
 Application Note

R01AN4821EJ0200 Rev.2.00 Page 1 of 47

Oct.07.19

RX66T e-AI Motor Failure Detection Sample Software

Application Note

Introduction

This application note provides a usage example of e-AI (embedded Artificial Intelligence) described through

sample software with an additional function that detects motor abnormality in a motor control system using

RX66T.
The sample software comes with learned Deep Neural Network (DNN). The e-AI system operations can be

immediately confirmed on the required hardware described in this document.

The software described in this application note is for reference use only. Operations are not guaranteed by

Renesas Electronics. When using the software described in this application note, fully evaluate in an

applicable environment before use.

Target Device

Operations with the software described in this application note have been confirmed for the following device.

・ RX66T (R5F566TEADFP)

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 2 of 47

Oct.07.19

Contents

1. Introduction .. 3

2. Overview ... 4

3. Specification .. 6

 Operating Conditions ... 6

 Hardware Diagram .. 7

 Operations Overview ... 8

 State Transition ... 9

4. MCU Software Explanation .. 10

 Software Configuration .. 10

 Directory Configuration .. 11

 Resources ... 12

 Resource List... 12

 Interruptions ... 12

 Main Processing .. 14

 Motor Control Processing .. 14

 FFT Processing ... 16

 AI Inference Processing .. 18

 Flowchart ... 18

 Data Flow .. 20

 AI Model .. 21

 Preprocessing specifications ... 22

5. Data Collection Tool .. 23

 Operation Overview ... 23

 Function Explanations ... 23

 View Tab .. 23

 Setting tab ... 25

 Operations ... 26

6. Reference Documents ... 28

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 3 of 47

Oct.07.19

1. Introduction

Beginning with Endpoint Intelligence, Renesas aims to contribute to the realization of an eco-friendly, smart
society that supports safer and healthy living in areas where this cannot be solved simply by using big data in
the cloud. With its flexible and scalable embedded artificial intelligence (e-AI) concept, Renesas offers a
future-proof, real-time, low power AI processing solution that is unique in the industry and addresses the
specific needs for artificial intelligence in embedded devices at the endpoint.

Anyone can use AI (Artificial Intelligence) relatively easily by using Caffe developed by UC Berkeley or
TensorFlow developed by Google. Although AI's specialty field varies according to the algorithm used, DNN
(Deep Neural Network), a multi layered network, is used for embedded AI. Through an algorithm that learns
input information that is labelled normal / abnormal DNN has dramatically improved the estimation of a failure
condition. DNN has a large difference in the amount of computation required for learning and inference
execution, and it is a major feature that it can be executed with less computing power in the inference phase.
Focusing on the asymmetry of this computing power and for its main use for inference execution in
embedded devices, we named this AI "e-AI" (embedded-AI).

The e-AI development environment solves these problems and makes it possible to implement learned DNN
results onto an MCU/MPU in conformance with an e² studio C/C ++ project.

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 4 of 47

Oct.07.19

2. Overview

Figure 2-1 shows the system block diagram of the e-AI Motor Failure Detection Sample Software. This
example is an e-AI-based motor status (abnormal value) display system in which learned DNN is added to
the brushless DC motor control MCU software. The AI inference results are displayed via computer software.

Figure 2-1. System Block Diagram

The AI inference process of this example performs the following operations.

1. Collect A/D conversion values of the three-phase current and generate an FFT frame.

2. Pre-processing before learned DNN input data

A. FFT processing of data frames (frequency spectrum generation)

B. Feature point extraction from frequency spectrum (learned DNN input data generation)

3. AI inference

The system’s brushless DC motor control employs the sensorless vector control method to monitor the 3
shunt current control with the A/D converter. In this system, focusing on the fact that the waveform of the 3
shunt current changes depending on the state of the motor, this 3 shunt current is used as the input of
trained DNN. A/D conversion values are accumulated for a fixed time to obtain waveform data on the time
axis.
In input data pre-processing, a frequency spectrum is generated via FFT making it easier for AI to detect
feature points of the 3 shunt current waveform. The FFT inputs data units with coefficient of 2 as one frame,
but also generates a frame to partially overlap the preceding and following frame to detect changes at frame
breaks. This is a common method often referred to as “overlap analysis.” In addition, in the e-AI system with
limited storage area, reduction of the DNN network layer is a benefit, allowing extraction and use of areas

around the input data feature point. See 「4.7.4Preprocessing specifications」 for details.

AI inference
result

Serial Comm

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 5 of 47

Oct.07.19

Figure 2-2. Data Processing Flow (1/2)

Figure 2-3. Data Processing Flow (2/2)

AI inference results are displayed in the PC software (DataCollectionTool). In addition to the AI inference
results, this sample software also displays the 3 shunt current A/D conversion value and the spectrum
waveform. The system’s waveform data log function allows the system to accumulate NN training data while
displaying waveforms.
Further details concerning the Data Collection Tool can be found in section 5. Data Collection Tool.

Figure 2-4. DataCollectionTool - Appearance

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 6 of 47

Oct.07.19

3. Specification

 Operating Conditions

Table 3-1 lists the confirmed operation conditions.

Table 3-1. Operating Conditions

Item Description

MCU RX66T (R5F566TEADFP)

Operating Frequency Main clock: 8 MHz crystal oscillator

CPU clock (ICLK): 160MHz

Peripheral module clock A (PCLKA): 80MHz

Peripheral module clock B (PCLKB): 40MHz

Peripheral module clock C (PCLKC): 160MHz

Peripheral module clock D (PCLKD): 40MHz

FlashIF clock (FCLK): 40MHz

Operating Voltage 5.0V (RX66T)

Operating Mode Single-chip mode

Endian Little Endian

Integrated

Development

Environment

Renesas Electronics e2studio V7.2.0

C Compiler Renesas Electronics CC-RX: V3.00.00

• Compiler option: -isa=rxv3 -fpu -save_acc

Auto generation tool Renesas Electronics RX Smart Configurator V2.0.0

Emulator Renesas Electronics E2 Lite emulator

Middleware Renesas Electronics RX Family RX DSP Library Version 5.0

e-AI Development

Environment

Renesas Electronics e-AI Translator V1.0.2

Evaluation Board Renesas Electronics

24V Motor Control Evaluation System for RX23T (RTK0EM0006S01212BJ)

• 24V inverter board

Renesas Electronics RX66 CPU card (RTK0EMX870C00000BJ)

Motor Tsukasa Electronics Co. Ltd. TG55-L (RTK0EM0006S01212BJ bundled）

Simplified Motor Bench (see note)

Note: For more details, refer to Appendix entitled “Simplified Motor Bench Assembly Guide.”

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 7 of 47

Oct.07.19

 Hardware Diagram

Figure 3-1shows the hardware block diagram of the e-AI Motor Failure Detection Sample Software. This
sample is based on the hardware structure described in Reference Document [2]: “RX66T Application Note
for Sensorless Vector Control of Permanent Magnetic Synchronous Motor,” and is enhanced with a
communication function and drive motor load device. For details on the hardware structure that serves as the
base, please refer to Reference Document [2].

Figure 3-1. Hardware Block Diagram

Note : See Reference Material [2] for details
on area enclosed with green dotted line

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 8 of 47

Oct.07.19

 Operations Overview

Figure 3-2 shows the system operation flow. The following is an overview of operations.

① Execute sensorless vector control on motor

When power is applied to the 24V inverter board, it is also applied to the RX66TCPU board, which starts the
motor driver operations. See Reference Document [2] for processing details and Reference Document [3] for
details on board operations.

② Execute pre-processing for motor drive current data, determine abnormality using e-AI inference

1. A/D conversion value accumulation

CMT1 generates the 2kHz sampling frequency and acquires the A/D conversion value of the motor 3

shunt current. The 3 shunt current is input to the 12-bit A/D converter (S12ADH). One frame (512

samples) of A/ D conversion values are accumulated for the FFT. From the next frame on, A/D

conversion values are accumulated by overlapping 64 samples of the previous frame.

2. Data pre-processing

The MCU performs the FFT operation using the RX DSP library. The frequency spectrum resulting

from the FFT operation is converted into dBFS. This sample software defines 0dB = 4095LSB @

S12ADH Full Scale. Next, the peak value of the frequency spectrum (excluding the DC component)

and the previous and successive 8 samples (A/D conversion values) are selected to extract the

frequency spectrum feature points.

