

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

SH7727 Group
USB Host Module
Application Note (Advanced)

32

A
pplication N

ote

Rev.1.00 2003.4

Renesas 32 bit RISC
Microcomputer
SuperHTM RISC engine Family/
SH7700 Series

Rev. 1.0, 04/03, page ii of xii

Rev. 1.0, 04/03, page iii of vi

CautionsCautionsCautionsCautions

Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor

products better and more reliable, but there is always the possibility that trouble may occur
with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the

Renesas Technology Corporation product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in
a device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology
Corporation product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

Microsoft Windows 98 and Windows XP are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Rev. 1.0, 04/03, page iv of xii

Preface

This application note describes the firmware that uses the USB function module and USB host
module in the SH7727. This is provided to be used as a reference when the user creates the USB
function controller firmware and USB host controller firmware.

This application note and the described software are application examples of the USB function
module and USB host module, and their contents and operation are not guaranteed.

In addition to this application note, the manuals listed below are also available for reference when
developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.1

• Open Host Controller Interface Specification for USB Preliminary Release Revision 1.0a

• Open Universal Serial Bus Driver Interface (Open USBDI) Specification Revision 1.0

• Universal Serial Bus Mass Storage Class Specification Overview Revision 1.1

• Universal Serial Bus Mass Storage Class (Bulk-Only Transport) Revision 1.0

• Device Class Definition for Human Interface Devices (HID) Version 1.1

• SH7727 Hardware Manual

• SH7727 Solution Engine (MS7727SE01) Instruction Manual

• SH7727 E10A Emulator User’s Manual

• SH7727 USB Host Controller Application Note

[Caution] The sample programs described in this application note do not include firmware related
to isochronous transfer of USB transfer types. When using the transfer type, the user
needs to create the program for it.

Also, the hardware specifications of the SH7727 and SH7727 Solution Engine, which
will be necessary when developing the system described above, are described in this
application note, but more detailed information is available in the SH7727 Hardware
Manual and the SH7727 Solution Engine Instruction Manual.

Rev. 1.0, 04/03, page v of vi

Contents

Section 1 Overview... 1

Section 2 Outline of USB Hub.. 5
2.1 Role of Hub...5
2.2 Hub Descriptor..5
2.3 Hub Class-Specific Requests ..6
2.4 Host-Hub-Function Connection State ...7
2.5 Port State Transition..8

2.5.1 Setting Port State..9
2.5.2 Checking Port State..9
2.5.3 Power Supply from Port...11
2.5.4 Port Device Detection ..12
2.5.5 From Power Supply to Packet Transmission ...12
2.5.6 Port State Transition ..13

Section 3 Development Environment ... 15
3.1 Hardware Environment ...15
3.2 Software Environment ..18

3.2.1 Sample Program...18
3.2.2 Compiling and Linking ..18

3.3 Loading and Executing the Program...20
3.3.1 Loading the Program..21
3.3.2 Execution ...22

3.4 Multi Function Device ..22

Section 4 Overview of Sample Program... 23
4.1 Entire Structure of Sample Program ...24
4.2 State Transition Diagram ..26
4.3 USB Function Communication State ..28

4.3.1 Control Transfers ...29
4.3.2 Bulk Transfers..29
4.3.3 Interrupt Transfers ...29

4.4 USB Host Communication State...30
4.4.1 Transfer Issue...32
4.4.2 Control Transfer...32
4.4.3 Bulk Transfers..32
4.4.4 Interrupt Transfer ...32
4.4.5 Transfer Result Processing...32

4.5 File Structure...33

Rev. 1.0, 04/03, page vi of vi

4.6 Argument Types.. 50
4.7 Multifunction .. 54

4.7.1 Descriptor .. 54
4.8 Device Driver.. 55

4.8.1 Hub Driver Operation .. 55
4.8.2 HID Driver Operation.. 55
4.8.3 Storage Driver Operation... 55

4.9 Cooperation of Host and Function .. 56
4.9.1 HID Class Cooperation .. 56
4.9.2 Storage Class Cooperation... 57

Section 5 Sample Program Operation ...63
5.1 Main Loop... 63
5.2 Types of Interrupts.. 64

5.2.1 Branching to Transfer Function ... 65
5.3 Interrupt on Cable Connection (BRST) .. 66
5.4 SH7727 Function Control Transfer... 67

5.4.1 Setup Stage .. 68
5.4.2 Data Stage .. 70
5.4.3 Status Stage.. 71

5.5 Bulk Transfer .. 74
5.5.1 Bulk-Out Transfer.. 75
5.5.2 Bulk-In Transfer .. 75

5.6 Interrupt Transfer .. 76
5.7 Hub Control by SH7727 Host ... 76
5.8 HID Control by SH7727 Host... 88
5.9 Storage Control by SH7727 Host.. 96
5.10 Link Operation between SH7727 Host and SH7727 Function ... 100

Rev. 1.0, 04/03, page 1 of 110

Section 1 Overview

This application note describes how to use the USB function module (USBF) and USB host
module (USBH) that are incorporated in the SH7727, and contains examples of firmware
programs.

The features of the USB function module incorporated in the SH7727 are listed below.

• Includes UDC (USB Device Controller) conforming to USB 1.1

• Automatic processing of USB protocol

• Automatic processing of USB standard commands for endpoint 0 (some commands need to be
processed by the firmware)

• Full-speed (12 Mbps) transfer supported

• Various interrupt signals for USB transmission and reception are generated.

• Internal system clock generated by the EXCPG or external input (48 MHz) can be selected.

• Power-down mode supported

• Includes bus transceiver

Endpoint Endpoint Endpoint Endpoint CCCConfigurationsonfigurationsonfigurationsonfigurations

EndpointEndpointEndpointEndpoint
NameNameNameName Abbr.Abbr.Abbr.Abbr. Transfer TypeTransfer TypeTransfer TypeTransfer Type

Max. PacketMax. PacketMax. PacketMax. Packet
SizeSizeSizeSize

FIFO Buffer CapacityFIFO Buffer CapacityFIFO Buffer CapacityFIFO Buffer Capacity
(bytes)(bytes)(bytes)(bytes) DMA TransferDMA TransferDMA TransferDMA Transfer

Endpoint 0 EP0s Setup 8 bytes 8 bytes

EP0i Control-In 8 bytes 8 bytes

EP0o Control-Out 8 bytes 8 bytes

Endpoint 1 EP1 Bulk-OUT 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 2 EP2 Bulk-IN 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 3 EP3 Interrupt 8 bytes 8 bytes

The features of the USB host module incorporated in the SH7727 are listed below.

• Conforming to USB 1.1

• Conforming to Open Host Controller Interface (OHCI) 1.0 register set

• Root hub function

• Low-speed (1.5 Mbps) and full-speed (12 Mbps) transfer supported

• Detection of overcurrent supported

• Maximum 127 endpoints

• User memory area connected to the SH7727 can be used for transfer data and descriptor
storage

Rev. 1.0, 04/03, page 2 of 110

Figure 1.1 shows an example of a system configuration.

SH7727 Solution Engine
Windows XP

USB“ ‹ Úƒ zƒ XƒgPC

USB Function• ” USB Host• ”

USB HUB

HIDƒ fƒ oƒ Cƒ X ƒ Xƒgƒ Œ [ƒ Wƒ fƒ oƒ Cƒ X

Figure 1.1 System Configuration ExampleFigure 1.1 System Configuration ExampleFigure 1.1 System Configuration ExampleFigure 1.1 System Configuration Example

This system is configured with the SH7727 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the SH7727SE), a PC running on Windows® XP (hereafter referred
to as the host PC), USB hub, and USB function devices (USB Mass Storage Class and HID class).

In this application note, data transfer between the host PC and USB function devices through USB
is described using the system in which the host PC and USB function devices are connected via
the SH7727SE and USB hub.

The SH7727 in the SH7727SE includes the USB host module and controls the USB hub and
function devices as the USB host (hereafter referred to as the SH7727 host).

The SH7727 also includes the USB function module, therefore, the SH7727SE operates as the
function device to the host PC (here after referred to as the SH 7727 function).

A USB function device has descriptor information which indicates the type, characteristics,
attribute of a device. The SH7727SE generates new descriptor information of a device with

Host PC Host PC Host PC Host PC epuipped withepuipped withepuipped withepuipped with
USB (WindowsUSB (WindowsUSB (WindowsUSB (Windows® XP) XP) XP) XP)

USB functionUSB functionUSB functionUSB function USB hostUSB hostUSB hostUSB host

SH7727 Solution EngineSH7727 Solution EngineSH7727 Solution EngineSH7727 Solution Engine

USB HubUSB HubUSB HubUSB Hub

HID deviceHID deviceHID deviceHID device Storage deviceStorage deviceStorage deviceStorage device

Rev. 1.0, 04/03, page 3 of 110

multiple interfaces (multifunction device) based on descriptor information of the USB function
device connected to the SH7727 host.

Then, by connecting to the host PC using descriptor information which is generated by the
SH7727 host, the SH7727 function transfers data between the host PC as a multifunction device.

At this time, the SH7727SE serves as a bridge between the host PC and USB function devices and
enables to store and load data from the host PC to USB function devices.

For operation of this application, the USB host, USB function, and timer modules incorporated in
the SH7727 are used. It is also possible to use the device driver that comes as an accessory with
the operating system.

This system offers the following features.

1. The sample program can be used to evaluate the USB host and USB function modules of the
SH7727 quickly.

2. The debugging support function is provided in the sample program. Settings in the source
program enables to output error detected by the host module via serial interface.

3. The sample program supports control, bulk, and interrupt transfers.

4. The E10A (PC card-type emulator) can be used, enabling efficient debugging.

Rev. 1.0, 04/03, page 4 of 110

Rev. 1.0, 04/03, page 5 of 110

Section 2 Outline of USB Hub

This section describes the USB hub.

This is provided to be used as a reference when the user creates the USB host related system. For
details of the specification, refer to the Universal Serial Bus Specification revision 1.1.

2.12.12.12.1 Role of HubRole of HubRole of HubRole of Hub

A USB hub is a device that is located between the host and a function device to increase the
number of nodes and provide the characteristic functions; strict rules of the data transfer method,
power supply from the USB ports, the plug-and-play architecture, and up to 127 function devices
connectable. A USB hub also has the following functions.

• Signal transmission/disruption

• Realizing the plug and play architecture

• Power management

To perform these functions correctly, the host and hubs are required to communicate in decided
method and the method is defined as the Hub Class.

When the USB host confirms that the bDeviceClass field in the device descriptor and the
bInterfaceClass field in the interface descriptor are set to 0x09, it realizes that the connected
devices are the Hub Class.

2.22.22.22.2 Hub DescriptorHub DescriptorHub DescriptorHub Descriptor

USB devices have the descriptor information which indicates the type, characteristics, and
attribution of the device.

The standard USB device has the descriptors of device, configuration, interface, and endpoint. In
addition to these descriptors, the hub device has the Hub class descriptor information (Hub
Descriptor). The hub descriptor is obtained by using the class command. The table 2.1 shows the
hub descriptor.

Rev. 1.0, 04/03, page 6 of 110

Table 2.1Table 2.1Table 2.1Table 2.1 Hub Descriptor FormatHub Descriptor FormatHub Descriptor FormatHub Descriptor Format

FieldFieldFieldField Size (byte)Size (byte)Size (byte)Size (byte) DescriptionsDescriptionsDescriptionsDescriptions

bDescLength 0x01 Descriptor size

bDescriptorType 0x01 Hub descriptor value: 0x29

bNbrPorts 0x01 The number of ports supported by this hub

wHubCharacteristics 0x02 Hub characteristics

Bits 1 and 0: Port power control mode

 00: Controls all ports

 01: Controls ports individually

 1X: Reserved

Bit 2: Identifies compound

 0: Hub is not a part of compound device

 1: Hub is a part of compound device

Bits 4 and 3: Over-current Protection Mode

 00: Over-current Protection by all ports

 01: Over-current Protection by individual port

 1X: No Over-current Protection

Bits 15 to 5: Reserved

bPwrOn2PwrGood 0x01 Wait time between the power supply to a port and start of
access. In 2 ms intervals.

bHubContrCurrent 0x01 Maximum current requirements of a Hub. Unit is mA.

DeviceRemovable 0x01 Indicates whether a port has a removable function module.

Bit 0: Reserved

Bits 1 to n: Ports 1 to n (up to 255)

 0: Removable

 1: Not removable

PortPwrCtrlMask The number of
ports

This field is used for a hub supporting the USB 1.0 but not
used for a hub supporting the USB 1.1. This field for the
USB 1.1 exists only for compatibility.

2.32.32.32.3 Hub Class-Specific RequestsHub Class-Specific RequestsHub Class-Specific RequestsHub Class-Specific Requests

A class command is a command which is defined for each USB class definition. A class command
uses control transfers. There are nine types of requests that can be sent to a USB hub. Table 2.2
lists the requests.

Rev. 1.0, 04/03, page 7 of 110

Table 2.2Table 2.2Table 2.2Table 2.2 List of CommandsList of CommandsList of CommandsList of Commands

RequestsRequestsRequestsRequests Command DescriptionsCommand DescriptionsCommand DescriptionsCommand Descriptions

Value ofValue ofValue ofValue of
BmRequestTypeBmRequestTypeBmRequestTypeBmRequestType
FieldFieldFieldField

Value ofValue ofValue ofValue of
BRequestBRequestBRequestBRequest
FieldFieldFieldField

ClearHubFeature Reset a value reported by the hub status 0x20 0x01

ClearPortFeature Reset a value reported by the port status 0x23 0x01

GetBusState Return the bus state 0xA3 0x02

GetHubDescriptor Obtain a hub descriptor 0xA0 0x06

GetHubStatus Return the current hub state and changed
hub state from previous recognition

0xA0 0x00

GetPortStatus Return the current port state and changed
port state from previous recognition

0xA3 0x00

SetHubDescriptor Overwrite a hub descriptor 0x20 0x07

SetHubFeature Recognize the changed state from the
previous hub state

0x20 0x03

SetPortFeature Recognize the changed state from the
previous port state

0x23 0x03

2.42.42.42.4 Host-Hub-Function Connection StateHost-Hub-Function Connection StateHost-Hub-Function Connection StateHost-Hub-Function Connection State

A hub connects the upstream host and downstream devices by using including ports.

A hub has a port for upstream and two or more ports for downstream, and controls the ports to
gather and report hub state information to the host. Figure 2.1 shows the connection between the
host, hub, and function devices. Necessary things to control a hub (ports) is described below.

USB-Host

USB-
Function_1

USB-
Function_n

USB-Hub

Port_1 Port_2

Manages hub by
control transfer

Hub controls ports

Reports hub change by
interrupt transfer

Figure 2.1 HostFigure 2.1 HostFigure 2.1 HostFigure 2.1 HostHubHubHubHubFunction Connection DiagramFunction Connection DiagramFunction Connection DiagramFunction Connection Diagram

Rev. 1.0, 04/03, page 8 of 110

2.52.52.52.5 Port State TransitionPort State TransitionPort State TransitionPort State Transition

Ports included in a hub have seven states: NotConfigured, Powered-off, Disconnected, Disabled,
Resetting, Enabled, and Suspend. These states changes are caused by a setting command from the
host, defined time, and the operation of connected device.

To set a port state, first confirm the port state, next, set port state. Finally, after recognizing the
port change, the port state is changed.

Figure 2.2 shows the state transition.

To confirm the port state, GetPortStatus is used.

For the transition caused by the host setting, use a class command SetPortFeature.

For the recognition of the port transition, the ClearPortFeature is used.

NotConfigred
SET_CONFIGRATION

SET_FEATURE PORT_POWER

CLEAR_FEATURE PORT_SUSPEND

CLEAR_FEATUIRE C_PORT_CONNECTION

CLEAR_FEATURE C_PORT_RESET

SET_FEATURE PORT_RESET

SET_FEATURE PORT_SUSPEND

Disconnected

Enabled

Resetting

Disabled

Powered-off

Suspended

Figure 2.2 Port State Transition StateFigure 2.2 Port State Transition StateFigure 2.2 Port State Transition StateFigure 2.2 Port State Transition State

• NotConfigured

A hub is unconfigured and ports are undefined

• Powered-off

Power supply to the ports are stopped

• Disconnected

Though power supply to the ports is started, no device is connected to the ports.

Rev. 1.0, 04/03, page 9 of 110

• Disabled

Though function devices are connected to ports, a bus has not been reset yet.
Ports do not transfer packets to the connected function devices.

• Resetting

Under bus reset.

• Enabled

The state after a bus reset. Ports carry out the packet transfer between the connected host and
function devices.

• Suspend

The state is suspended.

2.5.12.5.12.5.12.5.1 Setting Port StateSetting Port StateSetting Port StateSetting Port State

To set a port state, check the port state and then set the port state.

To set a port sate, use class commands: SetPortFeature and ClearPortFeature. SetPortFeature is
used for setting a port sate and ClearPortFeature is used for recognizing a change of port.

When the state of port is set by SetPortFeature or a change of port state is reported, check the port
state by GetPortStatus. The change of port state is defined by checking the change using
ClearPortFeature.

2.5.22.5.22.5.22.5.2 Checking PoChecking PoChecking PoChecking Port Statert Statert Statert State

The current port state can be checked by using a class command GetPortStatus. GetPortStatus
returns data in 4-byte unit. Table 2.3 shows the formats.

Rev. 1.0, 04/03, page 10 of 110

Table 2.3Table 2.3Table 2.3Table 2.3 GetPortStatus Command Return FormatsGetPortStatus Command Return FormatsGetPortStatus Command Return FormatsGetPortStatus Command Return Formats

BytesBytesBytesBytes BitBitBitBit DescriptionsDescriptionsDescriptionsDescriptions

00 and 01 0 Current Connect Status: (PORT_CONNECTION)

Indicates whether a function device is currently connected to this port.

0: A function module is not connected to this port

1: A function module is connected to this port

1 Port Enabled/Disabled: (PORT_ENABLE)

Indicates a port is enabled/disabled.

