
 APPLICATION NOTE

R01AN2026EJ0144 Rev.1.44 Page 1 of 25
Mar 01, 2025

RX Family
USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

Introduction
This application note describes USB Host Mass Storage Class Driver (HMSC), which utilizes Firmware Integration
Technology (FIT). This module operates in combination with the USB Basic Host and Peripheral Driver
(USB-BASIC-FW FIT module). It is referred to below as the USB HMSC FIT module.

Target Device
RX65N/RX651 Group
RX64M Group
RX71M Group
RX66T Group
RX72T Group
RX72M Group
RX66N Group
RX72N Group
RX671 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate

Related Documents

1. Universal Serial Bus Revision 2.0 specification
2. USB Mass Storage Class Specification Overview Revision 1.1
3. USB Mass Storage Class Bulk-Only Transport Revision 1.0
 http://www.usb.org/developers/docs/
4. RX64M Group User’s Manual: Hardware (Document number: R01UH0377)
5. RX71M Group User’s Manual: Hardware (Document number: R01UH0493)
6. RX65N/RX651 Group User’s Manual: Hardware (Document number: R01UH0590)
7. RX65N/RX651-2M Group User’s Manual: Hardware (Document number: R01UH0659)
8. RX66T User's Manual: Hardware (Document number. R01UH0749)
9. RX72T User's Manual: Hardware (Document number. R01UH0803)
10. RX72M User's Manual: Hardware (Document number. R01UH0804)
11. RX66N User's Manual: Hardware (Document number. R01UH0825)
12. RX72N User's Manual: Hardware (Document number. R01UH0824)
13. RX671 User's Manual: Hardware (Document number. R01UH0899)
14. RX Family M3S-TFAT-Tiny: FAT file system software (Document number: R20AN0038)
15. RX Family M3S-TFAT-Tiny: Memory Driver Interface Module (Document number: R20AN0335)
16. USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note

(Document number. R01AN2025）

Renesas Electronics Website
http://www.renesas.com/

USB Device Page

http://www.renesas.com/prod/usb/

R01AN2026EJ0144
Rev.1.44

Mar 01, 2025

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 2 of 25
Mar 01, 2025

Contents

1. Overview .. 3

2. Software Configuration (For FreeRTOS, Non-OS) ... 5

3. API Information .. 6

4. Target Peripheral List（TPL） ... 10

5. Class Driver ... 11

6. API Functions .. 12

7. Return Value (USB_STS_MSC_CMD_COMPLETED) of a Mass Stoage Commnad 22

8. Configuration File (When using RI600V4)... 23

9. Creating an Application .. 24

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 3 of 25
Mar 01, 2025

1. Overview
The USB HMSC FIT module, when used in combination with the USB-BASIC-FW FIT module, operates as a USB
host mass storage class driver (HMSC).
The HMSC comprises a USB mass storage class bulk-only transport (BOT) protocol. When combined with a file
system and storage device driver, it enables communication with a BOT-compatible USB storage device.
Note that please use the M3S-TFAT-Tiny (Document number: R20AN0038) and Memory driver interface module
(Document numver: R20AN0335) in combination when using this driver.

This module supports the following functions.

1. Checking of connected USB storage devices (to determine whether or not operation is supported).

2. Storage command communication using the BOT protocol.

3. Support for SFF-8070i (ATAPI) USB mass storage subclass.

4. Sharing of a single pipe for IN/OUT directions or multiple devices.

5. Maximum 4 USB storage devices can be connected in this module for Non-OS or FreeRTOS.

1.1 Please be sure to read

Please refer to the document (Document number: R01AN2025) for USB Basic Host and Peripheral Driver using
Firmware Integration Technology Application Note when creating an application program using this driver.
This document is located in the "reference_documents" folder within this package.

1.2 Note
1. This driver is not guaranteed to provide USB communication operation. The customer should verify operation

when utilizing it in a system and confirm the ability to connect to a variety of different types of devices.