3. AI inference

The extracted feature points are input to the trained DNN, and the probability of the two classes

(normal and abnormal) are output by inference. In this example, the probability of abnormality is

taken as the degree of abnormally.

③ Serial communication with PC

Using SCI8 in the SPI mode, data is transferred to the PC using a USB-serial converter cable. DMAC0 is
used to transfer data to the SCI8’s ‘transfer data register’ (TDR)

④ Display degree of abnormality and current waveform data in tools

The received data is displayed in numerical values and graph form in the DataCollectionTool (GUI tool) run
on the PC.

Figure 3-2. System Operation Flow

①

②

③

④

 Display degree of
abnormality and current
waveform data in tools

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 9 of 47

Oct.07.19

Figure 3-3 shows images of the system in normal and abnormal states. Normal state is defined as when the
drive motor and load motor shafts form a single line and abnormal state is defined as when the axis of the
two shafts is deviated. In this example, normal and abnormal states are recreated using a simple motor
bench, coupling the drive motor and load motor shafts with a tube.

Figure 3-3. Images of Normal and Abnormal States

 State Transition

Figure 3-4 provides an image of the state transition. The SW1, SW2, VR1, LED1 and LED2 discussed in this
section indicate the devices mounted on the 24V inverter board of the 24V Motor Control Evaluation System
for RX23T. RESET button refers to a device mounted on the RX66 CPU card.

Figure 3-4. State Transition

(1) INACTIVE

INACTIVE indicates the state immediately after power is supplied to the system. The motor is not driven

in this state. When SW1 is turned ON, the system transitions to ACTIVE state. If an error is detected in

the inactive state, the system shifts to the error state.

(2) ACTIVE

In the ACTIVE state, LED1 goes on and the motor can be driven. The following processes are carried out

in the ACTIVE state.

 Motor rotation speed control

VR1 controls the rotation speed of the motor.

 e-AI inference

Infers the degree of motor abnormality.

 Data transfer to PC

Sends the motor drive current data and/or inference result to the PC.

When an error occurs in the ACTIVE state, the system transitions to the ERROR state.

(3) ERROR

When motor overcurrent or other error is detected, the LED2 lamp goes on and the system transitions to

the ERROR state. To clear the error and return to the INACTIVE/ACTIVE state, push the RESET button

or turn SW2 ON -> OFF.

ERROR

Power ON

SW1 ON

INACTIVE

ACTIVE
Error

RESET SW

or SW2 ON

SW1 OFF

Motor drive stop

Error state Motor can be driven

Error

RESET SW

or SW2 ON

 Motor speed control
 AI inference
 Display AI inference result

(Send data to PC)

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 10 of 47

Oct.07.19

4. MCU Software Explanation

 Software Configuration

Figure 4-1 shows the software configuration of the e-AI Motor Failure Detection Sample Software. This
sample is based on the sample software described in Reference Document [2]: “RX66T Application Note for
Sensorless Vector Control of Permanent Magnetic Synchronous Motor,” and is enhanced with AI inference
logic, related drivers, and RX Family RX DSP Library. For details on the sample software, please refer to
Reference Document [2].

Figure 4-1. Software Configuration Overview

C
M

T1

D
M

A
C

0

SC
I8

call

3 shunt current
data

Application Layer

Main

User I/F Ctrl
Motion Sensor
(AI Inference)

I/F module Control module

Middle Layer

IR
Q

1

P
O

E3
B

C
M

T0

M
TU

G
P

IO

Device Layer

call

S1
2

A
D

H

RX DSP Library
call (FFT)

Legend:

: Motor control
sample software

: Additional software
for e-AI

Note: Blue area indicated new features: For details on all other features

and functions see Reference Material [2].

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 11 of 47

Oct.07.19

 Directory Configuration

Figure 4-2 shows the directory configuration of the e-AI Motor Failure Detection Sample Software.

Figure 4-2. Directory Configuration

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 12 of 47

Oct.07.19

 Resources

 Resource List

Table 4-1 provides a list of resources used in the sample software. The items in bold are added peripheral
functions unique to this software. Refer to Reference Document [2] for details on peripheral functions other
than those in bold lettering.

Table 4-1. Resource List

 Interruptions

Table 4-2 provides a list of interrupt processings. The items in bold are added peripheral functions unique to

this sample software. Refer to Reference Document [2] for details on interrupts other than those in bold
lettering.

Table 4-2. Interrupt Processings

Interrupt request

generation source

(peripheral module)

Name

(peripheral

module name)

Interrupt

priority

level (IPR)

Description

Group Interrupt 1

(POE3)

(SCI8)

GROUPBL1

(OEI1）

(TEI8、ERI8)

15 (highest)

• Motor interrupt processing (overcurrent

detected)

• Data send/receive to/from PC

⎯ ‘SCI8 send complete interrupt’

(TEI8)

⎯ ‘SCI8 receive error interrupt’

(ERI8)

PERIA(MTU3) INTA209(TCIV4） 12 Motor interrupt processing (500 μs)

ICU IRQ1 12
Monitors the level of flow control signal
during serial communication.

SCI8 RXI8 12 Data receive from PC

CMT0 CMI0 11 Motor interrupt processing (50 μs)

SCI8 TXI8 8 Data send to PC (DMAC transfer trigger)

DMAC0 DMACI0 8 Clears ‘transfer complete flag’

CMT1 CMI1 5
3 shunt current sampling frequency

(2kHz)

Item Description

Clock generation circuit Generates operating clock from external oscillator.

S12ADH • 3 shunt current measurement

• Inverter bus line voltage measurement

• Rotation speed command value input

CMT0 500μs interval timer

MTU3 Complementary PWM output

POE3B Overcurrent detection, output short circuit detection

GPIO • Switch (SW1, SW2) input

• LED (LED1, LED2) ON/OFF control

CMT1 Generates 3 shunt current value sampling frequency (2kHz)

SCI8 Serial communication (SPI)

DMAC0 Transfers data to ‘send data register’ based on SCI8 transfer

request

ICU (IRQ1) Rising and falling edges of pin level generate interrupt

I/O Port (P31) Outputs signal as inverting the level of the IRQ1 pin

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 13 of 47

Oct.07.19

The following shows the interrupt processing change point for this sample software.

① File name: intprg.c

The following codes are commented out.

void Excep_CMT1_CMI1(void){ }

void Excep_SCI8_RXI8(void){ }

void Excep_SCI8_TXI8(void){ }

void Excep_DMAC_DMAC0I(void){ }

② File name: r_mtr_interrupt.c

Processings added to external variable and external function declarations, over-current detection interrupt
process (Group 1 interrupts) and 50[μs] period interrupt (carrier interrupt) process.

/* Use in e-AI processing */

extern float g_current = 0;

extern void r_Config_SCI8_transmitend_interrupt(void);

extern void r_Config_SCI8_receiveerror_interrupt(void);

--

#pragma interrupt (mtr_over_current_interrupt(vect = VECT_ICU_GROUPBL1))

static void mtr_over_current_interrupt(void)

{

 if (1 == ICU.GRPBL1.BIT.IS9)

 {

 mtr_over_current(&g_st_foc);

 }

 /* SCI8 TEI8 (transmit end) */

 if (1 == ICU.GRPBL1.BIT.IS24)

 {

 r_Config_SCI8_transmitend_interrupt();

 }

 /* SCI8 ERI8 (recieve error) */

 if (1 == ICU.GRPBL1.BIT.IS25)

 {

 r_Config_SCI8_receiveerror_interrupt();

 }

} /* End of function mtr_over_current_interrupt */

--

#pragma interrupt (mtr_tciv4_interrupt(vect = VECT_PERIA_INTA208))

static void mtr_tciv4_interrupt(void)

{

 mtr_foc_interrupt_carrier(&g_st_foc);

 mtr_ics_interrupt_process();

 /* get peak current for e-AI process */

 if (g_current < g_st_foc.f4_iu_ad)

 {

 g_current = g_st_foc.f4_iu_ad;

 }

} /* End of function mtr_tciv4_interrupt */

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 14 of 47

Oct.07.19

 Main Processing

Figure 4-3 shows the flow chart for main processing. Motor control interrupt processing is also included to
help clarify the relationship between main processing and motor control processing.
Main processing executes system initialization, then executes a loop of user interface processing and AI
inference processing. User interface processing uses the 24V inverter board devices (SW1, SW2, VR1) to
control the system, converts the input device information to system state and motor rotation speed command
values, and passes this on to the motor control processing.
Motor drive control is performed by 2 types of motor interrupt processing. The motor can be driven when the
system state is ACTIVE.

