Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SH7262/SH7264 Group

Serial Communication Interface with FIFO, Configuration to Transmit Strings in Asynchronous Mode

Summary

This application note describes the configuration example to transmit strings using the SH7264 Serial Communication Interface with FIFO (SCIF) in asynchronous mode.

Target Device

SH7262/7264 MCU (In this document, SH7262/SH7264 are described as "SH7264".)

Contents

1.	Introduction	2
2.	Applications	3
3.	Sample Program Listing	11
4.	References	18

1. Introduction

1.1 Specifications

- Uses the Serial Communication Interface with FIFO (SCIF) channel 0
- Initializes the SH7264 MCU as the transmitter in asynchronous mode, and transmits character strings

1.2 Modules Used

• Serial Communication Interface with FIFO (SCIF)

1.3 Applicable Conditions

MCU SH7262/SH7264

Internal clock: 144 MHz

Operating Frequencies Bus clock: 72 MHz

Peripheral clock: 36 MHz

Integrated Development

Renesas Technology Corp.

Environment

High-performance Embedded Workshop Ver.4.07.00

C Compiler Renesas Technology SuperH RISC engine Family

C/C++ Compiler Package Ver.9.03 Release 00

Default setting in the High-performance Embedded Workshop

Compiler Options (-cpu=sh2afpu -fpu=single -object="\$(CONFIGDIR)\\$(FILELEAF).obj"

-debug -gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all

-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 -nologo)

1.4 Related Application Notes

For more information, refer to the following application notes:

- SH7262/SH7264 Example of Initialization
- SH7262/SH7264 Group Serial Communication Interface with FIFO, Configuration to Receive Strings in Asynchronous Mode
- SH7262/SH7264 Group Serial Communication Interface with FIFO, Configuring the Serial Communication in Clock Synchronous Mode (Full-duplex)

1.5 About Active-low Pins (Signals)

The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

2. Applications

This application note uses the Serial Communication Interface with FIFO (SCIF).

2.1 SCIF Overview

The SH7264 SCIF transmits or receives a "character", appending a start bit which indicates the initiation of the communication, and a stop bit which indicates the end of the communication to data. Then, the SH7264 SCIF handles communication in sync per character. The internal clock or external clock from the SCK pin can be specified as the clock source. Transfer data format and baud rate can be set in the SCIF.

Table 1 lists the overview of the asynchronous mode. Figure 1 shows the SCIF block diagram.

Table 1 SCIF (Asynchronous mode) Overview

Item	Description
Number of channels	8 (SCIF0 to SCIF7)
Clock source	Internal clock: Pφ, Pφ/4, Pφ/16, Pφ/64 Pφ: internal peripheral clock
	External clock: SCK0 to SCK3 pin input clock
	(The pin input divided by 16 or 8 is selected as the SCIF operating clock.)
Data format	Transfer data length: 7-bit or 8-bit
	Order of transfer: LSB first fixed
	Start bit: 1-bit fixed
	Stop bit: 1-bit or 2-bit
	Parity bit: even parity, odd parity, or no parity
Baud rate	When specifying the internal clock: 68.66 bps to 4500 kbps (Pφ is at 36 MHz)
	When specifying the external clock: up to 1125 kbps (Pφ is at 36 MHz, external clock
	is at 9 MHz)
Error detection	Parity error, framing error, overrun error
Interrupt request	Transmit-FIFO-data-empty interrupt (TXI) by the transmit FIFO data empty (TDFE)
	Break interrupt (BRI) by the break (BRK) or overrun error (ORER)
	Receive FIFO data full (RXI) by the Receive FIFO data full (RDF) or data ready (DR)
	Receive-error interrupt (ERI) by the receive error (ER)
Other	Break can be detected
	 Supplying clock unused channels can be stopped to reduce power consumption
	 Includes the modem control functions (RTS and CTS), (Only channels 1 and 3.
	Only channel 1 for the SH7262)
	The number of valid data stored in the Transmit and Receive FIFO data registers,
	and the number of receive errors stored in the Receive FIFO data register can be detected
	 Time out error (DR) on reception can be detected
	 Base clock frequency can be either 16 or 8 times the bit rate
	 Double-speed mode can be specified for the baud rate generator (When not using the SCK pin)

Note: For more information about the SCIF, refer to the Serial Communication Interface with FIFO chapter in the SH7262 Group, SH7264 Group Hardware Manual.

