
 Application Note

R01AN0501EJ0100 Rev.1.00 Page 1 of 57
Mar.31.21

RZ/G2 Trusted Execution Environment
Porting Guide
Introduction
This document is intended to give users an understanding of the Trusted Execution Environment provided for
RZ/G2 Group (hereinafter referred to as “TEE for RZ/G2”) and to serve as a reference for developing
software for systems that use TEE for RZ/G2.

This document is intended for developers implementing the TEE for RZ/G2 using Yocto build environment
provided for the RZ/G2 Group.

Target Device
RZ/G2E

RZ/G2M

RZ/G2N

RZ/G2H

Contents

1. Overview ... 4
1.1 Functions ... 4
1.2 References .. 6
1.2.1 Standard Documents ... 6
1.2.2 Related Documents ... 6
1.2.3 Related Original Software ... 6
1.2.4 Related Packages ... 7
1.3 Licenses .. 7
1.4 Terminology ... 8

2. Operating Environment .. 9
2.1 Build Environment ... 9
2.2 Module Configuration .. 10

3. External Interface .. 11
3.1 Software API .. 11
3.1.1 OP-TEE OS ... 11
3.1.2 OP-TEE Client ... 11
3.2 Definitions .. 12
3.2.1 OP-TEE OS ... 12
3.2.2 OP-TEE Client ... 12
3.3 Structures .. 13
3.3.1 OP-TEE OS ... 13
3.3.2 OP-TEE Client ... 13

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 2 of 57
Mar.31.21

4. Implementation .. 14
4.1 Directory Configuration .. 14
4.1.1 Trusted Firmware-A ... 14
4.1.2 OP-TEE OS ... 15
4.1.3 OP-TEE Client ... 15
4.1.4 OP-TEE Driver... 15
4.2 Build Instructions ... 16
4.3 Build Options ... 17
4.3.1 Trusted Firmware-A ... 17
4.3.2 OP-TEE OS ... 17
4.3.2.1 Secure Storage ... 17
4.3.2.2 Cryptography features ... 17
4.3.3 OP-TEE Client ... 18
4.4 How to set build options .. 19
4.4.1 Trusted Firmware-A ... 19
4.4.2 OP-TEE OS ... 19
4.4.3 OP-TEE Client ... 19
4.5 How to customize .. 20
4.5.1 Security access protection setting ... 20
4.5.2 Hardware Unique Key ... 20
4.5.3 Hardware Crypto IP ... 20
4.5.3.1 Cryptographic function .. 20
4.5.3.2 Random Number Generation .. 20
4.5.4 Secure Storage.. 21
4.5.5 Trusted Application Private/Public Keypair ... 21
4.5.6 Secure Boot ... 21

5. How to Implement Secure Boot ... 22
5.1 Functions ... 22
5.1.1 Secure Boot ... 22
5.1.2 Provisioning ... 24
5.1.2.1 Generation of Keyring ... 26
5.1.2.2 Temporary encryption of Keyring .. 27
5.1.2.3 Temporary encryption of User Data .. 27
5.1.2.4 Re-encryption of Keyring ... 27
5.1.2.5 Re-encryption of User Data ... 27
5.2 Build Instructions ... 28
5.3 Build Options ... 28
5.3.1 Trusted Firmware-A ... 28
5.3.2 Security Module ... 28
5.3.3 Flash Writer ... 28

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 3 of 57
Mar.31.21

5.4 How to set build options .. 29
5.4.1 Trusted Firmware-A ... 29
5.4.2 Security Module ... 29
5.4.3 Flash Writer ... 29
5.5 Provisioning Environment .. 30
5.5.1 Prior confirmation .. 31
5.5.2 Provisioning Tool ... 32
5.5.2.1 Generation of Keyring ... 32
5.5.2.2 Configure Build Path ... 34
5.5.3 Encryption Tool.. 35
5.5.4 Packaging Tool .. 37
5.5.5 Flash Writer ... 40
5.5.5.1 Loading FIP ... 40
5.5.5.2 Re-encryption of Keyring ... 40
5.5.5.3 Re-encryption of User Data ... 40
5.6 Key Wrap Service .. 41
5.7 Security Module ... 42
5.7.1 Directory Configuration .. 43
5.7.2 External Interface .. 44
5.7.2.1 Commands .. 45
5.7.2.2 Structures .. 49
5.7.3 Execution Example .. 54

6. Memory Map.. 55

Revision History .. 57

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 4 of 57
Mar.31.21

1. Overview
TEE for RZ/G2 is an isolated execution environment that is implemented by Arm® TrustZone® supported by
RZ/G2 Group and software utilizing that TrustZone®. This isolated execution environment guarantees code
and data loaded inside to be protected with respect to confidentiality and integrity.

1.1 Functions
This section describes the software and its functions related to TEE for RZ/G2.

Figure 1. Software related to TEE for RZ/G2

(a) Trusted Firmware-A (BL2)

Trusted Firmware-A (BL2) is software for loading Trusted Firmware-A (BL31) and the firmware images to
be booted after that. BL2 boots after being loaded into RAM from the boot device ROM by the boot ROM
program. After booting, BL2 loads the firmware images from ROM to RAM after initializing hardware such
as peripherals and setting security.

 Secure Boot

TEE for RZ/G2 supports Secure Boot that detects tampering with the firmware images loaded by BL2.
If Secure Boot is implemented, the firmware images are signed and encrypted before being stored in
boot device ROM. Secure Boot detects tampering by decrypting and verifying this firmware images.
For the implementation of Secure Boot, refer to “5. How to Implement Secure Boot”.

(b) OP-TEE OS

Trusted Firmware-A (BL31) is the Secure World software including the Secure Monitor, various ARM
interface standards such as the Power State Coordination Interface (PSCI).

 Secure Monitor

The Secure Monitor manages the switches between the Secure World and the Normal World. When a
SMC, FIQ and IRQ are generated, the Exception Handler decides to need to switch the world. If it
needs to switch the world, the Secure Monitor saves register data and restore register for the next
world.

 PSCI

PSCI is the interface from the Normal World software to firmware implementing power management
use-cases, Secondary CPU Boot, CPU Hotplug, CPU Idle and System Shutdown/Reset/Suspend.

Image Load

Execution

BL32
Trusted OS

(OP-TEE OS)

BL33
Non-Secure OS

OP-TEE Client

OP-TEE Driver

Boot ROM Program

Trusted Firmware-A (BL31)
Secure Monitor

Normal World Secure World

Execution

Trusted Firmware-A
(BL2)

Initial Program Loader Execution Execution

Image Load

Firmware related to TEE for RZ/G2

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 5 of 57
Mar.31.21

(c) OP-TEE OS

OP-TEE OS is a Trusted OS which is running in the Secure World. OP-TEE OS provides "TEE Internal
API" defined by the GlobalPlatform TEE Standard to a Trusted Application that accesses secure
resources.

 Trusted Application (TA)

Applications running in OP-TEE OS are called TA. TA is a passive type of application. TA receives
and executes the request command from Client Application (CA). And return the results to CA.

 Client Application (CA)

Applications running in the Non-Trusted OS are called CA. CA makes use of the TEE Client API to
access the secure resources provided by TA.

(d) OP-TEE Driver

OP-TEE Driver for Linux OS allows communication between Linux OS and OP-TEE OS.

(e) OP-TEE Client

OP-TEE Client consists of the TEE Client library and TEE supplicant.
TEE Client library is a library that contains APIs defined by the GlobalPlatform TEE Standard. This library
is used by CA that are executed on Non-Trusted OS to communicate with the OP-TEE OS and TA.
TEE Supplicant operates miscellaneous features of OP-TEE OS in the Secure World, such as file system
access and loading TA.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 6 of 57
Mar.31.21

1.2 References
1.2.1 Standard Documents
The following table shows the standard documents related to TEE for RZ/G2.

Table 1-1 Standard Documents

No Issue Title Edition
1 GlobalPlatform TEE Client API Specification 1.0
2 GlobalPlatform TEE Internal Core API Specification 1.1

1.2.2 Related Documents
The following table shows the documents related to TEE for RZ/G2.

Table 1-2 Related Documents

No Issue Title
1 Renesas Electronics RZ/G Verified Linux Package for 64bit kernel Release Note
2 Renesas Electronics Linux Interface Specification Yocto recipe Start-Up Guide
3 Renesas Electronics RZ/G2 Reference Boards Start-up Guide
4 Renesas Electronics RZ/G Series, 2nd Generation User’s Manual: Hardware

LSIs for Rich Graphics Applications
5 Renesas Electronics RZ/G Series, 2nd Generation User’s Manual: Hardware

Additional Document for Security
6 Renesas Electronics RZ/G2 Trusted Execution Environment Start-Up Guide

1.2.3 Related Original Software
The following table shows the original software related to TEE for RZ/G2.

Table 1-3 Related Original Software

No Software Title and URL
1 Trusted Firmware-A Secure Monitor

https://github.com/ARM-software/arm-trusted-firmware
2 OP-TEE OS Trusted side of the TEE

https://github.com/OP-TEE/optee_os
3 OP-TEE Driver Normal World driver

https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git
Branch: linux-4.19.y-cip
Source Directory: drivers/tee

4 OP-TEE Client Normal World Client side of the TEE
https://github.com/OP-TEE/optee_client

5 OP-TEE Test OP-TEE Test suite
https://github.com/OP-TEE/optee_test

6 Security Module RZ/G Security Module
https://github.com/renesas-rz/rzg_security-module

7 Flash Writer RZ/G2 Flash Writer
https://github.com/renesas-rz/rzg2_flash_writer

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test
https://github.com/OP-TEE/optee_test

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 7 of 57
Mar.31.21

1.3 Related Packages
The following table shows the packages related to TEE for RZ/G2.

Table 1-4 Related Packages

No Package Explanation
1 RZ/G2 Secure IP Package This is a package provided by Renesas and is

required to implement Secure Boot.
For more information, refer to "How to Implement
Secure Boot".

