
 APPLICATION NOTE

R01AN1938EJ0110 Rev. 1.10 Page 1 of 73
Aug. 20. 2020

RX100 Series
RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

Abstract
This document describes a flash programmer for RX100 Series using the Renesas Starter Kit+ for RX63N (hereinafter
referred to as RSK+RX63N).

The target for rewriting is the RX100 Series. Boot mode (SCI) is used for rewriting the user area in the RX100 Series.

Products
RX100 Series

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1938EJ0110
Rev. 1.10

Aug. 20. 2020

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 2 of 73
Aug. 20. 2020

Contents

1. Specifications ... 4
1.1 RSK+RX63N User Area Memory Map ... 5

2. Operation Confirmation Conditions .. 6

3. Reference Application Notes .. 6

4. Hardware .. 7
4.1 Hardware Configuration ... 7
4.2 Pins Used ... 7

5. Software ... 8
5.1 Programming the RSK+RX63N ... 8

5.1.1 Prepare the FDT Workspace .. 9
5.1.2 Merge and Save Data ... 10
5.1.3 Program the RSK+RX63N User Area... 17

5.2 Operation Overview ... 18
5.2.1 Start the MCU in Boot Mode (SCI) ... 19
5.2.2 Bit Rate Automatic Adjustment ... 20
5.2.3 Fix the Target MCU .. 21
5.2.4 Check ID Code Protection .. 24
5.2.5 Rewrite the Target MCU User Area .. 26
5.2.6 Reset the Target MCU .. 30

5.3 File Composition .. 31
5.4 Option-Setting Memory .. 32
5.5 Constants ... 32
5.6 Structure/Union List ... 36
5.7 Variables .. 37
5.8 Functions .. 38
5.9 Function Specifications .. 39
5.10 Flowcharts .. 43

5.10.1 Main Processing and Communication Protocol Control .. 43
5.10.2 Initialization of the Peripheral Functions .. 57
5.10.3 Initialization of the Timer for Wait Time with the CMT ... 58
5.10.4 Setting Wait Time with the CMT .. 59
5.10.5 Wait Processing with the CMT .. 60
5.10.6 Interrupt Handling for CMI0 in CMT0 .. 61
5.10.7 Initialization of the SCI ... 62
5.10.8 Processing to Change the SCI Bit Rate .. 63
5.10.9 Processing to Calculate the SUM Data ... 64
5.10.10 Processing to Start the Target MCU in Boot Mode ... 65
5.10.11 Processing to Reset the Target MCU .. 66
5.10.12 Processing to Send a Command ... 67
5.10.13 Processing to Receive a Response .. 68
5.10.14 Copying Unsigned 4-Byte Data ... 72

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 3 of 73
Aug. 20. 2020

6. Sample Code .. 73

7. Reference Documents .. 73

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 4 of 73
Aug. 20. 2020

1. Specifications
The flash programmer runs on the RSK+RX63N. After starting the target RX100 Series MCU in boot mode (SCI), the
flash programmer rewrites the user area in the RX100 Series using asynchronous serial communication.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows a Flash Programmer Usage
Example.

Channel 0 (SCI0) in the serial communications interface is used for asynchronous serial communication.
The communication data format and output format are as follows.

Start bit: 1 bit
Transfer data: 8 bits
Parity bit: None
Stop bit: 1 bit
Bit rate: 19,200 bps (until response to the operating frequency select command)

1 Mbps (after the program/erase status transition command)
Output format: CMOS output

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
SCI0 Asynchronous serial transmission and reception
CMT0 Timer for wait time
I/O ports Control for boot mode, LCD output

Asynchronous serial
transmission/reception

RX100 Series

UB#

MD

RES#

Control for boot mode

RXD1

TXD1

RX63 Group

TXD

RXD

Renesas Starter Kit+ for RX63N

I/O portLCD output

I/O port
I/O port
I/O port

Flash programmer Target
VCC
VSS

Figure 1.1 Flash Programmer Usage Example

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 5 of 73
Aug. 20. 2020

1.1 RSK+RX63N User Area Memory Map
The program of the flash programmer and data to be written to the target MCU user area are stored in the RSK+RX63N
User Area. Figure 1.2 shows the RSK+RX63N User Area Memory Map.

Refer to 5.1 Programming the RSK+RX63N for details on programming the RSK+RX63N user area.

0xFFF4 0000

0xFFFF E000

0xFFFF FFFF
Flash programmer program

0xFFFB FFFF

0xFFF7 FFFF

0xFFF5 FFFF

Data size for writing to the user area of
the target MCU

128
Kbytes

256
Kbytes

512
Kbytes

Not used

0xFFXX 0000

0xFFE0 0000

0xFFE8 0000

0xFFF0 0000ROM size is 1 Mbyte

ROM size is 2 Mbytes

ROM size is 1.5 Mbytes

Note 1:
 When the ROM size exceeds 768 Kbytes

(See Note 1)

0xFFF3 FFFF

0xFFFC 0000

0xFFFF DFFF

Not used

Figure 1.2 RSK+RX63N User Area Memory Map

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 6 of 73
Aug. 20. 2020

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F563NBDDFC (RX63N Group)
Operating frequencies Main clock: 12 MHz

PLL: 192 MHz (main clock divided by 1 and multiplied by 16)
System clock (ICLK): 96 MHz (PLL divided by 2)
Peripheral module clock B (PCLKB): 48 MHz (PLL divided by 4)

Operating voltage 3.3 V
Integrated development
environment Renesas Electronics e2 2020-04

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compile option
(default settings of the integrated development environment are used)

iodefine.h version Version 1.6A
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.10
Board used Renesas Starter Kit+ for RX63N (part number: R0K50563NC000BE)

Notes:

If the same version of the toolchain (C compiler) specified in the original project is not in the import destination,

the toolchain will not be selected and an error will occur.

Check the selected status of the toolchain on the project configuration dialog.

For the setting method, refer to FAQ 3000404.

FAQ 3000404 :Program ""make"" not found in PATH’ error when attempting to build an imported project

 (e² studio)"

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

 RX63N Group, RX631 Group Initial Setting Rev.1.10 (R01AN1245EJ)
 RX63N Renesas Starter Kit Sample Code for Hi-performance Embedded Workshop Rev.1.00

(R01AN1395EG)

The initial setting functions and debug LCD output functions in the reference application notes are used in the sample
code in this application note. The revision numbers of the reference application notes are current as of the publication of
this application note. However, the latest version is always recommended. Visit the Renesas Electronics Corporation
website to check for and download the latest version.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 7 of 73
Aug. 20. 2020

4. Hardware

4.1 Hardware Configuration
Figure 4.1 shows a Connection Example.

RX100 Series

UB#

MD
RES#

RXD1

TXD1

RX63N Group

P32/TXD0

P33/RXD0

VCC
VSS

LCD module

PF5
PJ5

P87
P86
P85
P84

PE0
PE1

PE2

VCC
VSS

Figure 4.1 Connection Example

4.2 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function
P87 Output Debug LCD data 7 output
P86 Output Debug LCD data 6/backlight output
P85 Output Debug LCD data 5/Y drive output
P84 Output Debug LCD data 4/X drive output
PF5 Output Debug LCD Enable output
PJ5 Output Debug LCD Register select output
P33/RXD0 Input Input pin for SCI0 receive data
P32/TXD0 Output Output pin for SCI0 transmit data
PE0 Output RES# pin control
PE1 Output MD pin control
PE2 Output UB# pin control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 8 of 73
Aug. 20. 2020

5. Software

5.1 Programming the RSK+RX63N
Data to be programmed in the RSK+RX63N user area is as follows:

 User program to be programmed in the target MCU user area
 Flash programmer program

This document describes an example of using the Renesas Flash Development Toolkit (hereinafter referred to as FDT).

Data to be programmed in the RSK+RX63N user area are merged using the editor function for S-Record files or
hexadecimal files in the FDT. Also, the merged data is programmed in the RSK+RX63N user area using the FDT.

Refer to the User’s Manual of the FDT (R20UT0508EJ1200) for details on using the FDT.

Figure 5.1 shows the Flow of Programming the RSK+RX63N.

Start

Merge and save data

End

Prepare the FDT workspace

Program the flash programmer MCU

(1)

(2)

(3)

Figure 5.1 Flow of Programming the RSK+RX63N

(1) Refer to 5.1.1 Prepare the FDT Workspace for details.

(2) Refer to 5.1.2 Merge and Save Data for details.

(3) Refer to 5.1.3 Program the RSK+RX63N User Area for details.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 9 of 73
Aug. 20. 2020

5.1.1 Prepare the FDT Workspace
Create a workspace and project to use the FDT. Set the MCU used for the flash programmer as the target device.

In the example, Workspace Name is FDT, and Project Name is RX63N_RX631_FlashMemory.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 10 of 73
Aug. 20. 2020

5.1.2 Merge and Save Data
Perform steps (1) to (7) to merge and save data.

(1) Add data files to be merged to the project

In the example, folders FlashMemoryPrograma and UserProgram are added to the RX63N_RX631_FlashMemory
project.

The main.mot file of the flash programmer’s program is added to the FlashMemoryPrograma folder.

The following data files are added to the UserProgram folder for each size of the user program to be programmed in the
target MCU user area:

um_all00_128KB.mot file when the user program size is 128 Kbytes

um_all00_256KB.mot file when the user program size is 256 Kbytes

um_all00_512KB.mot file when the user program size is 512 Kbytes

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 11 of 73
Aug. 20. 2020

(2) Open data files to be merged on the hex editor window and set the endian

In the example, files “main.mot” and “um_all00_128KB.mot” are opened in the hex editor window. Little endian is
selected for both files.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 12 of 73
Aug. 20. 2020

(3) Select user program data to be programmed in the target MCU user area to merge

Select the range as follows:

Addresses 0xFFFE 0000 to 0xFFFF FFFF when the user program size is 128 Kbytes

Addresses 0xFFFC 0000 to 0xFFFF FFFF when the user program size is 256 Kbytes

Addresses 0xFFF8 0000 to 0xFFFF FFFF when the user program size is 512 Kbytes

In the example, addresses 0xFFFE 0000 to 0xFFFF FFFF of the um_all00_128KB.mot file are selected.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 13 of 73
Aug. 20. 2020

(4) Copy the highlighted user program data to the Windows clipboard

In the example, addresses 0xFFFE 0000 to 0xFFFF FFFF of the um_all00_128KB.mot file are copied to the Windows
clipboard.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 14 of 73
Aug. 20. 2020

(5) Merge and create data to be programmed to the RSK+RX63N user area

Select the main.mot file in the hex editor window, and paste the data that was copied to the Windows clipboard in step
(4) into addresses 0xFFF4 0000 and higher.

