
 APPLICATION NOTE

R01AN1020EJ0100 Rev. 1.00 Page 1 of 32
Apr. 05, 2013

RX630 Group
Pulse Width Measurement Using MTU2a

Abstract
This document describes methods to measure a high pulse width when an external trigger is detected using multi-
function timer pulse unit 2 (hereinafter referred to as MTU) in the RX630 Group.

Products
- RX630 Group 177-pin and 176-pin packages with a ROM size between 768 KB and 2 MB

- RX630 Group 145-pin and 144-pin packages with a ROM size between 768 KB and 2 MB

- RX630 Group 100-pin package with a ROM size between 384 KB and 2 MB

- RX630 Group 80-pin package with a ROM size between 384 KB and 512 KB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1020EJ0100
Rev. 1.00

Apr. 05, 2013

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 2 of 32
Apr. 05, 2013

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Note .. 4

4. Hardware .. 5
4.1 Pins Used ... 5

5. Software ... 6
5.1 Sample Code 1 .. 6

5.1.1 Operation Overview .. 7
5.1.2 File Composition ... 9
5.1.3 Option-Setting Memory ... 9
5.1.4 Constant ... 10
5.1.5 Variables ... 10
5.1.6 Functions .. 10
5.1.7 Function Specifications ... 11
5.1.8 Flowcharts .. 14

5.2 Sample Code 2 .. 19
5.2.1 Operation Overview .. 20
5.2.2 File Composition ... 22
5.2.3 Option-Setting Memory ... 22
5.2.4 Constants .. 23
5.2.5 Variables ... 23
5.2.6 Functions .. 23
5.2.7 Function Specifications ... 24
5.2.8 Flowcharts .. 27

6. Sample Code .. 32

7. Reference Documents .. 32

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 3 of 32
Apr. 05, 2013

1. Specifications
A high pulse width is measured when an external trigger is detected using the MTU input capture function. The high
pulse width measurement is taken from the rising edge of an input pulse to the subsequent falling edge.

This application note describes two methods listed in Table 1.1 to measure a high pulse.

Table 1.1 Sample Codes for Measuring a High Pulse

Sample Code Outline Remarks

Sample code 1 Input pulses to two pins to measure high pulses. - Use two pins
- Low CPU load

Sample code 2 Use the program to measure high pulses. - Use a single pin
- High CPU load

Table 1.2 lists the Peripheral Function and Its Application, Figure 1.1 shows the Connection Diagram of Sample Code 1,
and Figure 1.2 shows the Connection Diagram of Sample Code 2.

Table 1.2 Peripheral Function and Its Application

Peripheral Function Application
MTU2a channel 1 (hereinafter referred to as MTU1) Measure a pulse width

MTIOC1A pin

MTIOC1B pin

P17 pin

RX630

Resolution: Approximately 83.3 ns
Maximum measurement width: Approximately 358 seconds

Error signal

Figure 1.1 Connection Diagram of Sample Code 1

MTIOC1A pin

P17 pin

RX630

Error signal

Resolution: Approximately 83.3 ns
Maximum measurement width: Approximately 358 seconds

Figure 1.2 Connection Diagram of Sample Code 2

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 4 of 32
Apr. 05, 2013

2. Operation Confirmation Conditions
The sample codes accompanying this application note have been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F5630EDDFP (RX630 Group)
Operating frequencies - Main clock: 12 MHz

- PLL: 192 MHz (main clock divided by 1 and multiplied by 16)
- System clock (ICLK): 96 MHz (PLL divided by 2)
- Peripheral module clock B (PCLKB): 48 MHz (PLL divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
-cpu=rx600 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo

(The default setting is used in the integrated development environment.)
iodefine.h version Version 1.50
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit for RX630 (product part no.: R0K505630C000BE)

3. Reference Application Note
For additional information associated with this document, refer to the following application note.

- RX630 Group Initial Setting Rev. 1.00 (R01AN1004EJ0100_RX630)

The initial setting functions in the reference application note are used in the sample code in this application note. The
revision number of the reference application note is the one when this application note was made. However the latest
version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest
version.

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 5 of 32
Apr. 05, 2013

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions – Sample Code 1 and Table 4.2 lists the Pins Used and Their
Functions – Sample Code 2.
The pins described here are for 100-pin products. When the product with less than 100-pin is used, select appropriate
pins for the product used.

Table 4.1 Pins Used and Their Functions – Sample Code 1

Pin Name I/O Function
P20/MTIOC1A Input Input a measurement pulse
P21/MTIOC1B Input Input a measurement pulse
P17 Output Output an error signal

Table 4.2 Pins Used and Their Functions – Sample Code 2

Pin Name I/O Function
P20/MTIOC1A Input Input a measurement pulse
P17 Output Output an error signal

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 6 of 32
Apr. 05, 2013

5. Software
Pulse width measurement starts when the measurement start flag is set to 1. A high pulse width is calculated in the
MTU1 input capture B interrupt handler for sample code 1 and in the MTU1 input capture A interrupt handler for
sample code 2.

Settings for sample codes 1 and 2 are described in the following sections.

