
 Application Note

R01AN5434EJ0110 Rev.1.10 Page 1 of 85
Aug.31.2020

RX72M Group
Single-Chip Motor Control via EtherCAT Communications

Outline
This application note describes a sample program for the RX72M. The program has an encoder vector
control function for a permanent magnet synchronous motor (hereinafter referred to as a PMSM) and works
with the EtherCAT communications controller of the RX72M. The module provides an interface via the
EtherCAT Slave Stack Code (SSC) of Beckhoff, which is used in the RX family products that incorporate an
EtherCAT slave controller (ESC) for industrial Ethernet communications.
The FIT module itself does not include the SSC. Therefore, generate the executable code after obtaining the
sample SSC from the EtherCAT Technology Group (ETG Association).
This FIT module is hereinafter referred to as the EtherCAT FIT module.

Target Devices
 RX72M group devices

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation
and testing of the modified program.

R01AN5434EJ0110
Rev.1.10

Aug.31.2020

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 2 of 85
Aug.31.2020

Contents

Description

1. Overview ... 4
1.1 This Application Note... 4
1.2 Operation Environment ... 4
1.3 Projects .. 5

2. System Overview ... 6
2.1 Hardware Configuration .. 6
2.2 Hardware Specifications .. 7
2.3 Software Configuration .. 10
2.3.1 Software File Configuration ... 10
2.3.2 Software Module Configuration ... 13
2.4 Software Specifications ... 16

3. CiA402 Drive Profile .. 18
3.1 Operating Mode ... 19
3.2 State Transitions .. 20
3.3 State Transition Functions ... 21
3.4 Object Dictionary ... 23

4. Motion Control Parameters .. 25
4.1 Velocity Parameters .. 25
4.2 Acceleration Parameters ... 25
4.3 Conversion of Units by the RMW .. 25

5. API Functions .. 27
5.1 Overview .. 27
5.2 R_MTR_InitControl .. 28
5.3 R_MTR_SetUserifMode .. 29
5.4 R_MTR_ExecEvent ... 30
5.5 R_MTR_ChargeCapacitor ... 31
5.6 R_MTR_GetLoopModeStatus ... 32
5.7 R_MTR_SetPositionStatus .. 33
5.8 R_MTR_SetPosition .. 34
5.9 R_MTR_GetPosition.. 35
5.10 R_MTR_GetPositioningFlag .. 36
5.11 R_MTR_SetSpeed .. 37
5.12 R_MTR_GetSpeed .. 38
5.13 R_MTR_SetDir .. 39
5.14 R_MTR_GetDir .. 40
5.15 R_MTR_GetStatus .. 41
5.16 R_MTR_InputBuffParamReset .. 42
5.17 R_MTR_CtrlInput ... 43
5.18 R_MTR_SetVariables .. 44

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 3 of 85
Aug.31.2020

5.19 R_MTR_AutoSetVariables .. 45
5.20 R_MTR_CtrlGainCalc .. 46
5.21 R_MTR_UpdatePolling .. 47
5.22 R_MTR_GetErrorStatus .. 48
5.23 R_MTR_GetPositionPFStatus ... 49
5.24 R_MTR_SetPositionUnits .. 50
5.25 R_MTR_SetActualPositionUnits .. 51
5.26 R_MTR_GetPositionUnits ... 52
5.27 R_MTR_GetSpeedUnits .. 53
5.28 R_MTR_SetSpeedUnits .. 54
5.29 R_MTR_SetAccelerationUnits ... 55
5.30 R_MTR_SetDecelerationUnits .. 56

6. Checking Operation of the Application on the Solution Kit ... 57
6.1 Operating Environment ... 57
6.2 Operating Environment Settings and Connection ... 58
6.3 Building the Sample Program .. 62
6.4 Importing the Sample Project into the e2 studio ... 64
6.5 Programming and Debugging ... 65
6.6 Connection with TwinCAT (Writing the ESI File) ... 67
6.7 Checking the Connection with CODESYS .. 71
6.7.1 Device Network Settings ... 71
6.7.2 Starting CODESYS ... 71
6.7.3 Starting the PLC .. 72
6.7.4 Updating the Slave Device .. 73
6.7.5 Setting up the Connection with PLC.. 74
6.8 Using CODESY to Check Operation ... 80

7. Documents for Reference .. 81

8. APPENDIX .. 82

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 4 of 85
Aug.31.2020

1. Overview

1.1 This Application Note
This application note describes a sample program for the RX72M. The program has an encoder vector
control function for a permanent magnet synchronous motor (hereinafter referred to as a PMSM) and works
with the EtherCAT communications controller of the RX72M.
The sample program is intended to run on a combination of a board with an RX72M CPU and a 24-V system
inverter board.

1.2 Operation Environment

Table 1-1 Operation Environment
Target MCU RX72M Group
Evaluation board Manufactured by Renesas

RX72M CPU card + 24-V system inverter board *
Integrated development
environment (IDE)

Renesas e2 studio, V.7.5.0 or later
IAR Embedded Workbench for Renesas RX 4.13.1 or later

C compiler Renesas C/C++ compiler package for RX Family
V3.01.00 or later
GCC for Renesas RX 4.8.4.201803 or later
IAR C/C++ compiler for Renesas RX version 4.13.1 or later

Motor Permanent magnet synchronous motor with an incremental encoder from
Leadshine Technology
BLM57050-1000

Emulator Renesas e2 Lite
Communication protocol EtherCAT
SSC tool Provided by the EtherCAT Technology Group (ETG)

Slave Stack Code (SSC) tool Version 5.12
Software PLC TwinCAT® 3 (download this from the Beckhoff web site)

of Beckhoff Automation
CODESYS of 3S-Smart Software Solutions

Note: * The 24-V motor control system manufactured by Renesas Electronics incorporates both items.

24V Motor Control Evaluation System for RX23T (RTK0EM0006S01212BJ)

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 5 of 85
Aug.31.2020

1.3 Projects
The sample program realizes single-chip motor control via EtherCAT communications. It was prepared by
modifying other projects for motor control and EtherCAT communications.

Table 1-2 Base Projects and Changes that were Required
Function/Project Name (Application note) Changes

Motor control
RX72M_MRSSK_SPM_ENCD_FOC_E2S_RV100

(r01an5386ej0100-rx72m-motor)

 API functions were added for control of the
motor by the EtherCAT communications
program.

 The units of position and velocity were
converted to conform with the CiA402 object
specifications.

EtherCAT communications
rx72m_com_cia402

(r01an4672ej0100-rx72m-ecat)

 Objects were added to fit the CiA402 drive
profile.

 Calls of API functions to control the motor

The project included for the sample program is shown below.
In the following sections, the RX72M CPU card plus 24-V system inverter board project is used as an
example. When using a different project, read the project name in this application note as that of the given
project.

Table 1-3 List of Projects

MCU Evaluation Board Project Name
RX72M RX72M CPU card + 24-V system inverter

board
ecat_cia402_motor_rsskrx72m

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 6 of 85
Aug.31.2020

2. System Overview

2.1 Hardware Configuration
The following figure shows the hardware configuration of the environment where the sample program runs.

Figure 2-1 Hardware Configuration

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 7 of 85
Aug.31.2020

2.2 Hardware Specifications
Table 2-1 to Table 2-4 list the pin interfaces for use in the sample program.

Table 2-1 Motor Control Related Pin Interface

Pin Name Description

P43 / AN003 Inverter’s main line voltage measurement

P47 / AN007 For input of the rotational velocity and position command values
(analog values)

P30 START/STOP toggle switch
P02 ERROR RESET toggle switch
P71 LD1 on/off control
PN4 LD2 on/off control
PH0 LD3 on/off control
P40 / AN000 U-phase current measurement
P42 / AN002 W-phase current measurement
PE1 / MTIOC3B PWM output (Up)
PE2 / MTIOC4A PWM output (Vp)
PE3 / MTIOC4B PWM output (Wp)
PE0 / MTIOC3D PWM output (Un)
PE5 / MTIOC4C PWM output (Vn)
PE4 / MTIOC4D PWM output (Wn)
P31 / IRQ1 Hall U-phase input
PD3 / IRQ3 Hall V-phase input
PB0 / IRQ12 Hall W-phase input
PA4 / MTCLKA Encoder A-phase input
P25 / MTCLKB Encoder B-phase input

PC4 / POE0# Input for the emergency signal for stopping the PWM output on
detection of an overcurrent

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 8 of 85
Aug.31.2020

Table 2-2 EtherCAT Communications Related Pin Interface (1)

Pin Name Description

PK6/CATLINKACT0 Link/Activity LED control output

PK7/CATLINKACT1 Link/Activity LED control output

PH1/CATI2CCLK EEPROM I2C clock output

P15/CATLEDRUN RUN LED (green LED) control output

PH3/CATLEDERR ERR LED (red LED) control output

PL3/CAT0_RX_CLK Receive clock input

PM4/CAT0_ETXD2 4-bit transmit data output (bit 2)