2. It is not necessary to use this module since USBX driver is used when using Azure RTOS.

3. This driver is confirmed for operation in combination with the following FAT.

(1). RX Family Open Source FAT File System [M3S-TFAT-Tiny] Module
Firmware Integration Technology Rev.3.03 (for Non-OS, FreeRTOS and uITRON)

(2). Azure RTOS FileX 6.1.12

4. For Azure RTOS API, USBX API and FileX API, please refer to Azure RTOS, USBX and FileX
documentation.

1.3 Limitation

1. Some MSC devices may be unable to be connected (because they are not recognized as storage devices).

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command (mass storage class
command) are not supported.

3. USB storage devices with a sector size of 512 bytes can be connected.

4. A device that does not respond to the READ_CAPACITY command operates as a device with a sector size of
512 bytes.

5. This driver does not support the USB flash driver with MFi Certified.

6. In the Azure RTOS version, the number of MSC devices that can be connected is 1 device.

1.4 Terms and Abbreviations

APL : Application program
BOT : Mass Storage Class Bulk Only Transport
FSL : FAT File System Library
HCD : Host Control Driver for USB-BASIC-FW
HDCD : Host Device Class Driver (Device driver and USB class driver)
MGR : Peripheral Device State Manager for HCD

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 4 of 25
Mar 01, 2025

MSC : Mass Storage Class
Non-OS : USB Driver for OS-less
RSK : Renesas Starter Kits
RTOS : USB Driver for FreeRTOS and uITRON
TFAT : Tiny FAT file system software for microcontrollers (M3S-TFAT-Tiny-RX)
USB-BASIC-FW : USB Basic Host and Peripheral Driver

1.5 USB HMSC FIT Module
User needs to integrate this module to the project using r_usb_basic. User can control USB H/W by using this module
API after integrating to the project.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 5 of 25
Mar 01, 2025

2. Software Configuration (For FreeRTOS, Non-OS)
HDCD (Host Device Class Driver) is the all-inclusive term for HMSDD (Host Mass Storage Device Driver) and
HMSCD (USB Host Mass Storage Class Driver).

Figure 2-1 shows the HMSC software block diagram, with HDCD as the centerpiece. Table 2-1 describes each
module.

User Application (APL)

File System Library (FSL)

File System Interface (FSI)

Mass Storage Device driver (HMSDD)

Device Driver Interface (DDI)

Host Mass Storage Class Driver

HCD Interface (HCI)

Media Driver USB Host Control Driver (HCD/MGR/HUB)

Media USB Host Controller (H/W)

M
ass Storage

Class Driver
(HM

SCD)

Device Class
Driver (HDCD)

USB Basic FIT Module(r_usb_basic)

HMSC FIT Module(r_usb_hmsc)

Figure 2-1 Software Module Structure

Table 2-1 Module

Module Description
FSI FSL-HMSDD interface functions.

They should be modified to match FSL.
HMSDD To be created (modified) by the customer to match the storage media.
DDI HMSDD-HMSCD interface functions.

They should be modified to match the storage media interface of HMSDD.
HMSCD The USB host mass storage class driver. It appends BOT protocol information to storage

commands and sends requests to HCD. It also manages the BOT sequence.
The storage commands should be added (modified) by the customer to match the system
specifications. SFF-8070i (ATAPI) is supported in the example code.

HCI HMSCD-HCD interface functions.
MGR/HUB Enumerates the connected devices and starts HMSCD. Also performs device state

management.
HCD USB host hardware control driver.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 6 of 25
Mar 01, 2025

3. API Information
This Driver API follows the Renesas API naming standards.

3.1 Hardware Requirements
This driver requires your MCU support the following features:

 USB

3.2 Software Requirements
This driver is dependent upon the following packages:

 r_bsp

 r_usb_basic

3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operating Confirmation Environment

Item Contents
C compiler Renesas Electronics C/C++ compiler for RX Family V.3.07.00

(The option "-lang=C99" is added to the default setting of IDE)
GCC for Renesas RX 8.3.0.202411
(The option "-std=gnu99" is added to the default setting of IDE)
IAR C/C++ Compiler for Renesas RX version 5.10.1