0: Port is disabled

1: Port is enabled

2 Suspend: (PORT_SUSPEND)

Indicates whether or not a port is suspended.

0: A port is not suspended.

1: A port is suspended.

3 Over-current Indicator: (PORT_OVER_CURRENT)

Indicates whether a port is overcurrented.

0: A port is not overcurrented.

1: A port is overcurrented.

4 Reset: (PORT_RESET)

Indicates whether a port is carrying out a bus reset.

0: A port is not carrying out a bus reset.

1: A port is carrying out a bus reset.

5 to 7 Reserved

8 Port Power: (PORT_POWER)

Indicates a power supply state of port.

0: A port is not supplied the power.

1: A port is supplied the power.

9 Low Speed Device Attached: (PORT_LOW_SPEED)

Indicates whether a function device connected to a port is a low-speed
device. This bit is enabled only when a function device is connected to a
port.

0: A connected function device is a full-speed device.

1: A connected function device is a low-speed device.

10 to 15 Reserved

Rev. 1.0, 04/03, page 11 of 110

BytesBytesBytesBytes BitBitBitBit DescriptionsDescriptionsDescriptionsDescriptions

02 and 03 0 Connect Status Change: (C_PORT_CONNECTION)

Indicates whether a port connection state has changed.

0: A port connection state has not changed

1: A port connection state has changed

1 Port Enable/Disable Change: (C_PORT_ENABLE)

Indicates whether a port state has changed.

0: A port state has not changed.

1: A port state has changed.

2 Suspend Change: (C_PORT_SUSPEND).

Indicates whether a port suspend state has changed.

0: A port suspend state has not changed.

1: A port suspend state has changed.

3 Over-Current Indicator Change: (C_PORT_OVER_CURRENT)

Indicates whether a port over-current state has changed.

0: A port over-current state has not changed.

1: A port over-current state has changed.

4 Reset Change: (C_PORT_RESET)

Indicates whether a port bus reset state has changed.

0: A port bus reset state has not changed.

1: A port bus reset state has changed.

5 to 15 Reserved

2.5.32.5.32.5.32.5.3 Power Supply from PortPower Supply from PortPower Supply from PortPower Supply from Port

The power supply from the host to each port is turned on by a class command after hubs have been
configured. As a result, bus-powered function devices can be supplied the power. A port checks
the power supply. When the extraordinary amount of current is supplied, over-current is detected
and the power supply is stopped.

When a function module is connected, the value of power supply is up to 100 mA for 1 port.
Though the function devices are high-power bus-powered devices, the devices should be operated
with 100 mA until they have been configured. After the host recognizes the required value by
descriptor information and function devices are configured, required power is supplied.

Rev. 1.0, 04/03, page 12 of 110

2.5.42.5.42.5.42.5.4 Port Device DetectionPort Device DetectionPort Device DetectionPort Device Detection

The connection/disconnection of devices can be detected by checking the electric potential of the
D+ pin and D− pin of every port. When a device is not connected to a port, the voltage level of the
D+ pin and D− pin is VIL (0.8 V at the maximum) or less because of a 15 kΩ pull-down resistor.

When a function device is connected, the pin levels of the D+ pin and D− pin changes to VIH (2.0
V at the minimum) or more by the included 15kΩ pull-up resistor. When the state is maintained
for 2.5 µs or more, the connection/disconnection of devices can be detected.

When the connection has been detected, it is reported to the host by an interrupt transfer. The
packet format of interrupt transfer is a bitmap format. A 1 is written to the changed port, while a 0
is written to the unchanged port then it is reported to the host.

BitBitBitBit nnnn ………… 2222 1111 0000

Change
generated part

Change of port n … Change of port 2 Change of port 1 Change of hub

When the D+ pin is pulled up, the function module is recognized as a full-speed device. When the
D− pin is pulled up, a function module is recognized as a low-speed device.

2.5.52.5.52.5.52.5.5 From Power Supply to Packet TransmissionFrom Power Supply to Packet TransmissionFrom Power Supply to Packet TransmissionFrom Power Supply to Packet Transmission

Some timings are specified between start of power supply to a port after configuration and first
transmission of packets to the connected device. Packets should be sent according to the specified
timing. Figure 2.3 shows the specified time and changes of a port.

Rev. 1.0, 04/03, page 13 of 110

Power supply Connection detection Reset completion
+ device speed

detection

100 ms

TSIGATT
(Max.)

10 ms

TRSTRCY
(Max.)

10 < i < 20 ms

TDRST
100 ms

TATTDB
(Max.)

VBUS

D+ or D-

Figure 2.3 Timing of Port ChangeFigure 2.3 Timing of Port ChangeFigure 2.3 Timing of Port ChangeFigure 2.3 Timing of Port Change

2.5.62.5.62.5.62.5.6 Port State TransitionPort State TransitionPort State TransitionPort State Transition

The host needs to recognize the current port state and indicate the next state to shift to by
cooperating with hubs. Figure 2.4 shows the flow of the state transition of the host, hub, port, and
function device in each procedure stage; unconfigured state of hub, start of power supplying from
port, connecting bus-powered function device, activating function device by bus power, checking
and recognizing that a function device is connected to a port.

Rev. 1.0, 04/03, page 14 of 110

Enumeration Unconfigured
Stop

(unconnected)

Configured Power-off

Power-on

Detection of
 pull-up

No data

Report of
port change

No data

Port power-on

Start of Interrupt
transfer

Detection of port
state change

Checking port

Detection of
connection

change

Reply connection
change

Recognization
of connection

Connection
transition
completed

Start of Interrupt
transfer

Activation
(start pull-up)

Host Hub Function

Hereafter, GetPortStatus, SetPortFeature, and ClearPortFeature are executed to make a transition of port states.

Downstream port of hub

SetConfigration

Connected to hub

Interrupt Data

IN

NAK

IN

NAK

ClearPortFeature

4 bytes Data

GetPortStatus

SetPortFeature

Hub controller

Figure 2.4 State Transition Diagram of Host, Hub, Port, and Function DeviceFigure 2.4 State Transition Diagram of Host, Hub, Port, and Function DeviceFigure 2.4 State Transition Diagram of Host, Hub, Port, and Function DeviceFigure 2.4 State Transition Diagram of Host, Hub, Port, and Function Device

Rev. 1.0, 04/03, page 15 of 110

Section 3 Development Environment

This section describes the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• SH7727 Solution Engine (type number: MS7727SE01, hereafter referred to as SH7727SE)
manufactured by Hitachi ULSI Systems Co., Ltd.

• SH7727 E10A Emulator manufactured by Renesas Technology Corp.

• PC (Windows® 95/98) equipped with a PCMCIA slot

• PC (Windows® XP) to serve as the USB host

• USB cable

• USB hub

• High-Performance Debugging Interface (hereafter called HDI) manufactured by Renesas
Technology Corp.

• High-Performance Embedded Workshop (hereafter called HEW) manufactured by Renesas
Technology Corp.

3.3.3.3.1111 Hardware EnvironmentHardware EnvironmentHardware EnvironmentHardware Environment

Figure 3.1 shows device connections.

Rev. 1.0, 04/03, page 16 of 110

USBƒ P [ƒ uƒ ‹

ƒ zƒ Xƒ gPC

(Windows XP)
USB‚ Ìƒ zƒ Xƒ gPC‚ Æ‚ µ‚ ÄŽ g— p‚ µ A

SH7727SE‚ ÉŽ wŽ ¦‚ ð o‚ · B

E10A PC

(Windows95/98)
HDI,HEW‚ ð— p‚ ¢‚ Äƒ † [ƒ U

ƒ tƒ @ [ƒ €ƒ Eƒ Gƒ AŠ J” -‰ Â” \

HDI:Hitachi Debugging Interface

HEW:Hitachi Embedded Workshop

E10Aƒ P [ƒ uƒ ‹

USBƒ Xƒ gƒ Œ [ƒ Wƒ fƒ oƒ Cƒ X

(Bulk Only Tranceport)
ƒ zƒ Xƒ gPC‚ ©‚ çŽ wŽ ¦‚ ðŽ ó‚ ¯ A

ƒ f [ƒ ‚̂ Ì ‘ ‚ « ž‚ Ý A“ Ç‚ Ý o‚ µ‚ ð s‚ ¤ B

USB HIDƒ fƒ oƒ Cƒ X
ƒ zƒ Xƒ gPC‚ ÉHIDƒ f [ƒ ‚̂ ð‘ —‚ é B

USBƒ nƒ u
SH7727SE‚ ÌAƒ Rƒ lƒ Nƒ ‚̂ É2‚ Â̂ È ã‚ Ì

‹ @Š í‚ ð Ú‘ ±‚ ·‚ é Û‚ ÉŽ g— p

Figure Figure Figure Figure 3.3.3.3.1111 Device ConnectionsDevice ConnectionsDevice ConnectionsDevice Connections

1. SH7727SE

The DIP switch settings on the SH7727SE board must be changed from those at shipment.
Before turning on the power, ensure that the DIP switches are set as shown in table 3.1. There
is no need to change any other DIP switches.

USB cable

Host PC (WindowsHost PC (WindowsHost PC (WindowsHost PC (Windows® XP) XP) XP) XP)
Used as the USB host PC
to instruct the SF7727SE

E10A cableE10A cableE10A cableE10A cable

E10A PC (WindowsE10A PC (WindowsE10A PC (WindowsE10A PC (Windows® 95/98) 95/98) 95/98) 95/98)
User firmware can be developed
by using the HDI and HEW

USB storage deviceUSB storage deviceUSB storage deviceUSB storage device
(Bulk-Only Transport)(Bulk-Only Transport)(Bulk-Only Transport)(Bulk-Only Transport)
Reading/writing data
instructed

USB HubUSB HubUSB HubUSB Hub
Used to connect two or
more devices to the A

USB HID deviceUSB HID deviceUSB HID deviceUSB HID device
Used to send HID data
to the host PC

Rev. 1.0, 04/03, page 17 of 110

Table Table Table Table 3.3.3.3.1111 DIP Switch DIP Switch DIP Switch DIP Switch SettingSettingSettingSettingssss

SwitchSwitchSwitchSwitch
At At At At Time ofTime ofTime ofTime of
ShipmentShipmentShipmentShipment After ChangeAfter ChangeAfter ChangeAfter Change DIP SwitchDIP SwitchDIP SwitchDIP Switch Function Function Function Function

Baseboard SW1-6 Off On Select endian mode

Baseboard SW1-8 Off On Select E10A emulator mode

Baseboard JP14 1 − 2 short 2 − 3 short Select USB D+ pull-up control signal

Baseboard JP15 1 − 2 short 2 − 3 short Select USB VBUS signal detection port

2. USB host PC

A PC with Windows® XP installed, and with a USB port, is used as the USB host. This
system uses USB Mass Storage Class (Bulk-Only Transport) and HID Class device drivers,
installed as a standard part of the Windows® XP, so that there is no need to install new drivers.

3. E10A PC

The E10A should be inserted into a PC card slot and connected to the SH7727 via an interface
cable. After connection, starts the HDI and perform emulation.

4. USB hub

The USB Hub is used to connect two or more devices to the A connector of the SH7727SE.

5. USB storage device

The USB storage device should be connected to the SH7727SE via the USB hub. The device
stores and reads data between the USB host through the SH7727SE.

6. USB HDI device

The USB HDI device should be connected to the SH7727SE via the USB hub. The device
inputs data to the USB host PC through the SH7727SE.

Rev. 1.0, 04/03, page 18 of 110

3.23.23.23.2 Software EnvironmentSoftware EnvironmentSoftware EnvironmentSoftware Environment

A sample program, as well as the compiler and linker used, are explained.

3.3.3.3.2.12.12.12.1 Sample ProgramSample ProgramSample ProgramSample Program

Files required for the sample program are all stored in the SH7727 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 3.2.

SH7727

CatBOTTypedef.h CatHidTypedef.h CatProType.h CatTypedef.h
SetBOTInfo.h SetHIDInfo.h SetMacro.h SetSystemSwitch.h
SH7727.h SysMemMap.h Usbf_SetUsbInfo.h Usbh_Dr_CatHostTypedef.h
Usbh_Dr_CatHubTypedef.h Usbh_Dr_SetHubInfo.h Usbh_Dr_SetHostInfo.h

AsmFunction.src SCT.SRC BotBridge.c StartUp.c Usbf_DoBulk.c
Usbf_DoControl.c Usbf_ DoInturrupt.c Usbf_DoMultiDevice.c
Usbf_DoRequest.c Usbf_DoRequestBOT_Storage Class.c
Usbf_DoRequestHID Class.c Usbf_UsbMain.c Usbf_Dr_Bulk.c Usbh_Dr _Common.c
Usbh_Dr_Control.c Usbh_Dr_HidDr.c Usbh_Dr_HubDr.c
Usbh_Dr_Interrupt.c Usbh_Dr_StorageDr.c

7727E10A.HDC BildOfHew.bat debugger.ABS debugger.MAP
debugger.MOT debugger.hds debugger.HDT InkSet1.sub LOG.TXT

USBHost (folder) dwfinf (folder)

FigFigFigFigureureureure 3.3.3.3.2222 Files Included in Files Included in Files Included in Files Included in SH7727SH7727SH7727SH7727 Folder Folder Folder Folder

3.3.3.3.2.22.22.22.2 Compiling and Compiling and Compiling and Compiling and LLLLinkinginkinginkinginking

The sample program is compiled and linked using the following software.

High-Performance Embedded Workshop Version 1.0 (release 9) (hereafter called HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling
(figure 3.3).

Rev. 1.0, 04/03, page 19 of 110

C:\

\Hew

\Tmp

Figure Figure Figure Figure 3.3.3.3.3 Creating a Working Folder3 Creating a Working Folder3 Creating a Working Folder3 Creating a Working Folder

Next, the folder in which the sample program is stored (SH7727) should be copied to any drive. In
addition to the sample program, this folder contains a batch file named BuildOfHew.bat. This
batch file sets the path, specifies compile options, specifies a log file indicating the compile and
linking results, and performs other operations. When BuildOfHew.bat is executed, compiling and
linking are performed. As a result, a file named debugger.ABS, which is an executable file, is
created within the folder. At the same time, a map file named debugger.MAP and a log file named
log.txt are created. The map file indicates the program size and variable addresses. The compile
results (whether there are any errors, etc.) are recorded in the log file (figure 3.4).

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BuildOfHew.bat, as well as
the library settings in InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of shc.exe, and the setting for the environment variable
shc_lib used by the compiler should be set to the folder of shc.exe, the shc_inc setting
should be changed to the folder of machine.h, and the setting of shc_tmp should
specify the working folder for the compiler. The path of shcpic.lib should be specified
for the library.

Batch file

BuildOfHew.bat
Execution

Execution result

debugger.ABS

debugger.MOT

debugger.MAP

log.txt

SH7727

Figure Figure Figure Figure 3.3.3.3.4 Compile Results4 Compile Results4 Compile Results4 Compile Results

Rev. 1.0, 04/03, page 20 of 110

3.3.3.3.3333 Loading and Executing the ProgramLoading and Executing the ProgramLoading and Executing the ProgramLoading and Executing the Program

Figure 3.6 shows the memory map for the sample program.

PResetException area

PGeneralExceptions area

PTLBMissException area

PNonCash area

B,R area

HID data transfer area

BED_TD_BLOCK area

BHCCA_BLOCK area

PInterrupt area

P, C, D area

Storage transfer area

Stack area

AC00 0000
AC00 00C3

A501 7000

A501 8FFC

AC00 0100

AC00 013F

AC00 048B
AC00 045D

ADF5 B000
ADF6 EED4

AC00 A550
AC00 A650

ADF6 F000

ADFF FBFF

ADFF FF00
ADFF FFFB

AC00 0600

AC00 064B

AC00 1000

AC00 108F

CC00 A3C0

CC00 1100

AC00 A500
AD00 A540

196 bytes

Approximately 8 kbytes

Approximately 80 kbytes

64 bytes

140 bytes

76 bytes

144 bytes

Approximately 37 kbytes

65 bytes

257 bytes

579 bytes

252 bytes

Notes: 1.
2.

Placed in the P3 cache write-through space. Consequently the address bits A31 to 29 are 110.
The memory map differs according to the compiler version, compiling conditions, firmware update, etc.

SH7727SE

Figure Figure Figure Figure 3.3.3.3.5555 Memory MapMemory MapMemory MapMemory Map

As shown in figure 3.5, this sample program allocates areas of PResetExecution,
PGeneralException, PTLBMissException, PInterrupt, PNonCash, P, C, D, R, and B to the
SDRAM and area of Stack to the on-chip memory. In order to use the break and other functions of
the E10A, the program must be placed in RAM in this way. These memory allocations are
specified by the InkSet1.sub file in the SH7727 folder. When incorporating the program in ROM
by writing it to flash memory or some other media, this file must be modified.

Rev. 1.0, 04/03, page 21 of 110

3.3.3.3.3.13.13.13.1 LoadingLoadingLoadingLoading the Programthe Programthe Programthe Program

In order to load the sample program into the SDRAM of the SH7727SE, the following procedure
is used.

• Insert the E10A in which the HDI has been installed into the E10A PC, connect the E10A to
the SH7727SE via a user cable

• Turn on the power to the E10A PC for start up.

• Initiate the HDI.

• Turn on the power to the SH7727SE.

• A dialog (figure 3.6) is displayed on the PC screen; turn the SH7727SE reset switch (SW1) on,
and after resetting the CPU, click the OK button or press the Enter key.

• Select CommandLine in the View menu to open a window (figure 3.7), click the BatchFile
button on the upper left, and specify the 7727E10A.hdc file in the SH7727 folder. As a result,
the BSC is set and access to the SDRAM is enabled.

• Select LoadProgram... from the File menu; in the Load Program dialog box, specify
debugger.ABS in the SH7727 folder.

Through the above procedure, the sample program can be loaded into the SDRAM of the
SH7727SE.

