

RL78/G1F

APPLICATION NOTE

R01AN3596EJ0110 Rev.1.10 Oct 02, 2017

Sensorless detection of initial position of the rotor

Summary

This application note aims at explains sample programs of sensorless detection of initial position of the rotor in a permanent magnetic synchronous motor using the RL78/G1F microcontroller and how to use the motor control development support tool, 'Renesas Motor Workbench'.

These sample programs are only to be used as reference and Renesas Electronics Corporation does not guarantee the operations. Please use them after carrying out a thorough evaluation in a suitable environment.

To operate the program targeted by this application note, it is necessary to modify the circuit of Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T. If you modify the circuit, other programs for Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T will not be able to operate. Regarding circuit modification, we do not guarantee the operation of this program after amendment.

Operation checking device

Operations of the sample programs have been checked by using the following device.

• RL78/G1F(R5F11BLEAFB)

Target sample programs

The target sample programs of this application note are as follows.

RL78G1F_MRSSK_SPM_DETECT_INIT_POSI_CSP_CA_V110 (IDE : CS+ for CA,CX)

RL78G1F_MRSSK_SPM_DETECT_INIT_POSI_CSP_CC_V110 (IDE : CS+ for CC)

RL78G1F_MRSSK_SPM_DETECT_INIT_POSI_E2S_CC_V110 (IDE : e²studio)

RL78/G1F Detection initial position of the rotor sample program for 24V Motor Control Evaluation System and RL78/G1F CPU CARD

Reference

- RL78/G1F Group User's Manual: Hardware (R01UH0516EJ0110)
- Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T User's Manual (R20UT3697EJ0110)
- RL78/G1F CPU Card User's Manual (R12UZ0014EJ0100)
- Renesas Motor Workbench V.1.00 User's Manual (R21UZ0004EJ0100)

Contents

1.	Overview	3
2.	System overview	8
3.	Descriptions of the control program	. 14
4.	Motor Control Development Support Tool, 'Renesas Motor Workbench'	. 34
Gen	eral Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products	2

1. Overview

This application note explains how to implement sample program the sensorless detection of initial position of the rotor for permanent magnetic synchronous motor (PMSM) using the RL78/G1F microcontroller and how to use the motor control development support tool, 'Renesas Motor Workbench'.

1.1 Development environment

Table 1-1 and Table 1-2 show development environment of the programs explained in this application note.

Table 1-1 Development Environment (H/W)

Microcontroller	Evaluation board	Motor
RL78/G1F (R5F11BLEAFB)	24V inverter board (Note 1) and RL78/G1F CPU Card (Note 2)	TG-55L (Note 3)

Table 1-2 Development Environment (S/W)

CS+ version	Tool chain version
V4.00.01	CA78K0R V1.72
V6.00.00	CC-RL V1.05.00

e ² studio version	Tool chain version
5.4.0.018	CC-RL V1.05.00

For purchase and technical support contact, Sales representatives and dealers of Renesas Electronics Corporation.

Notes: 1. 24V inverter board (RTK0EM0001B00012BJ) is a product of Renesas Electronics Corporation.

- 2. You can use below two kinds of RL78/G1F CPU Card
 - RTK0EML240C03000BJ : Renesas Electronics
 - T5103 : Desk Top Laboratories Inc. Desk Top Laboratories Inc. (http://desktoplab.co.jp/)
- 3. TG-55L is a product of TSUKASA ELECTRIC. TSUKASA ELECTRIC. (http://www.tsukasa-d.co.jp/en/)

1.2 Modifying the Evaluation Board

For the sample programs in this application note, the 24V Inverter Board and RL78/G1F CPU Card should be modified according to below explanations.

- (1) Modification of the 24V Inverter Board
 - (a) Change 3-Shunt to 1-Shunt to detect the current in one port.
 - I. Remove R72 and R97.
 - II. Connect TH1, TH2 and TH3.

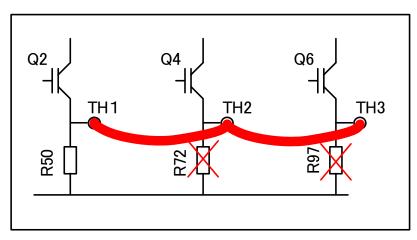
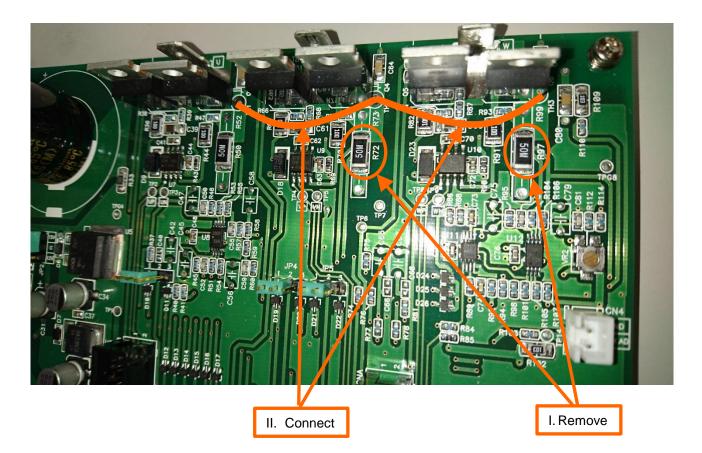



Figure 1-1 Change 3-shunt to 1-shunt

(b) Modification for the circuit to sensing voltage of each phase, because original parameter is not suitable.

- I. Mount 10k Ohms on R34, R61, R79.
- II. Mount 510 Ohms on R67.
- III. Change resisters R42, R46 and R49 from 470 Ohms to 1.5k Ohms
- IV.Mount 0.33uF on C60.
- V. Remove C49/C51/C53.

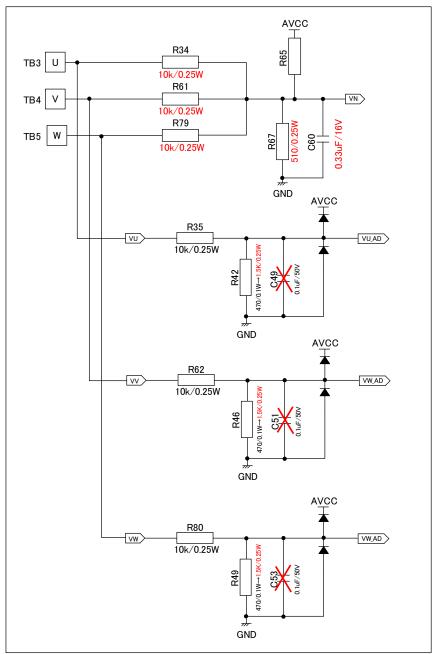
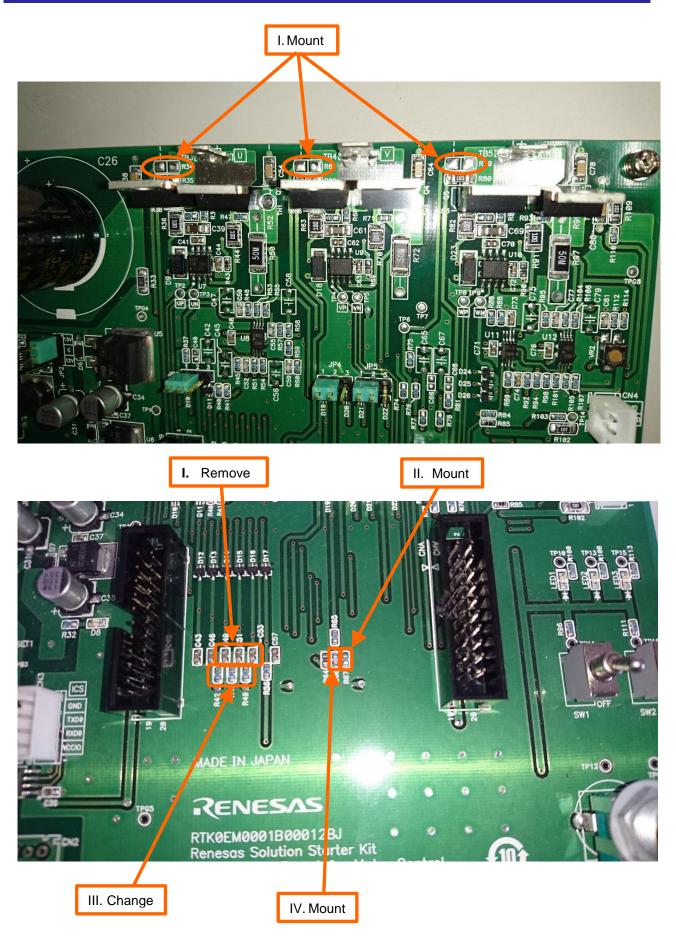