PM5/CAT0_ETXD3 4-bit transmit data output (bit 3)

PL4/CAT0_ETXD0 4-bit transmit data output (bit 0)

PL5/CAT0_ETXD1 4-bit transmit data output (bit1)

PK5/CAT0_ERXD3 4-bit receive data input (bit 3)

PK4/CAT0_ERXD2 4-bit receive data input (bit 2)

P74/CAT0_ERXD1 4-bit receive data input (bit 1)

P75/CAT0_ERXD0 4-bit receive data input (bit 0)

PL7/CAT0_MDIO Management data I/O

PN3/CAT1_RX_ER Receive error input

P84/CAT1_LINKSTA Link status input from the PHY-LSI

PQ2/CAT1_RX_DV Received data valid input

PL6/CAT0_TX_EN Transmit enable output

PN2/CAT1_TX_CLK Transmit clock input

PH4/CATLEDSTER Output for RUN LED part of STATE LED (bicolor) (turned off while
ERR)

PH5/CATLATCH0 LATCH signal input

PH6/CATLATCH1 LATCH signal input

P27/CATIRQ IRQ output

PQ7/CAT1_TX_EN Transmit enable output

PK2/CAT0_RX_DV Received data valid input

PM1/CAT1_ERXD1 4-bit receive data input (bit 1)

PM2/CAT1_ERXD2 4-bit receive data input (bit 2)

PM3/CAT1_ERXD3 4-bit receive data input (bit 3)

PL2/CAT0_RX_ER Receive error input

PM0/CAT1_ERXD0 4-bit receive data input (bit 0)

PQ4/CAT1_RX_CLK Receive clock input

PJ5/CATSYNC0 SYNC0 signal output

PA6/CATRESTOUT PHY reset signal output

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 9 of 85
Aug.31.2020

Table 2-3 EtherCAT Communications Related Pin Interface (2)

Pin Name Description
PN1/CAT1_ETXD3 4-bit transmit data output (bit 3)
PQ5/CAT1_ETXD0 4-bit transmit data output (bit 0)
PN0/CAT1_ETXD2 4-bit transmit data output (bit 2)
PQ6/CAT1_ETXD1 4-bit transmit data output (bit 1)
P11/CATSYNC1 SYNC1 signal output
PM6/CAT0_TX_CLK Transmit clock input
PK0/CAT0_MDC Management data clock output
P34/CAT0_LINKSTA Link status input from the PHY-LSI
P82/CATI2CDATA EEPROM I2C data input/output

Table 2-4 Other Pin Interface

Pin Name Description

P12/RXD2 SCI2 receive data input pin

P13/TXD2 SCI2 transmit data output pin

PH2 Device ID DIP SW (bit 0)

PQ3 Device ID DIP SW (bit 1)

P05 Device ID DIP SW (bit 2)

P72 Device ID DIP SW (bit 3)

PC1 Device ID DIP SW (bit 4)

PN5 Device ID DIP SW (bit 5)

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 10 of 85
Aug.31.2020

2.3 Software Configuration
2.3.1 Software File Configuration
Folders and files configured for the sample program are listed in Table 2-5 to Table 2-7.
The files in gray-shaded cells are those which required changes from the base project to implement the
functionality of the sample program. The files listed in bold letters are those that have been added.

Table 2-5 Configuration of Files for the Motor Control Program (1)
Directory

motor/ File Description

application/ main/ main.h, main.c Main function
user_interface/ ics/ r_mtr_ics.h, r_mtr_ics.c ICS related function definition

ICS_RX72M.h
ICS_RX72M.lib

Communications-related
definitions for tools
Communications library for
tools

board/ r_mtr_board.h, r_mtr_board.h Board user function definition
middle/ interface/ r_mtr_driver_access.h

r_mtr_driver_access.c User access function definition

r_mtr_driver_ecat_access.h
r_mtr_driver_ecat_access.c

Definitions of functions for
access by the EtherCAT
communications program

common/ r_mtr_common.h Common definition

r_mtr_units.h Definitions of units

r_mtr_filter.h, r_mtr_filter.c General-purpose filter function
definition

r_mtr_fluxwkn.h
r_mtr_fluxwkn.obj

Definition of a function related
to magnetic-flux weakening
control

r_mtr_pi_control.h
r_mtr_pi_control.c PI control function definition

r_mtr_transform.h
r_mtr_transform.c

Coordinate transformation
function definition

r_mtr_mod.h, r_mtr_mod.c Modulation function definition

r_mtr_volt_err_comp.h
r_mtr_volt_err_comp.obj

Voltage error compensation
function definition

r_mtr_statemachine.h
r_mtr_statemachine.c

State machine function
definition

control/ r_mtr_parameter.h Definitions of various
parameters

r_mtr_ctrl_gain_calc.obj Control gain calculation
function definition

r_mtr_foc_action.c Action function definition

r_mtr_interrupt_carrier.c Carrier interrupt function
definition

r_mtr_interrupt_timer.c Cycle interrupt function
definition

r_mtr_interrupt_sensor.c Sensor input interrupt function
definition

r_mtr_foc_control_encd_position.h
r_mtr_foc_control_encd_position.c FOC function definition

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 11 of 85
Aug.31.2020

Table 2-6 Configuration of Files for the Motor Control Program (2)
Directory

motor/ File Description

middle/ control/
r_mtr_foc_current.h
r_mtr_foc_current.c

Current control function
definition

r_mtr_foc_speed.h
r_mtr_foc_speed.c

Velocity control function
definition

r_mtr_foc_position.h
r_mtr_foc_position.c

Position control function
definition

r_mtr_position_profiling.h
r_mtr_position_profiling.c

Function for creating position
command values

r_mtr_ipd.h
r_mtr_ipd.obj IPD control function definition

r_mtr_speed_observer.h
r_mtr_speed_observer.obj

Velocity observer function
definition

driver/ inverter/
r_mtr_ctrl_mrssk.h
r_mtr_ctrl_mrssk.c

Inverter board dependent
function definition

mcu/ r_mtr_interrupt.c Interrupt function definition

r_mtr_ctrl_rx72m.h
r_mtr_ctrl_rx72m.c

MCU specific function
definition

r_mtr_ctrl_mcu.h MCU common definition
sensor/

r_mtr_ctrl_encoder.h
r_mtr_ctrl_encoder.c Encoder function definition

r_mtr_ctrl_hall.h
r_mtr_ctrl_hall.c Hall function definition

config/ r_mtr_config.h Configuration common
definition

r_mtr_motor_parameter.h Motor parameter configuration
definition

r_mtr_inverter_parameter.h Inverter parameter
configuration definition

r_mtr_control_parameter.h Control parameter
configuration definition

r_mtr_encoder_parameter.h Encoder parameter
configuration definition

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 12 of 85
Aug.31.2020

Table 2-7 Configuration of Files for the EtherCAT Communications Program (1)

Directory
smc_gen/r_ecat_rx/ File Description

./ r_ecat_rx_if.h FIT module API definition

readme.txt Attached document regarding
the FIT module

./doc/ en/ r01an4881ejxxxx-rx-ecat.pdf Application Note (English
version)

ja/ r01an4881jjxxxx-rx-ecat.pdf Application Note (Japanese
version)

./ref/
r_ecat_rx_config_reference.h Default definitions of options

for the FIT module

./src/ hal/ renesashw.h
renesashw.c

ESC access function
definition

phy/ phy.h, phy.c PHY control function definition
targets/ rx72m/

r_ecat_setting_rx72m.c MCU specific function
definition

./utilities/ rx72m/ batch_files/ apply_patch.bat Batch file for modifying the
SSC source file

RX72M_Motor_YYMMDD.patch
Modification patch for the
single-chip motor control
program

esi/ RX72M EtherCAT MotorSolution.xml ESI file
ssc_config/ Renesas_RX72M_config.xml SSC configuration file

RX72M EtherCAT CiA402.esp SSC tool project file

Table 2-8 Configuration of Files for the EtherCAT Communications Program (2)
Directory

application/ File Description

./ecat cia402sample.h
cia402sample.c CiA402 application definition

SSC source file Stored after applying the
batch file

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 13 of 85
Aug.31.2020

2.3.2 Software Module Configuration
Figure 2-2 shows the module configuration of the motor control program.
The files added or modified to control the motor control base project by EtherCAT communication are
enclosed in a red frame.
The frames with solid red lines indicate the files that have been added, and the frame with a broken red line
indicates the files that have been changed.
The major changes are listed below according to the module layer.

Table 2-9 Changes According to the Module Layer
Layer / Module Related File Description of File

Application layer
/ EtherCAT application

cia402sample.c Application layer for the EtherCAT
communications program. This has the functions
of passing commands from the EtherCAT
master to the motor control program and
passing indicators of state from the motor
control program to the EtherCAT master.