In the example, the start address of paste destination in the main.mot file is set to 0xFFF4 0000. After setting the start
address, paste the data from the clipboard.

Double-click in the
blue dotted frame

Select main.mot

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 15 of 73
Aug. 20. 2020

(6) Save data to be programmed to the RSK+RX63N user area

Select the main.mot file in the hex editor window, name the file to save the data that was created in step (5), and add the
file to the project.

In the example, the FlashMemoryPrograma.MOT file is saved in the S-Record Files folder.

Select main.mot

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 16 of 73
Aug. 20. 2020

(7) Confirm data to be programmed to the RSK+RX63N user area

Confirm the allocation of the merged data in the data file that was created in step (6). Select the data file to be
programmed to the RSK+RX63N user area in the workspace window, and confirm the address range of the block used.

Confirm the address range as follows:

Addresses 0xFFF4 0000 to 0xFFF5 FFFF when the user program size is 128 Kbytes

Addresses 0xFFF4 0000 to 0xFFF7 FFFF when the user program size is 256 Kbytes

Addresses 0xFFF4 0000 to 0xFFFB FFFF when the user program size is 512 Kbytes

Addresses 0xFFFF E000 to 0xFFFF FFFF for the program of the flash programmer

In the example, the address range of the block used is confirmed when the user program size is 128 Kbytes.

[0xFFF4 0000 to 0xFFF5 FFFF]
Addresses of the user program

[0xFFFF E000 to 0xFFFF FFFF]
Addresses for the program of the flash
programmer

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 17 of 73
Aug. 20. 2020

5.1.3 Program the RSK+RX63N User Area
Select and download the data file to be programmed to the RSK+RX63N user area.

In the example, the FlashMemoryPrograma.MOT file in the S-Record Files folder is downloaded.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 18 of 73
Aug. 20. 2020

5.2 Operation Overview
The target MCU is started in boot mode (SCI) and the bit rate is automatically adjusted to connect to the MCU at
19,200 bps.

After connecting, the supported device inquiry command, device select command, and block information inquiry
command are sent to obtain information of the target MCU, and the operating frequency select command is sent to
change the bit rate to 1 Mbps.

The program/erase state transition command is sent to check the ID code protection of the target MCU and perform the
processing for the boot mode ID code protection.

The target MCU user area is erased and then programmed according to the obtained information of the target MCU.
After the user area has been programmed, the programmed area in the target MCU is read to verify the read data with
the programmed data.

Figure 5.2 shows the Flash Programmer State Transition.

(2)

(1)

(4)

Fix the target MCU

Check the ID code protection

Bit rate automatic adjustment

(3)

Normal

Normal

Rewrite the target MCU
user area

Normal

Normal/error

Start in boot mode (SCI)

(5)

(6)

Error

Error

Error

 End the processing

Reset is released for the
flash programmer MCU

Reset the target MCU

Figure 5.2 Flash Programmer State Transition

(1) Refer to 5.2.1 Start the MCU in Boot Mode (SCI) for details

(2) Refer to 5.2.2 Bit Rate Automatic Adjustment for details

(3) Refer to 5.2.3 Fix the Target MCU for details

(4) Refer to 5.2.4 Check ID Code Protection for details

(5) Refer to 5.2.5 Rewrite the Target MCU User Area for details

(6) Refer to 5.2.6 Reset the Target MCU for details

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 19 of 73
Aug. 20. 2020

5.2.1 Start the MCU in Boot Mode (SCI)
(1) The flash programmer sets the RES# pin of the target MCU to low.

(2) The flash programmer sets the MD pin of the target MCU to low.

(3) The flash programmer sets the UB# pin of the target MCU to high.

(4) After waiting 3 ms, the flash programmer sets the RES# pin of the target MCU to high.

Flash programmer Target MCU

Reset

Reset release

Wait 3 ms

Set the MD pin to low

Set the UB# pin to high

Set the RES# pin to low

Set the RES# pin to high

Figure 5.3 Start Procedure in Boot Mode (SCI)

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 20 of 73
Aug. 20. 2020

5.2.2 Bit Rate Automatic Adjustment
The flash programmer starts the target MCU in boot mode (SCI), waits 400 ms, and then sends “00h” 30 times to adjust
the bit rate to 19,200 bps.

When the flash programmer receives 00h, send 55h to the target MCU. When 00h cannot be received, the flash
programmer restarts the target MCU in boot mode and performs bit rate automatic adjustment again.

After sending 55h, the flash programmer completes bit rate automatic adjustment when it receives E6h. When the flash
programmer sends 55h and then receives FFh, it restarts the target MCU in boot mode and performs bit rate automatic
adjustment again.

Figure 5.4 shows the Bit Rate Automatic Adjustment Procedure.

00h × 30 times (bit rate automatic adjust command)

Flash programmer Target MCU

00h (bit rate automatic adjustment completed)

55h (automatic adjustment confirmation)

E6h (automatic adjustment confirmation successfully received)

FFh (error)

Value other than 00h

Note 1. Restart the target MCU in boot mode (SCI) and send the bit rate automatic adjust
command again.

Wait 400 ms

See Note 1

See Note 1

Figure 5.4 Bit Rate Automatic Adjustment Procedure

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 21 of 73
Aug. 20. 2020

5.2.3 Fix the Target MCU
To fix the target MCU, the flash programmer performs steps (1) to (4) below.

(1) The flash programmer sends the supported device inquiry command and stores the identification code for
selecting the endian of data to be programmed in the user area.

The flash programmer receives a response (data starting with 30h) to the supported device inquiry command to store
identification codes for selecting the endian of data to be programmed in the user area. When the flash programmer
receives data other than the response (data starting with 30h), it resets the target MCU to abort.

Figure 5.5 shows the Procedure to Store Identification Codes.

Flash programmer Target MCU

30h, 3Eh, 02h, ...
(response to the supported device inquiry)

20h (supported device inquiry)

Store identification codes for selecting
the endian of data to be programmed
in the user area

Figure 5.5 Procedure to Store Identification Codes

(2) The flash programmer sends the device select command to select the endian of data to be programmed in the user
area.

The flash programmer sends the device select command (10h) to select the endian of data to be programmed in the user
area. The flash programmer uses the identification code corresponding to the endian of the flash programmer in the
identification codes that were stored by the support devise inquiry command.

After the flash programmer sends the device select command, the endian selection is completed when a response (46h)
is received. When the flash programmer receives a response (46h) after sending the device select command, it
completes the endian selection. When the flash programmer receives data other than the response (46h) after sending
the device select command, it resets the target MCU to abort.

Figure 5.6 shows the Procedure to Select the Endian.

Flash programmer Target MCU

46h (response to the device select command)

90h, 11h (SUM error)

90h, 21h (device code error)

10h (device select),
04h (size),
XXXXh (stored identification code),
XXh (SUM)

Figure 5.6 Procedure to Select the Endian

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 22 of 73
Aug. 20. 2020

(3) The flash programmer sends the block information inquiry command to store the block configuration of the target
MCU.

When the flash programmer receives a response (data starting with 36h) to the block information inquiry command, it
stores the block configuration of the target MCU in the block information storage buffer. When the flash programmer
receives data other than the response (data starting with 36h) to the block information inquiry command, it resets the
target MCU to abort.

Figure 5.7 shows the Procedure to Store the Block Information.

Flash programmer Target MCU

36h, 00h, 19h, DDh, ...
(response to the block information inquiry command)

26h (block information inquiry)

Store the block information of
the target MCU

Figure 5.7 Procedure to Store the Block Information

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 23 of 73
Aug. 20. 2020

(4) The flash programmer sends the operating frequency select command to change the bit rate with the target MCU

to 1 Mbps.

The flash programmer sends the operating frequency select command (3Fh) to change the bit rate to 1 Mbps. When the
flash programmer receives ACK (06h) after sending the operating frequency select command, it waits the 1-bit period at
the bit rate for sending the operating frequency select command and then changes the bit rate to 1 Mbps. After that, the
flash programmer sends a communication confirmation data (06h) at the changed bit rate. When the flash programmer
receives 06h (response to the confirmation data), it completes changing the bit rate.

When the flash programmer receives data other than the response (06h) after sending the operating frequency select
command, or when it receives data other than 06h (response to the confirmation data) after sending the communication
confirmation data (06h), it resets the target MCU to abort.

Figure 5.8 shows the Procedure to Change the Bit Rate.

3Fh (operating frequency select)
07h (size)
27h, 10h (bit rate: 1 Mbps)
06h, 40h (input frequency)
02h (number of multipliers)
01h (multiplier 1)
01h (multiplier 2)
39h (SUM)

Flash programmer Target MCU

06h (ACK)

BFh, 11h (SUM error)

BFh, 24h (bit rate selection error)

Wait 1-bit period at
19,200 bps

Change to 1Mbps

06h (communication confirmation data)

06h (response to the confirmation data)

Figure 5.8 Procedure to Change the Bit Rate

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 24 of 73
Aug. 20. 2020

5.2.4 Check ID Code Protection
The flash programmer performs steps (1) and (2) below to check the ID code protection.

(1) The flash programmer sends the program/erase state transition command to check and store the status of the ID
code protection for the target MCU.

The flash programmer sends the program/erase state transition command (40h) to check the ID code protection for the
target MCU.

After the flash programmer sends the program/erase state transition command, it determines the status according to the
received response and store the status in the ID code protection status buffer.

Table 5.1 lists the Responses and Values Stored in the ID Code Protection Status Buffer.