Figure 1-2 Modification for the circuit to sensing voltage of each phase

(2) Modification of the RL78/G1F CPU Card (T5103)

This modification is no need for Renesas CPU Card "RTK0EML240C03000BJ".

- I. Remove C3, C5, C6, C7, C8, C13, C14, C18, C19 and C22.
- II. Change C4 1000pF -> 0.1uF.
- III. Add the circuits which are explained by red items in below Figure 1-3.

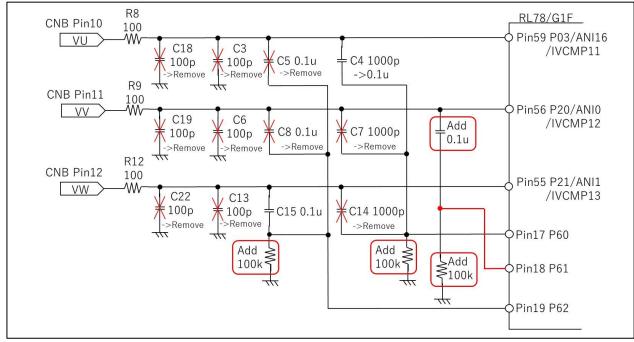


Figure 1-3 Modification of CPU card (T5103)

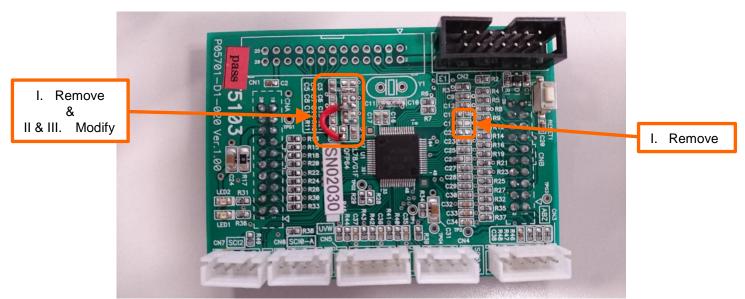


Figure 1-4 Sample of the modification

2. System overview

Overview of this system is explained below.

2.1 Hardware configuration

The hardware configuration is shown below.

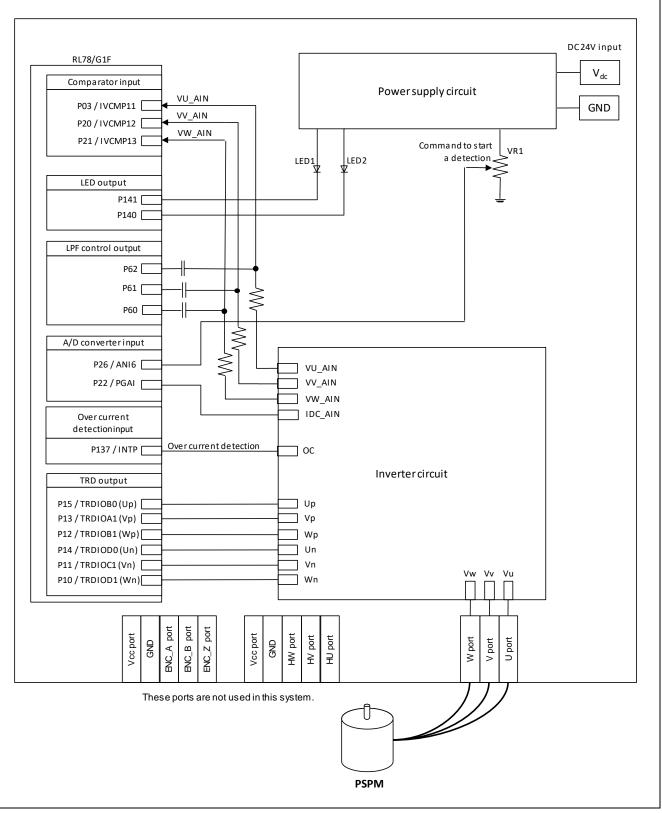


Figure 2-1 Hardware Configuration Diagram

2.2 Hardware specifications

2.2.1 User interface

Table 2-1 is a list of user interfaces of this system.

Table 2-1 User Interface

Item	Interface component	Function
Start detection	Variable resistance (VR1)	Start the sequence to detect the initial position
LED1	Yellow green LED	- When the detection finished without error: ON
		- Error happened: OFF
LED2	Yellow green LED	- When the detection finished with a trouble: ON
		- When the detection finished without error: OFF
RESET	Push switch (RESET1)	System reset

Table 2-2 is a list of port interfaces of RL78/G1F microcontroller of this system.

Table 2-2 Port Interface

R5F11BLEAFB Port name	Function
P26 / ANI6	Start the detection (analog values)
P141	LED1 ON/OFF control
P140	LED2 ON/OFF control
P03 / IVCMP11	U Phase voltage measurement(use the comparator)
P20 / VCMP12	V Phase voltage measurement(use the comparator)
P21 / IVCMP13	W Phase voltage measurement(use the comparator)
P22 / PGAI	Shunt current input
P15 / TRDIOB0	PORT output / PWM output (U _p)
P13 / TRDIOA1	PORT output / PWM output (V _p)
P12 / TRDIOB1	PORT output / PWM output (W _p)
P14 / TRDIOD0	PORT output / PWM output (Un)
P11 / TRDIOC1	PORT output / PWM output (Vn)
P10 / TRDIOD1	PORT output / PWM output (Wn)
P137 / INTP0	PWM emergency stop input at the time of overcurrent detection (use an external circuit)

2.2.2 Peripheral functions

Table 2-3 is a list of peripheral functions used in this system.

