
 APPLICATION NOTE

R01AN1815EJ0500 Rev.5.00 Page 1 of 122
Jun.12.23

RX Family
SCI Module Using Firmware Integration Technology
Introduction
This application note describes the serial communications interface (SCI) module and the infrared data
association (IrDA) interface which uses Firmware Integration Technology (FIT). This module uses SCI to
provide Asynchronous, Synchronous, and SPI (SSPI) support for all channels of the SCI peripheral and
Infrared data communication support for the IrDA peripheral. In this document, this module is referred to as
the SCI FIT module.

Target Devices
• RX110, RX111, RX113 Groups
• RX130 Group
• RX140 Group
• RX13T Group
• RX230, RX231 Groups
• RX23T Group
• RX23W Group
• RX23E-A Group
• RX23E-B Group
• RX24T Group
• RX24U Group
• RX26T Group
• RX64M Group
• RX65N, RX651 Groups
• RX66T Group
• RX66N Group
• RX660 Group
• RX671 Group
• RX71M Group
• RX72T Group
• RX72M Group
• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
Renesas Electronics C/C++ Compiler Package for RX Family

GCC for Renesas RX

IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 2 of 122
Jun.12.23

Contents

1. Overview .. 4
1.1 SCI FIT Module ... 4
1.2 Overview of the SCI FIT Module ... 4
1.3 API Overview ... 7
1.4 Limitations ... 7
1.5 Using the FIT SCI module ... 7
1.5.1 Using FIT SCI module in C++ project ... 7

2. API Information .. 8
2.1 Hardware Requirements ... 8
2.2 Software Requirements ... 8
2.3 Limitations ... 8
2.3.1 RAM Location Limitations ... 8
2.4 Supported Toolchain ... 8
2.5 Interrupt Vector .. 9
2.6 Header Files .. 15
2.7 Integer Types .. 15
2.8 Configuration Overview ... 16
2.9 Code Size .. 22
2.10 Parameters .. 62
2.11 Return Values .. 64
2.12 Callback Function .. 65
2.13 Adding the FIT Module to Your Project ... 69
2.14 “for”, “while” and “do while” statements ... 70

3. API Functions .. 71
R_SCI_Open() ... 71
R_SCI_Close() ... 76
R_SCI_Send() ... 77
R_SCI_Receive() ... 80
R_SCI_SendReceive() .. 83
R_SCI_Control() .. 85
R_SCI_GetVersion() .. 90

4. Pin Setting ... 91

5. Demo Projects ... 92
5.1 sci_demo_rskrx113, sci_demo_rskrx113_gcc .. 92
5.2 sci_demo_rskrx231, sci_demo_rskrx231_gcc .. 93
5.3 sci_demo_rskrx64m, sci_demo_rskrx64m_gcc .. 93
5.4 sci_demo_rskrx71m, sci_demo_rskrx71m_gcc .. 94

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 3 of 122
Jun.12.23

5.5 sci_demo_rskrx65n, sci_demo_rskrx65n_gcc .. 94
5.6 sci_demo_rskrx65n_2m, sci_demo_rskrx65n_2m_gcc .. 95
5.7 sci_demo_rskrx72m, sci_demo_rskrx72m_gcc .. 95
5.8 sci_demo_rskrx671, sci_demo_rskrx671_gcc .. 96
5.9 Adding a Demo to a Workspace ... 96
5.10 Downloading Demo Projects ... 96

6. Appendices .. 97
6.1 Confirmed Operation Environment .. 97
6.2 Troubleshooting ... 111

7. Reference Documents ... 112

Related Technical Updates ... 112

Revision History .. 113

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 4 of 122
Jun.12.23

1. Overview
1.1 SCI FIT Module
The SCI FIT module can be used by being implemented in a project as an API. See section 2.13, Adding the
FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the SCI FIT Module
The SCI FIT module supports the following SCI peripheral functions depending on the RX MCU Groups.

Table 1.1 SCI Peripheral Functions Supported by MCU Groups

 SCIc SCId SCIe SCIf SCIg SCIh SCIi SCIj SCIk SCIm
RX110
RX111
RX113
RX130
RX140
RX13T
RX230
RX231
RX23T
RX23W
RX23E-A
RX23E-B
RX24T
RX24U
RX26T
RX64M
RX65N
RX66T
RX66N
RX660
RX71M
RX72T
RX72M
RX72N
RX671

It is recommended that you review the Serial Communications Interface chapter in the Hardware User’s
Manual for your specific RX Family MCU for full details on this peripheral circuit. All basic UART, Master SPI,
Master Synchronous, and IrDA interface (1) mode functionality is supported by this driver. Additionally, the
driver supports the following features in Asynchronous mode:

• noise cancellation
• outputting baud clock on the SCK pin
• one-way flow control of either CTS or RTS

In IrDA interface mode, the module generates IrDA communication waveforms, and transmit and receives
data via infrared light using the infrared data association (IrDA) interface and serial communications interface
(SCI) base on the IrDA (Infrared Data Association) standard 1.0.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 5 of 122
Jun.12.23

The module can be used in cooperation with DMAC or DTC.

Note:

1. The IrDA interface mode is only supported for RX113, RX23W, RX230, RX231 devices.

Features not supported by this driver are:
• extended mode (channel 12)
• multiprocessor mode (all channels)
• event linking

Handling of Channels
This is a multi-channel driver, and it supports all channels present on the peripheral. Specific channels can
be excluded via compile-time defines to reduce driver RAM usage and code size if desired. These defines
are specified in “r_sci_rx_config.h”.

An individual channel is initialized in the application by calling R_SCI_Open(). This function applies power to
the peripheral and initializes settings particular to the specified mode. A handle is returned from this function
to uniquely identify the channel. The handle references an internal driver structure that maintains pointers to
the channel’s register set, buffers, and other critical information. It is also used as an argument for the other
API functions.

Interrupts, and Transmission and Reception
Interrupts supported by this driver are TXI, TEI, RXI, and ERI. For Asynchronous mode, circular buffers are
used to queue incoming as well as outgoing data. The size of these buffers can also be set on compilation.

The TXI and TEI interrupts are only used in Asynchronous mode. The TXI interrupt occurs when a byte in
the TDR register has been shifted into the TSR register. During this interrupt, the next byte in the transmit
circular buffer is placed into the TDR register to be ready for transmit. If a callback function is provided in the
R_SCI_Open() call, it is called here with a TEI event passed to it. Support for TEI interrupts may be removed
from the driver via a setting in “r_sci_rx_config.h”.

The RXI interrupt occurs each time the RDR register has shifted in a byte. In Asynchronous mode, this byte
is loaded into the receive circular buffer during the interrupt for access later via an R_SCI_Receive() call at
the application level. If a callback function is provided, it is called with a receive event. If the receive queue is
full, it is called with a queue full event while the last received byte is not stored. In SSPI and Synchronous
modes, the shifted-in byte is loaded directly into the receive buffer specified from the last R_SCI_Receive()
or R_SCI_SendReceive() call. The data received before R_SCI_Receive() or R_SCI_SendReceive() call is
ignored. With SSPI and Synchronous modes, data is transmitted and received in the RXI interrupt handler.
The number of data remaining to be transferred or received can be checked with the value of the transmit
counter (tx_cnt) and received counter (rx_cnt) in the handle set for the fourth parameter of the R_SCI_Open
function. Refer to 2.10, Parameters for details.

To use SCI nested interrupts, enable macros SCI_CFG_CHn_EN_TXI_NESTED_INT,
SCI_CFG_CHn_EN_RXI_NESTED_INT, SCI_CFG_CHn_EN_TEI_NESTED_INT and
SCI_CFG_CHn_EN_ERI_NESTED_INT for each related channel.

Error Detection
The ERI interrupt occurs when a framing, overrun, or parity error is detected by the receive device. If a
callback function is provided, the interrupt determines which error occurred and notifies the application of the
event. Refer to 2.12, Callback Function for details.
This FIT module clears the error flag in the ERI interrupt handler regardless of the callback function provided
or not. If the FIFO function is enabled, the callback function is called before the error flag is cleared. So, the
data where the error occurred can be determined by reading the FRDR register for the number of data
received. Refer to 2.12 Callback Function for details.

Note when using SCI with DTC/DMAC support:

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 6 of 122
Jun.12.23

- When using SCI with DTC: Set #define BSP_CFG_HEAP_BYTES in r_bsp_config.h to a value
greater than total heap size used by SCI FIT and DTC FIT. The formula for calculating heap size of
SCI using DTC is:

o Heap size = Number of SCI channels using DTC x (size of data transfer information node
(sci_dtc_info_transfer_t) per SCI channel)

o Number of SCI channels using DTC can be derived as the sum of
SCI_CFG_CHn_TX_DTC_DMACA_ENABLE (1) or
SCI_CFG_CHn_RX_DTC_DMACA_ENABLE (1)

- RX23W, RX23E-A, RX23E-B, RX230, RX231 have only 4 DMAC channels, when using DMAC with
SCI, please choose DMAC channel from 0 to 3 (SCI_CFG_CHn_TX_DMACA_CH_NUM and
SCI_CFG_CHn_RX_DMACA_CH_NUM).

- Some command of Control function are not supported in this mode (SCI_CMD_EN_CTS_IN when
using DMAC channel from 4 to 7).