Table 5.1 Responses and Values Stored in the ID Code Protection Status Buffer

Response Values Stored in the ID Code Protection Status Buffer
06h 00h
16h 01h
56h 02h

When the flash programmer receives data other than values listed in Table 5.1 after sending the program/erase state
transition command, it resets the target MCU to abort.

Figure 5.9 shows the Procedure to Check ID Code Protection by the Program/Erase State Transition Command.

40h (program/erase state transition)

Flash programmer Target MCU

06h (response to the program/erase state transition command):
ID code protections disabled,
Transition to the program/erase state)

16h (response to the program/erase state transition command):
ID code protection enabled,
transition to the ID code authentication state)

56h (response to the program/erase state transition command:
ID code protection disabled,
transition to the erase ready state)

Store 00h in the ID code
protection status buffer

Store 01h in the ID code
protection status buffer

Store 02h to the ID code
protection status buffer

Figure 5.9 Procedure to Check ID Code Protection by the Program/Erase State Transition Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 25 of 73
Aug. 20. 2020

(2) The flash programmer sends the ID code check command to check and store the status of the ID code protection
for the target MCU.

The flash programmer performs this step when the value stored in the ID code protection status buffer is 01h.

The flash programmer sends the ID code check command (60h) to determine the state of ID code protection for the
target MCU. The control code, and ID code 1 to ID code 15 are set by reading and using data to be programmed in the
target MCU user area.

The flash programmer sends the ID code check command (60h) to check the response received after sending the ID
code check command and store the corresponding value in the ID code protection status buffer.

Table 5.2 lists the Responses and Values Stored in the ID Code Protection Status Buffer.

Table 5.2 Responses and Values Stored in the ID Code Protection Status Buffer

Response Values Stored in the ID Code Protection Status Buffer
06h 00h
56h 02h

The flash programmer receives data other than values listed in Table 5.2 after sending the program/erase state transition
command, reset the target MCU to abort.

Figure 5.4 shows the Bit Rate Automatic Adjustment Procedure.

60h (ID code check)
10h (size)
XXh (control code)
XXh, XXh, XXh (ID code 1 to ID code 3)
XXh, XXh, XXh (ID code 4 to ID code 6)
XXh, XXh, XXh (ID code 7 to ID code 9)
XXh, XXh, XXh (ID code 10 to ID code 12)
XXh, XXh, XXh (ID code 13 to ID code 15)
XXh (SUM)

Flash programmer Target MCU

E0h, 11h (SUM error)

E0h, 61h (ID codes do not match)

06h (response to the ID code check:
ID code protection disabled,
transition to program/erase state)

56h (response to the ID code check:
ID code protection disabled,
transition to the erase ready state)

Store 00h in the ID code
protection status buffer

Store 02h in the ID code
protection status buffer

Figure 5.10 Procedure to Check ID Code Protection by the ID Code Check Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 26 of 73
Aug. 20. 2020

5.2.5 Rewrite the Target MCU User Area
To rewrite the target MCU user area, the flash programmer performs steps (1) to (4) below.

(1) The flash programmer erases the flash memory of the target MCU for rewriting the user program in the target
MCU user area.

The flash programmer sends the erase preparation command (48h). When the flash programmer receives 06h (response
to the erase preparation command) after sending the erase preparation command, it completes erase preparation. When
the flash programmer receives data other than 06h (response to the erase preparation command), it resets the target
MCU to abort.

The flash programmer sends 59h (block erase command) as many times as the number of blocks to erase. The number
of blocks to erase is calculated from the value stored in the ID code protection status buffer as follows:

When the stored value is 02h, the sum of values in block information storage buffer 3 and block information
storage buffer 6

When the stored value is a value other than 02h, the value in block information storage buffer 3

After sending the block erase command as many times as the number of blocks to erase, the flash programmer sends
59h 04h FFh FFh FFh FFh A7h (block erase command to end block erase). When the flash programmer receives 06h
(response to the block erase command) after sending the block erase command, it completes the block erase operation.
When the flash programmer receives data other than 06h (response to the block erase command), it resets the target
MCU to abort.

Figure 5.11 shows the Procedure to Erase the Flash Memory of the Target MCU.

48h (erase preparation)

Flash programmer Target MCU

06h (response to the erase preparation command: ACK)

D9h, 11h (SUM error)

Erase

D9h, 29h (block address error)

D9h, 51h (erase error)

Repeat as many times as the
number of blocks to erase

59h (block erase)
04h (size)
FFh, FFh, FFh, FFh (end of block erase)
A7h (SUM)

06h (response to the block erase command: ACK)

59h (block erase)
04h (size)
FFh, FXh, XXh, XXh (block start address)
XXh (SUM)

06h (response to the block erase command: ACK)

Figure 5.11 Procedure to Erase the Flash Memory of the Target MCU

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 27 of 73
Aug. 20. 2020

(2) The flash programmer confirms that the target MCU has erased the flash memory successfully.

The flash programmer sends the boot mode status inquiry command (4Fh).

When the flash programmer receives a response (data starting with 5Fh) after sending the boot mode status inquiry
command, the flash programmer confirms that the target MCU has erased the flash memory successfully.

When the flash programmer receives data other than the response (data starting with 5Fh), it resets the target MCU to
abort.

Figure 5.12 shows the Procedure to Complete Preparation for Programming the Target MCU.

Flash programmer Target MCU

4Fh (boot mode status inquiry)

5Fh, 02h, 3Fh, 00h, 60h
(response to the boot mode status inquiry command)

Figure 5.12 Procedure to Complete Preparation for Programming the Target MCU

(3) The flash programmer writes the user program to the target MCU user area.

The flash programmer sends 43h (user/data area program preparation command). After that, when the flash programmer
receives 06h (response to the user/data area program preparation command), it completes preparation for programming.
When it receives data other than 06h, it resets the target MCU to abort.

After completion of preparation, the flash programmer sends 50h for the size of the user program to be programmed in
the target MCU setting the 256-byte aligned addresses for program addresses and setting program data in 256 bytes.

The range of program addresses (destination of the target MCU) is as follows:

Addresses from 0xFFFE 0000 to 0xFFFF FFFF when the user program size is 128 Kbytes

Addresses from 0xFFFC 0000 to 0xFFFF FFFF when the user program size is 256 Kbytes

Addresses from 0xFFF8 0000 to 0xFFFF FFFF when the user program size is 512 Kbytes

The range of program data (source data on the RSK+RX63N) is as follows:

Addresses from 0xFFF4 0000 to 0xFFF5 FFFF when the user program size is 128 Kbytes

Addresses from 0xFFF4 0000 to 0xFFF7 FFFF when the user program size is 256 Kbytes

Addresses from 0xFFF4 0000 to 0xFFFB FFFF when the user program size is 512 Kbytes

After sending the program command for the size of the user program to be programmed in the target MCU user area,
the flash programmer sends 50h FFh FFh FFh FFh B4h (program command to end programming). When the flash
programmer receives 06h (response to the program command), it completes the program operation. When the flash
programmer receives data other than 06h, it resets the MCU to abort.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 28 of 73
Aug. 20. 2020

Figure 5.13 shows the Procedure to Program the User Area.

43h (user/data area program preparation)

Flash programmer Target MCU

06h (response to the user/data area program command: ACK)

D0h, 11h (SUM error)

program

D0h, 2Ah (address error)

D0h, 53h (program error)

Repeat until the user program
is completely written

50h (program)
FFh, FXh, XXh, 00h (program address)
XXh, ... 256 bytes ... , XXh (program data)
XXh (SUM)

06h (response to the program command: ACK)

50h (program)
FFh, FFh, FFh, FFh (end of program)
B4h (SUM)

06h (response to the program command: ACK)

D0h, 11h (SUM error)

D0h, 2Ah (address error)

Figure 5.13 Procedure to Program the User Area

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 29 of 73
Aug. 20. 2020

(4) The flash programmer confirms that the target MCU has been programed correctly.

To confirm that the data has been programmed in the target MCU user area successfully, the flash programmer reads
the data in the target MCU user area and compares the read data with the written data.

The flash programmer sends 52h (memory read command) for the size of the user program written in the target MCU
user area setting 256-byte aligned addresses for the read addresses.

The range of read addresses is as follows:

Addresses from 0xFFFE 0000 to 0xFFFF FFFF when the user program size is 128 Kbytes

Addresses from 0xFFFC 0000 to 0xFFFF FFFF when the user program size is 256 Kbytes

Addresses from 0xFFF8 0000 to 0xFFFF FFFF when the user program size is 512 Kbytes

When the flash programmer receives data starting with 52h (response to the memory read command), it compares the
read data with the source data in the RSK+RX63N user area. When the data do not match, or when the flash
programmer receives data other than the response (data starting with 52h), it resets the target MCU to abort.

The range of source addresses is as follows:

Addresses from 0xFFF4 0000 to 0xFFF5 FFFF when the user program size is 128 Kbytes

Addresses from 0xFFF4 0000 to 0xFFF7 FFFF when the user program size is 256 Kbytes

Addresses from 0xFFF4 0000to 0xFFFB FFFF when the user program size is 512 Kbytes

Figure 5.14 shows the Procedure to Confirm Data in the User Area.

Flash programmer Target MCU

52h (response to the memory read command: ACK)
00h, 00h, 01h, 00h (read size)
XXh, ... 256 bytes ..., XXh (read data)
XXh (SUM)

D2h, 11h (SUM error)

Compare
data

Repeat until all data of the
user program is compared

D2h, 2Ah (address error)

D2h, 2Bh (size error)

52h (memory read)
09h (size)
01h (area)
FFh, FXh, XXh, 00h (read address)
00h, 00h, 01h, 00h (read size)
XXh (SUM)

Figure 5.14 Procedure to Confirm Data in the User Area

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 30 of 73
Aug. 20. 2020

5.2.6 Reset the Target MCU
(1) The flash programmer drives the MD pin of the target MCU high.

(2) The flash programmer drives the RES# pin of the target MCU low.

(3) The flash programmer waits 3 ms and then drives the RES# pin of the target MCU high.

(4) The flash programmer goes into an infinite loop.