Peripheral Function	Purpose	
10bit A/D converter	- Command to start the detection	
	- Measurement of shunt current	
Timer Array Unit(TAU)	Delay timer at the estimation of rotor's angle	
	Complementary PWM output	
Timer RD(TRD)	(only pulse output to measurement)	
Timer RX(TRX)	Free-running timer to measure the inductance effect	
Interval Timer	1[ms] interval timer	
Comparator CMP1	Detection of voltage reaching to a reference	
Programmable Gain Amp (PGA)	Amplitude the shunt current input	
External Interrupt (INTP0)	Overcurrent detection	

Table 2-3 List of Peripheral Functions

(1) 10-bit A/D converter

Measure the voltage by VR1 input to start the sequence to detect the initial position.

And also measure the shunt current at the detection of the direction of polarity.

The operation mode is set as below.

The channel selection mode: the select-mode

The conversion operation mode: the one-shot conversion mode.

And software trigger is used.

(2) Timer Array Unit (TAU)

The channel 3 is used as delay timer to start the process to estimate the rotor's angle.

(3) Timer RD (TRD)

Output signals with using the Complementary PWM Mode ("High" active). Output ports are also used as general ports.

(4) Timer RX (TRX)

Timer RX(TRX) is used as free-running timer for the measurement of inductance effect when the estimation of the rotor's angle. Start timing of Timer RX is synchronous with Timer RD0 of TRD. And the counter is transferred to the buffer at CMP1 interrupt.

(5) Interval Timer

Interval Timer is used as 1[ms] interval timer.

(6) Comparator CMP1

CMP1 is used to detect each phase voltage reaches the reference at the estimation of the rotor's angle. The interrupt is not used.

(7) Programmable Gain Amp (PGA)

PGA is used to amplitude the shunt current at the detection of the rotor's polarity.

(8) External interrupt (INTP0)

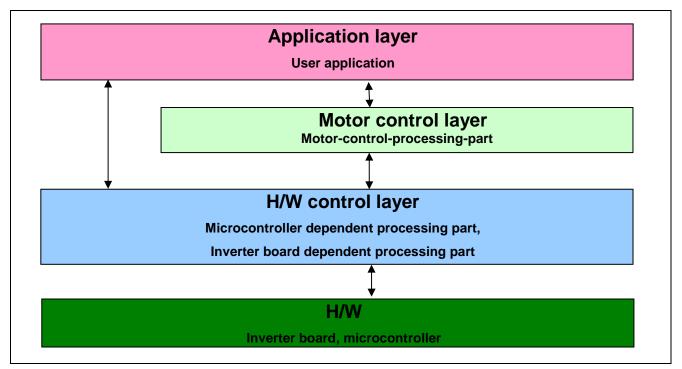
An overcurrent is detected by an external circuit.

2.3 Software structure

2.3.1 Software file structure

The folder and file configurations of the programs are given below.

Project	Folder	File	Content
RL78G1F_MRSSK_SPM_DE	inc	main.h	Main function, user interface control header
TECT_INIT_POSI_CSP_CA_		mtr_common.h	Common definition header
V110		mtr_ctrl_mrssk.h	Board dependent processing part header
		mtr_ctrl_rl78g1f.h	RL78/G1F dependent processing part header
RL78G1F_MRSSK_SPM_DE		mtr_ctrl_rl78g1f_mrssk.h	RL78/G1F and board dependent processing part header
TECT_INIT_POSI_CSP_CC_		mtr_spm_detect_init_posi.h	Detection process of the initial rotor position part header
V110	ics	ics_RL78G1F.obj	Library for ICS
RL78G1F MRSSK SPM DE		ics_RL78G1F_Lx.h	Header for ICS
TECT_INIT_POSI_E2S_CC_V		RL78G1F_vector.c	Interrupt processing part for ICS
110	prj	RL78G1F_MRSSK_SPM_DETECT _INIT_POSI_CSP_CA_V110.dr	Link directive file (Note)
	src	main.c	Main function, user interface control
		mtr_ctrl_mrssk.c	Board dependent processing part
		mtr_ctrl_rl78g1f.c	RL78/G1F dependent processing part
		mtr_ctrl_rl78g1f_mrssk.c	RL78/G1F and board dependent processing part
		mtr_interrupt.c	Interrupt handler
		mtr_spm_detect_init_posi.c	Detection process of the initial rotor position


Table 2-4 Folder and File Configuration

Notes: Link directive file is included only in RL78G1F_MRSSK_SPM_DETECT_INIT_POSI_CSP_CA_V110.

2.3.2 Module configuration

Figure 2-2 and Table 2-5 show module configuration.

Figure 2-2 Module Configuration

Table 2-5 Module Configuration

Layers	File name		
Application layer	main.c		
Motor control layer	mtr_spm_detect_init_posi.c		
	mtr_interrupt.c ^(Note)		
H/W control layer	mtr_ctrl_rl78g1f_mrssk.c		
	mtr_ctrl_rl78g1f.c		
	mtr_ctrl_mrssk.c		
	mtr_interrupt.c ^(Note)		

Note: "mtr_interrupt.c" is belong to the motor control layer and H/W control layer.

2.4 Software specifications

Table 2-6 shows the basic specifications of the software.

Item	Content		
Detection method	- Estimate the rotor's angle with the linkage function between a timer and a comparator in RL78/G1F		
	- Detect the rotor's polarity with the magnetic saturation		
Input voltage	DC24[V]		
Main clock frequency	CPU clock : f _{CLK} 32[MHz]		
	TRX clock : f _{HOCO} 64[MHz]		
Control cycle Detection sequence is implemented in 1 [ms] cyclic timer.			
Optimization	Default		

3. Descriptions of the control program

The target sample programs of this application note are explained here.

3.1 Contents of control

3.1.1 Detection start/stop

The detection process is started by input from MRSSK Support Tool or VR1 is rotated clockwise over 60degrees from the center position once.

At power on stage (reset start) the detection process is automatically started.

3.1.2 Estimate the rotor's angle with the linkage function between TimerRX and comparator

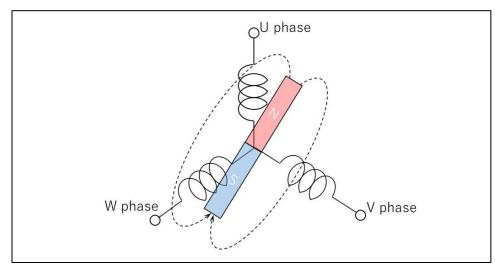
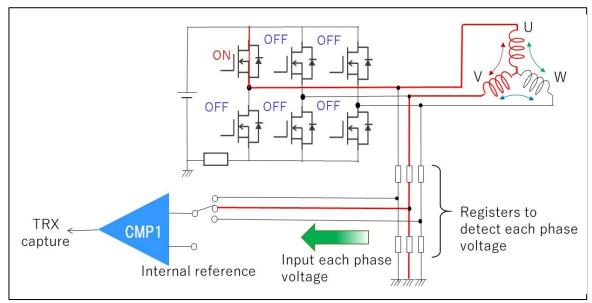


Figure 3-1 Relation between the rotor's angle and each phase

In Figure 3-1, each phase receives different magnetic effect from the rotor according to its angle. At this time, if voltage is excited through U->V, V->W, W->V path, the voltage of the lower phase (i.e. in U->V case, V phase) reaches the excited voltage in different time, because the current is received magnetic effect from the rotor. In Figure 3-1, when voltage is excited W->U path, the effect maybe biggest.