Figure 3.6 Reset Request DialogFigure 3.6 Reset Request DialogFigure 3.6 Reset Request DialogFigure 3.6 Reset Request Dialog

Rev. 1.0, 04/03, page 22 of 110

Figure 3.7 Command Line InputFigure 3.7 Command Line InputFigure 3.7 Command Line InputFigure 3.7 Command Line Input

3.3.23.3.23.3.23.3.2 ExecutionExecutionExecutionExecution

Select Go from the Run menu bar to execute the program.

3.43.43.43.4 Multi Function DeviceMulti Function DeviceMulti Function DeviceMulti Function Device

An example using Windows® XP is explained below.

Insert the series A connector of the USB cable to the SH7727SE with a program in execution, and
connect the series B connector at the other end of the cable to the USB hub. Then connect a
storage device and mouse to the ports of the USB hub.

Next, insert the series B connector of the USB cable to the SH7727SE, and connect the series A
connector at the other end of the cable to the USB host PC.

After the SH7727SE has been recognized as a peripheral function device by executing the control
transfer and bulk transfer, a mass-storage device is appeared below the USB controller which is on
the Device Manager screen. As a result, the host PC recognizes the SH7727SE as a multi function
device which consists of a storage and mouse, and the local disk is mounted on the main computer
and the USB mouse can be used.

Through the process explained above, the SH7727SE can be used as the USB connected multi
function device.

BatchFile

Rev. 1.0, 04/03, page 23 of 110

Section 4 Overview of Sample Program

Features of the sample program and its structure are explained in this section. This sample
program runs on the SH7727SE using the USB host and USB function modules. Therefore, the
SH7727SE as the USB host module controls the function device and the USB hub which is
connected to the USB series A connector on it, and also serves as the USB function to the host PC.

Of the on-chip peripheral modules of the SH7727E, the sample program uses the on-chip timer
(one channel) other than the USB host and USB function modules.

The USB transfer by the USB function module is started by an interrupt requested from the USB
function module.

The USB transfer by the USB host module is started when the completion of the process requested
to the USB host module in the steady routine is recognized.

Of the interrupts requested from the on-chip peripheral modules in the SH7727, there are two
interrupts related to the USB function module; the USB function moduleI0 and the USB function
moduleI1. In this sample program only the USB function moduleI0 is used. The interrupt related
to the USB host module is the USB host module.

Features of this sample program are as follows.

• Control transfer can be performed by using the USB host module

• Bulk-OUT transfer can be used to transmit data to a device by using the USB host module

• Bulk-IN transfer can be used to receive data from a device by using the USB host module

• Interrupt transfer can be used to receive data from a device by using the USB host module

• Data can be transmitted/receiver from the host PC by using the USB function module

• Data between the host PC and device is relayed by the SH7727SE by cooperating the USB
host module and the USB function module

Rev. 1.0, 04/03, page 24 of 110

4.14.14.14.1 Entire Structure of Sample ProgramEntire Structure of Sample ProgramEntire Structure of Sample ProgramEntire Structure of Sample Program

The entire structure of this sample program is shown in figure 4.1. The numbers 1 to 8 indicate
data transfers.

SH7727 Function

Host PC

USB-
Function_1

USB-
Function_n

USB Hub

Port_1 Port_n

SH7727 Host

SH7727SE

1

3

5

7

2

4

6

8

Figure 4.1 Entire FigureFigure 4.1 Entire FigureFigure 4.1 Entire FigureFigure 4.1 Entire Figure

The layered structure of sample program is shown in figure 4.2.

Data transfers 1 and 2 shown in figure 4.1 are performed in the Device layer of the SH7727SE.

Data transfers 3 and 4 shown in figure 4.1 are performed in the Host-Function link layer of the
SH7727 SE.

Data transfers 5 to 8 shown in figure 4.1 are performed in the USB system software layer of
the SH7727SE.

Rev. 1.0, 04/03, page 25 of 110

Host PC

Application layer

Client software
layer

USB system
software layer

USB Host
bus interface
(hardware)

USB function device

Application layer

Class layer

Device layer

USB Host
bus interface
(hardware)

SH7727SE

Host-Function link layer
(3), (4)

Client software
layer

Device layer
(1), (2)

USB system
software layer
(5), (6), (7), (8)

USB Function
bus interface
(hardware)

USB Host
bus interface
(hardware)

Class layer

USB cable USB cable

Figure 4.2 Layer Structure of SystemFigure 4.2 Layer Structure of SystemFigure 4.2 Layer Structure of SystemFigure 4.2 Layer Structure of System

This sample program can be categorized into three major programs.

• Program of the SH7727 function which performs data transfer with the host PC.

• Program of the SH7727 host which controls the USB hub and USB function device to perform
data transfer between them.

• Link program which connects the program of the SH7727 function and program of the
SH7727 host to perform data transfer between them.

Above three programs are shown in figure 4.2.

The program of the SH7727 function corresponds to the Class layer and Device layer.

The program of the SH7727 host corresponds to the Client software layer. According to the
devices to control, the layer is divided into the Hub driver, HID driver, and storage driver.

The link program corresponds to the Host-Function link layer.

Rev. 1.0, 04/03, page 26 of 110

4.24.24.24.2 State Transition DiagramState Transition DiagramState Transition DiagramState Transition Diagram

Figure 4.3 shows a state transition diagram of this sample program. As is shown in figure 4.3,
there are transitions between six states.

Reset state

Initial setting
completed

USB function
communications state

USB HC
processing state

Interrupt enabled state

USB host
communications state

Transfer issued

Transfer result
processing

Control transfer

Bulk transfer

Interrupt transfer

Steady state

Reset state immediately after the power is applied.
Steady state is entered after initial setting has been completed.

Data transfer
is not necessary

Data transfer
is necessary

HC interrupt
generated

HC interrupt
completed

USB function
communication ends

Transfer issued

Transfer
completed

Interrupt generated
(USBFI0)

Figure 4.3 State Transition DiagramFigure 4.3 State Transition DiagramFigure 4.3 State Transition DiagramFigure 4.3 State Transition Diagram

• Reset State

This state is entered by power-on reset and manual reset. In the reset state, the initial settings
of the SH7727 mainly performs.

• Interrupt Enabled State

Interrupts are enabled in this state. This state includes the steady state and USB host
communications state.

Rev. 1.0, 04/03, page 27 of 110

• Steady State

When initial settings are completed, the steady state is entered in the main loop.

• USB Host Communications State

This state is entered when the USB hub and USB function devices are connected to the
SH7727 host.

• USB HC Processing State

This state is entered when an interrupt is occurred from the USB host module in the interrupt
enabled state.

• USB Function Communication State

This state is entered when an interrupt is occurred from the USB function module in the
interrupt enabled state. In the USB function communication state, data transfer is performed by
a transfer method according to the type of interrupt. The interrupts used in this sample program
are indicated by the interrupt flag register 0 (USBIFR0) and there are eight types in all. When
an interrupt is occurred, the corresponding bit in USBIFR0 is set to 1.

Rev. 1.0, 04/03, page 28 of 110

4.34.34.34.3 USB Function Communication StateUSB Function Communication StateUSB Function Communication StateUSB Function Communication State

The USB function communication state is categorized into three states according to the transfer
type (see figure 4.4). When an interrupt occurs, first the USB function communications state is
entered, and then a further branch to a transfer state according to the type of interrupt is
performed. The brunching process is explained in section 5, Sample Program Operation.

Control transfer

Interrupt transfer

Bulk transfer

USB function communications state

Ready Ready

Ready

Setup stage

Data stage
OUT direction
(Control out)

Data stage
IN direction
(Control in)

Command transport
(CBW)

(Bulk out)

Status stage
(Control out)

Status transport
(CSW)

(Bulk in)

Data out
(Bulk out)

Data in
(Bulk in)

Data in
(Interrupt in)

Figure 4.4 USB Function Communications StateFigure 4.4 USB Function Communications StateFigure 4.4 USB Function Communications StateFigure 4.4 USB Function Communications State

Rev. 1.0, 04/03, page 29 of 110

4.3.14.3.14.3.14.3.1 Control TransfersControl TransfersControl TransfersControl Transfers

In this sample program, descriptor information and class command are returned to the host PC.
Descriptor information to return is created based on descriptor information which is obtained from
the function device connected to the SH7727 host.

4.3.24.3.24.3.24.3.2 Bulk TransfersBulk TransfersBulk TransfersBulk Transfers

In this sample program, through following two processes, data between the host PC and a storage
function device is transferred using bulk transfer.

1. Packets for a storage device are received from the host PC. Then the packets are sent to the
link program.

2. Packets received from a storage device are sent to the host PC via the link program.

4.3.34.3.34.3.34.3.3 Interrupt TransfersInterrupt TransfersInterrupt TransfersInterrupt Transfers

In this sample program, interrupt transfer is used for HID device data transfer. If there is data
received from the HID device connected to the SH7727 host in the transfer buffer, it is transmitted
by the IN request from the host PC. If there is no data in the transfer buffer, a NAK is transmitted
by hardware. The transmit data is written from the HID device to the transfer buffer by using the
SH7727 host program.

Rev. 1.0, 04/03, page 30 of 110

4.44.44.44.4 USB Host Communication StateUSB Host Communication StateUSB Host Communication StateUSB Host Communication State

The USB host communication state is categorized into two sates: state in which transfer is issued
and the another state in which transfer result is processed. Transfer is a data transfer to the USB
hub and USB function device performed by the SH7727 host. In this sample program, a control
transfer completes when the processing of the Setup and Status stages are completed. The bulk
and interrupt transfers complete when one packet is completely transferred.

Steady state
(infinite loop)

Transfer control
information

Called from higher
-level function and
driver is activated

Hardware Hardware

Process request
results of class drivers

Process
transfer result

Class drivers
request transfer

Issue transfer

Activated
by interrupt

Write
transfer completion

Read transfer
control information

Transfer
completed?

Data transfer
is not necessary

Data transfer
is necessary

Transfer completely
issued

Transfer
issue request

Transfer completed

ActCompleteCheck
Drv

No

Yes

Figure 4.5 USB Host Communication StateFigure 4.5 USB Host Communication StateFigure 4.5 USB Host Communication StateFigure 4.5 USB Host Communication State

In a state for issuing transfer, data transfer between the SH7727 host and devices is carried out by
using the following transfer methods: control transfer, bulk transfer, and interrupt transfer.

Rev. 1.0, 04/03, page 31 of 110

In a state for processing result, process is carried out based on a result of data transfer with a
device.

Each driver performs data transfer with a device by two states and three transfer methods as
necessary.

Control transfer

Transfer issue

Transfer result processing

Bulk transfer

USB host communications state

Ready Ready

Ready

Setup stage

Data stage
OUT direction

Data stage
IN direction

Status stage

Data OUT Data IN

Process data

Interrupt transfer

Ready

Data IN

Figure 4.6 USB Host Communications StateFigure 4.6 USB Host Communications StateFigure 4.6 USB Host Communications StateFigure 4.6 USB Host Communications State

Rev. 1.0, 04/03, page 32 of 110

4.4.14.4.14.4.14.4.1 Transfer IssueTransfer IssueTransfer IssueTransfer Issue

In a state for issuing a transfer, data transfer between devices and the SH7727 host is performed
by using the following transfer methods: control transfer, bulk transfer, and interrupt transfer. The
USB transfer must be started from the host, so that data transfer with a device is performed in this
state.

Which transfer is performed by using a transfer method changes according to the USB hub and
USB function device connected to the SH7727 host. However, for obtaining connected device
information, device address allocation to the connected device, and enabling connected device
usage, GET_DESCRIPTOR, SET_ADDRESS, and SET_CONFIGURATION are used
respectively. These three processes are indispensable.

4.4.24.4.24.4.24.4.2 Control TransferControl TransferControl TransferControl Transfer

A control transfer is mainly used to obtain device information and set device operating state.
Therefore, a control transfer is the first transfer to be carried out when a device is connected to the
SH7727SE.

A series of control transfer process is carried out through two or three stages. The stages of
controller transfer are classified into the Setup stage, Data stage, and Status stage.

4.4.34.4.34.4.34.4.3 Bulk TransfersBulk TransfersBulk TransfersBulk Transfers

A bulk transfer is used to transfer large amounts of data without any error. The transfer is
performed with no time limitation. Though data transfer speed is not guaranteed, the contents of
data are guaranteed.

In this sample program, communication between the SH7727SE and a storage device is made by
using the bulk transfer.

4.4.44.4.44.4.44.4.4 Interrupt TransferInterrupt TransferInterrupt TransferInterrupt Transfer

An interrupt transfer performs data transfer at least once within a specified interval. Though the
data size handled at one transfer is small, the worst transfer rate and contents of data are
guaranteed. Communication between the SH7727SE and a hub or HID devices are made by using
the interrupt transfer.

4.4.54.4.54.4.54.4.5 Transfer Result ProcessingTransfer Result ProcessingTransfer Result ProcessingTransfer Result Processing

This state is entered when a transfer which is generated from the host to a device has completed in
the transfer issue state (in the case of a control transfer when the Status stage ends, while in the
case of bulk and interrupt transfers when one transaction completed).

Rev. 1.0, 04/03, page 33 of 110

In this state, checking the result of the data transfer to a device, obtaining data from a device, and
activating next process are carried out by using the three transfer methods: control transfers, bulk
transfers, and interrupt transfers).

4.54.54.54.5 File StructureFile StructureFile StructureFile Structure

This sample program consists of 18 source files and 15 header files. The overall file structure is
shown in table 4.1. Several functions are arranged in one file depending on its transfer method or
function type. Figure 4.7 shows the layered configuration of these files. The relationships among
files are shown as layered configuration in figure 4.8 and figure 4.9.

Table 4.1Table 4.1Table 4.1Table 4.1 File File File File ConfigurationConfigurationConfigurationConfiguration

File NameFile NameFile NameFile Name DescriptionDescriptionDescriptionDescription

StartUp.c Microcomputer initial setttings

Usbf_UsbMain.c Decides the interrupt source and transmits/receives packets

Usbf_DoControl.c Executes control transfer

Usbf_DoBulk.c Executes bulk transfer

Usbf_DoInterrupt.c Executes interrupt transfer

Usbf_DoRequest.c Processes setup command issued by the host

Usbf_DoRequestBOT_Storage
Class.c

Processes class command of Mass Storage Class (Bulk-Only
Transport)

Usbf_DoRequestHIDClass.c Processes HID class command

BOTBridge.c Bridges Mass Storage Class (Bulk-Only Transport) data
between the USB host and USB function modules

Usbf_DoMultiDevice.c Creates descriptor information

Usbh_Dr_Common.c Driver layer common function

Usbh_Dr_Control.c Requests control transfer by the USB host

Usbh_Dr_Bulk.c Requests bulk transfer by the USB host

Usbh_Dr_Interrupt.c Requests interrupt transfer by the USB host

Usbh_Dr_HubDr.c Processes Hub control

Usbh_Dr_HidDr.c Processes HID device control

Usbh_Dr_StorageDr.c Processes storage device control

AsmFunction.src Sets stack

CatHidTypedef.h Sets type necessary for HID class

CatBOTTypedef.h Sets type necessary for BOT class

Usbh_CatHubTypedef.h Sets type necessary for Hub class

CatProType.h Global variable and function prototype decralation

CatTypedef.h Basic structure definition used by USB firmware

Rev. 1.0, 04/03, page 34 of 110

File NameFile NameFile NameFile Name DescriptionDescriptionDescriptionDescription

Usbh_CatHostTypedef.h Sets type necessary for USB host

SetBOTInfo.h Initial setting of variables necessary for BOT class control

SetHIDInfo.h Initial setting of variables necessary for HID class control

Usbh_SetHostInfo.h Initial setting of variables necessary for the USB host control

Usbh_Dr_SetHubInfo.h Initial setting of variables necessary for USB hub control

SetMacro.h Macro definition

SetSystemSwitch.h Sets system operation

Usbf_SetUsbInfo.h Initial setting of variables necessary for USB

SysMemMap.h Address definition of HS7727SE memory map

SH7727.h Sh7727 register definition

Host PC

Application layer

Client software
layer

USB system
software layer

USB Host
bus interface
(hardware)

USB
function device

Application layer

Class layer

Device layer

USB Host
bus interface
(hardware)

SH7727SE

Host-Function link layer

Client software
layer

Device layer USB system
software layer

USB Function
bus interface
(hardware)

USB Host
bus interface
(hardware)

Class layer

USB cable USB cable

Figure 4.7 Layered Configuration of SystemFigure 4.7 Layered Configuration of SystemFigure 4.7 Layered Configuration of SystemFigure 4.7 Layered Configuration of System

Rev. 1.0, 04/03, page 35 of 110

Host <-> Function bridge

Operation:

Operation:

Link program which bridges transfer data between
the USB host and USB function of the SH7727SE.

BOTBridge.cRelevant file:

Operation:

Operation:

Relevant file:

Relevant file:

Relevant file:

Operation:

Relevant file:

Operation:

Relevant file:

Operation:

Relevant file:

Operation:

Relevant file:

USB common functions

Carries out reception and transmission of packet data, endian conversion,
and other necessary operations regardless of transfer method

Usbf_UsbMain.c
CatTypedef.h
Usbf_SetUsbInfo.h

Bulk Transfer

Carries out
Bulk transfer

Usbf_DoBulk.c

Standard commands

Carries out
responses to
standard commands

Usbf_DoReques.c

Interrupt transfer

Carries out
Interrupt transfer

Usbf_DoInterrupt.c

Class commands

Carries out responses
to class commands

 Usbf_DoRequestBOT_
 Storage Class.c
 Usbf_DoRequestHIDClass.c

Class file

Carries out Mass Storage Class (Bulk-Only Transport)
operations and supports class commands

DoBOTMSClass.c
CatBOTTypedef.h
SetBOTInfo.h

Control transfer
Carries out Control transfer operation

Usbf_DoControl.c

USB Function hardware

Application layer

Class layer

USB device layer

USB bus interface layer

Figure 4.8 Layered Configuration of SH7727SE FunctionFigure 4.8 Layered Configuration of SH7727SE FunctionFigure 4.8 Layered Configuration of SH7727SE FunctionFigure 4.8 Layered Configuration of SH7727SE Function

Rev. 1.0, 04/03, page 36 of 110

Host <-> Function bridge

Link program which bridges transfer data between
the USB host and USB function of the SH7727SE.