Figure 4-3. Main Processing Flow Chart

 Motor Control Processing

This section describes only areas of the Reference Document [2] “RX66T Application Note for Sensorless
Vector Control of Permanent Magnetic Synchronous Motor,” that have been changed for this sample
software. Please refer to Reference Document [2] for details on all other motor control processings.
In this example, the following definition has been changed in order to employ the 24V inverter board user
interface.

Target file: ：r_mtr_config.h

Before change:

#define CONFIG_DEFAULT_UI (ICS_UI)

After change:

#define CONFIG_DEFAULT_UI (BOARD_UI)

Main process
main()

Motor control initialization

Motor control process
board_ui()

AI inference process
MotionSensorMonitor()

AI inference process
initialization

MotionSensorInit()

Clear WDT
R_MTR_ClearWdt()

while(1)

50[us] period interrupt
(carrier interrupt)

process

Current control /
Position and speed

estimation

PWM duty setting

Get U phase and
W phase current /

Inverter bus voltage (A/D)

End

500 [us] period interrupt
process

Speed control

End

[Note]

Motor control process
AI inference process

Note: Execute when ACTIVE

[Note]

[Note]

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 15 of 47

Oct.07.19

The user interface processing code (board_ui function) has been rewritten for this example in order to limit
motor rotation speed.

Table 4-3. Rotation Speed Command Value Conversion Rate

Item Conversion Rate (command value: A/D

conversion value)

Rotation speed
command value

CW
1000[rpm]~2000[rpm]：08C8H~0FFFH

Target file: main.c

Target function: board_ui()

Before change:

/*=============================*/

/* Set speed reference */

/*=============================*/

u2_temp_vr1_signal = get_vr1();

s2_temp = (u2_temp_vr1_signal - ADJUST_OFFSET) * VR1_SCALING; /* Read speed reference

from VR1 */

After change:：

/*=============================*/

/* Set speed reference */

/*=============================*/

u2_temp_vr1_signal = get_vr1();

s2_temp = u2_temp_vr1_signal - ADJUST_OFFSET; /* Read speed reference from

VR1 */

/* Change VR1 A/D value to rotation speed command value of +1000 to +2000rpm*/

/* The area near the VR1 center is the dead zone. */

if(-200 >= s2_temp)

{

 s2_temp = (int16_t)(((0.542f * (float)s2_temp) -- 891) * (-1));

}

else if(200 <= s2_temp)

{

 s2_temp = (int16_t)(0.542f * (float)s2_temp) + 891;

}

else

{

 s2_temp = 0;

}

s2_temp = R_MTR_LimitAbs(s2_temp, g_u2_max_speed_rpm);

R_MTR_SetSpeed(s2_temp); /* Set speed reference */

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 16 of 47

Oct.07.19

 FFT Processing

The RX family uses the DSP library for FFT processing of the 3 shunt current data. Table 4-4 lists the
functions used in the DSP library.

Table 4-4. Functions Used in DSP Library

Function Name Description

R_DSP_FFT_Init_i16ci32() Initialize handle for real FFT operation

R_DSP_FFT_i16ci32() Real FFT transform (output FFT result as

complex number)

R_DSP_VecCplxMag_ci32i32() Acquire complex magnitude value

The following shows the FFT source code used by the RX DSP library for the example.

#include <r_dsp_transform.h>

static void fExecuteFFT (int16_t *pInBuf, float *pOutBuf)

{

 uint32_t i;

 uint16_t SamplingHalf = gv_SamplingConditions.m_SamplingCount / 2;

 gs_fft_time.data = pInBuf;

 /* Real FFT transformation (output FFT result as a complex number) */

 R_DSP_FFT_i16ci32(&gs_fft_handle, &gs_fft_time, &gs_fft_freq);

 /*

 * Obtain complex magnitude value

 * Analysis conditions when FFT length is 512 and the sampling frequency is 2kHz

 * - frequency ticks: 2000Hz / 512 = 3.90625Hz)

 * - Measurable frequency: 3.90625Hz * 255 = 996.09375Hz

 */

 R_DSP_VecCplxMag_ci32i32(&gs_fft_freq, &gs_fft_mag, SamplingHalf);

 /*

 * Replace 0th element of calculation result with gs_fft_buf[0].re

 * This process is necessary to remove the influence of real number half of the FFT

length.

 */

 *(int32_t *) gs_fft_mag.data = gs_fft_buf[0].re;

 /*

 * Convert to dBFS(decibels below full scale)

 * Step1 : Convert fixed point number (1Q15) to floating point number.

 * Divide FFT library output result (stored in int32 gs_fft_VecCplxMagi32[])

by (2^15-1).

 * It is half the amplitude of the A/D full scale value.

 * Step2 : Double the result of step1 to get full amplitude of A/D full scale value

 * Step3 : Convert the result of step 2 to voltage-ratio(dB).

 * Step4 : Subtract 12bit A/D full scale voltage-ratio (72.247199 dB) to convert to

dBFS.

 * Note : The maximum magnitude that can be used for dBFS is 0dBFS.

 * If an magnitude lower than this is used, a negative number will be displayed.

 */

 for (i = 0; i < SamplingHalf; i++)

 {

 if (0 != gs_fft_VecCplxMagi32[i])

 {

 pOutBuf[i] = (20.0 * log10f((float) gs_fft_VecCplxMagi32[i] / 16383)) -

gv_DecibelsBelowFullScale;

 }

 /* When the complex absolute value is 0 */

 else

 {

 pOutBuf[i] = -gv_DecibelsBelowFullScale;

 }

 }

}

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 17 of 47

Oct.07.19

The following shows the FFT initialization source code, which uses window function (hanning window) for the
example.

static void fInitFft (void)

{

 uint16_t Count;

 /* Initialize FFT handle data */

 gs_fft_handle.n = gv_SamplingConditions.m_SamplingCount;

 gs_fft_handle.work = NULL;

 gs_fft_handle.options = (R_DSP_FFT_OPT_SCALE | R_DSP_FFT_BIT_REVERSAL_DEFAULT |

R_DSP_FFT_OPT_TWIDDLE_DEFAULT);

 gs_fft_handle.bitrev = gs_fft_bitrev;

 gs_fft_handle.twiddles = gs_fft_twiddles;

 gs_fft_handle.window = NULL;

 gs_fft_time.n = gv_SamplingConditions.m_SamplingCount;

 gs_fft_freq.n = gv_SamplingConditions.m_SamplingCount / 2;

 gs_fft_mag.n = gv_SamplingConditions.m_SamplingCount / 2;

 /* Set window coefficient according to FFT length */

 switch(gv_SamplingConditions.m_SamplingCount)

 {

 case DEF_SamplingCount1024:

 gs_fft_handle.window = (void *) i16_hanning_fft1024;

 break;

 case DEF_SamplingCount512:

 gs_fft_handle.window = (void *) i16_hanning_fft512;

 break;

 case DEF_SamplingCount256:

 gs_fft_handle.window = (void *) i16_hanning_fft256;

 break;

 case DEF_SamplingCount128:

 gs_fft_handle.window = (void *) i16_hanning_fft128;

 break;

 default:

 gs_fft_handle.window = NULL;

 break;

 }

 /* Initialize FFT */

 R_DSP_FFT_Init_i16ci32(&gs_fft_handle);

 /* Sampling size */

 gv_SamplingSize = (gv_SamplingConditions.m_SamplingCount * 2) -

gv_SamplingConditions.m_SamplingOverLap;

 /* Overlap area of sampling buffer #2 and sampling buffer #1 start areas */

 gv_Buffer2to1Overlap = gv_SamplingSize - gv_SamplingConditions.m_SamplingOverLap;

 /* End position of #1 frame */

 gv_Frame1End = gv_SamplingConditions.m_SamplingCount - 1;

 /* End position of #2 frame */

 gv_Frame2End = gv_SamplingSize - 1;

 /* (Sampling count/2)**2 */

 gv_SquareSamplingHalf = (float) ((gv_SamplingConditions.m_SamplingCount / 2)

 * (gv_SamplingConditions.m_SamplingCount / 2));

 /* Sampling frequency */

 Count = (uint16_t) (DEF_CMT_CLK8 / (float)

(gv_SamplingConditions.m_SamplingFrequency)) - 1;

 /* A/D conversion trigger timer setting */

 CMT1.CMCOR = Count;

}

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 18 of 47

Oct.07.19

 AI Inference Processing

 Flowchart

Figure 4-4 shows the flowchart for AI inference processing.