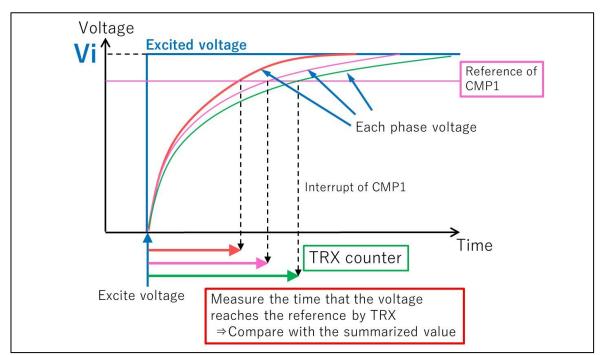

Figure 3-2 Pattern diagram to estimate the rotor's angle

Figure 3-2 explains the pattern diagram of this system to estimate the rotor's angle.

Estimation is performed in below procedure.

- Pulse voltage "Vi" is excited through U->V, V->W, W->U path in order.
- Measure the time that the voltage on registers reaches a reference value (little bit smaller than Vi) by internal timer at each path(U->V, V->W, W->U).
- Compare the measured time and judge the rotor's angle with 60degrees resolution in 180degrees range (electrical angle).

Figure 3-3 Measure the time in which the voltage of each phase reaches the reference

In the program of this application note, this time is measured with Timer RX(TRX) on RL78/G1F.

Pulse voltage is excited to each phase with TRD complementally PWM mode.

At that time, TRX starts counting by using a signal from timer RD as a trigger. And measure the time in which the voltage of each phase reaches the reference by linkage function between TRX and CMP1. That is, CMP1 detected the voltage reaches the reference, TRX counter is captured into TRXBUF.

With comparing the summarize time of each phase, the rotor's angle is estimated with 60degrees resolution in electrical 180degrees range. The measurement is finished when the difference between the biggest summarized value and next value reaches the threshold (user configurable). However, if CMP1 cannot detect the voltage reach or the difference doesn't reach 30% of the threshold after the measurement was performed in maximum counts, it is handled as an error (stop the detection sequence).

After the measurement was performed in maximum counts, the difference is between 30% to 99% of the threshold, the variable "g_u1_induct_effect_reach_max_cnts" is set to "1" to indicate the situation.

The threshold to judge the estimation, maximum counts of measurement, the reference voltage on CMP1, and the percentage to judge an error, are all configurable value to users.

Flowchart of the estimation of the rotor's position is explained below.

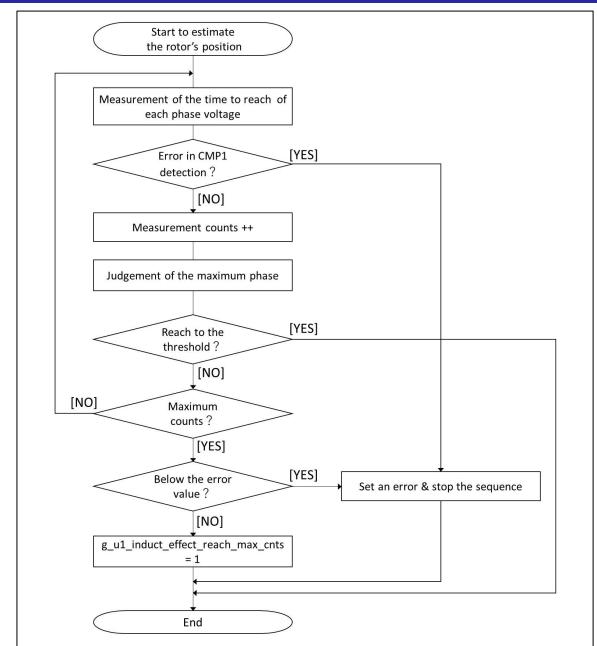


Figure 3-4 Flowchart of the estimation of the rotor's angle

3.1.3 Detection of the rotor's polarity with the magnetic saturation by A/D convertor

The rotor's polarity is impossible to be detected with 3.1.2 "Estimate the rotor's angle with the linkage function between TimerRX and comparator". Because the magnetic effect is no directionality. Therefore, the rotor's position is estimated with 60degrees resolution in 180degrees range (electrical angle).

Then the rotor's polarity is detected with the magnetic saturation.

The polarity is detected with using the characteristic that the current flow is different when the direction of magnetic field and current flow are same or not.

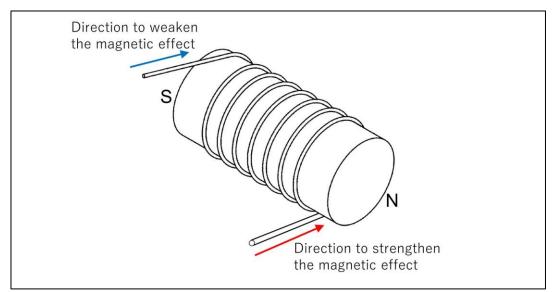


Figure 3-5 Example of a magnet with winding a coil

In case that the rotor magnet and coils exist nearby like as a SPM, magnetic flux by the rotor and by the coil passes through the core with synthesize.

Therefore if current is excited to the coil like as above Figure 3-5, a difference of actual current value can be detected between the direction of current like as Figure 3-6. Because the inductance becomes smaller in strengthen direction, as a result the current becomes easy to flow. In a motor the coil isn't winded to the magnet directly, but the similar effect happens. Therefore, the rotor's polarity can be detected.

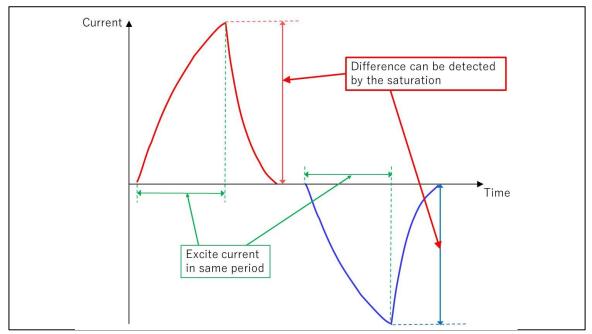


Figure 3-6 Difference of current between the excited direction

In particular, already the estimation of the rotor's angle was finished, so pulse current is excited according to the result of the estimation to arise the magnetic saturation.

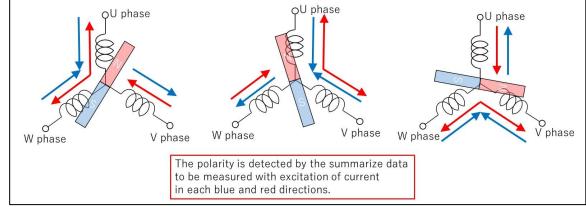


Figure 3-7 Pattern of current to arise the magnetic saturation (sample)

At that time, the current value is measured by A/D convertor with the shunt register. To made clearly the difference, the measurement shall be performed repeatedly. Then the rotor's polarity is judged.

In this measurement, PWM ports are used as general ports and the voltage is excited as a pulse.

The detection is performed with a comparison of the summarized data. When the difference between each direction reaches the threshold, the measurement is finished. However, if the difference doesn't reach 30% of the threshold after the measurement was performed in maximum counts, it is handled as an error (stop the detection sequence).

After the measurement was performed in maximum counts, the difference is between 30% to 99% of the threshold, the variable "g_u1_saturation_effect_reach_max_cnts" is set to "1" to indicate the situation.