1.4 Licenses
The following table shows the licenses of software related to TEE for RZ/G2.

Table 1-5 Licenses

No Software Licenses
1 Trusted Firmware-A BSD-3-Clause
2 OP-TEE OS BSD-2-Clause or BSD-3-Clause
3 OP-TEE Driver GPLv2
4 OP-TEE Client BSD-2-Clause
5 OP-TEE Test Client Application GPLv2

Trusted Application BSD-2-Clause
6 Security Module BSD-3-Clause
7 Flash Writer BSD-3-Clause

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 8 of 57
Mar.31.21

1.5 Terminology
The following table shows the terminology related to this document.

Table 1-4 Terminology

No Term Explanation
1 PSCI Power State Coordination Interface.

It defines a Standard Interface for power management that can be used by
OS vendors for supervisory software working at different levels of privilege
on an ARM device.

2 Secure World It is one of the security states that defined ARMv8-A architecture.
When in this state, the CPU can access both the Secure and Non-Secure
space.

3 Normal World It is one of the security states that defined ARMv8-A architecture.
When in this state, the CPU can access only Non-Secure space.

4 SMC Secure Monitor Call.
An ARM assembler instruction that causes an exception that is taken
synchronously into EL3.

5 RPMB Replay Protected Memory Block
6 Exception Levels

(EL0/EL1/EL3)
The ARMv8-A architecture defines a set of Exception levels EL0 to EL3
where:
If ELn is the Exception level, increased values of n indicate increased
software execution privilege.
Execution at EL0 is called unprivileged execution.
EL1 provides support for virtualization of Non-Secure operation.
EL3 provides support for switching between to Security states, Secure state
and Non-Secure state.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 9 of 57
Mar.31.21

2. Operating Environment
2.1 Build Environment
The recommended environment for build is the same as the RZ/G2 Linux BSP. For details, refer to “Related
Documents No.2”.

Figure 2-1 Recommended Environment

Evaluation Board

Hub

[Linux Host PC]
TFTP server

NFS server

[Windows 10 Host PC]

Terminal software to display console

(ssh to control Linux Host)

Straight Ethernet cable

Straight Ethernet cable

Straight Ethernet cable

(Optional)

USB cable

(Type-A to Micro-B)

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 10 of 57
Mar.31.21

2.2 Module Configuration
This section shows the software relationship and configurations.

Figure 2-2 Software relationship

Trusted Applications Client Applications

OP-TEE Kernel

OP-TEE Driver

Linux

Ap
pl

ic
at

io
n

(o
n

EL
0)

Normal World Secure World

Client Applications Trusted Applications

TEE Internal API

O
S

/ D
riv

er
 /M

W

(o
n

EL
1)

M

on
ito

r
(o

n
EL

3)

ARM Trusted
Firmware (BL31)

TEE Client
Library TEE Supplicant

TEE Filesystem

SMC SMC

Non-Secure
DRAM area

System
RAM

Shared
DRAM area HW Control

SW Interface OP-TEE

Interrupt
Hardware

Cortex-A57/
Cortex-A53 Secure

DRAM area
GIC

File System

eMMC driver

eMMC SPI Flash

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 11 of 57
Mar.31.21

3. External Interface
3.1 Software API
This section describes the software API of defined in TEE for RZ/G2.

3.1.1 OP-TEE OS
• TEE Internal API

For details on the specification for TEE Internal API, refer to “Standard Documents No.2”.
The specification of TEE Internal API provided by TEE for RZ/G2 are based on the implementation of the
original software because there is no change from the source code of “Related Original Software No.1”.
All APIs are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/lib/libut
ee/include/tee_api.h]

3.1.2 OP-TEE Client
• TEE Client API

For details on the specification for TEE Client API, refer to “Standard Documents No.1”.
The specification of TEE Client API provided by TEE for RZ/G2 are based on the implementation of the
original software because there is no change from the source code of “Related Original Software No.4”.
All APIs are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-client/<Properties-of-yocto-environment>/git/out/e
xport/usr/include/tee_client_api.h]

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 12 of 57
Mar.31.21

3.2 Definitions
This section shows the definitions defined in TEE for RZ/G2.

3.2.1 OP-TEE OS
• TEE Internal API

For details on the specification for TEE Internal API, refer to “Standard Documents No.2”.
All definitions are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/lib/libut
ee/include/tee_api_defines.h]

3.2.2 OP-TEE Client
• TEE Client API

For details on the specification for TEE Client API, refer to “Standard Documents No.1”.
All definitions are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-client/<Properties-of-yocto-environment>/git/out/e
xport/usr/include/tee_client_api.h]

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 13 of 57
Mar.31.21

3.3 Structures
This section shows the structures defined in TEE for RZ/G2.

3.3.1 OP-TEE OS
• TEE Internal API

For details on the specification for TEE Internal API, refer to “Standard Documents No.2”.
All structures are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/lib/libut
ee/include/tee_api_types.h]

3.3.2 OP-TEE Client
• TEE Client API

For details on the specification for TEE Client API, refer to “Standard Documents No.1”.
All structures are declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-client/<Properties-of-yocto-environment>/git/out/e
xport/usr/include/tee_client_api.h]

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 14 of 57
Mar.31.21

4. Implementation
4.1 Directory Configuration
This section shows the directory configuration of the software related to the TEE for RZ/G2.

4.1.1 Trusted Firmware-A
Trusted Firmware-A added the directory for RZ/G2 Group to the directory configuration of "Related Original
Software No.1".

In Yocto build environment, the source code of Trusted Firmware-A is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-environment
>/git/]

The source code for RZ/G2 Group added to Trusted Firmware-A is stored in the following directory.

Figure 4-1 Trusted Firmware-A directory configuration

git
├── drivers
│ └── renesas
│ └── rzg
│ ├── auth
│ ├── board
│ ├── ddr
│ ├── emmc
│ ├── io
│ ├── pfc
│ ├── qos
│ ├── rom
│ └── watchdog
├── plat
│ └── renesas
│ └── rzg
│ └── include
└── tools
 └── renesas
 ├── rzg_layout_create
 └── rzg_security_tools
 ├── encrypt_fw
 │ ├── include
 │ └── src
 ├── fiptool
 │ └── src
 └── sign_fw
 ├── include
 └── src

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 15 of 57
Mar.31.21

4.1.2 OP-TEE OS
OP-TEE OS added the directory for RZ/G2 Group to the directory configuration of the “Related Original
Software No.2”.

In Yocto build environment, the source code of OP-TEE OS is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/]

The source code for RZ/G2 Group added to OP-TEE OS is stored in the following directory.

Figure 4-2 OP-TEE OS directory configuration

4.1.3 OP-TEE Client
OP-TEE Client does not modify the original source code of "Related Original Software No.4".

In Yocto build environment, the source code of OP-TEE Client is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-client/<Properties-of-yocto-environment>/git/]

4.1.4 OP-TEE Driver
OP-TEE Driver does not modify the original source code of "Related Original Software No.3".

In Yocto build environment, the source code of OP-TEE Client is stored in the following path.

[${WORK}/build/tmp/work-shared/<work-sub-directories>/kernel-source/drivers/tee]

git
└── core
 └── arch
 └── arm
 └── plat-rzg
 ├── driver
 └── include

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 16 of 57
Mar.31.21

4.2 Build Instructions
To build software related to TEE for RZ/G2 uses Yocto build environment provided for the RZ/G2 Group. For
the Build Instructions, refer to “Related Documents No.6”.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 17 of 57
Mar.31.21

4.3 Build Options
This section shows the build options related to TEE for RZ/G2.

4.3.1 Trusted Firmware-A

• SPD

Set string is “opteed” or “none”. The string “opteed” specifies that OP-TEE OS will start. The string “none”
specifies that OP-TEE OS will not start. If this option is not set, the string is set “opteed" internally.

4.3.2 OP-TEE OS

4.3.2.1 Secure Storage
• CFG_REE_FS

Set value is “y” or “n”. The “y” specifies to enable REE Filesystem. If this option is not set, the value is set
“n” internally.

• CFG_RPMB_FS
Set value is “y” or “n”. The “y” specifies to enable RPMB Filesystem. If this option is not set, the value is
set “n” internally.

Note: This Secure Storage utilizes the Replay Protected Memory Block (RPMB) partition of the MMC/SD

device. The MMC/SD controller driver must support access to the RPMB.

• CFG_RPMB_WRITE_KEY
Set value is “y” or “n”. The “y” specifies to enable RPMB security key programming. If this option is not
set, the value is set “n” internally.

4.3.2.2 Cryptography features
• CFG_CRYPTO_WITH_CE

Set value is “y” or “n”. The “y” specifies to enable ARMv8 Cryptography Extension. If this option is not set,
the value is set “n” internally.

• CFG_RZG_SEC_IP_DRV
Set value is “y” or “n”. The “y” specifies to enable the Secure IP driver provided for RZ/G2 Group. The
Secure IP driver is a driver for using the on chip Trusted Secure IP included with RZ/G2 Group. If this
option is not set, the value is set “n” internally.

Note: If this option is set to “y”, then CFG_RZG_SEC_LIB_DIR must be set.

