCD_FreeEndpoint Clear Endpoint variable

FreeEndpointDescriptor Clear ED variable

HCD_ClearDeviceData Clear DeviceData variable

HCD_ClearList Initialize array for Endpoint, ED, and TD
variables

HCD_ClearHCCA Initialize HCCA area

HCD_WaitConnection
Complete

Connect device to RootHub

HCD_WaitRoutine Wait routine

In Usbh_Hcd_Others.c contains common functions called from the HCD layer function and
functions called from the USBD layer.

Rev. 1.0, 04/03, page 76 of 88

Table 4.2-5Table 4.2-5Table 4.2-5Table 4.2-5 UsbUsbUsbUsb_h_Usbd__h_Usbd__h_Usbd__h_Usbd_Common.cCommon.cCommon.cCommon.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Usbd_Common.c USBD_SetupDriverRequest
ToUSBDRequestndpoint

Make USBDRequest structure variable
from DriverRequest structure variable

USBD_ReceiveDriver
Request

Receive DriverRequest structure variable
from Dr layer

USBD_ReceiveUSBDR
Request

Receive completed USBDRequest
structure variable from HCD layer

USBD_CreateRequest Reserve USBDRequest structure variable
and initialize

USBD_FreeRequest Initialize USBDRequest structure variable

USBD_GetDeviceAddress Obtain value of usable DeviceAddress

USBD_ReportConnection Called when a device is connected to
RootHub and initialize USBD layer

USBD_ReportDisConnection Called when a device is disconnected
from RootHub and processing of
disconnection is carried

USBD_RemoveUSBDRequest Delete processing requested
USBDRequest to HCD

USBD_RemoveDevice Delete endpoint structure variable in
specified DeviceAddress

USBD_RemoveEndpoint Delete specified Endpoint structure
variable

USBD_ReadDAArray Access to array for DeviceAddress control

USBD_WriteDAArray Access to array for DeviceAddress control

USBD_RootDeviceSpeedInfo Obtain information of device speed
connected to RootHub

Usbh_Usbd_Common.c is the function group in the USBD layer which receives transfer request
from the Driver layer and transfers the request to the HCD layer. Then, the group receives the
transfer result from the HCD layer and informs it to the requesting driver.

Rev. 1.0, 04/03, page 77 of 88

Table 4.2-6Table 4.2-6Table 4.2-6Table 4.2-6 UsbUsbUsbUsbh_Dr_h_Dr_h_Dr_h_Dr_EnuDr.cEnuDr.cEnuDr.cEnuDr.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_EnuDr.c EnumeDriver_Start Initialize EnumerationDr and ready to
start transfer

EnumeDriver_Result Receive the result of transfer request to
USBD layer and request next transfer

EnumeDriver_Request Transfer request to USBD layer

EnumeDriver_GetInfoFrom
Descriptor

Selects necessary information among
obtained Descriptor information

EnumeDriver_GetDevice
Descriptor

Selects necessary information from
obtained DeviceDescriptor

EnumeDriver_GetConfig
Descriptor

Selects necessary information from
obtained ConfigDescriptor

EnumeDriver_GetInterface
Descriptor

Selects necessary information from
obtained InterfaceDescriptor

EnumeDriver_GetEndpoint
Descriptor

Selects necessary information from
obtained EndpointDescriptor

EnumeDriver_Initialize Initialize EnumerationDriver

EnumeDriver_Clear Clear internal flag of EnumerationDriver

EnumeDriver_EnableDriver Define class of connected device and call
most appropriate Driver function

EnumeDriver_Enable Enable EnumerationDriver

EnumeDriver_Disable Disable EnumerationDriver

DummyDriver_Start Dummy Dreiver execution function

DriverCommon_SetupDriver
Request

Gather transfer request to DriverRequest

DriverCommon_DoDrivr
Request

Send DriverRequest function to USB
layer and request transfer

DriverCommon_Endian Endian conversion

Usbh_Dr_EmuDr.c carries out the processing for EnumerationDriver. The function carries
SetAddress for the connected device, distinguishes DeviceClass, and defines which Driver to call.

Table Table Table Table 4.4.4.4.2-72-72-72-7 Usbh_App_LogUsbh_App_LogUsbh_App_LogUsbh_App_Log.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

App_LogOut_Char Function to output character string

App_LogOut_Data Function to output character string

Usbh_App_Log.c

App_ExOutPut Function to output 1-byte string variable

Rev. 1.0, 04/03, page 78 of 88

Usbh_App_Log.c serially outputs information of debugging.