BOTBridge.c

HC Driver (HCD)

Usbh_Hcd_Main.c Usbh_Hcd_Others.c Usbh_Hcd_Tasks.c
Usbh_Hcd_Defs.h Usbh_Hcd_ProType.h Usbh_Hcd_TypeDef.h
Usbh_Common.h

Host software

Usbh_Dr_EnuDr.c
Usbh_Dr_EnuDrDefs.h
Usbh_Dr_DrList.cUsbh_USBD_Common.c

Usbh_Usbd_Defs.h

Class drivers (Hub driver, HID driver, Storage driver)

Control classes.

Usbh_Dr_HubDr.c Usbh_Dr_HidDr.c Usbh_Dr_StorageDr.c
Usbh_Dr_Control.c Usbh_Dr_Bulk.c Usbh_Dr_Interrupt.c
Usbh_Dr_Common.c Usbh_CatHostTypedef.h Usbh_CatHubTypedef.h
Usbh_SetHostInfo.h Usbh_SetHubInfo.h

USB host hardware

Application layer

Client software layer

USB system software layer

Bus interface layer

USB Driver (USBD) Relevant file:

Relevant file:

Relevant file:

Operation:

Relevant file:

Operation:

Relevant file:

Figure 4.9 Layered Configuration of SH7727SEFigure 4.9 Layered Configuration of SH7727SEFigure 4.9 Layered Configuration of SH7727SEFigure 4.9 Layered Configuration of SH7727SE

Table 4.2 shows functions contained in each file and their purposes.

Rev. 1.0, 04/03, page 37 of 110

Table 4.2-1Table 4.2-1Table 4.2-1Table 4.2-1 StartUp.cStartUp.cStartUp.cStartUp.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

StartUp.c CallReseException Operates for reset exception and calls the
following function to be executed

CallGeneralException Calls function for the general exception other
than TLB miss occurrence

CallTLBMissException Calls function for the TLB miss occurrence

CallInterrupt Calls function for an interrupt request

SetPowerOnSection Initializes modules and memory, and jumps to
main loop

_INITSCT Copies variables that have initial settings to the
RAM work area

InitMemory Clears RAM area used in bulk communicatuions

InitSystem Pull-up control of the USB bus

When a power-on reset or manual reset is carried out, SetPowerOnSection in StartUp.c is called.
At this point, the SH7727 initial settings are carried out and the RAM area used for the bulk
transfers is cleared.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-2222 UsbUsbUsbUsbf_Usbf_Usbf_Usbf_UsbMain.cMain.cMain.cMain.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_UsbMain.c BranchOfInt Decides interrupt sources, and calls function
according to the interrupt

GetPacket Write data transferred from the host module of
the host PC to RAM

GetPacket4 Write data transferred from the host module of
the host PC to RAM in longwords. Ring buffer
supported version (not used in this sample
program).

GetPacket4S Write data transferred from the host module of
the host PC to RAM in longwords. High
performance version (not used in this sample
program).

PutPacket Write data to transfer to the host module of the
host PC to USB module

PutPacket4 Write data to transfer to the host module of the
host PC to USB module in longwords. Ring buffer
supported version (not used in this sample
program).

Rev. 1.0, 04/03, page 38 of 110

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_UsbMain.c PutPacket4S Write data to transfer to the host module of the
host PC to USB module in longwords. High
performance version (not used in this sample
program)

SetControlOutContents Overwrite data with data transmitted from the host

SetUsbModule Initial settings of USB module

ActBusReset Clears FIFO on bus reset reception

ConvRealn Reads data of a specified byte length from a
specified address

ConvReflexn Reads data of a specified byte length from a
specified address in descending order.

In Usbf_UsbMain.c, interrupt sources are decided by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are transmitted and received between the
host controller of the host PC and the USB function module.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-3333 UsbUsbUsbUsbf_DoControlf_DoControlf_DoControlf_DoControl.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoControl.c ActControl Controls the Setup stage of control transfer

ActControlIn Controls the Data stage and Status stage of
control-IN transfer (transfer in which Data stage is
in the IN direction)

ActControlOut Controls the Data stage and Status stage of
control-OUT transfer (transfer in which Data stage
is in the OUT direction)

ActControlInOut Allocates the Data stage and Status stage of
control transfer to ActControlIn and ActControlOut

When a control transfer interrupt (SETUP TS) is occurred, ActControl obtains the command, and
DecStandardCommands decodes the command to decide command transfer direction. After that,
when a control transfer interrupts (EP0o TS, EP0i TR, and EP0i TS) is occurred, according to the
transfer direction of the command, ActControlInOut calls ActControlIn or ActControlOut, and the
Data stage and Status stage is carried out.

Rev. 1.0, 04/03, page 39 of 110

Table 4.2-Table 4.2-Table 4.2-Table 4.2-4444 UsbUsbUsbUsbf_DoBulkf_DoBulkf_DoBulkf_DoBulk.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoBulk.c ActBulkOut Performs bulk-OUT transfer

ActBulkIn Performs bulk-IN transfer

ActBulkInReady Prepares for bulk-IN transfer

These functions carry out processes of bulk transfers. ActBulkInReady is no used in Mass Storage
Class (Bulk-Only transport).

Table 4.2-Table 4.2-Table 4.2-Table 4.2-5555 UsbUsbUsbUsbf_DoInterruptf_DoInterruptf_DoInterruptf_DoInterrupt.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoInterrupt.c ActInterruptIn Decodes a command issued by the host module
and process standard commands.

This function carries out processes of interrupt transfers.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-6666 UsbUsbUsbUsbf_DoRequestf_DoRequestf_DoRequestf_DoRequest.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoRequest.c DecStandardCommands Performs interrupt-IN transfer.

DecVenderCommands Processes a vendor command

During control transfer, commands sent from the host module of the host PC are decoded and
processed. In this sample program, a vendor ID of 045B (vendor: Renesas) is used. When
developing a product, the user should obtain a vendor ID at the USB Implementers' Forum.
Because vendor commands are not used, DecVenderCommands does not perform any action. In
order to use a vendor command, the customer should develop a program.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-7777 UsbUsbUsbUsbf_DoRequestBOT_StorageClassf_DoRequestBOT_StorageClassf_DoRequestBOT_StorageClassf_DoRequestBOT_StorageClass.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoRequestBOT
_StorageClass.c

DecBOTClassCommands Processes USB Mass Storage Class (Bulk-Only
Transport) commands

During control transfer, the Mass Storage Class (Bulk-Only Transport) commands sent from the
host module of the host PC is decoded and processed.

Rev. 1.0, 04/03, page 40 of 110

Table 4.2-Table 4.2-Table 4.2-Table 4.2-8888 UsbUsbUsbUsbf_DoRequestHIDClassf_DoRequestHIDClassf_DoRequestHIDClassf_DoRequestHIDClass.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoRequestHID
Class.c

DecHIDClass
Commands

Processes HID class commands

During control transfer, the HID class commands sent from the host module of the host PC are
decoded and processed.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-9999 BOTBridge.cBOTBridge.cBOTBridge.cBOTBridge.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

BOTBridge.c ActBulkOnly Allocates Bulk-Only Transport by states and interrupt
sources

ActBulkOnly
Command

Processes when CBW is sent from the host PC.

Reads CBW data, and sends CBW to storage device.

ActChangStateCBW Function which is used to receive CBW transmission
completion. Changes state.

ActBulkOnlyIn Controls data transport (transfer in which data stage is
in the IN direction) and status transport

ActBulkOnlyOut Controls data transport (transfer in which data stage is
in the OUT direction) and status transport

ActCallBulkIn Function which is used to receive response reception
completion of bulk-In transfer request. When STALL is
returned, this function changes state and issues Clear
Feature.

ActNop Returns to called source function without processing
anything

ActBulkOnlyStallIn When state is STALL, controls data transport (transfer
in which data stage is in the IN direction) and status
transport

ActStallAfterCSW During data transport, sends CSW to storage device

ActFreeBKOUT Function which is used to receive bulk-OUT
transmission completion

BOTBridge.c bridges data of Mass storage class (Bulk-Only Transport) between the SH 7727 host
and SH7727 function.

Rev. 1.0, 04/03, page 41 of 110

Table 4.2-Table 4.2-Table 4.2-Table 4.2-10 10 10 10 UsbUsbUsbUsbf_DoMultiDevicef_DoMultiDevicef_DoMultiDevicef_DoMultiDevice.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbf_DoMultiDevice.c BuildDescriptorHid Creates descriptor information when HID class
device is connected

BuildDescriptor Creates descriptor information when device of Mass
Storage Class Bulk-Only Transport class is
connected

In Usbf_DoMultiDevice.c, Descriptor information is created when the SH7727SE is connected to
the host PC.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-11 11 11 11 UsbUsbUsbUsbf_Dr_Commonf_Dr_Commonf_Dr_Commonf_Dr_Common.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_Common.c ActCompleteCheck
ClassDrv

Detects completion of processes which are
requested to driver by class driver

ActCompleteCheck
Drv

Detection function for JOB which is requested by
class driver

EntryMemory Sets memory area to use

FreeUpMemory Releases used memory area.

EntryJobMemory Entries necessary area for request which is used to
request to the host driver.

errorHost Back to this function on USB host error operation

In Usbh_Dr_Common.c, common functions between each class driver are gathered.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-12 12 12 12 UsbUsbUsbUsbh_Dr_Controlh_Dr_Controlh_Dr_Controlh_Dr_Control.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_Control.c SendControl Requests control transfer to specified device

In Usbh_Dr_Control.c, control transfer request is executed to the specified device address.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-13 13 13 13 UsbUsbUsbUsbh_Dr_Bulkh_Dr_Bulkh_Dr_Bulkh_Dr_Bulk.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_Bulk.c SendBulk Requests bulk transfer to specified device

In Usbh_Dr_Bulk .c, bulk-transfer request is executed to the specified device address.

Rev. 1.0, 04/03, page 42 of 110

Table 4.2-Table 4.2-Table 4.2-Table 4.2-14 14 14 14 UsbUsbUsbUsbh_Dr_Interrupth_Dr_Interrupth_Dr_Interrupth_Dr_Interrupt.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_Interrupt.c SendInterrupt Requests interrupt transfer to specified device

In Usbh_Dr_Interrupt, interrupt transfer request is executed to the specified device address.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-15 15 15 15 UsbUsbUsbUsbh_Dr_HubDrh_Dr_HubDrh_Dr_HubDrh_Dr_HubDr.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_HubDr.c OpenHubInterface Carries out configuration. Performs control transfer to
gather information of device, interface, and endpoint,
then sets interface.

WriteHubInterface Cooperates with OpenHubInterface function to register
information of device, interface, and endpoint

ActChangPortState Receives port change notification from hubs

ActAfterJob Activated by timer interrupt, and calls following
function to activate.

ActCallNewDevice Starts bus enumeration of newly connected device

ActCheckHubPort Checks port state of hub

ActContorlHubPort Sets necessary setting according to port state

ActCheckPortState Checks specified port state (issues GET_STATUS For
Port)

ActSendSetFeature Issues Set Feature

ActSendControllear
Feature

Issues Clear Feature

ActCount Sets timer unit to count for specified time (ms)

ActFindHubPort Returns to which downstream port of hub specified
device address is connected

In Usbh_Dr_HubDr.c, connected hubs are controlled.

Rev. 1.0, 04/03, page 43 of 110

Table 4.2-Table 4.2-Table 4.2-Table 4.2-16 16 16 16 UsbUsbUsbUsbh_Dr_HidDrh_Dr_HidDrh_Dr_HidDrh_Dr_HidDr.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_HidDr.c OpenHidInterface Carries out configuration. Performs control transfer
to gather information of device, interface, and
endpoint, then sets interface.

WriteHidInterface Cooperates with OpenHubInterface function to
register information of device, interface, and
endpoint, then begins interrupt transfer

ActReceiveHidData Receives data which is transmitted by interrupt
transfer

In Usbh_Dr_HidDr.c, connected HID device is controlled, and data which has been transmitted by
the interrupt transfer is sent to the SH7727 function.

Table 4.2-Table 4.2-Table 4.2-Table 4.2-17 17 17 17 UsbUsbUsbUsbh_Dr_StorageDrh_Dr_StorageDrh_Dr_StorageDrh_Dr_StorageDr.c.c.c.c

File in Which StoredFile in Which StoredFile in Which StoredFile in Which Stored Function NameFunction NameFunction NameFunction Name PurposePurposePurposePurpose

Usbh_Dr_StorageDr.
c

OpenMscBotInterface Carries out configuration. Performs control transfer
to gather information of device, interface, and
endpoint, then sets interface.

WriteMscBotInterface Cooperates with OpenHubInterface function to
register information of device, interface, and
endpoint, then begins interrupt transfer

ActReceiveHidData Receives data which is transmitted by interrupt
transfer

Figure 4.10 to 4.14 show the interrelationship between the functions explained in table 4.2. The
upper-side functions can call the lower-side functions. Also, multiple functions can call the same
function. In the steady state, CallResetException calls other functions, and in the case of a
transition to the USB communication state which occurs on an interrupt, interrupt function
CallInterrupt calls BranchOfInt, and BranchOfInt calls other functions. Figure 4.10 to 4.14 show
the hierarchical relation of functions; there is no order for function calling. For information on the
order in which functions are called, please refer to the flow charts of section 5, Sample Program
Operation.

Rev. 1.0, 04/03, page 44 of 110

SetPowerOnSection

CallResetException

InitSystem_INITSCT

PutPacket

ActBulkOut ActBulkOut

PutPacket

ActBulkIn

ActBulkIn

InitMemory

BranchOfInt

SetUsbModule

ActCompleteCheckClassDrv

CallInterrupt

ActControlInOut ActControl

ActControlOut

DecStandardCommandsSetControlOutContents

PutPacket

HCD_MainRoutine

HCD_Setup

GetPacket

GetPacketActControlln

ConvReflexn

ActBulkOnlyIn

ActCallBulkIn

DecBOTClassCommands DecHIDClassCommands

ActBulkOnlyCommand

ActChangStateCBW

ActBusReset

ActFreeBKOUT

ActInterruptln

ActBulkOnly

ActBulkOnlyStallIn ActBulkOnlyOut

ActStallAfterCSW

SendBulk SendBulk

ActNop

errorHost

SendBulk

ConvReflexn

ConvReflexn SendControl

ConvReflexn

Figure 4.10 Interrelationship between FunctionsFigure 4.10 Interrelationship between FunctionsFigure 4.10 Interrelationship between FunctionsFigure 4.10 Interrelationship between Functions

Rev. 1.0, 04/03, page 45 of 110

OpenHubInterfaceActFindTable

SendInterrupt ActFindTable

WriteHubInterface

OpenHubInterface

ConvReflexn

ActSendSetFeatureActCount

ActCount

ActSendClearFeatureActSendSetFeatureConvReflexn ActCount

SendControl

AckCheckPortState OpenHubInterface

ActCheckHubPort

ActFindTable

AckCheckPortState ActCheckHubPort

ActControlHubPort

ActFindTable

Figure 4.11 Interrelationship between FunctionsFigure 4.11 Interrelationship between FunctionsFigure 4.11 Interrelationship between FunctionsFigure 4.11 Interrelationship between Functions

Rev. 1.0, 04/03, page 46 of 110

ActCheckHubPort

ActFindTable

ActFindTable ActFindTable

USBD_GetDeviceAdderss EnumeDriver_Start

ActChangePortState

ActCallNewDevice

ActAfterJob

SendInterrupt

ActFindTable

ActCheckHubPort SendControl

ActCheckProtState

SendControl

ActSendClearFeatue

SendControl

ActSendSetFeature

Figure 4.12 Interrelationship between FunctionsFigure 4.12 Interrelationship between FunctionsFigure 4.12 Interrelationship between FunctionsFigure 4.12 Interrelationship between Functions

Rev. 1.0, 04/03, page 47 of 110

ActInterruptInActFindTable

errorHost

errorHost

errorHost

ConvReflexn

SendControl

ActRecieveHidData

OpenHidInterfsce

ConvReflexn

SendInterrupt

ActFindTable

SendInterrupt

BuildDescriptorHid

WriteHidInterface

ActFindTable

OpenHidInterface

Figure 4.13 Interrelationship between FunctionsFigure 4.13 Interrelationship between FunctionsFigure 4.13 Interrelationship between FunctionsFigure 4.13 Interrelationship between Functions

Rev. 1.0, 04/03, page 48 of 110

ActFindTable

ActFindTable

errorHost

SendControl

USBD_ReceiverDriverRequest

EntryMemory

ConvReflexn

SendInterrupt

SendBulk

EntryJobMemory

errorHost

USBD_ReceiverDriverRequest

EntryMemoryEntryJobMemory

errorHost

USBD_ReceiverDriverRequest

EntryJobMemory

Figure 4.14 Interrelationship between FunctionsFigure 4.14 Interrelationship between FunctionsFigure 4.14 Interrelationship between FunctionsFigure 4.14 Interrelationship between Functions

Rev. 1.0, 04/03, page 49 of 110

ActBulkOnlyIn

ActBulkOnlyOut

SendBulk

ActBulkOnly

ActBulkOnlyStallIn

ActBulkOnlyCommand

ActBulkOut

ActBulkOut

SendBulkConvReflexnActBulkIn

ActBulkIn

GetPacket PutPacket

get_imask set_imask

ConvReflexnActBulkOut

FreeUpMemory

ActBulkInReady

ActCompleteCheckClassDrv

ActCompleteCheckDrv

Figure 4.15 Interrelationship between FunctionsFigure 4.15 Interrelationship between FunctionsFigure 4.15 Interrelationship between FunctionsFigure 4.15 Interrelationship between Functions

Rev. 1.0, 04/03, page 50 of 110

SendControlerrorHost

errorHost

OpenMscBotInterface

OpenMscBotInterface

WriteMscBotInterface

ConvReflexn

ActFindTable

ActFindTable BuildDescriptor

Figure 4.16 Interrelationship between FunctionsFigure 4.16 Interrelationship between FunctionsFigure 4.16 Interrelationship between FunctionsFigure 4.16 Interrelationship between Functions

4.64.64.64.6 Argument TypesArgument TypesArgument TypesArgument Types

In this sample program, other than such as char contained as a standard part of C-language,
argument types depending on the function’s purpose are defined and used. Types are defined in
Usbh_Dr_CatHostTypedef.h.