If this option is set to “y”, then Secure Boot provided by TEE for RZ/G2 must be implemented. For
the implementation of Secure Boot, refer to “5. How to Implement Secure Boot”.

• CFG_RZG_SEC_LIB_DIR

Set the path to the directory where the Secure IP library is stored. This option is only referenced when
CFG_RZG_SEC_IP_DRV is set to “y”.

• CFG_RZG_SEC_IP_RNG
Set value is “y” or “n”. The “y” specifies to enable the random number generator by the Secure IP driver.
The "n" specifies to enable the default random number generator implemented in the OP-TEE OS. If this
option is not set, the value is set “n” internally.

Note: If this option is set to “y”, then CFG_RZG_SEC_IP_DRV must be set to “y”.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 18 of 57
Mar.31.21

4.3.3 OP-TEE Client

• RPMB_EMU

OP-TEE Client also has an emulation mode which implements a virtual RPMB device for test purposes.
Set value is “1” or “0”. “0” specifies to access to a virtual RPMB device. “1” specifies to access to a real
RPMB device.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 19 of 57
Mar.31.21

4.4 How to set build options
This section shows how to set build options related to TEE for RZ/G2.

4.4.1 Trusted Firmware-A
The following is an example of adding or modifying the build options for Trusted Firmware-A.

4.4.2 OP-TEE OS
The following is an example of adding or modifying the build options for OP-TEE OS.

4.4.3 OP-TEE Client
The following is an example of adding or modifying the build options for OP-TEE Client.

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bb

ATFW_OPT_r8a774c0 = “LSI=G2E … SPD="none" XXXXX=YY"
ATFW_OPT_r8a774a1 = “LSI=G2M … SPD="none" XXXXX=YY"
ATFW_OPT_r8a774b1 = “LSI=G2N … SPD="none" XXXXX=YY"
ATFW_OPT_r8a774e1 = “LSI=G2H … SPD="none" XXXXX=YY"

On ${WORK}/meta-rzg2/recipes-bsp/optee/optee-os_git.bb

do_compile() {

oe_runmake PLATFORM=${PLATFORM} … CFG_ARM64_core=y XXXXX=YY
}

On ${WORK}/meta-rzg2/recipes-bsp/optee/optee-client_git.bb

EXTRA_OEMAKE = "RPMB_EMU=0 XXXXX=YY"

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 20 of 57
Mar.31.21

4.5 How to customize
This section describes the security features implemented in TEE for RZ/G2. Refer to the following site for the
implementation of the original source code of the software related to TEE for RZ/G2.

Trusted Firmware-A Documentation:

https://trustedfirmware-a.readthedocs.io/en/latest/

OP-TEE Documentation:

https://optee.readthedocs.io/en/latest/index.html

4.5.1 Security access protection setting
The Security access protection setting determines whether to protect the access from Normal world to
SRAM, SDRAM, and IPs. This is implemented by the TrustZone® and the peripheral module Life Cycle.

The Security access protection settings are implemented in the following source code and are executed by
the Initial Program Loader.

[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-environment
>/git/plat/renesas/rcar/bl2_secure_setting.c]

For the peripheral module Life Cycle, refer to the “Related Documents No.5”.

4.5.2 Hardware Unique Key
The Hardware Unique Key (hereinafter referred to as "HUK") is a key required to be implemented in OP-TEE
OS. The HUK could for example be used when deriving keys used in secure storage etc.

The HUK is implemented in the following source code.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/core/arc
h/arm/plat-rzg/tee_common_otp.c]

4.5.3 Hardware Crypto IP
4.5.3.1 Cryptographic function
RZ/G2 Group supports ARMv8 Cryptography Extension. The Cryptographic function implementation by
ARMv8 Cryptography Extensions does not modify the original source code of "Related Original Software
No.2".

4.5.3.2 Random Number Generation
RZ/G2 Group supports the Hardware Random Number Generation using Trusted Secure IP. The Hardware
Random Number Generation using Trusted Secure IP is enabled by implementing Secure Boot provided by
TEE for RZ/G2.

The Hardware Random Number Generation is implemented in the following source code.

[${WORK}/build/tmp/work/<work-sub-directories>/optee-os/<Properties-of-yocto-environment>/git/core/arc
h/arm/plat-rzg/rzg_rng.c]

https://optee.readthedocs.io/en/latest/index.html

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 21 of 57
Mar.31.21

4.5.4 Secure Storage
The Secure Storage provided by OP-TEE OS does not modify the original source code of the "Related
Original Software No.2".

4.5.5 Trusted Application Private/Public Keypair
The Trusted Application Private/Public Keypair is the key pair that OP-TEE OS uses to validate the Trusted
Application. This key pair does not modify the original source code of "Related Original Software No.2".

4.5.6 Secure Boot
For Secure Boot provided by TEE for RZ/G2, refer to "How to Implement Secure Boot".

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 22 of 57
Mar.31.21

5. How to Implement Secure Boot
5.1 Functions
TEE for RZ/G2 supports Secure Boot using the on chip Trusted Secure IP (hereinafter referred to as “TSIP”)
included with RZ/G2 Group processor. The signed and encrypted data stored in the non-volatile memory is
decrypted and verified using TSIP to check for tampering.

Secure Boot using TSIP is a trigger to enable the cryptography functions* provided by TSIP. In Secure Boot
is not implemented system, the cryptography functions provided by TSIP cannot be used.

Note: In TEE for RZ/G2, the cryptography functions provided by TSIP is the Hardware Random Number
Generation implemented in OP-TEE OS.

The Secure IP library for accessing TSIP is required to implement Secure Boot. This library is referenced in
build of Security Module and OP-TEE OS. The Secure IP library is included in the Secure IP Package. For
inquiries regarding the provision of RZ/G2 Secure IP Package, please contact Renesas Electronics
distributor or contact us.

5.1.1 Secure Boot
Secure Boot sequence is shown below.

Figure 5-1 Secure Boot Sequence

BL31, BL32, U-Boot, and Keyring are verified by Secure Boot. These data are signed and encrypted before
being stored in non-volatile memory. During Secure Boot, BL31, BL32 and U-Boot are decrypted and
validated, and placed in RAM. The Keyring is verified and placed in RAM.

Verification and decryption of firmware images by Secure Boot is done in the Security Module. If Security
Module failed validation, BL2 aborts the boot sequence.

(a) Security Module
Security Module is software for using TSIP included with RZ/G2 Group processor. Security Module includes
Secure IP library for decryption and verification using TSIP. Secure IP library is a library for accessing TSIP.

Security Module functions are:
• Verification of Keyring
• Decryption and Verification of User Data
• Re-Encryption of Keyring
• Re-Encryption of User Data

Execution

Image Load & Verification

BL33
Non-Secure OS

(Linux)
BL32

Trusted OS
(OP-TEE OS)

Security Module

BL31
Secure Monitor

Normal World Secure World

Image Load

Execution

Execution Execution

Boot ROM
Program

Encrypted
Keyring

U-Boot
Image Load

Execution

BL2
Initial Program Loader

Verification Target

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 23 of 57
Mar.31.21

Security Module uses "Verification of Keyring" and "Decryption and Verification of User Data" for Secure
Boot.

(b) Encrypted Keyring
Keyring is a bunch of Session Keys used to bring data prepared in the external environment to the user
product environment. Encrypted Keyring is the data that Keyring is encrypted with a device-specific key.
Encrypted Keyring can only be accessed by TSIP and are never decrypted into RAM.

Encrypted Keyring is used to securely bring in data from the outside, such as Provisioning of the User Data
and Firmware Update.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 24 of 57
Mar.31.21

5.1.2 Provisioning
To implement Secure Boot environment on the user product environment, Encrypted Keyring and Encrypted
User Data must be stored in non-volatile memory. The process from preparing Keyring and User Data in the
external environment to encrypting the data with the device-specific key in the user product environment is
called Provisioning.

The Provisioning sequence is shown below.

Figure 5-2 Provisioning Sequence

Renesas

Customer

Hidden Root Key (HRK)

RZ/G

Key Wrap Service

PGP

HRK

Device-Specific
Key

Decryption

Re-Encryption

Re-Encryption

TSIP

Temporary
Encryption

FW

Temporary
Encryption

Session Keys Provisioning Key User Data

OEM

Encryption

FW

Provisioning Key

FW

Encrypted Provisioning Key

Temporarily Encrypted Keyring

Temporarily Encrypted Data

Re-Encrypted Keyring Re-Encrypted Data

DK
EK

DK

EK DK

EK

EK

DK: Decryption Key

EK: Encryption Key

Write to Non-Volatile Memory

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 25 of 57
Mar.31.21

The keys used for Provisioning are shown below.

Table 5-1 Keys used for the Provisioning

Key Explanation Creator
Hidden Root Key
(hereinafter referred to
as HRK)

Key managed within Renesas, and this key is not provided to user.
The HRK exists only inside the Key Wrap Service and TSIP.
Used to encrypt and decrypt Provisioning Key.

Renesas

Device-Specific Key Unique key that exists only inside TSIP.
All data verified by Secure Boot is encrypted with this key.

Provisioning Key Key for temporarily encrypting Keyring.
By encrypting Keyring with this key prevents the session key from
leaking between the external environment and the user product
environment.

User

Encrypted
Provisioning Key

Provisioning Key encrypted with the Hidden Root Key.
It can be encrypted using the Key Wrap Service provided by
Renesas.
Used to re-encrypt the temporarily encrypted Keyring in the user
product environment.

Session Keys Keys used to temporarily encrypt User Data and Keys prepared in
the external environment.
By encrypting the data with this key prevents leakage and tampering
the data between the external environment and the user product
environment.