Table 4.2-8Table 4.2-8Table 4.2-8Table 4.2-8 UsbUsbUsbUsbh_Dr_h_Dr_h_Dr_h_Dr_ReqGenDr.cReqGenDr.cReqGenDr.cReqGenDr.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

App_ReceiveCommand Receive command data from
RequestGenerator

Usbh_Dr_ReqGenDr.c

App_CheckReceiveCommand Define received command data

DisableRequestGenerator Carry out RequestGenerator end
processing

DoRequestGenerator Initialize RequestGeneratorDriver

DoSetAddress Request SetAddress

ReceiveSetAddressResult Receive result of SetAddress request

DoGetDescriptorDevice Request GetDescriptor (Device) request

ReceiveGetDescriptorDevice
Result

Receive result of GetDescriptor (Device)
request

DoGetDescriptorConfig Request GetDescriptor (Config) request

ReceiveGetDescriptorConfig
Result

Receive the result of GetDescriptor
(Config) request

DoSetConfiguration Request SetConfiguration

ReceiveSetConfigurationResult Receive the result of SetConfiguration
request

DoIntTransfer Request interrupt transfer

ReceiveIntTransferResult Receive the result of interrupt transfer
request

DoSetEnvironment Set DeviceSpeed information and
information of MaxPacketSize of Ep0

DoGetEnvironment Request obtaining DeviceSpeed
information and information of
MaxPacketSize of Ep0

ReceiveGetEnvironmentResult Receive DeviceSpeed information and
information of MaxPacketSize of Ep0

DoControlTransfer Request any control transfer

ReceiveControlTransferResult Receive result of control transfer
request

DoBulkTransfer Request bulk transfer

ReceiveBulkTransferResult Receive result of bulk transfer request

DoMemoryRead Data is read from specified address

mystrtoul Convert character string to hexadecimal

Rev. 1.0, 04/03, page 79 of 88

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_ReqGenDr.c DisplayTitle Output title of RequestGenerator

DisplayHelp Indicate Help information

Usbh_Dr_ReqGenDr.c receives a transfer request from the USB packet generation tool
RequestGenerator on the PC and returns the result.

Table 4.2-9Table 4.2-9Table 4.2-9Table 4.2-9 Usbh_App_Link.cUsbh_App_Link.cUsbh_App_Link.cUsbh_App_Link.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_App_Link.c App_SerialLn SerialIn processing

App_SerialOut Serial out processing

Usbh_App_Link.c performs communication between RequestGeneratotrDriver and
RequestGenerator on the PC by controlling the SCIF module.

Figure 4.4 shows the interrelations between the functions explained in table 4.2. The upper-side
functions call the lower-side functions. Also, multiple functions may call the same function. In the
steady state, CallResetException calls other functions, and in the case of a transition to the USB
communication state which occurs on an interrupt, CallInterrupt which is an interrupt function
calls HCD_IntRoutine function. In the SCIF interrupt, CallInterrupt calls AppSerialIn. Figure 4.4
shows the hierarchical relation of functions; there is no order for function calling. For information
on the order in which functions are called, refer to the flowcharts in section 6.

Rev. 1.0, 04/03, page 80 of 88

SetPowerOnSection

CallResetException CallInterrupt

HCD_IntRoutine App_SerialIn

HCD_ControlRootHub

USBD_ReportDisConnection

ProcessDoneQueue

USBD_FreeRequest DriverRequest->Function

HCD_InitializeEndpoint QueueGeneralRequest

HCD_CreateEndpoint HCD_SetupEndpoint OpenPipe InsertEDForEndpoint

USBD_RemoveDevice

USBD_ReceiveUSBDRequest

USBD_RemoveUSBDRequest USBD_RemoveDevice

USBD_ReportConnection

EnumeDriver_StartHCD_GetRootDeviceSpeed USBD_GetDeviceAddress

USBD_ReceiverDriverRequest

HCD_RequestUSBD_CreateRequest USBD_SetupDriverRequestToUSBDRequest

InitMemory InitSystem_INTSCTHCD_MainRoutine

HCD_Setup SciInit

Figure 4.4 Figure 4.4 Figure 4.4 Figure 4.4 InterrelationsInterrelationsInterrelationsInterrelationshiphiphiphip between Functions between Functions between Functions between Functions

Rev. 1.0, 04/03, page 81 of 88

Section 5 Operation of Sample Program

The operation of the sample program is explained in this section.