5.1 Sample Code 1
A pulse width from the rising edge of a pulse input to the MTIOC1B pin to the subsequent falling edge is calculated.
The number of times the MTU1.TCNT register overflows is counted in the overflow interrupt handler. When the
number of overflows exceeds 65,535, an error signal is output and measurement stops.

The pulse width is calculated in the MTU1 input capture B interrupt handler based on the number of overflows and the
MTU1.TGRB register value.

Formula for calculating a pulse width: 83.3 ns × (number of overflows × 10000h + MTU1.TGRB)

Settings are as follows:

MTU1
- Count clock: Rising edge of PCLKB/4 (PCLKB = 48 MHz)
- Operating mode: Normal mode
- Timer general register (TGRB): Use as the input capture register
- MTIOC1A pin: Input capture at the rising edge
- MTIOC1B pin: Input capture at both edges
- Synchronous operation: Not used
- Counter clear: Input capture of TGRB

Interrupts
- Input capture A interrupt (TGIA1)
 Interrupt priority level: 3
 Interrupt source: MTU1.TGRA input capture
- Input capture B interrupt (TGIB1)
 Interrupt priority level: 3
 Interrupt source: MTU1.TGRB input capture
- Overflow interrupt (TCIV1) (1)
 Interrupt priority level: 4
 Interrupt source: MTU1.TCNT overflow

Note:

1. The overflow interrupt of MTU1 (TCIV1) is assigned to the group 1 interrupt.

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 7 of 32
Apr. 05, 2013

5.1.1 Operation Overview

5.1.1.1 Measuring a Pulse Width

(1) When the TSTR.CST1 bit is set to 1 (count starts), MTU1 starts counting.

(2) When the levels of pins MTIOC1A and MTIOC1B change from low to high, the counter is cleared and the input
capture B interrupt request is generated due to an edge input to the MTIOC1B pin, and the input capture A interrupt
request is generated due to a rising edge input to the MTIOC1A pin.
The measurement start flag is set to 1 (measurement starts) in the input capture A interrupt handler. Also the
overflow counter, overflow interrupt request, and input capture B interrupt request are cleared.

(3) When the MTIOC1B pin level changes from high to low, the MTU1.TCNT register value is transferred to the
MTU1.TGRB register and the counter is cleared. At the same time, the MTU1 input capture B interrupt request is
generated. In the input capture B interrupt handler, a pulse width is calculated based on the number of times the
MTU1.TCNT register overflows and the MTU1.TGRB register value. Then the measurement start flag is cleared.

(4) When the levels of pins MTIOC1A and MTIOC1B change from low to high, the same operation as (2) is performed.

(5) When the MTU1.TCNT register overflows, the overflow interrupt request is generated.
The number of overflows is counted in the overflow interrupt handler.

(6) When the level of the MTIOC1B pin changes from high to low, the same operation as (3) is performed.

Figure 5.1 shows the Timing Diagram of the Pulse Width Measurement. (1) to (5) in the figure correspond to (1) to (5)
in the description above.

TSTR.CST1 bit

Input signal to
the MTIOC1A pin

0

1

High

Low

Measurement start flag
0
1

IR flag of the input
capture A interrupt

0

1

0

1

Number of overflows

MTU1.TGRB register
(input capture B)

IR flag of the
overflow interrupt 0

1

IR flag of the input
capture B interrupt

Time

0 1 0

Interrupt request acceptance

Interrupt request acceptance

Interrupt request acceptance

Interrupt request acceptance

Value of (B)Value of (A)

Input signal to
the MTIOC1B pin

High

Low

0000h

(A)

(B)

MTU1.TCNT register value

FFFFh

(1) (2) (3) (4) (5)
High

width 1 High width 2

(6)

Cleared in the input capture A
interrupt handler

Interrupt request acceptance

Figure 5.1 Timing Diagram of the Pulse Width Measurement

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 8 of 32
Apr. 05, 2013

5.1.1.2 Operation When an Input Capture and Overflow Occur Simultaneously
(1) When a falling edge occurs on the signal input to the MTIOC1B pin while the MTU1.TCNT register value is FFFFh,

the MTU1.TCNT register is cleared and the input capture B interrupt request is generated after FFFFh in the
MTU1.TCNT register is transferred to the MTU1.TGRB register. If an overflow and counter clear occur
simultaneously, the counter clear has higher priority. Thus the overflow interrupt request is not generated.

(2) In the input capture B interrupt handler, the MTU1.TGRB register value (FFFFh) is read and the pulse width is
calculated.

(3) When the MTU1.TCNT register value overflows while an interrupt handler (hereinafter referred to as interrupt
handler A) other than an overflow interrupt handler and input capture B interrupt handler is being executed, the
overflow interrupt handler is delayed.

(4) When a falling edge occurs on the signal input to the MTIOC1B pin while interrupt handler A is being executed, the
MTU1.TCNT register value is transferred to the MTU1.TGRB register and the input capture B interrupt request is
generated (input capture B interrupt handler is delayed).

(5) When interrupt handler A is completed, the overflow interrupt which has the higher interrupt priority level is
executed first. In the overflow interrupt handler, the number of overflows increments by 1. In the input capture B
interrupt handler which is subsequently accepted, the pulse width is calculated.