Figure 4-4. AI Inference Processing Flowchart

AI inference process
MotionSensorMonitor()

No

Yes

No

Get frequency spectrum
fCalcFrequencySpectrum()

Execute FFT operation and
get frequency spectrum

fExecuteFFT()

Get no. of rotations and peak
current

fGetMotorData()

Get AI inferenced value
AI_Inference()

Update moving average
fUpadteMovingAverage()

Send frequency spectrum
fSendFtdi()

Yes

Get moving average
fGetMovingAverage()

AI inference processing completed

Get conversion result from ring buffer

Create send data from A/D
conversion result

fSetADSendData()

Data overlap

Store A/D conversion value in A/D
conversion results buffer

Send frequency spectrum value
fSendFtdi()

DEF_StartMonitor DEF_StopMonitor Other

Clear PC command request

Setting during measurement

Valiables initialization

(Keep state)

Get 1 frame of data?

Is data still transferring?

Get A/D conversion result
and AI inference

valuefGetAdData()

Start CMT1 count
R_Config_CMT1_Start()

PC command？

Clear PC command request

Setting when not calculating

Stop CMT1 count
R_Config_CMT1_Stop()

PC command analysis
fPcCommandRecv()

Notes1.The blue area indicates all processing executed in fGetAdData().
Notes2.The red area indicates all processing executed in fCalcFrequencySpectrum().
Notes3.The yellow area indicates all processing executed in “fSetADSendData()”.

[Notes2]

[Notes1]

[Notes3]

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 19 of 47

Oct.07.19

Figure 4-5 shows the flowchart for getting A/D conversion result of motor current value. This processing is
performed by CMI1 interrupt.

Figure 4-5. Flowchart for getting A/D conversion result of motor current value

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 20 of 47

Oct.07.19

 Data Flow

Figure 4-6 shows the data flow for AI inference processing.

Figure 4-6. AI Inference Processing Data Flow

gv_SamplingMonitor

AI inference process
MotionSensorMonitor()

Start CMT1 count
R_Config_CMT1_Start()

Get A/D conversion result
and AI inference

fGetAdData()

Get 1 frame of data?

Is data still transferring?

No

Yes
No

End

PC command analysis
fPcCommandRecv()

Get conversion result
from ring buffer

Create send data from
A/D conversion result

fSetADSendData()

Data overlap

CMI1 interrput process
r_Config_CMT1_cmi1_interrupt

Store A/D conversion value
in A/D conversion results buffer

Send frequency spectrum value
fSendFtdi()

A/D result[512]

gv_AD0Bffer

A/D result
• U phase
• W phase
• V phase

gv_SamplingRingBuffer[1024]

Get frequency spectrum
fCalcFrequencySpectrum()

Execute FFT operation and
get frequency spectrum

fExecuteFFT()

Get no. of rotations
and peak current
fGetMotorData()

Get AI inferenced value
AI_Inference()

Update moving average
fUpadteMovingAverage()

Send frequency spectrum
fSendFtdi()

Yes

Frequency spectrum[3][512/2]

gv_SamplingMonitor

AI inference result

Get moving average
fGetMovingAverage()

• Motor rotation speed
• Peak current

AI inference
moving average result

CMI1 interrupt

ST_Sampling512

ST_Sampling512

ST_Sampling512

ST_Sampling512

Get A/D result

Is there empty space
in the ring buffer?

end

No

Yes

PC command？

Start CMT1 count
R_Config_CMT1_Stop()

DEF_StartMonitor

A/D result
• U phase
• W phase
• V phase

gv_SamplingRingBuffer[1024]

DEF_StopMonitor Other

Variable

Data

Nortification

Legends

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 21 of 47

Oct.07.19

 AI Model

Figure 4-7 shows the AI model configuration.

Figure 4-7. AI Model Configuration

(1) Input layer

FFT-processed U-phase shunt current data is input to the input layer

(2) Hidden layer

The hidden layer uses the fully connected layer.

(3) Output layer

The output layer outputs the probability of normality and abnormality.

Figure 4-8 shows the normal state and Figure 4-9 shows the abnormal state for this example. The degree of
abnormality is inferred by e-AI from the difference in generated current waveform. In this software, axis
deviation is defined as abnormal.

Figure 4-8. Normal State

Figure 4-9. Abnormal State

(1)Input layer (2)Hidden layer (3)Output layer

Input layer

Full connected

Full connected

Output layer

Normalcy probability(%)

Failure probability(%)

U-phase

Current

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 22 of 47

Oct.07.19

 Preprocessing specifications

The RX66T Motor Failure Detection Application described in this document (referred to as “target system”
below) preprocesses motor drive current data for use as AI input data. The following outlines the
preprocessing used by the target system.

・ Framing

- Frames the A/D conversion value of motor drive current

・ FFT

- FFT is performed on the A/D conversion value of the motor drive current framed to detect the feature
value.

・ Data extraction

- Extract data in the vicinity where the feature is detected.

The following describes preprocessing performed on the actual target system.

① shows the A/D conversion value of the motor drive current which is used as input data. This data must
be framed every 512 points. To avoid missing data when collecting data, the frames are set so that 64
points overlap the previous frame. The waveform is output for 3-shunt current.

Figure 4-10. A/D Conversion Value of Motor Drive Current

② Feature values cannot be detected on the time axis, so the framed motor drive current A/D conversion
value is FFT processed and converted to the frequency axis, as shown in Figure 4-11. Data
Preprocessing Flow graph (a). In the target system, features are detected around the peak value of the
fundamental frequency outlined in yellow in Figure 4-11. Data Preprocessing Flow graph (b).

③ A total of 16 points before and after the peak value where the feature value was detected are extracted,
as shown in Figure 4-11 graph (c), and used as input data. Only the U phase is used as data for the AI
model.

Figure 4-11. Data Preprocessing Flow

(a) (b) (c)

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 23 of 47

Oct.07.19

5. Data Collection Tool

 Operation Overview

The waveform monitor tool is used to send the 3 shunt current data and AI inference value from the RX66T
MCU in a serial communication, and to display those results. The tool does not require installation. An
overview of the waveform monitor tool operations is as follows.

• Control display start/stop

• Display data sent from RX66T

⎯ 3 shunt current

• Waveform data

• Frequency spectrum (extracted by FFT)

⎯ AI inference result

• Moving average waveform

• Actual value bar (0~100% displayed in increments of 10%)

• Numerical value

⎯ Motor rotation speed

⎯ Peak current value

 Function Explanations

The following describes each waveform monitor tool function in detail. The tool has a View tab for displaying
all categories of information and a Setting tab for setting up operations.

 View Tab

Figure5-1 shows the display layout used in the View tab. The numbers in the figure correspond to the
numbers in the function descriptions below.

Figure5-1. View Tab Display Specifications

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 24 of 47

Oct.07.19

① Control display start/stop

The START button is displayed as soon as the GUI software is started up. Each function is described below.

• When the START button is pushed:

- ‘Data Send Request Commands’ are sent from the PC to RX66T, and data is sent from RX66T to the

PC.

- Received data is displayed in real time.

• When the STOP button is pushed:

- ‘Data Send Stop Command’ is sent from the PC to RX66T and data acquisition ends.

② 3 shunt current waveform data

3 shunt current sampling data is plotted on a graph as U, V and W.

③ Frequency characteristics

The 3 shunt current waveform data in (2) above are transformed into the frequency spectrum via FFT,
converted to dBFS and plotted on a graph.

④ Moving average waveform of AI inference result

The moving average of the abnormality probability output by AI inference is generated and plotted in a
waveform graph.

⑤ AI inference result indicator bar

Displays the abnormality probability output by AI inference in a stacked bar graph in 10% increments.

⑥ AI inference result in percentages

Displays the abnormality probability output by AI inference in percentages.

⑦ Numerical value of rotation speed

Displays the motor rotation speed in numerical value.

