
 APPLICATION NOTE

SH7670 Group R01AN0305EJ0101
Rev. 1.01

Oct. 15, 2010Using the DMAC to Transfer Data between Memory Areas

Summary
This application note provides an example of transferring data between memory areas with the direct memory access
controller (DMAC) of the SH7670.

Target Device
SH7670 MCU

Contents

1. Introduction.. 2

2. Description of the Sample Application .. 3

3. Sample Program Listing.. 9

4. References .. 15

R01AN0305EJ0101 Rev. 1.01 Page 1 of 16
Oct. 15, 2010

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 2 of 16
Oct. 15, 2010

1. Introduction

1.1 Specifications
• DMAC channel 0 is used to transfer data from the on-chip RAM to external memory. Data are transferred in cycle-

stealing mode.
• Auto-request mode (software transfer request) is used for requesting DMA transfer.

1.2 Module Used
• Direct memory access controller (DMAC channel 0)

1.3 Applicable Conditions
MCU SH7670
Operating Frequency Internal clock: 200 MHz

 Bus clock: 66.6 MHz
 Peripheral clock: 33.3 MHz

Integrated Development
Environment

Renesas Electronics
High-performance Embedded Workshop Ver.4.03.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.01 Release 01

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0 -opt_range=all
-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7670 Group Example of Initialization
• SH7670 Group DMAC Dual Address mode
• SH7670 Group Using the DMAC to Transfer Data to On-chip Peripheral Modules

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 3 of 16
Oct. 15, 2010

2. Description of the Sample Application
This sample application employs the direct memory access controller (DMAC) to transfer data from the on-chip RAM
to external memory.

2.1 Operational Overview of Module Used
When a DMA transfer request is made, the DMAC starts to transfer data in order of priority of predetermined channels.
Then, it continues the transfer operation until transfer end condition is met. It has three transfer request modes: auto
request, external request, and on-chip peripheral module request. The bus mode is selectable from burst mode and
cycle-stealing mode.

An overview of the DMAC is given in table 1. Also, a block diagram of the DMAC is shown in figure 1.

Table 1 Overview of DMAC

Item Description
Number of channels 8 (CH0 to CH7)

Only 2 channels (CH0 and CH1) can receive external requests.
Address space 4 Gbytes
Length of transfer data Byte, word (2 bytes), longword (4 bytes), and 16 bytes (longword × 4)
Maximum number of unit
transfers

16,777,216 (24 bits)

Address mode Single address mode and dual address mode
Transfer request Auto request, external request, and on-chip peripheral module request

(SCIF: 6 sources, IIC3: 2 sources, CMT: 2 sources, USB: 2 sources,
SSI: 2 sources)

Bus mode Cycle-stealing mode and burst mode
Priority level Channel priority fixed mode and round-robin mode
Interrupt request An interrupt request to the CPU is made when half or all of a transfer

process is completed.
External request detection DREQ input low/high level detection, rising/falling edge detection
Transfer request acknowledge
signal/transfer end signal

Active levels for DACK and TEND can be set independently

Note: For details on the DMAC, refer to the section on the direct memory access controller in the SH7670
Group Hardware Manual (REJ09B0437).

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

On-chip

peripheral module

DMA transfer request signal

DMA transfer acknowledge signal

P
e
ri
p
h
e
ra

l
b
u
s

In
te

rn
a
l
b
u
s

External ROM

On-chip

memory

Interrupt controller

DREQ0, DREQ1

HEIn

DACK0, DACK1,

TEND0, TEND1

External RAM

Bus

interface

Bus state

controller

External device
(memory mapped)

External device
(with acknowledge)

Request

priority

control

Start-up

control

Register

control

Iteration

control

RDMATCR_n

DMATCR_n

RSAR_n

SAR_n

DAR_n

RDAR_n

CHCR_n

DMAOR

DMARS0
to DMARS3

RDMATCR

DMATCR

RSAR

SAR

RDAR

DAR

: DMA reload transfer count register

: DMA transfer count register

: DMA reload source address register

: DMA source address register

: DMA reload destination address register

: DMA destination address register

CHCR

DMAOR

DMARS0 to DMARS3

HEIn

DEIn

n = 0 to 7

: DMA channel control register

: DMA operation register

: DMA extension resource selectors 0 to 3

: DMA transfer half-end interrupt request to the CPU

: DMA transfer end interrupt request to the CPU

DEIn

[Legend]

DMAC module

Figure 1 Block Diagram of DMAC

R01AN0305EJ0101 Rev. 1.01 Page 4 of 16
Oct. 15, 2010

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

2.2 Procedure for Setting the Module Used
This section describes the procedure for specifying initial settings for transferring data between memory areas with the
DMAC. Auto request mode is used for transfer requests. A flowchart of initializing the DMAC is shown in figure 2. For
details on registers, refer to the SH7670 Group Hardware Manual (REJ09B0437).