The argument types for typical functions are listed below.

• The DriverRequestType argument type is for the USBD_ReceiveDriverRequest function
which belongs to USBD in the USB system software layer.

• The ClassDriverRequestType argument type is for the SendBulk function which prepares bulk
transfers and the SendInterrupt function which prepares interrupt transfers.

• The ClassDriverRequestType and SetupDataType argument types are for the SendControl
function which prepares control transfers.

Defined function types and elements are shown below.

Rev. 1.0, 04/03, page 51 of 110

Table 4.3-1Table 4.3-1Table 4.3-1Table 4.3-1 DriverRequestType Structure MembersDriverRequestType Structure MembersDriverRequestType Structure MembersDriverRequestType Structure Members

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 unsigned char jobNum Transfer control number

2 unsigned char sendDeviceNum Device number

3 unsigned char sendEPsNum Endpoint number

4 unsigned char* Buffer Pointer to data transfer area

5 unsigned long BufferLength Data transfer size

6 unsigned long direction Data transfer direction

7 unsigned long Status Transfer completed state

8 unsigned char Setup[8] Setup packet data

9 unsigned char Ep_Type Endpoint type

10 unsigned short Ep_Mps Maximum packet size of endpoint

11 unsigned char Ep_Speed Speed of endpoint

12 unsigned char *Function (unsigned char) Calling function on transfer completion

A class driver uses above structure as argument types to the USBD_ReceiveDriverRequest
function in the USB system software layer.

Table 4.3-2Table 4.3-2Table 4.3-2Table 4.3-2 ClassDriverRequestType Structure MemberClassDriverRequestType Structure MemberClassDriverRequestType Structure MemberClassDriverRequestType Structure Member

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 DeviceListType* deviceList Pointer to device information which are managed by
the host drivers of each class

2 unsigned char deviceAddress Device address number of transfer destination device

3 unsigned char interfaceNum Interface number of transfer destination device

4 unsigned char sendEPNum Endpoint number of transfer destination device

5 unsigned char direction Data transfer direction

6 unsigned short bufferLength Data transfer size

7 unsigned char* buffer Pointer to the data transfer area

8 void *CallOn Calling function on transfer completion

Used as argument types to the functions SendControl, SendBulk, and SendInterrupt that generate
transfers.

Rev. 1.0, 04/03, page 52 of 110

Table 4.3-3Table 4.3-3Table 4.3-3Table 4.3-3 DeviceListType Structure MemberDeviceListType Structure MemberDeviceListType Structure MemberDeviceListType Structure Member

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 unsigned char dAddres Device address number

2 unsigned char dSpeed Device speed

3 unsigned char dReady Device preparation

4 unsigned char dIfNum The number of interfaces contained in a device

5 IFListType* dIfInfoPtr Pointer to interface information of device

This structure is a structure of device information which host drivers for each class use to control
devices.

This structure is also used as types to device information contained in the
ClassDriverRequestType structure.

Table 4.3-4Table 4.3-4Table 4.3-4Table 4.3-4 IFListType Structure MemberIFListType Structure MemberIFListType Structure MemberIFListType Structure Member

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 unsigned char ifConfigNum Structure number

2 unsigned char ifNum Interface number

3 unsigned char ifAltemateSetNum Alternate setting number

4 unsigned char ifHaveEpNum The number of endpoints which can be handled by
this interface

5 unsigned char ifClass Interface class number

6 unsigned char ifSubClass Subclass number

7 unsigned char ifProtocol Using protocol number

8 EPListType* ifEpInfoPtr Pointer to endpoint information which can be
handled by this interface

This structure is the structure of interface information which host drivers for each class use to
control devices.

This structure is also used as types to the interface information included in the DeviceListType
structure.

Rev. 1.0, 04/03, page 53 of 110

Table 4.3-5Table 4.3-5Table 4.3-5Table 4.3-5 EPListType Structure MemberEPListType Structure MemberEPListType Structure MemberEPListType Structure Member

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 unsigned char epAddress Endpoint number and transfer direction

2 unsigned char epAttributes Transfer method

3 unsigned char epMaxPacketSize Maximum packet size

4 unsigned char epInterval Minimum access cycle to endpoint

This structure is a structure of endpoint information which host drivers for each class use to
control devices.

This structure is also used as types to endpoint information included in the IFListType structure.

Table 4.3-6Table 4.3-6Table 4.3-6Table 4.3-6 SetupDataType Structure MemberSetupDataType Structure MemberSetupDataType Structure MemberSetupDataType Structure Member

Member TypeMember TypeMember TypeMember Type Member NameMember NameMember NameMember Name DescriptionDescriptionDescriptionDescription

1 unsigned char ByteVal[0] Stores BmRequest

2 unsigned char ByteVal[1] Stores bRequest

3 unsigned char ByteVal[2] Stores wValue

4 unsigned char ByteVal[3] Stores wValue

5 unsigned char ByteVal[4] Stores wIndex

6 unsigned char ByteVal[5] Stores wIndex

7 unsigned char ByteVal[6] Stores wLength

8 unsigned char ByteVal[7] Srores wLength

This structure is used as argument types to the SendControl function. This structure is used to
handle 8-byte setup packet data which follows the setup to be transferred in the control transfer.
The values of this structure should be stored in big endian format.

Rev. 1.0, 04/03, page 54 of 110

4.74.74.74.7 MultifunctionMultifunctionMultifunctionMultifunction

When multiple interfaces are equipped in this sample program, that is informed to the host. When
the host received the information, it makes access to endpoints of this function on need.

One interface Two interfaces

descriptor information descriptor information

Device descriptor

Configuration descriptor

Interface descriptor

Endpoint descriptor

Endpoint descriptor

Device descriptor

Configuration descriptor

Interface descriptor

Endpoint descriptor

Endpoint descriptor

Interface descriptor

Endpoint descriptor

Endpoint descriptor

Figure 4.17 Descriptor Information StructureFigure 4.17 Descriptor Information StructureFigure 4.17 Descriptor Information StructureFigure 4.17 Descriptor Information Structure

4.7.14.7.14.7.14.7.1 DescriptorDescriptorDescriptorDescriptor

Descriptor information is made on the basis of descriptor information of function devices (storage
and HID class) that are connected to the SH7727 host. When a connected function device is a hub,
descriptor information is not made.

When a function device other than a hub connection to the host is detected, the descriptor
information with one interface is made. When the another connection is detected, descriptor
information with two interfaces can be generated by adding interface descriptor information to
existing descriptor information.

If a connected function device has been disconnected, created descriptor information is not
deleted. Making new descriptor information is needed. Turn on a reset or NMI before connecting
the SH7727SE to the host PC.

Rev. 1.0, 04/03, page 55 of 110

4.84.84.84.8 Device DrivDevice DrivDevice DrivDevice Driverererer

In this sample program, the USB hub and USB function devices are connected to the SH7727 host
in the SH7727SE. When the connection is detected, the SH7727 host needs to control the USB
hub and USB function devices by carrying out a data transfer. The control condition differs
according to the USB class. In this sample program, three types of drivers, that is, hub driver, HID
driver, and storage driver are included to control each class.

4.8.14.8.14.8.14.8.1 Hub Driver OperationHub Driver OperationHub Driver OperationHub Driver Operation

The hub driver carries out obtaining descriptor information, controlling a hub class device by
using the obtained descriptor information, setting configuration, setting lower-ports, managing and
supporting lower-ports.

As a restriction, the hub driver does not manage or control the current of downstream ports.

Note that maximum four hubs can be connected.

4.8.24.8.24.8.24.8.2 HID Driver OperationHID Driver OperationHID Driver OperationHID Driver Operation

The HID driver carries out obtaining descriptor information, controlling a HID class device by
using the obtained descriptor information, setting configuration, and data reception from the HID
device.

As a restriction, one device can be connected to the HID driver

4.8.34.8.34.8.34.8.3 Storage Driver OperationStorage Driver OperationStorage Driver OperationStorage Driver Operation

The storage driver carries out obtaining descriptor information, controlling a storage device by
using the obtained descriptor information, and setting configuration.

As a restriction, one storage driver can be connected.

Rev. 1.0, 04/03, page 56 of 110

4.94.94.94.9 Cooperation of Host and FunctionCooperation of Host and FunctionCooperation of Host and FunctionCooperation of Host and Function

In this sample program, the SH7727 host and the SH7727 function transfer data by cooperating
each other and realize data transmission/reception between the host PC and USB function devices.

Connect the USB function device to the SH7727 host and the host PC to the SH7727 function.
When the host PC detects the connection of the SH7727 function, it performs bus enumeration.

Then the host PC transfers data to each endpoints depending on descriptor information returned
from the SH7727SE.

4.9.14.9.14.9.14.9.1 HID Class CooperationHID Class CooperationHID Class CooperationHID Class Cooperation

In the HID class, the SH7727 host and SH7727 function establish a ring buffer in the memory of
the SH7727SE and perform sending and receiving data.

After configuration completes, the SH7727 host sends an IN token by the interrupt transfer to the
endpoint returned by the HID device. If the HID device has data to send, it sends the data to the
SH7727 host. If the HID has no data, it returns a NAK to the SH7727 host. After receiving data,
the SH7727 host writes data to the ring buffer, and then resumes the interrupt transfer.

The host PC sends an IN token to the endpoint 3 of the SH7727 function. If there is transfer data
in the ring buffer, the SH7727 function sends the data to the host PC. If there is no data in the ring
buffer, the function sends a NAK to the host PC.

Rev. 1.0, 04/03, page 57 of 110

SH7727SE

SH7727

ƒ Šƒ “ƒ Oƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

ƒ f [ƒ –̂ ”‚ ÍNAK

INƒg [ƒ Nƒ “

HIDƒ fƒ oƒ Cƒ X

ƒ f [ƒ –̂ ”‚ ÍNAK

INƒg [ƒ Nƒ “

ƒ f [ƒ ^ ‘‚ « ž‚ Ý ƒ f [ƒ “̂ Ç‚ Ý o‚µ

Figure 4.18 HID Class Cooperation DiagramFigure 4.18 HID Class Cooperation DiagramFigure 4.18 HID Class Cooperation DiagramFigure 4.18 HID Class Cooperation Diagram

4.9.24.9.24.9.24.9.2 Storage Class CoopeStorage Class CoopeStorage Class CoopeStorage Class Cooperationrationrationration

In the storage class, the SH7727 host and SH7727 function establish a transfer buffer in the
memory of the SH7727SE, and perform sending and receiving data. Sending/receiving data is
performed in 1 packet unit. According to the transfer procedure of the Bulk-Only Transport in
USB Mass Storage Class, a processing flow in the storage class is explained below.

When the SH7727 function receives CBW which is issued by the host PC, it occurs a receive
interrupt and activates the USB receive interrupt routine. The interrupt routine performs following
two processes sequentially.

1. CBW is sent from the SH7727 function to the transfer buffer.

2. CBW is transferred from the transfer buffer to the storage device by the SH7727 host.

SH7727SE

Ring Buffer
Reading data

SH7727

Function Host IN token

Data or NAKData or NAK

IN token

Host PC
HID device

Writing data

Data or NAK

Rev. 1.0, 04/03, page 58 of 110

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

(2):ACK

(1):CBW

ƒ Xƒgƒ Œ[ƒ Wƒ fƒ oƒ Cƒ X

(6):ACK
(5):CBW

(3):ƒ f [ƒ ^ ‘‚ « ž‚ Ý (4):ƒ f [ƒ “̂ Ç‚ Ý o‚ µ

Figure 4.19-1 Storage Class Cooperation DiagramFigure 4.19-1 Storage Class Cooperation DiagramFigure 4.19-1 Storage Class Cooperation DiagramFigure 4.19-1 Storage Class Cooperation Diagram

When CBW transfer has been completed, processing data transport or CSW is begun.

When data transport is the in transfer, the host PC issues an IN token to the SH7727 function to
require data. However, as the SH7727 function has no data to send to the host PC, it sends back a
NAK to the host PC. At this time, an interrupt is occurred and process is done by the interrupt
processing routine. Three procedures are explained below.

1. The SH7727 host transfers data from the storage device to the transfer buffer to store it in the
transfer buffer.

2. The SH7727 function transfers data which is stored in the transfer buffer to the host PC.

3. The interrupt enable bit is modified.

In the SH7727 function, there are two FIFO buffer that are used for the data transfer (bulk-IN).
When the buffer leaves space, an interrupt occurs and the interrupt is processed sequentially by the
interrupt processing routine. The interrupt continues until CSW is transmitted.

SH7727SE

Transfer Buffer

SH7727

(3): Writing data

Function

(4): Reading data

(1): CBW

(2): ACK

(6): ACK

Host PC

Storage device

(5): CBW

Host

Rev. 1.0, 04/03, page 59 of 110

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

(2):ACK

(1):CBW

ƒ Xƒgƒ Œ[ƒ Wƒ fƒ oƒ Cƒ X

(6):ACK
(5):CBW

(3):ƒ f [ƒ ^ ‘‚ « ž‚ Ý (4):ƒ f [ƒ “̂ Ç‚ Ý o‚ µ

Figure 4.19-2 Storage Class Cooperation DiagramFigure 4.19-2 Storage Class Cooperation DiagramFigure 4.19-2 Storage Class Cooperation DiagramFigure 4.19-2 Storage Class Cooperation Diagram

When the data transport is out transfer, the host PC issues an OUT token and a following transfer
data to the SH7727 function. As there is no receive data in the SH7727 function, the SH7727
function receives the data from the host PC and sends back an ACK to the host PC. At this time,
as an interrupt occurs, following two procedures are processed sequentially by the interrupt
processing routine.

1. Receive data is sent from the SH7727 function to the transfer buffer and stored in the buffer.

2. Data which is stored in the transfer buffer is transferred to the storage device by the SH7727
host.

SH7727SE

Transfer Buffer

SH7727

(6): Reading data

Function

(5): Writing data

(1): IN token

(4): DATA

(2): NAK

(7): Data

Host PC

Storage device

(3): IN token

Host

Rev. 1.0, 04/03, page 60 of 110

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

(2):ACK

(1):CBW

ƒ Xƒgƒ Œ[ƒ Wƒ fƒ oƒ Cƒ X

(6):ACK
(5):CBW

(3):ƒ f [ƒ ^ ‘‚ « ž‚ Ý (4):ƒ f [ƒ “̂ Ç‚ Ý o‚ µ

Figure 4.19-3 Storage Class Cooperation DiagramFigure 4.19-3 Storage Class Cooperation DiagramFigure 4.19-3 Storage Class Cooperation DiagramFigure 4.19-3 Storage Class Cooperation Diagram

When there is no transport or the OUT direction data transport has been completed, the host PC
issues an IN token to the SH7727 function and requires CSW. However, as the SH7727 function
has no transfer data to the host PC, the SH7727 function sends back a NAK to the host PC. At this
time, as an interrupt occurs, following two procedures are processed sequentially by interrupt
processing routine.

1. CSW is sent from the function to the transfer buffer and stored in the buffer by the SH7727
host.

2. CSW which is in the transfer buffer is transferred to the host PC by the SH7727 function.

SH7727SE

Transfer Buffer

SH7727

(3): Writing data

Function

(4): Reading data

(1): OUT token
+ data

(2): ACK

(6): ACK

Host PC

Storage device

(5): OUT token

+ data

Host

Rev. 1.0, 04/03, page 61 of 110

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

(2):ACK

(1):CBW

ƒ Xƒgƒ Œ[ƒ Wƒ fƒ oƒ Cƒ X

(6):ACK
(5):CBW

(3):ƒ f [ƒ ^ ‘‚ « ž‚ Ý (4):ƒ f [ƒ “̂ Ç‚ Ý o‚ µ

Figure 4.19-4 Storage Class Cooperation DiagramFigure 4.19-4 Storage Class Cooperation DiagramFigure 4.19-4 Storage Class Cooperation DiagramFigure 4.19-4 Storage Class Cooperation Diagram

When the data transport is an IN transfer and the SH7727 host requests the storage device transfer
data and the storage device sends back a STALL, individual process is done to the host PC and
storage device.

For the host PC, following two processes are done.

1. A 0x00 data with bytes as the same number of the data required in the CBW is transferred to
the host PC.

2. CSW is made based on CBW and sent to the host PC with status code 0x01.

In the SH7727 function, there are two FIFO buffer that are used for the data transfer (bulk-IN).
When the buffer leaves space, an interrupt occurs and the interrupt is processed sequentially by the
interrupt processing routine. The interrupt continues until CSW is transmitted.

For the storage device, following two processes are done.

1. Clear Feature is issued to clear stall state..

2. The host issues an IN token to the storage device and receives CSW from the device.

The SH7727 host should control the storage device and prepare for the next CBW.

SH7727SE

Transfer Buffer

SH7727

(6): Reading data

Function

(5): Writing data

(1): IN token

(4): CSW

(2): NAK

(7): CSW

Host PC

Storage device

(3): IN token

Host

Rev. 1.0, 04/03, page 62 of 110

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

(A3):0x00ƒ f [ƒ ̂

(A1):INƒg [ƒ Nƒ “

ƒ Xƒgƒ Œ[ƒ Wƒ fƒ oƒ Cƒ X

(B2):STALL

(B1):INƒg [ƒ Nƒ “

(A2):0x00‚ ð“ Ç‚ Ý o‚ µ

(B3):

ƒ Nƒ Šƒ Aƒ tƒ …[ƒ ƒ̀ ƒ [

(B4):INƒg [ƒ Nƒ “

(B5):CSW

(A4): CSW

Figure 4.19-5 Storage Class Cooperation DiagramFigure 4.19-5 Storage Class Cooperation DiagramFigure 4.19-5 Storage Class Cooperation DiagramFigure 4.19-5 Storage Class Cooperation Diagram

SH7727SE

Transfer Buffer

SH7727

(3): Reading 0x00

Function

(4): Writing data

(A1): IN token

(B2): STALL

(B5): CSW

Host PC

Storage device

(B4): IN token

Host

(A3): 0x00 data

(A4): CSW

(B3): Clear Feature

(B1): IN token

Rev. 1.0, 04/03, page 63 of 110

Section 5 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of the
USB function and USB host modules in the SH7727.