⑧ Numerical value of peak current value

Displays the numerical value of the 3 shunt current’s peak current value, which, in this example, is the U
phase current’s peak value.

⑨ Log function selection

User selects whether to output log (CSV file) from drop down list. The CSV file is stored in the “CSV
Location” folder immediately under the C drive in the initial settings.

• View only

- Only monitors various data.

• Save to CSV (divided)

- Monitors various data and outputs logs. This setting outputs the sampling waveform and frequency

spectrum (dBFS) to the file independently for each phase. Data is recorded after a line feed for every

FFT frame.

• Save to CSV (combined)

- Monitors various data and outputs logs. This setting outputs the sampling waveforms and frequency

spectrums (dBFS) together in a single file. Data is added until the acquisition record is completed.

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 25 of 47

Oct.07.19

 Setting tab

Figure5-2 shows the display specifications for the Setting tab. The numbers in the figure correspond to the
numbers in the function descriptions below.

Figure5-2. Setting Tab Display Specifications

⑩ Sampling parameter setting

The learned DNN in this example is optimized to the default setting except for the moving average.

1. Sampling Frequency
Specifies the sampling frequency (1/2/4/8 kHz, default: 2 kHz)

2. Frame Size
Specifies the FFT frame size (128/256/512/1024, default: 512).

3. Overlap Size
Specifies the FFT frame overlap size (16/32/64/128, default: 64).

4. Moving Average
Specifies the moving average of the graph for the AI inference result (specified range: 1 to 100
times, default: 10).

⑪ Communication setting

1. COM
Acquires and displays the name of the FTDI device connected to the PC.

2. Baud
Specifies the Baud rate for communications between the MCU and PC (range: 9600 to 5000000,
default: 5000000).

⑫ CSV storage location setting

Specifies the CSV file output location when the View tab is set to output logs.

⑬ View settings

Specifies the update interval of the view tab (1/2/4/8/16/32/64, default: 1).

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 26 of 47

Oct.07.19

 Operations

1. Startup

Connect the Demo device and PC with a USB cable. Open the DataCollectionTool_for_RX.exe as shown in
the figure.

Figure 5-3. DataCollectionTool_for_RX.exe file

If you open the exe file before connecting the demo device to the PC with a USB cable, you will get an error
warning, as shown in Figure5-4.

Figure5-4. Error Display

The screen shown in Figure5-5 appears when you open the exe file.

Figure5-5. Initial Startup Screen

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 27 of 47

Oct.07.19

2. Start data acquisition

Push the START button shown in Figure5-6, to start data acquisition

Figure5-6. Data Acquisition Start Button

After data acquisition starts, the acquired data is displayed in the View screen.

Figure5-7. Screen During Data Acquisition

3. Stop data acquisition

Push the STOP button shown in Figure 5-8, to stop data acquisition.

Figure 5-8. Data Acquisition Stop Button

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 28 of 47

Oct.07.19

By selecting “Save to CSV(divided)” from the drop-down list shown in “5.2.1 View tab,” you can output data
for each axis and rotation speed/peak current data to CSV files while viewing the data. Figure5-9 shows the
files created for saving the output data.

Figure5-9. Files Created when is “Save to CSV(divided)” is Selected

In the same manner, by selecting “Save to CSV(combined)” you can output data for each axis in a single
CSV file while viewing the data. Figure5-10 shows the file created for saving the output data.

Figure5-10. File Created when ”Save to CSV(combined)” is selected

.

6. Reference Documents

[1] RX66T Group User’s Manual: Hardware (R01UH0749)

[2] RX66T Sensorless vector control for permanent magnetic synchronous motor (Implementation)

(R01AN4244)

[3] Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T User’s Manual

(R20UT3697)

[4] RX66T CPU Card User’s Manual (R12UZ0029)

[5] RX Family RX DSP Library Version 5.0 (R01AN4359)

[6] RX Family Sample Program for Performing FFT on Analog Input Signals (R01AN4015)

[7] User's Manual for e-AI Translator (R20UT4135)

[8] e2 studio Integrated Development Environment User's Manual: Getting Started Guide (R20UT4374)

[9] Renesas Flash Programmer V3.05 Flash memory programming software User’s Manual (R20UT4307)

[10] RX66T e-AI Motor Failure Detection Sample Software AI Model Development Quick Start
Guide (R01QS0036)

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 29 of 47

Oct.07.19

Appendix1. Operation Confirmation Method

1. Usage Notes

The evaluation device (Simple Motor Bench) described in this section was not constructed for operations or
evaluations conducted over a prolonged period. In addition, vibrations during motor operations may cause
problems, such as parts becoming loose or falling off the device. Please give due consideration to safety
when confirming operations using this device.

2. Evaluation Environment

Table 6-1 provides details of the hardware environment required for development of based on this sample
software.

Table 6-1. Hardware Environment

Item Name Manufacturer Spec/Model No. etc. QTY

Evaluation

board

RX66T CPU card Renesas RTK0EMX870C00000BJ 1

24V inverter board Renesas RTK0EM0006S01212BJ 1

24V AC adaptor (general) Output: over DC24V－2A

Plug shape: diameter - external

5.5mm/internal 2.1mm

Center plus

1

USB serial converter cable

(See note)

FTDI C232HM-EDHSL-0

USB Hi-Speed to MPSSE Cable

1

Pin header (general) 2.54mm pitch, 36 positions x 2 rows 1

Drive motor Brushless DC motor Tsukasa Electric

Co. Ltd.

TG-55L

(bundled with RTK0EM0006S01212BJ)

1

Simple motor

bench

Universal plate Tamiya Inc. Item No:70098 1

Planetary gear box set Tamiya Inc. Item No:72001

Use one 4:1 gear unit

1

Rubber foot (general) － 4

Air tube (general) External diameter: 4mm, internal

diameter 2.5mm

Cut to 52mm

1

Banding band (general) Width: 2mm 4

PC for display － (general) OS：Windows® 10

Processor: 1.6GHz or more

Main memory: 1G Byte or more

Interface: USB2.0 (for E2Lite or USB-

serial cable connection)

1

Note: Depending on the operating environment, noise may be superimposed on the transfer data. If this

occurs, try various measures such as adjusting the operating environment or making the cable

shorter.

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 30 of 47

Oct.07.19

3. Simple motor bench assembly

This section describes how to assemble a simple motor bench. The complete bench is shown in Figure 1.

Figure 1. Simple motor bench - Appearance

a.Top view

b. Side view

c. Bottom view

Notes1. Connect the air tube before fixing the planetary gear box to the universal plate.
Make sure the tube is inserted securely into the base of the shaft.

Notes2. Tightly secure the brushless DC motor to the board with the bands.

Notes3. Screw as a stopper to fix the brushless DC motor.

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 31 of 47

Oct.07.19

Figure 2 shows the position of the holes for the banding band to secure the load motor.

Figure 2. Simple motor bench - Parts location

4. USB-serial converter cable

USB-serial converter cable C232HM-EDHSL-0, manufactured by FTDI (Future Technology Devices
International), is used for communication between RX66T and the PC.

i. How to connect the cable

 Solder the pin header (36x2) to the CNC through hole on the RX66T CPU board.

 Referring to Table 6-2, connect the C232HM-EDHSL-0 pins to the CNC pin header. Connect pins 27

and 28 of the CNC pin header with short block jumper.

Table 6-2. USB-Serial converter cable pin connection list

C232HM-EDHSL-0 pin assign CNC pin header pin assign

Function Wire color Pin No. Function

FSCLK Yellow 29 SCK8

FSDI Orange 15 TXD8

FSDO Green 35 RXD8

FSCTS Brown 33 IRQ1

- - 28 - 27 (Jumper short) P31 -> CTS8#

GND Black 31 GND

Figure 3. USB-Serial converter cable connection diagram

Top view

Bottom view

: Screw : Nut

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 32 of 47

Oct.07.19

ii. Device Setting

Note that the FT232HL operating mode must be changed before attaching the USB serial converter cable.
Please carry out the following steps to change the operating mode.

① Download the FT_Prog software from the FTDI site and install.

http://www.ftdichip.com/Support/Utilities.htm#FT_Prog

② Download and install .NET Framework 4.0 which is required for running FT Prog.

https://msdn.microsoft.com/ja-jp/vstudio/ff687189.aspx

③ After the above programs are downloaded and installed, execute FT_PROG.exe. Figure 4. shows the

initial startup screen after executing FT_PROG.exe. Click the magnifying glass icon (circled in red in the

figure) to view a list of connected FTDI devices. Connect the USB serial conversion cable here, then

press the magnifying glass icon (circled in red). The connected devices will then be displayed on the

screen.