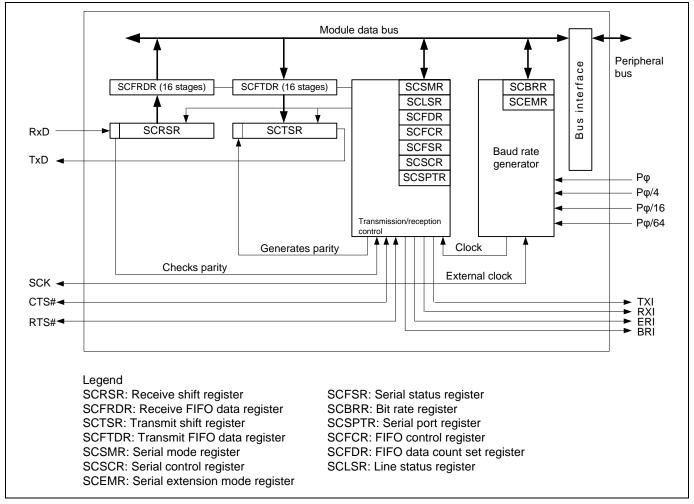


Figure 1 SCIF Block Diagram

2.2 Configuration Procedure

This section describes how to configure the communication in the SH7264 SCIF asynchronous mode. Figure 2 and Figure 3 show flow charts of configuring the transmission in asynchronous mode. Figure 4 shows the flow chart of transmission in asynchronous mode.

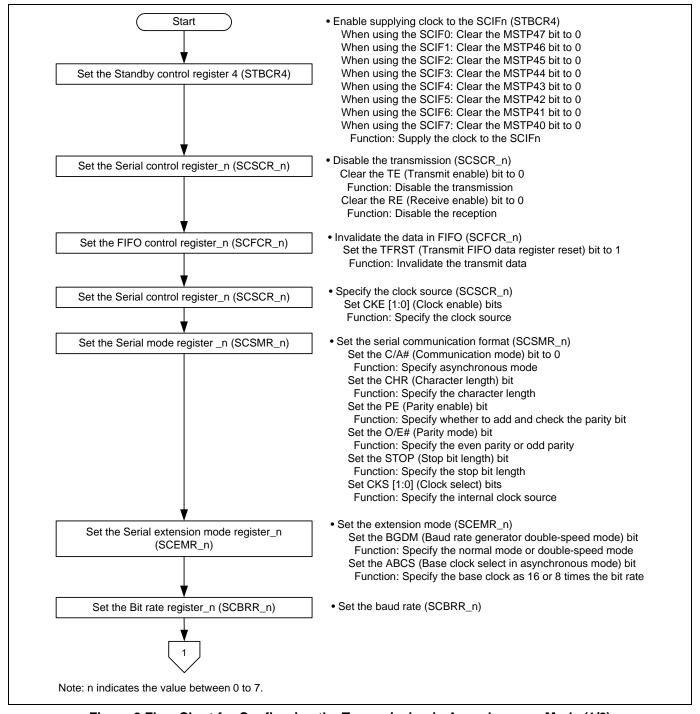


Figure 2 Flow Chart for Configuring the Transmission in Asynchronous Mode (1/2)

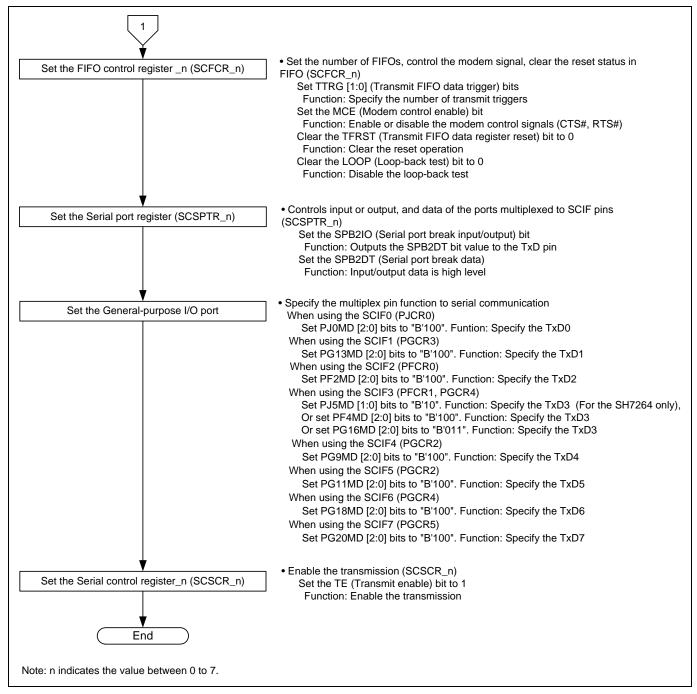


Figure 3 Flow Chart for Configuring the Transmission in Asynchronous Mode (2/2)