- Need to import DTC/DMAC FIT module, and initiate for DMAC, open for DTC before using SCI
functions with DTC/DMAC support.

- Need to close DTC/DMAC FIT module before closing the SCI channel

- Configuration for a channel SCI must be same for TX and RX (Example: if DTC is the data transfer
method of SCI1 TX, DTC must be the data transfer method of SCI1 RX for both SYNC and ASYNC
mode).

- Chosen DMAC channel must be different between TX and RX of same SCI channel, between SCI
channel and SCI channel (Example: SCI0/TX use DMAC0 -> SCI0/RX can’t use DMAC0, must use
another channel DMAC such as DMAC1; SCI1/TX can’t use DMAC0 or DMAC1 -> it must use
different DMAC channel such as SCI1/TX use DMAC2, SCI1/RX use DMAC3).

- When using DTC/DMAC, SCI FIT does not use BYTEQ to send/receive data.

- When using DTC/DMAC, SCI FIT does not support circular buffer.

Note when using IrDA interface mode:
- The standard prescribes that the minimum high-level pulse width should be 1.41 µs and the

maximum high-level pulse width should be the bit period × (3/16 + 2.5%) or (the bit period ×3/16) +
1.08 µs.

- The default value of IrDA output pulse width is SCI_IRDA_OUT_WIDTH_3_16 (the bit period × 3/16).
Choose the output width, the corresponding operating frequencies and bit rates of this module when
setting the pulse width shorter than the default value.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 7 of 122
Jun.12.23

1.3 API Overview
 Table 1-2 lists the API functions included in this module.

 Table 1.2 API Functions

Function Name Description
R_SCI_Open() Applies power to the SCI channel, initializes the associated registers,

enables interrupts, and provides the channel handle for use with
other API functions. Specifies the callback function which is called
when a receive error or other interrupt events occur.

R_SCI_Close() Removes power to the SCI channel and disables the associated
interrupts.

R_SCI_Send() Initiates transmit if transmitter is not in use.
R_SCI_Receive() For Asynchronous mode, fetches data from a queue which is filled

by RXI interrupts.
For Synchronous and SSPI modes, initiates dummy data
transmission and reception if transceiver is not in use.

R_SCI_SendReceive() For Synchronous and SSPI modes only. Transmits and receives
data simultaneously if the transceiver is not in use.

R_SCI_Control() Handles special hardware or software operations for the SCI
channel.

R_SCI_GetVersion() Returns at runtime the driver version number.

1.4 Limitations
None.

1.5 Using the FIT SCI module
1.5.1 Using FIT SCI module in C++ project
For C++ project, add FIT SCI module interface header file within extern “C”{}:

Extern “C”
{

#include “r_smc_entry.h”
#include “r_sci_rx_if.h”

}

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 8 of 122
Jun.12.23

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 SCI

 GPIO

 DMAC/DTC (if want to use DMAC/DTC data transfer features)

 IrDA

2.2 Software Requirements
This driver is dependent upon the following FIT module:

 Renesas Board Support Package (r_bsp) v5.20 or higher

 r_byteq (Asynchronous mode only)

2.3 Limitations
2.3.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR
project (EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.4 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 9 of 122
Jun.12.23

2.5 Interrupt Vector
The RXIn and ERIn interrupt is enabled by executing the R_SCI_Open function (for asynchronous mode).

For SSPI and synchronous modes, interrupts TXIn and TEIn are not used in these mode.

Table 2-1 lists the interrupt vector used in the SCI FIT Module.

Table 2.1 Interrupt Vector Used in the SCI FIT Module

Device Interrupt Vector
RX110, RX111, RX113, RX130,
RX140, RX13T, RX230, RX231,
RX23T, RX23W, RX23E-A, RX24T,
RX24U (1)

ERI2 interrupt (vector no.: 186)
RXI2 interrupt (vector no.: 187)
TXI2 interrupt (vector no.: 188)
TEI2 interrupt (vector no.: 189)
ERI3 interrupt (vector no.: 190)
RXI3 interrupt (vector no.: 191)
TXI3 interrupt (vector no.: 192)
TEI3 interrupt (vector no.: 193)
ERI4 interrupt (vector no.: 194)
RXI4 interrupt (vector no.: 195)
TXI4 interrupt (vector no.: 196)
TEI4 interrupt (vector no.: 197)
ERI7 interrupt (vector no.: 206)
RXI7 interrupt (vector no.: 207)
TXI7 interrupt (vector no.: 208)
TEI7 interrupt (vector no.: 209)
ERI10 interrupt (vector no.: 210)
RXI10 interrupt (vector no.: 211)
TXI10 interrupt (vector no.: 212)
TEI10 interrupt (vector no.: 213)
ERI0 interrupt (vector no.: 214)
RXI0 interrupt (vector no.: 215)
TXI0 interrupt (vector no.: 216)
TEI0 interrupt (vector no.: 217)
ERI1 interrupt (vector no.: 218)
RXI1 interrupt (vector no.: 219)
TXI1 interrupt (vector no.: 220)
TEI1 interrupt (vector no.: 221)
ERI5 interrupt (vector no.: 222)
RXI5 interrupt (vector no.: 223)
TXI5 interrupt (vector no.: 224)
TEI5 interrupt (vector no.: 225)
ERI6 interrupt (vector no.: 226)
RXI6 interrupt (vector no.: 227)
TXI6 interrupt (vector no.: 228)
TEI6 interrupt (vector no.: 229)

Note 1. Available interrupt vectors vary depending on the MCU used and the number of pins on the MCU.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 10 of 122
Jun.12.23

Device Interrupt Vector
RX110, RX111, RX113, RX130,
RX13T, RX230, RX231, RX23T,
RX23W, RX23E-A RX24T, RX24U
(1)

ERI8 interrupt (vector no.: 230)
RXI8 interrupt (vector no.: 231)
TXI8 interrupt (vector no.: 232)
TEI8 interrupt (vector no.: 233)
ERI9 interrupt (vector no.: 234)
RXI9 interrupt (vector no.: 235)
TXI9 interrupt (vector no.: 236)
TEI9 interrupt (vector no.: 237)
ERI12 interrupt (vector no.: 238)
RXI12 interrupt (vector no.: 239)
TXI12 interrupt (vector no.: 240)
TEI12 interrupt (vector no.: 241)
ERI11 interrupt (vector no.: 250)
RXI11 interrupt (vector no.: 251)
TXI11 interrupt (vector no.: 252)
TEI11 interrupt (vector no.: 253)

RX64M, RX71M RXI0 interrupt (vector no.: 58)

TXI0 interrupt (vector no.: 59)
RXI1 interrupt (vector no.: 60)
TXI1 interrupt (vector no.: 61)
RXI2 interrupt (vector no.: 62)
TXI2 interrupt (vector no.: 63)
RXI3 interrupt (vector no.: 80)
TXI3 interrupt (vector no.: 81)
RXI4 interrupt (vector no.: 82)
TXI4 interrupt (vector no.: 83)
RXI5 interrupt (vector no.: 84)
TXI5 interrupt (vector no.: 85)
RXI6 interrupt (vector no.: 86)
TXI6 interrupt (vector no.: 87)
RXI7 interrupt (vector no.: 98)
TXI7 interrupt (vector no.: 99)
RXI12 interrupt (vector no.: 116)
TXI12 interrupt (vector no.: 117)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 11 of 122
Jun.12.23

Device Interrupt Vector
RX64M, RX71M GROUPBL0 interrupt (vector no.: 110)

TEI0 interrupt (group interrupt source no.: 0)
ERI0 interrupt (group interrupt source no.: 1)
TEI1 interrupt (group interrupt source no.: 2)
ERI1 interrupt (group interrupt source no.: 3)
TEI2 interrupt (group interrupt source no.: 4)
ERI2 interrupt (group interrupt source no.: 5)
TEI3 interrupt (group interrupt source no.: 6)
ERI3 interrupt (group interrupt source no.: 7)
TEI4 interrupt (group interrupt source no.: 8)
ERI4 interrupt (group interrupt source no.: 9)
TEI5 interrupt (group interrupt source no.: 10)
ERI5 interrupt (group interrupt source no.: 11)
TEI6 interrupt (group interrupt source no.: 12)
ERI6 interrupt (group interrupt source no.: 13)
TEI7 interrupt (group interrupt source no.: 14)
ERI7 interrupt (group interrupt source no.: 15)
TEI12 interrupt (group interrupt source no.: 16)
ERI12 interrupt (group interrupt source no.: 17)

RX65N, RX671, RX660 RXI0 interrupt (vector no.: 58)
TXI0 interrupt (vector no.: 59)
RXI1 interrupt (vector no.: 60)
TXI1 interrupt (vector no.: 61)
RXI2 interrupt (vector no.: 62)
TXI2 interrupt (vector no.: 63)
RXI3 interrupt (vector no.: 80)
TXI3 interrupt (vector no.: 81)
RXI4 interrupt (vector no.: 82)
TXI4 interrupt (vector no.: 83)
RXI5 interrupt (vector no.: 84)
TXI5 interrupt (vector no.: 85)
RXI6 interrupt (vector no.: 86)
TXI6 interrupt (vector no.: 87)
RXI7 interrupt (vector no.: 98)
TXI7 interrupt (vector no.: 99)
RXI8 interrupt (vector no.: 100)
TXI8 interrupt (vector no.: 101)
RXI9 interrupt (vector no.: 102)
TXI9 interrupt (vector no.: 103)
RXI10 interrupt (vector no.: 104)
TXI10 interrupt (vector no.: 105)
RXI11 interrupt (vector no.: 114)
TXI11 interrupt (vector no.: 115)
RXI12 interrupt (vector no.: 116)
TXI12 interrupt (vector no.: 117)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 12 of 122
Jun.12.23