Real-Time OS FreeRTOS V.10.0.0
RI600V4
Azure RTOS (USBX) 6.1.12

Endian Little Endian, Big Endian
USB Driver Revision Number Rev.1.44
Using Board Renesas Starter Kits for RX64M

Renesas Starter Kits for RX71M
Renesas Starter Kits for RX65N, Renesas Starter Kits for RX65N-2MB
Renesas Starter Kits for RX72T
Renesas Starter Kits for RX72M
Renesas Starter Kits for RX72N
Renesas Starter Kits for RX671

3.4 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents
RX64M
RX71M

USBI0 Interrupt (Vector number: 189, Interrupt source number：62, Software Configurable Interrupt B)
USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)
USBR0 Interrupt (Vector number:90)

 USBAR Interrupt (Vector number: 94)
USB D0FIFO2 Interrupt (Vector number: 32) / USB D1FIFO2 Interrupt (Vector number: 33)

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 7 of 25
Mar 01, 2025

RX65N
RX651
RX72M
RX72N
RX66N

USBI0 Interrupt (Vector number: 185, Interrupt source number：62, Software Configurable Interrupt B)
USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)
USBR0 Interrupt (Vector number:90)

RX66T
RX72T

USBI0 Interrupt (Vector number: 174) / USBR0 Interrupt (Vector number: 90)
USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

RX671 USBI0 Interrupt (Vector number: 185, Interrupt source number：62, Software Configurable Interrupt B)
USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)
USBR0 Interrupt (Vector number:90)

 USBI1 Interrupt (Vector number: 182, Interrupt source number：63, Software Configurable Interrupt B)
USB D0FIFO1 Interrupt (Vector number: 36) / USB D1FIFO1 Interrupt (Vector number: 37)

3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_if.h and r_usb_hmsc_if.h.

3.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

3.7 Compile Setting
For compile settings, refer to chapter "Configuration" in the document (Document number: R01AN2025) for USB
Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. CC-RX (Optimization Level: Default)

(1). Non-OS

 Checks arguments Does not check arguments
ROM size 44.5K bytes (Note 4) 44.0K bytes (Note 5)
RAM size 23.9K bytes 23.9K bytes

(2). RTOS

a. FreeRTOS

 Checks arguments Does not check arguments
ROM size 54.2K bytes (Note 4) 53.7K bytes (Note 5)
RAM size 51.2K bytes 51.2K bytes

b. RI600V4

 Checks arguments Does not check arguments
ROM size 56.4K bytes (Note 4) 55.9K bytes (Note 5)
RAM size 28.3K bytes 28.3K bytes

c. Azure RTOS (Note 7)

ROM size 106.3K bytes
RAM size 17.7K bytes

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 8 of 25
Mar 01, 2025

2. GCC (Optimization Level: -O2)

d. Non-OS

 Checks arguments Does not check arguments
ROM size 51.2K bytes (Note 4) 50.6K bytes (Note 5)
RAM size 23.7K bytes 23.7K bytes

e. Azure RTOS (Note 7)

ROM size 122.8K bytes
RAM size 16.1K bytes

3. IAR (Optimization Level: Medium)

(1). Non-OS

 Checks arguments Does not check arguments
ROM size 45.5K bytes (Note 4) 44.9K bytes (Note 5)
RAM size 22.4K bytes 22.4K bytes

(2). Azure RTOS (Note 7)

ROM size 92.8K bytes
RAM size 15.5K bytes

[Note]

1. ROM/RAM size for BSP and USB Basic Driver is included in the above size.

2. ROM/RAM size for TFAT is not included in the above size.

3. The above is the size when specifying RX V2 core option.

4. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

5. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

6. The result of RTOS includes the ROM/RAM size of the real-time OS.

7. The result of Azure RTOS includes the ROM/RAM size of Azure RTOS, USBX and FileX.

3.9 Argument
For the structure used in the argument of API function, refer to chapter "Structures" in the document (Document
number: R01AN2025) for USB Basic Host and Peripheral Driver using Firmware Integration Technology
Application Note.