5.15.15.15.1 Main LoopMain LoopMain LoopMain Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of on-
chip peripheral modules are initialized. Next, the reset interrupt function CallResetException is
called, and the reset exception handling is executed, then the function SetPowerOnSection is
called. Figure 5.1 is a flow chart from the interrupt occurrence to the steady state.

Microcomputer reset

Microcomputer
initial settings

CallResetException

RAM is cleared to 0

Variables are initialized

Steady State
(infinite loop)

SetPowerOnSection

After initial settings, this program
enters the steady state.

Figure 5.1 Main LoopFigure 5.1 Main LoopFigure 5.1 Main LoopFigure 5.1 Main Loop

Rev. 1.0, 04/03, page 64 of 110

5.25.25.25.2 Types of InterruptsTypes of InterruptsTypes of InterruptsTypes of Interrupts

The interrupts used in this sample program are indicated by the interrupt flag registers 0 and 1
(USBIFR0 and USBIFR1), and the HcInterruptStatus register; there are ten types of interrupts.

When a USB interrupt occurs, the corresponding bit in the interrupt flag register is set to 1 and a
USBFI0 interrupt request is sent to the CPU. In the sample program, when the interrupt occurs, the
CPU reads the interrupt flag register to perform the corresponding USB communications. Figure
5.2 shows correspondence between the interrupt flag registers and USB communications.

USB interrupt flag register 0 (USBIFR0)

USB interrupt flag register 1 (USBIFR1)

HcInterruptStatus

Bit:

Bit name:

Bit:

Bit name:

Bit:

Bit name:

EP2
TR

7 6 5 4 3 2 1 0

Cable connection Bulk transfer

EP2
EMPTY

SETUP
TS

7 6 5 4 3 2 1 0

Not used

BRST

RHSC

EP1
FULL

EP0o
TS

EP0i
TR

EP0i
TS

FNO UE RD SF WDH S0

VBUS
MN

EP3
TR

EP3
TS

VBUS
F

7 6 5 4 3 2 1 0

Control transfer

Not usedInterrupt transfer

Host interrupt

Figure 5.2 Types of Interrupt FlagsFigure 5.2 Types of Interrupt FlagsFigure 5.2 Types of Interrupt FlagsFigure 5.2 Types of Interrupt Flags

Rev. 1.0, 04/03, page 65 of 110

5.2.15.2.15.2.15.2.1 Branching to Transfer Branching to Transfer Branching to Transfer Branching to Transfer FunctionFunctionFunctionFunction

In this sample program, the transfer method is decided by the type of interrupt from the USB
module. Branching according to the decided transfer method is executed by BranchOfInt of
UsbMain.c. Table 5.1 shows the relationship between interrupt types and functions called by
BranchOfInt.

Table 5.1Table 5.1Table 5.1Table 5.1 Interrupt Types and CaInterrupt Types and CaInterrupt Types and CaInterrupt Types and Called Functionslled Functionslled Functionslled Functions

Register NameRegister NameRegister NameRegister Name BitBitBitBit Bit nameBit nameBit nameBit name Called FunctionCalled FunctionCalled FunctionCalled Function

USBIFR0 0 EP0i TS ActControlInOut

1 EP0i TR ActControlInOut

2 EP0o TS ActControlInOut

3 SETUP TS ActControl

4 EP2 EMPTY ActBulkIn

5 EP2 TR ActBulkInReady

6 EP1 FULL ActBulkOut

7 BRST ActBusReset

USBIFR1 1 EP3 TS ActInterruptIn

The EP0i and EP0o TS interrupts are used for both control-IN and control-OUT transfers.
Therefore, to manage the direction and stage of control transfer, the sample program has three
states: TRANS_IN, TRANS_OUT, and WAIT. For details, see section 5.4, SH7727 Function
Control Transfer.

Rev. 1.0, 04/03, page 66 of 110

5.35.35.35.3 Interrupt on Cable Connection (BRST)Interrupt on Cable Connection (BRST)Interrupt on Cable Connection (BRST)Interrupt on Cable Connection (BRST)

These interrupts occur when the USB function module is connected to the host PC by using the
USB cable. After completion of initializing the microcomputer, the software pulls up the USB
data bus D+ by using a general output-only port. By means of this pull-up, the host PC recognizes
that the device has been connected (figure 5.3)

SH7727 function module

Cable disconnected
VBUS pin = 0

UDC core reset

Bus reset received
USBIFR0/BRST = 1
Bus reset interrupt

Wait for setup command
receive complete interrupt

USB1_pwr_en
Pin D+ pull-up

enabled

USB cable connected

UDC core reset
canceled

Cable connected

SetPowerOnSection

ActBusReset

Sample program

No

Yes

The pull-up enable bit in
the USBDMA setting
register cleared to 0 to
drive the USB1_pwr_en
pin low

Microcomputer
initial settings

Main loop

Output level (high) of
USB1_pwr_en pin set by
USBDMA setting register

Clock of 48 MHz used by
USB is set by EXCPG control

register

USB interrupt level set
by interrupt priority
setting register G

USB transceiver 1 set by
extra pin function
controller register

Port D6 set as
USB clock input pin

Port E2 set as
USB1pwr_en pin

Interrupt request to be used
is set by USB interrupt

enable register

Interrupt request vector number
set by USB interrupt select

register

Interrupt flag cleared

All FIFOs cleared

All STALL bits cleared

Media state register
variables cleared

USBFI0 interrupt
occurred

Figure 5.3 Interrupt on Cable ConnectionFigure 5.3 Interrupt on Cable ConnectionFigure 5.3 Interrupt on Cable ConnectionFigure 5.3 Interrupt on Cable Connection

Rev. 1.0, 04/03, page 67 of 110

5.45.45.45.4 SH7727 Function Control TransferSH7727 Function Control TransferSH7727 Function Control TransferSH7727 Function Control Transfer

For control transfers, bits 0 to 3 in the interrupt flag registers are used. Control transfers are
divided into two types according to the direction of data in the Data stage (figure 5.4). In the Data
stage, data transfer from the host PC to the SH7727 function is control-OUT transfer and transfer
in the opposite direction is control-IN transfer.

Control-OUT transfer

Host controller USB function

Data Data stage

Control-IN transfer

Host controller USB function

Data Data stage

Figure 5.4 Control TransferFigure 5.4 Control TransferFigure 5.4 Control TransferFigure 5.4 Control Transfer

Control transfers consist of three stages: Setup, Data (no data is possible), and Status (figure 5.5).
Further, the Data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-IN or control-OUT transfers
(see table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-IN or control-OUT, (figure 5.5) and must call the
appropriate function. States in the Data stage (TRANS_IN and TRANS_OUT) are determined by
commands received in the Setup stage.

Rev. 1.0, 04/03, page 68 of 110

Control-in

Firmware state

SETUP (0) IN (1) IN (0)

DATA0 DATA1 DATA0

IN (0/1)

DATA0/1

OUT (1)

DATA1

...

WAITWAIT TRANS_IN

Control-out

Firmware state

SETUP (0) OUT (1) OUT (0)

DATA0 DATA1 DATA0

OUT (0/1)

DATA0/1

IN (1)

DATA1

...

WAITWAIT TRANS_OUT

No data

Firmware state

SETUP (0)

DATA0

IN (1)

DATA1

WAITWAIT TRANS_OUT

Setup stage Data stage Status stage

Figure 5.5 Each Stage in Control TransfersFigure 5.5 Each Stage in Control TransfersFigure 5.5 Each Stage in Control TransfersFigure 5.5 Each Stage in Control Transfers

5.4.15.4.15.4.15.4.1 Setup StageSetup StageSetup StageSetup Stage

In the Setup stage, the host PC and SH7727 function exchange commands. For both control-IN
and control-OUT transfers, the firmware goes into the WAIT state. Depending on the type of
command issued, distinction between control-IN and control-OUT transfers is performed, and the
state of the firmware in the Data stage (TRANS_IN or TRANS_OUT) is decided.

Command for TRANS_IN GetDescriptor (Standard command)

Figure 5.6-1 shows operation of the sample program in the Setup stage. The figure on the left
shows the operation of the USB function module.

Rev. 1.0, 04/03, page 69 of 110

USB function module

Setup token received

To data stage

8-byte command data
received at EP0s

Application processing
command?

Setup command receive
complete flag set

(USBIFR0/SETUP TS=1)

BranchOfInt

Automatic processing
by USB module

Yes

ActControl

DecStandardCommands

No

No

No

No

No

NoNo

No

Sample program

EXIRQ0 interrupt
occurred

GetPacket

Data read from
EP0s FIFO

To data stage

EP0s read complete bit set to 1
(USBTRG/EP0s RDFN=1)

DecVender
Commands Dec BOTClass

Command

Vender command?

Class command?

Corresponding standard command
which should be processed?

Process preparation for
Get/Set Descriptor

TRANS_OUT state setTRANS_IN state set

STALL state set

Ineterrupt enable bit set
for control-in transfer

Ineterrupt enable bit
set for control-out transfer

Transfer direction is IN?

PutPacket
Data written

to FIFO

EP0i/EP0o interrupt
masked

EP0 STALL bit set

Corresponding
command?

Corresponding
command?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

STALL state?

SETUP TS flag cleared
EP0o/EP0i FIFO cleared

WAIT state set

Read pointer and write pointer for
command stored buffer initialized

Figure 5.6-1 Setup StageFigure 5.6-1 Setup StageFigure 5.6-1 Setup StageFigure 5.6-1 Setup Stage

Rev. 1.0, 04/03, page 70 of 110

5.4.25.4.25.4.25.4.2 Data StageData StageData StageData Stage

In the Data stage, the host PC and SH7727 function exchange data. The firmware state becomes
TRANS_IN for control-IN transfer, and TRANS_OUT for control-OUT transfer, according to the
result of decoding of the command in the Setup stage. Figures 5.6-2 and 5.6-3 show the operation
of the sample program in the Data stage of control transfer

USB function module Sample program

In token received

YES

YES

ActControl In

EP0i packet enable bit set to 1
(USBTRG/EP0i PKTE=1)

PutPacket

NO

NO

YES

NO

USI0 interrupt
occurred

ACK

NAK

NAK

To status stage

ActControlInOut

NO

YES

When data direction changes, Data stage
is completed and Status stage is entered.

BranchOfInt

To control-out transfer
(figure 5.6-3)

USB IFR/EP0i TS
interrupt flag cleared

USBEP0i data register
to write data

Receive complete interrupt?
(USBIFR0/EP0o TS)

Firmware state is
TRANCE_OUT?

Data transmitted to host

Valid data in
EP0i FIFO?

EP0EP0i transmit flag set
(USBIFR0/EP0iTS=1)

USBTRG/EP0s RDFN
set to 1?

Figure 5.6-2 Data Stage (Control-IN Transfer)Figure 5.6-2 Data Stage (Control-IN Transfer)Figure 5.6-2 Data Stage (Control-IN Transfer)Figure 5.6-2 Data Stage (Control-IN Transfer)

Rev. 1.0, 04/03, page 71 of 110

USB function module

Out token received

Out token received

EP0o receive frag set
(USBIFR0/EP0o TS=1)

Data received from host

Any space in
EP0o FIFO?

Any space in
EP0o FIFO?

Yes

Yes

ActControlOut

EP0o receive data size
register read

(USBEPSZ0O)

Data read from data register
(USBEPDR0O)

EP0o read complete bit set to 1
(USBTRG/EP0o RDFN=1)

GetPacket

Yes

No

No

Sample program

USBFI0 interrupt
occurred?

ACK

NAK

NAK

Receive complete interrupt?
(USBIFR0/EP0o TS)

To status stage

When data direction changes, Data stage
is completed and Status stage is entered.

No

ActControlInOut

Yes

No
Firmware state is
TRANS_OUT?

BranchOfInt

To control-in transfer
(figure 5.6-2)

When firmware state is
TRANS_OUT

EP0o receive
complete flag cleared

(USBIFR0/EP0o TS=0)

Figure 5.6-3 Data Stage (Control-OUT Transfer)Figure 5.6-3 Data Stage (Control-OUT Transfer)Figure 5.6-3 Data Stage (Control-OUT Transfer)Figure 5.6-3 Data Stage (Control-OUT Transfer)

5.4.35.4.35.4.35.4.3 Status StageStatus StageStatus StageStatus Stage

The Status stage begins with a token for the opposite direction from the Data stage. That is, in
control-IN transfer, the Status stage begins with an out-token from the host PC; in control-OUT
transfer, it begins with an in-token from the host PC.

Rev. 1.0, 04/03, page 72 of 110

USB function module

Out token received

ActControl In

Control-in transfer completed

Yes

No

Sample program

ACK

Receive complete interrupt?
(USBIFR0/EP0o TS)

To data stage

ActControlInOut

No

Yes
Firmware state is
TRANCE_OUT?

When firmware state
is TRANS_IN.

BranchOfInt

To control out transfer
(figure 5.6-5)

USBFI0
interrupt occurred

EP0o interrupt flags other than
SETUP flag are cleared

Firmware state
changed to WAIT

EP0o read complete bit set to 1
(USBTRG/EP0oRDFN=1)

Control transfer completed

EP0o receive frag set
(USBIFR0/EP0o TS=1)

0-byte received from host

Figure 5.6-4 Status Stage (Control-IN Transfer)Figure 5.6-4 Status Stage (Control-IN Transfer)Figure 5.6-4 Status Stage (Control-IN Transfer)Figure 5.6-4 Status Stage (Control-IN Transfer)

Rev. 1.0, 04/03, page 73 of 110

USB function module

Out token received

ActControlOut

Change firmware state WAIT

EP0i transfer request flag cleared
(USBIFR0/EP0i TR=0)

Write data received in Data stage

EP0i packet enable bit set to 1
(USBTRG/EP0i PKTE=1)

Yes

Yes

Yes

No

No

No

Sample programUSBFI0 interrupt
occurred

ACK

NAK

Receive complete interrupt?
(USBIFR0/EP0o TS)

Receive complete interrupt?
(USBIFR0/EP0i TR)

To data stage

Valid data in
EP0i FIFO?

ActControlInOut

No

Firmware state is
TRANCE_OUT?

BranchOfInt

To control in transfer
(figure 5.6-4)

Yes

SetControlOutContents

When firmware state
is TRANS_OUT

Control transfer completed

EP0i transmit complete frag set
(USBIFR0/EP0i TS=1)

0-byte data sent to host

EP0i transmit
complete flag cleared
(USBIFR0/EP0i TS=0)

Figure 5.6-5 Status Stage (Control-OUT Transfer)Figure 5.6-5 Status Stage (Control-OUT Transfer)Figure 5.6-5 Status Stage (Control-OUT Transfer)Figure 5.6-5 Status Stage (Control-OUT Transfer)

Rev. 1.0, 04/03, page 74 of 110

5.55.55.55.5 Bulk TransferBulk TransferBulk TransferBulk Transfer

In bulk transfers, bits 4 to 6 of the interrupt flag register are used. Bulk transfers can also be
divided into two types according to the direction of data transmission. (Figure 5.7)

When data is transferred from the host PC to the SH7727 function, the transfer is called a bulk-
OUT transfer; when data is transferred in the opposite direction, it is a bulk-IN transfer.

Bulk-out transfer

Host controller USB function

Data

Bulk-in transfer

Host controller USB function

Data

Figure 5.7 Bulk TransferFigure 5.7 Bulk TransferFigure 5.7 Bulk TransferFigure 5.7 Bulk Transfer

The Bulk-Only Transport used in the USB Mass Storage Class consists of bulk-IN and bulk-OUT
transfers.

Bulk-Only Transport comprises two or three stages (figure 5.8): command transport (CBW), data
transport (this is sometimes not included), and status transport (CSW). In addition, data transport
is made up of multiple bus transactions.

With Bulk-Only Transport, the command transport (CBW) is done using bulk-OUT transfer, while
the status transport (CSW) is sent using bulk-IN transfer. Either bulk-IN transfer or bulk-OUT
transfer may be used for data transport, depending on the direction in which the data is being sent.

Whether bulk-IN or bulk-OUT transfer is used for data transport is determined by the CBW data
received using command transport. In the firmware, whether bulk-IN or bulk-OUT is used for data
transport is controlled by states (TRANS_IN and TRANS_OUT) (see figure 5.8). The appropriate
variables must be loaded by the firmware.

Additionally, the transition in stages from data transport to status transport is handled by data of a
planned length being sent or received using data transport requested by the host PC.

In this sample program, the CBW and data transport received from the host PC by using a bulk-
OUT transfers and retained in the common memory. In a bulk-IN transfer, when the CSW and
data transport to transfer are in the common memory, they are sent to the host PC. When the CSW

Rev. 1.0, 04/03, page 75 of 110

and data transport are not in the common memory, the USB function module (hardware) sends a
NAK to the host PC.

Bulk-in

Firmware state

CBW IN IN IN CSW...

WAITWAIT TRANS_IN

Bulk-out

Firmware state

CBW

CBW

OUT OUT OUT CSW

CSW

...

WAITWAIT TRANS_OUT

No data

Firmware state WAITWAIT TRANS_OUT

Command
transport

Data transport Status transport

Figure 5.8 Each Stage in Bulk-Only TransportFigure 5.8 Each Stage in Bulk-Only TransportFigure 5.8 Each Stage in Bulk-Only TransportFigure 5.8 Each Stage in Bulk-Only Transport

5.5.15.5.15.5.15.5.1 Bulk-Out TransferBulk-Out TransferBulk-Out TransferBulk-Out Transfer

In bulk-OUT transfer, data is transferred from the host PC to the SH7727 function. Bulk-OUT
transfer is used in two cases: data reception and data transport reception.