Device Interrupt Vector
RX65N, RX671, RX660 GROUPBL0 interrupt (vector no.: 110)

TEI0 interrupt (group interrupt source no.: 0)
ERI0 interrupt (group interrupt source no.: 1)
TEI1 interrupt (group interrupt source no.: 2)
ERI1 interrupt (group interrupt source no.: 3)
TEI2 interrupt (group interrupt source no.: 4)
ERI2 interrupt (group interrupt source no.: 5)
TEI3 interrupt (group interrupt source no.: 6)
ERI3 interrupt (group interrupt source no.: 7)
TEI4 interrupt (group interrupt source no.: 8)
ERI4 interrupt (group interrupt source no.: 9)
TEI5 interrupt (group interrupt source no.: 10)
ERI5 interrupt (group interrupt source no.: 11)
TEI6 interrupt (group interrupt source no.: 12)
ERI6 interrupt (group interrupt source no.: 13)
TEI7 interrupt (group interrupt source no.: 14)
ERI7 interrupt (group interrupt source no.: 15)
TEI12 interrupt (group interrupt source no.: 16)
ERI12 interrupt (group interrupt source no.: 17)
GROUPBL1 interrupt (vector no.: 111)
TEI8 interrupt (group interrupt source no.: 24)
ERI8 interrupt (group interrupt source no.: 25)
TEI9 interrupt (group interrupt source no.: 26)
ERI9 interrupt (group interrupt source no.: 27)
GROUPAL0 interrupt (vector no.: 112)
TEI10 interrupt (group interrupt source no.: 8)
ERI10 interrupt (group interrupt source no.: 9)
TEI11 interrupt (group interrupt source no.: 12)
ERI11 interrupt (group interrupt source no.: 13)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 13 of 122
Jun.12.23

Device Interrupt Vector
RX66T, RX72T RXI1 interrupt (vector no.: 60)

TXI1 interrupt (vector no.: 61)
RXI5 interrupt (vector no.: 84)
TXI5 interrupt (vector no.: 85)
RXI6 interrupt (vector no.: 86)
TXI6 interrupt (vector no.: 87)
RXI8 interrupt (vector no.: 100)
TXI8 interrupt (vector no.: 101)
RXI9 interrupt (vector no.: 102)
TXI9 interrupt (vector no.: 103)
RXI11 interrupt (vector no.: 114)
TXI11 interrupt (vector no.: 115)
RXI12 interrupt (vector no.: 116)
TXI12 interrupt (vector no.: 117)
GROUPBL0 interrupt (vector no.: 110)
• TEI1 interrupt (group interrupt source no.: 2)
• ERI1 interrupt (group interrupt source no.: 3)
• TEI5 interrupt (group interrupt source no.: 10)
• ERI5 interrupt (group interrupt source no.: 11)
• TEI6 interrupt (group interrupt source no.: 12)
• ERI6 interrupt (group interrupt source no.: 13)
• TEI12 interrupt (group interrupt source no.: 16)
• ERI12 interrupt (group interrupt source no.: 17)
GROUPBL1 interrupt (vector no.: 111)
• TEI8 interrupt (group interrupt source no.: 24)
• ERI8 interrupt (group interrupt source no.: 25)
• TEI9 interrupt (group interrupt source no.: 26)
• ERI9 interrupt (group interrupt source no.: 27)
GROUPAL0 interrupt (vector no.: 112)
• TEI11 interrupt (group interrupt source no.: 12)
• ERI11 interrupt (group interrupt source no.: 13)

RX72M, RX72N, RX66N RXI0 interrupt (vector no.: 58)
TXI0 interrupt (vector no.: 59)
RXI1 interrupt (vector no.: 60)
TXI1 interrupt (vector no.: 61)
RXI2 interrupt (vector no.: 62)
TXI2 interrupt (vector no.: 63)
RXI3 interrupt (vector no.: 80)
TXI3 interrupt (vector no.: 81)
RXI4 interrupt (vector no.: 82)
TXI4 interrupt (vector no.: 83)
RXI5 interrupt (vector no.: 84)
TXI5 interrupt (vector no.: 85)
RXI6 interrupt (vector no.: 86)
TXI6 interrupt (vector no.: 87)
RXI7 interrupt (vector no.: 98)
TXI7 interrupt (vector no.: 99)
RXI8 interrupt (vector no.: 100)
TXI8 interrupt (vector no.: 101)
RXI9 interrupt (vector no.: 102)
TXI9 interrupt (vector no.: 103)
RXI10 interrupt (vector no.: 104)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 14 of 122
Jun.12.23

TXI10 interrupt (vector no.: 105)
RXI11 interrupt (vector no.: 114)
TXI11 interrupt (vector no.: 115)
RXI12 interrupt (vector no.: 116)
TXI12 interrupt (vector no.: 117)

Device Interrupt Vector
RX72M, RX72N, RX66N GROUPBL0 interrupt (vector no.: 110)

TEI0 interrupt (group interrupt source no.: 0)
ERI0 interrupt (group interrupt source no.: 1)
TEI1 interrupt (group interrupt source no.: 2)
ERI1 interrupt (group interrupt source no.: 3)
TEI2 interrupt (group interrupt source no.: 4)
ERI2 interrupt (group interrupt source no.: 5)
TEI3 interrupt (group interrupt source no.: 6)
ERI3 interrupt (group interrupt source no.: 7)
TEI4 interrupt (group interrupt source no.: 8)
ERI4 interrupt (group interrupt source no.: 9)
TEI5 interrupt (group interrupt source no.: 10)
ERI5 interrupt (group interrupt source no.: 11)
TEI6 interrupt (group interrupt source no.: 12)
ERI6 interrupt (group interrupt source no.: 13)
TEI12 interrupt (group interrupt source no.: 16)
ERI12 interrupt (group interrupt source no.: 17)
GROUPAL0 interrupt (vector no.: 112)
TEI7 interrupt (group interrupt source no.: 22)
ERI7 interrupt (group interrupt source no.: 23)
TEI8 interrupt (group interrupt source no.: 0)
ERI8 interrupt (group interrupt source no.: 1)
TEI9 interrupt (group interrupt source no.: 4)
ERI9 interrupt (group interrupt source no.: 5)
TEI10 interrupt (group interrupt source no.: 8)
ERI10 interrupt (group interrupt source no.: 9)
TEI11 interrupt (group interrupt source no.: 12)
ERI11 interrupt (group interrupt source no.: 13)

RX26T RXI1 interrupt (vector no.: 60)
TXI1 interrupt (vector no.: 61)
RXI5 interrupt (vector no.: 84)
TXI5 interrupt (vector no.: 85)
RXI6 interrupt (vector no.: 86)
TXI6 interrupt (vector no.: 87)
RXI12 interrupt (vector no.: 116)
TXI12 interrupt (vector no.: 117)
GROUPBL0 interrupt (vector no.: 110)
• TEI1 interrupt (group interrupt source no.: 2)
• ERI1 interrupt (group interrupt source no.: 3)
• TEI5 interrupt (group interrupt source no.: 10)
• ERI5 interrupt (group interrupt source no.: 11)
• TEI6 interrupt (group interrupt source no.: 12)
• ERI6 interrupt (group interrupt source no.: 13)
• TEI12 interrupt (group interrupt source no.: 16)
• ERI12 interrupt (group interrupt source no.: 17)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 15 of 122
Jun.12.23

Device Interrupt Vector
RX23E-B ERI0 interrupt (vector no.: 214)

RXI0 interrupt (vector no.: 215)
TXI0 interrupt (vector no.: 216)
TEI0 interrupt (vector no.: 217)
ERI1 interrupt (vector no.: 218)
RXI1 interrupt (vector no.: 219)
TXI1 interrupt (vector no.: 220)
TEI1 interrupt (vector no.: 221)
ERI5 interrupt (vector no.: 222)
RXI5 interrupt (vector no.: 223)
TXI5 interrupt (vector no.: 224)
TEI5 interrupt (vector no.: 225)
ERI6 interrupt (vector no.: 226)
RXI6 interrupt (vector no.: 227)
TXI6 interrupt (vector no.: 228)
TEI6 interrupt (vector no.: 229)
ERI8 interrupt (vector no.: 230)
RXI8 interrupt (vector no.: 231)
TXI8 interrupt (vector no.: 232)
TEI8 interrupt (vector no.: 233)
ERI9 interrupt (vector no.: 234)
RXI9 interrupt (vector no.: 235)
TXI9 interrupt (vector no.: 236)
TEI9 interrupt (vector no.: 237)
ERI12 interrupt (vector no.: 238)
RXI12 interrupt (vector no.: 239)
TXI12 interrupt (vector no.: 240)
TEI12 interrupt (vector no.: 241)

2.6 Header Files
All API calls and their supporting interface definitions are located in r_sci_rx_if.h.

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 16 of 122
Jun.12.23

2.8 Configuration Overview
The configuration option settings of this module are located in r_sci_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_sci_rx_config.h

SCI_CFG_PARAM_CHECKING_ENABLE 1

1: Parameter checking is included in the build.
0: Parameter checking is omitted from the build.
Setting this #define to
BSP_CFG_PARAM_CHECKING_ENABLE utilizes
the system default setting.

