
 APPLICATION NOTE

R01AN0184EJ0102 Rev.1.02 Page 1 of 67
Feb 29, 2012

RX62N Group, RX621 Group
On-chip Flash Memory Reprogramming in the User Boot Mode
(Slave)

Introduction
This application note describes programming and erasing the flash memory for code storage (user MAT) of a RX62N
and RX621 Group MCU by using the target erasure block number, programming data size, and programming data
transmitted by clock synchronous serial communication from another RX62N and RX621 Group MCU, as described in
"RX62N and RX621 Group: On-chip Flash Memory Reprogramming in the User Boot Mode (Master)"
(R01AN0185EJ).

For the procedures for sending the erase block number, programming data size, and programming data through clock
synchronous communication, refer to "On-chip Flash Memory Reprogramming in the User Boot Mode (Master) for the
RX62N and RX621 groups" (R01AN0185EJ).

Target Device
RX62N group and RX621 group

This program is also available for the other RX families that have the similar I/O registers (peripheral device control
registers) as the RX62N and RX621 groups. Note, however, that parts of functionalities have been modified or
enhanced. Check these changes in the relevant manuals. Extensive evaluation tests should be conducted when using this
application note.

Contents

1. Specification .. 2

2. Operating Environment ... 4

3. Functions Used ... 4

4. Description of Operation ... 5

5. Software Description ... 20

6. Usage Notes.. 63

7. Reference Documents... 67

R01AN0184EJ0102
Rev.1.02

Feb 29, 2012

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 2 of 67
Feb 29, 2012

1. Specification
• This application note exemplifies the procedures for programming and erasing user MATs in user boot mode using

the R5F562N8BDBG of the RX62N group.
• The slave receives the erase block number, programming data size, and programming data from the master through

clock synchronous communication and carries out the process of programming or erasing the given user MAT.
• The clock synchronous communication between the master and slave is accomplished using the SCI channel 2

(SCI2) module.
• The major clock synchronous communication specifications are: 2.4 Mbps bit rate, 8 data bits, and LSB first. The

transfer clock is transmitted from the master device.
• In this application note, the slave erases the specified erase block (EB30: 16K bytes) and programs the received 8K

bytes (256 bytes × 32) of programming data into the erase block EB30 starting at its start address.
• The slave and master use a handshake to control their communications. The slave uses an I/O port (P01) to send out

an Assert (low) in the busy state and a Negate (high) when the busy state is reset. The master receives the output
from the slave via an external interrupt pin (IRQ0-A) and starts the next transmission sequence when a rising edge is
input.

• When the user MAT erasing/programming process is completed normally, the slave notifies the normal termination
using the four LEDs connected to its I/O ports. If an error occurs during communication with the master or during
programming erasing processing, the slave also notifies the error with these LEDs.

Figure 1 shows the major specifications relevant to this application note.

EB03/EB02
programming
data
(4KB+4KB=8KB)

On-chip RAM

EB30
programming
data (8 KB)

EB30 unused
area (8 KB)

Clock synchronous
serial communication

Send programming data

Master Slave

IRQ
switch

LED×4

RX62N RX62N
Indicates normal

termination

Start slaves
programming/
erasing processing
upon press of the
IRQ switch.

Erase EB30, then
program received
programming data
at start address of
EB30 (in 256 byte
units).

I/O port

IRQ8

LED×4

Indicates normal
termination or error
termination.

I/O port

For handshaking
IRQ9 I/O port

Figure 1 Specification Outline

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 3 of 67
Feb 29, 2012

Figure 2 shows the hardware configuration diagram for the slave device referred to in this application note.

Master

RX62N

LED0

LED1

LED2

LED3

Endian switch

Mode switch

Reset switch

12.0 MHz
crystal oscillator

+3.3V

Slave

SCK2-A
TxD2-A

SCK2-A
RxD2-A

Clock synchronous serial
communication (Note)

Note: Pins SCK2-A, RxD2-A, and P01 of the slave device are externally pulled up.

P02

P03

P05

P34

MDE

MD1
MD0

RES#

EXTAL
XTAL

VCC

VSS

IRQ9-A P01

RX62N

For handshaking (Note)

Figure 2 Slave Hardware Configuration Diagram

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 4 of 67
Feb 29, 2012

2. Operating Environment
Table 1 summarizes the major characteristics of the environment in which the slave is run.

Table 1 Slave Operating Environment

Item Description
Device RX62N group: R5F562N8BDBG

(ROM size: 512 K bytes, RAM size: 96 K bytes)
Board Renesas starter kit (R0K5562N0S000BE)
Power voltage 5.0 V (CPU operating voltage is 3.3 V.)
Input clock 12.0 MHz (ICLK = 96 MHz, PCLK = 48 MHz, BCLK = 24 MHz)
Operating temperature Room temperature
High-performance
Embedded Workshop

Version 4.07.00.007

Toolchain RX Standard Toolchain (V.1.0.0.0)
FDT V.4.06 Release 00

3. Functions Used
• Clock Generation Circuit
• Low Power Consumption
• Interrupt Controller Unit (ICU)
• I/O ports
• Serial communications interface
• ROM (Flash Memory for Code Storage)

See "User's Manual" listed in section 7, Reference Documents, for details.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 5 of 67
Feb 29, 2012

4. Description of Operation

4.1 Setting the Operating Mode
In the example given in this application note, the slave mode pin MD1 is set to 1 and mode pin MD0 to 0 to set the
operating mode to user boot mode and the ROME bit of the system control register 0 (SYSCR0) is set to 1 to enable the
on-chip ROM, and the EXBE bit of the SYSCR0 register is set to 0 to disable the external bus.

The user boot MAT for the RX62N stores the program that is started in USB boot mode (the mode pin settings are the
same as those for the user boot mode). To program a user-supplied program in the user boot MAT, erase the user boot
MAT in boot mode using a flash memory programming tool (e.g., FDT) before carrying out the programming process.

The slave is activated in user boot mode from the user boot MAT.

Table 2 summarizes the operating mode settings for the slave used in the example given in this application note.

Table 2 Slave Operating Mode Settings

Mode Pin SYSCR0 Register
MD1 MD0 ROME EXBE Operating Mode

On-chip
ROM

External
Bus

1 0 1 0 User boot mode Enabled Disabled
Note: The SYSCR0 register should never be set up during program execution since the ROME and EXBE

bits of the SYSCR0 register are initialized as follows: SYSCR0.ROME = 1, SYSCR0.EXBE = 0

4.2 Setting up the Clocks
The evaluation board referred to in this application note is provided with a 12.0 MHz crystal oscillator.

Accordingly, the system clock (ICLK), peripheral module clock (PCLK), and external bus clock (BCLK) are set to ×8
(96 MHz), ×4 (48 MHz), and ×2 (24 MHz), respectively, in the example given in this application note.

4.3 Setting up Endian
This application note is compatible with both of big endian and little endian. The endian settings that can be set up by
hardware (MDE pin) are listed in table 3. The endian settings of the master and slave must be identical.

Table 3 Endian Settings (Hardware)

MDE Pin Endian
0 Little endian
1 Big endian

Table 4 lists the endian settings that can be set up using a compiler option.

Table 4 Endian Settings (Compiler Option)

Microcontroller Option Endian
endian = little Little endian
endian = big Big endian
Note: Set up the MDE pin according to the endian setting that is selected using the compiler option.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 6 of 67
Feb 29, 2012

4.4 Clock Synchronous Communication Specifications
In the example given in this application note, the master and slave exchange the communications commands, erase
block number, programming data size, programming data through a clock synchronous communications interface. The
transfer clock is transmitted by the master. The pins SCK2-A and RxD2-A of the SCI2 which is used are externally
pulled up.

Table 5 lists the major clock synchronous communication specifications.

Table 5 Clock Synchronous Communication Specifications

Item Specification
Channel SCI channel 2 (SCI2)
Communications mode Clock synchronous mode
Bit rate 2.4 Mbps (at PCLK = 48 MHz)
Direction of data transfer LSB first
Error Overrun error

4.4.1 Communications Command Specifications
Table 6 lists the major specifications for the communications commands exchanged between the master and slave.

Table 6 Communications Command Specifications

Command Code Description Direction of Communication
FSTART 10h Starts the user MAT programming/erasure

processing on the slave.
Master → Slave

ERASE 11h Starts the user MAT erasing processing on the
slave.

Master → Slave

WRITE 12h Starts the user MAT programming on the slave. Master → Slave

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 7 of 67
Feb 29, 2012

4.4.2 Communications Flows
Figures 3 to 6 show the flows of communications between the master and slave devices.

Master

Issue FSTART command

Slave

Copy user MAT
programming/erasing

control program from ROM
to RAM

Jump to programming/
erasing control program in

RAM

Yes

No

Yes

No

FSTART command

(1 byte)

IRQ switch pressed?

FSTART command
received?

Busy state (low)

Reset busy (high)

Yes

NoSlave busy reset?

Error processing

Slave busy reset (high)
at power-on time

Busy reset (high)

Yes

No
1-byte data received?

Busy state (low)

M1 S1

Figure 3 Communications Flow (1)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 8 of 67
Feb 29, 2012

Reset busy (high)

Yes

NoSlave busy reset?

Busy reset (high)

Send erase block number
Erase block number

(1 byte)

Busy state (low)
Busy state (low)

Erase block designated by
received erase block

number

Yes

No
1-byte data received?

NoERASE command
received?

Busy state (low)

Yes

Reset busy (high)

Yes

NoSlave busy reset?

Error processing
Busy reset (high)

Send ERASE command
ERASE command

(1 byte)

Busy state (low) Yes

No
1-byte data received?

NGErase block
number check

OK Error processing

M1 S1

M2 S2

Figure 4 Communications Flow (2)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 9 of 67
Feb 29, 2012

Send programming data
Programming data

(256 bytes)

Yes

NoEnd of programming
data transmission?

Busy reset (high)

Yes

NoSlave busy reset?

Busy reset (high)

Yes

NoEnd of programming
data reception?

Yes

No256-byte data
received?

Busy state (low)
Busy state (low)

Program 256 bytes of
received programming

data into user MAT

Yes

Send WRITE command
WRITE command

(1 byte)
Receive 1 byte data

NoWRITE command
received?

Error processing

Busy state (low)
Busy state (low)

Busy reset (high)

Yes

NoSlave busy reset?

Busy reset (high)

(4 bytes)
Send programming data

size

Programming data size

Yes

No
4-byte data received?

Busy state (low)

Busy state (low)

OK

NGProgramming data
size check

Error processing

M2 S2

M3 S3

Figure 5 Communications Flow (3)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 10 of 67
Feb 29, 2012

Reset busy (high)

Yes

NoSlave busy reset?

Reset busy (high)

M3 S3

Normal termination
processing

Normal termination
processing

Figure 6 Communications Flow (4)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 11 of 67
Feb 29, 2012

4.4.3 Erasure Block Number
The slave receives 1-byte erase block numbers (1-byte data defined by a symbolic constant) after receiving the ERASE
command from the master. Table 7 gives a list of erase block numbers and figure 7 shows the major specifications for
the erase block numbers.