5.15.15.15.1 Reset StateReset StateReset StateReset State

The internal state of the CPU and the registers of the on-chip peripheral modules are initialized
while the microcomputer is in the reset state. Next, the reset-interrupt function CallResetException
is called, reset-exception processing is handled, and the SetPowerOnSection function is called.
Figure 5.1 is a flow chart of operation from occurrence of the reset interrupt occurs to entry to the
steady state (main loop).

Microcomputer reset

Main loop

Microcomputer initial settings

USB host initial settings

SetPowerOnSection

CallResetException

BSC initial settings

Set clocks of USBH
and USBF to 'halted' in

standby control register 3

Make the SCIF.USB
interrupt-level settings in
interrupt priority-setting

registers E and G

Set port D6 as the
USB clock-input pin

Set port E1 as the
USB2_pwr_en pin

Clear RAM to 0

Initialize variables

SCIF initial settings

Make settings in the EXCPG
control register to set the
48-MHz clock for USB use

Set the USBH and USBF clocks
to operation by standby control

register 3

HCD_Setup

Set DeviceData structure variable

Set HcFmInterval

Set HcPeriodicStart

Build the List of periodic EDs

Reserve the HCCA area and
set address in HcHCCA

Change the HC's state from
Reset to Operational

Set port 2 power ON and
enable overcurrent

Set the port's power mode to
Per-Port Power and
disable overcurrent

Enable the RootHubStatusChange
and FrameNumberOverrun

interrupts

Figure 5.1 Figure 5.1 Figure 5.1 Figure 5.1 Processing in the Processing in the Processing in the Processing in the Reset StateReset StateReset StateReset State

Rev. 1.0, 04/03, page 82 of 88

Set items such as pins and interrupt levels that are related to operation of the USB host so that the
host is in a usable state before it is initialized. When the USB host is initialized, it enters the
connection-wait state.

5.25.25.25.2 Main Loop (ConnectionMain Loop (ConnectionMain Loop (ConnectionMain Loop (Connection----Wait and StWait and StWait and StWait and Steeeeaaaaddddy States)y States)y States)y States)

This loop is entered after initial settings have been completed in the reset state. In the main loop,
the program waits for USB-host interrupts. Figure 5.2 is the flowchart of the main loop.

HCD_IntRoutine is called in response to a USB-host interrupt. This function sets the flag (IntFlag)
which indicates generation of the USB-host interrupt, disables the interrupt, and ends immediately
after that. The actual processing in response to the interrupts is carried out in the main routine.

The main routine constantly checks for the occurrence of USB-host interrupts. This is done by
checking whether or not IntFlag is set to 1. When IntFlag is set to 1, processing that corresponds
to the generated interrupt is carried out, and interrupts are enabled again.

Clear the IntFlag and
enable USB-host interrupts

IntFrag
 = 1?

WBDH
interrupt ?

RHSC
 interrupt ?

FNO
 interrupt ?

HCD_MainRoutine

DoneQueue processing

RootHub processing

FrameNumber processing

NO

NO

NO

NO

YES

YES

YES

YES

IntFrag

WBDH
RHSC
FNO

: The flag which indicates that a USB-host
 interrupt has been generated
: WriteBackDoneHead interrupt
: RootHubStatusChange interrupt
: FrameNumberOverrun interrupt

Figure 5.2 Main LoopFigure 5.2 Main LoopFigure 5.2 Main LoopFigure 5.2 Main Loop

Rev. 1.0, 04/03, page 83 of 88

5.35.35.35.3 RootRootRootRoot----Hub Processing StateHub Processing StateHub Processing StateHub Processing State

The flow chart for Root-Hub processing is given in figure 5.3. This state is entered when the
RootHubStatusChange interrupt occurs while the program is in the connection-wait state and
steady state, i.e., in the main loop. This interrupt occurs when the state of the Root Hub has been
changed. Processing is carried out as shown in the following figure in response to the detection of
any of three states: connection of a device to the Root Hub, disconnection of a device from the
Root Hub, or when a port of Root Hub is overcurrented.

Disconnected?

To main loop

Stop HC processing of the list

Inform the USBD layer of
device disconnection

Connected?

Overcurrent?