Figure 5.2 shows the Timing Diagram When an Input Capture and Overflow Occur Simultaneously. (1) to (5) in the
figure correspond to (1) to (5) in the description above.

Previous measured value Value of (A)FFFFh

(5)(4)(2) (3)

FFFFh

(A)

0000h

(1)

n 10

IR flag of the input
capture B interrupt

Interrupt request acceptance

Cleared in the overflow
interrupt handler

Interrupt handler
being executed

TCNT is cleared without
generating the overflow
interrupt request

Cleared in the overflow
interrupt handler

MTU1.TCNT register value

MTIOC1A pin High

Low

High

LowMTIOC1B pin

MTU1.TGRB register
(input capture B)

Time

Number of overflows

0

1

0

1

Interrupt A

IR flag of the
overflow interrupt

Figure 5.2 Timing Diagram When an Input Capture and Overflow Occur Simultaneously

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 9 of 32
Apr. 05, 2013

Notes when embedding the sample codes
When embedding the sample code of this application note in the user system, note the following:

- When an interrupt used in this application note is delayed for a prolonged time due to other interrupt handlers, the
sample code may not be executed properly.

- When the measured pulse width is short, the software cannot perform the processes in time and the pulse width cannot
be measured properly.

5.1.2 File Composition
Table 5.1 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.1 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after
a reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c

5.1.3 Option-Setting Memory
Table 5.2 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.2 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh

The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a
reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 10 of 32
Apr. 05, 2013

5.1.4 Constant
Table 5.3 lists the Constant Used in the Sample Code.

Table 5.3 Constant Used in the Sample Code

Constant Name Setting Value Contents
P_OVF_ERR PORT1.PODR.BIT.B7 Port output data register for error signal output
PD_OVF_ERR PORT1.PDR.BIT.B7 Port direction register for error signal output

5.1.5 Variables
Table 5.4 lists the Global Variables.

Table 5.4 Global Variables

Type Variable
Name Contents Function Used

unsigned short mtu1_ovf_cnt Overflow counter of the MTU1.TCNT register Excep_ICU_ GROUP1,
Excep_MTU1_TGIA1

unsigned long pulse_cnt Pulse measurement counter Excep_MTU1_TGIA1

unsigned char start_flag Measurement start flag 0: Measurement stopped
 1: Measurement starts

Excep_ICU_ GROUP1,
Excep_MTU1_TGIA1

unsigned char error_flag Measurement error flag 0: Normal
 1: Error Excep_ICU_ GROUP1

5.1.6 Functions
Table 5.5 lists the Functions Used in the Sample Code.

Table 5.5 Functions Used in the Sample Code

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization
error_proc Error processing
Excep_MTU1_TGIA1 MTU1 input capture A interrupt handler
Excep_MTU1_TGIB1 MTU1 input capture B interrupt handler
Excep_ICU_GROUP1 MTU1 overflow interrupt handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 11 of 32
Apr. 05, 2013

5.1.7 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void)
Description Start the count operation for MTU1 after initialization.
Arguments None
Return Value None

port_init
Outline Port initialization
Header None
Declaration void port_init(void)
Description Initialize ports.
Arguments None
Return Value None

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configure the setting to enter the module-stop state.
Arguments None
Return Value None
Remarks Transition to the module-stop state is not performed in the sample code. Refer to the

RX630 Group Initial Setting Rev. 1.00 application note for details on this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)

Description Initialize port direction registers for ports that do not exist in products with less than
176 pins.

Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 100-pin package

(PIN_SIZE=100). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX630 Group Initial Setting Rev. 1.00 application note for details on this
function.

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 12 of 32
Apr. 05, 2013

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initialize the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
Refer to the RX630 Group Initial Setting Rev. 1.00 application note for details on this
function.

peripheral_init
Outline Peripheral function initialization
Header None
Declaration void peripheral_init(void)
Description Initialize peripheral functions used.
Arguments None
Return Value None

error_proc
Outline Error processing
Header None
Declaration void error_proc(void)
Description Output an error signal and enter an infinite loop.
Arguments None
Return Value None

Excep_MTU1_TGIA1
Outline MTU1 input capture A interrupt handler
Header None
Declaration void Excep_MTU1_TGIA1(void)
Description Set the measurement start flag to 1 (measurement starts) and start pulse width

calculation. Also clear the input capture B interrupt request and the overflow interrupt
request, and reset the overflow counter.

Arguments None
Return Value None

Excep_MTU1_TGIB1
Outline MTU1 input capture B interrupt handler
Header None
Declaration void Excep_MTU1_TGIB1(void)
Description When the measurement start flag is 1 (measurement starts), calculate the pulse

width. Then the measurement start flag is cleared.
Arguments None
Return Value None

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 13 of 32
Apr. 05, 2013

Excep_ICU_ GROUP1
Outline MTU1 overflow interrupt handler
Header None
Declaration void Excep_ICU_ GROUP1(void)
Description When the measurement start flag is 1 (measurement starts), the number of overflows

is counted. When the number of overflows exceeds 65,535 or a request other than
the MTU1 overflow interrupt request in the group 1 interrupt is generated, the MCU
enters error processing.