Table 7 List of Erasure Block Numbers

Erasure Block Number
Symbolic Constant Name Value Description
EB37_INDEX 00h Specifies erase block 37 (size: 16 K bytes).
EB36_INDEX 01h Specifies erase block 36 (size: 16 K bytes).
EB35_INDEX 02h Specifies erase block 35 (size: 16 K bytes).
EB34_INDEX 03h Specifies erase block 34 (size: 16 K bytes).
EB33_INDEX 04h Specifies erase block 33 (size: 16 K bytes).
EB32_INDEX 05h Specifies erase block 32 (size: 16 K bytes).
EB31_INDEX 06h Specifies erase block 31 (size: 16 K bytes).
EB30_INDEX 07h Specifies erase block 30 (size: 16 K bytes).
EB29_INDEX 08h Specifies erase block 29 (size: 16 K bytes).
EB28_INDEX 09h Specifies erase block 28 (size: 16 K bytes).
EB27_INDEX 0Ah Specifies erase block 27 (size: 16 K bytes).
EB26_INDEX 0Bh Specifies erase block 26 (size: 16 K bytes).
EB25_INDEX 0Ch Specifies erase block 25 (size: 16 K bytes).
EB24_INDEX 0Dh Specifies erase block 24 (size: 16 K bytes).
EB23_INDEX 0Eh Specifies erase block 23 (size: 16 K bytes).
EB22_INDEX 0Fh Specifies erase block 22 (size: 16 K bytes).
EB21_INDEX 10h Specifies erase block 21 (size: 16 K bytes).
EB20_INDEX 11h Specifies erase block 20 (size: 16 K bytes).
EB19_INDEX 12h Specifies erase block 19 (size: 16 K bytes).
EB18_INDEX 13h Specifies erase block 18 (size: 16 K bytes).
EB17_INDEX 14h Specifies erase block 17 (size: 16 K bytes).
EB16_INDEX 15h Specifies erase block 16 (size: 16 K bytes).
EB15_INDEX 16h Specifies erase block 15 (size: 16 K bytes).
EB14_INDEX 17h Specifies erase block 14 (size: 16 K bytes).
EB13_INDEX 18h Specifies erase block 13 (size: 16 K bytes).
EB12_INDEX 19h Specifies erase block 12 (size: 16 K bytes).
EB11_INDEX 1Ah Specifies erase block 11 (size: 16 K bytes).
EB10_INDEX 1Bh Specifies erase block 10 (size: 16 K bytes).
EB09_INDEX 1Ch Specifies erase block 09 (size: 16 K bytes).
EB08_INDEX 1Dh Specifies erase block 08 (size: 16 K bytes).
EB07_INDEX 1Eh Specifies erase block 07 (size: 4 K bytes).
EB06_INDEX 1Fh Specifies erase block 06 (size: 4 K bytes).
EB05_INDEX 20h Specifies erase block 05 (size: 4 K bytes).
EB04_INDEX 21h Specifies erase block 04 (size: 4 K bytes).
EB03_INDEX 22h Specifies erase block 03 (size: 4 K bytes).
EB02_INDEX 23h Specifies erase block 02 (size: 4 K bytes).
EB01_INDEX 24h Specifies erase block 01 (size: 4 K bytes).
EB00_INDEX 25h Specifies erase block 00 (size: 4 K bytes).

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 12 of 67
Feb 29, 2012

BD7 BD6 BD5 BD4 BD3 BD2 BD1 BD0

b7 b6 b5 b4 b3 b2 b1 b0

Erase block data (unsigned char type)

This application note assumes an erase block data of EB30_INDEX (07h) for the slave to
program or erase the erase block EB30.

Specify erase block numbers between EB37_INDEX (00h) and EB00_INDEX (25h) which
are listed in table 7. If an erase block number 26h to FFh is specified, the slave will signal
an error and perform error processing.

Note:

Figure 7 Erasure Block Number Specifications

4.4.4 Programming Data Size
The slave receives 4 bytes of programming data size data after receiving the WRITE command from the master. Figure
8 shows the major specifications for the programming data size.

SZ31 SZ30 SZ29 SZ28 SZ27 SZ26 SZ25 SZ24

b31 b30 b29 b28 b27 b26 b25 b24

Programming data size (unsigned long type)

SZ23 SZ22 SZ21 SZ20 SZ19 SZ18 SZ17 SZ16

b23 b22 b21 b20 b19 b18 b17 b16

SZ15 SZ14 SZ13 SZ12 SZ11 SZ10 SZ09 SZ08

b15 b14 b13 b12 b11 b10 b9 b8

SZ07 SZ06 SZ05 SZ04 SZ03 SZ02 SZ01 SZ00

b7 b6 b5 b4 b3 b2 b1 b0

This application note assumes a programming data size of 0000 2000h since the programming size
of block data is set to 8 K bytes.

The size of programming data that is to be transmitted is fixed at 256 bytes. If the size of the
programming data is not a multiple of 256 bytes, the master sends to the slave device 256
bytes in every transmission operation with the last data block, which is less than 256 bytes long,
padded with FFh bytes to make up a 256-byte programming data block.

The programming data size must be greater than 0 but not greater than the size of the erase
block designated by the erase block number. If a 0 is specified or a size value greater than the
size of the erase block designated by the erase block number is specified, the slave will signal
an error and perform error processing.

Notes: 1.

2.

Figure 8 Programming Data Size Specifications

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 13 of 67
Feb 29, 2012

4.4.5 Overrun Error Processing
In the example given in this application note, the slave performs error processing if it encounters an overrun error
(SCI2.SSR.ORER bit is set to 1) during clock synchronous communication.

4.5 Normal Termination Processing
The slave indicates a normal termination condition with the four LEDs connected to its I/O port when the user MAT
programming/erasure processing terminates normally. On normal termination, LED0 to LED3 are turned on
sequentially and repeatedly, one at a time.

4.6 Error Processing
Table 8 shows a list of errors that can occur on the slave device referred to in this application note. During slave error
processing, the error status is displayed on the four LEDs.

Table 8 List of Slave Errors

: On, : Off
LED Display

Error Number Description LED3 LED2 LED1 LED0
Error No. 01 An overrun error occurred.
Error No. 02 A command other than FSTART was received from the

master while waiting for a FSTART command.

Error No. 03 A command other than ERASE was received from the
master while waiting for an ERASE command.

Error No. 04 The erase block number received from the master did
not fall between EB00 and EB37.

Error No. 05 A timeout (tE16K × 1.1) occurred while switching into
ROM read mode before transferring the FCU firmware.

Error No. 06 Either the ILGLERR, ERSERR, PRGERR, or FCUERR
bit is set to 1 while switching into ROM P/E mode before
issuing a peripheral clock notification command.

Error No. 07 A timeout (tPCKA) occurred or the ILGLERR bit is set to
1 when a peripheral clock notification command is
issued.

Error No. 08 A timeout (tE16K × 1.1) occurred or either the ILGLERR
or ERSERR bit is set to 1 while erasing an erase block.

Error No. 09 A command other than WRITE was received from the
master while waiting for a WRITE command.

Error No. 10 The programming data size received from the master
was 0 or greater than the size of the block designated by
the erase block number.

Error No. 11 A timeout (tP256 × 1.1) occurred or either the ILGLERR
or PRGERR bit is set to 1 while programming data.

Error No. 12 A timeout (tE16K × 1.1) occurred while switching into
ROM read mode after finishing data programming.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 14 of 67
Feb 29, 2012

4.7 LED Cabling
Figure 9 shows the cabling diagram for LED0 to LED3 that are connected to I/O ports of the slave device.

P34

P05

P03

P02

+3.3V

LED3

+3.3V

LED2

+3.3V

LED1

+3.3V

LED0

Slave

RX62N

Figure 9 Slave LED Cabling Diagram

As seen from figure 9, LED0 to LED3 turn off when the I/O ports (P02, P03, P05, and P34) are set high and on when
the I/O ports are set low. Table 9 shows the relationship between the I/O port outputs and LED states.

Table 9 Slave I/O Port Outputs and LED States

I/O Port Register Setting I/O Port State LED State
PORT0.DR.B2 = 1, PORT0.DDR.B2 = 1 High output Off P02
PORT0.DR.B2 = 0, PORT0.DDR.B2 = 1 Low output

LED0
On

PORT0.DR.B3 = 1, PORT0.DDR.B3 = 1 High output Off P03
PORT0.DR.B3 = 0, PORT0.DDR.B3 = 1 Low output

LED1
On

PORT0.DR.B5 = 1, PORT0.DDR.B5 = 1 High output Off P05
PORT0.DR.B5 = 0, PORT0.DDR.B5 = 1 Low output

LED2
On

PORT3.DR.B4 = 1, PORT3.DDR.B4 = 1 High output Off P34
PORT3.DR.B4 = 0, PORT3.DDR.B4 = 1 Low output

LED3
On

4.8 Handshake Control
The slave makes handshakes with the master to control the communication between them and generates the signal for
handshaking from its Busy port (P01).

For handshake control, the slave asserts the Busy port (low) after receiving a serial communication from the master. It
negates the Busy port (for busy reset) when it becomes ready for receiving the next serial communication. Table 10
shows the relationship between the slave's Busy port outputs and I/O port states.

Table 10 Slave Busy Port Outputs

I/O Port Register Setting I/O Port State Busy Port
PORT0.DR.B1 = 1, PORT0.DDR.B1 = 1 High output Negate Busy reset P01
PORT0.DR.B1 = 0, PORT0.DDR.B1 = 1 Low output Assert Busy state

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 15 of 67
Feb 29, 2012

4.9 User MAT Programming/Erasing
This section explains the procedures for programming and erasing user MATs. For details, see "User's Manual" listed in
section 7, Reference Documents.

4.9.1 RX62N Group (R5F562N8) Memory MAT Configuration
The flash memory of the R5F562N8 available for storing code consists of a 512K-byte user MAT and a 16K-byte user
boot MAT. Figure 10 shows the memory map of the user MAT and user boot MAT of the R5F562N8.

R5F562N8

User MAT
(512 K bytes)

User MAT

<For read>
address

FFF8 0000h

FFFF FFFFh

00F8 0000h

00FF FFFFh

<For programming/
erasing> address

R5F562N8

User boot MAT
(16 K bytes)

FF7F C000h

FF7F FFFFh

User boot MAT

<For read>
address

Figure 10 R5F562N8 Memory MAT Configuration

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 16 of 67
Feb 29, 2012

4.9.2 RX62N Group (R5F562N8) Erasure Block Configuration
The user MAT of the R5F562N8 is divided into 16K-byte blocks (30 blocks) and 4K-byte blocks (8 blocks). The user
MAT is erased in units of this size block.

Programming into the user MAT is done in 256 byte units in which their lowest address starts at 00h.

Table 11 shows the erase blocks of the R5F562N8's user MAT.