Flash programmer Target MCU

Reset
Wait 3 ms

Drive the MD pin high

Drive the RES# pin low

Drive the RES# pin high

Infinite loop Start up in
single-chip mode

Figure 5.15 Procedure to Reset the Target MCU

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 31 of 73
Aug. 20. 2020

5.3 File Composition
Table 5.3 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.3 Files Used in the Sample Code

File Name Outline
main.c Main processing, processing to send a command, processing to receive a response
cmt_wait.c Wait processing with the CMT
cmt_wait.h Header file for cmt_wait.c

Table 5.4 Standard Include Files

File Name Description
stdint.h Defines macros declaring the integer type having the specified widths
stdbool.h Defines macros for the Boolean type and value
machine.h Defines formats of intrinsic functions for the RX Family
string.h Library for comparing strings, copying, etc.

Table 5.5 Functions and Setting Values in the Reference Application Note (RX63N Group, RX631

Group Initial Setting)

File Name Function Setting Value
r_init_stop_module.c R_INIT_StopModule() -
r_init_stop_module.h - The DMAC/DTC or EXDMAC is set

to stop.
r_init_non_existent_port.c R_INIT_NonExistentPort() -
r_init_non_existent_port.h - The 176-pin package is selected
r_init_clock.c R_INIT_Clock() -
r_init_clock.h - The PLL is selected as the system

clock.
The sub-clock is not used.

Table 5.6 Functions and Setting Values in the Reference Application Note (RX63N Renesas Starter

Kit Sample Code for Hi-performance Embedded Workshop)

File Name Function Setting Value
lcd.c Init_LCD()

Display_LCD()
-

lcd.h - -
rskrx63ndef.h - -

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 32 of 73
Aug. 20. 2020

5.4 Option-Setting Memory
Table 5.7 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.7 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents
OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh After a reset, the IWDT stops.

After a reset, the WDT stops.
OFS1

FFFF FF8Bh to FFFF FF88h FFFF FFFFh

After a reset, voltage monitoring 0 reset
is disabled.
After a reset, the HOCO oscillation is
disabled.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

5.5 Constants
Table 5.8 to Table 5.13 list the Constants Used in the Sample Code.

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 33 of 73
Aug. 20. 2020

Table 5.8 Constants Used in the Sample Code
Constant Name Setting Value Contents

ROMVOL_128KB (128 * 1024) Selected when the user area size of the target MCU is
128 Kbytes

ROMVOL_256KB (256 * 1024) Selected when the user area size of the target MCU is
256 Kbytes

ROMVOL_512KB (512 * 1024) Selected when the user area size of the target MCU is
512 Kbytes

TARGET_ROMVOL ROMVOL_128KB User area size of the target MCU (128 Kbytes selected)
TARGET_DATA_ADD 0xFFF40000 Start address for storing data programmed in the target

MCU user area
READING_HEAD_ADD WRITING_HEAD_ADD Start address for reading the target MCU (same as the

start address for programming)
MDES_ADD 0xFFFFFF80 MDES Determine Address
WRITING_TIME (TARGET_ROMVOL / 256) Number of times the target MCU is programmed (in 256

byte units)
READING_TIME WRITING_TIME Number of times the target MCU is read (same as the

number of times the target MCU is programmed)
RES_BUF_SIZE (262) Size of the received data storage buffer
OK (0) True value
NG (1) False value
ERRLOOP_ON (1) Selected when error processing (infinite loop) is

performed if an error is detected during reception.
ERRLOOP_OFF (0) Selected when error processing (infinite loop) is not

performed if an error is detected during reception.
INTERVAL_ON (1) Selected when an interval is set during transmission.
INTERVAL_OFF (0) Selected when no interval is set during transmission.
RES_ACK_NORMAL (0x06) Normal ACK is received.
RES_ACK_ID (0x16) ACK for enabling ID code protection is received.
RES_ACK_BERS_EXSPC (0x46) ACK for block erase extended specification is received.
RES_ACK_MERSMD (0x56) ACK for erase ready operation is received.
ARRAY_SIZE_OF(a) (sizeof(a) / sizeof(a[0])) Macro function obtaining the number of bytes for data

sending commands
WT_BASE_US (1000000L) Operand for calculating wait time in 1 μs units
WT_BASE_MS (1000L) Operand for calculating wait time in 1 ms units
WT_CMT_CLOCK (48L * WT_BASE_US) CMT count source frequency (PCLKB: 48 MHz)
WT_CMT_DIVIDE (512L) CMT count source division ratio
WAIT_52US ((52. * (WT_CMT_CLOCK

/ WT_CMT_DIVIDE)) /
WT_BASE_US +0.5)

Wait time with the CMT (52 μs)

WAIT_1MS ((1. * (WT_CMT_CLOCK
/ WT_CMT_DIVIDE)) /
WT_BASE_MS +0.5)

Wait time with the CMT (1 ms)

WAIT_3MS ((3. * (WT_CMT_CLOCK
/ WT_CMT_DIVIDE)) /
WT_BASE_MS +0.5)

Wait time with the CMT (3 ms)

WAIT_100MS ((100. * (WT_CMT_CLOCK /
WT_CMT_DIVIDE)) /
WT_BASE_MS +0.5)

Wait time with the CMT (100 ms)

WAIT_400MS ((400. * (WT_CMT_CLOCK /
WT_CMT_DIVIDE)) /
WT_BASE_MS +0.5)

Wait time with the CMT (400 ms)

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 34 of 73
Aug. 20. 2020

Table 5.9 Constants Used in the Sample Code (ROMVOL_128KB is Selected as TARGET_ROMVOL)

Constant Name Setting Value Contents
TARGET_ID1_ADD 0xFFF5FFA0 Reference address for the control code, and ID code 1 to

ID code 3 programmed to the target MCU
TARGET_ID2_ADD 0xFFF5FFA4 Reference address for ID code 4 to ID code 7

programmed to the target MCU
TARGET_ID3_ADD 0xFFF5FFA8 Reference address for ID code 8 to ID code 11

programmed to the target MCU
TARGET_ID4_ADD 0xFFF5FFAC Reference address for ID code 12 to ID code 15

programmed to the target MCU
WRITING_HEAD_ADD 0xFFFE0000 Start address for programming the target MCU

Table 5.10 Constants Used in the Sample Code (ROMVOL_256KB is Selected as TARGET_ROMVOL)

Constant Name Setting Value Contents
TARGET_ID1_ADD 0xFFF7FFA0 Reference address for the control code, and ID code 1 to

ID code 3 programmed to the target MCU
TARGET_ID2_ADD 0xFFF7FFA4 Reference address for ID code 4 to ID code 7

programmed to the target MCU
TARGET_ID3_ADD 0xFFF7FFA8 Reference address for ID code 8 to ID code 11

programmed to the target MCU
TARGET_ID4_ADD 0xFFF7FFAC Reference address for ID code 12 to ID code 15

programmed to the target MCU
WRITING_HEAD_ADD 0xFFFC0000 Start address for programming the target MCU

Table 5.11 Constants Used in the Sample Code (ROMVOL_512KB is Selected as TARGET_ROMVOL)

Constant Name Setting Value Contents
TARGET_ID1_ADD 0xFFFBFFA0 Reference address for the control code, and ID code 1 to

ID code 3 programmed to the target MCU
TARGET_ID2_ADD 0xFFFBFFA4 Reference address for ID code 4 to ID code 7

programmed to the target MCU
TARGET_ID3_ADD 0xFFFBFFA8 Reference address for ID code 8 to ID code 11

programmed to the target MCU
TARGET_ID4_ADD 0xFFFBFFAC Reference address for ID code 12 to ID code 15

programmed to the target MCU
WRITING_HEAD_ADD 0xFFF80000 Start address for programming the target MCU

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 35 of 73
Aug. 20. 2020

Table 5.12 Constants Used in the Sample Code (Definition Used for Entering Boot Mode)

Constant Name Setting Value Contents
BTMD_PMR (PORTE.PMR.BYTE) Output pin is assigned to pins UB#, MD, and RES# of the

target MCU (port mode register).
BTMD_PODR (PORTE.PODR.BYTE) Output pin is assigned to pins UB#, MD, and RES# of the

target MCU (port output data register).
BTMD_PDR (PORTE.PDR.BYTE) Output pin is assigned to pins UB#, MD, and RES# of the

target MCU (port direction register).
UB_PIN (PORTE.PODR.BIT.B2) Output is assigned to the UB# pin of the target MCU.
MD_PIN (PORTE.PODR.BIT.B1) Output is assigned to the MD pin of the target MCU.
RES_PIN (PORTE.PODR.BIT.B0) Output is assigned to the RES# pin of the target MCU.
BTMD_PDR_INIT (0x07) Initial value of the output from pins UB#, MD, and RES#

of the target MCU
BTMD_PODR_INIT (0x04) Initial value of high level output from the UB# pin of the

target MCU

Table 5.13 Constants Used in the Sample Code (Definition for Asynchronous Serial Communication)

Constant Name Setting Value Contents
SCIn SCI0 SCI channel: SCI0
MSTP_SCIn MSTP(SCI0) SCI0 module stop bit
IR_SCIn_RXIn IR(SCI0,RXI0) SCI0.RXI0 interrupt status flag
IR_SCIn_TXIn IR(SCI0,TXI0) SCI0.TXI0 interrupt status flag
RXDn_PDR (PORT3.PDR.BIT.B3) SCI0.RXI0 pin direction control bit
RXDn_PMR (PORT3.PMR.BIT.B3) SCI0.RXI0 pin mode control bit
RXDnPFS P33PFS SCI0.RXI0 pin function control register
RXDnPFS_SELECT (0x0B) RXD0 pin function select bit setting value
TXDn_PODR (PORT3.PODR.BIT.B2) SCI0.TXI0 pin output data store bit
TXDn_PDR (PORT3.PDR.BIT.B2) SCI0.TXI0 pin direction control bit
TXDn_PMR (PORT3.PMR.BIT.B2) SCI0.TXI0 pin mode control bit
TXDnPFS P32PFS SCI0.TXI0 pin function control register
TXDnPFS_SELECT (0x0B) TXD0 pin function select bit setting value
SSR_ERROR_FLAGS (0x38) Bit pattern of error flags in the SCI.SSR register
BRR_SET(bps) (WT_CMT_CLOCK/(32*(