Keyring A bunch of Session Keys.
Temporarily Encrypted
Keyring

Keyring encrypted with Provisioning Key.

Re-Encrypted Keyring Keyring re-encrypted with Device-Specific Key.

The Provisioning process performed by the customer is shown below.

Step 1 Process on the build environment

1. Generation of Keyring
2. Temporary encryption of Keyring
3. Temporary encryption of User Data

Step 2 Process on the target environment

4. Re-Encryption of Keyring
5. Re-Encryption of User Data

The following is an overview of each step in the Provisioning process.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 26 of 57
Mar.31.21

5.1.2.1 Generation of Keyring
"Generation of Keyring" is the process to be executed in the external environment.

Keyring is a bunch of Session Keys. Session Keys is used to temporarily encrypt the User Data and Keys
prepared in the external environment.

This process generates Session Keys and Keyring in the external environment.

Note: In Yocto build environment provided by TEE for RZ/G2, Keyring and Session Keys are generated in
the local directory of the user build environment. Please be careful not to leak this Keyring and
Session Keys to the outside.

Format of Keyring is shown below.

Table 5-2 Format of Keyring

Session Keys Algorithm Size
(Byte)

Reserved (fixed 0) 32
For Secure Boot Temporary Encryption

Key for User Data
AES-128 16
IV0 16

Temporary Verification
Key for Signature of
User Data*

PublicKey(n) 256
PublicKey(0^15 Padding || e || 0^96 Padding) 16

Reserved - 272
For Secure Software
Update

Temporary Encryption
Key for Keyring

AES-128 16

MAC Key for Keyring AES-128 16
Reserved - 32

Note: Private key that is pair of this key (temporary signing key for signature of user data) is used for
signing User Data in the Provisioning process.

The following shows how to use Session Keys included in Keyring.

 for Secure Boot
This key is the session key to securely bring User Data for Secure Boot into the user product
environment.
This key is used to re-encrypt the Temporarily Encrypted User Data.

 for Secure Software Update
This key is the session key used to securely update Keyring in the user product environment.
This key is used to re-encrypt Temporarily Encrypted Keyring for the purpose of updating Keyring after
Provisioning.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 27 of 57
Mar.31.21

5.1.2.2 Temporary encryption of Keyring
"Temporary encryption of Keyring" is the process to be executed in the external environment.

This process encrypts Keyring using Provisioning Key. Encrypting Keyring prevents the session key from
leaking between the external environment and the user product environment.

Provisioning Key is length of 256 bits, which is a concatenation of the two keys. Format of Provisioning Key
is shown below.

Table 5-3 Format of Provisioning Key

Key Algorithm Size
(Byte)

for Provisioning Temporary Encryption
Key for Keyring

AES-128 16

MAC Key for Keyring AES-128 16

Encrypted Provisioning Key is required to re-encrypt Temporarily Encrypted Keyring in the user product
environment. For information about how to encrypt the provisioning key, refer to “5.6. Key Wrap Service”.

5.1.2.3 Temporary encryption of User Data
"Temporary encryption of User Data" is the process to be executed in the external environment.

This process encrypts User Data for Secure Boot using the Temporary Encryption Key for User Data
included in Keyring. User Data is signed with a private key that is paired with Temporary Verification Key for
Signature of User Data before it is encrypted.

Encrypting User Data prevents the data from leaking between the external environment and the user product
environment.

5.1.2.4 Re-encryption of Keyring
"Re-encryption of Keyring" is the process to be executed in the user product environment.

This process re-encrypts Temporarily Encrypted Keyring using Device-Specific Key by TSIP. Re-encryption
of Keyring requires Encrypted Provisioning Key to decrypt Temporarily Encrypted Keyring.

Re-Encrypted Keyring is stored in non-volatile memory and is used for "Re-encryption of User Data" and
Secure Boot. Re-Encrypted Keyring cannot be used on other devices because it is encrypted using Device-
Specific Key.

Note: After Re-encryption of Keyring is complete, Temporarily Encrypted Keyring and Encrypted
Provisioning Key must be deleted from the user product environment.

5.1.2.5 Re-encryption of User Data
"Re-encryption of User Data" is the process to be executed in the user product environment.

This process re-encrypts Temporarily Encrypted User Data using Device-Specific Key by TSIP. Re-
encryption of User Data requires Re-Encrypted Keyring to decrypt Temporarily Encrypted User Data.

Re-Encrypted User Data is stored in non-volatile memory and decrypted and validated during Secure Boot.
Re-Encrypted User Data cannot be decrypted and verified on other devices because it is encrypted using
Device-Specific Key.

Note: After Re-encryption of User Data is complete, Temporarily Encrypted User Data must be deleted from
the user product environment.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 28 of 57
Mar.31.21

5.2 Build Instructions
To build software related to TEE for RZ/G2 uses Yocto build environment provided for the RZ/G2 Group. For
the Build Instructions, refer to “Related Documents No.6”.

5.3 Build Options
This section shows the build options related to implement Secure Boot.

5.3.1 Trusted Firmware-A

• RZG2_SECURE_BOOT

Set value is “1” or “0”. “1” specifies to enable Secure Boot. If this option is not set, the value is set “0”
internally.

5.3.2 Security Module

• LSI
Set string is the RZ/G device in the user product. The RZ/G device is selected from "G2E", "G2M", "G2N",
"G2H". This is mandatory option. If not set it then the build error occurs.

• SEC_LIB_DIR
Set the path to the directory where the Secure IP library is stored. This is mandatory option. If not set it
then the build error occurs.

5.3.3 Flash Writer

• SEC_PRV

Set string is “ENABLE” or “DISABLE”. The “ENABLE” specifies to enable Provisioning for Secure Boot. If
this option is not set, the string is set “DISABLE” internally.

• SEC_PRV_KEY_ENC
Set the file path for Encrypted Provisioning Key. This option is only referenced when SEC_PRV is set to
“y”.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 29 of 57
Mar.31.21

5.4 How to set build options
This section shows how to set build options related to implement Secure Boot.

5.4.1 Trusted Firmware-A
The following is an example of adding or modifying the build options for Trusted Firmware-A.

5.4.2 Security Module
The following is an example of adding or modifying the build options for Security Module.

5.4.3 Flash Writer
The following is an example of adding or modifying the build options for Flash Writer.

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

ATFW_OPT_append += “RZG2_SECURE_BOOT=1"

On ${WORK}/meta-rzg2/recipes-bsp/security/secmod_1.0.bb

LSI_OPT_r8a774c0 = "LSI=G2E"
LSI_OPT_r8a774a1 = "LSI=G2M"
LSI_OPT_r8a774b1 = "LSI=G2N"
LSI_OPT_r8a774e1 = "LSI=G2H"
LSI_OPT_append += " SEC_LIB_DIR=${SYMLINK_NATIVE_SEC_LIB_DIR}"

On ${WORK}/meta-rzg2/recipes-bsp/flash-writer/flash-writer_1.02.bbappend

EXTRA_OEMAKE_append += "SEC_PRV=y SEC_PRV_KEY_ENC =${SEC_PRV_KEY_ENC}"

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 30 of 57
Mar.31.21

5.5 Provisioning Environment
This section describes the Provisioning environment provided to implement Secure Boot. This Provisioning
Environment is included in Yocto build environment.

This section assumes that Yocto build environment has been built according to “Related Documents No.6”.

The correspondence between the Provisioning process and the tools provided to RZ/G2 Group is shown
below.

Table 5-5 Correspondence table of Provisioning and tools

No Provisioning Tools
1 Generation of Keyring • Provisioning Tool
2 Temporary encryption of Keyring • Provisioning Tool
3 Temporary encryption of User Data • Encryption Tool
4 Re-Encryption Keyring • Packaging Tool

• Flash Writer
5 Re-Encryption User Data • Packaging Tool

• Flash Writer

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 31 of 57
Mar.31.21

5.5.1 Prior confirmation
Before running the tool in the Provisioning environment, confirm the following:

Step 1 Enable Secure Boot
Confirm that the "RZG2_SECURE_BOOT" option is "ENABLE".

Step 2 Set the directory path
Confirm the path settings of the directory that stores the generated keys and Secure IP library. Change this
directory path according to user's build environment.

Note: The generated key file and Secure IP libraries are saved in this directory. Please be careful when

managing this directory.

Step 3 Save Secure IP library
Confirm that the Secure IP library is saved as follows.

Figure 5-3 Example of saving Secure IP library

On ${WORK}/meta-rzg2/include/rzg2-security-config.inc

RZG2_SECURE_BOOT = 'ENABLE'

On ${WORK}/meta-rzg2/recipes-bsp/security/secprv-native_1.0.bb

DIRPATH_SEC_STORAGE = "${HOME}/.secprv"

DIRPATH_GEN_KEY_ROOT = "${DIRPATH_SEC_STORAGE}/${MACHINE}/key"
DIRPATH_SEC_LIB_ROOT = "${DIRPATH_SEC_STORAGE}/${MACHINE}/lib"

${HOME}/.secprv
├─ ek874
│ └─ lib
│ ├─ libr_secure_ip_lib_g2e.a
│ └─ libr_secure_ip_lib_g2e.a.X.X.X
│
├─ hihope-rzg2m
│ └─ lib
│ ├─ libr_secure_ip_lib_g2m.a
│ └─ libr_secure_ip_lib_g2m.a.X.X.X
│
├─ hihope-rzg2n
│ └─ lib
│ ├─ libr_secure_ip_lib_g2n.a
│ └─ libr_secure_ip_lib_g2n.a.X.X.X
│
└─ hihope-rzg2h
 └─ lib
 ├─ libr_secure_ip_lib_g2h.a
 └─ libr_secure_ip_lib_g2h.a.X.X.X

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 32 of 57
Mar.31.21

5.5.2 Provisioning Tool
Provisioning Tool is a tool that runs in Yocto build environment.

Provisioning Tool provides the following features:
• Generation of Keyring
• Configure Build Path

Provisioning Tool consists of the recipe files and scripts. The configuration of Provisioning Tool is shown
below.