Arguments None
Return Value None

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 14 of 32
Apr. 05, 2013

5.1.8 Flowcharts

5.1.8.1 Main Processing
Figure 5.3 shows the Main Processing.

main

Disable maskable interrupts

Enable maskable interrupts

I flag ← 0

Peripheral function initialization
peripheral_init()

I flag ← 1

TSTR register
 CST1 bit ← 1

Port initialization
port_init()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock Initialization
R_INIT_Clock()

Start the MTU1 count operation

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Figure 5.3 Main Processing

5.1.8.2 Port Initialization
Figure 5.4 shows the Port Initialization.

port_init

return

Initialize ports that output signals
when an error occurs

PORT1.PODR register
B7 bit ← 1: Output high

PORT1.PDR register
B7 bit ← 1: Function as an output port

Figure 5.4 Port Initialization

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 15 of 32
Apr. 05, 2013

5.1.8.3 Peripheral Function Initialization
Figure 5.5 and Figure 5.6 show the Peripheral Function Initialization.

PRCR register ← A502h
PRC1 bit = 1: Enable writing to the registers related to the low power consumption function

MSTPCRA register
MSTPA9 bit ← 0: The module stop state is canceled

PRCR register ← A500h
PRC1 bit = 0: Disable writing to the registers related to the low power consumption function

TSTR register
CST1 bit ← 0

TCNT register ← 0000h
TGRA register ← 0000h
TGRB register ← 0000h

peripheral_init

PORT2.PDR register
B0 bit ← 0: Functions as an input port
B1 bit ← 0: Functions as an input port

PORT2.PMR register
B0 bit ← 0: Use as a general I/O port
B1 bit ← 0: Use as a general I/O port

MPC.PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

MPC.PWPR register
PFSWE bit ← 1: Writing to the PFS register is enabled

MPC.P20PFS register ← 01h
PSEL[4:0] bits = 00001b: Use as the MTIOC1A pin

MPC.P21PFS register ← 01h
PSEL[4:0] bits = 00001b: Use as the MTIOC1B pin

MPC.PWPR register
PFSWE bit ← 0: Writing to the PFS register is disabled

MPC.PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

PORT2.PMR register
B0 bit ← 1: Use as peripheral functions
B1 bit ← 1: Use as peripheral functions

Cancel the module stop state

Disable interrupts

Stop the MTU1 count operation

MTU1 counter operates
independently

Clear the MTU1 counter

Set the ports to input a pulse

TSYR register
SYNC1 bit ← 0

Select the unit function SEL register
CN1 bit ← 0: Select the MTU1 interrupt request

IER12 register
IEN4 bit ← 0: The MTU1.TGIA1 interrupt request is disabled
IEN5 bit ← 0: The MTU1.TGIB1 interrupt request is disabled

IER0D register
IEN3 bit ← 0: The group 1 interrupt request is disabled

GEN01 register
EN1 bit ← 0: The MTU1.TCIV1 interrupt request is disabled

Disable the interrupt output (1) MTU1.TIER register
TGIEA bit ← 0: The MTU1.TGIA1 interrupt request is disabled
TGIEB bit ← 0: The MTU1.TGIB1 interrupt request is disabled

TPU7.TIER register
TGIEA bit ← 0: The TPU7.TGI7A interrupt request is disabled
TGIEB bit ← 0: The TPU7.TGI7B interrupt request is disabled

Clear interrupt requests

A

Note:
 1. After writing to the last register to be set, confirm that the written value can be read correctly.

IR148 register
IR flag ← 0: MTU1.TGIA1 interrupt request not generated

IR149 register
IR flag ← 0: MTU1.TGIB1 interrupt request not generated

Figure 5.5 Peripheral Function Initialization (1/2)

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 16 of 32
Apr. 05, 2013

IPR148 register
IPR[3:0] bits ← 0011b: MTU1.TGIA1 interrupt priority level 3
 : MTU1.TGIB1 interrupt priority level 3

IPR107 register
IPR[3:0] bits ← 0100b: Group 1 interrupt priority level 4

return

Set interrupt priority levels

IR148 register
IR flag ← 0: MTU1.TGIA1 interrupt request not generated

IR149 register
IR flag ← 0: MTU1.TGIB1 interrupt request not generated

GCR01 register
CLR0 flag ← 1: Group 1 interrupt request not generated

TIER register
TGIEA bit ← 1: Enable the interrupt request (TGIA)
TGIEB bit ← 1: Enable the interrupt request (TGIB)
TCIEV bit ← 1: Enable the interrupt request (TCIV)

Enable MTU1 interrupt requests

IER12 register
IEN4 bit ← 1: The MTU1.TGIA1 interrupt request is enabled
IEN5 bit ← 1: The MTU1.TGIB1 interrupt request is enabled