The threshold to judge the detection, maximum counts of measurement, and the percentage to judge an error, are all configurable value to users. Also pulse width of excited voltage is configurable.

Flowchart of the detection of the rotor's polarity is explained below.

Figure 3-8 Flowchart of the detection of the polarity

3.1.4 User configurable variables and these initial value

As written in above, some variables to detect the initial position of the rotor are configurable to users.

The list of variables and these initial value is shown below.

Variable	Range	Initial value	Comment
com_u1_cmp1_vol_ref	0 - 255	120	Reference value to CMP1
com_u1_measure_induct_effect_max_cnt	0 - 255	8	Maximum counts of measurement to estimate the rotor's angle
com_u1_ inductance_effect_thsld	0 - 255	30	Threshold to judge the estimation of the rotor's angle
com_u1_inductance_effect_percentage	0 - 100	30	Percentage of the threshold to judge an error at maximum count
com_u2_measure_induct_effect_intvl	0 - 65535	150	Period for natural discharge at the estimation of the rotor's angle
com_u2_pulse_width	0 - 65535	1600	Pulse width to excite the voltage at the detection of the rotor's polarity
com_u1_saturation_effect_thsld	0 - 255	10	Threshold to judge the rotor's polarity
com_u1_saturation_effect_max_cnt	0 - 255	16	Maximum counts of measurement to detect the rotor's polarity
com_u1_saturation_effect_percentage	0 - 100	30	Percentage of the threshold to judge an error at maximum count

Table 3-1 User configurable variables and these initial value

Each initial values are decided according to the result of measurement with TG-55L.

3.2 Function specifications

Multiple control functions are used in this control program. However, functions which are not used in this system are undescribed.

Table 3-2	List of	Functions	"main.c"
-----------	---------	-----------	----------

File name	Function name	Process overview
main.c	main	- Hardware initialization function call
	Input: None	- User interface initialization function call
	Output: None	- Initialization function call of the variables used in the
		main process - Global variables initialization function call - GUI initialization function call
		- Main process
		\Rightarrow Start the detection sequence by VR1
		\Rightarrow LED turn on/off control
		\Rightarrow User interface call
		\Rightarrow Watchdog timer clear function call
	ics_ui	Use "Motor RSSK Support Tool"
	Input: None	- Start the detection sequence
	Output: None	- Get user configurable variables
	software_init Input: None	Initialization of variables used in the main process
	Output: None	

Table 3-3 List of Functions "mtr_ctrl_mrssk.c"

File name	Function name	Process overview
mtr_ctrl_mrssk.c	get_vr1	VR1 status acquisition
	Input: None	
	Output: (uint16) u2_ad_data / A/D conversion result	
	led1_on	Turning LED1 ON
	Input: None	
	Output: None	
	led2_on	Turning LED2 ON
	Input: None	
	Output: None	
	led1_off	Turning LED1 OFF
	Input: None	
	Output: None	
	led2_off	Turning LED2 OFF
	Input: None	
	Output: None	

File name	Function name	Process overview
mtr_ctrl_rl78g1f.c	R_MTR_InitHardware	Initialization of the clock and peripheral
	Input: None	functions
	Output: None	
	clear_wdt	Clear the watchdog timer(WDT)
	Input: None	
	Output: None	
	mtr_clear_oc_flag	Cancel the forced cutoff of the pulse output
	Input: None	
	Output: None	
	mtr_set_delay_timert	Set delay counts and reserved function for
	Input: (uint16)u2_count / delay counts	delay interrupt
	(VOID_FUNC_POINTER)ptr_func / pointer for	
	reserved function at delay interrupt	
	Output: None	
	mtr_start_delay_timer	Start delay timer
	Input: None	
	Output: None	
	mtr_stop_delay_timer	Stop delay timer
	Input: None	
	Output: None	
	mtr_dummy_for_delay_timer	Dummy function for reset reserved function
	Input: None	of delay timer
	Output: None	
	mtr_start_trx	Start Timer RX (TRX)
	Input: None	
	Output: None	
	mtr_stop_trx	Stop Timer RX (TRX)
	Input: None	
	Output: None	
	mtr_disble_cmp1_intr	Disable the interrupt of CMP1
	Input: None	
	Output: None	
	mtr_set_cmp1_input	Set the detected signal pattern of CMP1
	Input: (uint8) u1_input / plus side input of CMP1	
	(uint8) u1_edge / detection edge	
	(Up edge / Down edge)	
	Output: None	
	mtr_prepare_measure_ie	Set peripherals to measure inductance effec
	Input: None	as preparation
	Output: None	
	mtr_init_clock	Initialization of clock
	Input: None	
	Output: None	
		Initialization of interval timor (11ms) qualic
	mtr_init_interval_timer	Initialization of interval timer (1[ms] cyclic process)
	Input: None	
	Output: None	Initialization of the Timer Arrow Linit (TALI)
	mtr_init_tau	Initialization of the Timer Array Unit (TAU)
	Input: None	
	Output: None	

Table 3-4 List of Functions "mtr_ctrl_rl78g1f.c" [1/2]

File name	Function name	Process overview
mtr_ctrl_rl78g1f.c	mtr_init_trx	Initialization of Timer RX (TRX)
	Input: None	
	Output: None	
	mtr_init_cmp1	Initialization of Comparator1 (CMP1)
	Input: None	
	Output: None	

Table 3-5 List of Functions "mtr_ctrl_rl78g1f.c" [2/2]

Table 3-6 List of Functions "mtr_ctrl_rl78g1f_mrssk.c"

File name	Function name	Process overview
mtr_ctrl_rl78g1f_mrssk.c	mtr_init_trd	Initialization of Timer RD (TRD)
	Input: None	
	Output: None	
	mtr_init_ad_converter	Initialization of the A/D converter
	Input: None	
	Output: None	
	init_ui	Initialization of user interface
	Input: None	
	Output: None	
	mtr_get_adc	Get the result of A/D conversion
	Input: (uint8) u1_ad_ch / target A/D conversion channel	
	Output: (int16) s2_temp / A/D conversion value	
	mtr_output_UP	Excite voltage in U->V path at the
	Input: None	estimation of the rotor's angle
	Output: None	
	mtr_output_VP	Excite voltage in V->W path at the
	Input: None	estimation of the rotor's angle
	Output: None	
	mtr_output_WP	Excite voltage in W->U path at the
	Input: None	estimation of the rotor's angle
	Output: None	
	mtr_output_stop	Set all PWM ports to OFF
	Input: None	
	Output: None	
	mtr_output_low_on	Set all low side PWM ports to ON
	Input: None	
	Output: None	

File name	Function name	Process overview
mtr_interrupt.c	mtr_over_current_interrupt	Overcurrent detection process (Hardware detection)
	Input: None	- Disable INTP0 interrupt servicing
	Output: None	- Stop the detection sequence
		- Set error information (overcurrent occurred)
	mtr_1ms_interrupt	Calling every 1 [ms]
	Input: None	- Call the GUI communication function
	Output: None	- Call the function to reflect user input data to variables
		- Call the detection sequence of initial position of the rotor
		- Call the function to clear the interrupt flag of interval timer
	mtr_delay_interrupt	Perform reserved function after the set delay
	Input: None	- Stop delay timer
	Output: None	- Perform the reserved function