SCI_CFG_ASYNC_INCLUDED 1
SCI_CFG_SYNC_INCLUDED 0
SCI_CFG_SSPI_INCLUDED 0
SCI_CFG_IRDA_INCLUDED 0

These #defines are used to include code specific to
their mode of operation. A value of 1 means that the
supporting code will be included. Use a value of 0
for unused modes to reduce overall code size.

SCI_CFG_USE_CIRCULAR_BUFFER 0

This #define is used only with Asynchronous mode.
A value of 1 means that the circular buffer will be
used. Use a value of 0 if circular buffer is not used.

Note: Set BSP_CFG_RUN_IN_USER_MODE = 0
and BYTEQ_CFG_PROTECT_QUEUE = 1 when
setting SCI_CFG_USE_CIRCULAR_BUFFER = 1. If
not, build error would occur.

SCI_CFG_DUMMY_TX_BYTE 0xFF This #define is used only with SSPI and
Synchronous mode. It is the value of dummy data
which is clocked out for each byte clocked in during
the R_SCI_Receive() function call.

SCI_CFG_CH0_INCLUDED 0
SCI_CFG_CH1_INCLUDED 1
SCI_CFG_CH2_INCLUDED 0
SCI_CFG_CH3_INCLUDED 0
SCI_CFG_CH4_INCLUDED 0
SCI_CFG_CH5_INCLUDED 0
SCI_CFG_CH6_INCLUDED 0
SCI_CFG_CH7_INCLUDED 0
SCI_CFG_CH8_INCLUDED 0
SCI_CFG_CH9_INCLUDED 0
SCI_CFG_CH10_INCLUDED 0
SCI_CFG_CH11_INCLUDED 0
SCI_CFG_CH12_INCLUDED 0

Each channel has associated with it transmit and
receive buffers, counters, interrupts, and other
program and RAM resources. Setting a #define to 1
allocates resources for that channel.
Note that only CH1 is enabled by default. Be
sure to enable the channels you will be using in
the config file.

SCI_CFG_CH0_EN_TXI_NESTED_INT 0
SCI_CFG_CH1_EN_TXI_NESTED_INT 0
SCI_CFG_CH2_EN_TXI_NESTED_INT 0
SCI_CFG_CH3_EN_TXI_NESTED_INT 0
SCI_CFG_CH4_EN_TXI_NESTED_INT 0
SCI_CFG_CH5_EN_TXI_NESTED_INT 0
SCI_CFG_CH6_EN_TXI_NESTED_INT 0
SCI_CFG_CH7_EN_TXI_NESTED_INT 0
SCI_CFG_CH8_EN_TXI_NESTED_INT 0
SCI_CFG_CH9_EN_TXI_NESTED_INT 0
SCI_CFG_CH10_EN_TXI_NESTED_INT 0
SCI_CFG_CH11_EN_TXI_NESTED_INT 0
SCI_CFG_CH12_EN_TXI_NESTED_INT 0

Specify whether to include code for TXI nested
interrupt for each SCI channel.
0: Not included
1: Included

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 17 of 122
Jun.12.23

Configuration options in r_sci_rx_config.h
SCI_CFG_CH0_EN_RXI_NESTED_INT 0
SCI_CFG_CH1_EN_RXI_NESTED_INT 0
SCI_CFG_CH2_EN_RXI_NESTED_INT 0
SCI_CFG_CH3_EN_RXI_NESTED_INT 0
SCI_CFG_CH4_EN_RXI_NESTED_INT 0
SCI_CFG_CH5_EN_RXI_NESTED_INT 0
SCI_CFG_CH6_EN_RXI_NESTED_INT 0
SCI_CFG_CH7_EN_RXI_NESTED_INT 0
SCI_CFG_CH8_EN_RXI_NESTED_INT 0
SCI_CFG_CH9_EN_RXI_NESTED_INT 0
SCI_CFG_CH10_EN_RXI_NESTED_INT 0
SCI_CFG_CH11_EN_RXI_NESTED_INT 0
SCI_CFG_CH12_EN_RXI_NESTED_INT 0

Specify whether to include code for RXI nested
interrupt for each SCI channel.
0: Not included
1: Included

SCI_CFG_CH0_EN_TEI_NESTED_INT 0
SCI_CFG_CH1_EN_TEI_NESTED_INT 0
SCI_CFG_CH2_EN_TEI_NESTED_INT 0
SCI_CFG_CH3_EN_TEI_NESTED_INT 0
SCI_CFG_CH4_EN_TEI_NESTED_INT 0
SCI_CFG_CH5_EN_TEI_NESTED_INT 0
SCI_CFG_CH6_EN_TEI_NESTED_INT 0
SCI_CFG_CH7_EN_TEI_NESTED_INT 0
SCI_CFG_CH8_EN_TEI_NESTED_INT 0
SCI_CFG_CH9_EN_TEI_NESTED_INT 0
SCI_CFG_CH10_EN_TEI_NESTED_INT 0
SCI_CFG_CH11_EN_TEI_NESTED_INT 0
SCI_CFG_CH12_EN_TEI_NESTED_INT 0

Specify whether to include code for TEI nested
interrupt for each SCI channel.
0: Not included
1: Included

SCI_CFG_CH0_EN_ERI_NESTED_INT 0
SCI_CFG_CH1_EN_ERI_NESTED_INT 0
SCI_CFG_CH2_EN_ERI_NESTED_INT 0
SCI_CFG_CH3_EN_ERI_NESTED_INT 0
SCI_CFG_CH4_EN_ERI_NESTED_INT 0
SCI_CFG_CH5_EN_ERI_NESTED_INT 0
SCI_CFG_CH6_EN_ERI_NESTED_INT 0
SCI_CFG_CH7_EN_ERI_NESTED_INT 0
SCI_CFG_CH8_EN_ERI_NESTED_INT 0
SCI_CFG_CH9_EN_ERI_NESTED_INT 0
SCI_CFG_CH10_EN_ERI_NESTED_INT 0
SCI_CFG_CH11_EN_ERI_NESTED_INT 0
SCI_CFG_CH12_EN_ERI_NESTED_INT 0

Specify whether to include code for ERI nested
interrupt for each SCI channel.
0: Not included
1: Included

SCI_CFG_CH0_TX_BUFSIZ 80
SCI_CFG_CH1_TX_BUFSIZ 80
SCI_CFG_CH2_TX_BUFSIZ 80
SCI_CFG_CH3_TX_BUFSIZ 80
SCI_CFG_CH4_TX_BUFSIZ 80
SCI_CFG_CH5_TX_BUFSIZ 80
SCI_CFG_CH6_TX_BUFSIZ 80
SCI_CFG_CH7_TX_BUFSIZ 80
SCI_CFG_CH8_TX_BUFSIZ 80
SCI_CFG_CH9_TX_BUFSIZ 80
SCI_CFG_CH10_TX_BUFSIZ 80
SCI_CFG_CH11_TX_BUFSIZ 80
SCI_CFG_CH12_TX_BUFSIZ 80

These #defines specify the size of the buffer to be
used in Asynchronous mode for the transmit queue
on each channel. If the corresponding
SCI_CFG_CHn_INCLUDED is set to 0, or
SCI_CFG_ASYNC_INCLUDED is set to 0, the
buffer is not allocated.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 18 of 122
Jun.12.23

Configuration options in r_sci_rx_config.h
SCI_CFG_CH0_RX_BUFSIZ 80
SCI_CFG_CH1_RX_BUFSIZ 80
SCI_CFG_CH2_RX_BUFSIZ 80
SCI_CFG_CH3_RX_BUFSIZ 80
SCI_CFG_CH4_RX_BUFSIZ 80
SCI_CFG_CH5_RX_BUFSIZ 80
SCI_CFG_CH6_RX_BUFSIZ 80
SCI_CFG_CH7_RX_BUFSIZ 80
SCI_CFG_CH8_RX_BUFSIZ 80
SCI_CFG_CH9_RX_BUFSIZ 80
SCI_CFG_CH10_RX_BUFSIZ 80
SCI_CFG_CH11_RX_BUFSIZ 80
SCI_CFG_CH12_RX_BUFSIZ 80

These #defines specify the size of the buffer to be
used in Asynchronous mode for the receive queue
on each channel. If the corresponding
SCI_CFG_CHn_INCLUDED is set to 0, or
SCI_CFG_ASYNC_INCLUDED is set to 0, the
buffer is not allocated.

SCI_CFG_TEI_INCLUDED 0

Setting this #define to 1 causes the Transmit Buffer
Empty interrupt code to be included. This interrupt
occurs when the last bit of the last byte of data has
been sent. The interrupt calls the user's callback
function (specified in R_SCI_Open()) and passes it
an SCI_EVT_TEI event.

SCI_CFG_RXERR_PRIORITY 3

RX63N/631 ONLY. This sets the Group12 receiver
error interrupt priority level. 1 is the lowest priority
and 15 is the highest. This interrupt handles
overrun, framing, and parity errors for all channels.