Middle layer
/ EtherCAT interface module

r_ecat_dirver_acces.c API functions for the interface between the
motor control program and the EtherCAT
communications program.

Middle layer
/ Control module

r_mtr_foc_control_encd_position.c
r_mtr_foc_speed.c
r_mtr_foc_position.c

These files convert the units of velocity [count/s]
and position [count] used in the CiA402 to the
units of velocity [rad/s] and position [rad] used in
the motor control program.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 14 of 85
Aug.31.2020

Figure 2-2 Module Configuration of the Motor Control Program

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 15 of 85
Aug.31.2020

Figure 2-3 shows the module configuration of the EtherCAT communications program.

Figure 2-3 Module Configuration of the EtherCAT Communications Program

Category

SyncMan0 MbxOut SyncMan1 MbxIn SyncMan2 SyncMan3

FMMU n
FMMU nFMMU n

FMMU n EtherCAT Slave Controller(ESC)

ESC Address Space

Registrers Mailbox Process Data

EtherCAT Processing Unit
And Auto-Forwarder with Loop Back

PHY
Management MII Port0 MII Port1

Object Dictionary

PDOSDO

PDO Mapping

Process Data Interface

CiA402 Drive ProfileApplication

Application
Layer(AL)

DataLink
Layer(DL)

Physical
Layer(PL)

CoEEoEFoEVoE CoE

SSC Tool
Generate

SSC Tool
Generate

Motor contorol(user asset)

Mailbox DLL

Not Support

Support

Library
Provide

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 16 of 85
Aug.31.2020

2.4 Software Specifications
The basic software specifications of the sample program are listed below.

Table 2-10 Basic Specifications of the Motor Control Program
Item Description

Control method Vector control
Detection of rotor's
magnetic pole position

Incremental encoder (A phase, B phase), hall sensor (UVW phase)

Input voltage DC 24 V
Carrier frequency (PWM) 20 [kHz] (carrier period: 50 [μs])
Dead time 2 [µs]
Control period (current) 50 [μs]
Control period (velocity,
position)

500 [µs]

Range of position
command values

Board UI -180° to 180°
ICS UI -32768° to 32767°
ETH UI -2 147 483 648 [count] to 2 147 483 647 [count] *2

Range of velocity
command values

CW: 0 [rpm] to 2000 [rpm]
CCW: 0 [rpm] to 2000 [rpm]

Positional resolution 0.3° (encoder pulse: 1000 [ppr], after multiplication by 4: 4000 [cpr])
Positional dead zone *1 Encoder incrementing or decrementing by one t (±0.09°)
Frequencies specific to
the control systems

Current control system: 300 Hz
Velocity control system: 30 Hz
Position control system: 10 Hz

Protection stop
processing

The motor control signal outputs (6 lines) are set to the inactive level in
response to any of the following four conditions.
The current in any phase exceeds 3.82 A (monitored once every 50 µs).
The inverter’s main line voltage exceeds 28 V (monitored once every 50 µs).
The inverter’s main line voltage falls below 14 V (monitored once every 50
µs).
The rotational speed exceeds 3000 rpm (monitored once every 50 µs).

The PWM output pins are placed in the high-impedance state, when external
input of an overcurrent signal is detected (indicated by a falling edge on the
POE0# pin) or when an output short circuit is detected.

Note 1. The dead zone is provided to prevent hunting when deciding the position.
Note 2. [unit] here indicates the numbers counted from the encoder.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 17 of 85
Aug.31.2020

Table 2-11 Basic Specifications of the EtherCAT Communications Program

Item Description
Physical layer 100 BASE-TX (IEEE802.3)
Baud rate 100 [Mbps] (full duplex)
Number of communications ports 2
EtherCAT LED RUN, ERR, STAT, L/A IN, or L/A OUT
Station ID Specified by the device ID DIP switch block (6 bits)
Explicit device ID Supported
Device profile CiA402 device profile
Sync manager 4
FMMU 3
Communications objects SDO (service data object)

PDO (process data object)
Synchronous mode SM2 event synchronous mode

DC mode
Form of providing the protocol stack The SSC tool project files for the sample program

are provided. A patch for the CiA402 application is
also provided. The EtherCAT communications
program can be created by applying the patch after
the protocol stack code has been generated by
using the SSC tool.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 18 of 85
Aug.31.2020

3. CiA402 Drive Profile
The CiA402 drive profile is the device profile for drivers and motion controllers and mainly defines functional
operations for servo drives, sine wave inverter, and stepping motor controller. In this profile, the multiple
operating modes and corresponding parameters are defined as an object dictionary. Moreover, the finite
state automaton (FSA) to define the internal and external behavior in every state is included. To change the
status, set the control word object, then status word which shows the current status reflects the result after
transition. The control word and various command values (such as for velocity) are assigned to RxPDO, and
the status word and various actual values (such as for position) are assigned to TxPDO. For details, refer to
the CiA402 Specifications.

Figure 3-1 Flow of CiA402 Communications

PLC AC servo unit

RxPDO
Operation commands

and target values

TxPDO
State of operation and

current position

Cyclic communications

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 19 of 85
Aug.31.2020

3.1 Operating Mode
Among the operating modes specified by the CiA402 standard, the sample program supports the following
modes.

Table 3-1 List of Supported Operating Modes

Operating Mode Support
Profile position mode Available
Velocity mode (frequency converter) Not available
Profile velocity mode Not available
Profile torque mode Not available
Homing mode Available
Interpolated position mode Not available
Cyclic synchronous position mode Available
Cyclic synchronous velocity mode Available
Cyclic synchronous torque mode Not available
Cyclic synchronous torque mode with commutation angle Not available
Manufacturer specific mode Not available

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 20 of 85
Aug.31.2020

3.2 State Transitions
Among the finite state automata (FSAs) defined in the CiA402 standard, the sample program supports the
following modes.
In Figure 3-2, the state where torque is being applied through the motor is "Operation enabled". The motor is
activated at the times of transitions from "Switched on" to "Operation enabled" (transition 4). The motor is
deactivated at the times of transitions from "Operation enabled" to several other states (transitions 5, 8, 9).
However, at the times of transitions from "Operation enabled" to "Quick stop active" (transition 11) or the
timing of transition to "Fault reaction active" (transition 13), the application of torque is maintained.

Figure 3-2 CiA402 State Transition Diagram

Not ready to
Switch on

Switch on
disabled

Ready to
Switch on

Switched on

Operation
enabled

Quick stop
active

Fault

Fault reaction
active

0

1

2

3

4 5

6

7

9

8

10

12

15

13

16

Start

11

14

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 21 of 85
Aug.31.2020

3.3 State Transition Functions
Table 3-2 shows the CiA402 state transition function list. Each function is linked to the number of each state
transition of CiA402 FSA shown in Figure 3-2, and the corresponding function is called when the state
transition occurs.

Table 3-2 List of CiA402 State Transition Functions

Transition No. Function Name

1 CiA402_StateTransition1

2 CiA402_StateTransition2

3 CiA402_StateTransition3

4 CiA402_StateTransition4

5 CiA402_StateTransition5

6 CiA402_StateTransition6

7 CiA402_StateTransition7

8 CiA402_StateTransition8

9 CiA402_StateTransition9

10 CiA402_StateTransition10

11 CiA402_StateTransition11

12 CiA402_StateTransition12

13 CiA402_LocalError

14 CiA402_StateTransition14

15 CiA402_StateTransition15

16 CiA402_StateTransition16

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 22 of 85
Aug.31.2020

The specifications of the CiA402 state transition functions are described below.

CiA402_StateTransition(N)

These functions are called when a state transition (N), where N = 1 to 12 and 14 to 16 as specified for a
CiA402 FSA, occurs.
Write code for the processing to be executed when the given state transitions occur.

Format
UINT16 CiA402_StateTransition(N)(TCiA402Axis *pCiA402Axis)

Parameters
TCiA402Axis *pCiA402Axis

Return Values
0: Normal end
1: The state transition did not proceed

Properties
The prototypes are declared in cia402appl.h.

Description
If a fault occurs during processing, set the objects to appropriate values and end function calling in accord
with the CiA402 standard. When 1 is set as the return value, the state transition has not proceeded.

Example
TCiA402Axis *pCiA402Axis;
UINT16 retval ;

/* Transition1 */
retval = CiA402_StateTransition1 (pCiA402Axis);

CiA402_LocalError

This function is called in response to the detection of an error specified in the CiA402 drive profile. After this
function is executed, state transition 13 will proceed as is specified for CiA402 FSAs.
Write code for the processing to be executed when an error is detected.

Format
void CiA402_LocalError(UINT16 ErrorCode)

Parameters
UINT16 ErrorCode : CiA402 drive profile error code

Return Values
None

Properties
The prototypes are declared in cia402appl.h.

Description
The error code specified as an argument is stored in object 0x603F and sent to the EtherCAT master.