Table 11 R5F562N8 Erasure Block Configuration

For read For Programming/Erasing
Erasure Block Start Address End Address Start Address End Address Size (in Bytes)
EB37 FFF8 0000h FFF8 3FFFh 00F8 0000h 00F8 3FFFh 16K
EB36 FFF8 4000h FFF8 7FFFh 00F8 4000h 00F8 7FFFh 16K
EB35 FFF8 8000h FFF8 BFFFh 00F8 8000h 00F8 BFFFh 16K
EB34 FFF8 C000h FFF8 FFFFh 00F8 C000h 00F8 FFFFh 16K
EB33 FFF9 0000h FFF9 3FFFh 00F9 0000h 00F9 3FFFh 16K
EB32 FFF9 4000h FFF9 7FFFh 00F9 4000h 00F9 7FFFh 16K
EB31 FFF9 8000h FFF9 BFFFh 00F9 8000h 00F9 BFFFh 16K
EB30 FFF9 C000h FFF9 FFFFh 00F9 C000h 00F9 FFFFh 16K
EB29 FFFA 0000h FFFA 3FFFh 00FA 0000h 00FA 3FFFh 16K
EB28 FFFA 4000h FFFA 7FFFh 00FA 4000h 00FA 7FFFh 16K
EB27 FFFA 8000h FFFA BFFFh 00FA 8000h 00FA BFFFh 16K
EB26 FFFA C000h FFFA FFFFh 00FA C000h 00FA FFFFh 16K
EB25 FFFB 0000h FFFB 3FFFh 00FB 0000h 00FB 3FFFh 16K
EB24 FFFB 4000h FFFB 7FFFh 00FB 4000h 00FB 7FFFh 16K
EB23 FFFB 8000h FFFB BFFFh 00FB 8000h 00FB BFFFh 16K
EB22 FFFB C000h FFFB FFFFh 00FB C000h 00FB FFFFh 16K
EB21 FFFC 0000h FFFC 3FFFh 00FC 0000h 00FC3FFFFh 16K
EB20 FFFC 4000h FFFC 7FFFh 00FC 4000h 00FC 7FFFh 16K
EB19 FFFC 8000h FFFC BFFFh 00FC 8000h 00FC BFFFh 16K
EB18 FFFC C000h FFFC FFFFh 00FC C000h 00FC FFFFh 16K
EB17 FFFD 0000h FFFD 3FFFh 00FD 0000h 00FD 3FFFh 16K
EB16 FFFD 4000h FFFD 7FFFh 00FD 4000h 00FD 7FFFh 16K
EB15 FFFD 8000h FFFD BFFFh 00FD 8000h 00FD BFFFh 16K
EB14 FFFD C000h FFFD FFFFh 00FD C000h 00FD FFFFh 16K
EB13 FFFE 0000h FFFE 3FFFh 00FE 0000h 00FE 3FFFh 16K
EB12 FFFE 4000h FFFE 7FFFh 00FE 4000h 00FE 7FFFh 16K
EB11 FFFE 8000h FFFE BFFFh 00FE 8000h 00FE BFFFh 16K
EB10 FFFE C000h FFFE FFFFh 00FE C000h 00FE FFFFh 16K
EB09 FFFF 0000h FFFF 3FFFh 00FF 0000h 00FF 3FFFh 16K
EB08 FFFF 4000h FFFF 7FFFh 00FF 4000h 00FF 7FFFh 16K
EB07 FFFF 8000h FFFF 8FFFh 00FF 8000h 00FF 8FFFh 4K
EB06 FFFF 9000h FFFF 9FFFh 00FF 9000h 00FF 9FFFh 4K
EB05 FFFF A000h FFFF AFFFh 00FF A000h 00FF AFFFh 4K
EB04 FFFF B000h FFFF BFFFh 00FF B000h 00FF BFFFh 4K
EB03 FFFF C000h FFFF CFFFh 00FF C000h 00FF CFFFh 4K
EB02 FFFF D000h FFFF DFFFh 00FF D000h 00FF DFFFh 4K
EB01 FFFF E000h FFFF EFFFh 00FF E000h 00FF EFFFh 4K
EB00 FFFF F000h FFFF FFFFh 00FF F000h 00FF FFFFh 4K

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 17 of 67
Feb 29, 2012

4.9.3 FCU Commands
The formats of the FCU commands used in the example given in this application note are summarized in table 12. For
details, refer to the section on ROM (Flash Memory for Code Storage) in the companion user's manual.

Note that the FCU commands must be used with the volatile and evenaccess keywords to prevent optimization.

Table 12 FCU Command Formats

1st Cycle 2nd Cycle 3rd Cycle

4th to 5th

Cycles 6th Cycle

7th to 130th

Cycles 131st Cycle

Command

No. of

Bus

Cycles A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

P/E normal

mode transition

1 RA FFh — — — — — — — — — — — —

Peripheral clock

setting

6 RA E9h RA 03h RA 0F0Fh RA 0F0Fh RA D0h — — — —

Programming 131 RA E8h RA 80h WA WDn RA WDn RA WDn RA WDn RA D0h

Block erasure 2 RA 20h BA D0h — — — — — — — — — —

Status register

clearing

1 RA 50h — — — — — — — — — — — —

Legends:
Address Column RA: ROM programming/erasing address
 WA: ROM programming destination address
 BA: ROM erase block address
Data column WDn: Ordinal number of programming data in words (n = 1 to 128)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 18 of 67
Feb 29, 2012

4.9.4 User MAT Programming/Erasing Procedures
Figure 11 shows the user MAT programming/erasing procedures used in the example given in this application note.

Start

Copy user MAT programming/erasing
control program into on-chip RAM

Cause a jump to user MAT
programming/erasing control program

in on-chip RAM

Disable FCU interrupts

Copy FCU firmware into FCU RAM

Transit to ROM P/E mode

Set PCKAR register to 48 MHz and
issue Peripheral Clock Notification

command

Erase EB30 with a Block Erasure
command

Program 256-byte data into EB30 with
Programming command

End

No

Yes
Transit to ROM read mode

End of programming?

Figure 11 User MAT Programming/Erasing Procedures

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 19 of 67
Feb 29, 2012

4.10 Section Settings
The section settings for the slave device are listed in table 13.

Table 13 Slave Section Settings

Section Name
Start
Address Description

B_1 Uninitialized data area (ALIGN = 1)
B Uninitialized data area (ALIGN = 4)
R RAM area in which the D section is mapped by the ROMization

support option
SU User stack area
SI Interrupt stack area
RF_UPDATE_FUNC

0000 1000h

RAM area in which the PF_UPDATE_FUNC section is mapped by
the ROMization support option.

PResetPRG FF7F C000h Program area (PowerON_Reset_PC program)
C Constant area (ALIGN = 4)
C$DSEC Table for initializing the sections in the initialized data area
C$BSEC Table for initializing the sections in the uninitialized data area
C$VECT Variable vector area
D Initialized data area (ALIGN = 4)
P Program area
PIntPRG Program area (interrupt program)
PF_UPDATE_FUNC

FF7F C100h

Program area (user MAT programming/erasing control program)
FIXEDVECT FF7F FFFCh Fixed vector area (reset vector)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 20 of 67
Feb 29, 2012

5. Software Description

5.1 File Organization
The file organization for the slave device is summarized in table 14. For the files that are not listed in table 14, files that
are automatically generated by HEW are used.

Table 14 Slave File Organization

File Name Description
resetprg.c (*1) Performs initialization.
vecttbl.c (*2) Defines the fixed vector table.
vect.h (*3) Defines the interrupt handling functions.
intprg.c (*4) Performs interrupt processing.
main.c Controls the processes of receiving the communications command, erase block number,

programming data size, and programming data from the master through clock
synchronous communication, of block-erasing and programming the user MAT, and of
displaying the LEDs in the event of errors.

Notes: *1 A file that is automatically generated by High-performance Embedded Workshop. For the example
given in this application note, the call for the HardwareSetup function in the PowerON_Reset_PC
function is uncommented so that the HardwareSetup function in the main.c can be called from the
PowerON_Reset_PC function.

 *2 A file that is automatically generated by High-performance Embedded Workshop. For the example
given in this application note, the definitions for the privileged instruction exception, undefined
instruction exception, floating-point exception, nonmaskable interrupts, and the definition for the
Dummy function in the reserved area are commended out, so that only the definition for the reset
vector is available.

 *3 A file that is automatically generated by High-performance Embedded Workshop. For the example
given in this application note, the definitions for the functions Excep_SuperVisorInst, Dummy,
Excep_UndefinedIns, Excep_FloatingPoint, and NonMaskableInterrupt are commented out.

 *4 A file that is automatically generated by High-performance Embedded Workshop. For the example
given in this application note, the descriptions about the functions Excep_SuperVisorInst, Dummy,
Excep_UndefinedInst, Excep_FloatingPoint, and NonMaskableInterrupt are commented out.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 21 of 67
Feb 29, 2012

5.2 Functions
A list of functions available for the slave device is given in table 15 and the function hierarchy of the slave functions in
figure 12.

Table 15 List of Functions for the Slave

Function Name File Name Outline
PowerON_Reset_PC resetprg.c Initialization function
HardwareSetup main.c MCU initialization function
main main.c Main function
Flash_Update main.c User MAT programming/erasing control function
fcu_Interrupt_Disable main.c FCU interrupt disable control function
fcu_Reset main.c FCU initialization function
fcu_Transfer_Firmware main.c FCU firmware transfer control function
fcu_Transition_RomRead_Mode main.c ROM read mode transition control function
fcu_Transition_RomPE_Mode main.c ROM P/E mode transition control function
fcu_Notify_Peripheral_Clock main.c FCU peripheral clock notification command issuance

control function
fcu_Erase main.c User MAT erasing control function
fcu_Write main.c User MAT programming control function
Indicate_Ending_LED main.c Normal termination processing function
Indicate_Error_LED main.c Error termination processing function
SCI_Rcv1byte main.c 1-byte data receive function
SCI_Rcvnbyte main.c n-byte data receive function

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 22 of 67
Feb 29, 2012

Flash_Update

PowerON_Reset_PC

HardwareSetup

main

fcu_Interrupt_Disable

fcu_Transfer_Firmware

fcu_Transition_RomRead_Mode

fcu_Transition_RomPE_Mode

fcu_Transition_RomRead_Mode

fcu_Reset

fcu_Reset

fcu_Notify_Peripheral_Clock

fcu_Reset

fcu_Erase

fcu_Reset

fcu_Write

fcu_Reset

Indicate_Ending_LED

Indicate_Error_LED

SCI_Rcv1byte

SCI_Rcvnbyte

Programs related to user MAT
programming/erasing control are
placed in the
PF_UPDATE_FUNC section. The
code in the PF_UPDATE_FUNC
section is copied into the
RF_UPDATE_FUNC section
within the main function.

Figure 12 Slave Function Hierarchical Diagram

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 23 of 67
Feb 29, 2012

5.3 Symbolic Constant Description
Table 16 lists the symbolic constants that are to be used by the slave device.

Table 16 List of Slave Symbolic Constants

Symbolic Constant
Name Setting Description Used In
FSTART 0x10 Programming/erasure start

command
main

ERASE 0x11 Erasure start command Flash_Update
WRITE 0x12 Programming start command Flash_Update
LED_ON 0 LED on time value main

Indicate_Ending_LED
Indicate_Error_LED

LED_OFF 1 LED off time value main
Indicate_Ending_LED
Indicate_Error_LED

RSK_LED0 PORT0.DR.BIT.B2 Evaluation board mounted LED0
on/off control

HardwareSetup
main
Indicate_Ending_LED
Indicate_Error_LED

RSK_LED1 PORT0.DR.BIT.B3 Evaluation board mounted LED1
on/off control

HardwareSetup
main
Indicate_Ending_LED
Indicate_Error_LED

RSK_LED2 PORT0.DR.BIT.B5 Evaluation board mounted LED2
on/off control

HardwareSetup
main
Indicate_Ending_LED
Indicate_Error_LED

RSK_LED3 PORT3.DR.BIT.B4 Evaluation board mounted LED3
on/off control

HardwareSetup
main
Indicate_Ending_LED
Indicate_Error_LED

RSK_LED0_DDR PORT0.DDR.BIT.B2 Evaluation board mounted LED0
input/output control

HardwareSetup

RSK_LED1_DDR PORT0.DDR.BIT.B3 Evaluation board mounted LED1
input/output control

HardwareSetup

RSK_LED2_DDR PORT0.DDR.BIT.B5 Evaluation board mounted LED2
input/output control

HardwareSetup

RSK_LED3_DDR PORT3.DDR.BIT.B4 Evaluation board mounted LED3
input/output control

HardwareSetup

ASSERT 0 Busy port assert time value main
Flash_Update

NEGATE 1 Busy port negate time value main
Flash_Update

SLAVE_BUSY PORT0.DR.BIT.B1 Busy port output control HardwareSetup
main
Flash_Update

SLAVE_BUSY_DDR PORT0.DDR.BIT.B1 Busy port input/output control HardwareSetup

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 24 of 67
Feb 29, 2012

Table 16 List of Slave Symbolic Constant (Continued)

Symbolic Constant
Name Setting Description Used In
PCKA_48MHZ 0x0030 Frequency data of the peripheral module

clock (PCLK) to be set in the PCKAR
register

fcu_Notify_Peripheral_
Clock

WAIT_TE16K 7603200 Timeout (tE16K × 1.1) data
tE16K: Erasure time for the 16K-byte to-
be-erased block

fcu_Transition_RomRe
ad_Modefcu_Erase

WAIT_TP256 345600 Timeout (tP256 × 1.1) data
tP256: Programming time for 256-byte
data

fcu_Write

WAIT_TRESW2 2520 Wait (tRESW2) data
tRESW2: Programming/erasing reset
pulse width

fcu_Reset

WAIT_TPCKA 1636 Timeout (tPCKA) data fcu_Notify_Peripheral_
Clock

WAIT_LED 2000000 Time data about the LED on interval of
the LEDs to be displayed when the
slave's user MAT programming/erasing
terminates normally