Figure 5-4 Provisioning Tool

5.5.2.1 Generation of Keyring
The procedure for Generation of Keyring is shown below.

Step 1 Execute command
Execute the following command from the terminal.

$ bitbake secprv-native -c newkey -f

After executing the command, the following directories and files will be created in the directory defined in the
recipe file.

Figure 5-5 Example of generated keys

${WORK}/meta-rzg2/recipe-bsp/security/
├── secprv-native_1.0.bb
│
└── secprv-1.0
 └── tool
 ├── config.sh
 ├── genkey.sh
 ├── keyring.sh
 ├── sec_keygen.sh
 ├── utility.sh
 └── wrapkey.sh

${HOME}/.secprv/${MACHINE}
└── key
 ├── 0.0.0
 │ ├── BCF1-Key.bin
 │ ├── BCF2-Key.bin
 │ ├── E-Key.bin
 │ ├── Keyring.bin
 │ ├── Keyring_Enc.bin
 │ ├── SBP-Key.pem
 │ ├── SBS-Key.pem
 │ ├── SS_UP1-Key.bin
 │ └── SS_UP2-Key.bin
 ├── 1.0.0
 │ ...
 ├── 2.0.0
 │ ...
 └── Provisioning
 └── ProvisioningKey.bin

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 33 of 57
Mar.31.21

A directory created with a version number such as "0.0.0" or "1.0.0" stores generated Keyring and Session
Keys. A new directory is created each time the command in Step 1 is executed. This directory also stores
Encrypted Keyring that is temporarily encrypted using Provisioning Key.

“Provisioning” directory stores generated Provisioning Key. However, Provisioning Key is only generated if
it does not exist. If Provisioning Key already exists, it will not be generated by executing the command in
Step 1.

Note: To generate new Provisioning Key, delete all directories below the “key” directory before executing

the command in Step 1. Temporarily Encrypted Keyring is encrypted with Provisioning Key.
Therefore, if Provisioning Key changes, Encrypted Keyring must be removed.

The following table shows the keys generated by Provisioning Tool.

Table 5-4 List of generated key files

Key Type File Name
For Secure Boot Temporary Encryption Key for

User Data
E-Key.bin

Temporary Verification
Key for Signature of User Data

SBP-Key.pem

Temporary Signing Key for User
Data

SBS-Key.pem

For Secure Software Update Temporary Encryption Key for
Keyring

SS_UP1-Key.bin

MAC Key for Keyring SS_UP2-Key.bin
Reserved BCF1-Key.bin

BCF2-Key.bin
Keyring Keyring.bin
Temporarily Encrypted Keyring Keyring_Enc.bin
Provisioning Key ProvisioningKey.bin

Encrypted Provisioning Key is required to re-encrypt Temporarily Encrypted Keyring in the user product
environment. For information about how to encrypt Provisioning Key, refer to “5.6. Key Wrap Service”.

Encrypted Provisioning Key must be renamed to “ProvisioningKey_Enc.bin” and saved in the “Provisioning”
directory before executing the next step “Configure Build Path”.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 34 of 57
Mar.31.21

5.5.2.2 Configure Build Path
In "Configure Build Path", the path to the directory where the generated key and the secure IP library is
stored is configured to Yocto build environment.

The procedure for Configure Build Path is shown below.

Step 1 Specify the Keyring version
From Keyrings generated by the commands in section 5.5.2.1, select Keyring used for Secure Boot. Define
the name (version number) of the directory where the selected Keyring is stored in the following recipe file.

Step 2 Execute command
Execute the following command from the terminal.

$ bitbake secprv-native -c install -f

After executing the command, A symbolic link to the directory containing the keys and Secure IP library is
created in Yocto build environment. In Yocto build environment, refer to the following symbolic links when
referencing keys and Secure IP library.

On ${WORK}/meta-rzg2/recipes-bsp/security/secprv-native_1.0.bb

DIR_V_MAJOR = '0' # 0, 1, 2, 3, …
DIR_V_MINOR = '0'
DIR_V_TRACE = '0'
DIR_VERSION = "${DIR_V_MAJOR}.${DIR_V_MINOR}.${DIR_V_TRACE}"

On ${WORK}/meta-rzg2/include/rzg2-security-config.inc

DIRPATH_SEC_DATADIR_NATIVE = "${STAGING_DATADIR_NATIVE}/.secure"
SYMLINK_NATIVE_BOOT_KEY_DIR = "${DIRPATH_SEC_DATADIR_NATIVE}/keyring"
SYMLINK_NATIVE_PROV_KEY_DIR = "${DIRPATH_SEC_DATADIR_NATIVE}/provkey"

DIRPATH_SEC_LIBDIR_NATIVE = "${STAGING_LIBDIR_NATIVE}/.secure"
SYMLINK_NATIVE_SEC_LIB_DIR = "${DIRPATH_SEC_LIBDIR_NATIVE}/library"

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 35 of 57
Mar.31.21

5.5.3 Encryption Tool
Encryption tools are used to temporarily encrypt User Data. Encryption Tool is created as a Trusted
Firmware-A tool.

Encryption Tool is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-
environment>/git/tools/renesas/rzg_security_tools/]

The configuration of Encryption Tool is shown below.

Figure 5-6 Encryption Tool

The following is an example of build the Encryption Tool in Yocto build environment.

rzg_security_tools
├── encrypt_fw
│ ├── include
│ │ ├── cmd_opt.h
│ │ ├── debug.h
│ │ └── encrypt.h
│ ├── Makefile
│ └── src
│ ├── cmd_opt.c
│ ├── encrypt.c
│ └── main.c
└── sign_fw
 ├── include
 │ ├── cmd_opt.h
 │ ├── debug.h
 │ └── sign.h
 ├── Makefile
 └── src
 ├── cmd_opt.c
 ├── main.c
 └── sign.c

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

do_compile_append() {
 oe_runmake -C tools/renesas/rzg_security_tools/sign_fw clean
 oe_runmake -C tools/renesas/rzg_security_tools/sign_fw

 oe_runmake -C tools/renesas/rzg_security_tools/encrypt_fw clean
 oe_runmake -C tools/renesas/rzg_security_tools/encrypt_fw
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 36 of 57
Mar.31.21

The following program is created by building the Encryption Tool.

• encrypt_fw
encrypt_fw is a encryption tool. This tool reads the data in the input file and saves the encrypted data in
the output file. For temporary encryption, the data in the input file must be signed using sign_fw before it
can be encrypted.

• sign_fw
sign_fw is a signing tool. This tool reads the data in the input file and saves the signed data in the output
file.

The following is an example of temporary encryption using the Encryption Tool.

• FILE_PATH_IN

 The path of the file from which the data to be temporarily encrypted is read.

• FILE_PATH_OUT

The path to the file where the temporarily encrypted data will be stored.

• FILE_PATH_SIG

 The path to the file where the signed data will be stored.

• FILE_PATH_SIG_KEY

 The path of the private key used for signing. Specify the path of the “SBS-Key.pem” file generated by
the Provisioning Tool.

• STR_ENC_ KEY

 Specifies the value of the key used for encryption in hexadecimal text format. Use the top 16 bytes of
the “E-Key.bin” file generated by the Provisioning Tool.

• STR_ENC_IV0

 Specifies the value of the initialization vector used for encryption in hexadecimal text format. Use the
lower 16 bytes of the “E-Key.bin” file generated by the Provisioning Tool.

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

temp_encrypt() {
 ./tools/renesas/rzg_security_tools/sign_fw/sign_fw --key-alg rsa --hash-alg sha256 --align 16 \
 --key ${FILE_PATH_SIG_KEY} --in ${FILE_PATH_IN} --out ${FILE_PATH_SIG}

 ./tools/renesas/rzg_security_tools/encrypt_fw/encrypt_fw --key-alg cbc --nonce ${STR_ENC_IV0} \
 --key ${STR_ENC_KEY} --in ${FILE_PATH_SIG} --out ${FILE_PATH_OUT}
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 37 of 57
Mar.31.21

5.5.4 Packaging Tool
The Packaging Tool is for packaging multiple firmwares that are written to flash memory. The packaged file
is called the Firmware Image Package (hereinafter referred to as FIP).

The format of FIP implemented by TEE for RZ/G2 has modified from the specification defined by Trusted
Firmware-A. Therefore, the Packaging Tool provided by TEE for RZ/G2 is a customized tool of fiptool
included in the source code of Trusted Firmware-A. Refer to the Trusted Firmware-A documentation for the
original specifications of the FIP format.

Trusted Firmware-A (BL2) provided by TEE for RZ/G2 does not support loading firmware from FIP. However,
for compatibility with upcoming devices, the firmware is implemented in FIP format between the build
environment and the user product environment. In TEE for RZ/G2, FIP brought into the user product
environment are disassembled into individual firmware and written to flash memory.

Packaging Tool is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-
environment>/git/tools/renesas/rzg_security_tools/]

The configuration of Packaging Tool is shown below.

Figure 5-7 Packaging Tool

The following is an example of build the Encryption Tool in Yocto build environment.

The following program is created by building the Packaging Tool.