3.10 “for”, “while” and “do while” statements

In FIT module, when using “for”, “while” and “do while” statements (loop processing) in register reflection waiting
processing, etc., write comments with “WAIT_LOOP” as a keyword for these loop processing. Also, write in the FIT
documentation that “WAIT_LOOP” is written as a comment in these loop processes.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 9 of 25
Mar 01, 2025

3.11 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please
use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using “Smart Configurator” on e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 10 of 25
Mar 01, 2025

4. Target Peripheral List（TPL）
For the structure used in the argument of API function, refer to chapter " How to Set the Target Peripheral List
(TPL)" in the document (Document number: R01AN2025) for USB Basic Host and Peripheral Driver using
Firmware Integration Technology Application Note.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 11 of 25
Mar 01, 2025

5. Class Driver

5.1 Class Requet
This driver supports the following class request.

Table 5-1 Class Request

Request Description
GetMaxLun Gets the maximum number of units that are supported.
MassStrageReset Cancels a protocol error.

5.2 Storage Command
This driver supports the following storage command.

1. TEST_UNIT_READY

2. REQUEST_SENSE

3. MODE_SELECT10

4. MODE_SENSE10

5. PREVENT_ALLOW

6. READ_FORMAT_CAPACITY

7. READ10

8. WRITE10

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 12 of 25
Mar 01, 2025

6. API Functions
The following are Host Mass Storage Class specific API functions. Please don’t use the following APIs when using
Azure RTOS.

API Desription

R_USB_HmscStrgCmd() Issues a Mass Storage command.
R_USB_HmscGetDriveNo() Obtains the drive number.
R_USB_HmscGetSem() Gets a semaphore (Only RTOS)
R_USB_HmscRelSem() Releases a semaphore (Only RTOS)

Note:

1. Uses the FAT (File Allocation Table) API to access storage media.

2. Refer to chapter "API" in the document (Document number: R01AN2025) for USB Basic Host and Peripheral
Driver using Firmware Integration Technology Application Note. when using other API.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 13 of 25
Mar 01, 2025

6.1 R_USB_HmscStrgCmd

Issues a Mass Storage command

Format
usb_err_t R_USB_HmscStrgCmd(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint16_t command)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to data area
command Mass storage command

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
1. Non-OS

The Mass Storage command assigned to the argument (command) is issued to the MSC device that is specifed by
the members (address and module) in the argument (p_ctrl). An application program can check the completion of
the Mass Storage command with the USB_STS_MSC_CMD_COMPLETE return value of the R_USB_GetEvent
function.

If a Mass Storage command with response data is issued, after checking USB_STS_MSC_CMD_COMPLETE
return value of the R_USB_GetEvent function, an application program can obtain the response data from the area
indicated by the second argument (p_buf). Check the member (size) of the usb_crtl_t structure to get the size of
the response data that was received.

2. RTOS

The Mass Storage command assigned to the argument (command) is issued to the MSC device that is specifed by
the members (address and module) in the argument (p_ctrl). An application program can check whether the mass
storage command complete by refering the argument (the member (event) of the usb_ctrl_t structure) in the
callback function. This driver sets USB_STS_MSC_CMD_COMPLETE to the argument (the event member of the
usb_ctrl_t structure) when completing a Mass Storage command.

If a Mass Storage command with response data is issued, after checking that USB_STS_MSC_CMD_COMPLETE
is set to the argument (the member (event) of the usb_ctrl_t structure), an application program can obtain the
response data from the area indicated by the second argument (p_buf). Check the member (size) of the usb_crtl_t
structure to get the size of the response data that was received.

For both Non-OS and RTOS, assign the following to the argument (command).