Indicate_Ending_LED
Indicate_Error_LED

FCU_FIRM_TOP 0xFEFFE000 Start address of the FCU firmware
storage area

fcu_Transfer_Firmwar
e

FCU_RAM_TOP 0x007F8000 Start address of FCU RAM fcu_Transfer_Firmwar
e

FCU_RAM_SIZE 0x2000 Size of FCU RAM fcu_Transfer_Firmwar
e

SIZE_WRITE_BLOCK 128 User MAT programming size (word size) Flash_Update
fcu_Program_Verify

BUF_SIZE 256 Size of the programming data storage
area

—

ERROR_NO_01 1
ERROR_NO_02 2
ERROR_NO_03 3
ERROR_NO_04 4
ERROR_NO_05 5
ERROR_NO_06 6
ERROR_NO_07 7
ERROR_NO_08 8
ERROR_NO_09 9
ERROR_NO_10 10
ERROR_NO_11 11
ERROR_NO_12 12

Data indicating error status Flash_Update
Indicate_Error_LED

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 25 of 67
Feb 29, 2012

Table 16 List of Slave Symbolic Constant (Continued)

Symbolic Constant
Name Setting Description Used In
EB37_INDEX 0x00
EB36_INDEX 0x01
EB35_INDEX 0x02
EB34_INDEX 0x03
EB33_INDEX 0x04
EB32_INDEX 0x05
EB31_INDEX 0x06
EB30_INDEX 0x07
EB29_INDEX 0x08
EB28_INDEX 0x09
EB27_INDEX 0x0A
EB26_INDEX 0x0B
EB25_INDEX 0x0C
EB24_INDEX 0x0D
EB23_INDEX 0x0E
EB22_INDEX 0x0F
EB21_INDEX 0x10
EB20_INDEX 0x11
EB19_INDEX 0x12
EB18_INDEX 0x13
EB17_INDEX 0x14
EB16_INDEX 0x15
EB15_INDEX 0x16
EB14_INDEX 0x17
EB13_INDEX 0x18
EB12_INDEX 0x19
EB11_INDEX 0x1A
EB10_INDEX 0x1B
EB09_INDEX 0x1C
EB08_INDEX 0x1D
EB07_INDEX 0x1E
EB06_INDEX 0x1F
EB05_INDEX 0x20
EB04_INDEX 0x21
EB03_INDEX 0x22
EB02_INDEX 0x23
EB01_INDEX 0x24
EB00_INDEX 0x25

Erase block number to be sent to designate
the erase block to be programmed or erased
by the slave.

Flash_Update

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 26 of 67
Feb 29, 2012

5.4 const Variable Description
Table 17 lists the const variable that is to be used by the slave device.

Table 17 List of Slave const Variables

Variable Name Type Description
tbl_eb_adrs[] ST_EB_ADRS (*1) Data (760 bytes) including the erase block (EB00 to

EB37) starting and ending programming/erasing
addresses, starting and ending read addresses, and
erase block size

Note: *1 See 5.6.2, Structure ST_EB_ADRS, for details on the ST_EB_ADRS type.

5.5 RAM Variable Description
Table 18 shows the RAM variables that are to be used by the slave device.

Table 18 List of Slave RAM Variables

Variable Name Type Description
wrdata_buffer[BUF_SIZE] unsigned char Array storing the 256-byte programming data received

from the slave (256 bytes)
fcu_info ST_FCU_INFO (*1) Structure storing the FCU-related address information

to be used to program/erase the user MAT (28 bytes)
p_write_buffer unsigned short * Address of the area for storing the programming data

used during user MAT programming: 4 bytes
p_command_adrs unsigned char * Address of the destination to which the FCU command

is to be issued (address for programming/erasing): 4
bytes

p_erase_adrs unsigned short * Start address of the block to be erased in erasure
mode processing (address for programming/erasing): 4
bytes

p_write_adrs_top unsigned short * Start address of the block to be erased in programming
mode (address for programming/erasing): 4 bytes

p_write_adrs_end unsigned short * End address of the program to be erased in
programming mode (address for
programming/erasing): 4 bytes

p_write_adrs_now unsigned short * Destination address into which data is to be
programmed in programming mode (address for
programming/erasing): 4 bytes

eb_block_size unsigned long Size of the block to be erased: 4 bytes
Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 27 of 67
Feb 29, 2012

5.6 Structure Description
5.6.1 Structure ST_FCU_INFO
Table 19 shows the major specifications for the structure ST_FCU_INFO that is to be used by the slave device.

Table 19 Structure ST_FCU_INFO Specifications

Member Name Type Description
p_write_buffer unsigned short * Address of area for storing the programming data to be used when

programming the user MAT
p_command_adrs volatile

__evenaccess
unsigned char *

Destination address to which the FCU command is to be issued
(address for programming/erasing)

p_erase_adrs unsigned short * Start address of the block to be erased in erasure mode (address
for programming/erasing)

p_write_adrs_top unsigned short * Start address of the block to be erased in programming mode
(address for programming/erasing)

p_write_adrs_end unsigned short * End address of the block to be erased in programming mode
(address for programming/erasing)

p_write_adrs_now unsigned short * Destination address into which data is to be programmed in
programming mode (address for programming/erasing)

eb_block_size unsigned long Size of block to be erased

5.6.2 Structure ST_EB_ADRS
Table 20 shows the major specifications for the structure ST_EB_ADRS that is to be used by the slave device.

Table 20 Structure ST_EB_ADRS Specifications

Member Name Type Description
eb_write_adrs_top unsigned long Start address of the block to be erased (for programming/erasing)
eb_write_adrs_end unsigned long End address of the block to be erased (for programming/erasing)
eb_read_adrs_top unsigned long Start address of the block to be erased (for read)
eb_read_adrs_end unsigned long End address of the block to be erased (for read)
eb_block_size unsigned long Size of the block to be erased

5.7 Description of the enum Type
Table 21 shows the specifications for the enum type structure FCU_STATUS that is to be used by the slave device.
FCU_STATUS is used as a return value of a function to provide status information.

Table 21 enum Type FCU_STATUS Specifications

Member Name Type Value Description
FCU_SUCCESS signed long 0 Normal state
FCU_ERROR signed long 1 Error state

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 28 of 67
Feb 29, 2012

5.8 Description of the I/O Registers Used
This section describes the I/O registers that are used by the program on the slave device. The settings that are described
in this document are those values which are used in the example program given in this application note; they differ from
their initialized values.

(1) Clock Generation Circuit

• System clock control register (SCKCR) Number of bits: 32 bits Address: 0008 0020h
Bit Symbol Setting Bit Name Description R/W
b11-b8 PCK[3:0] 0001 Peripheral module

clock(PCLK) select
0001: ×4
PCLK = 48 MHz (when EXTAL
clock frequency = 12.0 MHz)

R/W

b19-b16 BCK[3:0] 0010 External bus clock (BCLK)
select

0010: ×2
BCLK = 24 MHz (when EXTAL
clock frequency = 12.0 MHz)

R/W

b23 PSTOP1 0 BCLK output stop 0: BCLK output R/W
b27-b24 ICK[3:0] 0000 System clock (ICLK) select 0000: ×8

ICLK = 96 MHz (when EXTAL
clock frequency = 12.0 MHz)

R/W

(2) I/O ports

• Port 0 data register (P0.DR) Number of bits: 8 bits Address: 0008 C020h
Bit Symbol Setting Bit Name Description R/W

0 b2 B2
1

P02 output data 0: Output data = 0
1: Output data = 1

R/W

0 b3 B3
1

P03 output data 0: Output data = 0
1: Output data = 1

R/W

0 b5 B5
1

P05 output data 0: Output data = 0
1: Output data = 1

R/W

• Port 3 data register (P3.DR) Number of bits: 8 bits Address: 0008 C023h
Bit Symbol Setting Bit Name Description R/W

0 b4 B4
1

P34 output data 0: Output data = 0
1: Output data = 1

R/W

• Port function control register F (PFFSCI) Number of bits: 8 bits Address: 0008 C10Fh
Bit Symbol Setting Bit Name Description R/W
b2 SCI2S 0 SCI2 Pin select 0: P12 is designated as the RxD2-A pin.

P11 is designated as the SCK2-A pin.
P13 is designated as the TxD2-A pin.

R/W

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 29 of 67
Feb 29, 2012

• Port 0 data direction register (P0.DDR) Number of bits: 8 bits Address: 0008 C000h
Bit Symbol Setting Bit Name Description R/W
b2 B2 1 P02 input/output select 1: Output port R/W
b3 B3 1 P03 input/output select 1: Output port R/W
b5 B5 1 P05 input/output select 1: Output port R/W

• Port 3 data direction register (P3.DDR) Number of bits: 8 bits Address: 0008 C003h
Bit Symbol Setting Bit Name Description R/W
b4 B4 1 P34 input/output select 1: Output port R/W

• Port 1 input buffer control register (P1.ICR) Number of bits: 8 bits Address: 0008 C061h
Bit Symbol Setting Bit Name Description R/W
b1 B1 1 P11 input buffer

control
1: Enables the input buffer for P11. R/W

b2 B2 1 P12 input buffer
control

1: Enables the input buffer for P12. R/W

(3) Low Power Consumption
• Module stop control register B (MSTPCRB) Number of bits: 32 bits Address: 0008 0014h
Bit Symbol Setting Bit Name Description R/W
b29 MSTPB29 0 Serial communications interface 2

module stop
0: The SCI2 module stop

state is canceled.
R/W

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 30 of 67
Feb 29, 2012

(4) Serial communications interface 2 (SCI2)
• SCI2 serial control register (SCI2.SCR) Number of bits: 8 bits Address: 0008 8252h

(In serial communications interface mode (SCI2.SCMR.SMIF = 0))
Bit Symbol Setting Bit Name Description R/W
b1-b0 CKE[1:0] 10 Clock enable (Clock synchronous mode)

10: External clock
The SCK2 pin is configured for
clock input.

R/W
(*1)

b2 TEIE 0 Transmit end interrupt
enable

0: TEI2 interrupt requests are
disabled.

R/W

0 b4 RE
1

Receive enable 0: Serial reception is disabled.
1: Serial reception is enabled.

R/W
(*2)

b5 TE 0 Transmit enable 0: Serial transmission is disabled R/W
(*2)

0 b6 RIE
1

Receive interrupt enable 0: RXI2 and ERI2 interrupt
requests are disabled.

1: RXI2 and ERI2 interrupt
requests are enabled.

R/W

b7 TIE 0 Transmit interrupt enable 0: TXI2 interrupt requests are
disabled.

R/W

Notes: *1 Writable only when TE = 0 and RE = 0.
 *2 A 1 can be written only when TE = 0 and RE = 0. After setting TE or RE to 1, only 0 can be written

in TE and RE.

• SCI2 serial mode register (SCI2.SMR) Number of bits: 8 bits Address: 0008 8250h

(In serial communications interface mode (SCI2.SCMR.SMIF = 0))
Bit Symbol Setting Bit Name Description R/W
b1-b0 CKS[1:0] 00 Clock select 00: PCLK clock (n = 0) (*1) R/W

(*2)
b7 CM 1 Communications mode 1: Run in clock synchronous mode. R/W

(*2)
Notes: *1 See "User's Manual" listed in section 7, Reference Documents, for the value of n.
 *2 Writable only when SCI2.SCR.TE = 0 and SCI2.SCR.RE = 0 (serial transmission is disabled and

serial reception is disabled).

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 31 of 67
Feb 29, 2012

• SCI2 smart card mode register (SCI2.SCMR) Number of bits: 8 bits Address: 0008 8256h
Bit Symbol Setting Bit Name Description R/W
b0 SMIF 0 Smart card interface mode select 0: Serial communications

interface mode
R/W
(*1)

b3 SDIR 0 Smart card data transfer direction 0: Transmitted/received in
LSB first mode.