Example
/* Over speed error is detected */
CiA402_LocalError (ERROR_SPEED);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 23 of 85
Aug.31.2020

3.4 Object Dictionary
The portion of the object dictionary supported by the sample program is listed below.

Table 3-3 Object Dictionary Supported by the Sample Program

Index Object Name Category Access Data
Type

PDO
Mapping

0x603F Error code Optional ro UINT16 TxPDO

0x6040 Controlword Mandatory (all) rw UINT16 RxPDO

0x6041 Statusword Mandatory (all) ro UINT16 TxPDO

0x605A Quick stop option code Optional rw INT16 No

0x605B Shutdown option code Optional rw INT16 No

0x605C Disable operation option code Optional rw INT16 No

0x605E Fault reaction option code Optional rw INT16 No

0x6060 Modes of operation Optional rw INT8 No

0x6061 Modes of operation display Optional ro INT8 TxPDO

0x6064 Position actual value Mandatory(pp,csp,csv) ro INT32 TxPDO

0x6065 Following error window Optional rw UINT32 No

0x6066 Following error time out Optional rw UIN16 No

0x606C Velocity actual value Mandatory (csv) ro INT32 TxPDO

0x6077 Torque actual value Optional ro INT32 No

0x607A Target position Mandatory (pp, csp) rw INT32 RxPDO

0x607B Position rage limit Optional rw INT32 No

0x607C Home offset Optional rw INT32 RxPDO

0x607D Software position limit Optional c,rw INT32 No

0x607F Max profile velocity Optional rw UINT32 No

0x6080 Max motor speed Optional rw UINT32 No

0x6081 Profile velocity Mandatory (pp) rw UINT32 RxPDO

0x6083 Profile acceleration Mandatory (pp) rw UINT32 RxPDO

0x6084 Profile deceleration Optional rw UINT32 RxPDO

0x6085 Quick stop deceleration Optional rw UINT32 No

0x6098 Homing method Mandatory (hm) rw INT8 RxPDO

0x6099 Homing speeds Mandatory (hm) rw UINT32 RxPDO

0x609A Homing acceleration Optional rw UINT32 RxPDO

0x60B0 Position offset Optional rw INT32 No

0x60B1 Velocity offset Optional rw INT32 No

0x60B2 Torque offset Optional rw INT16 No

0x60C2 Interpolation time period Mandatory (csp, csv) rw Record No

0x60F4 Following error actual value Optional ro INT32 No

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 24 of 85
Aug.31.2020

Index Object Name Category Access Data
Type

PDO
Mapping

0x60FF Target velocity Mandatory (csv) rw INT32 RxPDO

0x6402 Motor type Optional rw UINT16 No

0x6502 Supported drive modes Mandatory (all) ro UINT32 No

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 25 of 85
Aug.31.2020

4. Motion Control Parameters
The definitions of the settings in the sample program for the motion control parameters set in the CiA402
objects are given below.

4.1 Velocity Parameters
In the sample program, the parameter serving as the unit of velocity is defined as the number counted from
the encoder per control cycle. Since the control cycle is very short, the velocity values are handled as fixed-
point numbers in 16.16 bit format after being multiplied by 216, i.e. 65536.
For the conversion of the unit of velocity produced by counting from the encoder per second to the
corresponding control parameter, the number has to be multiplied by the number of control cycle time slices
in a second and then by 65536.
Since the control cycle of the sample program is 500 us, the velocity derived from 5000 being counted by the
encoder in a second is converted by the formula:
5000 × 0.0005 × 65536 = 163840
So, the corresponding velocity value is 163840.

4.2 Acceleration Parameters
In the sample program, the unit of acceleration parameter is defined as the number counted by the encoder
per square of the control cycle. In a similar way to the calculation and handling of velocity, the acceleration
and deceleration values are handled as fixed-point numbers in 16.16 bit format after being multiplied by 216,
i.e. 65536.
For the conversion of unit from the number counted by the encoder count per second to the control
parameter, the number has to be multiplied by the square of the position cycle time slice and then by 65536.
Since the control cycle is 500 us, the acceleration derived from 5000 being counted by the encoder in a
second is converted by the formula:
5000 × 0.0005 × 0.0005 × 65536 = 81
So, the corresponding acceleration value is 81.

4.3 Conversion of Units by the RMW
The control parameters such as gain obtained through tuning by the motor control development support tool
"Renesas Motor Workbench" are reflected in the source code of the motor control program, so the same
values are also used in control via EtherCAT.

On the other hand, as the position and velocity command values that the RMW uses are in different units
from those specified for use as motion control parameters set in the CiA402 objects, conversion is required.
Table 4-1 lists the formulae used to convert command values used in the RMW into CiA402 object command
values.

Table 4-1 Command Value Conversion Formulae: RMW to CiA402

Item RMW
Command

Value

CiA402
Command Value

Formulae Data Type

Position Θ[deg] PC [count] PC = Θ ÷ 360 × CPR INT32

Velocity R[rpm] SC [count/s] SC = R ÷ 60 × CPR × TS × KQ INT32 (16.16)

Acceleration tACC[s] *1 AC [count/s2] AC = R ÷ tACC ÷ 60 × CPR × TS × TS × KQ UINT32 (16.16)

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 26 of 85
Aug.31.2020

The symbols used in the above formulae, other than standard ones and those with meanings stated in the
table, are explained in Table 4-2.

Table 4-2 Symbols in the Conversion Formulae
Symbol Description Value

CPR Number counted per rotation [count] 4000
TS Control cycle [s] 0.0005
KQ 16.16 fixed point conversion coefficient 216 = 65536

Note 1. Regarding acceleration in the RMW
RMW uses the time [s] to reach the target velocity as its definition of the acceleration.
Figure 4-1 shows how the acceleration changes from that for acc1 to that for acc2 by changing the
acceleration time to reach the target velocity from t1 to t2.
The acceleration at those times can be expressed by dividing the velocity by the acceleration times.

acc1 = speed ÷ t1
acc2 = speed ÷ t2

Figure 4-1 Acceleration Times and Acceleration

Examples of conversion:

・Position command value
Convert Θ = 180[deg] to PC[count].
180 ÷ 360 × 4000 = 2000
・Velocity command value
Convert R = 2000[rpm] to SC[count/s].
2000 ÷ 60 × 4000 × 0.0005 × 65536 = 4369066
・Acceleration command value
When R = 2000[rpm], convert TACC = 0.3[s] to AC[count/s2].
2000 ÷ 0.3 ÷ 60 × 4000 × 0.0005 × 0.0005 × 65526 = 7281

speed

acc1 acc2

t1 t2

V
[rpm]

t[s]

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 27 of 85
Aug.31.2020

5. API Functions

5.1 Overview
The API functions for the motor control program interface are shown below.

Functions Description
R_MTR_InitControl Initializes the motor control program.
R_MTR_SetUserifMode Enables or disables automatic updating of the command values

for position and velocity.
R_MTR_ExecEvent Issues indicators of events with regard to the state of system

operation.
R_MTR_ChargeCapacitor Waits for the inverter’s main line voltage to become stable.
R_MTR_GetLoopModeStatus Gets the setting for the control loop mode.
R_MTR_SetPositionStatus Sets the input method of the position command value.
R_MTR_SetPosition Sets the position command value in degrees.
R_MTR_GetPosition Gets the value in degrees of the current position.
R_MTR_GetPositioningFLag Gets the value of the positioning completed flag.
R_MTR_SetSpeed Sets the velocity command value in rpm.
R_MTR_GetSpeed Gets the current velocity value in rpm.
R_MTR_SetDir Sets the direction of the motor’s rotation.
R_MTR_GetDir Gets the currently set direction of motor rotation.
R_MTR_GetStatus Gets the state of system operation of the motor control program.
R_MTR_InputBuffParamReset Sets the buffer of variables for ICS input to the default value.
R_MTR_CtrlInput Copies an ICS input variable to the buffer of variables for ICS

input.
R_MTR_SetVariables Sets the contents of the buffer of variables for ICS input as the

motor control parameters.
R_MTR_AutoSetVariables Sets the position and velocity command values in the buffer of

variables for ICS input as the given motor control parameters.
R_MTR_CtrlGainCalc Calculates the gain for the motor control parameters.
R_MTR_UpdatePolling Polls the write enable flag among the motor control parameters.
R_MTR_GetErrorStatus Gets the error state of the encoder position and velocity control.
R_MTR_GetPositionPFStatus Gets the profile state of encoder position control.
R_MTR_SetPositionUnits Sets the position command value (number counted).
R_MTR_SetActualPositionUnits Sets the current position (number counted).
R_MTR_GetPositionUnits Gets the value (number counted) corresponding to the current

position.
R_MTR_GetSpeedUnits Gets the current velocity value (number counted per second).
R_MTR_SetAccelerationUnits Sets the velocity command value in count/s2.
R_MTR_SetDecelerationUnits Sets the deceleration command value in count/s2.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 28 of 85
Aug.31.2020

5.2 R_MTR_InitControl
This function initializes the motor control program. This function must be executed before any other API
function is called.