• fiptool_fw_ipl
This tool packages the firmware required to load BL31 and later firmware when the user product boots.
For example, Trusted Firmware-A(BL2), Security Module, etc.

• fiptool_keyring
This tool packages Temporary Encrypted Keyring. Temporarily Encrypted Keyring packaged by this tool
can be re-encrypted by the Flash Writer described in section 5.5.5.

• fiptool_boot_fw
This tool packages Temporarily Encrypted User Data. Temporarily Encrypted User Data packaged by this
tool can be re-encrypted by the Flash Writer described in section 5.5.5.

rzg_security_tools
└── fiptool
 ├── Makefile
 └── src
 ├── fiptool.c
 ├── fiptool.h
 ├── fiptool_platform.h
 ├── rzg_firmware_image_package.h
 ├── tbbr_config.c
 └── tbbr_config.h

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

do_compile_append() {
 oe_runmake -C tools/renesas/rzg_security_tools/fiptool clean
 oe_runmake -C tools/renesas/rzg_security_tools/fiptool
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 38 of 57
Mar.31.21

The following is an example of packaging using the Packaging Tool.

In the default environment of TEE for RZ/G2, each tool packages the following firmware.

fiptool_fw_ipl:
• bootparam_sa0.bin
• cert_header_sa6.bin
• bl2-${MACHINE}.bin
• sec_module-${MACHINE}.bin

fiptool_keyring:

• Keyring_Enc.bin

fiptool_boot_fw:
• bl31-${MACHINE}_Enc.bin
• tee-${MACHINE}_Enc.bin
• u-boot-${MACHINE}_Enc.bin

The tool used to package the firmware is defined in the following file.

[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-environment
>/git/tools/renesas/rzg_security_tools/fiptool/src/tbbr_config.c]

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

do_deploy_append() {
 ./tools/renesas/rzg_security_tools/fiptool/fiptool_fw_ipl create --align 16 \
 --tb-fw-cert ${S}/tools/renesas/rzg_layout_create/bootparam_sa0.bin \
 --soc-fw-cert ${S}/tools/renesas/rzg_layout_create/cert_header_sa6.bin \
 --tb-fw ${DEPLOYDIR}/bl2-${MACHINE}.bin \
 --sec-mod ${DEPLOY_DIR_IMAGE}/sec_module-${MACHINE}.bin \
 ./tools/renesas/rzg_security_tools/fiptool/fip_fw_ipl.bin

 ./tools/renesas/rzg_security_tools/fiptool/fiptool_keyring create --align 16 \
 --key-ring ${SYMLINK_NATIVE_BOOT_KEY_DIR}/Keyring_Enc.bin \
 ./tools/renesas/rzg_security_tools/fiptool/fip_keyring.bin

 ./tools/renesas/rzg_security_tools/fiptool/fiptool_boot_fw create --align 16 \
 --soc-fw ${DEPLOYDIR}/bl31-${MACHINE}_Enc.bin \
 --tos-fw ${DEPLOYDIR}/tee-${MACHINE}_Enc.bin \
 --nt-fw ${DEPLOYDIR}/u-boot-${MACHINE}_Enc.bin \
 ./tools/renesas/rzg_security_tools/fiptool/fip_boot_fw.bin
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 39 of 57
Mar.31.21

The Packaging Tool creates multiple FIPs. By combining these FIPs into one, they can be written together by
the Flash Writer. When combining FIPs, it is necessary to combine them in the order of FIPs created by the
following tools.

1. fiptool_fw_ipl > 2. fiptool_keyring > 3. fiptool_boot_fw

The following is an example of combining FIP files.

When writing FIPs individually using the flash writer, it is necessary to write the FIPs in the same order as
when combining them.

On ${WORK}/meta-rzg2/recipes-bsp/arm-trusted-firmware/arm-trusted-firmware_git.bbappend

do_deploy_append() {

 cat ./tools/renesas/rzg_security_tools/fiptool/fip_fw_ipl.bin > \
 ./tools/renesas/rzg_security_tools/fiptool/fips-${MACHINE}.bin
 cat ./tools/renesas/rzg_security_tools/fiptool/fip_keyring.bin >> \
 ./tools/renesas/rzg_security_tools/fiptool/fips-${MACHINE}.bin
 cat ./tools/renesas/rzg_security_tools/fiptool/fip_boot_fw.bin >> \
 ./tools/renesas/rzg_security_tools/fiptool/fips-${MACHINE}.bin
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 40 of 57
Mar.31.21

5.5.5 Flash Writer
The Flash Writer is used to write the firmware to the flash memory mounted on the RZ/G2 evaluation board.

In TEE for RZ/G2, the Flash Writer provided by RZ/G2 Linux BSP is customized for Provisioning as follows.

Add the following functions.

• Loading FIP
• Re-encryption of Keyring
• Re-encryption of User Data

The Flash Writer implements these functions in the following files.

[${WORK}/build/tmp/work/<work-sub-directories>/flash-writer/<Properties-of-yocto-environment>/git/fiploa
der.c]

For information about to how to load FIP using the flash writer, refer to “Related Documents No.6”.

5.5.5.1 Loading FIP
This is a function to load the FIP packaged in Yocto build environment into the user product environment
using serial communication. FIP brought into the user product environment are disassembled into individual
firmware and written to flash memory.

5.5.5.2 Re-encryption of Keyring
This is a function to re-encrypt Temporarily Encrypted Keyring packaged by fiptool_keyring. Re-Encrypted
Keyring is written to flash memory.

The Flash Writer calls Security Module for Re-encryption of Keyring. Therefore, Security Module packaged
by fiptool_fw_ipl must be preloaded and written to flash memory in advance.

5.5.5.3 Re-encryption of User Data
This is a function to re-encrypt Temporarily Encrypted User Data packaged by fiptool_boot_fw. Re-Encrypted
User Data is written to flash memory.

The Flash Writer calls Security Module for Re-encryption of User Data. Also, Re-Encrypted Keyring is
required for Re-encryption of User Data. Therefore, Security Module and Re-Encrypted Keyring must be
written to flash memory in advance.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 41 of 57
Mar.31.21

5.6 Key Wrap Service
Provisioning Key (ProvisioningKey.bin) and Encrypted Provisioning Key (ProvisioningKey_Enc.bin) included
in Secure IP Package is sample keys. Provisioning Key and Encrypted Provisioning Key for mass-produced
products must be created in the customer environment.

For information about how to generate Provisioning Key, refer to “5.5.2. Provisioning Tool”. Encrypted
Provisioning Key is created by using the Key Wrap Service.

The following shows the procedure for creating Encrypted Provisioning Key.

1. The customer sends Provisioning Key to Key Wrap Service.
2. Key Wrap Service encrypts the received Provisioning Key with the Hidden Root Key.
3. Key Wrap Service sends Encrypted Provisioning Key to the customer.

Sending and receiving keys to and from the Key Wrap Service are performed with PGP encryption.

Figure 5-8 Key Wrap Service

Provisioning Key for evaluation can also be created by Key Wrap Service. In this case, the Key Wrap Service
sends the customer Provisioning Key and Encrypted Provisioning Key.

Key Wrap Service is provided on following URL. For detail, refer to FAQ on Key Wrap Service site.

https://dlm.renesas.com/

Provisioning Key

Encrypted Provisioning Key

Key Wrap Service

Customer Renesas

PGP

Encryption

https://dlm.renesas.com/
https://dlm.renesas.com/

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 42 of 57
Mar.31.21

5.7 Security Module
Security Module is software for using TSIP included with RZ/G2 Group processor. By accessing the TSIP,
Security Module provides features related to Secure Boot.

In TEE for RZ/G2, Security Module is called from the Flash Writer and Trusted Firmware-A(BL2). The Flash
Writer calls Security Module for Re-encryption of Keyring and Re-encryption of User Data. Trusted Firmware-
A(BL2) calls Security Module for Verification of Keyring and Decryption and Verification of User Data.

The following table shows the Security Module functions.

Table 5-5 Security Module Functions

No Functions Explanation
1 Initialization of TSIP Reset the TSIP status.
2 Re-encryption of Keyring Re-encrypt Temporarily Encrypted Keyring.
3 Re-encryption of User Data Re-encrypt Temporarily Encrypted User Data.
4 Verification of Keyring Verify Re-Encrypted Keyring.
5 Decryption and Verification of User Data Decrypt and verify Re-Encrypted User Data.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 43 of 57
Mar.31.21

5.7.1 Directory Configuration

In Yocto build environment, the source code of Security Module is stored in the following path.

[${WORK}/build/tmp/work/<work-sub-directories>/secmod/<Properties-of-yocto-environment>/git]

The directory configuration of Security Module is shown below.

Figure 5-9 Security Module

git
├── LICENSE.txt
├── makefile
├── README.md
├── sec_module.c
├── sec_module.h
├── sec_module.ld.S
└── tsip
 ├── common
 │ └── TSIP_Common_Define.h
 ├── core
 │ ├── TSIP_Core_API.h
 │ ├── TSIP_Core_Boot_API.c
 │ ├── TSIP_Core_Init_API.c
 │ ├── TSIP_Core_KeyRingVerify_API.c
 │ ├── TSIP_Core_Local_API.c
 │ ├── TSIP_Core_Local_API.h
 │ ├── TSIP_Core_Prepare_API.c
 │ ├── TSIP_Core_Proc_API.c
 │ └── TSIP_Core_Proc_API.h
 ├── proc
 │ └── TSIP_Procedure.h
 ├── R_TSIP_Boot_Lib.h
 ├── stub
 │ ├── TSIP_Driver.h
 │ ├── TSIP_Driver_nonos.c
 │ ├── TSIP_Stub_API.h
 │ └── TSIP_Stub_API_nonos.c
 └── wrapper
 ├── TSIP_Wrapper_Boot_API.c
 ├── TSIP_Wrapper_Boot_API.h
 ├── TSIP_Wrapper_Init_API.c
 ├── TSIP_Wrapper_Init_API.h
 ├── TSIP_Wrapper_KeyRingVerify_API.c
 ├── TSIP_Wrapper_Local_API.c
 ├── TSIP_Wrapper_Local_API.h
 ├── TSIP_Wrapper_Prepare_API.c
 └── TSIP_Wrapper_Prepare_API.h

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 44 of 57
Mar.31.21

5.7.2 External Interface
This section describes the external interface of Security Module.

The external interface of Security Module is declared in the following header files.