SCI_CFG_ERI_TEI_PRIORITY 3

RX64M/RX71M/RX65N/RX72M/RX72N/RX66N/RX6
71/RX660 ONLY. This sets the receiver error
interrupt (ERI) and transmit end interrupt (TEI)
priority level. 1 is the lowest priority and 15 is the
highest. The ERI interrupt handles overrun, framing,
and parity errors for all channels. The TEI interrupt
indicates when the last bit has been transmitted and
the transmitter is idle (Asynchronous mode).

SCI_CFG_CH7_FIFO_INCLUDED 0
SCI_CFG_CH8_FIFO_INCLUDED 0
SCI_CFG_CH9_FIFO_INCLUDED 0
SCI_CFG_CH10_FIFO_INCLUDED 0
SCI_CFG_CH11_FIFO_INCLUDED 0

ONLY MCUs which has the SCI module (SCIi) with
FIFO function.
1: Processing regarding the FIFO function is
included in the build
0: processing regarding the FIFO function is omitted
from the build

SCI_CFG_CH7_TX_FIFO_THRESH 8
SCI_CFG_CH8_TX_FIFO_THRESH 8
SCI_CFG_CH9_TX_FIFO_THRESH 8
SCI_CFG_CH10_TX_FIFO_THRESH 8
SCI_CFG_CH11_TX_FIFO_THRESH 8

ONLY MCUs which has the SCI module (SCIi) with
FIFO function.
When the SCI operating mode is clock synchronous
mode or simple SPI mode, set the values same as
the receive FIFO threshold value.
0 to 15: Specifies the threshold value of the transmit
FIFO.

SCI_CFG_CH7_RX_FIFO_THRESH 8
SCI_CFG_CH8_RX_FIFO_THRESH 8
SCI_CFG_CH9_RX_FIFO_THRESH 8
SCI_CFG_CH10_RX_FIFO_THRESH 8
SCI_CFG_CH11_RX_FIFO_THRESH 8

ONLY MCUs which has the SCI module (SCIi) with
FIFO function.
1 to 15: Specifies the threshold value of the receive
FIFO.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 19 of 122
Jun.12.23

Configuration options in r_sci_rx_config.h
SCI_CFG_CH0_DATA_MATCH_INCLUDED 0
SCI_CFG_CH1_DATA_MATCH_INCLUDED 0
SCI_CFG_CH2_DATA_MATCH_INCLUDED 0
SCI_CFG_CH3_DATA_MATCH_INCLUDED 0
SCI_CFG_CH4_DATA_MATCH_INCLUDED 0
SCI_CFG_CH5_DATA_MATCH_INCLUDED 0
SCI_CFG_CH6_DATA_MATCH_INCLUDED 0
SCI_CFG_CH7_DATA_MATCH_INCLUDED 0
SCI_CFG_CH8_DATA_MATCH_INCLUDED 0
SCI_CFG_CH9_DATA_MATCH_INCLUDED 0
SCI_CFG_CH10_DATA_MATCH_INCLUDED 0
SCI_CFG_CH11_DATA_MATCH_INCLUDED 0

RX65N/RX66T/RX72T/RX72M/RX72N/RX66N/RX6
71/RX660 ONLY. It has the SCI module (SCIi, SCIj
or SCIm, SCIk) with Data match function.
1: Processing regarding the data match function is
included in the build
0: processing regarding the data match function is
omitted from the build

SCI_CFG_CH0_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH1_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH2_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH3_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH4_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH5_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH6_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH7_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH8_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH9_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH10_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH11_TX_DTC_DMACA_ENABLE 0
SCI_CFG_CH12_TX_DTC_DMACA_ENABLE 0

Choose method to transfer data for SCI channel
0 : Using CPU to transfer data
1 : Using DTC to transfer data
2 : Using DMAC to transfer data

SCI_CFG_CH0_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH1_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH2_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH3_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH4_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH5_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH6_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH7_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH8_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH9_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH10_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH11_RX_DTC_DMACA_ENABLE 0
SCI_CFG_CH12_RX_DTC_DMACA_ENABLE 0

Choose method to transfer data for SCI channel
0 : Using CPU to transfer data
1 : Using DTC to transfer data
2 : Using DMAC to transfer data

SCI_CFG_CH0_TX_DMACA_CH_NUM 0
SCI_CFG_CH1_TX_DMACA_CH_NUM 0
SCI_CFG_CH2_TX_DMACA_CH_NUM 0
SCI_CFG_CH3_TX_DMACA_CH_NUM 0
SCI_CFG_CH4_TX_DMACA_CH_NUM 0
SCI_CFG_CH5_TX_DMACA_CH_NUM 0
SCI_CFG_CH6_TX_DMACA_CH_NUM 0
SCI_CFG_CH7_TX_DMACA_CH_NUM 0
SCI_CFG_CH8_TX_DMACA_CH_NUM 0
SCI_CFG_CH9_TX_DMACA_CH_NUM 0
SCI_CFG_CH10_TX_DMACA_CH_NUM 0
SCI_CFG_CH11_TX_DMACA_CH_NUM 0
SCI_CFG_CH12_TX_DMACA_CH_NUM 0

ONLY MCUs which has the DMAC function
(Refer 1.2 Section)
0 to 7: Specifies DMAC channel for SCI TX

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 20 of 122
Jun.12.23

Configuration options in r_sci_rx_config.h
SCI_CFG_CH0_RX_DMACA_CH_NUM 0
SCI_CFG_CH1_RX_DMACA_CH_NUM 0
SCI_CFG_CH2_RX_DMACA_CH_NUM 0
SCI_CFG_CH3_RX_DMACA_CH_NUM 0
SCI_CFG_CH4_RX_DMACA_CH_NUM 0
SCI_CFG_CH5_RX_DMACA_CH_NUM 0
SCI_CFG_CH6_RX_DMACA_CH_NUM 0
SCI_CFG_CH7_RX_DMACA_CH_NUM 0
SCI_CFG_CH8_RX_DMACA_CH_NUM 0
SCI_CFG_CH9_RX_DMACA_CH_NUM 0
SCI_CFG_CH10_RX_DMACA_CH_NUM 0
SCI_CFG_CH11_RX_DMACA_CH_NUM 0
SCI_CFG_CH12_RX_DMACA_CH_NUM 0

ONLY MCUs which has the DMAC function
(Refer 1.2 Section)
0 to 7: Specifies DMAC channel for SCI RX

SCI_CFG_CH0_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…..0
SCI_CFG_CH1_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…..0
SCI_CFG_CH2_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…..0
SCI_CFG_CH3_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED….. 0
SCI_CFG_CH4_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED….0
SCI_CFG_CH5_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…. 0
SCI_CFG_CH6_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…. 0
SCI_CFG_CH7_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…. 0
SCI_CFG_CH8_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…. 0
SCI_CFG_CH9_TX_SIGNAL_TRANSITION_TIMING
_INCLUDED…. 0
SCI_CFG_CH10_TX_SIGNAL_TRANSITION_TIMIN
G_INCLUDED…. 0
SCI_CFG_CH11_TX_SIGNAL_TRANSITION_TIMIN
G_INCLUDED…. 0

ONLY MCUs which has the SCI module with
transition timing function.
1: Processing regarding the transition timing function
is included in the build.
0: processing regarding the transition timing function
is omitted from the build.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 21 of 122
Jun.12.23

Configuration options in r_sci_rx_config.h
SCI_CFG_CH0_RX_DATA_SAMPLING_TIMING_IN
CLUDED....0
SCI_CFG_CH1_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH2_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH3_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH4_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH5_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH6_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH7_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH8_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0)
SCI_CFG_CH9_RX_DATA_SAMPLING_TIMING_IN
CLUDED….0
SCI_CFG_CH10_RX_DATA_SAMPLING_TIMING_I
NCLUDED….0
SCI_CFG_CH11_RX_DATA_SAMPLING_TIMING_I
NCLUDED….0

ONLY MCUs which has the SCI module with data
sampling function.
1: Processing regarding the data sampling function
is included in the build.
0: processing regarding the data sampling function
is omitted from the build.

SCI_CFG_CH5_IRDA_INCLUDED 0

RX113/RX23W/ RX230/RX231 ONLY. It has the
SCI module with IrDA data communication
waveform.
1: Processing regarding the IrDA function is included
in the build
0: processing regarding the IrDA function is omitted
from the build

SCI_CFG_CH5_IRDA_IRTXD_INACTIVE_LEVEL 1

Indicates the level of the selected IRTXD pin
inactive state.
- When this is set to 0, the selected IRTXD pin
outputs low.
- When this is set to 1, the selected IRTXD pin
outputs high.