START

Set standby control register 2

(STBCR2)

Set DMA channel control register

(CHCR_n)

Set DMA source address register

(SAR_n)

Set DMA destination address

register (DAR_n)

Set DMA transfer count register

(DMATCR_n)

Set DMA channel control register

(CHCR_n)

Set DMA operation register

(DMAOR)

Set DMA channel control register

(CHCR_n)

END

• Enabling clock supply to the DMAC (STBCR2)

 Clear the MSTP8 (module stop 8) bit to 0.

 [Function] Clock supply to the DMAC

• Disabling DMA transfer (CHCR_n)

 Clear the DE (DMA enable) bit to 0.

 [Function] Disable DMA transfer.

• Setting DMA transfer source address (SAR_n)

 [Function] Specify DMA transfer source address.

• Setting DMA transfer destination address (DAR_n)

 [Function] Specify DMA transfer destination address.

• Setting the DMA transfer count (DMATCR_n)

 [Function] Set the number of DMA transfer operations.

• Setting the DMA transfer mode (CHCR_n)

 TC: Set the TC (transfer count mode) bit to 0.

 [Function] Ineffective in auto request mode

 RLDSAR: Setting the RLDSAR (SAR reload function enable/disable) bit

 [Function] Enable/disable SAR reload function.

 RLDDAR: Setting the RLDDAR (DAR reload function enable/disable) bit

 [Function] Enable/disable DAR reload function.

 DM: Set the DM (destination address mode) bits.

 [Function] ⎯ Select whether the DMA transfer destination

 address is incremented or decremented.

 ⎯ Fix/increment/decrement the DMA transfer

 destination address.

 SM: Set the SM (source address mode) bits.

 [Function] ⎯ Select whether the DMA transfer source

 address is incremented or decremented.

 ⎯ Fix/increment/decrement the DMA transfer

 source address.

 RS: Set the RS (resource select) bits to B'0100.

 [Function] Select auto request (as the DMA transfer request source).

 TB: Set the TB (transfer bus mode) bit.

 [Function] Select a DMA transfer bus mode.

 TS: Set the TS (transfer size) bits.

 [Function] Specify the unit of DMA transfer.

 IE: Set the IE (interrupt enable) bit.

 [Function] Enable/disable interrupt requests.

• Setting the DMA operation register (DMAOR)

 Read from the AE (address error flag) bit and then clear it to 0.

 [Function] Clear the address error flag.

 Read from the NMIF (NMI flag) bit and then clear it to 0.

 [Function] Clear the NMI flag.

 Set the DME (DMA master enable) bit to 1.

 [Function] Enable DMA transfer on all the channels.

• Enabling DMA transfer (CHCR_n)

 Set the DE (DMA enable) bit to 1.

 [Function] Start DMA transfer.

Figure 2 Example of Flow for Initialization of the DMAC

R01AN0305EJ0101 Rev. 1.01 Page 5 of 16
Oct. 15, 2010

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

2.3 Operation of the Sample Program
In this sample program, DMAC channel 0 is activated by auto request, and data are transferred from the on-chip RAM
to external memory in cycle-stealing mode. In cycle-stealing transfer operation, the DMAC gives the bus mastership to
the CPU after each round of transferring a single unit of data. An operation timing of the sample application is shown in
figure 3.