Figure 4. Initial Startup Screen

④ Make the following changes to operating modes as shown in Figure 5: [Hardware]→OPTO isolate,

[Driver]→D2XX.

Figure 5. “Hardware” Driver Setting Screen

http://www.ftdichip.com/Support/Utilities.htm#FT_Prog
https://msdn.microsoft.com/ja-jp/vstudio/ff687189.aspx

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 33 of 47

Oct.07.19

⑤ Click the lightning icon (circled in red in Figure 6) to open the EEPROM program dialog

Figure 6. Setting Screen

⑥ Press Program (circled in red in Figure 7.) to implement all of the changes. After a few seconds, the
settings will be programmed to the EEPROM on the board.

Figure 7. FTDI Device Program Screen

⑦ After programming is completed, detach the USB-serial conversion cable from the PC. Once the cable
is re-attached, the system will operate based on the new settings.

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 34 of 47

Oct.07.19

5. Write ROM file to the MCU

This section explains how to write a ROM file to the MCU using E2 Lite. Refer to Reference Document [4]
“RX66T CPU Card User’s Manual” for details on the position of the emulator connector for the E2 Lite
connection.

① e2studio

For instructions on how to import a sample project into e2 studio using E2Lite, refer to Reference Document
[8] “e2 studio Integrated Development Environment User’s Manual – Getting Started Guide.

② Renesas Flash Programmer

For instructions on how to write a mot file with the Renesas Flash Programmer, refer to Reference Document
[9] “Renesas Flash Programmer V3.05 Flash Memory Programming Software User’s Manual.”

Make sure to specify DefaultBuild/”Samplesoft name”.mot of the sample software as in the path of the
program file to be written to the MCU.

6. Operations

Refer to Reference Document [3] for explanations on how to supply the power, control the motor, and turn off
the power.

Instructions on how to control the motor speed with VR1 are provided below. The letters and numbers
correspond to indications in the figure.

• Rotation speed

⎯ STOP：Stop

⎯ MIN：1000rpm

⎯ MAX：2000rpm

Note: Please operate the VR1 gently. Operating it too suddenly will cause the overcurrent protection to
start up.

Figure 8. Control of motor rotation speed

CW CW

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 35 of 47

Oct.07.19

The following shows the normal and abnormal states. This sample software defines the shaft deviation as
the abnormal state. You can reproduce the abnormal state by pressing the universal plate to bend the air
tube a little. Please lightly press the universal plate with finger like a Figure 10 because a strong pressing
force may result in motor stop. As a guide, it is reach 0.3A when the motor rotation speed is 1000rpm.

Figure 9. Normal State

Figure 10. Abnormal State

7. Reference information

The following describes the reference information of simple motor bench evaluation. If you can’t get an
expected AI inference result, load of simple motor bench may not be appropriate. Please adjust it by referring
to the peak current value in the following table. The peak current value and AI inference result are average
value of 10 seconds that is calculated from wave monitor tool log.

Motor

Rotation

Speed (*)

Motor

Load

Motor bench A Motor bench B Motor bench C

Peak

Current (A)

AI Inference

Result (%)

Peak

Current (A)

AI Inference

Result (%)

Peak

Current (A)

AI Inference

Result (%)

1000rpm
Normal 0.121 0 0.130 15 0.113 13

Abnormal 0.306 84 0.407 100 0.285 93

1500rpm
Normal 0.124 1 0.141 0 0.124 0

Abnormal 0.318 98 0.537 100 0.327 88

2000rpm
Normal 0.135 5 0.156 6 0.131 1

Abnormal 0.285 95 0.531 96 0.290 96

* : Adjusting the motor rotation speed displayed in wave monitor tool..

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 36 of 47

Oct.07.19

Appendix2. MCU Software: detailed information

1. Memory Usage

Table 6-3. Memory Usage

Item Total Size Description

RAM 38.89 KB －

ROM 38.34 KB ROM data section : 8.44 KB

Program section : 29.90 KB

2. CPU Load

Table 6-4. CPU Load

Item Processing Time CPU Load Factor

50 [us] period interrupt (carrier interrupt) process 12.5μs 25.00%

500 [us] period interrupt process 2.4μs 0.48%

FFT process (fExecuteFFT()) (*) 2128.7μs 0.95%

e-AI inference process (AI_Inference()) (*) 316.7μs 0.14%

* : Except interrupt processing time

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 37 of 47

Oct.07.19

3. Smart Configurator Settings

i. Clock settings

Table 6-5 lists the clock settings for the sample software.

Table 6-5. Clock Settings

Note: Default values are used for settings not listed here.

ii. CMT1

CMT1 creates the motor’s 3 shunt current A/D sampling frequency (2kHz).

Table 6-6 shows the settings for CMT1.

Table 6-6. CMT1 Settings

Item Description

Clock setting PCLK/8

Interval time 500μs

Enable compare match interrupt (CMI1) Select ON

Interrupt priority 11

Note: Default values are used for settings not listed here.

Item Description

VCC 5V

Main clock Select ON

Oscillation source Oscillator

Frequency 8MHz

PLL circuit division ratio x1

PLL circuit multiplication ratio x20.0

SCKCR(FCLK[3:0]) x1/4 (FCLK=40MHz)

SCKCR(ICLK[3:0]) x1 (ICLK=160MHz)

SCKCR(PCLKA[3:0]) x1/2 (PCLKA=80MHz)

SCKCR(PCLKB[3:0]) x1/4 (PCLKB=40MHz)

SCKCR(PCLKC[3:0]) x1 (PCLKC=160MHz)

SCKCR(PCLKD[3:0]) x1/4 (PCLKD=40MHz)

SCKCR(BCK[3:0]) x1/4 (BCLK=40MHz)

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 38 of 47

Oct.07.19

iii. SCI8

Use SCI8 to carry out serial communication between RX66T and the PC. FTDI’s USB-serial converter cable
C232HM-EDHSL-0 serves as the serial communication interface, and transfers are carried out in the
MPSSE(*1) mode. To enable this, the SCI8 must be set to asynchronous mode, and clock output from the
SCK8 pin. Also, use the CTS#8 pin for flow control.

*1: Multi-Protocol Synchronous Serial Engine

Table 6-7 lists the settings for SCI8.

Table 6-7. SCI8 Settings

Item Description

Communication method SCI asynchronous mode

Start bit detection When RXD8 pin is Low

Data bit length 9 bits

Parity none

Stop bit 1 bit

Data transfer direction LSB first

Transfer clock Internal clock (PCLKB)

Bit rate 5,000,000

Bit modulation function Enabled

SCK8 pin function Clock output

Hardware flow control CTS8#

Send data processing Processed by DMAC

Receive data processing Processed in interrupt service routine

TXI8 priority 12

RXI8 priority 8

Receive error interrupt enable (ERI8) Enabled

TEI8, ERI8 priority (group BL1) Level 15 (Notes2)

Callback function setting Send complete, receive complete, receive error

Pins used TXD8: PA4/TXD8 (pin 37)

RXD8: PD1/RXD8 (pin 24)

SCK8: PA3/SCK8 (pin 38)

CTS8: P30/CTS8# (pin 63)

Notes1. Default values are used for settings not listed here.

Notes2. This is defined in the sample code in Reference Document [2]. Please do not change.

The following code is added to set the 9th bit of send data initial value to '0'.
Target file: Config_SCI8_user.c (output by smart configurator)
Target function: R_Config_SCI8_Create_UserInit function (created by smart configurator)

void R_Config_SCI8_Create_UserInit(void)

{

 /* Start user code for user init. Do not edit comment generated here */

 /* Set 9th bit to “0” */

 SCI8.TDRHL.BYTE.TDRH = 0xFE;

 /* End user code. Do not edit comment generated here */

}

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 39 of 47

Oct.07.19

iv. DMAC0

Table 6-8 lists the settings for DMAC0.