When the CBW data is received, the state of firmware is WAIT. When data transport is received,
the state of firmware is TRANS_OUT.

5.5.25.5.25.5.25.5.2 Bulk-In TranBulk-In TranBulk-In TranBulk-In Transfersfersfersfer

In bulk-IN transfer, transfer data to the host PC is sent from the SH7727 function. Bulk-IN
transfer is used in three cases: data transport transmission, CSW transmission, and when the link
program transmits data of 0x00 with the same number of data requested in the CBW, to the host
PC substitutes for the storage device.

In the data transport transmission stage, state of the firmware is TRANS_IN. In the CSW data
transmission, the state of firmware is TRANS_IN or TRANS_OUT. When the link program
transmits data of 0x00 substitutes for the storage device, the state of firmware is STALL.

Rev. 1.0, 04/03, page 76 of 110

5.65.65.65.6 Interrupt TransferInterrupt TransferInterrupt TransferInterrupt Transfer

For interrupt transfers, bit 1 in the interrupt flag register1 (USBIFR1) is used. In the SH7727, data
transfer in interrupt transfer is executed in one direction (figure 5.9).

In the direction, data is transferred from the SH7727 function to the host PC; that is, the interrupt-
IN transfer.

Host controller USB function

Data

Figure 5.9 Interrupt TransferFigure 5.9 Interrupt TransferFigure 5.9 Interrupt TransferFigure 5.9 Interrupt Transfer

In interrupt transfers, the host PC receives data from the SH7727 function. The firmware is WAIT
state or TRANS_IN state. Figure 5.10 shows the operation of the sample program of the interrupt
transfer. On the left side of the figure shows the operation of the USB function module.

USB function module Sample program

In token received

Yes

ActInterrputIn

WAIT state set

Data written to transmit
register and sent

No

Yes

No

USBFI0 interrupt
occurred

ACK

NAK

BranchOfInt

EP3 transfer request set
(USBIFR0/EP0iTS=1)

PutPacket

USBIFR1/EP3 TS
interrupt flag cleared

TRANS_IN state set

Any transfer data?Data sent to host

Valid data in
EP3 FIFO?

Figure 5.10 Interrupt-In TransferFigure 5.10 Interrupt-In TransferFigure 5.10 Interrupt-In TransferFigure 5.10 Interrupt-In Transfer

5.75.75.75.7 Hub Control by SH7727 HostHub Control by SH7727 HostHub Control by SH7727 HostHub Control by SH7727 Host

A hub driver has three roles; activating connected hub, resetting the USB hub connected to a
downstream port or the USB function device, and managing downstream ports of a hub.

Rev. 1.0, 04/03, page 77 of 110

Figure 5.11 shows the hub drivers.

Called driver is decided according to the class of connected device

EnumeDriver_EnableDriver

ActCheckHubPort

ActCount

ActAfterJob

ActCompleteCheckDrv

OpenHubInterface

SendInterrupt

ActCheckHubPort

ActSendClearFeature

ActCheckPortState

ActControlHubPort

ActChangePortState

WriteHubInterface

ActCompleteCheckClassDrv

Steady state
(infinite loop)

Transfer
completed?

Activated by
timer interrupt

Transfer control
information

Transfer completion is written

Transfer
occurred

No transfer
occurred

Yes
No

Transfer result
processing

Activated by
interrupt

Transfer occurrence

Hardware Hardware

Timer count up

Transfer completed

Figure 5.11 Hub DriversFigure 5.11 Hub DriversFigure 5.11 Hub DriversFigure 5.11 Hub Drivers

When setting a device address by functions in the USBD layer has been completed, the
OpenHubInterface function is called to start activation processing by a hub driver.

Figure 5.12-1 shows transfers performed between the SH7727 host and a hub; from obtaining
descriptor information to completion of activation processing.

Figure 5.12-2 shows transfers performed between the SH7727 host and a hub. The transfers are
performed to report the change of the hub state after completion of activation processing by an
interrupt transfer, to check the state of a downstream port by receiving the report, and to operate a
down stream port.

Rev. 1.0, 04/03, page 78 of 110

Hub activation process
start

Hub SH7727 host

Hub activation process
completed

Returns GET_DESCRIPTOR
DEVICE_type

Returns
GET_HUB_DESCRIPTOR

HUB_type

Requests
GET_HUB_DESCRIPTOR

HUB_type

Processes
GET_HUB_DESCRIPTOR

HUB_type

Requests
SET_CONFIGURATION

New_configuration

SET_CONFIGURATION
New_configuration completed

Processes
GET_DESCRIPTOR

DEVICE_type

Requests
GET_DESCRIPTOR

DEVICE_type

Returns GET_DESCRIPTOR
CONFIGURATION_type

Processes
GET_DESCRIPTOR

CONFIGURATION_type

Requests
GET_DESCRIPTOR

CONFIGURATION_type

OpenHubInterface

WriteHubInterface

OpenHubInterface

WriteHubInterface

OpenHubInterface

WriteHubInterface

OpenHubInterface

WriteHubInterface

Returns
SET_CONFIGURATION

New_configuration

Figure 5.12-1 Flow of SH7727 HostFigure 5.12-1 Flow of SH7727 HostFigure 5.12-1 Flow of SH7727 HostFigure 5.12-1 Flow of SH7727 HostHub Transfer 1Hub Transfer 1Hub Transfer 1Hub Transfer 1

Rev. 1.0, 04/03, page 79 of 110

Hub driver device
preparation completed

Hub SH7727 host

Starts supplying power
to specified port

Returns NAK

Returns change of hub

Returns specified port state

Changes state of
specified port

Processes
SET_FEATURE PORT_POWER

Requests
SET_FEATURE PORT_POWER

OpenHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

WriteHubInterface

All ports supplied power?

Some change made in hub?

Wait time for 100 ms

Interrupt-in transfer request

Receives change of hub

Checks change of port

Checks state of
specified port

Requests control transfer

Controls port
according to its state

Yes

Yes

No

No

Figure 5.12-2 Flow of SH7727 HostFigure 5.12-2 Flow of SH7727 HostFigure 5.12-2 Flow of SH7727 HostFigure 5.12-2 Flow of SH7727 HostHub Transfer 2Hub Transfer 2Hub Transfer 2Hub Transfer 2

Next, five flowcharts of functions that issue transfers are shown below.

Rev. 1.0, 04/03, page 80 of 110

OpenHubInterface

Search for device address

Device registering process

Interrupt transfer is
requested

Control transfer requested

SetFeature requested

Device address
is detected?

Interface number is 0?

Preparation of GET_DESCRIPTOR
DEVICE_type issue

Preparation of
GET_HUB_DESCRIPTOR HUB_type

Preparation of SET_FEATURE
PORT_POWER

Preparation of SET_CONFIGRATION
New_configration

Preparation of GET_DESCRIPTOR
CONFIGRATION_type

Interface class is 0x09
and the number of

ports is 0?

The number of ports is
more than 0 and command issue

after configuration is 0?

Command issue after
configuration is 1?

Maximum packet size of
EP0 is 0?

ActFindTable

SendInterrupt

SendControl

ActSendSetFeature

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 5.13-1 Transfer Issue Functions (1)Figure 5.13-1 Transfer Issue Functions (1)Figure 5.13-1 Transfer Issue Functions (1)Figure 5.13-1 Transfer Issue Functions (1)

Rev. 1.0, 04/03, page 81 of 110

SendInterrupt

Area for communication
with USBD reserved

ActFindTable

USBD_ReceiveDriverRequest

Data area reserved

EntryMemory

Search for device address

Parameters set

Transfer issue request

ActFindTable

Any device address?

Any endpoints?

Transfer control number
registered

Area completely
reserved?

The amount of
data is 0?

Request
succeeded?

Error processed

NO

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

Figure 5.13-2 Transfer Issue Functions (2)Figure 5.13-2 Transfer Issue Functions (2)Figure 5.13-2 Transfer Issue Functions (2)Figure 5.13-2 Transfer Issue Functions (2)

Rev. 1.0, 04/03, page 82 of 110

ActSendClearFeature

Control transfer requested

Parameter of Clear Feature
specified by argument set

SendControl

ActSendSetFeature

Control transfer requested

Parameter of Set Feature
specified by argument set

SendControl

ActCheckPortFeature

Control transfer requested

Port number of
GET_STATUS For Port

specified by argument set

SendControl

Figure 5.13-3 Transfer Issue Functions (3)Figure 5.13-3 Transfer Issue Functions (3)Figure 5.13-3 Transfer Issue Functions (3)Figure 5.13-3 Transfer Issue Functions (3)

Four flowcharts of transfer result processing functions that start processing after the completion of
transfers are shown below.

Rev. 1.0, 04/03, page 83 of 110

WriteHubInterface

Search for
Device address

Search for transfer
control number

Command issue
counter set to 2

Error processing

Timer unit set

1 subtracted
from port counter

Configuration performed

Device address
detected?

Port counter is 0?

Configuration information is
registered in device control list

Command issue
counter set to 1

The number of ports
registered

Endpoint information of EP0 is
registered in device control list

Issued command is
GET_DESCRIPTOR

DEVICE_type?

Issued command is
GET_DESCRIPTOR

CONFIGRATION_type?

Issued command is
GET_HUB_DESCRIPTOR

HUB_type?

Issued command is
SET_DESCRIPTOR
New_configration?

Issued command is
SET_FEATURE

PORT_POWER?

ActFindTable

ActCount

OpenHubInterface

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Figure 5.14-1 Transfer Result Processing (1)Figure 5.14-1 Transfer Result Processing (1)Figure 5.14-1 Transfer Result Processing (1)Figure 5.14-1 Transfer Result Processing (1)

Rev. 1.0, 04/03, page 84 of 110

ActChangePortState

END

Search for
device address

Search for
transfer request number

Change of port checked

Change of port registered

Interrupt-in transfer
requested

Preparation of
interrupt transfer

Error processing

Device address
detected?

Receive data length
 is 0 or more?

ActFindTable

ActCheckHubPort

SendInterrupt

NO

NO

YES

YES

Hub is disconnected and
deleted from device list

Figure 5.14-2 Transfer Result Processing (2)Figure 5.14-2 Transfer Result Processing (2)Figure 5.14-2 Transfer Result Processing (2)Figure 5.14-2 Transfer Result Processing (2)

Rev. 1.0, 04/03, page 85 of 110

ActControlHubPort

Seach for
transfer request number

Port state registered

Receive data length
is 0?

Device address
detected?

Current port sate is the
 same as registered one?

Port state is
Config?

Port state is
Connect?

Port state is
Reset (in progress)?

Port state is
Reset completion?

Port state is
Enable?

Endian of receive data
converted

Search for
device address detected

Port state checked
ActCheckPortState

ActFindTable

Port state checked
ActCheckPortState

Error processing

Change of port
checked

Power supply
to port begun

Additional occurrence (0xFF)
is registered in connected

device control list

ActCheckHubPort

ActSendSetFeature

Yes

No

No

No

No

No

No

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

1

2

3

Figure 5.14-3 Transfer Result Processing (3)Figure 5.14-3 Transfer Result Processing (3)Figure 5.14-3 Transfer Result Processing (3)Figure 5.14-3 Transfer Result Processing (3)

Rev. 1.0, 04/03, page 86 of 110

Immediately after changed
to Connect state?

Changed bit is 0?

Function set which is activated
after wait time spent

Wait time set
ActCount

 Bus reset completion
acknowledged

ActSendClearFeature

Port state checked
ActCheckPortState

Move from port enabled
state acknowledged

ActSendClearFeature

Function set which is activated
after wait time spent

Wait time set
ActCount

Bus reset issued
ActSendSetFeature

1

2

3

No

Yes

No

Yes

Figure 5.14-4 Transfer Result Processing (4)Figure 5.14-4 Transfer Result Processing (4)Figure 5.14-4 Transfer Result Processing (4)Figure 5.14-4 Transfer Result Processing (4)

Rev. 1.0, 04/03, page 87 of 110

ActChangePortState

Search for
device address detected

RETURN

Search for change of
other hubs

Search for changed port

Timer is used?

Hub is changed?

Port is changed?

Port is changed?

ActFindTable

Port state checked

ActCheckPortState
Search for changed port

Port state checked
ActCheckPortState

Configuration performed
OpenHubInterface

Configuration performed
OpenHubInterface

YES

YES

NO

NO

NO

YES

YES
NO

Figure 5.14-5 Transfer Result Processing (5)Figure 5.14-5 Transfer Result Processing (5)Figure 5.14-5 Transfer Result Processing (5)Figure 5.14-5 Transfer Result Processing (5)

Rev. 1.0, 04/03, page 88 of 110

5.85.85.85.8 HID Control by SH7727 HostHID Control by SH7727 HostHID Control by SH7727 HostHID Control by SH7727 Host

HID drivers perform activating the HID devices and transferring HID data.

Figure 5.15 shows the HID drivers.

Called driver is decided
according to the class of

connected device

EnumeDriver_EnableDriver

ActRecieveHidData

ActCompleteCheckDrv

OpenHidInterface

SendInterrupt

WriteHidInterface

ActCompleteCheckClassDrv

Steady state
(infinite loop)

Transfer
completed?

Transfer control
information

Transfer completion is written

Transfer
occurrence

No transfer
occurred

Yes
No

Transfer result
processing

Activated
by interrupt

Transfer occurred

Hardware HardwareTransfer completed

Figure 5.15 HID DriversFigure 5.15 HID DriversFigure 5.15 HID DriversFigure 5.15 HID Drivers

When the setting of a device address has been completed by functions in the USBD layer, the
OpenHidInterface function is called to start activation processing by a HID driver.

Figure 5.16-1 shows transfers performed between the SH7727 host and a HID device from
obtaining descriptor information to the completion of activation processing.

Rev. 1.0, 04/03, page 89 of 110

Figure 5.16-2 shows HID data transfers performed between the SH7727 host and a HID device in
interrupt transfers.

 HID device activation
process start

HID device SH7727 host

HID device activation
process completed

Returns GET_DESCRIPTOR
DEVICE_type

Acknowledges
SET_CONFIGURATION

New_configuration

Acknowledges SET_IDLE

Requests SET_CONFIGRATION
New_configration

SET_CONFIGURATION
New_configuration completed

Requests SET_IDLE

SET_IDLE completed

Makes descriptor information

Processes GET_DESCRIPTOR
DEVICE_type

Requests GET_DESCRIPTOR
DEVICE_type

Returns GET_DESCRIPTOR
CONFIGURATION_type

Returns GET_DESCRIPTOR
HID Class Report Descriptor

Processes GET_DESCRIPTOR
CONFIGURATION_type

Requests GET_DESCRIPTOR
CONFIGURATION_type

OpenHidInterface

WriteHidInterface

OpenHidInterface

WriteHidInterface

Requests GET_DESCRIPTOR
HID Class Report Descriptor

Requests GET_DESCRIPTOR
HID Class Report Descriptor

OpenHidInterface

WriteHidInterface

OpenHidInterface

WriteHidInterface

OpenHidInterface

WriteHidInterface

BuildDescriptorHid

Figure 5.16-1 Flow of SH7727 HostFigure 5.16-1 Flow of SH7727 HostFigure 5.16-1 Flow of SH7727 HostFigure 5.16-1 Flow of SH7727 HostHID device transfer 1HID device transfer 1HID device transfer 1HID device transfer 1

Rev. 1.0, 04/03, page 90 of 110

HID device activation
completed

HID device SH7727 host

Any HID data to return?

Returns NAK

Returns HID data

Requests
interrupt-in transfer

Receives and processes
HID data

SendInterruptYes

No

ActReceiveHidData

Figure 5.16-2 Flow of SH7727 HostFigure 5.16-2 Flow of SH7727 HostFigure 5.16-2 Flow of SH7727 HostFigure 5.16-2 Flow of SH7727 HostHID device transfer 2HID device transfer 2HID device transfer 2HID device transfer 2

Two flowcharts of functions that issue transfers are shown below.

Rev. 1.0, 04/03, page 91 of 110

OpenHubInterface

Search for
device address

Device registering
process

 Control transfer
requested

Device address
is detected?

Interface number is 0?

Preparation of
GET_DESCRIPTOR
DEVICE_type issue

Preparation of
SET_CONFIGRATION

New_configration

Preparation of
GET_DESCRIPTOR

HID Class Report
Descriptor

Preparation of
SET_IDLE

Preparation of
GET_DESCRIPTOR

CONFIGRATION_type

Command issue
after configuration is 1?

Interface number is other than 0
and issued command after

configuration is 0?

Command issue
after configuration is 2?

Maximum packet size of
EP0 is 0?

ActFindTable

SendControl

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Figure 5.17-1 Transfer Issue Functions (1)Figure 5.17-1 Transfer Issue Functions (1)Figure 5.17-1 Transfer Issue Functions (1)Figure 5.17-1 Transfer Issue Functions (1)

Rev. 1.0, 04/03, page 92 of 110

SendInterrupt

Area for communication
with USBD reserved

ActFindTable

USBD_ReceiveDriverRequest

Data area reserved

EntryMemory

Search for
device address

Parameters set

Transfer issue request

ActFindTable

Device address
is detected?

Any endpoints?

Transfer control number
registered

Area completely
reserved?

The amount of data
is 0?

Request succeeded

Error processed

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Figure 5.17-2 Transfer Issue Functions (2)Figure 5.17-2 Transfer Issue Functions (2)Figure 5.17-2 Transfer Issue Functions (2)Figure 5.17-2 Transfer Issue Functions (2)

Rev. 1.0, 04/03, page 93 of 110

Two flowcharts of transfer result processing functions that start processing after the completion of
transfers are shown below.

Rev. 1.0, 04/03, page 94 of 110

WriteHidInterface

Search for device address

Search for transfer control number

 Error processing

Interrupt-in
transfer requested

HID data transfer preparation
according to GET_DESCRIPTOR

HID Class Report Descriptor information

Control transfer requested

Device address is detected?