Format
void R_MTR_InitControl (uint8_t u1_id)

Parameters
u1_id

Specifies the ID of the motor to be controlled.
Note: The sample program can only control a single motor.

MTR_ID_A /* Motor A*/

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function initializes the state of system operation and sets the default values of the motor control
parameters.

Example
/* Initialize motor FOC control by ID "MTR_ID_A" */
R_MTR_InitControl(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 29 of 85
Aug.31.2020

5.3 R_MTR_SetUserifMode
This function enables or disables automatic updating of the command values for position and velocity
specified in the user interface module.

Format
void R_MTR_SetUserifMode (uint8_t u1_user_mode)

Parameters
u1_user_mode

Enables or disables automatic updating.
MTR_DISABLE_AUTO_SET(0)
MTR_ENABLE_AUTO_SET(1)

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function enables or disables periodic automatic updating in response to a signal from a timer.
Automatic updating is for the board user interface.
The default value in the sample program is for automatic updating to be disabled.

Example

/* */
if (BOARD_UI == g_u1_sw_userif)
{

R_MTR_SetUserifMode(MTR_ENABLE_AUTO_SET);
}

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 30 of 85
Aug.31.2020

5.4 R_MTR_ExecEvent
This function issues indicators of events with regard to the state of system operation of the motor control
program.

Format
void R_MTR_ExecEvent (uint8_t u1_event, uint8_t u1_id)

Parameters
u1_event

Event Name Value Trigger Source
MTR_EVENT_INACTIVE 0x00 This indicator corresponds to torque through the motor

being turned on.
MTR_EVENT_ACTIVE 0x01 This indicator corresponds to torque through the motor

being turned off.
MTR_EVENT_ERROR 0x02 This indicator corresponds to the system detecting an

error.
MTR_EVENT_RESET 0x03 This indicator corresponds to the operation being

initialized or recovery from an error.

u1_id

Specifies the ID of the motor to be controlled.
MTR_ID_A /* Motor A*/

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function indicates changes to the state of system operation by issuing an event indicator as an
argument.

Example
/* Execution ACTIVE event */
R_MTR_ExecEvent(MTR_EVENT_ACTIVE, MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 31 of 85
Aug.31.2020

5.5 R_MTR_ChargeCapacitor
This function sets up a wait waits for the inverter’s main line voltage to become stable. This function must be
executed before starting motor control.

Format
void R_MTR_ChargeCapacitor(uint8_t u1_id)

Parameters
u1_id

Specifies the ID of the motor to be controlled.
MTR_ID_A /* Motor A*/

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function checks whether the inverter’s main line voltage (VDC) has risen above 80% of 24-V DC, and
waits until it has without timing out.

Example
/* Wait for charging capacitor */
R_MTR_ChargeCapacitor(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 32 of 85
Aug.31.2020

5.6 R_MTR_GetLoopModeStatus
This function gets the current setting for the control loop mode.

Format
uint8_t R_MTR_GetLoopModeStatus(uint8_t u1_id)

Parameters
u1_id

Specifies the ID of the motor to be controlled.
MTR_ID_A /* Motor A*/

Return Values
Control loop mode

MTR_LOOP_SPEED(0): Velocity control
MTR_LOOP_POSITION(1): Position control

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The default value of the control loop mode in the sample program is MTR_LOOP_POSITION.

Example
uint8_t u1_status
u1_status = R_MTR_GetLoopModeStatus(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 33 of 85
Aug.31.2020

5.7 R_MTR_SetPositionStatus
This function sets the input method of the position command value.

Format
void R_MTR_SetPositionStatus(uint8_t u1_pos_status)

Parameters
u1_pos_status

Input method
MTR_POS_CONST(0): 0 command
MTR_POS_STEP(1): Direct input (step input)
MTR_POS_TRAPEZOID(2): Command value creation

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The default value for the input method of the sample program is MTR_POS_TRAPEZOID.

Example
/* set position state "STEP"*/ /
R_MTR_SetPositionStatus(MTR_POS_STEP);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 34 of 85
Aug.31.2020

5.8 R_MTR_SetPosition
This function sets the position command value in degrees.

Format
void R_MTR_SetPosition(int16_t s2_ref_position)

Parameters
s2_ref_position

Position command value [deg]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The position command value is a signed value in units of degrees.
The position after initialization of the position of the motor’s magnet is 0 degrees.

Example
/* Set reference position 180[deg] */
R_MTR_SetPosition(180);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 35 of 85
Aug.31.2020

5.9 R_MTR_GetPosition
This function gets the value in degrees of the current position.

Format
int16_t R_MTR_GetPosition(uint8_t u1_id)

Parameters
u1_id

Specifies the ID of the motor to be controlled.
MTR_ID_A /* Motor A*/

Return Values
Current position [deg]

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The current position value is a signed value in units of degrees.
The position after initialization of the position of the motor’s magnet is 0 degrees.

Example

int16_t s2_pos;

/* Get current position */
s2_pos = R_MTR_GetPosition(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 36 of 85
Aug.31.2020

5.10 R_MTR_GetPositioningFlag
This function gets the value of the positioning completed flag.

Format
uint8_t R_MTR_GetPositioningFlag (uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
MTR_FLG_CLR(0): Positioning not completed
MTR_FLG_SET(1): Positioning completed

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
Checking of the completion of positioning is based on judging whether the difference between the target
position and the current position is within a certain range.

Example
/* If the positioning flag is set, then turn on the LED */

if (MTR_FLG_SET == R_MTR_GetPositioningFlag(MTR_ID_A))
{

led_on();

}

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 37 of 85
Aug.31.2020

5.11 R_MTR_SetSpeed
This function sets the velocity command value in rpm.

Format
void R_MTR_SetSpeed(int16_t ref_speed)

Parameters
ref_speed

Velocity command value [rpm]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The unit of velocity command values is rpm. A negative value will cause rotation in the opposite direction to
forward rotation.
The available range of settings in the sample program is -2000 rpm to 2000 rpm.

Example
/* Set reference position 2000[rpm] */
R_MTR_SetSpeed(2000);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 38 of 85
Aug.31.2020

5.12 R_MTR_GetSpeed
This function gets the current velocity value in rpm.

Format
int16_t R_MTR_GetSpeed (uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
Current velocity [rpm]

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function gets the velocity value at the time the function is executed. The unit is rpm.
A negative value indicates rotation being in the opposite direction to that of forward rotation.

Example

int16_t s2_speed;

/* Get current speed */
s2_speed = R_MTR_GetSpeed(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 39 of 85
Aug.31.2020

5.13 R_MTR_SetDir
This function sets the direction of the motor’s rotation.

Format
void R_MTR_SetDir (uint8_t dir, uint8_t u1_id)

Parameters
dir

Rotation direction
MTR_CW(0): Clockwise
MTR_CCW(1): Counterclockwise

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
Processing of the position and velocity are with the set direction of rotation as the positive direction.
The default value in the sample program is clockwise.

Example
/* Set the direction to CW */
R_MTR_SetDir(MTR_CW, MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 40 of 85
Aug.31.2020

5.14 R_MTR_GetDir
This function gets the currently set direction of motor rotation.

Format
uint8_t R_MTR_GetDir(uint8_t u1_id)

Parameters
u1_id

Specifies the ID of the motor to be controlled.
MTR_ID_A /* Motor A*/

Return Values

Rotation direction
MTR_CW(0): Clockwise
MTR_CCW(1): Counterclockwise

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
When called, this function gets the direction of rotation.

Example

uint8_t u1_dir;

/* Get direction */
u1_dir = R_MTR_GetDir(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 41 of 85
Aug.31.2020

5.15 R_MTR_GetStatus
This function gets the state of system operation of the motor control program.

Format
uint8_t R_MTR_GetStatus(uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values

State of system operation
MTR_MODE_INACTIVE (0x00)
MTR_MODE_ACTIVE (0x01)
MTR_MODE_ERROR (0x02)

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The indicator of the state of system operation reflects motor driving being stopped (INACTIVE), the motor
being driven (ACTIVE), or an abnormal state (ERROR).

Example

uint8_t u1_motor_status

/* Get status of motor control system */
u1_motor_status = R_MTR_GetStatus(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 42 of 85
Aug.31.2020

5.16 R_MTR_InputBuffParamReset
This function sets the buffer of variables for ICS input to the default value.

Format
void R_MTR_InputBuffParamReset(void)

Parameters
None

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
The buffer of variables for ICS input is for use with the motor control parameters, input by the user interface
module, and is for use by the interface module.