Table 6-8. DMAC0 Settings

Item Setting Value

Activation factor Set to SCI8 (TXI8)

Activation factor flag control At the start of transfer, clear the interrupt flag that became the

activation factor

Transfer mode Normal mode

Transfer data size 8 bits

No. of transfers 1 (set in application at time of transfer)

Transfer origin address 0x00000000 (set in application at time of transfer)

Transfer origin address update method Increments

Transfer destination address 0x00000000 (set separately in user initial setting section)

Transfer destination address update

method

Fixed address

Interrupt setting (DMAC0I) Enable transfer complete interrupt

Interrupt priority 8

Note: Default values are used for settings not listed here.

The following code is added to set the DMAC0 transfer address to the SCI8 ‘send register’.
Target file: Config_DMAC0_user.c (output by smart configurator)
Target function: R_ConfigCMAC0_Create_UserInit function (created by smart configurator)

void R_Config_DMAC0_Create_UserInit(void)

{

 /* Start user code for user init. Do not edit comment generated here */

 DMAC0.DMDAR = (void *)&SCI8.TDRHL.BYTE.TDRL;

 /* End user code. Do not edit comment generated here */

}

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 40 of 47

Oct.07.19

v. IRQ1

Table 6-9 lists the settings for IRQ1.

Table 6-9.IRQ1 Settings

Item Setting Value

Detect type Rising and falling edges

Digital filter none

Interrupt priority Level 12

Pins used PE4/IRQ1 (pin 8)

Note: Default values are used for settings not listed here.

The following code is added to invert the level of the IRQ1 pin and output from the I/O port.

Target file: Config_ICU_user.c (output by smart configurator)

①Target function: R_ConfigCMAC0_Create_UserInit function (created by smart configurator)

void R_Config_ICU_Create_UserInit (void)

{

 /* Start user code for user init. Do not edit comment generated here */

/* Initial setting of GPIO used for FSCTS signal inversion */

/* PE4/IRQ1(IN) -> ~P31(OUT) -> P30/CTS8#(IN) */

PORT3.PODR.BIT.B1 = ~PORTE.PIDR.BIT.B4;

/* Set P31 to the output port */

PORT3.PDR.BIT.B1 = 1;

 /* End user code. Do not edit comment generated here */

}

②Target function: r_Config_ICU_irq1_interrupt function (created by smart configurator)

static void r_Config_ICU_irq1_interrupt(void)

{

 /* Start user code for r_Config_ICU_irq1_interrupt. Do not edit comment

generated here */

 /* Invert the FSCTS signal */

PORT3.PODR.BIT.B1 = ~PORTE.PIDR.BIT.B4;

 /* End user code. Do not edit comment generated here */

}

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 41 of 47

Oct.07.19

4. Functions

Table 6-10 lists the functions used in main processing. The functions in bold lettering are new additions or
have been updated.

Table 6-10. Functions Used in Main Processing

Function Name Description

clrpsw_i() Disables interrupts

R_MTR_InitHardware() Initializes motor peripheral functions

R_MTR_InitBoardUi() Initializes user interface

software_init() Initializes variables

R_MTR_InitControl() Initializes three-phase vector motor control

ics2_init() Initializes for use of " Renesas Motor Workbench" tools

R_MTR_ExecEvent() Executes FOC control events

R_Systeminit() Initializes sensor peripheral functions

setpsw_i() Enables interrupts

R_MTR_ChargeCapacitor() Waits for bus voltage stabilization

MotionSensorInit() Initializes AI inference processing

board_ui() Motor control processing

ics_ui() Processing for use of " Renesas Motor Workbench"

MotionSensorMonitor() AI inference processing

R_MTR_ClearWdt() Clears WDT

Table 6-11 lists the functions used for motor control processing.

Table 6-11. Functions used for Motor Control Processing

Function Name Description

R_MTR_GetStatus() Acquires motor status

get_sw1() Acquires SW1 position

get_vr1() Acquires VR1 position

R_MTR_SetSpeed() Sets rotation speed command value

get_sw2() Acquires SW2 state

Table 6-12 lists the functions used for AI inference processing.

Table 6-12. Functions used for AI Inference Processing

Function Name Description

fGetAdData() Acquires A/D conversion value

fSetADSendData() Creates A/D conversion result send data

fCalcFrequencySpectrum() Executes FFT operation, acquires frequency spectrum

fExecuteFFT() Executes FFT operation

fInitFft() Initializes FFT operation

fGetMotorData() Acquires rotation speed and peak current

fSendFtdi() Sends data to PC

fPcCommandRecv() Analyzes PC command

fPcGetData() Acquires PC command

fUpadteMovingAverage() Updates AI inference value moving average data

fGetMovingAverage() Acquires AI inference value moving average data

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 42 of 47

Oct.07.19

5. Constants

Table 6-13 lists the constants used for AI inference processing. The blue area indicates constants used for
the FFT operation used by the DSP library.

Table 6-13. Constants (MotionSensor.h)

MotionSensor.h

Constant Name Setting Value Description

DEF_PCLKB 40000000.0 PCLKB setting value(Unit: MHz)

DEF_CMT_CLK8 DEF_PCLKB / 8.0 CMT1 operating clock

DEF_DefaultSamplingFrequency 2000 Default sampling frequency value

(Unit: Hz)

DEF_MinSamplingFrequency 1000 Minimum sampling frequency

(Unit: Hz)

DEF_MaxSamplingFrequency 8000 Maximum sampling frequency

(Unit: Hz)

DEF_DefaultSamplingCount 512 Default sampling count

DEF_SamplingCount128 128 Sampling count (128)

DEF_SamplingCount256 256 Sampling count (256)

DEF_SamplingCount512 512 Sampling count (512)

DEF_SamplingCount1024 1024 Sampling count (1024)

DEF_MaxSamplingCount DEF_SamplingCount512 Maximum sampling count

DEF_MinSamplingCount DEF_SamplingCount128 Minimum sampling count

DEF_DefaultOverlapSampling 64 Default overlap size

DEF_MinOverlapSampling 16 Minimum overlap size

DEF_MaxOverlapSampling 128 Maximum overlap size

DEF_FFT_NUM_BITREV 240 No. of elements in bit reverse table

DEF_SamplingRingBuffer 1024 Sampling ring buffer size

DEF_HeaderSize 7 Send data header byte size

DEF_SendAdMonitor 1 “AD converted value” send

command

DEF_SendFrequencyMonitor 2 “Frequency spectrum” send

command “

DEF_StartMonitor 1 “Monitor start” receive command

DEF_StopMonitor 2 “Monitor stop” receive command

DEF_SetUpSampling 3 “Sampling count setup” receive

command

DEF_PcRecvBuffSize 128 Receive buffer size from PC

DEF_PcRecvTimeOut 100 Receive timeout time from PC

(Unit: 10msec)

DEF_MovingAverageMinCount 1 AI inference moving average

minimum count

DEF_MovingAverageMaxCount 100 AI inference moving average

maximum count

DEF_DefaultMovingAverageMaxCount 20 Default AI inference moving

average count

DEF_ShuntCurrentSampling 1 Current mode

DATA_CROPPING_PEAK 1 Setting of cropping data around

peak value

DATA_CROPPING 2 Setting of cropping data specified

range

DATA_CROPPING_NONE 3 Setting of not cropping data

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 43 of 47

Oct.07.19

6. Variables

Table 6-14 lists the global variables used for AI inference processing. The blue area indicates
variables used for the FFT API functions in the DSP library.