R/W
(*1)

Note: *1 Writable only when SCI2.SCR.TE = 0 and SCI2.SCR.RE = 0 (serial transmission is disabled and
serial reception is disabled).

• SCI2 serial status register (SCI2.SSR) Number of bits: 8 bits Address: 0008 8254h

(In serial communications interface mode (SCI2.SCMR.SMIF = 0))
Bit Symbol Setting Bit Name Description R/W
b5 ORER — (*1) Overrun error 0: No overrun error.

1: Overrun error occurred.
R/W
(*2)

Notes: *1 The ORER bit is handled only as read-only in this application note. It is never set to 0 for the
purpose of clearing the flag.

 *2 Only 0 can be written here to clear the flag.

• SCI2 receive data register (SCI2.RDR) Number of bits: 8 bits Address: 0008 8255h
Bit Symbol Setting Bit Name Description R/W
b7-b0 — — — These bits carry the receive data. R

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 32 of 67
Feb 29, 2012

(5) Interrupt Controller Unit (ICU)
• Interrupt source priority register 82 (IPR82) Number of bits: 8 bits Address: 0008 7382h
Bit Symbol Setting Bit Name Description R/W
b3-b0 IPR[3:0] 0000 SCI2 interrupt priority level 0000: Level 0 (interrupts disabled) R/W

• Interrupt request enable register 1B (IER1B) Number of bits: 8 bits Address: 0008 721Bh
Bit Symbol Setting Bit Name Description R/W
b7 IEN7 0 RXI2 interrupt request

enable bit 7
0: RXI2 interrupt requests are

disabled.
R/W

• Interrupt request register 223 (IR223) Number of bits: 8 bits Address: 0008 70DFh
Bit Symbol Setting Bit Name Description R/W
b0 IR 0 RXI2 interrupt status 0: No RXI2 interrupt request

present.
1: RXI2 interrupt request present.

R/(W)
(*1)

Note: *1 Only 0 can be written to clear the flag. Writing a 1 is prohibited.

• Interrupt source priority register 01 (IPR01) Number of bits: 8 bits Address: 0008 7301h
Bit Symbol Setting Bit Name Description R/W
b3-b0 IPR[3:0] 0000 FIFERR interrupt priority level 0000: Level 0 (interrupts disabled) R/W

• Interrupt source priority register 02 (IPR02) Number of bits: 8 bits Address: 0008 7302h
Bit Symbol Setting Bit Name Description R/W
b3-b0 IPR[3:0] 0000 FRDYI interrupt priority level 0000: Level 0 (interrupts disabled) R/W

• Interrupt request enable register 02 (IER02) Number of bits: 8 bits Address: 0008 7202h
Bit Symbol Setting Bit Name Description R/W
b5 IEN5 0 FIFERR interrupt request

enable bit 5
0: FIFERR interrupt requests are

disabled.
R/W

b7 IEN7 0 FRDYI interrupt request
enable bit 7

0: FRDYI interrupt requests are
disabled.

R/W

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 33 of 67
Feb 29, 2012

(6) ROM (Flash Memory for Code Storage)
• Flash access status register (FASTAT) Number of bits: 8 bits Address: 007F C410h
Bit Symbol Setting Bit Name Description R/W
b0 DFLWPE 0 Data flash

programming/erasure
protection violation

0: No data flash programming/erasure
command is issued which conflicts
with the DFLWE settings.

1: A data flash programming/erasure
command is issued which conflicts
with the DFLWE settings.

R/W
(*1)

b1 DFLRPE 0 Data flash read
protection violation

0: There is no such data flash read that
conflicts with the DFLRE settings.

1: There is such a data flash read that
conflicts with the DFLRE settings.

R/W
(*1)

b3 DFLAE 0 Data flash access
violation

0: No data flash access violation.
1: Data flash access violation.

R/W
(*1)

b4 CMDLK 1 FCU command lock 0: FCU is not in the command-locked
state.

1: FCU is in the command-locked state.

R

b7 ROMAE 0 ROM access violation 0: No ROM access error.
1: ROM access error.

R/W
(*1)

Note: *1 Only 0 can be written after reading 1 to clear the flag.

• Flash access error interrupt enable register (FAEINT) Number of bits: 8 bits Address: 007F C411h
Bit Symbol Setting Bit Name Description R/W
b0 DFLWPEIE 0 Data flash programming/erasure

protection violation interrupt enable
0: No FIFERR interrupt request

is issued when the
FASTAT.DFLWPE bit is set
to 1.

R/W

b1 DFLRPEIE 0 Data flash read protection violation
interrupt enable

0: No FIFERR interrupt request
is issued when the
FASTAT.DFLRPE bit is set to
1.

R/W

b3 DFLAEIE 0 Data flash read access violation
interrupt enable

0: No FIFERR interrupt request
is issued when the
FASTAT.DFLAE bit is set to
1.

R/W

b4 CMDLKIE 0 FCU command lock interrupt
enable

0: No FIFERR interrupt request
is issued when the
FASTAT.CMDLK bit is set to
1.

R/W

b7 ROMAEIE 0 ROM access violation interrupt
enable

0: No FIFERR interrupt request
is issued when the
FASTAT.ROMAE bit is set to
1.

R/W

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 34 of 67
Feb 29, 2012

• FCU RAM enable register (FCURAME) Number of bits: 16 bits Address: 007F C454h
Bit Symbol Setting Bit Name Description R/W
b0 FCRME 1 FCU RAM enable 0: Access to the FCU RAM disabled

1: Access to the FCU RAM enabled.
R/W

b15-b8 KEY[7:0] 11000100 Key code These bits are used to enable or disable
the rewriting of the FCRME bit.
C4h: Writing the FCRME bit is enabled

only when the value of KEY[7:0]
matches C4h in the word access.

R/W
(*1)

Note: *1 The write data is not retained.

• Flash status register 0 (FSTATR0) Number of bits: 8 bits Address: 007F FFB0h
Bit Symbol Setting Bit Name Description R/W
b4 PRGERR — Programming error 0: Programming terminated normally.

1: An error occurred during programming.
R

b5 ERSERR — Erasure error 0: Erasure terminated normally.
1: An error occurred during erasure.

R

b6 ILGLERR — Illegal command error 0: FCU detected no illegal command or
ROM/data flash access.

1: FCU detected no illegal command or
ROM/data flash access.

R

b7 FRDY — Flash ready 0: Programming/erasure in progress,
programming/erasure cancelation in
progress, lock bit read 2 command being
processed, or data flash blank check
processing in progress.

1: None of the above processing is being
executed.

R

• Flash status register 1 (FSTATR1) Number of bits: 8 bits Address: 007F FFB1h
Bit Symbol Setting Bit Name Description R/W
b7 FCUERR — FCU error 0: No error occurred during FCU processing.

1: An error occurred during FCU processing.
R

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 35 of 67
Feb 29, 2012

• Flash protection register (FPROTR) Number of bits: 16 bits Address: 007F FFB4h
Bit Symbol Setting Bit Name Description R/W
b0 FPROTCN 1 Lock bit

protection
cancel

1: Protection with a lock bit disabled. R/W

b15-b8 FPKEY[7:0] 01010101 Key code These bits are used to enable or disable the
rewriting of the FPROTCN bit.
55h: Writing the FPROTCN bit is enabled

only when the value of FPKEY[7:0]
matches 55h in the word access when
the FENTYRY register has a value other
than 0000h.

R/W
(*1)

Note: *1 The write data is not retained.

• Flash reset register (FRESETR) Number of bits: 16 bits Address: 007F FFB6h
Bit Symbol Setting Bit Name Description R/W

0 b0 FRESET
1

Flash reset 0: FCU is not reset.
1: FCU is reset.

R/W

b15-b8 FRKEY[7:0] 11001100 Key code These bits are used to enable or disable the
rewriting of the FRESET bit.
CCh: Writing the FRESET bit is enabled only

when the value of FRKEY[7:0] matches
CCh in the word access.

R/W
(*1)

Note: *1 The write data is not retained.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 36 of 67
Feb 29, 2012

• Flash P/E mode entry register (FENTRYR) Number of bits: 16 bits Address: 007F FFB2h
Bit Symbol Setting Bit Name Description R/W

0 b0 FENTRY0
1

ROM P/E
mode entry 0

0: Products with ROM 512K/384K/256K
bytes are in ROM read mode.

1: Products with ROM 512K/384K/256K
bytes are in ROM P/E mode.

R/W

b7 FENTRYD 0 Data flash P/E
mode entry

0: Products with data flash memory are in
read mode.

R/W

b15-b8 FEKEY[7:0] 10101010 Key code These bits are used to enable or disable the
rewriting of the FENTRYD and FENTRY0
bits.
AAh: Writing the FENTRY0 and FENTRYD

bits is enabled only when the value of
FEKEY[7:0] matches AAh in the word
access.

R/W
(*1)

Note: *1 The write data is not retained.

• Peripheral clock notification register (PCKAR) Number of bits: 16 bits Address: 007F FFE8h
Bit Symbol Setting Bit Name Description R/W
b7-b0 PCKA[7:0] 00110000 Peripheral clock notification 0x30: PCLK frequency = 48 MHz R/W

• Flash write erase protection register (FWEPROR) Number of bits: 8 bits Address: 0008 C289h
Bit Symbol Setting Bit Name Description R/W

01 b1-b0 FLWE[1:0]
10

Flash write erase 01: Write/erase enabled
10: Write/erase disabled

R/W

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 37 of 67
Feb 29, 2012

5.9 Functional Specifications
This section contains the specifications for the functions that are to be used by the program on the slave device.

(1) PowerON_Reset_PC function
(a) Functional overview

The PowerON_Reset_PC function initializes the stack pointer (the ISP/USP initialization code is automatically
generated by the compiler at the beginning of the function when the #pragma entry is declared for the
PowerON_Reset_PC function), sets up the INTB (set_intb function: an intrinsic function), initializes the FPSW
(set_fpsw function: an intrinsic function), initializes the RAM area sections (_INITSCT function: standard
library function), calls the HardwareSetup function, initializes the PSW (set_psw function: an intrinsic function),
and sets the processor mode to user mode. Subsequently, the function calls the main function.

(b) Arguments
None

(c) Return value
None

(d) Flowchart

PowerON_Reset_PC

set_intb

set_fpsw

_INITSCT

HardwareSetup

set_psw

Set up processor mode

main

brk

End

Load the INTB register with the start address of the
C$VECT section with the intrinsic function set_intb.
Initialize the FPSW register with the intrinsic function
set_fpsw.
Initialize the RAM area sections with the standard
library function _INTSCT.

Call the MCU initialization function.

Initialize the PSW register with the intrinsic function
set_psw.

Set the processor mode to user mode.

Call the main function.

Call the intrinsic function brk (BRK instruction).

Figure 13 Flowchart (PowerON_Reset_PC) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 38 of 67
Feb 29, 2012

(2) HardwareSetup function
(a) Functional overview

The HardwareSetup function initializes the MCU. It sets up the clocks (system clock (ICLK), peripheral module
clock (PCLK), and external bus clock (BCLK)), initializes the outputs of the I/O ports (P02, P03, P05, and P34)
to which LED0 to LED3 are connected and the Busy port (P01), and initializes the SCI2.

(b) Arguments
None

(c) Return value
None

(d) Flowchart

HardwareSetup

Set up clocks

End

• System clock ICLK = 96MHz
• Peripheral module clock PCLK = 48MHz
• External bus clock BCLK = 24MHz
 (when EXTAL clock = 12.0 MHz)
• Enable BCLK output.