Table 3-7 List of Functions "mtr_interrupt.c"

Table 3-8 List of Functions "mtr_spm_detect_init_posi.c"

File name	Function name	Process overview
mtr_spm_detect_init_posi.c	mtr_measure_inductance_effect	Measure the effect of inductance
	Input: u1_crt_pattern / Current pattern to be excited	
	Output: u2_trx_buf / measured counts of TRX counter	
	mtr_detect_magnetic_pole	Detect the rotor position on 3 pattern with
	Input: None:	using TRX timer
	Output: None	
	mtr_measure_saturation_effect	Rotor direction is detected with the
	Input: u1_direction / current direction	measurement using saturation
	Output: None	
	mtr_seq_judge_polarity	Sequence to judge the rotor polarity with
	Input: None	saturation
	Output: None	
	mtr_start_detect_sequence	Start the detection sequence of initial
	Input: None	position of the rotor
	Output: None	- Set the state to start
		- Clear error
		- Call the function to cancel the forced
		cutoff of the pulse output
	mtr_start_initt	Initialize global variables
	Input: None	
	Output: None	
	R_MTR_lcsInput	Set GUI input value to the buffer
	Input: (MTR_ICS_INPUT*) ics_input / structure for ICS	
	Output: None	
	mtr_set_variables	Set input variables according to control
	Input: None	layer
	Output: None	

3.3 List of variables

Lists of variables used in this control program are given below. However, note that the local variables are not mentioned.

Table 3-9 List of variables[1/2]

Variable name	Туре	Content	Remarks
g_u1_restart_detection	uint8	Flag to start the detection sequence for user control	
g_s2_enable_write	int16	Flag to accept user input data	
st_ics_input	MTR_ICS _INPUT	Structure for user input data from GUI	
g_u1_flg_req_restart	uint8	Flag to request start the detection sequence	
g_u1_chtring_cnt	uint8	VR1 determination counter	Chattering removal
g_u1_trig_enable_write	uint8	Enable flag to reflect input data to internal data	
st_ics_input_buff	MTR_ICS _INPUT	Structure for Input data buffer from GUI	
g_u1_initial_position	uint8	Detected rotor's position data	Indicate each 60degrees with 0 - 5
g_u1_max_phase	uint8	Estimated rotor's angle by measurement of inductance effect	
g_u2_state_judge_polarity	uint16	Status management of the sequence to detect the polarity	
g_u2_state_detection	uint16	Status management of the detection sequence of initial position of the rotor	
g_u2_sum_trx_u2v	uint16	Summarized counter data of measurement of inductance effect with U->V path	
g_u2_sum_trx_v2w	uint16	Summarized counter data of measurement of inductance effect with V->W path	
g_u2_sum_trx_w2u	uint16	Summarized counter data of measurement of inductance effect with W->U path	
g_u1_cmp1_vol_ref	uint8	Reference voltage of CMP1 to compare with each phase	(this variable) / 255 * 5.0 [V]
g_u1_measure_induct_effect_max_cnt	uint8	Maximum counts to measure the inductance effect	Default : 8
g_u1_inductance_effect_thsld	uint8	Threshold to judge the estimation of rotor's angle	Default : 30
g_u2_measure_induct_effect_intvl	uint16	Interval of measurement the inductance effect between each phase	Default : 120
g_u1_measure_induct_effect_cnt	uint8	Counter of the measurement of inductance effect	
g_u2_inductance_effect_percentage	uint16	Error detection threshold to estimate the rotor's angle	
g_u1_induct_effect_reach_max_cnts	uint8	Flag to indicate the measurement of inductance effect reaches the maximum counts	
g_u1_flg_cmp1_error	uint8	Flag to CMP1 cannot detect phase voltage	
g_u2_sum_adc_p	uint16	Summarize data of measurement of saturation effect in positive direction	
g_u2_sum_adc_n	uint16	Summarize data of measurement of saturation effect in negative direction	

Table 3-10List of variables[2/2]

Variable name	Туре	Content	Remarks
g_u1_saturation_effect_max_cnt	uint8	Maximum counts to measure the saturation effect	Default : 16
g_u1_saturation_effect_thsld	uint8	Threshold to judge the detection of rotor's polarity	Default : 30
g_u2_pulse_width	uint16	Pulse width to be excited at measurement of saturation effect	Default : 1600
g_u1_saturation_effect_cnt	uint8	Counter of the measurement of saturation effect	
g_u2_saturation_effect_percentage	uint16	Error detection threshold to detect the rotor's polarity	
g_u1_saturation_effect_reach_max_cnts	uint8	Flag to indicate the measurement of saturation effect reaches the maximum counts	
g_u2_error_status	uint16	Error status	
g_ptr_delay_func	VOID_FU NC_POIN TER	Pointer of function for delay timer	

3.4 List of structure

List of structure used in this control program is given below.

Table 3-11 List of structure

Structure	Member	Туре	Content	Remarks
MTR_ICS_INPUT	u1_cmp1_vol_ref	uint8	Reference voltage of CMP1 to compare with each phase	(this variable) / 255 * 5.0 [V]
	u1_measure_induct_effect_max_cnt	uint8	Maximum counts to measure the inductance effect	
	u1_inductance_effect_thsId	uint8	Threshold to judge the estimation of rotor's angle	
	u2_measure_induct_effect_intvll	uint16	Interval of measurement the inductance effect between each phase	
	u1_inductance_effect_percentage	uint8	Error detection threshold to estimate the rotor's angle (percentage of u1_inductance_effect_thsld)	
	u2_pulse_width	uint16	Pulse width to be excited at measurement of saturation effect	
	u1_saturation_effect_thsld	uint8	Threshold to judge the detection of rotor's polarity	
	u1_saturation_effect_max_cnt	uint8	Maximum counts to measure the saturation effect	
	u1_saturation_effect_percentage	uint8	Error detection threshold to detect the rotor's polarity (percentage of u1_saturation_effect_thsld)	

3.5 Macro definitions

Lists of macro definitions used in this control program are given below.

File name	Macro name	Definition value	Remarks
main.h	SW_ON	0	Active in case of "Low"
	SW_OFF	1	
	CHATTERING_CNT	10	Counts to remove chattering
	MTR_RESTART_THRSLD	0x03FF * 2/3	Value to 60degrees from the center of VR1
	ICS_ADDR	0xFE00	Address data for ICS
	ICS_INT_LEVEL	2	Interrupt priority level for ICS
	ICS_NUM	CA : 0x50	Size of data on ICS interface
		CC-RL : 0x40	
	ICS_BRR	15	Selection of bitrate register on ICS
			(only CC-RL)
	ICS_INT_MODE	0	Setting of ICS interrupt mode
			(only CC-RL)

Table 3-13	List of Macro definitions "mtr_ctrl_mrssk.h"