0.5)*(bps))-1+0.5)
Macro function to calculate the SCI.BRR register setting
value

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 36 of 73
Aug. 20. 2020

5.6 Structure/Union List
Figure 5.16 shows the Structure/Union Used in the Sample Code.

typedef struct BOOT_CMD_s
{
 uint32_t TrnSize; /* expected value of the transmit size of command */
 uint32_t RecSize; /* expected value of the receive size of response */
 uint8_t ACKRes; /* ACK value of response */
 uint8_t *Command; /* boot command sequence data pointer */
} BOOT_CMD_t;

Figure 5.16 Structure/Union Used in the Sample Code

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 37 of 73
Aug. 20. 2020

5.7 Variables
Table 5.14 lists the Global Variable, and Table 5.15 lists the static Variables.

Table 5.14 Global Variable

Type Variable Name Contents Function Used
volatile uint8_t CMT_InterruptFlag Wait time enable flag CMT_WaitSet

CMT_Wait
Excep_CMT0_CMI0
ReceiveResponse

Table 5.15 static Variables

Type Variable Name Contents Function Used

uint8_t ResponseBuffer[RES_BUF_SIZE] Receive data storage buffer
main

ReceiveResponse

uint8_t TransferMode Transmit mode flag
main

TransferCommand

uint8_t ReceiveMode Receive mode flag
main

ReceiveResponse

uint8_t IDProtectMode ID code protection status buffer main

uint32_t BufferIndex Index of the receive data storage buffer ReceiveResponse

uint32_t DeviceCode Device code storage buffer main

uint32_t BlockInfoData[6] Block information storage buffer main

uint8_t CMD_BitRateAdjustment_1st[] Bit rate automatic adjust command data -

uint8_t CMD_BitRateAdjustment_2nd[] Bit rate automatic adjustment confirm
command data -

uint8_t CMD_EnquiryDevice[] Supported device inquiry command data -

uint8_t CMD_SelectDevice[] Device select command data -

uint8_t CMD_BlockInfo[] Block information inquiry command data -

uint8_t CMD_OperatingFreqSel_1st[] Operating frequency select command
data -

uint8_t CMD_OperatingFreqSel_2nd[] Operating frequency selection confirm
command data -

uint8_t CMD_PEstatusTransition[] Program/erase state transition command
data -

uint8_t CMD_IDCodeCheck[] ID code check command data -
uint8_t CMD_ErasePreparation[] Erase prepare command data -

uint8_t CMD_BlockErase[] Block erase (extended specification)
command data -

uint8_t CMD_BootModeStatusInquiry[] Boot mode state inquiry command data -

uint8_t CMD_ProgramPreparation[] User/data area program preparation
command data -

uint8_t CMD_Program[] Program command data -
uint8_t CMD_ProgramTermination[] Program end command data -

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 38 of 73
Aug. 20. 2020

Type Variable Name Contents Function Used
uint8_t CMD_MemoryRead[] Memory read command data -

BOOT_CMD_t BitRateAdjustment_1st Bit rate automatic adjust command
structure main

BOOT_CMD_t BitRateAdjustment_2nd Bit rate automatic adjustment confirm
command structure main

BOOT_CMD_t EnquiryDevice Supported device inquiry command
structure main

BOOT_CMD_t SelectDevice Device select command structure main

BOOT_CMD_t BlockInfo Block information inquiry command
structure main

BOOT_CMD_t OperatingFreqSel_1st Operating frequency select command
structure main

BOOT_CMD_t OperatingFreqSel_2nd Operating frequency selection confirm
command structure main

BOOT_CMD_t PEstatusTransition Program/erase state transition command
structure main

BOOT_CMD_t IDCodeCheck ID code check command structure main
BOOT_CMD_t ErasePreparation Erase prepare command structure main

BOOT_CMD_t BlockErase Block erase (extended specification)
command structure main

BOOT_CMD_t BootModeStatusInquiry Boot mode state inquiry command
structure main

BOOT_CMD_t ProgramPreparation User/data area program preparation
command structure main

BOOT_CMD_t Program Program command structure main
BOOT_CMD_t ProgramTermination Program end command structure main
BOOT_CMD_t MemoryRead Memory read command structure main

5.8 Functions
Table 5.16 lists the Functions.

Table 5.16 Functions

Function Name Outline
main Main processing and communication protocol control
peripheral_init Initialization of the peripheral functions
CMT_WaitInit Initialization of the timer for wait time with the CMT
CMT_WaitSet Wait time setting with the CMT
CMT_Wait Wait time processing with the CMT
Excep_CMT0_CMI0 Interrupt handling for CMI0 in CMT0
SCI_Init Initialization of the SCI
SCI_change Processing to change the SCI bit rate
CalcSumData Processing to calculate the SUM data
BootModeEntry Processing to start the target MCU in boot mode
BootModeRelease Processing to reset the target MCU
TransferCommand Processing to send a command
ReceiveResponse Processing to receive a response
U4memcpy Copying unsigned 4-byte data

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 39 of 73
Aug. 20. 2020

5.9 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header lcd.h, cmt_wait.h
Declaration void main(void)
Description After initialization, start the target MCU in boot mode (SCI) and rewrite the user area.
Arguments None
Return Value None

peripheral_init
Outline Initialization of the peripheral functions
Header lcd.h, cmt_wait.h
Declaration void peripheral_init(void)
Description Initialize the peripheral functions used.
Arguments None
Return Value None

CMT_WaitInit
Outline Initialization of the timer for wait time with the CMT
Header cmt_wait.h
Declaration void CMT_WaitInit(void)
Description Initialize the timer for wait time (CMT0).
Arguments None
Return Value None

CMT_WaitSet
Outline Wait time setting with the CMT
Header cmt_wait.h
Declaration void CMT_WaitSet(uint16_t cnt)
Description Set the CMCOR register to the time (μs) specified in the argument and start

incrementing the CMCNT register.
Arguments uint16_t cnt: Wait time
Return Value None
Remarks The minimum wait time: 1 ÷ (PCLKB[MHz] ÷ 512) ≈ 10.67 μs

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 40 of 73
Aug. 20. 2020

CMT_Wait
Outline Wait time processing with the CMT
Header cmt_wait.h
Declaration void CMT_Wait(uint16_t cnt)
Description Wait the time (μs) specified in the argument
Arguments uint16_t cnt Wait time
Return Value None
Remarks The minimum wait time is 1/(PCLKB[MHz]/512) ≈ 10.67 μs

Excep_CMT0_CMI0
Outline Interrupt handling for CMI0 in CMT0
Header cmt_wait.h
Declaration void Excep_CMT0_CMI0(void)
Description Interrupt handling for compare match between CMT0.CMCNT and CMT0.CMCOR
Arguments None
Return Value None

SCI_Init
Outline Initialization of the SCI
Header None
Declaration void SCI_Init(void)
Description Initialize the SCI.
Arguments None
Return Value None

SCI_change
Outline Processing to change the SCI bit rate
Header None
Declaration void SCI_change(void)
Description Change the SCI bit rate from 19,200 bps to 1 Mbps.
Arguments None
Return Value None

CalcSumData
Outline Processing to calculate the SUM data
Header None
Declaration uint8_t CalcSumData(uint8_t *pData, uint32_t Length)
Description Calculate the SUM data in the boot communication protocol.
Arguments uint8_t *pData Data address for SUM
 uint32_t Length Amount of data for SUM
Return Value SUM data

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 41 of 73
Aug. 20. 2020

BootModeEntry
Outline Processing to start the target MCU in boot mode
Header None
Declaration void BootModeEntry(void)
Description Control pins MD, UB#, and RES# to start the target MCU in boot mode (SCI).
Arguments None
Return Value None

BootModeRelease
Outline Processing to reset the target MCU
Header None
Declaration void BootModeRelease(uint8_t mode)
Description Reset the target MCU.
Arguments uint8_t mode Select the output pattern for the second line of the

debug LCD
Return Value None

TransferCommand
Outline Processing to send a command
Header None
Declaration void TransferCommand(BOOT_CMD_t *pCmd)
Description Send command data of the command structure specified in the argument.
Arguments BOOT_CMD_t *pCmd Address of the command structure to be sent
Return Value None
Remarks Call CMT_Wait(WAIT_1MS) if the TransferMode variable is INTERVAL_ON.

ReceiveResponse
Outline Processing to receive a response
Header None
Declaration uint8_t ReceiveResponse(BOOT_CMD_t *pCmd)
Description Receive a response for the number of bytes of the expected response size in the

command structure.
Arguments BOOT_CMD_t *pCmd Address of the command structure to be received
Return Value OK: Reception completed successfully

NG: Timeout (1 second) or error response received
Remarks When the ReceiveMode variable is ERRLOOP_ON and the return value is NG, call

the BootModeRelease(NG) function and do not return from the ReceiveResponse
function

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 42 of 73
Aug. 20. 2020

U4memcpy
Outline Copying unsigned 4-byte data
Header None
Declaration void *U4memcpy(void *pS1, const void *pS2)
Description Copy 4 bytes of data in the source memory area to the destination memory area.

If the data arrangement is little endian, reverse bytes of the unsigned 4-byte data in
the destination.

Arguments void *pS1
const void *pS2

Address of the destination memory area
Address of the source memory area

Return Value pS1 value

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 43 of 73
Aug. 20. 2020

5.10 Flowcharts
5.10.1 Main Processing and Communication Protocol Control
Figure 5.17 to Figure 5.30 show the Main Processing and Communication Protocol Control.