• LED0 (P02): Initial output = high (LED0: off)
• LED1 (P03): Initial output = high (LED1: off)
• LED2 (P05): Initial output = high (LED2: off)
• LED3 (P34): Initial output = high (LED3: off)

Initialize outputs of LED ports

• Release the SCI2 module from the stopped state.
• Disable transmission and reception.
• Assign the clock source to the external clock.
• Designate the SCK2 pin as the clock input pin.
• Set P11 to operate as the SCK2-A pin.
• Set P12 to operate as the RxD2-A pin.
• Enable the input buffer for the P11/SCK2-A input pin.
• Enable the input buffer for the P12/RxD2-A input pin.
• Assign the on-chip baudrate generator clock source to the
 PCLK clock.
• Set the communications mode to clock synchronous mode.
• Set the SCI2 operating mode to serial communications
 interface mode.
• Set the direction of serial/parallel conversion to LSB first.
• Set the SCI2 interrupt priority level to interrupt disabled.
• Disable RXI2 interrupt requests.
• Clear the RXI2 interrupt status flag.

Initialize SCI2

• P01: Initial output = high (Busy reset)Initialize output of Busy port

Figure 14 Flowchart (HardwareSetup) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 39 of 67
Feb 29, 2012

(3) main function
(a) Functional overview

The main function controls the reception of 1-byte data from the master, copies the user MAT
programming/erasing control program from the user boot MAT (PF_UPDATE_FUNC section) to the on-chip
RAM (RF_UPDATE_FUNC section), and calls the user MAT programming control program (Flash_Update
function) in the on-chip RAM.

(b) Arguments
None

(c) Return value
None

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 40 of 67
Feb 29, 2012

(d) Flowchart

main

Enable SCI2 receive operation
Enable RXI2 and ERI2

interrupt requests

End

Overrun error?

1-byte reception
complete?

Clear RXI2 interrupt status flag
to 0.

Read receive data from RDR

FSTART command
received?

NG

OK

Yes

No

Copy user MAT programming/
erasing control program into

on-chip RAM

Flash_Update

Perform error processing if an overrun
error occurs (error No. 01).

Read the 1-byte receive data from SCI2.RDR.

Yes

Copy the user MAT programming/erasing control
program (PF_UPDATE_FUNC section) from the user
boot MAT to on-chip RAM (RF_UPDATE_FUNC section)
using the memcpy function.

Cause a jump to the user MAT programming/erasing control
program (Flash_Update function) in the on-chip RAM.

No Perform error processing if the received
data is not the FSTART command (error
No. 02).

Busy state Assert the Busy port (low).

Turn on error No. 01 LED.

Wait processing (WAIT_LED)

Turn off LED0-LELD3.

Wait processing (WAIT_LED)

Turn on error No. 02 LED.

Wait processing (WAIT_LED)

Turn off LED0-LELD3.

Wait processing (WAIT_LED)

Figure 15 Flowchart (main) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 41 of 67
Feb 29, 2012

(4) Flash_Update function
(a) Functional overview

The Flash_Update function controls the reception of the communications command, erase block number,
programming data size, and programming data that are sent from the master through clock synchronous
communication. It also controls the Busy port for serial communication, user MAT programming and erasing.
The function calls the Indicate_End_LED function when programming or erasure of the user MAT terminates
normally and the Indicate_Error_LED function in the event of an error termination.

(b) Arguments
None

(c) Return value
None

(d) Flowchart

Flash_Update

SCI_Rcv1byte Receive 1-byte data from the master
(ERASE command).

Error?

Indicate_Error_LED

Initialize fcu_info

NG

OK

Check if the received erase block number
falls within EB00 and EB37 and perform
error processing if not (error No. 04).

Initialize fcu_info (RAM variable) with the
received erase block number.

Reset busy state Negate the Busy port (high).

Busy state Assert the Busy port (low).

ERASE command
received?

Yes

No Perform error processing if the received
data is not an ERASE command (error
No. 03).

Indicate_Error_LED

Reset busy state Negate the Busy port (high).

SCI_Rcv1byte Receive 1-byte data from the master
(erase block number).

Busy state Assert the Busy port (low).

1

Figure 16 Flowchart (Flash_Update) (1) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 42 of 67
Feb 29, 2012

fcu_Interrupt_Disable Disable FCU interrupts.

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error occurs
during ROM P/E mode transition (error No.
06).

fcu_Transfer_Firmware

fcu_Transition_RomPE
_Mode

Transfer FCU firmware.

Transit to ROM P/E mode.

fcu_Notify_Peripheral
_Clock Issue a peripheral clock notification command.

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error occurs
while issuing a peripheral clock notification
command (error No. 07).

fcu_Erase Erase the erase block designated by the
received erase block number.

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error occurs
while erasing the specified erase block
(error No. 08).

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error occurs
when switching into ROM read mode during
FCU firmware transfer (error No. 05).

1

2

Figure 17 Flowchart (Flash_Update) (2) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 43 of 67
Feb 29, 2012

Error? NG

OK

Perform error processing if the received
programming data size is 0 or greater
than the size of the specified erase block
(error No. 10).

Receive 1-byte data from the master
(WRITE command).SCI_Rcv1byte

WRITE command
received?

Yes

Perform error processing if the received
data is not the WRITE command (error
No. 09).

Initialize fcu_info Initialize fcu_info (RAM variable) based on
the received programming data size.

Reset busy Negate the Busy port (high).

Indicate_Error_LED

Busy state Assert the Busy port (low).

Receive 4-byte data from the master
(programming data size).SCI_Rcvnbyte

Reset busy Negate the Busy port (high).

Busy state Assert the Busy port (low).

No

Indicate_Error_LED

2

3

Figure 18 Flowchart (Flash_Update) (3) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 44 of 67
Feb 29, 2012

Initialize wrdata_buffer[]
Initialize the buffer (wrdata_buffer[]) for storing
the programming data received from the master
with FFh.

fcu_Write Perform 256-byte data programming processing.

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error
occurs during 256-byte programming
processing (error No. 11).

End of programming?
Check if programming the number of data bytes
equal to the received programming data size is
completed.

Yes

No

Reset busy Negate the Busy port (high).

Busy state Assert the Busy port (low).

SCI_Rcvnbyte Receive 256-byte data from the mater
(programming data).

Indicate_Ending_LED Perform normal termination processing.

Reset busy Negate the Busy port (high).

Disable SCI2 receive operation
Disable RXI2 and ERI2 interrupt

requests

3

Error?

Indicate_Error_LED

NG

OK

Perform error processing if an error
occurs while transiting to the ROM read
mode (error No. 12).

fcu_Transtion_RomRead
_Mode Transit to the ROM read mode.

Figure 19 Flowchart (Flash_Update) (4) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 45 of 67
Feb 29, 2012

(5) fcu_Interrupt_Disable function
(a) Functional overview

The fcu_Interrupt_Disable function disables FCU interrupts (the FRDYI interrupt, data flash
programming/erasure protection violation interrupt, data flash read protection violation interrupt, data flash
access violation interrupt, FCU command lock interrupt, ROM access violation interrupt, and FIFERR interrupt)
before user MAT programming erasing processing.

(b) Arguments
None

(c) Return value
None

(d) Flowchart

FRDYIE.FRDYIE bit = 0 Disable flash ready interrupts (FRDYI).

FAEINT.ROMAEIE bit = 0

FAEINT.CMDLKIE bit = 0

FAEINT.DFLAEIE bit = 0

FAEINT.DFLRPEIE bit = 0

FAEINT.DFLWPEIE bit = 0

IPR01.IPR[3:0] bits = 0000b

IER02.IEN5 bit = 0

IPR02.IPR[3:0] bits = 0000b

IER02.IEN7 bit = 0

fcu_Interrupt_Disable

End

Disable an FIFERR interrupt request to be generated
when a ROM access violation occurs and the FASTAT
ROMAE bit is set to 1.

Disable an FIFERR interrupt request to be generated
when a data flash access violation occurs and the
FASTAT.DFLAE bit is set to 1.

Disable an FIFERR interrupt request to be generated
when an FCU command lock occurs and the
FASTAT.CMDLK bit is set to 1.

Disable an FIFERR interrupt request to be generated
when a data flash read protection violation occurs and
the FASTAT.DFLRPE bit is set to 1.

Disable an FIFERR interrupt request to be generated
when a data flash programming/erasure protection
violation occurs and the FASTAT.DFLWPE bit is set to 1.

Set the priority level of the FIFERR interrupt source to 0
(disable interrupts).

Disable FIFERR interrupt requests.

Set the priority level of the FRDYI interrupt source to 0
(disable interrupts).

Disable FRDYI interrupt requests.

Figure 20 Flowchart (fcu_Interrupt_Disable) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 46 of 67
Feb 29, 2012

(6) fcu_Reset function
(a) Functional overview

The fcu_Reset function initializes the FCU according to the state of the FRESETR.FRESET bit.
(b) Arguments

None
(c) Return value

None
(d) Flowchart

wait_cnt = 0 ? No

Yes

FRESETR = CC01h
Initialize the FCU by loading the FRESETR register
with CC01h in word access mode and setting the
FRESET bit to 1.

fcu_Reset

wait_cnt = WAIT_TRESW2

wait_cnt --

FRESETR = CC00h
Resets the FCU by loading the FRESETR register
with CC00h in word access mode and setting the
FRESET bit to 0.

End

Perform tRESW2
wait control

Figure 21 Flowchart (fcu_Reset) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 47 of 67
Feb 29, 2012

(7) fcu_Transfer_Firmware function
(a) Functional overview

The fcu_Transfer_Firmware function copies the FCU firmware from the FCU firmware storage area (FEFF
E000h to FEFF FFFFh) to the FCU RAM area (007F 8000h to 007F 9FFFh).

(b) Arguments
Table 22 lists the argument that is used by this function.

Table 22 List of fcu_Transfer_Firmware Function Arguments

Argument Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 23 lists the return value that is returned by this function.

Table 23 List of fcu_Transfer_Firmware Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 48 of 67
Feb 29, 2012

(d) Flowchart

FENTRYR ?
= 0000h

fcu_Transfer_Firmware

FCURAME = C401h

Copy FCU firmware to FCU
RAM area

Enable accesses to FCU RAM by loading the
FCURAME register with C401h in word access
mode and setting the FCRME bit to 1.

End

fcu_Transtion_RomRead
_Mode

= Other than 0000h

Check the FENTRYR register.

Transit to the ROM read mode.

Copy the FCU firmware from the FCU firmware
area (FEFF E000h to FEFF FFFFh) to the FCU
RAM area (007F 8000h to 007F 9FFFh) using
the memcpy function.

Error? NG

OK

Returns FCU_ERROR as the return
value if an error occurs while transiting to
the ROM read mode.

ret = FCU_SUCCESS

ret = FCU_ERROR

return ret

End

Return FCU_ERROR as the return value.

return ret Return FCU_SUCCESS as the return value.

Figure 22 Flowchart (fcu_Transfer_Firmware) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 49 of 67
Feb 29, 2012

(8) fcu_Transition_RomRead_Mode function
(a) Functional overview

The fcu_Transition_RomRead_Mode function transits the FCU to the ROM read mode.
(b) Arguments

Table 24 lists the argument that is used by this function.
Table 24 List of fcu_Transition_RomRead_Mode Function Arguments

Arguments Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 25 lists the return value that is returned by this function.

Table 25 List of fcu_Transition_RomRead_Mode Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 50 of 67
Feb 29, 2012

(d) Flowchart

Figure 23 Flowchart (fcu_Transition_RomRead_Mode) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 51 of 67
Feb 29, 2012

(9) fcu_Transition_RomPE_Mode function
(a) Functional overview

The fcu_Transition_RomPE_Mode function transits the FCU to the ROM P/E mode.
(b) Arguments

Table 26 lists the argument that is used by this function.
Table 26 List of fcu_Transition_RomPE_Mode Function Arguments

Argument Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 27 lists the return value that is returned by this function.

Table 27 List of fcu_Transition_RomPE_Mode Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 52 of 67
Feb 29, 2012

(d) Flowchart

fcu_Transition
_RomPE_Mode

ret = FCU_SUCCESS

Error?

ILGLERR, ERSERR, or
PRGERR = 1

ret = FCU_ERROR
ILGLERR = 0
ERSERR = 0
PRGERR = 0

return ret

End

Return FCU_SUCCESS or FCU_ERROR as
the return value.