Variable Name Type Variable Symbol Module/Layer in Use
ICS input variable mtr_ctrl_input_t type st_ctrl_input User interface / Application
Buffer of variables for
ICS input

mtr_ctrl_input_t type st_ctrl_input_buff Interface / Middle

Example
/* Initialize st_ctrl_input_buff parameters */
R_MTR_InputBuffParamReset();

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 43 of 85
Aug.31.2020

5.17 R_MTR_CtrlInput
This function copies an ICS input variable to the buffer of variables for ICS input.

Format
void R_MTR_CtrlInput(mtr_ctrl_input_t *st_ctrl_input)

Parameters
Pointer to an mtr_ctrl_input_t type structure

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function copies the mtr_ctrl_input_t type variable to which the pointer points to the buffer of variables for
ICS input, st_ctrl_input_buff. It also sets the write enable flag (u1_trig_enable_write) among the motor control
parameters.

Example

/* Structure for ICS input */

mtr_ctrl_input_t st_ctrl_input;

/* copy variables */
R_MTR_CtrlInput(&st_ctrl_input);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 44 of 85
Aug.31.2020

5.18 R_MTR_SetVariables
This function sets the contents of the buffer of variables for ICS input as the motor control parameters.

Format
void R_MTR_SetVariables(void)

Parameters
None

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function sets the values of the various parameters set in the buffer of variables for ICS input,
st_ctrl_input_buff, as the corresponding motor control parameters.

Example
/* Set control input buffer to motor control structure members */
R_MTR_SetVariables();

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 45 of 85
Aug.31.2020

5.19 R_MTR_AutoSetVariables
This function sets the position and velocity command values in the buffer of variables for ICS input as the
given motor control parameters.

Format
void R_MTR_AutoSetVariables(void)

Parameters
None

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function is executed in response to the 500-us cycle interrupt.
This setting is only valid when the setting of the automatic update mode parameter is "enabled".

Example
/* Set control input buffer to motor control structure members */
R_MTR_AutoSetVariables ();

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 46 of 85
Aug.31.2020

5.20 R_MTR_CtrlGainCalc
This function calculates the gain for the motor control parameters.

Format
void R_MTR_CtrlGainCalc(void)

Parameters

None

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function calculates the gain for PI control, IPD control, and velocity observer control.

Example
/* Motor gain calculation*/
R_MTR_CtrlGainCalc();

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 47 of 85
Aug.31.2020

5.21 R_MTR_UpdatePolling
This function polls the write enable flag among the motor control parameters.

Format
void R_MTR_UpdatePolling(void)

Parameters
None

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_acces.h.

Description
This function polls the write enable flag (u1_trig_enable_write) among the motor control parameters. If the
flag is set, the values in the buffer of variables for ICS input are set as the motor control parameters (by the
R_MTR_SetVariables function) and calculation of the motor control parameter gain (by the
R_MTR_CtrlGainCalc function) proceeds.
After the execution of these functions is completed, the R_MTR_UpdatePolling function clears the write
enable flag (u1_trig_enable_write) among the motor control parameters.

Example
/* Update commands and configurations when trigger flag is set */
R_MTR_UpdatePolling();

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 48 of 85
Aug.31.2020

5.22 R_MTR_GetErrorStatus
This function gets the error state of the encoder position and velocity control.

Format
uint16_t R_MTR_GetErrorStatus(uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
Error status

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description

The error states are described in the following list.

Macro Name Value Type of Error
MTR_ERROR_NONE 0x0000 No error
MTR_ERROR_OVER_CURRENT_HW 0x0001 Overcurrent error (H/W detection)
MTR_ERROR_OVER_VOLTAGE 0x0002 Inverter main line overvoltage error
MTR_ERROR_OVER_SPEED 0x0004 Rotation velocity error
MTR_ERROR_HALL_TIMEOUT 0x0008 Not in use
MTR_ERROR_BEMF_TIMEOUT 0x0010 Not in use
MTR_ERROR_HALL_PATTERN 0x0020 Hole detection angle error
MTR_ERROR_BEMF_PATTERN 0x0040 Not in use
MTR_ERROR_UNDER_VOLTAGE 0x0080 Inverter main line undervoltage error
MTR_ERROR_OVER_CURRENT_SW 0x0100 Overcurrent error (S/W detection)
MTR_ERROR_UNKNOWN 0xffff Not in use

Example

uint16_t u2_error_status;

/* Get FOC error status */
u2_error_status = R_MTR_GetErrorStatus(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 49 of 85
Aug.31.2020

5.23 R_MTR_GetPositionPFStatus
This function gets the profile state of encoder position control.

Format
uint8_t R_MTR_GetPositionPFStatus(uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
Profile status

MTR_POS_STEADY_STATE (0): Stable state (the current position is not changing)
MTR_POS_TRANSITION_STATE (1): Transitional state (the current position is changing)

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
This function can be used to check whether the motor is or is not running under positional control.

Example

uint8_t u1_pos_state;

/* Get position profile status */
u1_pos_state = R_MTR_GetPositionPFStatus(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 50 of 85
Aug.31.2020

5.24 R_MTR_SetPositionUnits
This function sets the position command value (number counted).

Format
void R_MTR_SetPositionUnits (int32_t s4_position_units)

Parameters
Position command value [count]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The position command value is a signed value (number counted).
The position after initialization of the position of the motor’s magnet is 0 degrees.

Example
/* 2000 count is equivalent to 180 degrees */
R_MTR_SetPositionUnits (2000);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 51 of 85
Aug.31.2020

5.25 R_MTR_SetActualPositionUnits
This function sets the current position (number counted).

Format
void R_MTR_SetActualPositionUnits (int32_t s4_position_units)

Parameters
Position command value [count]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The position command value is a signed value (number counted).
This function is only for setting the value for the current position but does not control the motor.
It can be used for setting an offset in the initial position in homing mode.

Example
/* Set current position */
R_MTR_SetActualPosition(2000);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 52 of 85
Aug.31.2020

5.26 R_MTR_GetPositionUnits
This function gets the value (number counted) corresponding to the current position.

Format
int32_t R_MTR_GetPositionUnits(uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
Current position [count]

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The current position value is a signed value (number counted).

Example

int32_t s4_current_pos_units;

/* Get position units */
s4_current_pos_units = R_MTR_GetPositionUnits(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 53 of 85
Aug.31.2020

5.27 R_MTR_GetSpeedUnits
This function gets the current velocity value (number counted per second).

Format
int32_t R_MTR_GetSpeedUnits(uint8_t u1_id)

Parameters

u1_id
Specifies the ID of the motor to be controlled.

MTR_ID_A /* Motor A*/

Return Values
Get the Current velocity [count/s]

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The current velocity value is a signed value (number counted per second).
The value is converted to the 16.16-bit fixed point format.

Example

int32_t s4_speed_units;

/* Get speed units */
s4_speed_units = R_MTR_GetSpeedUnits(MTR_ID_A);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 54 of 85
Aug.31.2020

5.28 R_MTR_SetSpeedUnits
This function sets the velocity command value.

Format
void R_MTR_SetSpeedUnits(int32_t s4_speed_units)

Parameters
Velocity command value [count/s]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The velocity command value is a signed value (number counted per second).
The value is converted to the 16.16-bit fixed point format.

Example
/* 4 369 066 count/s is equivalent to 2000 rpm */
R_MTR_SetSpeedUinits(4369066);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 55 of 85
Aug.31.2020

5.29 R_MTR_SetAccelerationUnits
This function sets the acceleration command value in count/s2.

Format
void R_MTR_SetAccelerationUnits(uint32_t u4_acceleration_units)

Parameters
Acceleration command value [count/s2]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The acceleration command value is a signed value in count/s2.
The value is converted to the 16.16-bit fixed point format.

Example
/* Set acceleration 10[cout/s2] */
R_MTR_SetAccelerationUnits (10*65536);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 56 of 85
Aug.31.2020

5.30 R_MTR_SetDecelerationUnits
This function sets the deceleration command value in count/s2.

Format
void R_MTR_SetDeccelerationUnits(uint32_t u4_deceleration_units)

Parameters
Deceleration command value [count/s2]

Return Values
None

Properties
The prototypes are declared in r_mtr_driver_ecat_acces.h.

Description
The deceleration command value is a signed value in count/s2.
The value is converted to the 16.16-bit fixed point format.
Note: The sample program does not use the deceleration command value in motor control.

Example
/* Set deceleration 10[cout/s2] */
R_MTR_SetDecelerationUnits (10*65536);

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 57 of 85
Aug.31.2020

6. Checking Operation of the Application on the Solution Kit
This section describes the operation of the sample application that controls a motor via EtherCAT
communications with the use of the motor solution kit.

