

RX610 Group

RX-Stick Dhrystone Benchmark

REU05B0148-0100 Rev. 1.00 Jan 11 2011

Introduction

The following document describes how to run the Dhrystone benchmark RX-Stick Quick Demo.

Target Device

RX610

Contents

1.	Introduction	. 2
2.	Application Highlights	2
3.	References	2
4.	Application Overview	3

1. Introduction

The RX architecture sets a new benchmark for MCU performance, offering 1.65 DMIPS/MHz and incorporating powerful features such as an on-chip Floating Point Unit (FPU), DSP-like instructions, and execution from zero wait state flash memory up to 100 MHz. These features make it possible to use the RX for demanding applications that previously were the domain of DSP's.

A common benchmark used to measure the performance of CPUs is the Dhrystone benchmark. This application note details running the RX-Stick Dhrystone Quick Demo.

2. Application Highlights

- Dhrystone version 2.1
- Performs typical program tasks such as copying memory, character manipulation, and integer math
- The RX has a sophisticated DMA controller that is used to automatically refresh the LED display without requiring any processor overhead
- Results are calculated on-chip and displayed in HEW's watch window.

3. References

The user manual for the RX-Stick is: REJ10J2168: RX-Stick User Manual

The hardware manual for the RX610 is: REJ09B0460: RX610 Group Hardware Manual

The software manual for the RX610 is: REJ09B0435: RX Family Software Manual

Application note on Dhrystone Benchmark: REU05B0134-0100: How to Setup and Run Dhrystone on a MCU

3.1 Hardware Manual Relevant Chapters

Address Space – for details on the memory map of the RX

I/O Registers – provides a complete listing of all registers

Clock Generation Circuit – for details on how to setup the bus and peripheral clock on the RX

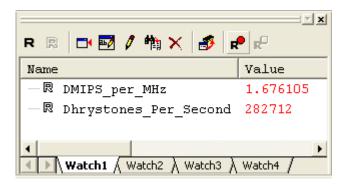
Interrupt Control Unit - for details on the enabling interrupts in the interrupt controller to the CPU or DMAC

DMA Controller (DMAC) – for information on the DMAC used to drive the LED display

I/O Ports – provides information on how to configure port pins for GPIO or peripheral use

16-Bit Timer Pulse Unit (TPU) – a number of timer channels are used to drive the display and audio playback

D/A Converter – The DAC is used to drive the speaker for audio output.


4. Application Overview

A HEW workspace is provided with the Dhrystone 2.1 benchmark code. The code runs the Dhrystone, times its own execution using on-chip peripherals, and then computes the Dhrystone performance. The HEW workspace provided is pre-configured with an open Watch Window to display the results of the benchmark.

4.1 Running the Application

Simply connect the RX-Stick to your PC, open the "RX_Stick_Dhrystone.hws" HEW workspace in "C:\Workspace\RX_Stick_Dhrystone", and select Build | Build All from the menu. The program is downloaded to the RX-Stick after the build completes and is ready for execution. Press the Reset Go button on the toolbar to run the program. After a few seconds the display changes to "OK" and the benchmark is complete. The "Halt" button can be clicked and the Dhrystone results viewed in the watch window. The user can change compiler optimization settings to see the effects on Dhrystone benchmark performance.

Figure 1- Watch Window

For accurate Dhrystone results, it is recommended that the benchmark runs with enough iterations so that at least one second of computations are needed. The RX-Stick demonstration program runs 1,000,000 iterations of the Dhrystone; this takes between 3 and 4 seconds to complete. While the test is running, the RX is using a high-resolution timer to record the execution time. At the conclusion of the benchmark, the number of Dhrystones per second and number of Dhrystone MIPS per MHz are computed. The variables that contain these results are shown in the watch window.

4.2 The Dhrystone Benchmark

The Dhrystone Benchmark is probably the most well known benchmark in the MCU industry. While it is limited in the number of MCU features it can test, it has been around for quite some time, is well understood, and provides a fairly good indication of core processing power. For a more complete discussion of the Dhrystone Benchmark and how tool chain settings affect results, please see **REU05B0134-0100:** How to Setup and Run Dhrystone on a MCU.

4.3 LED Display

The LED display is used to show the progress of the test. At start up the "RX" logo is displayed and the Dhrystone benchmark is started. The benchmark runs for a few seconds, the results are verified, and then a display of "OK" is shown to indicate the test is complete. If any errors are detected during the verification stage, a "!" is displayed.

A TPU timer channel triggers DMAC transfers from the LED screen buffer to the port pins that drive the LED's. TPU1 counts PCLK cycles at 48 MHz, and a compare match is set to fire at 2500 counts. When the match occurs, the counter is reset and a DMA transfer is initiated to update the display from the screen buffer.

It is important to note that since the DMAC runs independently of the CPU, refreshing of the LED has no impact on the Dhrystone performance. Intelligent RX peripherals like the DMAC, DTC, and ExDMAC offload the CPU from common tasks, increasing the effective speed of the chip. This speedup is not reflected in simple benchmarks like Dhrystone.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

Description

Rev.	Date	Page	Summary
1.0	Jan.11.2011	_	First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
- Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life
- You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada 1 Nicholson Hoad, Newmarket, Ontario L3 +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-565-109, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Ámcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation, All rights reserved