Initialize peripheral functions
peripheral_init()

I flag ← 0

I flag ← 1

Fill ResponseBuffer with FFh

Disable maskable interrupts
clrpsw_i()

Enable maskable interrupts
setpsw_i()

main

Stop peripheral functions that are
operating after a reset
R_INIT_StopModule()

Initial setting of non-existent ports
R_INIT_NonExistentPort()

Initialize clocks
R_INIT_Clock()

Initialize the receive data
storage buffer

memset()

1

Argument
 ResponseBuffer
 0xFF
 sizeof(ResponseBuffer)

Figure 5.17 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 44 of 73
Aug. 20. 2020

Processing to start the target
MCU in boot mode
BootModeEntry()

Processing to send a command
TransferCommand()

2

Set transmit mode and receive mode

Processing to receive a response
ReceiveResponse()

Processing to send a command
TransferCommand()

TransferMode ← INTERVAL_ON
ReceiveMode ← ERRLOOP_OFF

Argument
 &BitRateAdjustment_1st

Argument
 &BitRateAdjustment_1st

Set modes for transmission and
reception

TransferMode ← INTERVAL_OFF
ReceiveMode ← ERRLOOP_ON

Argument
 &BitRateAdjustment_2nd

Processing to receive a response
ReceiveResponse()

Argument
 &BitRateAdjustment_2nd

Start up in boot mode and bit
rate automatic adjustment

Initialize the flag for checking the bit
rate automatic adjustment

BitAdjust ← NG

1

Is the bit rate automatic
adjustment complete?

Yes

No

Figure 5.18 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 45 of 73
Aug. 20. 2020

Copy unsigned 4-byte data
U4memcpy()

3

Supported device inquiry

*(uint32_t *)MDES_ADD != 0xFFFFFFFF

Set the device code start index
of little endian

DataIndex ← 4

Processing to send a command
TransferCommand()

Argument
 &EnquiryDevice

Processing to receive a response
ReceiveResponse()

Argument
 &EnquiryDevice

2

Argument
 &DeviceCode
 &ResponseBuffer[DataIndex]

DataIndex ← DataIndex + ResponseBuffer[3] + 1Set the device code start index
 of big endian

Big endian operation?
 (Check MDES)

Yes

No

Figure 5.19 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 46 of 73
Aug. 20. 2020

Copy unsigned 4-byte data
U4memcpy()

4

Device selection

Processing to send a command
TransferCommand()

Argument
 &SelectDevice

Processing to receive a response
ReceiveResponse()

Argument
 &SelectDevice

3

Argument
 &CMD_SelectDevice[2]
 &DeviceCode

Processing to calculate the
SUM data

CalcSumData()

 CMD_SelectDevice[6] ← CalcSumData()
Argument
 &CMD_SelectDevice[0]
 6ul

Figure 5.20 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 47 of 73
Aug. 20. 2020

Copy unsigned 4-byte data
U4memcpy()

5

Block information inquiry

Set the block information reference start
index

DataIndex ← 4

Processing to send a command
TransferCommand()

Argument
 &BlockInfo

Processing to receive a response
ReceiveResponse()

Argument
 &BlockInfo

4

Store block information
Argument
 &BlockInfoData[BlockInfoIndex]
 &ResponseBuffer[DataIndex]

Clear the block information storage index
BlockInfoIndex ← 0

Block information storage index + 1 BlockInfoIndex ← BlockInfoIndex + 1

Block information reference start index + 4
DataIndex ← DataIndex + 4

Is the block information storage
index less than 6?

Yes

No

Figure 5.21 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 48 of 73
Aug. 20. 2020

6

Operating frequency selection

Processing to send a command
TransferCommand()

Argument
 &OperatingFreqSel_1st

Processing to receive a response
ReceiveResponse()

Argument
 &OperatingFreqSel_1st

5

Processing to change the SCI bit rate
SCI_change()

Processing to send a command
TransferCommand()

Argument
 &OperatingFreqSel_2nd

Processing to receive a response
ReceiveResponse()

Argument
 &OperatingFreqSel_2nd

Figure 5.22 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 49 of 73
Aug. 20. 2020

Processing to send a command
TransferCommand()

7

Set receive mode

Processing to receive a response
ReceiveResponse()

ReceiveMode ← ERRLOOP_OFF

Argument
 &PEstatusTransition

Argument
 &PEstatusTransition

Processing to reset the target
MCU

BootModeRelease()

Argument
 NG

Program/erase state
transition

Set the ID code protection
status buffer

IDProtectMode ← 0

6

Set the ID code protection
status buffer

IDProtectMode ← 1

Set the ID code protection
status buffer

IDProtectMode ← 2

Has reception been
successfully completed?

Yes

No

Was RES_ACK_MERSMD
received?

Yes

No

Was RES_ACK_ID received?

Yes

No

Note 1. The flash programmer goes into an infinite loop by the BootModeRelease() function and does not return to the caller.

(See Note 1)

Figure 5.23 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 50 of 73
Aug. 20. 2020

Processing to send a command
TransferCommand()

8

Set receive mode

Processing to receive a response
ReceiveResponse()

ReceiveMode ← ERRLOOP_ON

Argument
 &IDCodeCheck

Argument
 &IDCodeCheck

ID code check
7

Is ID code protect enabled?

Yes

No

Copy unsigned 4-byte data
U4memcpy()

Set the control code, and ID code 1 to ID code 3 as transmit
data
Argument
 &CMD_IDCodeCheck[2]
 TARGET_ID1_ADD

Set ID code 4 to ID code 7 as transmit data
Argument
 &CMD_IDCodeCheck[6]
 TARGET_ID2_ADD

Set ID code 8 to ID code 11 as transmit data
Argument
 &CMD_IDCodeCheck[10]
 TARGET_ID3_ADD

Set ID code 12 to ID code 15 as transmit data
Argument
 &CMD_IDCodeCheck[14]
 TARGET_ID4_ADD

Processing to calculate the SUM data
CalcSumData()

CMD_IDCodeCheck[18] ← CalcSumData()
Argument
 &CMD_IDCodeCheck[0]
 18ul

IDProtectMode = 1

Processing to reset the target
MCU

BootModeRelease()

Set the ID code protection status buffer

IDProtectMode ← 0

Set the ID code protection status
buffer

IDProtectMode ← 2

Has reception been
successfully completed?

Yes

No

Was RES_ACK_MERSMD
received?

Yes

No

Note 1. The flash programmer goes into an infinite loop by the BootModeRelease() function and does not return to the caller.

(See Note 1)

Copy unsigned 4-byte data
U4memcpy()

Copy unsigned 4-byte data
U4memcpy()

Copy unsigned 4-byte data
U4memcpy()

Figure 5.24 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 51 of 73
Aug. 20. 2020

Erase preparation and
block erase

8

IDProtectMode = 2

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &ErasePreparation

Argument
 &ErasePreparation

Is the ID code protection status
buffer 2?

Yes

No

Set the EraseIndexMax variable EraseIndexMax ← 1

Set the EraseIndexMax variable EraseIndexMax ← 2

Clear the EraseIndex variable EraseIndex ← 0

9

Figure 5.25 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 52 of 73
Aug. 20. 2020

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &BlockErase

Argument
 &BlockErase

Erase preparation and
block erase 9

Processing to calculate
the SUM data

CalcSumData()

CMD_BlockErase[6] ← CalcSumData()
Argument
 &CMD_BlockErase[0]
 6ul

10

EraseIndex + 1
EraseIndex ← EraseIndex + 1

Set the erase address EraseAddress ← BlockInfoData[0+(3*EraseIndex)]

Copy unsigned 4-byte data
U4memcpy()

Clear the BlockInfo variable

BlockInfo + 1

Update the erase address

Is BlockInfo less than
BlockInfoMax?

Yes

No

Set the erase address
Argument
 &CMD_BlockErase[2]
 &EraseAddress

BlockInfo ← 0

BlockInfo ← BlockInfo + 1

EraseAddress ← EraseAddress + AddrInterval

Set the interval between addresses AddrInterval ← BlockInfoData[1+(3*EraseIndex)]

Set the BlockInfoMax variable BlockInfoMax ← BlockInfoData[2+(3*EraseIndex)]

Is EraseIndex less than
EraseIndexMax?

Yes

No

Figure 5.26 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 53 of 73
Aug. 20. 2020

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &BlockErase

Argument
 &BlockErase

Erase preparation and
block erase 10

Processing to calculate the SUM data
CalcSumData()

CMD_BlockErase[6] ← CalcSumData()
Argument
 &CMD_BlockErase[0]
 6ul

11

Set the end of block erase
memset()

Argument
 &CMD_BlockErase[2]
 0xFF
 4ul

Boot mode status inquiry

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &BootModeStatusInquiry

Argument
 &BootModeStatusInquiry

Figure 5.27 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 54 of 73
Aug. 20. 2020

User/data area program
preparation and program

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &ProgramPreparation

Argument
 &ProgramPreparation

Clear the WriteIndex variable WriteIndex ← 0

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &Program

Argument
 &Program

11

Processing to calculate the SUM data
CalcSumData()

CMD_Program[261] ← CalcSumData()
Argument
 &CMD_Program[0]
 261ul

12

WriteIndex ← WriteIndex + 1

Set the AddressIndex variable AddressIndex ← WriteIndex << 8 :256-fold increase

Set the program data
memcpy()

WriteIndex + 1

Argument
 &CMD_Program[5]
 TARGET_DATA_ADD + AddressIndex
 256ul

Is WriteIndex less than
WRITING_TIME?

Yes

No

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &ProgramTermination

Argument
 &ProgramTermination

Calculate the program address WriteAddress ← WRITING_HEAD_ADD
 + AddressIndex

Copy unsigned 4-byte data
U4memcpy()

Set the program address
Argument
 &CMD_Program[1]
 &WriteAddress

Figure 5.28 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 55 of 73
Aug. 20. 2020

Memory read

Clear the ReadIndex variable ReadIndex ← 0

Processing to send a command
TransferCommand()

Processing to receive a response
ReceiveResponse()

Argument
 &MemoryRead

Argument
 &MemoryRead

12

Processing to calculate the SUM data
CalcSumData()

CMD_MemoryRead[11] ← CalcSumData()
Argument
 &CMD_MemoryRead[0]
 11ul

13

ReadIndex ← ReadIndex + 1

Set the AddressIndex AddressIndex ← ReadIndex << 8 :256-fold increase

Compare the read data
strncmp()

ReadIndex + 1

Argument
 &ResponseBuffer[5]
 TARGET_DATA_ADD + AddressIndex
 256ul

Is ReadIndex less than
READING_TIME?