Table 6-1 Mass Storage Command

MassStorage Command
USB_ATAPI_TEST_UNIT_READY
USB_ATAPI_REQUEST_SENSE
USB_ATAPI_INQUIRY
USB_ATAPI_MODE_SELECT10
USB_ATAPI_PREVENT_ALLOW
USB_ATAPI_READ_FORMAT_CAPACITY
USB_ATAPI_READ_CAPACITY
USB_ATAPI_MODE_SENSE10

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 14 of 25
Mar 01, 2025

Note

1. Before calling this API, assign the module number to the member (module) and the device address to the
member (address). If something other than USB_IP0 or USB_IP1 is assigned to the member (module), then
USB_ERR_PARA will be the return value.

2. If the MCU being used only supports one USB module, then do not assign USB_IP1 to t the member (module).
If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

3. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

4. Do not assign a pointer to the auto variable (stack) area to the arguments (p_buf).

5. Assign USB_NULL to the argument (p_buf) when issuing the mass storage command without the response data.

6. If a command other than the Mass Storage commands listed in Table 6-1 is assigned to the argument
(command), then USB_ERR_PARA will be the return value.

7. When calling FAT API and this API after issuing the Mass storage command by this API, be sure to call these
APIs after checking the return value (USB_STS_CMD_COMPLETE) of R_USB_GetEvent function.

8. Refer to chapter "7. Return Value (USB_STS_MSC_CMD_COMPLETED) of a Mass Stoage Commnad"
about CSW.

9. The CSW information is set to the member (status) of the usb_ctrl_t structure. If the value of the member
(status) is USB_CSW_FAIL, issue the "Requeset Sense" command to the MSC device using this API.

10. Set the page code (1 Byte) of the "Mode Sense10" command in the start address to the area indicated by the 2nd
argument (p_buf).

11. Set the parameter data for the "Mode Select10" command to the area indicated by the 2nd argument (p_buf)
based on the specification for USB Mass Storage Subclass (SFF-8070i etc).

12. This function can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 15 of 25
Mar 01, 2025

Example

1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 usb_err_t err;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 g_buf[0] = 0x3F; /* Page Code */
 ctrl.module = USB_IP1;
 ctrl.address = adr;
 R_USB_HmscStrgCmd(&ctrl, &g_buf, USB_ATAPI_MODE_SENSE10);
 :
 break;
 case USB_STS_MSC_CMD_COMPLETE:
 if(ctrl.status == USB_CSW_FAIL)
 {
 R_USB_HmscStrgCmd(&ctrl, &g_buf, USB_ATAPI_REQUEST_SENSE);
 }
 :

 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 16 of 25
Mar 01, 2025

2. RTOS
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_CONFIGURED:
 :
 g_buf[0] = 0x3F /* Page Code */
 ctrl.module = USB_IP1;
 ctrl.address = adr;
 R_USB_HmscStrgCmd(&ctrl, &g_buf, USB_ATAPI_MODE_SENSE10);
 :
 break;
 case USB_STS_MSC_CMD_COMPLETE:
 if (ctrl.status == USB_CSW_FAIL)
 {
 R_USB_HmscStrgCmd(&ctrl, &g_buf, USB_ATAPI_REQUEST_SENSE);
 }
 :
 break;
 }
 }
}

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 17 of 25
Mar 01, 2025

6.2 R_USB_HmscGetDriveNo

Obtains the drive number

Format
usb_err_t R_USB_HmscGetDriveNo(usb_ctrl_t *p_ctrl, uint8_t *p_drive)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_drive Pointer to the area to store the drive number

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
Based on the information assigned to the usb_crtl_t structure (the member module and address), obtains the
related drive number. The drive number is stored in the area indicated by the argument (p_drive).

Note

1. Before calling this API, assign the device address of the MSC device whose drive number is to be obtained, and
the USB module number (USB_IP0 or USB_IP1) connected to that MSC device, to the members (address and
module) of the usb_crtl_t structure. If there is a problem with what is assigned to these members, then
USB_ERR_PARA will be the return value.

2. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

3. This function can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

Example

void usb_application(void)
{
 usb_ctrl_t ctrl;
 uint8_t drive;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 ctrl.module = USB_IP0;
 ctrl.address = adr;
 R_USB_HmscGetDriveNo(&ctrl, &drive);
 :
 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 18 of 25
Mar 01, 2025

6.3 R_USB_HmscGetSem

Gets a semaphore (Only RTOS)

Format
void R_USB_HmscGetSem(void)

Arguments
none

Return Value
none

Description
Gets a specific semaphore which is used in HMSC driver.