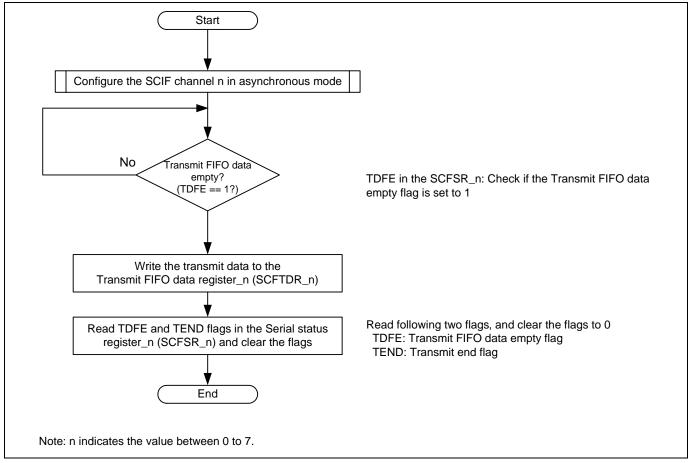
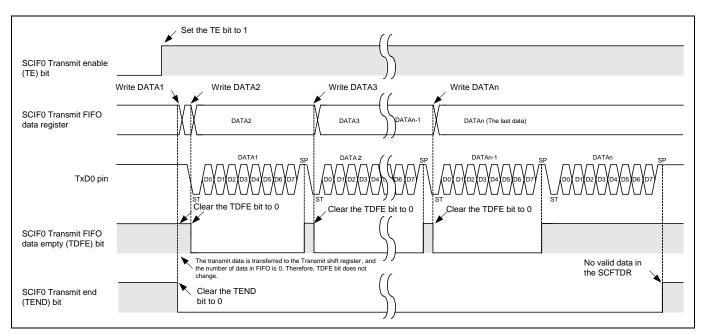


Figure 4 Flow Chart of the Transmission in Asynchronous Mode


2.3 Sample Program Operation

This sample program uses the SCIF channel 0 in asynchronous mode, and transmits character strings. It checks the Transmit FIFO data empty flag, and writes 1-byte data when the flag indicates "empty". After writing data, it clears both the Transmit end flag and the Transmit FIFO data empty flag.

Table 2 lists the transmission settings for the sample program. Figure 5 shows the operation timing of the sample program.

Table 2 Sample Program Transmission Settings

Communication Format	Setting		
Communication mode	Asynchronous mode		
Number of channel to use	Channel 0		
Interrupt	Not used		
Baud rate	19,200 bps		
Data length	8-bit		
Parity	No parity		
Stop bit	1 stop bit		
Modem control	RTS/CTS functions are disabled		
Bit order	LSB first		
Number of FIFO data triggers	0		

Figure 5 Sample Program Operation Timing

2.4 Sample Program Procedure

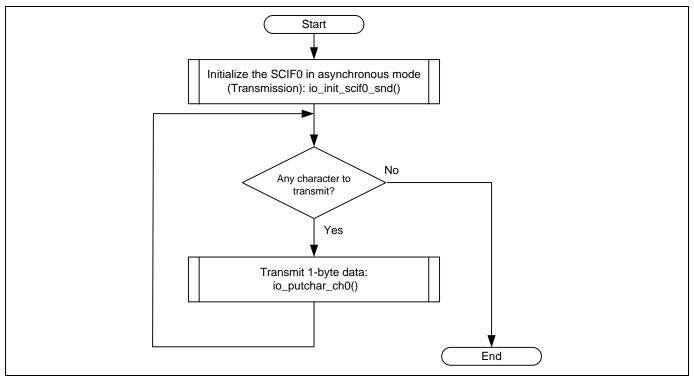

The sample program initializes the SCIF channel 0 in asynchronous mode, and transmits 1-byte character string data.