GEN01 register
EN1 bit ← 1: The MTU1.TCIV1 interrupt request is enabled

IER0D register
IEN3 bit ← 1: Enable the group 1 interrupt request

Enable interrupt requests

Clear interrupt requests

TMDR register ← 00h
MD[3:0] bits = 0000b: Normal mode

Set the MTU1 operating mode

A

Set MTU1 I/O function TIOR register ← A8h
 IOB[3:0] bits = 1010b: Input capture at both edges of the MTIOC1B pin
 IOA[3:0] bits = 1000b: Input capture at the rising edge of the MTIOC1A pin

TCR register ← 41h
 TPSC[2:0] bits = 001b: Internal clock: Count with PCLKB/4
 CKEG[1:0] bits = 00b: Count at the rising edge
 CCLR[2:0] bits = 010b: TCNT cleared by TGRB input capture

Set the MTU1 count clock

Figure 5.6 Peripheral Function Initialization (2/2)

5.1.8.4 Error Processing
Figure 5.7 shows the Error Processing.

error_proc

Change the level of the port
that outputs signals

when an error occurs

PORT1.PODR register
B7 bit ← 0

Figure 5.7 Error Processing

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 17 of 32
Apr. 05, 2013

5.1.8.5 MTU1 Input Capture A Interrupt Handler
Figure 5.8 shows the MTU1 Input Capture A Interrupt Handler.

Excep_MTU1_TGIA1

Set the measurement start flag

return

Clear the overflow
interrupt request

Reset the number of overflows

Clear the input capture B
interrupt request

GCR01 register
 CLR1 bit ← 1

IR149 register
 IR flag ← 0

Figure 5.8 MTU1 Input Capture A Interrupt Handler

5.1.8.6 MTU1 Input Capture B Interrupt Handler
Figure 5.9 shows the MTU1 Input Capture B Interrupt Handler.

Excep_MTU1_TGIB1

Clear the measurement
start flag

Calculate a pulse width

return

Pulse measurement counter ←
 The number of overflows << 16 + MTU1.TGRB register value

Is the measurement
 start flag 1?

Yes

No

Figure 5.9 MTU1 Input Capture B Interrupt Handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 18 of 32
Apr. 05, 2013

5.1.8.7 MTU1 Overflow Interrupt Handler
Figure 5.10 shows the MTU1 Overflow Interrupt Handler.

Excep_ICU_GROUP1

Is the number
of overflows less than

FFFFh?

Yes

No

return

Clear the MTU1 overflow
interrupt request

Increment the number of
overflows by 1

GCR01 register
CLR1 bit ← 1

Is the MTU1
overflow interrupt request

generated?

Yes

No

Is the
group 1 interrupt request

generated?

Yes

No

Is the measurement start
flag 1?

Yes

No

Is an
interrupt request

present?

Error processing
error_proc()

Set the measurement error flag

Error processing
error_proc()

Yes

No

Figure 5.10 MTU1 Overflow Interrupt Handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 19 of 32
Apr. 05, 2013

5.2 Sample Code 2
A pulse width from the rising edge of a pulse input to the MTIOC1A pin to the next falling edge is calculated. The
number of times the MTU1.TCNT register overflows is counted in the overflow interrupt handler. When the number of
overflows exceeds 65,535, an error signal is output and measurement stops.

The pulse width is calculated in the MTU1 input capture A interrupt handler based on the number of overflows and the
MTU1.TGRA register value.

Formula for calculating the pulse width: 83.3 ns × (number of overflows × 10000h + MTU1.TGRA)

Settings are as follows:

MTU1
- Count clock: Rising edge of PCLKB/4 (PCLKB = 48 MHz)
- Operating mode: Normal mode
- Timer general register (TGRA): Use as the input capture register
- MTIOC1A pin: Input capture at both edges
- Synchronous operation: Not used
- Counter clear: Input capture of TGRA
- Noise filter: Noise filter of the MTIOC1A pin enabled
- Noise filter clock: PCLKB/1 (PCLKB = 48 MHz)

Interrupts
- Input capture A interrupt (TGIA1)
 Interrupt priority level: 3
 Interrupt source: MTU1.TGRA input capture
- Overflow interrupt (TCIV1) (1)
 Interrupt priority level: 4
 Interrupt source: MTU1.TCNT overflow

Note:

1. The overflow interrupt of MTU1 (TCIV1) is assigned to the group 1 interrupt.

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 20 of 32
Apr. 05, 2013

5.2.1 Operation Overview

5.2.1.1 Measuring a Pulse Width
(1) When the TSTR.CST1 bit is set to 1 (count starts), MTU1 starts counting.

(2) When an edge occurs on the signal input to the MTIOC1A pin, the MTU1.TCNT register value is transferred to the
MTU1.TGRA register and the counter is cleared. At the same time, the MTU1 input capture A interrupt request is
generated.
The MTIOC1A pin status is verified in the input capture A interrupt handler. If the status is high, the software
determines that the high pulse width measurement is started. Then the measurement start flag is set to 1
(measurement starts) and the number of overflows is cleared.

(3) When an edge occurs on the signal input to the MTIOC1A pin again, the MTU1 input capture A interrupt request is
generated. The MTIOC1A pin status is verified in the input capture A interrupt handler. If the status is low, the
software determines that the high pulse width measurement is completed. Then a pulse width is calculated based on
the number of overflows of the MTU1.TCNT register and the MTU1.TGRA register value. The measurement start
flag is cleared.