DMAC0

DMA transfer request
(When the DMA master
enable bit is 1)

DMA transfer count
register (DMATCR)

Transfer end flag (TE)

[Legend]

 : DMA request acknowledge

One data

transfer

One data

transfer

Internal signal Internal signal

Read

Write Write Write Write

Write Write Write Write

Read Read Read

Read Read Read Read

Internal signal

One data

transfer

One data

transfer

H'19 H'18 H'17 H'00

CPU

Bus

mastership

Internal bus

External bus

Set by software (auto request)

Figure 3 Operation Timing of Sample Application

2.4 Notes on Using the Sample Program
In the reference program, the addresses where the source and destination areas of the transfer start are assigned as
absolute addresses for clarity. Ensure that sections used by the user program do not overlap with the source and
destination regions that start from the absolute addresses.

R01AN0305EJ0101 Rev. 1.01 Page 6 of 16
Oct. 15, 2010

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 7 of 16
Oct. 15, 2010

2.5 Procedure for Processing by the Sample Program
In this sample program 100-byte data stored in the on-chip RAM are transferred to external memory by DMA transfer.
The transfer end flag (TE bit) is used to check whether DMA transfer is completed.

The register settings for the sample program are listed in table 2. The macro definitions used in this sample program are
also listed in table 3. A flowchart of the sample program is illustrated in figure 4.

Table 2 Register Settings for Sample Program

Register Name Address Setting Description
Standby control register 2
(STBCR2)

H'FFFE 0018 H'00 MSTP8 = 0: DMAC operates

H'0000 0000 DE = 0: Disables DMA transfer
H'0000 5410 TC = 0: Ineffective in auto-request mode

RLDSAR = 0: Disables the SAR reload
function

RLDDAR = 0: Disables the DAR reload
function

DM = B'01: Increments the destination
 address
SM = B'01: Increments the source address
RS = B'0100: Auto request
TB = 0: Cycle-stealing mode
TS = B'10: Longword transfer
IE = 0: Disables interrupt request

DMA channel control
register_0 (CHCR_0)

H'FFFE 100C

H'0000 5411 DE = 1: Enables DMA transfer
DMA source address
register_0 (SAR_0)

H'FFFE 1000 H'FFF8 4000 Sets start address of transfer source in an
on-chip RAM area

DMA destination address
register_0 (DAR_0)

H'FFFE 1004 H'2C00 1000 Sets start address of transfer destination in
an external memory area*

DMA transfer count
register_0 (DMATCR_0)

H'FFFE 1008 H'64 Number of unit transfers: 100 (H'64)

DMA operation register
(DMAOR)

H'FFFE 1200 H'0001 DME = 1: Enables DMA transfer on all the
channels

DMA extension resource
selector0 (DMARS0)

H'FFFE 1300 H'0000 Not used for auto request

Note: * Addresses in external memory area differ with the target board.

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

Table 3 Macro Definitions Used in Sample Program

Macro Definition Setting Description
SDRAM_DST_ADR H'2C00 1000 Start address of SDRAM
SRAM_SRC_ADR H'FFF8 4000 Start address of on-chip RAM
SIZE H'64 Number of unit transfers
DMA_SIZE_BYTE H'0000 Byte transfer
DMA_SIZE_WORD H'0001 Word transfer
DMA_SIZE_LONG H'0002 Longword transfer
DMA_SIZE_LONGx4 H'0003 16-byte transfer
DMA_INT_DISABLE H'0000 DMA transfer end interrupt not in use
DMA_INT_ENABLE H'0010 DMA transfer end interrupt in use

START

Initialize transfer source memory

Initialize transfer destination memory

DMAC initialization

io_init_dma()

DMA transfer
completed?

END

No

Yes

Activate DMA

Figure 4 Flow of Processing by the Sample Program

R01AN0305EJ0101 Rev. 1.01 Page 8 of 16
Oct. 15, 2010

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 9 of 16
Oct. 15, 2010

3. Sample Program Listing

3.1 Sample program list "main.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2008(2010) Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7671 Sample Program

* File Name : main.c

* Abstract : Sample program of DMAC

* Version : 1.00.01

* Device : SH7671

* Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.01 Release01).