HCD_ControlRootHub

Start

End

RootHubStatusChange
interrupt generated

Disconnection
processing state

Start HC processing of the list

Enable WriteBackDoneHead
interrupt

Inform USBD layer of device
connection

Connection processing
state

Disable overcurrent
detection

Port2PowerOn

Enable overcurrent detection

YES

NO

YES

YES

Figure 5.3 RootFigure 5.3 RootFigure 5.3 RootFigure 5.3 Root----Hub ProcessingHub ProcessingHub ProcessingHub Processing

Rev. 1.0, 04/03, page 84 of 88

5.45.45.45.4 ConnectionConnectionConnectionConnection----Processing StateProcessing StateProcessing StateProcessing State

Figure 5.4 shows the connection processing for a connected device. As was explained in section
5.3, connection of a device to the Root Hub generates a RootHubStatusChange interrupt, and the
USBD layer is informed of the connection. The function USBD_ReportConnection is called from
the HCD_ControlRootHub function. USBD_ReportConnection initializes the USBD layer and
calls the EnumerationDriver. The EnumerationDriver carries out the SetAddress processing to
allocate the DeviceAddress, and, through GetDescriptor processing, obtains the Descriptor
information on the device that has been connected. Of this information, the Class information on
the connected device is used to select the most appropriate driver.

Note: In this sample program, the connected device is controlled from the RequestGenerator, a
tool which runs on the PC. Therefore, drivers are not called.

Initialization of
EnumerationDriver

From Root Hub
processing state

Execute SetAddress

Execute GetDescriptor

USBD_ReportConnetion

Use the obtained Descriptor
information to distinguish
the connected device type

Initialization of USBD layer

Call EnumerationDriver

Define which driver
to call and then call a driver

To main loop

HCD_ControlRootHub

Usb_Dr_EnuDr.c

Figure 5.4 Connection ProcessingFigure 5.4 Connection ProcessingFigure 5.4 Connection ProcessingFigure 5.4 Connection Processing

Rev. 1.0, 04/03, page 85 of 88

5.55.55.55.5 Serial Input State (RequestGeneratorDriverSerial Input State (RequestGeneratorDriverSerial Input State (RequestGeneratorDriverSerial Input State (RequestGeneratorDriver----Processing State)Processing State)Processing State)Processing State)

The flow chart for serial input processing is given in figure 5.5.

Clicking the RequestGenerator’s Start button sends the command RG, which enables the USB-
packet function. In response to this command, the RequestGeneratorDriver is read and the
EnumerationDriver is disabled on the SH7727SE side. Thus, when a USB-function device is
connected to the USB-A connector, the EnumerationDriver is not read, this allows USB control by
the RequestGeneratorDriver (i.e., RequestGenerator). After that, the RequestGeneratorDriver
decodes and executes requests for transfers from the RequestGenerator, and returns the results to
the RequestGenerator.

App_SerialIn

Generation of a serial-in interrupt

Break code?

RequestGenerator
activation command?

Processing command
received?

Serial data received

Disable EnumerationDriver

Initialize
RequestGeneratorDriver

Transfer-request
generation state

To main loop

App_CheckReceiveCommand

App_ReceiveCommand

No

Yes

Yes

Yes

No

Figure 5.5 Serial Receive State (RequestGeneratorDriver Processing State)Figure 5.5 Serial Receive State (RequestGeneratorDriver Processing State)Figure 5.5 Serial Receive State (RequestGeneratorDriver Processing State)Figure 5.5 Serial Receive State (RequestGeneratorDriver Processing State)

Rev. 1.0, 04/03, page 86 of 88

5.65.65.65.6 TransferTransferTransferTransfer----Request Generation StateRequest Generation StateRequest Generation StateRequest Generation State

The program enters this state on completion of connection processing after a device has been
connected to the Root Hub and generation of the corresponding RootHubStatusChange interrupt.
In this state, requests for transfers are received from the Driver layer by the HCD via the USBD
layer, and the list in which EDs and TDs are linked is generated and sent to the HC. The flow chart
for transfer requests is given in figure 5.6.

In this sample software, transfer requests from the RequestGenerator (on the PC) are received by
the RequestGeneratorDriver by the serial-receive interrupt and transfer requests for the HCD are
carried. In response to these transfer requests, the HCD generates and sends EDs and TDs to the
HC.

Corresponding ED
has been generated?