[${WORK}/build/tmp/work/<work-sub-directories>/secmod/<Properties-of-yocto-environment>/git/sec_mo
dule.h]

Security Module has a shared area with external software in the area of 0x200 bytes from the load address.
The Entry point of Security Module is placed immediately after this shared area.

Figure 5-10 Security Module Memory Map

The Security Module defines commands for each function. To call Security Module, external software stores
the parameters in the shared area according to the command, and then jumps to the entry point.

Shared Area
(512 byte)

text, data

0x440E_0000

0x440E_0200 Entry Point

Load Address

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 45 of 57
Mar.31.21

5.7.2.1 Commands
This section shows the commands defined by Security Module.

(a) CMD_RESET_INIT

CMD_RESET_INIT Security Module
Initialization of TSIP

Parameter st_sec_module_arg_t structure format
 cmd: CMD_RESET_INIT
 len: sizeof(st_reset_init_t)
 prm: st_reset_init_t structure variable

Return Value • SEC_MODULE_RET_OK:

Success
 • SEC_MODULE_RET_ERROR_INIT:

Hardware error
 • SEC_MODULE_RET_ERROR_PARAMETER:

Invalid parameter
 • SEC_MODULE_RET_ERROR_FAIL:

Initialization failure
Resource Conflict

Description This command executes the "Initialization of TSIP".

This command must be executed before the commands described below. For the
execution procedure of this command, refer to the command described below.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 46 of 57
Mar.31.21

(b) CMD_INJECT_KEY

CMD_INJECT_KEY Security Module
Re-encryption of Keyring

Parameter st_sec_module_arg_t structure format
 cmd: CMD_INJECT_KEY
 len: sizeof(st_inject_key_t)
 prm: st_inject_key_t structure variable

Return Value • SEC_MODULE_RET_OK:

Success
 • SEC_MODULE_RET_ERROR_PARAMETER:

Invalid parameter
 • SEC_MODULE_RET_ERROR_FAIL:

Resource Conflict
Illegal command execution procedure
Abnormal Temporary Encrypted Keyring or Provisioning Key

Describe This command executes the "Re-Encryption of Keyring".

Execute this command after the "Initialization of TSIP". Even if this command is
executed repeatedly, execute it from the “initialization of TSIP”.

Figure 5-11 Re-encryption of Keyring

CMD_RESET_INIT

CMD_INJECT_KEY

Result

Start

SEC_MODULE_RET_ERROR_INIT

End

Result

Power OFF

SEC_MODULE_RET_OK

SEC_MODULE_RET_OK

Other

Other

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 47 of 57
Mar.31.21

(c) CMD_RE_ENC_DATA

CMD_RE_ENC_DATA Security Module
Re-encryption of User Data

Parameter st_sec_module_arg_t structure format
 cmd: CMD_RE_ENC_DATA
 len: sizeof(st_re_enc_data_t)
 prm: st_re_enc_data_t structure variable

Return Value • SEC_MODULE_RET_OK:

Success
 • SEC_MODULE_RET_ERROR_PARAMETER:

Invalid parameter
 • SEC_MODULE_RET_ERROR_FAIL:

Resource Conflict
Illegal command execution procedure
Abnormal Temporary Encrypted User Data
Abnormal Re-Encrypted Keyring

Description This command executes the "Re-Encryption of User Data".

Execute this command after the "Initialization of TSIP". Even if this command is
executed repeatedly, execute it from the “initialization of TSIP”.
All User Data to be verified by Secure Boot, must be re-encrypted all at once.
Therefore, set the information for All User Data to be verified by Secure Boot to the
parameters of this command.

Figure 5-12 Re-encryption of User Data

CMD_RESET_INIT

CMD_RE_ENC_DATA

Result

Start

SEC_MODULE_RET_ERROR_INIT

End

Result

Power OFF

SEC_MODULE_RET_OK

SEC_MODULE_RET_OK

Other

Other

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 48 of 57
Mar.31.21

(d) CMD_VERIFY_DATA

CMD_VERIFY_DATA Security Module
Verification of Keyring / Decryption and Verification of User Data

Parameter st_sec_module_arg_t structure format
 cmd: CMD_VERIFY_DATA
 len: sizeof(st_verify_data_t)
 prm: st_verify_data_t structure variable

Return Value • SEC_MODULE_RET_OK:

Success
 • SEC_MODULE_RET_ERROR_PARAMETER:

Invalid parameter
 • SEC_MODULE_RET_ERROR_VERIFICATION:

Failed to verify Re-Encrypted Keyring or Re-Encrypted User Data
 • SEC_MODULE_RET_ERROR_FAIL:

Resource Conflict
Illegal command execution procedure

Description This command executes the " Verification of Keyring” and “Decryption and Verification

of User Data".
Execute this command after the "Initialization of TSIP". Even if this command is
executed repeatedly, execute it from the “initialization of TSIP”.
To complete Secure Boot, all User Data encrypted by the CMD_RE_ENC_DATA
command must be verified using this command.

Figure 5-13 Verification of Encrypted Data

CMD_RESET_INIT

CMD_VERIFY_DATA

Result

Start

SEC_MODULE_RET_ERROR_INIT

End

Result

Power OFF

SEC_MODULE_RET_OK

SEC_MODULE_RET_OK

Other

Other SEC_MODULE_RET_ERROR_VERIFICATION

Abnormal End

Result

Count the number of
verifications

Insufficient number of verifications
Sufficient number of verifications

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 49 of 57
Mar.31.21

5.7.2.2 Structures
This section shows the structures defined by Security Module.

(a) st_reset_init_t
Format

typedef struct {
 uint64_t inst_area;
} st_reset_init_t;

Member

Member Name IN/OUT Description
inst_area IN/OUT Address of the area where the Re-Encrypted Keyring is placed.

1296 bytes required.

Description

This is a structure of parameters required to execute the CMD_RESET_INIT command.

The usage of the area specified in "inst_area" differs depending on the commands executed after this
command. The usage of this area is shown below.

• Execute the CMD_INJECT_KEY command
Re-Encrypted Keyring is output to the area specified in "inst_area". Read Re-Encrypted Keyring from
the area specified in "inst_area" and store it in the non-volatile memory.

• Execute other than the CMD_INJECT_KEY command
Re-Encryption Keyring is read from the area specified in "inst_area". This Re-Encrypted Keyring is
used to decrypt and verify User Data. Therefore, Re-Encrypted Keyring must be placed in this area
before executing the command.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 50 of 57
Mar.31.21

(b) st_inject_key_t
Format

typedef struct {
 uint64_t key_ring;
 uint64_t prov_key;
} st_inject_key_t;

Member

Member Name IN/OUT Description
key_ring IN Address of the area where Temporarily Encrypted Keyring is stored
prov_key IN Address of the area where Encrypted Provisioning Key is stored

Description

This is a structure of parameters required to execute the CMD_INJECT_KEY command.

Temporarily Encrypted Keyring is read from the area specified in "key_ring" and re-encrypted with Device-
Specific Key. Re-Encrypted Keyring is output to the area specified in "inst_area" of the CMD_RESET_INIT
command parameter.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 51 of 57
Mar.31.21

(c) st_re_enc_data_t
Format

typedef struct {
 int num;
 struct {
 uint64_t src;
 uint64_t len;
 uint64_t dst;
 } list[16];
} st_re_enc_data_t;

Member

Member Name IN/OUT Description
num IN Number of User Data to be re-encrypted.
list[n].src IN Address of the area where Temporarily Encrypted User Data is

stored.
list[n].len IN Size of Temporarily Encrypted User Data.
list[n].dst OUT Address of the area where Re-Encrypted User Data is output.

Description

This is a structure of parameters required to execute the CMD_RE_ENC_DATA command.

Temporarily Encrypted User Data is read from the area specified in "list[n].src" and re-encrypted with
Device-Specific Key. Re-Encrypted User Data is output to the area specified in "list[n].dst".

The maximum number of User Data that can be re-encrypted is 16. Set the number of User Data to be re-
encrypted in "num", and set the parameters of User Data to be re-encrypted in order from the beginning of
the List array. The order of User Data set in the List array must be the same as the order of User Data to
be verified by Secure Boot.

The size of the area specified in "list[n].dst" is as follows.

• Size of “list[0].dst” = “list[0].len” + 64 bytes
• Size of “list[1-15].dst” = “list[1-15].len” + 16 bytes

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 52 of 57
Mar.31.21

(d) st_verify_data_t
Format

typedef struct {
 uint64_t src;
 uint64_t len;
 uint64_t dst;
 uint64_t heap;
} st_verify_data_t;

Member

Member Name IN/OUT Description
src IN Address of the area where Re-Encrypted User Data is stored.
len IN Size of Re-Encrypted User Data.
dst OUT Address of the area where decrypted Data is output.
heap OUT Address of heap area used for decryption / verification of Re-

Encrypted User Data.