FENTRYR = AA00h

FENTRYR = AA01h

FWEPROR = 01h

Error?
FCUERR = 1

ret = FCU_ERROR
FCUERR = 0

Transit to the ROM read mode.

Transit to the ROM P/E mode.

Return FCU_ERROR as the return
value if the FSTATR0.ILGLERR,
ERSERR, or PRGERR bit is set to 1.

Return FCU_ERROR as the return
value if the FSTATR1.FCUERR bit
is set to 1.

Reset software protection against the
execution of flash program/erase.

FENTRYR = 0000h ?
= other than 0000h

= 0000h

Verifies that the ROM read mode
transition has completed.

Figure 24 Flowchart (fcu_Transition_RomPE_Mode) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 53 of 67
Feb 29, 2012

(10) fcu_Notify_Peripheral_Clock function
(a) Functional overview

The fcu_Notify_Peripheral_Clock function places the frequency of the peripheral module clock (PCLK) in the
PCKAR register and issues a peripheral clock notification command.

(b) Arguments
Table 28 lists the argument that is used by this function.

Table 28 List of fcu_Notify_Peripheral_Clock Function Arguments

Argument Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 29 lists the return value that is returned by this function.

Table 29 List of fcu_Notify_Peripheral_Clock Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 54 of 67
Feb 29, 2012

(d) Flowchart

fcu_Notify
_Peripheral_Clock

ret = FCU_SUCCESS

FRDY ?

wait_cnt --
= 1

return ret

End

Return FCU_SUCCESS or FCU_ERROR
as the return value.

PCKAR = 0030h

Error?
ILGLERR = 1

ret = FCU_ERROR
ILGLERR = 0

Return FCU_ERROR as the return
value if the FSTATR0.ILGLERR bit is
set to 1.

Issue peripheral clock
notification command

wait_cnt = WAIT_TPCKA

= 0

wait_cnt ?

= 0
= Other
than 0

fcu_Reset

ret = FCU_ERROR

return ret

End

Return FCU_ERROR as the return value.

Initialize the FCU.

Perform tPCKA timeout control.

Check FCU processing status.

Load the PCKAR register with the frequency
(48 MHz) of the peripheral module clock
(PCLK).

Figure 25 Flowchart (fcu_Notify_Peripheral_Clock) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 55 of 67
Feb 29, 2012

(11) fcu_Erase function
(a) Functional overview

The fcu_Erase function erases the user MAT (in erase block units) using the block erase command.
(b) Arguments

Table 30 lists the argument that is used by this function.
Table 30 List of fcu_Erase Function Arguments

Arguments Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 31 lists the return value that is returned by this function.

Table 31 List of fcu_Erase Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 56 of 67
Feb 29, 2012

(d) Flowchart

fcu_Erase

ret = FCU_SUCCESS

FRDY ?

wait_cnt --
= 1

return ret

End

Return FCU_SUCCESS or FCU_ERROR
as the return value.

FWEPROR = 01h

Error?

ILGLERR or
ERSERR = 1

ret = FCU_ERROR
ILGLERR = 0
ERSERR = 0

Return FCU_ERROR as the
return value if the
FSTATR0.ILGLERR or
ERSERR bit is set to 1.

wait_cnt = WAIT_TE16K

= 0

wait_cnt ?

= 0
= Other
than 0

fcu_Reset

ret = FCU_ERROR

return ret

End

Return FCU_ERROR as the return value.

Initialize the FCU.

Perform tE16K×1.1
timeout control

Check FCU processing status.

Reset software protection against the execution
of flash program/erase

Issue block erase command

FPROTR = 5501h
Load the FPROTR register with 5501h in word
access mode to disable programming/erasure
protection with a lock bit.

Figure 26 Flowchart (fcu_Erase) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 57 of 67
Feb 29, 2012

(12) fcu_Write function
(a) Functional overview

The fcu_Write function programs data into the user MAT (in 256 byte units) using the program command.
(b) Arguments

Table 32 lists the argument that is used by this function.
Table 32 List of fcu_Write Function Arguments

Argument Type Description
First argument ST_FCU_INFO *

(*1)
Address of the structure storing the FCU-related address information
to be used during user MAT programming/erasure processing

Note: *1 See 5.6.1, Structure ST_FCU_INFO, for details on the ST_FCU_INFO type.

(c) Return value
Table 33 lists the return value that is returned by this function.

Table 33 List of fcu_Write Function Return Values

Type Description
FCU_STATUS (*2) Status established by the execution of the function
Note: *2 See section 5.7, Description of the enum Type, for details on the FCU_STATUS type.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 58 of 67
Feb 29, 2012

(d) Flowchart

fcu_Write

ret = FCU_SUCCESS

FRDY ?

wait_cnt --
= 1

return ret

End

Return FCU_SUCCESS or FCU_ERROR
as the return value.

FWEPROR = 01h

Error?

ILGLERR or
PRGERR = 1

ret = FCU_ERROR
ILGLERR = 0
PRGERR = 0

Return FCU_ERROR as the
return value if the
FSTATR0.ILGLERR or
PRGERR bit is set to 1.

wait_cnt = WAIT_TP256

= 0

wait_cnt ?

= 0
= Other
than 0

fcu_Reset

ret = FCU_ERROR

return ret

End

Return FCU_ERROR as the return value.

Initialize the FCU.

Perform tP256×1.1
timeout control

Check FCU processing status.

Reset software protection against the execution
of flash program/erase

Issue program command

FPROTR = 5501h
Load the FPROTR register with 5501h in word
access mode to disable programming/erasure
protection with a lock bit.

Figure 27 Flowchart (fcu_Write) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 59 of 67
Feb 29, 2012

(13) Indicate_End_LED function
(a) Functional overview

The Indicate_End_LED function displays the normal termination status on LED0 to LED3 when the
programming/erasure processing terminates normally. It turns on LED0 to LED3 sequentially, one at a time.

(b) Arguments
None

(c) Return value
None

(d) Flowchart

Indicate_Ending_LED

Turn on LED0 only (LED1,
LED2, and LED3 are off)

End

Wait processing (WAIT_LED)

Turn on LED1 only (LED0,
LED2, and LED3 are off)

Wait processing (WAIT_LED)

Turn on LED2 only (LED0,
LED1, and LED3 are off)

Wait processing (WAIT_LED)

Turn on LED3 only (LED0,
LED1, and LED2 are off)

Wait processing (WAIT_LED)

Wait processing by for loop
(Number of loops: WAIT_LED)

Wait processing by for loop
(Number of loops: WAIT_LED)

Wait processing by for loop
(Number of loops: WAIT_LED)

Wait processing by for loop
(Number of loops: WAIT_LED)

Figure 28 Flowchart (Indicate_End_LED) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 60 of 67
Feb 29, 2012

(14) Indicate_Error_LED function
(a) Functional overview

The Indicate_Error_LED function displays the error number of any error occurring during user MAT
programming/erasure processing on LED0 to LED3. It repeats the cycle of displaying the error number on the
LEDs and turning off all LEDs.

(b) Arguments
Table 34 lists the argument that is used by this function.

Table 34 Indicate_Error_LED Function Arguments

Argument Type Description
First argument unsigned char Error number of the error occurring during user MAT

programming/erasure processing (*1)
Note: *1 See section 4.6, Error Processing, for the error number.

(c) Return value
None

(d) Flowchart

Indicate_Error_LED

Display error number (No. 01
to No. 12) on LED0 to LED3

End

See section 4.6, Error Processing, for the
display contents of LED0 to LED3.

Wait processing (WAIT_LED) Wait processing by for loop
(Number of loops: WAIT_LED)

Turn off LED0-LED3 Turn off all of LEDs LED0 to LED3.

Wait processing (WAIT_LED) Wait processing by for loop
(Number of loops: WAIT_LED)

Figure 29 Flowchart (Indicate_Error_LED) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 61 of 67
Feb 29, 2012

(15) SCI_Rcv1byte function
(a) Functional overview

The SCI_Rcv1byte function controls the reception of 1-byte data through the SCI2 clock synchronous
communications interface.

(b) Arguments
None

(c) Return value
Table 35 lists the return value that is returned by this function.

Table 35 SCI_Rcv1byte Function Return Values

Type Description
unsigned char 1-byte data received through the SCI2 clock synchronous

communications interface.

(d) Flowchart

SCI_Rcv1byte

End

Overrun error?

1-byte reception
completed?

Clear RXI2 interrupt status flag
to 0

Read receive data from RDR

NG

OK

Yes

No Check if 1-byte data reception is finished.

Read the 1-byte data from SCI2.RDR.

Return received data Return the 1-byte received data as the return value.

Perform error processing if an overrun
error occurs (error No. 01).

Indicate_Error_LED

Figure 30 Flowchart (SCI_Rcv1byte) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 62 of 67
Feb 29, 2012

(16) SCI_Rcvnbyte function
(a) Functional overview

The SCI_Rcvnbyte function controls the reception of n-byte data (n is the first argument of the unsigned short
type) through the SCI2 clock synchronous communications interface.

(b) Arguments
Table 36 lists the argument that is used by this function.

Table 36 SCI_Rcvnbyte Function Arguments

Argument Type Description
First argument unsigned short Number of bytes to receive through the SCI2 clock synchronous

communications interface.
Second argument unsigned char * Start address of the area for storing the received data

(c) Return value
None

(d) Flowchart

SCI_Rcvnbyte

End

Overrun error?

1-byte reception
completed?

Clear RXI2 interrupt status flag
to 0

Read receive data from RDR

OK

Yes

No

Read 1-byte receive data from SCI2.RDR and
place it in the receive data storage area designated
by the second argument.

Specified number of data
bytes received?

Increment received data
storage area address

Increment the address of the received data storage
area specified by the second argument by 1.

Decrement received data
count

Decrement the number of receive data bytes
specified by the first argument by 1.

Repeat the receive operation until the received
data byte count specified by the first argument
reaches 0 (the program uses a while loop).

!= 0

= 0

NG Perform error processing if an overrun error occurs
(error No. 01).

Indicate_Error_LED

Figure 31 Flowchart (SCI_Rcvnbyte) (Slave)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 63 of 67
Feb 29, 2012

6. Usage Notes

6.1 Timeout Processing
The example given in this application note exercises some timeout control during user MAT programming/erasure
processing. The time measurement for this purpose is accomplished using software timers.

This section explains the types of timeout control used for the example given in this application note.

6.1.1 tPCKA Timeout Control
tPCKA timeout control is exercised when the FCU peripheral clock notification command is issued. In the example given
in this application note, the FCU is initialized and error processing is performed if a time longer than tPCKA elapses after
a peripheral clock notification command and till the FSTATR0.FRDY bit is set to 1.

In the example given in this application note, the tPCKA wait time is created by cycling through the while loop the
number of times defined by the symbolic constant WAIT_TPCKA. Given that the number of cycles taken in one pass
through the while loop is 11 cycles (the user can check this in the assembly listing that is generated by the compiler),
the number of cycles through the while loop can be calculated using the following formula:

Number of cycles through the while loop = Wait time / (Number of cycles taken in one pass through
the while loop × ICLK cycle time)

Since the CPU's instruction execution time varies depending on the type of pipeline processing, the above-mentioned
number of cycles taken in one pass through the while loop (11 cycles) becomes equal to an approximate instruction
execution time.

tPCKA is 60[μs] for a PCLK frequency of 50 MHz and 120[μs] for a PCLK frequency of 25 MHz. For the example
given in this application note, tPCKA is 62.5[μs] since PCLK = 48 MHz.

Since the wait time is calculated to be 187.5[μs] with a wide margin allowed for the example given in this application
note, the number of cycles through the while loop is calculated as follows:

Number of cycles through the while loop = WAIT_TPCKA = 187.5[μs] / (11 × 10.41666[ns]) = 1636
(when ICLK = 96 MHz)

Consequently, symbolic constant WAIT_TPCKA is defined as 1636.

When using the example given in this application note, make an extensive evaluation of the CPU's instruction execution
time or measure the time in question using a timer.