Note

1. Be sure to call this API before calling the FAT file open function (e.g R_tfat_f_open).

2. If this API is called when a semapohre counter value is zero, the user task which calls this API shift to a
semaphore waiting status.

3. The creation processing of a semaphore which this API uses is performed in USB driver.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 19 of 25
Mar 01, 2025

Example
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_CONFIGURED:
 :
 R_USB_HmscGetSem();
 R_tfat_f_open(&file, (const char *) &g_msc_file[drvno][0],
 (TFAT_FA_CREATE_ALWAYS | TFAT_FA_WRITE));
 R_tfat_f_write(&file, g_file_data, sizeof(g_file_data), &file_size);
 R_tfat_f_close(&file);
 R_USB_HmscRelSem();
 :
 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 20 of 25
Mar 01, 2025

6.4 R_USB_HmscRelSem

Releases a semaphore (Only RTOS)

Format
void R_USB_HmscRelSem(void)

Arguments
none

Return Value
none

Description
Releases a specific semaphore which is used in HMSC driver.

Note

1. Be sure to call this API after calling the FAT file close function (e.g R_tfat_f_close).

2. An application task during a semaphore waiting status by R_USB_HmscGetSem function is released the
semaphore waiting status by this API.

3. The creation processing of a semaphore which this API uses is performed in USB driver.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 21 of 25
Mar 01, 2025

Example
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_CONFIGURED:
 :
 R_USB_HmscGetSem();
 R_tfat_f_open(&file, (const char *) &g_msc_file[drvno][0],
 (TFAT_FA_CREATE_ALWAYS | TFAT_FA_WRITE));
 R_tfat_f_write(&file, g_file_data, sizeof(g_file_data), &file_size);
 R_tfat_f_close(&file);
 R_USB_HmscRelSem();
 :
 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 22 of 25
Mar 01, 2025

7. Return Value (USB_STS_MSC_CMD_COMPLETED) of a Mass Stoage Commnad
(1). Non-OS

After the completion of a Mass Storage command is checked with the R_USB_HmscStrgCmd function, if the
R_USB_GetEvent function is called, then USB_STS_MSC_CMD_COMPLETE will be the return value.

(2). RTOS (For FreeRTOS and uITRON)

When a Mass Storage command completes, the callback function that has been registered using the
R_USB_Callback function will be called by the USB driver. At this time, USB_STS_MSC_CMD_COMPLETE will
be set to the member (event) in the argument (the pointer to the usb_ctrl_t structure) of this callback function.

The following shows the information which is set to the member in the usb_ctrl_t structure when completing Mass
Storage command.

module : USB module number where Mass Storage command has been completed.
address : Device address of USB device where Mass Storage command has been completed.
size : Size of response data
status : CSW information

Note:

1. The member (module) of the usb_ctrl_t structure has the USB module number (USB_IP0 / USB_IP1) connected
to that USB device. The member (address) has the device address of the USB device where the Mass Storage
command has been completed.

2. The member (size) has the size of the response data sent from MSC device.

3. The member (status) has bCSWStatus of the CSW (Command Status Wrapper):

USB_CSW_SUCCESS (Value: 00H) : Successful
USB_CSW_FAIL (Value: 01H) : Failed
USB_CSW_PHASE (Value: 02H) : Phase error

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 23 of 25
Mar 01, 2025

8. Configuration File (When using RI600V4)
It is necessary to register the OS resource used by HMSC USB driver to RI600V4 when using RI600V4. Please add
the following definition in the configuration file. For how to create the configuration file, refer to the chapter,
"RI600V4(Configuration File Creation)" in the document (Document number: R01AN2025) for USB Basic Host
and Peripheral Driver using Firmware Integration Technology Application Note.