Yes

No

Calculate the read address ReadAddress ← READING_HEAD_ADD
 + AddressIndex

Copy unsigned 4-byte data
U4memcpy()

Set the read address
Argument
 &CMD_MemoryRead[3]
 &ReadAddress

Processing to reset
the target MCU

BootModeRelease()

Argument
 NG

Do the program data and read data
match?

Yes

No

(see Note 1)

Note 1. The flash programmer goes into an infinite loop by the BootModeRelease() function and does not return to the caller.

Figure 5.29 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 56 of 73
Aug. 20. 2020

13

Processing to reset
the target MCU

BootModeRelease()

Argument
OK

(See Note 1)

Note 1. The flash programmer goes into an infinite loop by the BootModeRelease() function and does not return to the caller.

Figure 5.30 Main Processing and Communication Protocol Control

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 57 of 73
Aug. 20. 2020

5.10.2 Initialization of the Peripheral Functions
Figure 5.31 shows the Initialization of the Peripheral Function.

peripheral_init()

return

Disable register protection

Initialize the timer for wait
time with the CMT

CMT_WaitInit

Initialize the SCI
SCI_Init()

PRCR register ← A502h
 PRC1 bit = 1 : Enable writing to the associated registers

Enable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 0

Enable writing to the PFS register MPC.PWPR register
 PFSWE bit ← 1

Initialize the debug LCD
init_LCD()

Disable writing to the PFS
register

MPC.PWPR register
 PFSWE bit ← 0

Disable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 1

Enable register protection PRCR register ← A500h
 PRC1 bit = 0 : Disable writing to the associated register

Argument
 Output "Start" to LCD_LINE1
 Output "... " to LCD_LINE2

Debug LCD output
Display_LCD()

Set the port for output of debug
LCD data

Set the pin for output of debug LCD data
 LCD_DATA_PORT ← LCD_DATA_PORT & 0x0F

: Set output from the port to 0
 LCD_DATA_DIR_PORT ← LCD_DATA_DIR_PORT | 0xF0

: Set the port direction register to output

Set the control pin for the debug LCD
 RS_PIN ← 0 :Set output from the port to 0
 E_PIN ← 0 :Set output from the port to 0
 RS_PIN_DIR ← 1 : Set port direction register to output
 E_PIN_DIR ← 1 : Set port direction register to output

Figure 5.31 Initialization of the Peripheral Functions

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 58 of 73
Aug. 20. 2020

5.10.3 Initialization of the Timer for Wait Time with the CMT
Figure 5.32 shows the Initialization of the Timer for Wait Time with the CMT.

CMT_WaitInit()

return

Release from the module stop state MSTPCRA register
MSTPA15 bit ← 0 : CMT0 and CMT1 module clocks are enabled.

Stop counting of the CMT0

Set the CMT0 count source and
enable compare match interrupt

CMSTR0 register
STR0 bit ← 0 :CMT0.CMCNT count is stopped.

CMCR register ← 00C3h
CKS[1:0] bit = 11b :PCLK/512
CMIE bit = 1 :Compare match interrupt (CMI0) enabled.

Clear CMT0 count CMCNT register ← 0000h

Clear the CMT0 interrupt request IR028 register
IR flag ← 0 :CMT0.CMI0 interrupt request is cleared.

Enable the CMT0 interrupt request IER03 register
IEN4 bit ← 1 :CMT0.CMI0 interrupt request is enabled.

IPR004 register ← 03h
IPR[3:0] bit = 0011b :CMT0.CMI0 interrupt priority level 3

Set the CMT0 interrupt priority level

Figure 5.32 Initialization of the Timer for Wait Time with the CMT

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 59 of 73
Aug. 20. 2020

5.10.4 Setting Wait Time with the CMT
Figure 5.33 shows Setting Wait Time with the CMT.

CMT_WaitSet()

return

Stop the CMT0 count CMSTR0 register
STR0 bit ← 0 : CMT0 count is stopped.

Clear the CMT0 count CMCNT register ← 0000h

Set the wait time enable flag CMT_InterruptFlag ← 1

Argument
uint16_t cnt : Wait time

Decrement the wait time cnt ← cnt - 1

Set the wait time in CMT0

Clear the CMT0 interrupt request

CMCOR register ← cnt

IR028 register
IR flag ← 0 : CMT0.CMI0 interrupt request is cleared.

Start CMT0 count CMSTR0 register
STR0 bit ← 1 : CMT0 count is started.

Is the specified wait time
other than 0?

Yes

No

Figure 5.33 Setting Wait Time with the CMT

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 60 of 73
Aug. 20. 2020

5.10.5 Wait Processing with the CMT
Figure 5.34 shows Wait Processing with the CMT.

CMT_Wait()

return

Wait until the CMI0 interrupt occurs

Argument
cnt : Wait time

Set the wait time with the CMT
CMT_WaitSet()

Argument
uint16_t cnt : Wait time

Is the wait time enable flag other
than 1?

Yes

No

Figure 5.34 Wait Processing with the CMT

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 61 of 73
Aug. 20. 2020

5.10.6 Interrupt Handling for CMI0 in CMT0
Figure 5.35 shows Interrupt Handling for CMI0 in CMT0.

Excep_CMT0_CMI0()

return

Stop CMT0 count CMSTR0 register
STR0 bit ← 0 : CMT0 count is stopped

Clear the wait enable flag CMT_InterruptFlag ← 0

Figure 5.35 Interrupt Handling for CMI0 in CMT0

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 62 of 73
Aug. 20. 2020

5.10.7 Initialization of the SCI
Figure 5.36 shows SCI Initialization.

SCI_Init

return

Release from SCIn module stop

Enable transmission/reception
and SCIn interrupt request

MSTP_SCIn ← 0 :SCIn is released from the module stopped state

SCIn.SCR register ← F0h
RE = 1 : Serial reception is enabled
TE = 1 : Serial transmission is enabled
RIE = 1 : RXI and ERI interrupt requests are enabled
TIE = 1 : A TXI interrupt request is enabled

Set the port direction

Set port mode TXDn_PMR ← 0 :TXDn: Used as a general I/O port
RXDn_PMR ← 0 :RXDn: Used as a general I/O port

Set port output data TXDn_PODR ← 1 :TXDn: High level

TXDn_PDR ← 0 :TXDn: Output
RXDn_PDR ← 0 :RXDn: Input

Disable transmission/reception
and the SCIn interrupt request

SCIn.SCR register ← 00h
CKE[1:0] = 00b : On-chip baud rate generator
TEIE = 0 : TEI interrupt request is disabled
RE = 0 : Serial reception is disabled
TE = 0 : Serial transmission is disabled
RIE = 0 : RXI and ERI interrupt requests are disabled
TIE = 0 : TXI interrupt request is disabled

Select the pin function MPC.TXDnPFS register ← TXDnPFS_SELECT :TXDn
MPC.RXDnPFS register ← RXDnPFS_SELECT :RXDn

Set the format for transmission
and reception

SCIn.SMR register ← 00h
CKS[1:0] = 00b :PCLK clock
MP = 0 :Multi-processor communications function is disabled
STOP = 0 :1 stop bit
PE = 0 :No parity
CHR = 0 :Selects 8 bits as the data length
CM = 0 :Asynchronous mode

SCIn.SCMR register ← F2h
SMIF = 0 :Serial communications interface mode
SINV = 0 :TDR contents are transmitted as they are.

 Receive data is stored as it is in RDR
SDIR = 0 :Transfer with LSB first

SCIn.SEMR register ← 10h
ABCS = 1 : Selects 8 base clock cycles for 1-bit period
NFEN = 0 : Noise cancellation function for the RXDn input signal is disabled

Set the bit rate SCIn.BRR register ← BRR_SET(19200) : (48 MHz/(32×2-1×19200 bps)) - 1

Clear the SCIn interrupt request IR_SCIn_RXIn ← 0 :SCIn.RXIn interrupt not requested
IR_SCIn_TXIn ← 0 :SCIn.TXIn interrupt not requested

Set port mode TXDn_PMR ← 1 :TXDn: Used for peripheral functions
RXDn_PMR ← 1 :RXDn: Used for peripheral functions

Figure 5.36 SCI Initialization

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 63 of 73
Aug. 20. 2020

5.10.8 Processing to Change the SCI Bit Rate
Figure 5.37 shows Processing to Change the SCI Bit Rate.

SCI_change()

return

Argument
WAIT_52US : Wait time

 1 bit period at 19200bps ≈ 52 µs

Wait Processing with the CMT
CMT_Wait()

Set port mode TXDn_PMR ← 0 :TXDn: Used as a general I/O port

Disable transmission/reception and
the SCIn interrupt request

SCIn.SCR register ← 00h
CKE[1:0] = 00b : On-chip baud rate generator
TEIE = 0 : TEI interrupt request is disabled
RE = 0 : Serial reception is disabled
TE = 0 : Serial transmission is disabled
RIE = 0 : RXI and ERI interrupt requests are disabled
TIE = 0 : TXI interrupt request is disabled

Set the bit rate SCIn.BRR register ← BRR_SET(1000000) :(48MHz/(32×2-1×1000000 bps)) - 1

Enable transmission/reception and
the SCIn interrupt request

SCIn.SCR register ← F0h
RE = 1 : Serial reception is enabled
TE = 1 : Serial transmission is enabled
RIE = 1 : RXI and ERI interrupt requests are enabled
TIE = 1 : TXI interrupt request is enabled

Clear the SCIn interrupt request IR_SCIn_TXIn ← 0 :SCIn.RXIn interrupt not requested

Set port mode TXDn_PMR ← 1 :TXDn: Used for peripheral functions

Figure 5.37 Processing to Change the SCI Bit Rate

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 64 of 73
Aug. 20. 2020

5.10.9 Processing to Calculate the SUM Data
Figure 5.37 shows Processing to Calculate the SUM Data.

CalcSumData()

return (CheckSum)

Argument
uint8_t *pData : Data address for SUM
uint32_t Length : Amount of data for SUM

Clear the checksum CheckSum ← 0

Data address for SUM + 1 pData ← pData + 1

Calculate the checksum CheckSum ← CheckSum + *pData;

Loop counter value + 1 loop ← loop + 1

CheckSum ← 0 - CheckSum

Clear the loop counter loop ← 0

Is the loop counter value
less than the amount of data

for SUM?