* OS : None

* H/W Platform: M3A-HS71(CPU board)

* Description :

**

* History : Apr.24,2008 ver.1.00.00

* : Oct.08,2010 ver.1.00.01 Changed the company name and device name

*""FILE COMMENT END""**/

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 10 of 16
Oct. 15, 2010

3.2 Sample program list "main.c" (2)

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

#include <machine.h>

#include <stdio.h>

#include "iodefine.h" /* SH7670 iodefine */

/* ==== symbol definition ==== */

#define SDRAM_DST_ADR ((void *)0x2c001000) /* External SDRAM address */

#define SRAM_SRC_ADR ((void *)0xfff84000) /* Internal SRAM address */

#define SIZE 100 /* Transmission bytes */

#define DMA_SIZE_BYTE 0x0000u

#define DMA_SIZE_WORD 0x0001u

#define DMA_SIZE_LONG 0x0002u

#define DMA_SIZE_LONGx4 0x0003u

#define DMA_INT_DISABLE 0x0000u

#define DMA_INT_ENABLE 0x0010u

#define DMA_INT (DMA_INT_ENABLE >> 4u)

/* ==== prototype declaration ==== */

void main(void);

void io_init_dma(void *src, void *dst, size_t size, unsigned int mode);

void io_dma_enable(void);

void io_dma_stop(void);

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 11 of 16
Oct. 15, 2010

3.3 Sample program list "main.c" (3)

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

/*""FUNC COMMENT""**

 * Outline : Sample program main

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void main(void);

 *--

 * Function : Sample program main

 *--

 * Argument : void

 *--

 * Return Value : none

 *--

 * Notice :

 *""FUNC COMMENT END""**/

void main(void)

{

 int i;

 volatile unsigned char *ptr;

 /* ==== Initialize source memory ==== */

 ptr = SRAM_SRC_ADR;

 for(i=0; i < SIZE; i++){

 *ptr++ = 0x55;

 }

 /* ==== Initialize destination memory ==== */

 ptr = SDRAM_DST_ADR;

 for(i=0; i < SIZE; i++){

 *ptr++ = 0;

 }

 /* ==== Setting of DMAC ==== */

 io_init_dma(SRAM_SRC_ADR, SDRAM_DST_ADR, SIZE, DMA_SIZE_LONG | DMA_INT_DISABLE);

 /* ---- DMA start ---- */

 io_dma_enable();

 /* ---- DMA stop ---- */

 io_dma_stop();

 while(1){

 /* Program end */

 }

}

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 12 of 16
Oct. 15, 2010

3.4 Sample program list "main.c" (4)

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

/*""FUNC COMMENT""**

 * Outline : Initialization for data transfer between memory devices by DMAC

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void io_init_dma(void *src, void *dst, size_t size, unsigned int mode);

 *--

 * Function : The DMAC transfers the amount of data specified by "size"

 * : from the source address "src" to the destination address "dst".

 * : Auto request mode is used to transfer data.

 * : Transfer size and use or non-use of interrupts are specified

 * : for the "mode".

 *--

 * Argument : void *src ; Source address

 * : void *dst ; Destination address

 * : size_t size ; Size of data for transfer (byte)

 * : unsigned int mode ; Combos of the transfer and the following modes

 * : are obtained by logical OR.

 * : DMA_SIZE_BYTE (0x0000) Transfer in untis of byte

 * : DMA_SIZE_WORD (0x0001) Transfer in units of word

 * : DMA_SIZE_LONG (0x0002) Transfer in units of longword

 * : DMA_SIZE_LONGx4(0x0003) 16-byte transfer

 * : DMA_INT_DISABLE(0x0000) DMA transfer end interrupt is not in use.

 * : DMA_INT_ENABLE (0x0010) DMA transfer end interrupt is in use.

 *--

 * Return Value : none

 *--

 * Notice : Operation is not guaranteed when the source/destination address is not

 * : on a boundary corresponding to the transfer size.

 * : If interrupts are to be used, the interrupt routines must be registered.

 *""FUNC COMMENT END""**/

void io_init_dma(void *src, void *dst, size_t size, unsigned int mode)

{

 unsigned int ts;

 unsigned long ie;

 ts = mode & 0x3u;

 ie = (mode & 0x00f0u) >> 4u;

 /* ==== Setting of DMAC ==== */

 /* ==== Setting of power down mode ==== */

 CPG.STBCR2.BIT.MSTP8 = 0x0u; /* Clear the DMAC module standby mode */

 /* ---- DMA Channel Control Registers (CHCR) ---- */

 DMAC.CHCR0.BIT.DE = 0ul; /* DMA disable */

 /* ---- DMA Source Address Registers (SAR) ---- */

 DMAC.SAR0 = (unsigned long)src;