8.1 Mailbox Definition
1. Mailbox 1

name : ID_USB_RTOS_HMSC_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

2. Mailbox 2

name : ID_USB_RTOS_HMSC_REQ_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

8.2 Semaphore Definition
name : ID_USB_RTOS_HMSC_SEM
max_count : 1
initial_count : 1
wait_queue : TA_FIFO

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 24 of 25
Mar 01, 2025

9. Creating an Application
Refer to the chapter “Creating an Application Program” in the document (Document number: R01AN2025) for
USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

RX Family USB Host Mass Storage Class Driver (HMSC) using Firmware Integration Technology

R01AN2026EJ0144 Rev.1.44 Page 25 of 25
Mar 01, 2025

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev. Date
Description

Page Summery
1.00 Aug 1, 2014 — First eddition issued.
1.10 Dec 26, 2014 — 1. RX71M is supported newly.

2. The following APIs are added.
R_usb_hmsc_alloc_drvno, R_usb_hmsc_free_drvno
R_usb_hmsc_ref_drvno

3. The argument “drvno” is added to the following APIs.
R_usb_hmsc_SetDevSts, R_usb_hmsc_GetDevSts

4. The argument “ipno” is added to the following APIs.
R_usb_hmsc_Information

5. The multiple connecting of MSC device is supported.
1.11 Sep 30, 2015 — RX63N and RX631 are added in Target Device
1.20 Sep 30, 2015 — 1. RX65N and RX651 are added in Target Device.

2. Supporting DMA transfer.
3. Supporting USB Host and Peripheral Interface Driver application

note(Document No.R01AN3293EJ)
1.21 Mar 31, 2017 — 1. Supported Technical Update (Document number. TN-RX*-A172A/E)

2. The API other than the chapter API Functions is moved to the
document (Document number: R01AN2025) of USB Basic Host and
Peripheral Driver Firmware Integration Technology.

1.22 Sep 30, 2017 — Supporting RX65N/RX651-2M
1.23 Mar 31, 2018 — Supporting the Smart Configurator.
1.24 Dec 28, 2018 — 1. Supporting RTOS.

2. Supporting R_USB_HmscGetSem/R_USB_HmscRelSem function.
1.25 Apr 16, 2019 — Added RX66T/RX72T in Target Device.
1.26 May 31, 2019 — 1. Support GCC compiler and IAR compiler.

2. Remove RX63N from Target Device.
1.27 Jul 31, 2019 — RX72M is added in Target Device.
1.30 Mar 1, 2020 — 1. Supported the real time OS (uITRON:RI600V4).

2. Added RX72N/RX66N in Target Device.
1.31 Mar 1, 2021 — Added RX671 in Target Device.
1.41 Oct 30, 2022 — Support Azure RTOS (USBX).
1.42 Sep 30, 2023 — DMA transfer is supported in Azure RTOS (USBX).
1.44 Mar 01, 2025 — Change Disclaimer.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Please be sure to read
	1.2 Note
	1.3 Limitation
	1.4 Terms and Abbreviations
	1.5 USB HMSC FIT Module

	2. Software Configuration (For FreeRTOS, Non-OS)
	3. API Information
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.3 Operating Confirmation Environment
	3.4 Usage of Interrupt Vector
	3.5 Header Files
	3.6 Integer Types
	3.7 Compile Setting
	3.8 ROM / RAM Size
	3.9 Argument
	3.10 “for”, “while” and “do while” statements
	3.11 Adding the FIT Module to Your Project

	4. Target Peripheral List（TPL）
	5. Class Driver
	5.1 Class Requet
	5.2 Storage Command

	6. API Functions
	6.1 R_USB_HmscStrgCmd
	6.2 R_USB_HmscGetDriveNo
	6.3 R_USB_HmscGetSem
	6.4 R_USB_HmscRelSem

	7. Return Value (USB_STS_MSC_CMD_COMPLETED) of a Mass Stoage Commnad
	8. Configuration File (When using RI600V4)
	8.1 Mailbox Definition
	8.2 Semaphore Definition

	9. Creating an Application