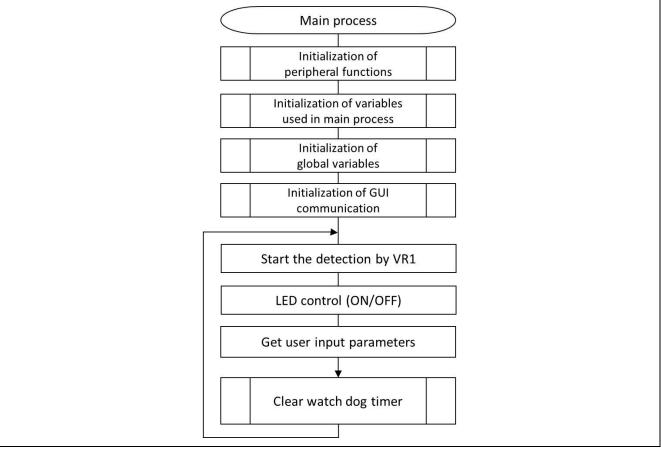
File name	Macro name	Defir	nition va	alue		Remarks
mtr_ctrl_mrssk.h	MTR_PORT_SW1		P0.5		P0_bit.no5	SW1 input port
	MTR_PORT_SW2		P0.6		P0_bit.no6	SW2 input port
	MTR_PORT_LED1	CA	P14.1	CC-RL	P14_bit.no1	LED1 output port
	MTR_PORT_LED2		P14.0		P14_bit.no0	LED2 output port
	MTR_PORT_LED3		P0.4		P0_bit.no4	LED3 output port
	MTR_LED_ON	0				LED On/Off
	MTR_LED_OFF	1				(Low active)
	MTR_ADCCH_VR1	6				A/D channel : VR1
	MTR_ADDCH_IDC	25				A/D channel : shunt current

Table 3-14 List of Macro definitions "mtr_ctrl_rl78g1f.h"

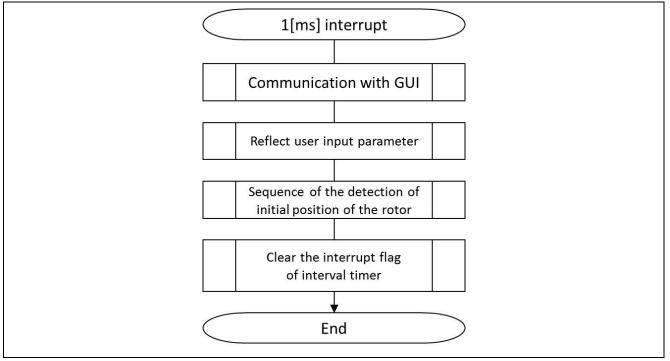
File name	Macro name	Definition value	Remarks
mtr_ctrl_rl78g1f.h	PARITYCTL_BIT	CA : RPECTL.7	Set enable RAM parity error
		CC-RL : RPECTL_bit.no7	detection
	mtr_clear_interval_timer_intflag()	ITIF = 0	Clear the interrupt flag of interval
			timer
	MTR_INPUT_SELECT_VN	0	Select Input signal of CMP1
			Select: center voltage
	MTR_INPUT_SELECT_VU	1	Select Input signal of CMP1
			Select: voltage of U phase
	MTR_INPUT_SELECT_VV	2	Select Input signal of CMP1
			Select: voltage of V phase
	MTR_INPUT_SELECT_VW	3	Select Input signal of CMP1
			Select: voltage of W phase
	MTR_INPUT_SELECT_UP_EDGE	0	Up edge is used to detection
	MTR_INPUT_SELECT_DOWN_EDGE	1	Down edge is used to detection
	mtr_check_cmp1_detection()	1 == C1MON	Confirm CMP1 detection
	mtr_check_trx_overflow()	1 == TRXOVF	Confirm the over flow of TRX

Table 3-15	List of Macro definitions	"mtr_	ctrl_rl7	'8g1f_mrs	ssk.h"	
File name	Macro name		nition va			Remarks
mtr_ctrl_rl78g1f	MTR_PWM_TIMER_FREQ	64.0f				PWM timer count frequency [MHz]
_mrssk.h	MTR_TRD_INIT_VALUE	0xFFF	F			Initial value of TRD counter
	MTR_PORT_UP		P1.5		P1_bit.no5	U phase (positive phase) output port
	MTR_PORT_UN		P1.4		P1_bit.no4	U phase (negative phase) output port
	MTR_PORT_VP		P1.3		P1_bit.no3	V phase (positive phase) output port
	MTR_PORT_VN	CA	P1.1	CC-RL	P1_bit.no1	V phase (negative phase) output port
	MTR_PORT_WP		P1.2		P1_bit.no2	W phase (positive phase) output port
	MTR_PORT_WN		P1.0		P1_bit.no0	W phase (negative phase) output port
	MTR_TRX_CNT	TRX				Counter register of TRX
	MTR_TRXBUF_CNT	TRXB	UF			Counter register of TRXBUF
	mtr_start_trd()	TRDS	TR = 0x0I	F		Start TRD
	mtr_stop_trd()	TRDS	TR = 0x00	0		Stop TRD
	MTR_OC_HW_FLG	TRDS	HUTS			Forced cutoff flag
	MTR_OC_INTR_MASK	PMK0				INTP0 interrupt mask
	MTR_DISABLE_OC_INTR	1				Disable INTP0 interrupt service
	MTR_ENABLE_OC_INTR	0				Enable INTP0 interrupt service

File name	Macro name	Definition value	Remarks
mtr_spm_detect	MTR_FLG_CLR	0	Flag management
_init_posi.h	MTR_FLG_SET	1	
	MTR_ICS_DECIMATION	2	Number of function call decimation times fo GUI
	MTR_MEASURE_RX_U2V	1	Pattern of current path at estimation of the
	MTR_MEASURE_RX_V2W	2	rotor's angle
	MTR_MEASURE_RX_W2U	3	
	MTR_PHASE_UNDETECT	0	Detected angle in 60degrees resolution at
	MTR_PHASE_U2V	1	estimation of the rotor's angle
	MTR_PHASE_V2W	2	"0" is undetected.
	MTR_PHASE_W2U	3	
	MTR_TRX_OVER_COUNTS	3000	Limit of TRX at measurement of inductance effect
	MTR_CMP1_VOL_REF	120	Default value of the reference of CMP1
	MTR_MEASURE_IE_THSLD	30	Threshold to judge the finish of
			measurement of inductance effect
	MTR_MEASURE_IE_INTERVAL	150	Interval for natural discharge during the
			measurement of inductance effect
	MTR_MEASURE_IE_MAX_COUNTS	8	Maximum counts of the measurement of inductance effect
	MTR_MEASURE_IE_PERCENTAGE	30	Percentage to judge the error of measurement of inductance effect
	MTR_MEASURE_SATURATION_PO	1	Pattern of exciting voltage at detection of th rotor's polarity
	MTR_MEASURE_SATURATION_NE	0	
	MTR_MEASURE_SAT_PULSE_WIDT	1600	Pulse width of exciting voltage at the measurement of saturation effect
	MTR_MEASURE_SAT_THSLD	10	Threshold to judge the finish of measurement of saturation effect
	MTR_MEASURE_SAT_MAX_COUNT	16	Maximum counts of the measurement of saturation effect
	MTR MEASURE SAT PERCENTAG	30	Percentage to judge the error of
	E		measurement of saturation effect
	MTR_CORRECT_POSITION	3	Correction value at detection of the rotor's polarity
	MTR_ERROR_POSITION	10	Error value to detect the initial position
	MTR_STATE_NONE	0	State information of sequence to detect
	MTR_STATE_START_DETECTION	1	initial position of the rotor
	MTR_STATE_WAIT_DETECT_MAGN ETIC_POLE	2	0 : Not active 1 : Start the detection
	MTR_STATE_START_JUDGE_POLA RITY	3	2 : Wait the estimation of the rotor's angle3 : Start the detection of the polarity
	MTR_STATE_JUDGE_POLARITY	4	4 : The polarity detecting
	MTR_STATE_DETECTION_FINISH	5	5 : Finish of the detection of initial position
	MTR_STATE_JUDGE_POLARITY_N	0	State information of the detection of the polarity
	MTR_STATE_JUDGE_POLARITY_P OSITIVE	1	0 : Not active 1 : Measurement in positive side
	MTR_STATE_JUDGE_POLARITY_N EGATIVE	2	2 : Measurement In negative side and judgement of the result