Table 3 lists register settings related to the SCIF channel 0 in the sample program. Figure 6 shows the flow chart of the sample program.

Table 3 Sample Program Register Settings

Register Name	Address	Setting	Description
Standby control register 4 (STBCR4)	H'FFFE 040C	H'7F	MSTP47 = "0": SCIF0 is operating (Supplies the clock)
Port J control register 0 (PJCR0)	H'FFFE 390E	H'0004	 PJ0MD [2:0] = "B'100": TxD0 output (SCIF0)
Serial mode register_0 (SCSMR_0)	H'FFFE 8000	H'0000	 C/A# = "0": Asynchronous mode CHR = "0": 8-bit data PE = "0": Disable to add the parity bit STOP = "0": 1 stop bit CKS [1:0] = "0": Peripheral clock
Serial control register (SCSCR_0)	H'FFFE 8008	H'0000	 TE = "0": Disable the transmission RE = "0": Disable the reception CKE [1:0] = "B'00": Internal clock/SCK pin is an input pin
		H'0020	• TE = "1": Enable the transmission
	H'FFFE 8018	H'0004	TFRST = "1": Enable to reset the Transmit FIFO data register
FIFO control register_0 (SCFCR_0)		H'0030	 TFRST = "0": Disable to reset the Transmit FIFO data register TTRG [1:0] = "B'11": Set the TDFE flag when the number of data in the Transmit FIFO is equal to or less than 0
Serial extension mode register_0 (SCEMR_0)	H'FFFF 8028	H'0000	 BGDM = "0": Normal mode ABCS = "0": Base clock is 16 times the bit rate
Bit rate register_0 (SCBRR_0)	H'FFFE 8004	Н'ЗА	Specifies the bit rate as 19,200 bps (Error: -0.69% when Pφ is at 36 MHz)
Serial port register_0 (SCSPTR_0)	H'FFFE 8020	H'0053	 SPB2IO = "1": Output the SPB2DT bit value to the TxD pin SPB2DT = "1": Input/output data is high level

Figure 6 Sample Program Flow Chart

3. Sample Program Listing

3.1 Supplement to the Sample Program

As the capacity of the SH7264 large-capacity internal RAM varies as 1 MB or 640 KB, depending on the MCU type, the section alignment and register setting must be partly altered. To support both MCU types, this application note provides two types of sample programs (workspaces) for 1-MB RAM and 640-KB RAM.

As the MCU with 640-KB RAM must be write-enabled before writing data in the data-retention RAM, the System control register 5 (SYSCR5) is set to write-enable the RAM in the sample program for 640-KB RAM.

Review your product and use the appropriate workspace.

3.2 Sample Program Listing "main.c" (1/6)

```
1
3
          This software is supplied by Renesas Technology Corp. and is only
5
           intended for use with Renesas products. No other uses are authorized.
6
7
           This software is owned by Renesas Technology Corp. and is protected under
8
           all applicable laws, including copyright laws.
10
           THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
           REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
12
           INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
13
           PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
           DISCLAIMED.
14
15
16
           TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17
           TECHNOLOGY CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18
           FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
           FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
19
20
           AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
          Renesas reserves the right, without notice, to make changes to this
           software and to discontinue the availability of this software.
2.3
24
           By using this software, you agree to the additional terms and
25
           conditions found by accessing the following link:
26
           http://www.renesas.com/disclaimer
        ************************
27
28
           Copyright (C) 2009. Renesas Technology Corp., All Rights Reserved.
29
        *""FILE COMMENT""******** Technical reference data ******************************
           System Name : SH7264 Sample Program
30
31
           File Name : main.c
           Abstract : Serial communication interface with FIFO (SCIF).
32
                     : Transmission in asynchronous mode sample program
          Version : 1.00.00
34
35
           Device
                      : SH7262/SH7264
36
           Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
37
                      : C/C++ compiler package for the SuperH RISC engine family
38
                                                 (Ver.9.03 Release00).
39
                      : None
40
          H/W Platform: M3A-HS64G50 (CPU board)
41
          Description :
        ********************
42
43
           History : Dec.03,2009 ver.1.00.00
        #include "iodefine.h" /* SH7264 iodefine */
45
```