 Configuration information
is registered in device control list

Command issue counter
set to 1

Command issue counter
set to 2

Endpoint information of EP0
is registered in device control list

Issued command is
GET_DESCRIPTOR

DEVICE_type?

Issued command is
GET_DESCRIPTOR

CONFIGRATION_type

Issued command is
SET_CONFIGURATION

New_configration

Issued command is
SET_IDLE

Issued command is
GET_DESCRIPTOR HID Class

Report Descriptor

ActFindTable

ActCount

Descriptor
information generated

Preparation of
interrupt transfer

BuildDescriptorHid

OpenHidInterface

Yes

No

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

Figure 5.18-1 Transfer Result Processing (1)Figure 5.18-1 Transfer Result Processing (1)Figure 5.18-1 Transfer Result Processing (1)Figure 5.18-1 Transfer Result Processing (1)

Rev. 1.0, 04/03, page 95 of 110

ActReceiveHidData

END

Search for
device address

Search for
transfer request number

Data copied to ring buffer

Interrupt-in
transfer requested

Preparation of
interrupt transfer

Error processing

Device address
is detected?

Operating state
is WAIT?

Receive data length is
0 or more?

ActFindTable

SendInterrupt

Write data to function
SendInterrupt

No

No

No

Yes

Yes

Yes

Figure 5.18-2 Transfer Result Processing (2)Figure 5.18-2 Transfer Result Processing (2)Figure 5.18-2 Transfer Result Processing (2)Figure 5.18-2 Transfer Result Processing (2)

Rev. 1.0, 04/03, page 96 of 110

5.95.95.95.9 Storage Control by SH7727 HostStorage Control by SH7727 HostStorage Control by SH7727 HostStorage Control by SH7727 Host

A storage driver performs activating the connected storage device. In actual storage data transfers
a link program connects the host PC and a storage device.

Figure 5.19 shows the storage drivers.

Called driver is decided
according to the class of

connected device

EnumeDriver_EnableDriver

ActCompleteCheckDrv

ActCompleteCheckClassDrv

Steady state
(infinite loop)

Transfer
completed?

Transfer control
information

Transfer completion is written

transfer
occurred

 No transfer
occurred

Transfer
issued

Yes
No

Transfer result
processing

Activated
by interrupt

Transfer occurrence

Hardware HardwareTransfer completed

WriteMscBotInterface

OpenMscBotInterface

Figure 5.19 Storage DriversFigure 5.19 Storage DriversFigure 5.19 Storage DriversFigure 5.19 Storage Drivers

When the setting of the device address has been completed by functions in the USBD layer, the
OpenMscInterface function is called to start activation processing by a storage driver.

Figure 5.20 shows transfers performed between the USB host and a storage device from obtaining
descriptor information to completion of activation processing.

Rev. 1.0, 04/03, page 97 of 110

Storage device activation
process start

Storage device Host PC

Storage device activation
process completed

Returns GET_DESCRIPTOR
DEVICE_type

Acknowledges
SET_CONFIGURATION

New_configuration

Returns Get Max LUN

Requests
SET_CONFIGRATION

New_configration

SET_CONFIGURATION
New_configuration completed

Requests Get Max LUN

Get Max LUN completed

Generates
descriptor information

Processes
GET_DESCRIPTOR

DEVICE_type

Requests
GET_DESCRIPTOR

DEVICE_type

Returns GET_DESCRIPTOR
CONFIGURATION_type

Processes
GET_DESCRIPTOR

CONFIGURATION_type

Requests
GET_DESCRIPTOR

CONFIGURATION_type

OpenMscBotInterface

WriteMscBotInterface

OpenMscBotInterface

WriteMscBotInterface

OpenMscBotInterface

WriteMscBotInterface

OpenMscBotInterface

WriteMscBotInterface

BuildDescriptor

Figure 5.20 Flow of SH7727 Host - Storage device transferFigure 5.20 Flow of SH7727 Host - Storage device transferFigure 5.20 Flow of SH7727 Host - Storage device transferFigure 5.20 Flow of SH7727 Host - Storage device transfer

Next, a flowchart of functions that issue transfers is shown below.

Rev. 1.0, 04/03, page 98 of 110

OpenHubInterface

Search for
device address

Device registering process

Control transfer requested

Device address
is detected?

Interface number is 0?

Preparation of
GET_DESCRIPTOR
DEVICE_type issue

Preparation of
SET_CONFIGRATION
New_configration issue

Preparation of
Get Max LUN issue

Preparation of
GET_DESCRIPTOR

CONFIGRATION_type issue

Command issue
after configuration is 1?

Interface number is other than 0
and issued command

after configuration is 0?

Maximum packet size of
EP0 is 0?

ActFindTable

SendControl

No

Yes

Yes

Yes

Yes

Yes

No

No

No

Figure 5.21 Transfer Issue FunctionsFigure 5.21 Transfer Issue FunctionsFigure 5.21 Transfer Issue FunctionsFigure 5.21 Transfer Issue Functions

A flowchart of transfer result processing functions that starts processing after the completion of
transfers is shown below.

Rev. 1.0, 04/03, page 99 of 110

WriteHubInterface

Search for
device address

Search for
transfer control number

Error processing

Descriptor
information made

Command issue counter
set to 2

Control transfer requested

Device address
is detected?

Configuration information
is registered

in device control list

Command issue
counter set to 1

Endpoint information of
EP0 is registered

in device control list

Issued command is
GET_DESCRIPTOR

DEVICE_type?

Issued command is
GET_DESCRIPTOR

CONFIGRATION_type?

Issued command is
SET_CONFIGURATION

New_configration?

Issued command is
Get Max LUN?

ActFindTable

BuildDescriptor

OpenHidInterface

No

Yes

Yes

Yes

Yes

Yes

No

No

No

Figure 5.22 Transfer Result ProcessingFigure 5.22 Transfer Result ProcessingFigure 5.22 Transfer Result ProcessingFigure 5.22 Transfer Result Processing

Rev. 1.0, 04/03, page 100 of 110

5.105.105.105.10 Link Operation between SH7727 Host and SH7727 FunctionLink Operation between SH7727 Host and SH7727 FunctionLink Operation between SH7727 Host and SH7727 FunctionLink Operation between SH7727 Host and SH7727 Function

This sample program is categorized into major three programs: link program, program of the
SH7727 host, and program of the SH7727 function.

• The program of the SH7727 host controls connected USB hub and USB function devices and
transmits/receives data

• The program of the SH7727 function transmits/receives data between the host PC and the
function module

• The link program controls transmitting/receiving data between the SH7727 host and SH7727
function when the storage data is transferred between the host PC and the storage device.

The program of the SH7727 function communicates only with the host PC. Though the transfer
data from the SH7727 function are various, they are classified according to the each transfer
method. Therefore, details of the firmware are shown in USB transfer methods.

The controls of the program of the SH7727 host are various according to the connected USB hubs
and USB function devices, therefore, details of the firmware control are shown in connected
devices.

The link program is used to handle the storage device. The program connects the HS7727 host and
SH7727 function and controls data transfer and devices. Figure 5.23 shows the entire figure of the
link program.

SH7727SE

SH7727

“]‘ —ƒ oƒ bƒ tƒ @

ƒ tƒ @ƒ “ƒ Nƒ Vƒ‡ƒ “ ƒ zƒ Xƒg

ƒ zƒ XƒgPC

ƒ Xƒgƒ Œ [ƒ Wƒ fƒ oƒ Cƒ X

ƒ Šƒ “ƒ Nƒ vƒ ƒ Oƒ ‰ƒ €

Figure 5.23 Link ProgramFigure 5.23 Link ProgramFigure 5.23 Link ProgramFigure 5.23 Link Program

Next, flowcharts of functions that are activated by the interrupts from the SH7727 function.

SH7727SE

Link program

Host PC

Storage deviceTransfer buffer

Function
SH7727

Host

Rev. 1.0, 04/03, page 101 of 110

The link program is activated by an interrupt from the SH7727 function, and controls the SH7727
function and SH7727 host. In other words, a single interrupt source is used to control two different
modules. Data packets are sent from the SH7727 function to the SH7727 host or from the SH7727
host to the SH7727 function in normal data transfer. However, when the storage device returns a
STALL, the flow of data packets and operations of the SH7727 function and the SH7727 host are
different.

Rev. 1.0, 04/03, page 102 of 110

Data transport
(data stage is in OUT direction)

and status transport
are performed

Processed for STALL
and Clear Feature issued

EP2_TR flag cleared

USBFI0 interrupt
occurred

ActBulkOnlyOut

Data transport
(data stage is in OUT direction)

and status transport
are performed

Data transport
(data stage is in IN direction)

and status transport
are performed

Data transport
(data stage is in IN direction)

and status transport
are performed

ActBulkOnlyIn

TRANS_OUT state
is set and following transport

is prepared

TRANS_IN state set

WAIT state set

Processed when
CBW is transmitted

from Host_PC

ActBulkOnlyCommand

ActBulkOnlyStallIn

State is TRANS_OUT?

State is TRANS_IN
and no readable data

 is in EP1?

State is CBW_SEND
and readable data

is in EP1?

State is CBW_SEND
and no readable data

is in EP1?

State is other than
TRANS_OUT and

readable data is in EP1?

State is STALL
and no readable data

is in EP1?

SH7727 function

BranchOfInt

ActBulkOnlyOut

ActBulkOnlyIn

ActBulkOnly

Hardware

Yes

No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

No

Figure 5.24-1 Link Operation Functions between SH7727 Host and SH7727 FunctionFigure 5.24-1 Link Operation Functions between SH7727 Host and SH7727 FunctionFigure 5.24-1 Link Operation Functions between SH7727 Host and SH7727 FunctionFigure 5.24-1 Link Operation Functions between SH7727 Host and SH7727 Function

Rev. 1.0, 04/03, page 103 of 110

Flag cleared

CBW stored address set

CBW received

Endian converted

Interrupt set

Preparation of CBW
transmit request

ActChangState CBW activated
after transmission

CBW transmit requested

ActBulkOut

SendBulk

ActBulkOnly

ActBulkOnlyCommand

Figure 5.24-2 Functions on CBW Transmission from Host PCFigure 5.24-2 Functions on CBW Transmission from Host PCFigure 5.24-2 Functions on CBW Transmission from Host PCFigure 5.24-2 Functions on CBW Transmission from Host PC

Rev. 1.0, 04/03, page 104 of 110

Flag cleared

Data status received

Endian converted

Interrupt set

Preparation of out token
transmit request

ActFreeBKOUT activated
after transmission

Out token transmit requested

ActBulkOut

SendBulk

Preparation of bulk-in request
ActCallBulkIn activated

after reception

Bulk-in transfer requested

0 is set to be transferred
and CSW_SEND state set

Flag cleared

SendBulk

ActBulkOnly

ActBulkOnlyCommand

Flag cleared

CSW request reached?

In token is requested
to storage device?

YES

YES

NO

NO

Figure 5.24-3 Control Functions for Data Transport (Data Stage is in Out Direction) and StatusFigure 5.24-3 Control Functions for Data Transport (Data Stage is in Out Direction) and StatusFigure 5.24-3 Control Functions for Data Transport (Data Stage is in Out Direction) and StatusFigure 5.24-3 Control Functions for Data Transport (Data Stage is in Out Direction) and Status
Transport PortTransport PortTransport PortTransport Port

Rev. 1.0, 04/03, page 105 of 110

ActBulkOnly

ActBulkOnlyIn

Preparation of bulk-in request
ActCallBulkIn activated

after transmission

Bulk-in transfer requested

Interrupt set

Flag cleared

SendBulk

Flag cleared

In token is requested
to storage device?

YES

NO

Figure 5.24-4 Control Functions for Data Transport (Data Stage is in Figure 5.24-4 Control Functions for Data Transport (Data Stage is in Figure 5.24-4 Control Functions for Data Transport (Data Stage is in Figure 5.24-4 Control Functions for Data Transport (Data Stage is in IN Direction) and StatusIN Direction) and StatusIN Direction) and StatusIN Direction) and Status
Transport PortTransport PortTransport PortTransport Port

Rev. 1.0, 04/03, page 106 of 110

ActBulkOnly

ActBulkOnlyStallIn

0 is transmitted

Remaining data length
calculated

Endian converted

CSW transmitted

Interrupt set

Preparation of CSW
transmission

Flag cleared

ActBulkIn

ActBulkIn

Return value is set to 0

Data status
has not ended?

SH7727 function state
is WAIT?

No

Yes

Yes

No

Figure 5.24-5 Functions that Process STALLFigure 5.24-5 Functions that Process STALLFigure 5.24-5 Functions that Process STALLFigure 5.24-5 Functions that Process STALL

The flowcharts of functions that are initiated on the completion of the processing of the SH7727
host.

Rev. 1.0, 04/03, page 107 of 110

Preparation of CSW request

CSW transmit requested

WAIT state set

Interrupt set

SendBulk

ActCompleteCheckClassDrv

ActStallAfterCSW

Figure 5.25-1 Functions for Process after Clear Feature CompletedFigure 5.25-1 Functions for Process after Clear Feature CompletedFigure 5.25-1 Functions for Process after Clear Feature CompletedFigure 5.25-1 Functions for Process after Clear Feature Completed

Transfer control number
detected

CBW_SEND state set

Interrupt set

ActCompleteCheckClassDrv

ActChangeStateCBW

Figure 5.25-2 Functions for Process after CBW Transmit CompletedFigure 5.25-2 Functions for Process after CBW Transmit CompletedFigure 5.25-2 Functions for Process after CBW Transmit CompletedFigure 5.25-2 Functions for Process after CBW Transmit Completed

Rev. 1.0, 04/03, page 108 of 110

ActCallBulkIn

Interrupt set

Search for
transfer control number

STALL state set

CSW generated

Preparation of Clear Feature
transmission

ActStallAfterCSW activated
after transmission

Flag cleared

Clear Feature
transmit requested

SendControl

Error processed

Transfer succeeded?

Transfer result is STALL?
No

Yes

No

Yes

ActCompleteCheckClassDrv

1

Figure 5.25-3 Functions for Process after Bulk-IN Transfer Completed (1)Figure 5.25-3 Functions for Process after Bulk-IN Transfer Completed (1)Figure 5.25-3 Functions for Process after Bulk-IN Transfer Completed (1)Figure 5.25-3 Functions for Process after Bulk-IN Transfer Completed (1)

Rev. 1.0, 04/03, page 109 of 110

Transfer data length
is set as 64-byte

Interrupt set

Preparation of transfer data
transmission

Endian converted

Transfer data sent

Length of remaining data to be
transferred in data transport

is calculated

Flag cleared

Transfer data length
is set as 13-byte

Length of transfer data is
 set as that of data to be

transferred in data transport

Data transport
completed?

Length of data to be
transferred in data transport is

more than 64 bytes?

1

ActBulkIn

Yes

No

No

Yes

Figure 5.25-4 Functions for Process after Bulk-IN Transfer Completed (2)Figure 5.25-4 Functions for Process after Bulk-IN Transfer Completed (2)Figure 5.25-4 Functions for Process after Bulk-IN Transfer Completed (2)Figure 5.25-4 Functions for Process after Bulk-IN Transfer Completed (2)

Rev. 1.0, 04/03, page 110 of 110

Search for
transfer control number

Data transfer address set

Interrupt set

ActCompleteCheckClassDrv

ActFreeBKOUT

Figure 5.25-5 Functions for Process after Data Transport (Data Stage is in Out Direction)Figure 5.25-5 Functions for Process after Data Transport (Data Stage is in Out Direction)Figure 5.25-5 Functions for Process after Data Transport (Data Stage is in Out Direction)Figure 5.25-5 Functions for Process after Data Transport (Data Stage is in Out Direction)
CompletedCompletedCompletedCompleted

SH7727 USB Host Module Application Note (Advanced)

Publication Date: Rev.1.00, April 15, 2003
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasak

SH7727 G
App
i-shi, Kanagawa 211-8668 Japan

roup USB Host Module

REJ05B0016-0100Z

lication Note (Advanced)

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Outline of USB Hub
	2.1 Role of Hub
	2.2	Hub Descriptor
	2.3	Hub Class-Specific Requests
	2.4	Host-Hub-Function Connection State
	2.5	Port State Transition
	2.5.1	Setting Port State
	2.5.2	Checking Port State
	2.5.3	Power Supply from Port
	2.5.4	Port Device Detection
	2.5.5	From Power Supply to Packet Transmission
	2.5.6	Port State Transition

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2 Execution

	3.4	Multi Function Device

	Section 4 Overview of Sample Program
	4.1	Entire Structure of Sample Program
	4.2	State Transition Diagram
	4.3	USB Function Communication State
	4.3.1	Control Transfers
	4.3.2	Bulk Transfers
	4.3.3	Interrupt Transfers

	4.4	USB Host Communication State
	4.4.1	Transfer Issue
	4.4.2 Control Transfer
	4.4.3	Bulk Transfers
	4.4.4	Interrupt Transfer
	4.4.5	Transfer Result Processing

	4.5 File Structure
	4.6	Argument Types
	4.7	Multifunction
	4.7.1	Descriptor

	4.8	Device Driver
	4.8.1	Hub Driver Operation
	4.8.2	HID Driver Operation
	4.8.3	Storage Driver Operation

	4.9	Cooperation of Host and Function
	4.9.1	HID Class Cooperation
	4.9.2	Storage Class Cooperation

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Branching to Transfer Function

	5.3 Interrupt on Cable Connection (BRST)
	5.4 SH7727 Function Control Transfer
	5.4.1	Setup Stage
	5.4.2	Data Stage
	5.4.3	Status Stage

	5.5 Bulk Transfer
	5.5.1	Bulk-Out Transfer
	5.5.2	Bulk-In Transfer

	5.6	Interrupt Transfer
	5.7	Hub Control by SH7727 Host
	5.8	HID Control by SH7727 Host
	5.9	Storage Control by SH7727 Host
	5.10	Link Operation between SH7727 Host and SH7727 Function

	Colophon
	Back cover