SCI_CFG_CH5_IRDA_IRRXD_INACTIVE_LEVEL 1

Indicates the level of the selected IRRXD pin
inactive state.
- When this is set to 0, the selected IRRXD pin
outputs low.
- When this is set to 1, the selected IRRXD pin
outputs high.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 22 of 122
Jun.12.23

2.9 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.4, Supported Toolchain. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 23 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX130

Asynchronous mode ROM 4116 bytes 3774 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 3845 bytes 3441 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5143 bytes 4657 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 100 bytes

RX13T

Asynchronous mode ROM 2917 bytes 2664 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2647 bytes 2341 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 3946 bytes 3594 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Asynchronous mode +
DTC

ROM 3591 bytes 3258 bytes 1 channel
used

RAM 446 bytes 446 bytes 1 channel
used

Clock synchronous
mode + DTC

ROM 3434 bytes 3045 bytes 1 channel
used

RAM 290 bytes 290 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI) +
DTC

ROM 4907 bytes 4432 bytes Total 2
channels
used

RAM 706 bytes 706 bytes Total 2
channels
used

Maximum stack usage 160 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 24 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX231

Asynchronous mode ROM 3496 bytes 2573 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2704 bytes 2231 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

IrDA interface mode ROM 2768 bytes 2402 bytes 1 channel
used

RAM 196 bytes 196 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 4067 bytes 3498 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX23W

Asynchronous mode ROM 2892 bytes 2559 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2600 bytes 2217 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

IrDA interface mode ROM 2664 bytes 2388 bytes 1 channel
used

RAM 196 bytes 196 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 4003 bytes 3484 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 25 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX23E-A

Asynchronous mode ROM 2725 bytes 2400 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous mode +
Circular buffer

ROM 2724 bytes 2412 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2468 bytes 2094 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 3751 bytes 3282 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX64M

Asynchronous mode ROM 2861 bytes 2500 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2598 bytes 2185 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 3894 bytes 3389 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 80 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 26 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX65N

Asynchronous mode ROM 2852 bytes 2488 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2586 bytes 2173 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 3885 bytes 3377 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Asynchronous mode +
DTC

ROM 3642 bytes 3280 bytes 1 channel
used

RAM 446 bytes 446 bytes 1 channel
used

Maximum stack usage 180 bytes
FIFO mode +
Asynchronous mode

ROM 3758 bytes 3348 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3714 bytes 3223 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 5306 bytes 4723 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode + DMAC

ROM 8865 bytes 8300 bytes Total 2
channels
used

RAM 530 bytes 530 bytes Total 2
channels
used

Maximum stack usage 204 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 27 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX66T

Asynchronous mode ROM 2845 bytes 2481 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2579 bytes 2166 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 3768 bytes 3260 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 80 bytes

FIFO mode +
Asynchronous mode

ROM 3748 bytes 3338 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3705 bytes 3214 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode

ROM 5143 bytes 4560 bytes Total 2
channels
used

RAM 364 bytes 364 bytes Total 2
channels
used

Maximum stack usage 80 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 28 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX72T

Asynchronous mode ROM 2845 bytes 2481 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2579 bytes 2166 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 3732 bytes 3224 bytes Total 2
channels
used

RAM 356 bytes 356 bytes Total 2
channels
used

Maximum stack usage 80 bytes

FIFO mode +
Asynchronous mode

ROM 3748 bytes 3338 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3705 bytes 3214 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode

ROM 5166 bytes 4583 bytes Total 2
channels
used

RAM 364 bytes 364 bytes Total 2
channels
used

Maximum stack usage 80 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 29 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX72M

Asynchronous mode ROM 2866 bytes 2502 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2600 bytes 2187 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 3899 bytes 3391 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Asynchronous mode +
DTC

ROM 3656 bytes 3292 bytes 1 channel
used

 RAM 446 bytes 446 bytes 1 channel
used

Maximum stack usage 180 bytes

FIFO mode +
Asynchronous mode

ROM 3769 bytes 3359 bytes 1 channel
used

RAM 227 bytes 227 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3726 bytes 3235 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 5318 bytes 4735 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode + DMAC

ROM 8877 bytes 8312 bytes Total 2
channels
used

RAM 530 bytes 530 bytes Total 2
channels
used

Maximum stack usage 204 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 30 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX72N

Asynchronous mode ROM 2922 bytes 2558 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2657 bytes 2244 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 3956 bytes 3448 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 88 bytes

FIFO mode +
Asynchronous mode

ROM 3825 bytes 3415 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3769 bytes 3278 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode

ROM 5364 bytes 4781 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage 100 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 31 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX66N

Asynchronous mode ROM 2922 bytes 2502 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2657 bytes 2244 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 3956 bytes 3448 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 92 bytes

FIFO mode +
Asynchronous mode

ROM 3825 bytes 3415 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3769 bytes 3278 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 5364 bytes 4781 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage 100 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 32 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX671

Asynchronous mode ROM 3226 bytes 3970 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous mode +
Circular buffer

ROM 3325 bytes 3982 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2858 bytes 2458 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 4391 bytes 3891 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

FIFO mode +
Asynchronous mode

ROM 4263 bytes 3860 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Asynchronous mode +
Circular buffer

ROM 4250 bytes 3860 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3943 bytes 3476 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode

ROM 5817 bytes 5248 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 33 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX140

Asynchronous mode ROM 3080 bytes 2751 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous mode +
Circular buffer

ROM 3087 bytes 2757 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2614 bytes 2240 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 4212 bytes 3738 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 34 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX660

Asynchronous mode ROM 3212 bytes 2860 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous mode +
Circular buffer

ROM 3272 bytes 2940 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2906 bytes 2515 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 4390 bytes 3904 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

FIFO mode +
Asynchronous mode

ROM 4283 bytes 3905 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Asynchronous mode +
Circular buffer

ROM 4197 bytes 3819 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 3992 bytes 3545 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode +

Clock synchronous
mode

ROM 5825 bytes 5281 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 35 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX26T

Asynchronous mode ROM 3219 bytes 2954 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous mode +
Circular buffer

ROM 3366 bytes 3034 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 2811 bytes 2400 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode +

Clock synchronous
mode (or simple SPI)

ROM 4384 bytes 3878 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 84 bytes

RX23E-B

Asynchronous
mode

ROM 2926 bytes 2577 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous
mode + Circular
buffer

ROM 2986 bytes 2657 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock
synchronous
mode

ROM 2671 bytes 2259 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous
mode +

Clock
synchronous
mode (or simple
SPI)

ROM 4065 bytes 3561 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage 72 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 36 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX130

Asynchronous mode ROM 6960 bytes 6400 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 6612 bytes 5988 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 8836 bytes 8020 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX13T

Asynchronous mode ROM 7400 bytes 6776 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 6996 bytes 6484 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 9376 bytes 8584 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Asynchronous mode
+
DTC

ROM 8748 bytes 8140 bytes 1 channel
used

RAM 448 bytes 448 bytes 1 channel
used

Clock synchronous
mode + DTC

ROM 8552 bytes 7872 bytes 1 channel
used

RAM 294 bytes 294 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)
+ DTC

ROM 11368 bytes 10464 bytes Total 2
channels
used

RAM 708 bytes 708 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 37 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX231

Asynchronous mode ROM 5568 bytes 4968 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 5116 bytes 4428 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

IrDA interface mode ROM 5748 bytes 5244 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 7724 bytes 6812 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX23E-A

Asynchronous mode ROM 5456 bytes 4856 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Asynchronous mode
+ Circular buffer

ROM 5440 bytes 4824 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 5012 bytes 4324 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 7724 bytes 6820 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 38 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX64M

Asynchronous mode ROM 5048 bytes 4432 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 4708 bytes 4044 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+

Clock synchronous
mode (or simple SPI)

ROM 6964 bytes 6100 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 39 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX65N

Asynchronous mode ROM 5056 bytes 4424 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 4700 bytes 4036 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+

Clock synchronous
mode (or simple SPI)

ROM 6964 bytes 6092 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

FIFO mode +
Asynchronous mode

ROM 6824 bytes 6112 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 6980 bytes 6164 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+

Clock synchronous
mode

ROM 9732 bytes 8740 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 40 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX66T

Asynchronous mode ROM 5056 bytes 4424 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 4700 bytes 4036 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 6964 bytes 6092 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 6824 bytes 6112 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 6980 bytes 6164 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 9572 bytes 8580 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 41 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX72T

Asynchronous mode ROM 5056 bytes 4424 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 4700 bytes 4036 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 6964 bytes 6092 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 6824 bytes 6112 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 6996 bytes 6164 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 9732 bytes 8740bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 42 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX72M

Asynchronous mode ROM 5520 bytes 4848 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 5124 bytes 4388 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 7620 bytes 6636 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 7400 bytes 6616 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 7564 bytes 6692 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 10620 bytes 9524 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 43 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX72N

Asynchronous mode ROM 5576 bytes 4896 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 5264 bytes 4436 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 7684 bytes 6692 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 7456 bytes 6664 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 7604 bytes 6732 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 10652 bytes 9548 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 44 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX66N

Asynchronous mode ROM 5576 bytes 4896 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock synchronous
mode

ROM 5164 bytes 4436 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 7684 bytes 6692 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage - -
FIFO mode +
Asynchronous mode

ROM 7456 bytes 6664 bytes 1 channel
used

RAM 200 bytes 200 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 7604 bytes 6732 bytes 1 channel
used

RAM 44 bytes 44 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 10652 bytes 9548 bytes Total 2
channels
used

RAM 408 bytes 408 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 45 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX671

Asynchronous mode ROM 6732 bytes 6052bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Asynchronous mode
+ Circular buffer

ROM 6708 bytes 6020 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 5660 bytes 4600 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 8912 bytes 7952 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 8748 bytes 7956 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+ Circular buffer

ROM 8700 bytes 7900 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 8410 bytes 7236 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 12048 bytes 10952 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 46 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX140

Asynchronous mode ROM 6368 bytes 5376bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Asynchronous mode
+ Circular buffer