(4) When a rising edge occurs on the signal input to the MTIOC1A pin again, the same operation as (2) is performed.

(5) When the MTU1.TCNT register overflows, the overflow interrupt request is generated.
The number of overflows is counted in the overflow interrupt handler.

(6) When a rising edge occurs on the signal input to the MTIOC1A pin again, the same operation as (3) is performed.

Figure 5.11 shows the Timing Diagram of the Pulse Width Measurement. (1) to (6) in the figure correspond to (1) to (6)
in the description above.

0000h

(A)

(B)

MTU1.TCNT register value

FFFFh

(1) (2) (3) (4) (5)

0 1 0

Interrupt request acceptance

(6)

Verify pin statuses

Value of (B)

High
width 1 High width 2

Input signal to
the MTIOC1A pin

High

Low

TSTR.CST1 bit
0

1

Measurement start flag
0

1

MTU1.TGRA register
(input capture A)

Number of overflows

IR flag of the input
capture A interrupt

0

1

IR flag of the
overflow interrupt 0

1

Time

Value of (A)

Interrupt request acceptance

Figure 5.11 Timing Diagram of the Pulse Width Measurement

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 21 of 32
Apr. 05, 2013

5.2.1.2 Operation When an Input Capture and Overflow Occur Simultaneously
(1) When a falling edge occurs on the signal input to the MTIOC1A pin while the MTU1.TCNT register value is FFFFh,

the MTU1.TCNT register is cleared and the input capture A interrupt request is generated after FFFFh in the
MTU1.TCNT register is transferred to the MTU1.TGRA register. If an overflow and counter clear occur
simultaneously, the counter clear has higher priority. Thus the overflow interrupt request is not generated.

(2) In the input capture A interrupt handler, the MTU1.TGRA register value (FFFFh) is read and the pulse width is
calculated.

(3) When the MTU1.TCNT register value overflows while an interrupt handler (hereinafter referred to as interrupt
handler A) other than an overflow interrupt handler and input capture A interrupt handler is being executed, the
overflow interrupt handler is delayed.

(4) When a falling edge occurs on the signal input to the MTIOC1A pin while interrupt handler A is being executed, the
MTU1.TCNT register value is transferred to the MTU1.TGRA register and an input capture A interrupt request is
generated (input capture A interrupt handler is delayed).

(5) When interrupt handler A is completed, the overflow interrupt which has a higher interrupt priority level is executed
first. In the overflow interrupt handler, the number of overflows increments by 1. In the input capture A interrupt
handler which is subsequently accepted, the pulse width is calculated.

Figure 5.12 shows the Timing Diagram When an Input Capture and Overflow Occur Simultaneously. (1) to (5) in the
figure correspond to (1) to (5) in the description above.

Previous
measured value Value of (A)FFFFh

(5)(4)(2) (3)

FFFFh

(A)

0000h

(1)

n 10

Interrupt handler
being executed

MTU1.TCNT register value

MTIOC1A pin
High

Low

MTU1.TGRA register
(input capture A)

Number of overflows

IR flag of the input
capture A interrupt

0

1

0

1
IR flag of the

overflow interrupt

Interrupt A

TCNT is cleared without
generating the overflow

interrupt request

Cleared in the overflow
interrupt handler

Interrupt request acceptance

Time

Figure 5.12 Timing Diagram When an Input Capture and Overflow Occur Simultaneously

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 22 of 32
Apr. 05, 2013

Notes when embedding the sample codes
When embedding the sample code of this application note in the user system, note the following:

- When an interrupt used in this application note is delayed for a prolonged time due to other interrupt handlers, the
sample code may not be executed properly.

- When the measured pulse width is short, the software cannot perform the processes in time and the pulse width cannot
be measured properly.

5.2.2 File Composition
Table 5.6 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.6 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after
a reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c

5.2.3 Option-Setting Memory
Table 5.7 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.7 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh

The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a
reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 23 of 32
Apr. 05, 2013

5.2.4 Constants
Table 5.8 lists the Constants Used in the Sample Code.

Table 5.8 Constants Used in the Sample Code

Constant Name Setting Value Contents
P_OVF_ERR PORT1.PODR.BIT.B7 Port output data register for error signal output
PD_OVF_ERR PORT1.PDR.BIT.B7 Port direction register for error signal output
PI_MTIOC1A PORT2.PIDR.BIT.B0 Port input data register for MTU1.MTIOC1A
HIGH 1 Port input data is high
LOW 0 Port input data is low

5.2.5 Variables
Table 5.9 lists the Global Variables.

Table 5.9 Global Variables

Type Variable
Name Contents Function Used

unsigned short mtu1_ovf_cnt Overflow counter of the MTU1.TCNT register Excep_ICU_ GROUP1,
Excep_MTU1_TGIA1

unsigned long pulse_cnt Pulse measurement counter Excep_MTU1_TGIA1

unsigned char start_flag Measurement start flag 0: Measurement stopped
 1: Measurement starts