6.1 Operating Environment
The sample program covered in this manual runs in the environment below.

Table 6.6-1 Operating Environment

Item Description
Boards to be used RX72M CPU board

TS-TCS02796 from Tessera Technology

RX23T inverter board : RTK0EM0006S01212BJ)

Motor encoder I/F board

CPU RX CPU (RXv3)
Operating voltage 24 V
Communication protocol EtherCAT
Integrated development
environment

CCRX compiler (V3.01.00 or later) + e2studio (V7.5.0 or later)

Emulator Renesas
E2 Lite

SSC tool Provided by the EtherCAT Technology Group (ETG)
Slave Stack Code (SSC) tool Version 5.12 or later

Software PLC Beckhoff Automation
TwinCAT® 3 (download this from the Beckhoff web site)

CODESYS

In addition, installation of the SSC tool and software programmable logic controller (PLC) is required before
starting the settings.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 58 of 85
Aug.31.2020

6.2 Operating Environment Settings and Connection
Connect the required wiring between the power supply, motor, and inverter board.

(1) Connect the three-phase power lines of the motor to the U, V, and W phase outputs of the inverter
board as shown below.

1-A) Connect the brown line of the motor to the U phase inverter.

1-B) Connect the blue line of the motor to the V phase inverter.

1-C) Connect the black line of the motor to the W phase inverter.

Figure 6-1 Connection of the Three-Phase Power Lines

(2) Connect the motor encoder to the encoder interface (I/F) board as shown below.

Figure 6-2 Connection of the Encoder I/F Board

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 59 of 85
Aug.31.2020

(3) Connect the 5-V power supply points of the encoder I/F board and CPU board as shown below.

Figure 6-3 Connection of the 5-V Power Supply

(4) Connect the inverter board and CPU board as follows.

-- Attach the CPU board to the inverter board.

-- Connect the ICS cable between the CPU board and the inverter board.

Figure 6-4 Connection of the CPU Board and Inverter Board

5-V cable

ICS cable

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 60 of 85
Aug.31.2020

(5) Connect the power supply to the inverter board as follows.

Figure 6-5 Connection of the Power Supply for the Inverter

(6) The overall configuration of the connected parts is shown below.

Figure 6-6 Overall Configuration

24-V AC adapter

Motor Inverter output Encoder I/F

24-V AC adapter CPU board

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 61 of 85
Aug.31.2020

(7) The details of the inverter board are shown below.

-- The power is supplied through the main switch.

-- Connect the ICS I/F when using the RMW (Renesas Motor Workbench).

-- SW1 and SW2 are not used in control as covered by this manual.

Figure 6-7 Details of the Inverter Board

24-V AC adapter

Debugger I/F

ICS I/F

Main switch Inverter output pin

SW1, SW2

RJ45 connector

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 62 of 85
Aug.31.2020

6.3 Building the Sample Program
This sample project does not include the EtherCAT Slave Stack Code.
However, the project requires the EtherCAT Slave Stack Code and to generate and use this you must obtain
the EtherCAT Slave Stack Code (SSC) tool.
The EtherCAT Technology Group (ETG) provides the SSC package.

(1) Double-click on the SSC project file of the sample program to activate the SSC tool.

 ecat_cia402_motor_rsskrx72m\src\smc_gen\r_ecat_rx\utilities\rx72m\ssc_config
 \RX72M EtherCAT CiA402.esp

(2) Click on [Project] → [Create New Slave Files], and then click on [Current new Slave Files] → [Start].

(3) When the source code has been generated normally, "New files created successfully" will be displayed.
Click on [OK].

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 63 of 85
Aug.31.2020

(4) If you have not installed the patch file, GNU Patch Ver2.5.9 or later is required. If it has been installed,
skip this step.

Download the patch file (Ver2.5.9) from the following Web page and store "patch.exe" in a folder that
has a path executable from the command prompt.

http://gnuwin32.sourceforge.net/packages/patch.htm

(5) Right-click on the apply_patch.bat file and select [Run as administrator] → [Yes]. The patch file contains

the RX-specific modifications to the SSC source files.

ecat_cia402_motor_rsskrx72m\src\smc_gen\r_ecat_rx\utilities\rx72m\batch_files\apply_patch.bat

(6) After the patch has been applied, the modified source file will be stored in the following folder.

ecat_cia402_motor_rsskrx72m\src\application\ecat

http://gnuwin32.sourceforge.net/packages/patch.htm

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 64 of 85
Aug.31.2020

6.4 Importing the Sample Project into the e2 studio

(1) Click on [File] → [Import].

(2) In the [Select an import wizard] dialog box, select [General] → [Existing Project to Workspace] and

click on [Next].

(3) Select the [Select root directory] checkbox in the [Import Project] dialog box and click on [Browse].

(4) Select "ecat_cia402_motor_rsskrx72m", which is the sample project for the communications board,

and click on [Open]. Check "ecat_cia402_motor_rsskrx72m" indicated under [Project] and click on
[Next] to import the project.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 65 of 85
Aug.31.2020

6.5 Programming and Debugging

(1) Left-click on the "ecat_cia402_motor_rsskrx72m" project name in the project explorer, click on the
arrow next to the [Build] button (hammer icon), and select [Hardware Debug] from the drop-down
menu.

The project is built by e2studio. Check that the console does not indicate any errors in building.

(2) Once building is completed, start debugging by clicking on the arrow next to the [Debug] button

(insect icon) and selecting [Debug Configurations].
The project is built by e2studio. Once the build is completed, start debugging by clicking the arrow
next to the [Debug] button (bug icon) and selecting [Debug Configurations].

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 66 of 85
Aug.31.2020

(3) Click on "ecat_cia402_motor_rsskrx72m Hardware Debug" to download the program to the target

and press the debugging button to start it.

(4) A firewall warning for "e2-server-gdb.exe" may be displayed. Select the checkbox for [Private

networks such as home and work networks] and click on <Allow access>.

(5) The user account control (UAC) dialog box may be displayed. Enter your administrator password

and click on [Yes].

(6) If a dialog box recommending a change of the perspective is displayed in the confirmation dialog box

for switching perspectives, select the "Always use this setting" checkbox and click [Yes].

(7) The green "ACT" LED on the E2 Lite debugger is always on.

After downloading the code, click on the [Resume] button to run the code up to the first line of the function
main. Click on the [Resume] button again to run the rest of the code on the target.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 67 of 85
Aug.31.2020

6.6 Connection with TwinCAT (Writing the ESI File)
(1) Before starting TwinCAT, copy the ESI file included in the release folder to "/TwinCAT / 3.x / Config / IO

/ EtherCAT".
 "ecat_cia402_motor_rsskrx72m\src\smc_gen\r_ecat_rx\utilities\rx72m\esi\ RX72M EtherCAT

MotorSolution.xml"

(2) Add the TwinCAT driver through the following procedure. This is only required the first time.
 From the Start menu, select [TWINCAT] → [Show Realtime Ethernet Compatible Devices...].

Select the connected Ethernet port from among the communications ports and press [Install].

(3) Select the connected Ethernet port from among the communications ports to display its properties.

Only enable [TwinCAT Ethernet Protocol for All Network Adapters] from among the properties and close
the dialog box.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 68 of 85
Aug.31.2020

(4) Connect the LAN cable to the evaluation board. As the In/Out direction of EtherCAT has been decided,
connect it to CN2 IN.

(5) Select [Beckhoff] → [TwinCAT3] → [TwinCAT XAE (VS2013)] from the start menu. After starting the

program, select [FILE] → [New] → [Project] and then select [TwinCAT XAE Project] in Templates to
create a new project.

(6) Select Solution Explorer → I / O → Device → [Scan].

(7) When [Scan for boxes] is executed, the slave of Box1 will be detected and appear in Solution Explorer.

If the ESI file is not recognized, it will be displayed as Box 1 (PFFFFF). In such cases, select [No] for
[Activate Free Run] to download the ESI file.

(8) If the data of another application has been written to the EEPROM, replace it. The procedure for

replacing the data in the EEPROM is as follows.

- Double-click on [Box 1]. The settings screen will appear.
- Select the [EtherCAT] tab.
- Click the [Advanced Setting] button.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 69 of 85
Aug.31.2020

(9) Select [ESC Access] → [EEPROM] → [Hex Editor].

Select [Download from List].

(10) A list of ESI files registered with TwinCAT3 will appear. Select the relevant file. For the motor board,

select [RX72M EtherCAT MotorSolution.xml]. For the I/O board, select [Renesas EtherCAT
RX72M.xml].

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 70 of 85
Aug.31.2020

(11) Reflect the settings of the downloaded ESI file. Since this requires resetting the slave, temporarily

delete the slave from the TwinCAT network.

After the slave has been reset, the ESI file will be read by scanning it again. Execute this with "Activate
Free Run".

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 71 of 85
Aug.31.2020

6.7 Checking the Connection with CODESYS
This section describes the procedure for connecting and operating an evaluation environment in which the
sample program is installed along with the CODESYS software PLC.

6.7.1 Device Network Settings

(1) Set the IP address of the host before setting the device. Open [Network Settings].

(2) Double-click (or right-click) [Local Area Connection] and select [Properties].

(3) Select TCP/IPv4 and click on the [Properties] button. Set the IP address and subnet mask.