3.3 Sample Program Listing "main.c" (2/6)

```
/* ==== Prototype declaration ==== */
      void main(void);
     void io_init_scif0_snd(int);
      void io_putchar_ch0(unsigned char) ;
50
51
52
     /* ==== Type definition ==== */
53
     /* SCIF baud rate setting */
54
      typedef struct {
55
      unsigned char scbrr;
                               /* SCBRR register setting */
       unsigned short scsmr;
                                 /* SCSMR register setting */
57
     } SH7264_BAUD_SET;
58
59
      /* ---- Baud rate specified value ---- */
60
     enum{
61
       CBR_1200,
62
       CBR_2400,
63
       CBR_4800,
       CBR_9600,
64
65
        CBR_19200,
66
        CBR 31250,
        CBR_38400,
68
       CBR_57600,
        CBR_115200
70
     };
71
72
      /* ==== Register setting table (P clock = 36 MHz) ==== */
73
      static SH7264_BAUD_SET scif_baud[] = {
74
       {233, 1}, /* 1200 bps (error: 0.16%) */
                  /* 2400 bps (error: 0.16%) */
75
       {116, 1},
                    /* 4800 bps (error: 0.16%) */
76
        {233, 0},
77
        {116, 0},
                  /* 9600 bps (error: 0.16%) */
        { 58, 0},
                  /* 19200 bps (error: -0.69%) */
79
        { 35, 0},
                  /* 31250 bps (error: 0.00%) */
                  /* 38400 bps (error: 1.02%) */
        { 28, 0},
        { 19, 0}, /* 57600 bps (error: -2.34%) */
       { 9, 0}
                   /*115200 bps (error: -2.34%) */
      };
83
84
85
```


3.4 Sample Program Listing "main.c" (3/6)

```
* ID
     * Outline
              : Sample program main (Asynchronous serial I/O transmission).
     *_____
89
     * Include
               : "iodefine.h"
     *_____
     * Declaration : void main(void);
92
     *_____
     * Description : Initializes the SCIFO in predefined communication format and
         : operating mode, and transmits character one by one.
96
     * Argument
               : void
     *_____
99
     * Return Value : void
100
101
    102
103
    void main(void)
104
     const unsigned char data[] = "SCIF sample\r\nHello\r\n"; /* Character string to
105
106
    transmit */
107
     const unsigned char *ptr;
108
     /* ==== Initializes the SCIF0 in asynchronous mode (transmission) ==== */
109
110
     io_init_scif0_snd(CBR_19200); /* Specifies the bit rate as 19200 bps */
111
     ptr = data;
112
113
     /* ==== Any character to transmit? ==== */
114
     while(*ptr != 0) {
115
      /* ==== Transmits 1-byte data ==== */
      io_putchar_ch0 (*ptr++);
116
117
     }
118
    while (1) {
119
120
     /* Program end */
121
     }
    }
122
```


3.5 Sample Program Listing "main.c" (4/6)

```
124
125
      * Outline
                 : Configure the SCIFO as the transmitter in asynchronous mode
      *_____
126
127
      * Include
                  : "iodefine.h"
128
      *_____
      * Declaration : void io_init_scif0_snd(int bps);
129
130
131
      * Description : Configures the SCIFO as the transmitter in asynchronous mode.
132
                 : Sets it in asynchronous mode, 8-bit, no parity,
133
                  : 1 stop bit, and RTS/CTS disabled.
134
                   : Specify the baud rate by the argument "bps".
135
136
                  : int bps ; I : Baud rate specified value (Table index)
137
138
      * Return Value : void
139
      *_____
140
      * Note
                  : The above baud rate specified value is applicable when using
                 : the peripheral clock (operating frequency for the peripheral
141
                   : module using the internal clock) is 36 MHz. Alter the baud rate
142
                   : setting when using other clocks.
143
      144
145
     void io_init_scif0_snd(int bps)
146
147
       /* ==== Wakes up the MCU from power-down mode ==== */
       /* ---- Sets the Standby control register 4 (STBCR4) ---- */
148
149
      CPG.STBCR4.BIT.MSTP47 = 0;
                               /* Starts to supplying clock to the SCIFO */
150
      /* ==== Configures the SCIF0 ==== */
151
152
      /* ---- Sets the Serial control register (SCSCRi) ---- */
      SCIF0.SCSCR.WORD = 0x0000; /* SCIF0 stops transmission/reception */
153
154
155
      /* ---- Sets the FIFO control register (SCFCRi) ---- */
      SCIF0.SCFCR.BIT.TFRST = 1;  /* Resets the transmit FIFO */
156
157
158
      /* ---- Sets the Serial control register (SCSCRi) ---- */
      SCIFO.SCSCR.BIT.CKE = 0x0; /* B'00: internal clock */
159
160
161
       /* ---- Sets the Serial mode register (SCSMRi) ---- */
162
      SCIF0.SCSMR.WORD = scif_baud[bps].scsmr;
163
                              /* Communication mode, 0: Asynchronous mode */
                              /* Character length, 0: 8-bit data
164
                              /* Parity enable, 0: Disables to add and check parity */
165
166
                              /* Parity mode, 0: Even parity */
167
                              /* Stop bit length, 0: 1 stop bit */
168
                              /* Clock select: Setting in table */
169
```