6.1.2 tRESW2 Wait Control
tRESW2 wait control is exercised to control, using a software timer, the reset pulse width (tRESW2) occurring during the
programming/erasure processing after the FRESETR.FRESET bit is set to 1 till it is cleared to 0 during FCU
initialization.

Table 37 lists the reset pulse width occurring during the programming/erasure processing.

Table 37 Reset Pulse Width Occurring during The Programming/Erasure Processing

Item Symbol min max Unit Measurement Conditions
Internal reset time (*2) tRESW2

(*1)
35 — μs None

Notes: *1 This specification item applies to the FCU reset and WDT reset.
 *2 See "Control Signal Timing" of "User's Manual" listed in section 7, Reference Documents, for

details

The tRESW2 wait time is created by cycling through the while loop the number of times defined by the symbolic constant
WAIT_TRESW2. Given that the number of cycles taken in one pass through the while loop is 4 cycles (the user can
check this in the assembly listing that is generated by the compiler), the number of cycles through the while loop can be
calculated using the following formula:

Number of cycles through the while loop = Wait time / (Number of cycles taken in one pass through
the while loop × ICLK cycle time)

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 64 of 67
Feb 29, 2012

Since the CPU's instruction execution time varies depending on the type of pipeline processing, the above-mentioned
number of cycles taken in one pass through the while loop (4 cycles) becomes equal to an approximate instruction
execution time.

Since the wait time (tRESW2) is calculated to be 105[μs] with a wide margin allowed for the example given in this
application note, the number of cycles through the while loop is calculated as follows:

Number of cycles through the while loop = WAIT_TRESW2 = 105[μs] / (4 × 10.41666 [ns]) = 2520
(when ICLK = 96 MHz)

Consequently, symbolic constant WAIT_TRESW2 is defined as 2520.

When using the example given in this application note, make an extensive evaluation of the CPU's instruction execution
time or measure the time in question using a timer.

6.1.3 tE16K × 1.1 Timeout Control
tE16K × 1.1 timeout control is used when transiting the FCU to the ROM read mode and when erasing the user MAT. In
the transition to the ROM read mode, the erasure time for the 16K byte erase block before the ROM read mode is being
transited by loading the FENTRYR register with AA00h till the FSTATR0.FRDY bit is set to 1 is measured using a
software timer. During erasure processing, the erasure time for the 16K byte erasure occurring since a block erase
command is issued till the FSTATR0.FRDY bit is set to 1 is measured using a software timer.

Table 38 lists the erasure time for the 16K byte erasure occurring since a block erase command.

Table 38 Erasure Time for The 16K Byte Erasure Occurring Since A Block Erase Command

Item Symbol min typ max Unit Measurement Conditions
Erasure time
(*1)

16 KB tE16K — 100 240 ms When PCLK = 50 MHz
When No. of erasures per block ≤ 100

Note: *1 See "ROM (Flash Memory for Code Storage) Characteristics" of "User's Manual" listed in section 7,
Reference Documents, for details

The tE16K × 1.1 wait time is created by cycling through the while loop the number of times defined by the symbolic
constant WAIT_TE16K. Given that the number of cycles taken in one pass through the while loop is 10 cycles (the user
can check this in the assembly listing that is generated by the compiler), the number of cycles through the while loop
can be calculated using the following formula:

Number of cycles through the while loop = Wait time / (Number of cycles taken in one pass through
the while loop × ICLK cycle time)

Since the CPU's instruction execution time varies depending on the type of pipeline processing, the above-mentioned
number of cycles taken in one pass through the while loop (10 cycles) becomes equal to an approximate instruction
execution time.

Since the wait time (tE16K × 1.1) is calculated to be 793[ms] with a wide margin allowed for the example given in this
application note, the number of cycles through the while loop is calculated as follows:

Number of cycles through the while loop = WAIT_TE16K = 793[ms] / (10 × 10.41666 [ns]) = 7603200
(when ICLK = 96 MHz)

Consequently, symbolic constant WAIT_TE16K is defined as 7603200.

When using the example given in this application note, make an extensive evaluation of the CPU's instruction execution
time or measure the time in question using a timer.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 65 of 67
Feb 29, 2012

6.1.4 tP256 × 1.1 Timeout Control
tP256 × 1.1 timeout control is used when programming the user MAT. The 256-byte programming time after a program
command is issued till the FSTATR0.FRDY bit is set to 1 is measured using a software timer.

Table 39 lists the 256-byte programming time.

Table 39 256-Byte Programming Time

Item Symbol min typ max Unit Measurement Conditions
Programming
time (*1)

256 bytes tP256 — 2 12 ms When PCLK = 50 MHz
When No. of erasures per block ≤
100

Note: *1 See "ROM (Flash Memory for Code Storage) Characteristics" of "User's Manual" listed in section 7,
Reference Documents, for details

The tP256 × 1.1 wait time is created by cycling through the while loop the number of times defined by the symbolic
constant WAIT_TP256. Given that the number of cycles taken in one pass through the while loop is 11 cycles (the user
can check this in the assembly listing that is generated by the compiler), the number of cycles through the while loop
can be calculated using the following formula:

Number of cycles through the while loop = Wait time / (Number of cycles taken in one pass through
the while loop × ICLK cycle time)

Since the CPU's instruction execution time varies depending on the type of pipeline processing, the above-mentioned
number of cycles taken in one pass through the while loop (11 cycles) becomes equal to an approximate instruction
execution time.

Since the wait time (tP256 × 1.1) is calculated to be 39.6[ms] with a wide margin allowed for the example given in this
application note, the number of cycles through the while loop is calculated as follows:

Number of cycles through the while loop = WAIT_TP256 = 39.6[ms] / (11 × 10.41666 [ns]) = 345600
(when ICLK = 96 MHz)

Consequently, symbolic constant WAIT_TP256 is defined as 345600.

When using the example given in this application note, make an extensive evaluation of the CPU's instruction execution
time or measure the time in question using a timer.

6.2 Fixed Vector in User Boot Mode
Transition to the user boot mode occurs when the reset state is released after setting up the user boot mode through the
MD1 and MD0 pins. The reset vector in this case is set to address FF7F FFFCh in the user boot MAT. The other entries
in the vector table refer to those in the ordinary vector table.

The fixed vector table is a vector table whose address is fixed. Vectors for privileged instruction exception, undefined
instruction exception, floating-point exception, nonmaskable interrupt, and reset are placed in addresses FFFF FFD0h to
FFFF FFFFh.

Figure 32 illustrates how to set up the fixed vector table for the example given in this application note.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 66 of 67
Feb 29, 2012

Privileged instruction exception
MSB LSB

(Reserved)
(Reserved)

Undefined instruction exception

(Reserved)
Floating-point exception

(Reserved)
(Reserved)
(Reserved)
(Reserved)

Nonmaskable interrupt
Reset

Fixed vector table

FFFF FFD0h
FFFF FFD4h
FFFF FFD8h
FFFF FFDCh
FFFF FFE0h
FFFF FFE4h
FFFF FFE8h
FFFF FFECh
FFFF FFF0h
FFFF FFF4h
FFFF FFF8h
FFFF FFFChFF7F FFFCh Reset

Unused

User boot mode

<Address> <Address>MSB LSB

Figure 32 How to Set Up the Fixed Vector Table for this Application Note

The slave referred to in this application note runs in user boot mode. The fixed vector table for the slave is created by
commenting out the privileged instruction exception (Excep_SuperVisorInst function), undefined instruction execution
(Excep_UndefinedInst function), floating-point exception (Excep_FloatingPoint function), nonmaskable interrupt
(NonMaskableInterrupt), and Dummy function in the reserved area in the fixed vector tables in the files (vecttbl.c,
vect.h, intprg.c) that are automatically generated by HEW and leaving only the fixed vector (4 bytes) for the reset
function and is placed in address FF7F FFFC in the user boot MAT.

The slave program referred to in this application note sets up only the reset vector in the user boot MAT and sets up no
fixed vector in the user MAT.

When the user is to use the slave program described in this application note, he or she needs to set up the fixed vectors
(for privileged instruction exception, undefined instruction exception, floating-point exception, nonmaskable interrupt,
and reserved areas) in the user MAT and the corresponding exception handlers.

6.3 Notes on Reprogramming the Erasure Block EB00
Allocated to the erase block EB00 (programming/erasure addresses: 00FF F000h to 00FF FFFF, read addresses: FFFF
F000h to FFFF FFFFh) are the fixed vector (FFFF FF80h to FFFF FFFFh), ID code protection codes (FFFF FFA0h to
FFFF FFAFh).

The above-mentioned fixed vectors and ID code protection codes will be temporarily erased if an attempt is made to
program or erase EB00 with the erase block number set to EB00_INDEX. It is therefore necessary to make settings for
the fixed vectors and ID code protection again after erasing EB00.

ID code protection is a function to disable the reading, programming, and erasure by the host. It makes judgment for ID
code protection using the control code and ID code written on ROM. For details on ID code protection, see "User's
Manual" listed in section 7, Reference Documents.

RX62N Group, RX621 Group On-chip Flash Memory Reprogramming in the User Boot Mode (Slave)

R01AN0184EJ0102 Rev.1.02 Page 67 of 67
Feb 29, 2012

7. Reference Documents
• User's Manuals

RX62N Group, RX621 Group User's Manual: Hardware (R01UH0033EJ)
(The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

RX Family User's Manual; Software (REJ09B0435)
(The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

• Development Environment Manual

RX Family C/C++ Compiler Package User's Manual (REJ10J2062)
(The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

• Application Notes

RX62N Group, RX621 Group
On-chip Flash Memory Reprogramming in the User Boot Mode (Master) (R01AN0185EJ)
(The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

• Technical Updates

(The most up-to-date versions of the documents are available on the Renesas Electronics Website.)

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev. Date Page Summary
1.00 Dec 17, 2010 — First edition issued
1.01 Sep.02.11

17
27
—

volatile __evenaccess declaration added
4.9.3 FCU Commands amended
Table 19 amended
Source file (main.c) amended

1.02 Feb.29.12 50 Figure 23: Corrected. ("Verifies that the ROM read mode
transition has completed." added.)

 52 Figure 24: Corrected. ("Verifies that the ROM read mode
transition has completed." added.)

 — Source file (main.c) amended

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	Introduction
	Target Device
	Contents
	1. Specification
	2. Operating Environment
	3. Functions Used
	4. Description of Operation
	4.1 Setting the Operating Mode
	4.2 Setting up the Clocks
	4.3 Setting up Endian
	4.4 Clock Synchronous Communication Specifications
	4.4.1 Communications Command Specifications
	4.4.2 Communications Flows
	4.4.3 Erasure Block Number
	4.4.4 Programming Data Size
	4.4.5 Overrun Error Processing

	4.5 Normal Termination Processing
	4.6 Error Processing
	4.7 LED Cabling
	4.8 Handshake Control
	4.9 User MAT Programming/Erasing
	4.9.1 RX62N Group (R5F562N8) Memory MAT Configuration
	4.9.2 RX62N Group (R5F562N8) Erasure Block Configuration
	4.9.3 FCU Commands
	4.9.4 User MAT Programming/Erasing Procedures

	4.10 Section Settings

	5. Software Description
	5.1 File Organization
	5.2 Functions
	5.3 Symbolic Constant Description
	5.4 const Variable Description
	5.5 RAM Variable Description
	5.6 Structure Description
	5.6.1 Structure ST_FCU_INFO
	5.6.2 Structure ST_EB_ADRS

	5.7 Description of the enum Type
	5.8 Description of the I/O Registers Used
	5.9 Functional Specifications

	6. Usage Notes
	6.1 Timeout Processing
	6.1.1 tPCKA Timeout Control
	6.1.2 tRESW2 Wait Control
	6.1.3 tE16K (1.1 Timeout Control
	6.1.4 tP256 (1.1 Timeout Control

	6.2 Fixed Vector in User Boot Mode
	6.3 Notes on Reprogramming the Erasure Block EB00

	7. Reference Documents
	Website and Support