Excep_ICU_ GROUP1,
Excep_MTU1_TGIA1

unsigned char error_flag Measurement error flag 0: Normal
 1: Error Excep_ICU_ GROUP1

5.2.6 Functions
Table 5.10 lists the Functions Used in the Sample Code.

Table 5.10 Functions Used in the Sample Code

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization
error_proc Error processing
Excep_MTU1_TGIA1 MTU1 input capture A interrupt handler
Excep_ICU_ GROUP1 MTU1 overflow interrupt handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 24 of 32
Apr. 05, 2013

5.2.7 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void)
Description Start the count operation for MTU1 after initialization.
Arguments None
Return Value None

port_init
Outline Port initialization
Header None
Declaration void port_init(void)
Description Initialize ports.
Arguments None
Return Value None

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configure the setting to enter the module-stop state.
Arguments None
Return Value None
Remarks Transition to the module-stop state is not performed in the sample code. Refer to the

RX630 Group Initial Setting Rev. 1.00 application note for details on this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)

Description Initialize port direction registers for ports that do not exist in products with less than
176 pins.

Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 100-pin package

(PIN_SIZE=100). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX630 Group Initial Setting Rev. 1.00 application note for details on this
function.

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 25 of 32
Apr. 05, 2013

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initialize the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
Refer to the RX630 Group Initial Setting Rev. 1.00 application note for details on this
function.

peripheral_init
Outline Peripheral function initialization
Header None
Declaration void peripheral_init(void)
Description Initialize peripheral functions used.
Arguments None
Return Value None

error_proc
Outline Error processing
Header None
Declaration void error_proc(void)
Description Output an error signal and enter an infinite loop.
Arguments None
Return Value None

Excep_MTU1_TGIA1
Outline MTU1 input capture A interrupt handler
Header None
Declaration void Excep_MTU1_TGIA1(void)
Description When the status of the MTIOC1A pin is high, set the measurement start flag to 1

(measurement starts) and start pulse width calculation. Also clear the overflow
counter.
When the status of the MTIOC1A pin is low, calculate a pulse width and clear the
measurement start flag.

Arguments None
Return Value None

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 26 of 32
Apr. 05, 2013

Excep_ICU_ GROUP1
Outline MTU1 overflow interrupt handler
Header None
Declaration void Excep_ICU_ GROUP1(void)
Description When the measurement start flag is 1 (measurement starts), the number of overflows

is counted. When the number of overflows exceeds 65,535 or a request other than
the MTU1 overflow interrupt request in the group 1 interrupt is generated, the MCU
enters error processing.

Arguments None
Return Value None

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 27 of 32
Apr. 05, 2013

5.2.8 Flowcharts

5.2.8.1 Main Processing
Figure 5.13 shows the Main Processing.

main

Disable maskable interrupts

Enable maskable interrupts

I flag ← 0

Peripheral function initialization
peripheral_init()

I flag ← 1

TSTR register
 CST1 bit ← 1

Port initialization
port_init()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock Initialization
R_INIT_Clock()

Start the MTU1 count operation

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Figure 5.13 Main Processing

5.2.8.2 Port Initialization
Figure 5.14 shows the Port Initialization.

port_init

return

Initialize ports that output signals
when an error occurs

PORT1.PODR register
B7 bit ← 1: Output high

PORT1.PDR register
B7 bit ← 1: Function as an output port

Figure 5.14 Port Initialization

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 28 of 32
Apr. 05, 2013

5.2.8.3 Peripheral Function Initialization
Figure 5.15 and Figure 5.16 show the Peripheral Function Initialization.

PRCR register ← A502h
PRC1 bit = 1: Enable writing to the registers related to the low power consumption function

MSTPCRA register
MSTPA9 bit ← 0: The module stop state is canceled

PRCR register ← A500h
PRC1 bit = 0: Disable writing to the registers related to the low power consumption function

TSTR register
CST1 bit ← 0

TCR register ← 21h
TPSC[2:0] bits = 001b: Internal clock: Count with PCLKB/4
CKEG[1:0] bits = 00b: Count at the rising edge
CCLR[2:0] bits = 001b: TCNT is cleared by input capture of TGRA

TCNT register ← 0000h
TGRA register ← 0000h

peripheral_init

PORT2.PDR register
B0 bit ← 0: Function as an input pin

PORT2.PMR register
B0 bit ← 0: Use as a general I/O port

MPC.PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

MPC.PWPR register
PFSWE bit ← 1 : Writing to the PFS register is enabled

MPC.P20PFS register ← 01h
PSEL[4:0] bits = 00001b: Use as the MTIOC1A pin

MPC.PWPR register
PFSWE bit ← 0 : Writing to the PFS register is disabled

MPC.PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

PORT2.PMR register
B0 bit ← 1: Use as peripheral functions

Cancel the module stop state

Disable interrupts

Stop the MTU1 count operation

MTU1 counter operates independently

Clear the MTU1 counter

Set the ports to input pulses

TSYR register
SYNC1 bit ← 0

Set the MTU1 count clock

IER12 register
IEN4 bit ← 0: The MTU1.TGIA1 interrupt request is disabled

IER0D register
IEN3 bit ← 0: The group 1 interrupt request is disabled

GEN01 register
EN1 bit ← 0: The MTU1.TCIV1 interrupt request is disabled

NFCR register
NFAEN bit ← 1: The noise filter for the MTIOC1A pin is enabled
NFCS[1:0] bits ← 00b: PCLKB/1 is selected as the noise filter clock