ROM 6200 bytes 5432 bytes 1 channel
used

RAM 160 bytes 160 bytes 1 channel
used

Clock synchronous
mode

ROM 5136 bytes 4072 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 8480 bytes 7200 bytes Total 2
channels
used

RAM 320 bytes 320 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 47 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX660

Asynchronous mode ROM 6572 bytes 5876 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

Asynchronous mode
+ Circular buffer

ROM 6644 bytes 5932 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

Clock synchronous
mode

ROM 5804 bytes 5028 bytes 1 channel
used

RAM 0 bytes 0 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 8928 bytes 8000 bytes Total 2
channels
used

RAM 384 bytes 384 bytes Total 2
channels
used

Maximum stack usage -
FIFO mode +
Asynchronous mode

ROM 8812 bytes 7996 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+ Circular buffer

ROM 8612 bytes 7804 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

FIFO mode +
Clock synchronous
mode

ROM 8268 bytes 7340 bytes 1 channel
used

RAM 128 bytes 128 bytes 1 channel
used

FIFO mode +
Asynchronous mode
+
Clock synchronous
mode

ROM 12112 bytes 10992 bytes Total 2
channels
used

RAM 384 bytes 384 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 48 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC
With Parameter

Checking
Without

Parameter
Checking

RX26T

Asynchronous mode ROM 4096 bytes 3584 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

Asynchronous mode
+ Circular buffer

ROM 4192 bytes 3664 bytes 1 channel
used

RAM 256 bytes 256 bytes 1 channel
used

Clock synchronous
mode

ROM 3356 bytes 2788 bytes 1 channel
used

RAM 128 bytes 128 bytes 1 channel
used

Asynchronous mode
+
Clock synchronous
mode (or simple SPI)

ROM 5396 bytes 4644 bytes Total 2
channels
used

RAM 384 bytes 384 bytes Total 2
channels
used

Maximum stack usage -

RX23E-B

Asynchronous
mode

ROM 3496 bytes 2992 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Asynchronous
mode + Circular
buffer

ROM 3584 bytes 3088 bytes 1 channel
used

RAM 192 bytes 192 bytes 1 channel
used

Clock
synchronous
mode

ROM 3204 bytes 2644 bytes 1 channel
used

RAM 36 bytes 36 bytes 1 channel
used

Asynchronous
mode +
Clock
synchronous
mode (or simple
SPI)

ROM 4900 bytes 4156 bytes Total 2
channels
used

RAM 392 bytes 392 bytes Total 2
channels
used

Maximum stack usage -

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 49 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX130

Asynchronous mode ROM 4431 bytes 3847 bytes 1 channel used

RAM 576 bytes 576 bytes 1 channel used
Clock synchronous
mode

ROM 3791 bytes 3207 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5797 bytes 4989 bytes Total 2 channels
used

RAM 776 bytes 776 bytes Total 2 channels
used

Maximum stack usage 180 bytes

RX13T

Asynchronous mode ROM 4233 bytes 3671 bytes 1 channel used

RAM 577 bytes 541 bytes 1 channel used
Clock synchronous
mode

ROM 3585 bytes 3025 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5587 bytes 4801 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Asynchronous mode +
DTC

ROM 6259 bytes 5592 bytes 1 channel used

RAM 760 bytes 760 bytes 1 channel used
Clock synchronous
mode + DTC

ROM 5788 bytes 5120 bytes 1 channel used
RAM 219 bytes 219 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)
+ DTC

ROM 7944 bytes 7050 bytes Total 2 channels
used

RAM 1020 bytes 1020 bytes Total 2 channels
used

Maximum stack usage 160 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 50 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX231

Asynchronous mode ROM 4392 bytes 3802 bytes 1 channel used
RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3737 bytes 3153 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

IrDA interface mode ROM 4475 bytes 3945 bytes 1 channel used
RAM 581 bytes 581 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5804 bytes 4990 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 180 bytes

RX23E-A

Asynchronous mode ROM 4005 bytes 3509 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Asynchronous mode +
Circular buffer

ROM 4028 bytes 3524 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous
mode

ROM 3677 bytes 3110 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5371 bytes 4651 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 148 bytes

RX64M

Asynchronous mode ROM 4566 bytes 3962 bytes 1 channel used
RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3935 bytes 3333 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5940 bytes 5112 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 204 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 51 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX65N

Asynchronous mode ROM 4565 bytes 3962 bytes 1 channel used
RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3924 bytes 3329 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5935 bytes 5108 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 204 bytes
FIFO mode +
Asynchronous mode

ROM 5872 bytes 5172 bytes 1 channel used
RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5577 bytes 4875 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 7960 bytes 7026 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 240 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 52 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX66T

Asynchronous mode ROM 4562 bytes 3961 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3925 bytes 3332 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5815 bytes 4990 bytes Total 2 channels
used

RAM 741 bytes 741 bytes Total 2 channels
used

Maximum stack usage 204 bytes

FIFO mode +
Asynchronous mode

ROM 5869 bytes 5171 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5578 bytes 4878 bytes 1 channel used

RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 7837 bytes 6905 bytes Total 2 channels
used

RAM 749 bytes 749 bytes Total 2 channels
used

Maximum stack usage 240 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 53 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX72T

Asynchronous mode ROM 4567 bytes 3962 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3926 bytes 3329 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5940 bytes 5111 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 204 bytes

FIFO mode +
Asynchronous mode

ROM 5893 bytes 5191 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5579 bytes 4875 bytes 1 channel used

RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 7965 bytes 7029 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 240 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 54 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX72M

Asynchronous mode ROM 4482 bytes 3854 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3797 bytes 3192 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5891 bytes 5042 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 264 bytes

FIFO mode +
Asynchronous mode

ROM 5777 bytes 5050 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5438 bytes 4723 bytes 1 channel used

RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 7911 bytes 6952 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 288 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 55 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX72N

Asynchronous mode ROM 4441 bytes 3842 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3800 bytes 3213 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5734 bytes 4911 bytes Total 2 channels
used

RAM 581 bytes 581 bytes Total 2 channels
used

Maximum stack usage 148 bytes

FIFO mode +
Asynchronous mode

ROM 5722 bytes 5026 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5411 bytes 4709 bytes 1 channel used

RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 7794 bytes 6864 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 192 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 56 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX66N

Asynchronous mode ROM 4441 bytes 3838 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3808 bytes 3209 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5815 bytes 4988 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 148 bytes
FIFO mode +
Asynchronous mode

ROM 5722 bytes 5031 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5411 bytes 4713 bytes 1 channel used

RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 7798 bytes 6864 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 192 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 57 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX671

Asynchronous mode ROM 4935 bytes 4311 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Asynchronous mode +
Circular buffer

ROM 4958 bytes 4326 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3950 bytes 3337 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 6271 bytes 5489 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 152 bytes
FIFO mode +
Asynchronous mode

ROM 6309 bytes 5592 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Circular buffer

ROM 6318 bytes 5599 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5487 bytes 4839 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 8365 bytes 7461 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 196 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 58 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX140

Asynchronous mode ROM 4740 bytes 4150 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Asynchronous mode +
Circular buffer

ROM 4835 bytes 4231 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 3811 bytes 3235 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 6228 bytes 5410 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 148 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 59 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX660

Asynchronous mode ROM 4983 bytes 4360 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Asynchronous mode +
Circular buffer

ROM 5096 bytes 4455 bytes 1 channel used

RAM 577 bytes 577 bytes 1 channel used

Clock synchronous
mode

ROM 4010 bytes 3397 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 6619 bytes 5758 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 184 bytes
FIFO mode +
Asynchronous mode

ROM 6551 bytes 5817 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Circular buffer

ROM 6431 bytes 5697 bytes 1 channel used

RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous
mode

ROM 5623 bytes 4905 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode +
Asynchronous mode +
Clock synchronous
mode

ROM 8673 bytes 7703 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 196 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 60 of 122
Jun.12.23

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without

Parameter
Checking

RX26T

Asynchronous mode ROM 5036 bytes 4399 bytes 1 channel used

RAM 769 bytes 769 bytes 1 channel used

Asynchronous mode +
Circular buffer

ROM 5418 bytes 4494 bytes 1 channel used

RAM 769 bytes 769 bytes 1 channel used

Clock synchronous
mode

ROM 3926 bytes 3303 bytes 1 channel used

RAM 72 bytes 72 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 6251 bytes 5386 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 160 bytes

RX23E-B

Asynchronous mode ROM 4060 bytes 3491 bytes 1 channel used

RAM 192 bytes 192 bytes 1 channel used

Asynchronous mode +

Circular buffer

ROM 4169 bytes 3586 bytes 1 channel used

RAM 192 bytes 192 bytes 1 channel used

Clock synchronous

mode

ROM 3765 bytes 3128 bytes 1 channel used

RAM 36 bytes 36 bytes 1 channel used

Asynchronous mode +
Clock synchronous
mode (or simple SPI)

ROM 5435 bytes 4638 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 156 bytes

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 61 of 122
Jun.12.23

RAM requirements vary based on the number of channels configured. Each channel has associated data
structures in RAM. In addition, for Asynchronous mode, each Async channel will have a Transmit queue and
a Receive queue. The buffers for these queues each have a minimum size of 2 bytes, or a total of 4 bytes
per channel. Since the queue buffer sizes are user configurable, the RAM requirement will be increased or
decreased directly by the amount allocated for buffers.