3.6 Sample Program Listing "main.c" (5/6)

```
170
        /* ---- Sets the Serial extension mode register (SCEMRi) ---- */
        SCIF0.SCEMR.WORD = 0x0000;
                                       /* Baud rate generator double-speed mode, 0: Normal mode */
171
                                    /* Base clock select in asynchronous mode, */
172
                                    /* 0: Base clock is 16 times the bit rate */
173
174
175
        /* ---- Sets the Bit rate register (SCBRRi) ---- */
        SCIF0.SCBRR.BYTE = scif_baud[bps].scbrr;
176
177
        /* ---- Sets the FIFO control register (SCFCRi) ---- */
178
179
        SCIF0.SCFCR.WORD = 0x0030; /* Number of the transmit FIF0 data trigger: Zero */
                                    /* Modem control enable: Disabled */
180
                                     /* Transmit FIFO data register reset: Disabled */
181
                                     /* Loop-back test: Disabled */
182
183
184
        /* ---- Sets the Serial port register (SCSPTRi) ---- */
185
        SCIFO.SCSPTR.WORD = 0x0053; /* Serial port break input/output, 1: Outputs the SPB2DT
186
                                                                   value to the TxD pin */
                                    /* Serial port break data, 1: Input/output data is high level */
187
188
189
        /* ==== Sets the General-purpose I/O port ==== */
        PORT.PJCR0.BIT.PJ0MD = 4;
                                       /* Specifies the TxD0 pin */
190
191
        /* ---- Sets the Serial control register (SCSCRi) ---- */
192
193
        SCIFO.SCSCR.BIT.TE = 1;
                                      /* Enables the SCIF0 to transmit data */
194
      }
195
```


3.7 Sample Program Listing "main.c" (6/6)

```
197
198
     * Outline
                : SCIF0 1 character transmission
     *_____
199
200
     * Include
                 : "iodefine.h"
201
     *_____
     * Declaration : void io_putchar_ch0(unsigned char c);
202
204
     * Description : Checks if the Transmit FIFO data empty flag in the SCIFO serial
              : status register (SCFSR0) is set as transmit-enabled (empty),
206
                : and transmits 1-byte data in the argument.
207
208
     * Argument
                : unsigned char c : Transmit data
209
     * Return Value : void
210
211
212
     * Note
     213
214
    void io_putchar_ch0 (unsigned char c)
215
      /* ==== Checks the Transmit FIFO data empty flag (TDFE flag) in the Serial
216
217
        status register (SCFSR0) ==== */
      while(SCIF0.SCFSR.BIT.TDFE == 0){
218
      /* Waits until the TDFE flag is set */
219
220
      }
221
222
      /* ==== Writes the transmit data in the Transmit FIFO data register (SCFTDR0) ==== */
223
      SCIFO.SCFTDR.BYTE = c;
224
225
      /* ==== Reads bits TDFE and TEND in the Serial status register (SCFSR0)
                               before clearing these bits ==== */
226
227
      SCIF0.SCFSR.WORD &= ~0x0060u ;
228
    /* End of File */
229
```

4. References

• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00

The latest version of the software manual can be downloaded from the Renesas website.

• Hardware Manual

SH7262 Group, SH7264 Group Hardware Manual Rev. 2.00

The latest version of the hardware manual can be downloaded from the Renesas website.

Website and Support

Renesas Technology Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision History

		Description		
Rev.	Date	Page	Summary	
1.00	Mar. 12, 2010	_	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2010. Renesas Technology Corp., All rights reserved.