6.7.2 Starting CODESYS
(1) Start this from the [Start] menu of Windows, selecting [All Programs] > [CODESYS] > [CODESYS

Gateway V3] or from the CODESYS icon which will have been created on the desktop after installation.

(2) Click on [File] → [Open Project…] and select the "rx72m_motor_demo.project" file to open the project.

Note: Refer to R-IN, RZ/T1, EC-1, TPS-1 Group Software PLC Guide Project Configuration/UI Creation
for the procedure for configuring a new project for CODESYS and the procedure for creating and
confirming UIs.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 72 of 85
Aug.31.2020

(3) After you start the project, the device tree is displayed.

6.7.3 Starting the PLC
Check the state of the software PLC operation from the system tray. If it is stopped, right-click on the PLC
window and select "Start PLC" to start it. The software PLC usually starts automatically as a service when
Windows is activated.
The icon in the system tray at the bottom right of the desktop shows the operating status.

Note: When the icons is not in the system tray

Start the gateway server by selecting [All Programs] > [CODESYS] > [CODESYS Gateway V3] >
[CODESYS Gateway V3] from the Start menu. If the icon is not displayed in the system tray after
starting the gateway server, try restarting the device.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 73 of 85
Aug.31.2020

6.7.4 Updating the Slave Device
This section describes the operations to be performed to start the "rx72m_motor_demo.project" for the first
time.

(1) Using the EtherCAT slave device requires installing the ESI file that contains the device information.

Use "Renesas EtherCAT RX72M.xml" and "RX72M EtherCAT MotorSolution.xml" as the ESI files.
From the [Tools] menu of CODESYS, select [Device Repository].

(2) In the Device Repository dialog box, click on [Install] to display the file dialog box. Specify the ESI file

"RX72M EtherCAT MotorSolution.xml".

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 74 of 85
Aug.31.2020

6.7.5 Setting up the Connection with PLC

(1) Double-click on [Device (CODESYS Control Win V3)] in the tree of the [Devices] window to open the

[Communication Settings] screen. You can set up communications to connect the development
environment to the software PLC service on this screen.
Click on the [Scan network...] button on the [Communication Settings] tabbed page.

(2) The [Select Device] window will appear and an automatic search for the available devices on the local

network will commence. The procedure is successful when the software PLC service is detected.
Double-click on the displayed PC name.

The PC name (or number) is displayed.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 75 of 85
Aug.31.2020

(3) If the scan was successful, the PC will be registered with GateWay.

(4) Set the network to be used. Double-click on [EtherCAT_Master] to open the [General] screen for the

corresponding settings.

Available state

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 76 of 85
Aug.31.2020

(5) Select the network to be used.

After having selected the network, press [Browse] on the [EtherCAT_Master] screen to confirm the MAC
address.

(6) Build the program. Select [Build] from the [Build] menu.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 77 of 85
Aug.31.2020

(7) After completing the build, log in. Select [Login] from the menu.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 78 of 85
Aug.31.2020

(8) After having logged in normally, the operation will be in the STOP state.

Note, however, that the state of operation may shift to RUN without having been in the STOP state.

(9) Start the operation. Press the button to start or select the run icon on the toolbar.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 79 of 85
Aug.31.2020

(10) If the connection was successful, the network connection will have been made and operation will start

as shown below.

Device status

: The PLC is connected and the application is running.

: The PLC is connected but the application is stopped.

: There is an error. Check the details of the error and the device settings.

: The device information is not in the device repository. Check the device information file and install it
correctly.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 80 of 85
Aug.31.2020

6.8 Using CODESY to Check Operation
The program for driving the attached motor is built from "rx72m_motor_control.project".
In the state where the network connection has been completed, the motor is controlled through the
CODESYS GUI.

(1) Select "Visualization" from the device tree and double-click it.

(2) This starts up the GUI screen for motor control.

Pattern select is used to change the type of motor rotation operation.

1: Each set of rotations is divided into 90°, 180°, and 360° and this sequence of rotations is
repeated.

2: One reverse rotation
3: A sequence of 10 rotations and then -10 rotations is repeated.
4: A sequence of -10 rotations and then 10 rotations is repeated.

 connect: Indicates if communications have been established.
motor operation enable: Indicates the command transition state.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 81 of 85
Aug.31.2020

7. Documents for Reference

User’s Manual: Hardware

RX72M Group User’s Manual: Hardware (Document No. R01UH0804)
Renesas Starter Kit+ for RX72M User’s Manual (Document No. R20UT4383)
RX72M Group Communications Board Hardware Manual (Document No. R01AN4661)
(Download the latest version from the Renesas Electronics website.)

Startup Manual

RX72M Group RSK Board EtherCAT Startup Manual (Document No. R01AN4689)
RX72M Group Communications Board EtherCAT Startup Manual (Document No. R01AN4672)
(Download the latest version from the Renesas Electronics website.)

Technical Updates/Technical News

(Download the latest version from the Renesas Electronics website.)

User’s Manual: Development Environment

RX Family C/C++ Compiler, Assembler, Optimizing Linkage Editor Compiler Package (R20UT0570)
(Download the latest version from the Renesas Electronics website.)

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 82 of 85
Aug.31.2020

8. APPENDIX
This motor board can be used with the RMW (Renesas Motor Workbench).

RMW (Renesas Motor Workbench) related procedure
Download RMW V2.0 from the following Web page
https://www.renesas.com/jp/ja/solutions/proposal/motor-control.html#kits
Proceed through the preparations according to Table 3.1 in the RMW user’s manual (r21uz0004jj0201-
motor.pdf), which will be in the RMW folder.
No 3.1, 3.5, 3.6, 3.7, 3.8
Note: The authentication file can be downloaded from [Authentication file download] at the same link as the

RMW.

Use USB1 on the inverter board for the connection, and connect it to the USB port of the PC.

USB connector

https://www.renesas.com/jp/ja/solutions/proposal/motor-control.html

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 83 of 85
Aug.31.2020

Start RMW and specify the following files.

- Environment file
 ecat_cia402_motor_rsskrx72m
 \ecat_cia402_motor_rsskrx72m.rmt
-map file
 ecat_cia402_motor_rsskrx72m\HardwareDebug
 \ecat_cia402_motor_rsskrx72m.map

Connect RMW and the motor board
 When Connection → COM is specified, the following is displayed if the connection was made

correctly.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 84 of 85
Aug.31.2020

Get the motor drive waveforms.
[Analyzer] → Press the [RUN] button in the [Scope Window]

Note: The example below shows the waveforms when Target Position is changed from 0 to 40000.

RX72M Group Single-Chip Motor Control via EtherCAT Communications

R01AN5434EJ0110 Rev.1.10 Page 85 of 85
Aug.31.2020

Revision History

Rev. Date
Description

Page Summary
1.00 June 10, 2020 — First edition issued
1.10 Aug. 31, 2020 12 To change the file configuration by supporting EtherCAT FIT

module Rev.1.10
2.3.1 Table 2-7 is revised. Table 2-8 is added.

63 The folder name of 6.3 (6) is changed.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products

covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

▪ Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

▪ Ethernet is a registered trademark of Fuji Xerox Co., Ltd.

▪ IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
▪ TRON is an acronym for "The Real-time Operation system Nucleus".

▪ ITRON is an acronym for "Industrial TRON".

▪ μITRON is an acronym for "Micro Industrial TRON".
▪ TRON, ITRON, and μITRON do not refer to any specific product or products.

▪ EtherCAT® and TwinCAT® are registered trademarks and patented technologies, licensed by Beckhoff
Automation GmbH, Germany.

▪ Additionally all product names and service names in this document are trademarks or registered
trademarks which belong to the respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 This Application Note
	1.2 Operation Environment
	1.3 Projects

	2. System Overview
	2.1 Hardware Configuration
	2.2 Hardware Specifications
	2.3 Software Configuration
	2.3.1 Software File Configuration
	2.3.2 Software Module Configuration

	2.4 Software Specifications

	3. CiA402 Drive Profile
	3.1 Operating Mode
	3.2 State Transitions
	3.3 State Transition Functions
	3.4 Object Dictionary

	4. Motion Control Parameters
	4.1 Velocity Parameters
	4.2 Acceleration Parameters
	4.3 Conversion of Units by the RMW

	5. API Functions
	6. Checking Operation of the Application on the Solution Kit
	6.1 Operating Environment
	6.2 Operating Environment Settings and Connection
	6.3 Building the Sample Program
	6.4 Importing the Sample Project into the e2 studio
	6.5 Programming and Debugging
	6.6 Connection with TwinCAT (Writing the ESI File)
	6.7 Checking the Connection with CODESYS
	6.7.1 Device Network Settings
	6.7.2 Starting CODESYS
	6.7.3 Starting the PLC
	6.7.4 Updating the Slave Device
	6.7.5 Setting up the Connection with PLC

	6.8 Using CODESY to Check Operation

	7. Documents for Reference
	8. APPENDIX
	Revision History