Table 6-14. Global Variables (MotionSensor.c)

MotionSensor.c

Type Name Variable Name Description

ST_SamplingRingBuffer gv_SamplingRingBuffer Ring buffer for A/D sampling

uint16_t gv_SamplingCounter A/D sampling counter

int16_t gv_FrameSamplingEnd Acquisition end position

notification for 1 frame of A/D

sampling buffer

int16_t gv_AD0Bffer[(DEF_MaxSamplingCount * 2)

- DEF_MinOverlapSampling]

A/D conversion result (U

phase) buffer ァ

int16_t gv_AD1Bffer[(DEF_MaxSamplingCount * 2)

- DEF_MinOverlapSampling]

A/D conversion result (V

phase) buffer

int16_t gv_AD2Bffer[(DEF_MaxSamplingCount * 2)

- DEF_MinOverlapSampling]

A/D conversion result (W

phase) buffer

int16_t gv_RspiSendStatus FTDI send status

int32_t gs_fft_VecCplxMagi32[DEF_MaxSamplingC

ount/2]

Complex magnitude value

storage buffer

cplxi32_t gs_fft_buf[(DEF_MaxSamplingCount/2)] Storage area for result of

"R_DSP_FFT_i16ci32" function

operation (sampling count/2)

vector_t gs_fft_time = {DEF_MaxSamplingCount,

NULL}

Argument for

"R_DSP_FFT_i16ci32" function

(displays input buffer)

vector_t gs_fft_freq = {(DEF_MaxSamplingCount/2),

gs_fft_buf}

Argument for

"R_DSP_FFT_i16ci32" function

(displays output buffer)

vector_t gs_fft_mag = {(DEF_MaxSamplingCount/2),

gs_fft_VecCplxMagi32}

Argument for

"R_DSP_VecCplxMag_ci32i32"

function (displays output buffer)

r_dsp_fft_t gs_fft_handle = {DEF_MaxSamplingCount,

0};
FFT function handle

int16_t gs_fft_twiddles[(DEF_MaxSamplingCount+(

DEF_MaxSamplingCount/2))]
Rotation factor buffer

Int32_t gs_fft_bitrev[DEF_FFT_NUM_BITREV] Bit reverse buffer

float gv_DecibelsBelowFullScale A/D converter full scale value

(unit: dB)

Working buffer for frequency

conversion calculation

float gv_SquareSamplingHalf Working buffer for frequency

conversion calculation of

(sampling count/2)^2 ァ

int16_t gv_MonitorStatus Measurement start/stop status

ST_SamplingMonitor gv_SamplingMonitor Monitor send data (stores data

such as frequency spectrum)

uint8_t gv_RecvData Receive data (data to confirm

receive is valid at initialization)

ST_PcRecvRingBuffer gv_PcRecvRingBuffer Ring buffer for receive from PC

uint16_t gv_PcRecvStatus Status of receive from PC

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 44 of 47

Oct.07.19

uint8_t gv_PcCommand Receive command from PC

uint32_t gv_PcRecvTimer Monitor timer for receive from

PC

ST_SamplingConditions gv_SamplingConditions Sampling conditions

uint16_t gv_SamplingSize Sampling buffer size

uint16_t gv_Buffer2to1Overlap Stores sampling buffer overlap

sample count

uint16_t gv_Frame1End Stores end position of even

frames

uint16_t gv_Frame2End Stores end position of odd

frames

ST_MovingAverage gv_MovingAverage Working buffer for AI inference

moving average calculation

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 45 of 47

Oct.07.19

The following lists structures used in the e-AI sample code that is run in this sample software. The items
highlighted in gray are structures or member names that will be eliminated in the future.

/* A/D sampling buffer structures */

typedef struct {

 int16_t m_Ad0Value; /* A/D conversion result (U phase) buffer */

 int16_t m_Ad1Value; /* A/D conversion result (V phase) buffer */

 int16_t m_Ad2Value; /* A/D conversion result (W phase) buffer */

} ST_SamplingRingData;

/* A/D ring buffer structures */

typedef struct {

 uint16_t m_Write; /* Ring buffer write position */

 uint16_t m_Read; /* Ring buffer read position */

 ST_SamplingRingData m_SamplingRingData[DEF_SamplingRingBuffer]; /* Ring

buffer */

} ST_SamplingRingBuffer;

/* Information structures (frame length 128 samples) */

typedef struct {

 float m_FrequencySpectrum[3][DEF_SamplingCount128/2]; /*

Stores frequency spectrum */

 float m_RotationSpeed; /* Stores rotation speed */

 float m_PeekCurrent; /* Stores peak current value */

 int8_t m_AiResult; /* Stores AI inference value (%)*/

 float m_AiMovingAverage;/* Stores AI inference value

(%)moving average */

} ST_Sampling128;

/* Information structures (frame length 256 samples) */

typedef struct {

 float m_FrequencySpectrum[3][DEF_SamplingCount256/2];

 float m_RotationSpeed;

 float m_PeekCurrent;

 int8_t m_AiResult;

 float m_AiMovingAverage;

} ST_Sampling256;

Information structures (frame length 512 samples)

typedef struct {

 float m_FrequencySpectrum[3][DEF_SamplingCount512/2];

 float m_RotationSpeed;

 float m_PeekCurrent;

 int8_t m_AiResult;

 float m_AiMovingAverage;

} ST_Sampling512;

Information structures (frame length 1024 samples)

typedef struct {

 float m_FrequencySpectrum[3][DEF_SamplingCount1024/2];

 float m_RotationSpeed;

 float m_PeekCurrent;

 int8_t m_AiResult;

 float m_AiMovingAverage;

} ST_Sampling1024;

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 46 of 47

Oct.07.19

/* Serial communication buffer structures and unions */

typedef struct {

 uint8_t m_Header[DEF_HeaderSize]; /* Stores communication

header */

 uint8_t m_Cmd; /* Communication control command, 01: A/D

conversion value, 02: FFT processed value */

 union {

 ST_SamplingRingData m_SamplingData; /* Entity of 3 shunt current buffer

structure */

 ST_Sampling128 m_Sampling128; /* Entity of data structures */

 ST_Sampling256 m_Sampling256;

 ST_Sampling512 m_Sampling512;

 ST_Sampling1024 m_Sampling1024;

 } UN_Sampling;

} ST_SamplingMonitor;

/* Serial communication ring buffer structure */

typedef struct {

 uint16_t m_Write; /* Ring buffer write position */

 uint16_t m_Read; /* Ring buffer read position */

 uint8_t m_RingData[DEF_PcRecvBuffSize]; /* Ring buffer */

} ST_PcRecvRingBuffer;

/* Moving average operation buffer structure */

typedef struct {

 uint16_t m_MaxCount; /* Acquired data count */

 uint16_t m_BufferFull; /* Buffer full flag */

 uint16_t m_Count; /* Moving average length */

 uint32_t m_Sum; /* Moving average sum buffer */

 uint16_t m_AiInference[DEF_MovingAverageMaxCount]; /* AI

inference value buffer */

} ST_MovingAverage;

/* Sampling conditions structure */

typedef struct {

 uint16_t m_SamplingFrequency; /* Sampling frequency */

 uint16_t m_SamplingCount; /* Sampling count */

 uint16_t m_SamplingOverLap; /* Overlap size */

 uint16_t m_MovingAverageMaxCount; /* Moving average maximum

count */

 uint16_t m_SamplingMode; /* Smampling mode */

 uint32_t m_CheckSum; /* Checksum */

} ST_SamplingConditions;

RX66T e-AI Motor Failure Detection Sample Software Application Note

R01AN4821EJ0200 Rev.2.00 Page 47 of 47

Oct.07.19

Revision History

Rev. Date

Description

Page Summary

1.00 June. 20, 2019 - First Edition issued

2.00 Oct. 07, 2019 7

12

19

22

40

42

Hardware Block Diagram, corrected.

4.3 Resources, added.

Flowchart for getting A/D conversion result of motor current

value, added.

4.7.4 Preprocessing specifications, added.

v. IRQ1, added.

Added the constants.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction
	2. Overview
	3. Specification
	3.1 Operating Conditions
	3.2 Hardware Diagram
	3.3 Operations Overview
	3.4 State Transition

	4. MCU Software Explanation
	4.1 Software Configuration
	4.2 Directory Configuration
	4.3 Resources
	4.3.1 Resource List
	4.3.2 Interruptions

	4.4 Main Processing
	4.5 Motor Control Processing
	4.6 FFT Processing
	4.7 AI Inference Processing
	4.7.1 Flowchart
	4.7.2 Data Flow
	4.7.3 AI Model
	4.7.4 Preprocessing specifications

	5. Data Collection Tool
	5.1 Operation Overview
	5.2 Function Explanations
	5.2.1 View Tab
	5.2.2 Setting tab

	5.3 Operations

	6. Reference Documents
	Appendix1. Operation Confirmation Method
	1. Usage Notes
	2. Evaluation Environment
	3. Simple motor bench assembly
	4. USB-serial converter cable
	i. How to connect the cable
	ii. Device Setting

	5. Write ROM file to the MCU
	6. Operations
	7. Reference information

	Appendix2. MCU Software: detailed information
	1. Memory Usage
	2. CPU Load
	3. Smart Configurator Settings
	i. Clock settings
	ii. CMT1
	iii. SCI8
	iv. DMAC0
	v. IRQ1

	4. Functions
	5. Constants
	6. Variables

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