 /* ---- DMA Destination Address Registers (DAR) ---- */

 DMAC.DAR0 = (unsigned long)dst;

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 13 of 16
Oct. 15, 2010

3.5 Sample program list "main.c" (5)

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

 /* ---- DMA Transfer Count Registers (DMATCR) ---- */

 switch(ts){

 case DMA_SIZE_BYTE:

 DMAC.DMATCR0 = size; /* Specify number of unit transfers (1/1) */

 DMAC.RDMATCR0 = size;

 break;

 case DMA_SIZE_WORD:

 DMAC.DMATCR0 = size >> 1u; /* Specify number of unit transfers (1/2) */

 DMAC.RDMATCR0 = size >> 1u;

 break;

 case DMA_SIZE_LONG:

 DMAC.DMATCR0 = size >> 2u; /* Specify number of unit transfers (1/4) */

 DMAC.RDMATCR0 = size >> 2u;

 break;

 case DMA_SIZE_LONGx4:

 DMAC.DMATCR0 = size >> 4u; /* Specify number of unit transfers (1/16) */

 DMAC.RDMATCR0 = size >> 4u;

 break;

 default:

 break;

 }

 /* ---- DMA Channel Control Registers (CHCR) ---- */

 DMAC.CHCR0.LONG = 0x00005400ul | (ts << 3u) | (ie << 2u);

 /* Destination address is incremented */

 /* Source address is incremented */

 /* Auto request */

 /* Cycle-stealing mode */

 /* Transfer size : Longword unit */

 /* ---- DMA Operation Register (DMAOR) ---- */

 DMAC.DMAOR.WORD &= 0xfff9u; /* AE,NMIF clear */

 if(DMAC.DMAOR.BIT.DME == 0ul){ /* DMA Master Enable */

 DMAC.DMAOR.BIT.DME = 1ul;

 }

}

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 14 of 16
Oct. 15, 2010

3.6 Sample program list "main.c" (6)

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

/*""FUNC COMMENT""**

 * Outline : Activation of DMAC

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void io_dma_enable(void);

 *--

 * Function : Performing DMA transfer

 *--

 * Argument : void

 *--

 * Return Value : none

 *--

 * Notice :

 *""FUNC COMMENT END""**/

void io_dma_enable(void)

{

 /* ---- DMA start ---- */

 DMAC.CHCR0.BIT.DE = 1ul; /* DMA enable */

}

/*""FUNC COMMENT""**

 * Outline : Halt of DMAC

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void io_dma_stop(void);

 *--

 * Function : Checking whether the transfer is completed and stopping the DMA transfer

 *--

 * Argument : void

 *--

 * Return Value : none

 *--

 * Notice :

 *""FUNC COMMENT END""**/

void io_dma_stop(void)

{

 /* Transmission end detection */

 while(DMAC.CHCR0.BIT.TE == 0ul){

 /* wait TE bit set */

 }

 /* ---- DMA stop ---- */

 DMAC.CHCR0.BIT.DE = 0ul; /* DMA disable */

}

/* End of File */

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 15 of 16
Oct. 15, 2010

4. References
• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual
SH7670 Group Hardware Manual Rev. 2.00
The latest version of the hardware user's manual can be downloaded from the Renesas Electronics website.

SH7670 Group Using the DMAC to Transfer Data between Memory Areas

R01AN0305EJ0101 Rev. 1.01 Page 16 of 16
Oct. 15, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Nov.19.08 — First edition issued
1.01 Oct.15.10 — Changed the sample program (AC Switching Characteristics

are removed)

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Module Used
	1.3 Applicable Conditions
	1.4 Related Application Notes

	2. Description of the Sample Application
	2.1 Operational Overview of Module Used
	2.2 Procedure for Setting the Module Used
	2.3 Operation of the Sample Program
	2.4 Notes on Using the Sample Program
	2.5 Procedure for Processing by the Sample Program

	3. Sample Program Listing
	3.1 Sample program list "main.c" (1)
	3.2 Sample program list "main.c" (2)
	3.3 Sample program list "main.c" (3)
	3.4 Sample program list "main.c" (4)
	3.5 Sample program list "main.c" (5)
	3.6 Sample program list "main.c" (6)

	4. References