Description

This is a structure of parameters required to execute the CMD_VERIFY_DATA command.

Re-Encrypted User Data is read from the area specified in “src”, decrypted and verified. The decrypted
User Data is output to the area specified in “dst”.

The size of the area specified in “dst” and “heap” are as follows.

• Size of “dst” = “len” - 320 bytes
• Size of “heap” = “len” - 272 bytes

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 53 of 57
Mar.31.21

(e) st_sec_module_arg_t
Format

typedef struct {
 uint64_t cmd;
 uint64_t len;
 union {
 st_reset_init_t reset_init;
 st_inject_key_t inject_key;
 st_re_enc_data_t re_enc_data;
 st_verify_data_t verify_data;
 } prm;
} st_sec_module_arg_t;

Member

Member Name IN/OUT Description
cmd IN Command number.
len IN Size of the command structure.
prm IN Area where the command structure is stored.

Description

This is a structure of parameters stored in the shared area of Security Module. This structure stores
parameters depending on the function executed in Security Module.

The following table shows the parameters to set according to the command.

Table 5-6 Command parameters

Functions Parameter
cmd len prm

Initialization of TSIP CMD_RESET_INIT sizeof(st_reset_init_t) st_reset_init_t
structure

Re-encryption of Keyring CMD_INJECT_KEY sizeof(st_inject_key_t) st_inject_key_t
structure

Re-encryption of User Data CMD_RE_ENC_DATA sizeof(st_re_enc_data_t) st_re_enc_data_t
structure

Verification of Keyring /
Decryption and Verification of
User Data

CMD_VERIFY_DATA sizeof(st_verify_data_t) st_verify_data_t
structure

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 54 of 57
Mar.31.21

5.7.3 Execution Example
The following is an execution example when calling Security Module from external software.

Figure 5-14 Example of CMD_RESET_INIT command

• SEC_MODULE_BASE
 Address of the area where Security Module is loaded.

• SEC_MODULE_SHARED_SIZE

 Size of the shared area.

• SEC_KEYRING_BASE

 Address of the area where Re-Encrypted Keyring is loaded.

In TEE for RZ/G2, Security Module is called from the following files.

• Trusted Firmware-A (BL2)
[${WORK}/build/tmp/work/<work-sub-directories>/arm-trusted-firmware/<Properties-of-yocto-environment
>/git/drivers/renesas/rzg/auth/auth_mod.c]

• Flash Writer
[${WORK}/build/tmp/work/<work-sub-directories>/flash-writer/<Properties-of-yocto-environment>/git/fiploa
der.c]

/* Calculate the entry point address */
void* shared_area = SEC_MODULE_BASE;
fp_sec_module_api_t ep = SEC_MODULE_BASE + SEC_MODULE_SHARED_SIZE;

/* Set the command to be executed in the shared area */
st_sec_module_arg_t *args = (st_sec_module_arg_t *)shared_area;
args->cmd = CMD_RESET_INIT;
args->len = sizeof(st_reset_init_t);

/* Set the parameters for initialization command */
st_reset_init_t *reset_init = &(args->prm);
reset_init->inst_area = SEC_KEYRING_BASE;

/* Call the entry point of Security Module */
if(SEC_MODULE_RET_OK != ep())
{
 ERROR(“Security Module initialization failed”);
}

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 55 of 57
Mar.31.21

6. Memory Map
This chapter describes the memory map when Secure Boot is implemented. For the default memory map of
RZ/G2 Linux BSP, refer to “Related Documents No.2”.

Secure Boot implementation adds Security Module and Re-Encrypted Keyring to the default memory map.
The address where Security Module and Re-Encrypted Keyring are located is the same for
RZ/G2E|G2M|G2N|G2H devices. Trusted Firmware-A(BL31), OP-TEE OS and U-Boot are re-encrypted
before being placed in flash memory.

Decryption and validation by Secure Boot use the heap area (Secure Boot Heap). The size of this heap area
depends on the size of Re-Encrypted User Data. Therefore, this heap area must be allocated according to
the size of the largest Re-Encrypted User Data. For more information on the size of the heap area, refer to
“5.7.2.2. Structures”.

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 56 of 57
Mar.31.21

The following is a memory map of TEE for RZ/G2 built on the RZ/G2E System Evaluation Board EK874
using RZ/G2 Linux BSP.

Figure 6-1 RZ/G2E System Evaluation Board EK874 memory map (Boot)

BSC
0x0

Physical Address

Reserved

PCI-exp

0x00_2000_0000

0x00_3000_0000

SDRAM 2GB

Reserved

0x00_4000_0000

0x00_C000_0000

IO area
0x00_E000_0000

0x01_0000_0000

～ ～ ～ ～

0x04_0000_0000
SDRAM 2GB

0x05_0000_0000

N/A

0x06_0000_0000

0x07_0000_0000

N/A

SPI Flash

0x00_4000_0000

0x00_C000_0000

0x06_8000_0000

0x00_4800_0000

0x00_5000_0000

Encrypted ARM Trusted
Firmware

Encrypted U-Boot

ARM Trusted Firmware
Security Module

Shadow area

Certification

IPL
Boot parameter

System RAM

Boot parameter

IPL

Load by Boot
ROM program

N/A

0x08_0000_0000

0x00_E630_0000

Secure
Region

Legacy

0x04_8000_0000

0x180000

0x040000

0x0

0x1C0000

0x300000

Certification
0x00_43F0_0000

0x00_47E0_0000

N/A

N/A

Option

Secure
Region

0x04_4000_0000

U-Boot

0x00_440E_0000

Encrypted Keyring

OP-Tee

0x00_4410_0000

Security Module

Encrypted Keyring

Encrypted OP Tee
0x200000

0x400000

0x500000

Load by IPL

0x00_5010_0000
Secure Boot Heap

RZ/G2 Trusted Execution Environment Porting Guide

R01AN0501EJ0100 Rev.1.00 Page 57 of 57
Mar.31.21

Revision History

Rev. Date
Description
Page Summary

1.00 Mar. 31, 2021 - First Release

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	1. Overview
	1.1 Functions
	(a) Trusted Firmware-A (BL2)
	(b) OP-TEE OS
	(c) OP-TEE OS
	(d) OP-TEE Driver
	(e) OP-TEE Client

	1.2 References
	1.2.1 Standard Documents
	1.2.2 Related Documents
	1.2.3 Related Original Software

	1.3 Related Packages
	1.4 Licenses
	1.5 Terminology

	2. Operating Environment
	2.1 Build Environment
	2.2 Module Configuration

	3. External Interface
	3.1 Software API
	3.1.1 OP-TEE OS
	3.1.2 OP-TEE Client

	3.2 Definitions
	3.2.1 OP-TEE OS
	3.2.2 OP-TEE Client

	3.3 Structures
	3.3.1 OP-TEE OS
	3.3.2 OP-TEE Client

	4. Implementation
	4.1 Directory Configuration
	4.1.1 Trusted Firmware-A
	4.1.2 OP-TEE OS
	4.1.3 OP-TEE Client
	4.1.4 OP-TEE Driver

	4.2 Build Instructions
	4.3 Build Options
	4.3.1 Trusted Firmware-A
	4.3.2 OP-TEE OS
	4.3.2.1 Secure Storage
	4.3.2.2 Cryptography features

	4.3.3 OP-TEE Client

	4.4 How to set build options
	4.4.1 Trusted Firmware-A
	4.4.2 OP-TEE OS
	4.4.3 OP-TEE Client

	4.5 How to customize
	4.5.1 Security access protection setting
	4.5.2 Hardware Unique Key
	4.5.3 Hardware Crypto IP
	4.5.3.1 Cryptographic function
	4.5.3.2 Random Number Generation

	4.5.4 Secure Storage
	4.5.5 Trusted Application Private/Public Keypair
	4.5.6 Secure Boot

	5. How to Implement Secure Boot
	5.1 Functions
	5.1.1 Secure Boot
	(a) Security Module
	(b) Encrypted Keyring

	5.1.2 Provisioning
	5.1.2.1 Generation of Keyring
	5.1.2.2 Temporary encryption of Keyring
	5.1.2.3 Temporary encryption of User Data
	5.1.2.4 Re-encryption of Keyring
	5.1.2.5 Re-encryption of User Data

	5.2 Build Instructions
	5.3 Build Options
	5.3.1 Trusted Firmware-A
	5.3.2 Security Module
	5.3.3 Flash Writer

	5.4 How to set build options
	5.4.1 Trusted Firmware-A
	5.4.2 Security Module
	5.4.3 Flash Writer

	5.5 Provisioning Environment
	5.5.1 Prior confirmation
	5.5.2 Provisioning Tool
	5.5.2.1 Generation of Keyring
	5.5.2.2 Configure Build Path

	5.5.3 Encryption Tool
	5.5.4 Packaging Tool
	5.5.5 Flash Writer
	5.5.5.1 Loading FIP
	5.5.5.2 Re-encryption of Keyring
	5.5.5.3 Re-encryption of User Data

	5.6 Key Wrap Service
	5.7 Security Module
	5.7.1 Directory Configuration
	5.7.2 External Interface
	5.7.2.1 Commands
	(a) CMD_RESET_INIT
	(b) CMD_INJECT_KEY
	(c) CMD_RE_ENC_DATA
	(d) CMD_VERIFY_DATA

	5.7.2.2 Structures
	(a) st_reset_init_t
	(b) st_inject_key_t
	(c) st_re_enc_data_t
	(d) st_verify_data_t
	(e) st_sec_module_arg_t

	5.7.3 Execution Example

	6. Memory Map
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