Link the transfer request
to the DriverRequest

structure variable

Allocate Request Number
to the DriverRequest

structure variable

Convert DriverRequest structure
variable to USBDRequest

structure variable

Transfer request generated

From Serial Input

To main loop HC processing

HCD_RequestDriver layer

Link the generated ED to list

Generate ED

InsertEDForEndpoint/
OpenPipe

Link the TDs to the ED

Generate the TDs

QueueGeneralRequest

USBD_Receive
DriverRequest

YES

NO

USBDRequest
structure

DriverRequest structure

Figure 5.6 TransferFigure 5.6 TransferFigure 5.6 TransferFigure 5.6 Transfer----Request ProcessingRequest ProcessingRequest ProcessingRequest Processing

Rev. 1.0, 04/03, page 87 of 88

5.75.75.75.7 DoneQueue Processing StateDoneQueue Processing StateDoneQueue Processing StateDoneQueue Processing State

The DoneQueue processing state is entered when a WriteBackDoneHead interrupt is generated
while the program is in the steady state. In response to transfer requests, the HC generates data
packets from received EDs and TDs and carries out USB communication in the way shown in
figure 5.6. When processing of a set of received TDs has been completed, a WriteBackDoneHead
interrupt is generated. The flow chart is given in figure 5.7.

 Error?

Control transfer?

Bulk transfer or
Interrupt transfer?

ShortPacket
OK & Data

Unknown Error?

USBDRequest
completed?

To main loop

ProcessDoneQueue

Take the TD from Done Queue

Clear the TD

USBD_ReceiveUSBDRequest
(To figure 5.8, Transfer

Result Processing)

Obtain DoneQueue

Make the status of
USBDRequest no error

Yes

Yes

Yes

YesYes

No

No

No

No

No

WriteBackDoneHead
interrupt generated

Delete all TDs and EDs linked to that
USBDRequest that corresponds to the
TD for which the transfer-error occurred

Retransfer

Figure 5.7 DoneQueue ProcessingFigure 5.7 DoneQueue ProcessingFigure 5.7 DoneQueue ProcessingFigure 5.7 DoneQueue Processing

Rev. 1.0, 04/03, page 88 of 88

5.85.85.85.8 TransferTransferTransferTransfer----Result Processing StateResult Processing StateResult Processing StateResult Processing State

The program enters this state from a DoneQueue processing state which has been executed by the
WriteBackDoneHead interrupt. A completed TD is received as a USBDRequest from the
DoneQueue processing function, the result of the transfer is checked, and the result is returned to
the Driver that requested the transfer. Details of the transfer-result processing state are given in
figure 5.8.

Write back the information of
the USBDRequest variable to

a DriverRequest variable

Clear the USBD variable

Done Queue processing

To main loop

Drive layer

Check the result of transfer

Search for DriverRequest
structure variable corresponding

 to RequestNumber

USBD_Receive
USBDRequest

RequestNumber
allocated to

DriverRequest structure
variable

USBDRequest structure

Figure 5.8 TransferFigure 5.8 TransferFigure 5.8 TransferFigure 5.8 Transfer----Result ProcessingResult ProcessingResult ProcessingResult Processing

SH7727 USB Host Module Application Note

Publication Date: Rev.1.00, April 15, 2003
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasak

SH7727 G
i-shi, Kanagawa 211-8668 Japan

roup USB Host Module

REJ05B0015-0100Z

Application Note

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the Open Host Controller Interface (OpenHCI) Specification
	2.1	OpenHCI Standard
	2.2	Data-Transfer Types
	2.3	Host-Controller Interface
	2.3.1	Lists
	2.3.2	Endpoint Descriptors (EDs)
	2.3.3	Transfer Descriptor (TD)
	2.3.4	Host Controller Communications Area (HCCA)
	2.3.5	List Processing
	2.3.6	Done Queue
	2.3.7	Communication Channels

	2.4	Responsibilities of Host Controller Drive
	2.4.1	Management of Host Controller
	2.4.2	Bandwidth Allocation
	2.4.3	List Management
	2.4.4	Root Hub

	2.5	Responsibilities of Host Controller
	2.5.1	USB State
	2.5.2	Frame Management
	2.5.3	List Processing

	2.6	Register Specifications
	2.6.1	Control and Status Partition
	2.6.2	Memory Pointer Partition
	2.6.3 Frame Counter Partition
	2.6.4	Root Hub Partition

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking
	3.2.3	Request Generator

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program

	3.4	Execution

	Section 4 Overview of the Sample Program
	4.1	State-Transition Diagram
	4.2 Types of Interrupts
	4.3	File Structure
	4.4	Purposes of Functions

	Section 5 Operation of Sample Program
	5.1	Reset State
	5.2	Main Loop (Connection-Wait and Steady States)
	5.3	Root-Hub Processing State
	5.4	Connection-Processing State
	5.5	Serial Input State (RequestGeneratorDriver-Processing State)
	5.6	Transfer-Request Generation State
	5.7	DoneQueue Processing State
	5.8	Transfer-Result Processing State

	Colophon
	Back cover