Yes

No

Calculate the SUM value

Figure 5.38 Processing to Calculate the SUM Data

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 65 of 73
Aug. 20. 2020

5.10.10 Processing to Start the Target MCU in Boot Mode
Figure 5.39 shows Processing to Start the Target MCU in Boot Mode.

BootModeEntry()

return

Set the output port

Release the target MCU reset RES_PIN ← 1 : Set the RES# pin of the target MCU to the
 high level

Argument
WAIT_3MS : Wait time
 3 ms for RES# pulse width after power-on

Wait processing with the CMT
CMT_Wait()

BTMD_PMR ← 00h : Used as a general I/O port
BTMD_PODR ← BTMD_PODR_INIT : Initialize output from pins UB#, MD#, RES#

 of the target MCU
BTMD_PDR ← BTMD_PDR_INIT : Output from the UB# pin of the target MCU

 is initialized to the high level

Argument
WAIT_400MS : Wait time

 400 ms for wait time until the start of communication

Wait processing with the CMT
CMT_Wait()

Figure 5.39 Processing to Start the Target MCU in Boot Mode

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 66 of 73
Aug. 20. 2020

5.10.11 Processing to Reset the Target MCU
Figure 5.40 shows Processing to Reset the Target MCU.

BootModeRelease()

Argument of Display_LCD()
 "...End " is output to LCD_LINE2

Release the target MCU reset RES_PIN ← 1 : Set the RES# pin of the target MCU to the high level

Reset the target MCU RES_PIN ← 0 : Set the RES# pin of the target MCU to the low level

Argument
WAIT_3MS : Wait time
 3 ms for the RES# pulse width after power-on

Wait processing with the CMT
CMT_Wait()

Argument
uint8_t mode : Selects the output pattern of debug LCD line 2

Set the MD pin to the high level MD_PIN ← 1 : Set the MD# pin of the target MCU to the high level

Argument of Display_LCD()
 "...Error" is output to LCD_LINE2

Debug LCD output
Display_LCD()

Is the normal value output to
the debug LCD line 2?

Yes

No

Figure 5.40 Processing to Reset the Target MCU

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 67 of 73
Aug. 20. 2020

5.10.12 Processing to Send a Command
Figure 5.41 shows Processing to Send a Command.

Wait until data has been transmitted

TransferCommand()

return

Argument
BOOT_CMD_t *pCmd : Address for command structure

to be transmitted

Set the transmit data SCIn.TDR register ← pCmd->Command[TransferCount]

Clear the transmit counter TransferCount ← 0

Clear the SCIn.TXIn interrupt request IR_SCIn_TXIn ← 0

Wait SCIn.TXIn interrupt request Wait until IR_SCIn_TXIn becomes 1

Wait until SCIn.SSR.BIT.TEND becomes 1

Argument
WAIT_1MS : Wait time
 1 ms (interval for transmit data)

Wait processing with the CMT
CMT_Wait()

Transmit counter value + 1 TransferCount ← TransferCount + 1

Is the transmit counter value less
than the command size?

Yes

No

Is an interval set for transmission?

Yes

No

Figure 5.41 Processing to Send a Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 68 of 73
Aug. 20. 2020

5.10.13 Processing to Receive a Response
Figure 5.42 to Figure 5.45 show Processing to Receive a Response.

ReceiveResponse Argument
BOOT_CMD_t *pCmd : Address for the command structure

 to be received

Initialize the timeout counter TimeOutCount ← 10

Clear the index BufferIndex ← 0 : Index for the buffer storing receive data

Clear the receive counter ReceiveCount ← 0

Set the return value (OK) ret ← OK

Argument
WAIT_100MS : Wait time
 100 ms

Set the wait time with the CMT
CMT_WaitSet()

1

3

4

Is the receive counter value
less than the response size,
and is the return value OK?

Yes

No

Figure 5.42 Processing to Receive a Response

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 69 of 73
Aug. 20. 2020

1

Read the SCIn.SSR register
PER flag : 0: No parity error occurred

 1: A parity error has occurred
FER flag : 0: No framing error occurred

 1: A framing error has occurred
ORER flag : 0: No overrun error occurred

 1: An overrun error has occurred

Clear the error flag *1

Set the return value (NG)

Timeout counter - 1

Is the timeout counter value equal
to or greater than 0?

Yes

No

Set the return value (NG)

Set the wait time with the CMT
CMT_WaitSet()

Clear the SCIn.RXIn interrupt request IR_SCIn_RXIn ← 0

2

SCIn.SSR register ← (SCIn.SSR register & C7h) | C0h
PER = 0 : No parity error occurred
FER = 0 : No framing error occurred
ORER = 0 : No overrun error occurred

ret ← NG

TimeOutCount ← TimeOutCount - 1

ret ← NG

Argument
WAIT_100MS : Wait time
 100 ms

0 = IR_SCIn_RXIn

TimeOutCount > 0 : Timeout (1s = 100 ms × 10 times)

0 = CMT_InterruptFlag

Note 1. After writing to bits RE and RIE and flags PER and FER and ORER, confirm that the written values can be read.

Has a receive error occurred?

Yes

No

Are the conditions below satisfied?
- SCIn.RXIn interrupt is not requested
- Return value is OK?

Yes

No

Has the wait time elapsed?

Yes

No

Figure 5.43 Processing to Receive a Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 70 of 73
Aug. 20. 2020

OK = ret

Store the receive data ResponseBuffer[BufferIndex] ← SCIn.RDR register

Index + 1 BufferIndex ← BufferIndex + 1 : Index of the receive data storage buffer

BufferIndex >= RES_BUF_SIZE

Clear the index BufferIndex ← 0 : Index of the receive data storage buffer

Set the return value (NG) ret ← NG

Receive counter value + 1 ReceiveCount ← ReceiveCount + 1

2

3

Is the return value OK?

Yes

No

Was an error response
received?

Yes

No

Does the received data
exceed the receive buffer size?

Yes

No

Figure 5.44 Processing to Receive a Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 71 of 73
Aug. 20. 2020

Argument
NG : Output "...Error" to LCD_LINE2

Processing to reset
the target MCU

BootModeRelease()

return (ret)

4

Is the error processing
(infinite loop) selected,

and is the return value NG?

Yes

No

(See Note 1)

Note 1. The flash programmer goes into an infinite loop by the BootModeRelease() function and does not return to the caller.

Figure 5.45 Processing to Receive a Command

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 72 of 73
Aug. 20. 2020

5.10.14 Copying Unsigned 4-Byte Data
Figure 5.46 show Copying Unsigned 4-Byte Data.

Byte reverse of 4-byte data
revl() Argument

*(uint32_t *)pS1

Argument
 pS1

pS2
 4ul

U4memcpy Argument
void *pS1 Destination address of the memory area for copying
const void *pS2 Source address of the memory area for copying

return (pS1)

Copy 4-byte data
memcpy()

*(uint32_t *)MDES_ADD == 0xFFFFFFFF

Little endian operation?
(Check MDES)

Yes

No

*(uint32_t *)pS1 ← revl(*(uint32_t *)pS1)

Figure 5.46 Copying Unsigned 4-Byte Data

RX100 Series RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

R01AN1938EJ0110 Rev. 1.10 Page 73 of 73
Aug. 20. 2020

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
User’s Manual: Hardware

RX110 Group User's Manual: Hardware Rev.1.00 (R01UH0421EJ)
RX111 Group User’s Manual: Hardware Rev.1.10 (R01UH0365EJ)
RX63N Group, RX631 Group User's Manual: Hardware Rev.1.80 (R01UH0041EJ)
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User's Manual (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY
RX100 Series Application Note

RX100 Series Flash Programmer (SCI)
Using the Renesas Starter Kit+ for RX63N

Rev. Date
Description

Page Summary
1.00 June 02, 2014 — First edition issued
1.10 Aug, 20, 2020 — Update the toolchain version

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by

this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to

stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a

humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and

transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded.

The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed

circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings

and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not

guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip

power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power

supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for

input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-

impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-

through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait

until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the

reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an

external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH

(Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in

the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the

correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The

characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal

memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 RSK+RX63N User Area Memory Map

	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Hardware Configuration
	4.2 Pins Used

	5. Software
	5.1 Programming the RSK+RX63N
	5.1.1 Prepare the FDT Workspace
	5.1.2 Merge and Save Data
	5.1.3 Program the RSK+RX63N User Area

	5.2 Operation Overview
	5.2.1 Start the MCU in Boot Mode (SCI)
	5.2.2 Bit Rate Automatic Adjustment
	5.2.3 Fix the Target MCU
	5.2.4 Check ID Code Protection
	5.2.5 Rewrite the Target MCU User Area
	5.2.6 Reset the Target MCU

	5.3 File Composition
	5.4 Option-Setting Memory
	5.5 Constants
	5.6 Structure/Union List
	5.7 Variables
	5.8 Functions
	5.9 Function Specifications
	5.10 Flowcharts
	5.10.1 Main Processing and Communication Protocol Control
	5.10.2 Initialization of the Peripheral Functions
	5.10.3 Initialization of the Timer for Wait Time with the CMT
	5.10.4 Setting Wait Time with the CMT
	5.10.5 Wait Processing with the CMT
	5.10.6 Interrupt Handling for CMI0 in CMT0
	5.10.7 Initialization of the SCI
	5.10.8 Processing to Change the SCI Bit Rate
	5.10.9 Processing to Calculate the SUM Data
	5.10.10 Processing to Start the Target MCU in Boot Mode
	5.10.11 Processing to Reset the Target MCU
	5.10.12 Processing to Send a Command
	5.10.13 Processing to Receive a Response
	5.10.14 Copying Unsigned 4-Byte Data

	6. Sample Code
	7. Reference Documents
	REVISION HISTORY