Table 3-17	List of Macro definitions "n	mtr_spm_detect_init_posi.h" [2/2]	

File name	Macro name	Definition value	Remarks
mtr_spm_detect	MTR_ERROR_NONE	0x00	Error status
_init_posi.h	MTR_ERROR_CMP1_NOT_REA	0x01	0x00 : No error
	CH_REF		0x01 : CMP1 detect fault error
	MTR_ERROR_DETECT_MAGNE	0x02	0x02 : Error of the estimation of the
	TIC_POLE		rotor's angle
	MTR_ERROR_JUDGE_POLARIT	0x04	0x04 : Error of the detection of the
	Y		rotor's polarity
	MTR_ERROR_OVER_CURRENT	0x08	0x08 : overcurrent


3.6 Control flows (flow charts)

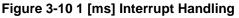

3.6.1 Main process

Figure 3-9 Main Process Flowchart

3.6.2 1 [ms] interrupt handling

3.6.3 Delay timer interrupt handling

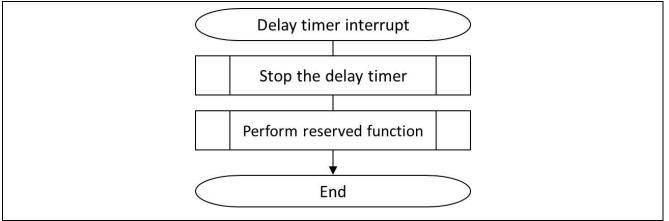


Figure 3-11 Delay Timer Interrupt Handling

3.6.4 Overcurrent interrupt handling

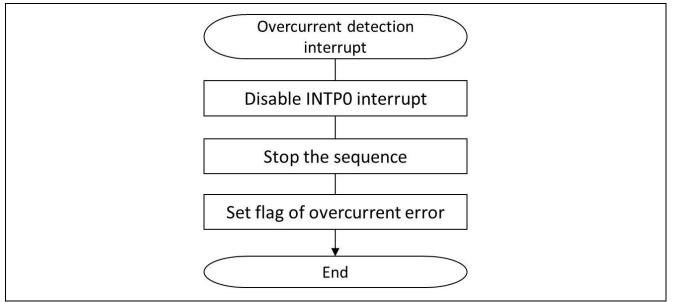


Figure 3-12 Over Current Detection Interrupt Handling

4. Motor Control Development Support Tool, 'Renesas Motor Workbench'

4.1 Overview

In the sample programs described in this application note, the detection can be started by the motor control development support tool, 'Renesas Motor Workbench'. Please refer to 'Renesas Motor Workbench V.1.00 User's Manual' for usage and more details.

You can find 'Renesas Motor Workbench' on I	Renesas Electronics Corporation website.
---	--

Main W		
File Help Option COM COM - Status Connection Status Configuration Configuration CPU Rx23T Furthers DC Motor Motor Type Brushless DC Motor -	Select Tool	Analyzer Window
Control Inverter MRSSK LV - Project File Path Diswork Prom		Scope Window

Figure 4-1 Renesas Motor Workbench – Appearance

Set up for Motor control development support tool

- (1) Start 'Motor RSSK Support Tool' by clicking this icon.
- (2) Drop down menu [File] \rightarrow [Open RMT File(O)].

And select RMT file in '[Project Folder]/ics/'.

- (3) Use the 'Connection' [COM] select menu to choose the COM port to be connected with the Motor RSSK.
- (4) Click the 'Analyzer' icon in right side of Main Window. (Then, "Analyzer Window" will be displayed.)
- (5) Please refer to '4.3 Operation Example for Analyzer' to start the detection.

4.2 List of variables for Analyzer

Table 4-1 is a list of variables for Analyzer. These variables are reflected to the protect variables when the same values as g_s2_{enable} write are written to com_s2_enable_write except com_u1_restart_detection.

Variable name	Туре	Content	Remarks ([]: reflection variable name)
com_u1_cmp1_vol_ref	uint8	Reference value to CMP1	【g_u1_cmp1_vol_ref】
com_u1_measure_induct_effect _max_cnt	uint8	Maximum counts of measurement to estimate the rotor's angle	【g_u1_measure_induct_effect_max_cnt】
com_u1_inductance_effect_thsld	uint8	Threshold to judge the estimation of the rotor's angle	[g_u1_inductance_effect_thsld]
com_u1_inductance_effect_perc entage	uint8	Percentage of the threshold to judge an error at maximum count	【g_u2_inductance_effect_percentage】
com_u2_measure_induct_effect _intvl	uint16	Period for natural discharge at the estimation of the rotor's angle	[g_u2_measure_induct_effect_intvl]
com_u2_pulse_width	uint16	Pulse width to excite the voltage at the detection of the rotor's polarity	【g_u2_pulse_width】
com_u1_saturation_effect_thsld	uint8	Threshold to judge the rotor's polarity	[g_u1_saturation_effect_thsId]
com_u1_saturation_effect_max_ cnt	uint8	Maximum counts of measurement to detect the rotor's polarity	[g_u1_saturation_effect_max_cnt]
com_u1_saturation_effect_perce ntage	uint8	Percentage of the threshold to judge an error at maximum count	[g_u2_saturation_effect_percentage]
com_u1_restart_detection	uint8	Reference value to CMP1	[g_u1_restart_detection]
com_s2_enable_write	int16	Maximum counts of measurement to estimate the rotor's angle	

Table 4-1 List of Variables for Analyzer
--

RL78/G1F

4.3 Operation Example for Analyzer

Show an example below that start the detection operation using Analyzer. Operation is using "Control Window" showed in Figure 4-1. Refer to 'Renesas Motor Workbench V.1.00 User's Manual' for 'Control Window' in detail.

- Start the detection of initial position of the rotor
 - (1) The [W?] check boxes contain checkmark for "com_u1_restart_detection".
 - (2) Input same value as "g_u1_restart_detection" in the [Write] box of "com_u1_restart_detection".
 - (3) Click the "Write" button.

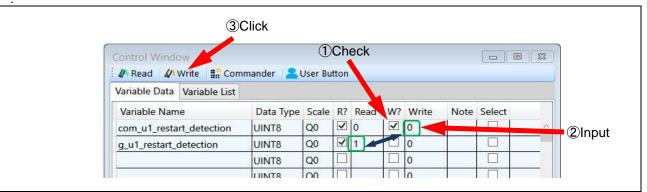


Figure 4-2 Procedure – Start the detection

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jan.13.2017	-	First edition issued
1.10	Oct.02.2017	-	- Add notice on cover page
			 Changing description by source code disclosure

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not
 access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no resoonsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Notice

- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assume no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tei: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco Unit 1207, Block B. Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141