Set the noise filter

Wait for two cycles Wait for two cycles of the selected sampling interval

Disable the interrupt output (1) MTU1.TIER register
TGIEA bit ← 0: The MTU1.TGIA1 interrupt request is disabled

TPU7.TIER register
TGIEA bit ← 0: The TPU7.TGI7A interrupt request is disabled

Clear interrupt requests

Select the unit function SEL register
CN1 bit ← 0: Select the MTU1 interrupt request

A

Note:
 1. After writing to the last register to be set, confirm that the written value can be read correctly.

IR148 register
IR flag ← 0: MTU1.TGIA1 interrupt request not generated

Figure 5.15 Peripheral Function Initialization (1/2)

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 29 of 32
Apr. 05, 2013

IPR148 register
IPR[3:0] bits ← 0011b: MTU1.TGIA1 interrupt priority level 3

IPR107 register
IPR[3:0] bits ← 0100b: Group 1 interrupt priority level 4

return

Set interrupt priority levels

IR148 register
IR flag ← 0: MTU1.TGIA1 interrupt request not generated

GCR01 register
CLR0 flag ← 1: Group 1 interrupt request not generated

TIER register
TGIEA bit ← 1: Enable the interrupt request (TGIA)
TCIEV bit ← 1: Enable the interrupt request (TCIV)

Enable MTU1 interrupt requests

IER12 register
IEN4 bit ← 1: The MTU1.TGIA1 interrupt request is enabled

GEN01 register
EN1 bit ← 1: The MTU1.TCIV1 interrupt request is enabled

IER0D register
IEN3 bit ← 1: Enable the group 1 interrupt request

Enable interrupt requests

Clear interrupt requests

TMDR register ← 00h
MD[3:0] bits = 0000b: Normal mode

Set the MTU1 operating mode

A

Set the MTU1 I/O function TIOR register ← 0Ah
 IOA[3:0] bits = 1010b: Input capture at both edges of the MTIOC1A pin

Figure 5.16 Peripheral Function Initialization (2/2)

5.2.8.4 Error Processing
Figure 5.17 shows the Error Processing.

error_proc

Change the level of the port
that outputs signals

when an error occurs

PORT1.PODR register
B7 bit ← 0

Figure 5.17 Error Processing

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 30 of 32
Apr. 05, 2013

5.2.8.5 MTU1 Input Capture A Interrupt Handler
Figure 5.18 shows the MTU1 Input Capture A Interrupt Handler.

Clear the measurement
start flag

Calculate a pulse width

Pulse measurement counter ←
 The number of overflows << 16 + MTU1.TGRA

return

 Is the status of the
MTIOC1A pin low?

Yes

No

Clear the overflow
interrupt request

Excep_MTU1_TGIA1

Set the measurement start flag

Reset the number of overflows

GCR01 register
 CLR1 bit ← 1

Figure 5.18 MTU1 Input Capture A Interrupt Handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 31 of 32
Apr. 05, 2013

5.2.8.6 MTU1 Overflow Interrupt Handler
Figure 5.19 shows the MTU1 Overflow Interrupt Handler.

Excep_ICU_GROUP1

Is the number
of overflows less than

FFFFh?

Yes

No

return

Clear the MTU1 overflow
interrupt request

Increment the number of
overflows by 1

GCR01 register
CLR1 bit ← 1

Is the MTU1
overflow interrupt request

generated?

Yes

No

Is the
group 1 interrupt request

generated?

Yes

No

Is the measurement start
flag 1?

Yes

No

Is an
interrupt request

present?

Error processing
error_proc()

Set the measurement error flag

Error processing
error_proc()

Yes

No

Figure 5.19 MTU1 Overflow Interrupt Handler

RX630 Group Pulse Width Measurement Using MTU2a

R01AN1020EJ0100 Rev. 1.00 Page 32 of 32
Apr. 05, 2013

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
User’s Manual: Hardware

RX630 Group User’s Manual: Hardware Rev.1.50 (R01UH0040EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

A-1

REVISION HISTORY RX630 Group Application Note
Pulse Width Measurement Using MTU2a

Rev. Date
Description

Page Summary
1.00 Apr. 05, 2013 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Note
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Sample Code 1
	5.1.1 Operation Overview
	5.1.2 File Composition
	5.1.3 Option-Setting Memory
	5.1.4 Constant
	5.1.5 Variables
	5.1.6 Functions
	5.1.7 Function Specifications
	5.1.8 Flowcharts

	5.2 Sample Code 2
	5.2.1 Operation Overview
	5.2.2 File Composition
	5.2.3 Option-Setting Memory
	5.2.4 Constants
	5.2.5 Variables
	5.2.6 Functions
	5.2.7 Function Specifications
	5.2.8 Flowcharts

	6. Sample Code
	7. Reference Documents