The formula for calculating Async mode RAM requirements is:

Number of channels used (1 to 12) × (Data structure per channel (32 bytes)
 + Transmit queue buffer size (size specified by SCI_CFG_CHn_TX_BUFSIZ)
 + Receive queue buffer size (size specified by SCI_CFG_CHn_RX_BUFSIZ))

* For FIFO mode, the data structure per channel is 36 bytes.

The Sync and SPI mode RAM requirements are number of channels × data structure per channel (fixed at
36 bytes, for FIFO mode, fixed at 40 bytes).

The ROM requirements vary based on the number of channels configured for use. The exact amount varies
depending on the combination of channels selected and the effects of compiler code optimization.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 62 of 122
Jun.12.23

2.10 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is
located in r_sci_rx_if.h as are the prototype declarations of API functions.

Structure for Managing Channels

This structure is to store management information required to control SCI channels. The contents of the
structure vary depending on settings of the configuration option and the device used. Though the user does
not need to care for the contents of the structure, if clock synchronous mode/SSPI mode is used, the number
of data to be processed can be checked with tx_cnt or rx_cnt.

The following shows an example of the structure for RX65N:
typedef struct st_sci_ch_ctrl // Channel management structure
{
sci_ch_rom_t const *rom; // Start address of the SCI register for the
channel
#if (SCI_CFG_IRDA_INCLUDED)
 sci_irda_ch_port_rom_t const *port_rom; // Port setting values for pins
IRTXD and IRRXD
#endif
sci_mode_t mode; // SCI operating mode currently set for the channel
uint32_t baud_rate; // Baud rate currently set for the channel
void (*callback)(void *p_args); // Address of the callback function
union
{
#if (SCI_CFG_ASYNC_INCLUDED)
byteq_hdl_t que; // Transmit byte queue (asynchronous mode)
#endif
uint8_t *buf; // Start address of the transmit buffer
//(clock synchronous/SSPI mode)
} u_tx_data;
union
{
#if (SCI_CFG_ASYNC_INCLUDED)
byteq_hdl_t que; // Receive byte queue (asynchronous mode)
#endif
uint8_t *buf; // Start address of the receive buffer
 //(synchronous/SSPI mode)
} u_rx_data;
bool tx_idle; // Transmission idle state (idle state/transmitting)
#if (SCI_CFG_SSPI_INCLUDED || SCI_CFG_SYNC_INCLUDED)
bool save_rx_data; // Receive data storage (enable/disable)
uint16_t tx_cnt; // Transmit counter
uint16_t rx_cnt; // Receive counter
bool tx_dummy; // Transmit dummy data (enable/disable)
#endif
uint32_t pclk_speed; // Operating frequency of the peripheral module clock
#if SCI_CFG_FIFO_INCLUDED
uint8_t fifo_ctrl; // FIFO function (enable/disable)
uint8_t rx_dflt_thresh; // Recive FIFO threshold value (default)
uint8_t rx_curr_thresh; // Recive FIFO threshold value (current)
uint8_t tx_dflt_thresh; // Transmit FIFO threshold value (default)
uint8_t tx_curr_thresh; // Transmit FIFO threshold value (current)
#endif

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 63 of 122
Jun.12.23

#if ((TX_DTC_DMACA_ENABLE || RX_DTC_DMACA_ENABLE))
 bool rx_idle;
 uint8_t qindex_app_tx;
 uint8_t qindex_int_tx;
 uint8_t qindex_app_rx;
 uint8_t qindex_int_rx;
 sci_fifo_ctrl_t queue[2];
#endif
} sci_ch_ctrl_t;

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 64 of 122
Jun.12.23

2.11 Return Values
This section describes return values of API functions. This enumeration is located in r_sci_rx_if.h as are the
prototype declarations of API functions.
typedef enum e_sci_err // SCI API error codes
{
 SCI_SUCCESS=0,
 SCI_ERR_BAD_CHAN, // Non-existent channel number
 SCI_ERR_OMITTED_CHAN, // SCI_CHx_INCLUDED is 0 in config.h
 SCI_ERR_CH_NOT_CLOSED, // Channel still running in another mode
 SCI_ERR_BAD_MODE, // Unsupported or incorrect mode for channel
 SCI_ERR_INVALID_ARG, // Argument is not valid for parameter
 SCI_ERR_NULL_PTR, // Received null ptr; missing required argument
 SCI_ERR_XCVR_BUSY, // Cannot start data transfer; transceiver busy

 // Asynchronous/Infrared mode only
 SCI_ERR_QUEUE_UNAVAILABLE, // Cannot open tx or rx queue or both
 SCI_ERR_INSUFFICIENT_SPACE, // Not enough space in transmit queue
 SCI_ERR_INSUFFICIENT_DATA, // Not enough data in receive queue

 // Synchronous/SSPI modes only
 SCI_ERR_XFER_NOT_DONE, // Data transfer still in progress
 SCI_ERR_DTC,
 SCI_ERR_DMACA,
 SCI_ERR_DTC_DMACA
} sci_err_t;

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 65 of 122
Jun.12.23

2.12 Callback Function
In this module, the callback function specified by the user is called when the RXIn, ERIn interrupt occurs.

The callback function is specified by storing the address of the user function in the “void (* const
p_callback)(void *p_args)” structure member (see 2.10, Parameters). When the callback function is called,
the variable which stores the constant is passed as the argument.

The argument is passed as void type. Thus the argument of the callback function is cast to a void pointer.
See examples below as reference.

When using a value in the callback function, type cast the value.

The following shows an example template for the callback function in asynchronous mode.
void MyCallback(void *p_args)
{
sci_cb_args_t *args;
args = (sci_cb_args_t *)p_args;
if (args->event == SCI_EVT_RX_CHAR)
{
//from RXI interrupt; character placed in queue is in args->byte
nop();
}
else if (args->event == SCI_EVT_RX_CHAR_MATCH)
{
//from RXI interrupt, received data match comparison data
//character placed in queue is in args->byte
nop();
}

#if SCI_CFG_TEI_INCLUDED
else if (args->event == SCI_EVT_TEI)
{
// from TEI interrupt; transmitter is idle
// possibly disable external transceiver here
nop();
}
#endif
else if (args->event == SCI_EVT_RXBUF_OVFL)
{
// from RXI interrupt; receive queue is full
// unsaved char is in args->byte
// will need to increase buffer size or reduce baud rate
nop();
}
else if (args->event == SCI_EVT_OVFL_ERR)
{
// from ERI/Group12 interrupt; receiver overflow error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == SCI_EVT_FRAMING_ERR)
{
// from ERI/Group12 interrupt; receiver framing error occurred
// error char is in args->byte; if = 0, received BREAK condition
// error condition is cleared in ERI routine
nop();
}
else if (args->event == SCI_EVT_PARITY_ERR)
{
// from ERI/Group12 interrupt; receiver parity error occurred

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 66 of 122
Jun.12.23

// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == SCI_EVT_RX_DONE)
{
// Receive full data when SCI supported by DTC/DMAC
 nop();
}
}

The following shows an example template for the callback function in SSPI mode.
void sspiCallback(void *p_args)
{
sci_cb_args_t *args;
args = (sci_cb_args_t *)p_args;
if (args->event == SCI_EVT_XFER_DONE)
{
// data transfer completed
nop();
}
else if (args->event == SCI_EVT_XFER_ABORTED)
{
// data transfer aborted
nop();
}
else if (args->event == SCI_EVT_OVFL_ERR)
{
// from ERI or Group12 (RX63x) interrupt; receiver overflow error occurred
// error char is in args->byte
// error condition is cleared in ERI/Group12 interrupt routine
nop();
}
else if (args->event == SCI_EVT_RX_SYNC_DONE)
{
// Receive full data when SCI supported by DTC/DMAC
 nop();
}
}

The following shows an example template for the callback function in Infrared communication mode.
void irdaCallback(void *p_args)
{
 sci_cb_args_t *args;
 args = (sci_cb_args_t *)p_args;
 if (SCI_EVT_RX_CHAR == args->event)
 {
 // from RXI interrupt; character placed in queue is in args->byte
 nop();
 }
#if SCI_CFG_TEI_INCLUDED
 else if (SCI_EVT_TEI == args->event)
 {
 // from TEI interrupt; transmitter is idle
 // possibly disable external transceiver here
 nop();
 }
#endif
 else if (SCI_EVT_RXBUF_OVFL == args->event)
 {

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 67 of 122
Jun.12.23

 // from RXI interrupt; receive queue is full
 // unsaved char is in args->byte
 // will need to increase buffer size or reduce baud rate
 nop();
 }

 else if (SCI_EVT_OVFL_ERR == args->event)
 {
 // from ERI/Group12 interrupt; receiver overflow error occurred
 // error char is in args->byte
 // error condition is cleared in ERI routine
 nop();
 }
 else if (SCI_EVT_FRAMING_ERR == args->event)
 {
 // from ERI/Group12 interrupt; receiver framing error occurred
 // error char is in args->byte; if = 0, received BREAK condition
 // error condition is cleared in ERI routine
 nop();
 }
}

This FIT module calls the callback function specified by the user when a receive error interrupt occurs, when
1-byte data is received in asynchronous mode, when transmissions/receptions for the specified number of
bytes have been completed in clock synchronous or SSPI mode, and when a transmit end interrupt occurs.

Note that if the FIFO function is enabled in asynchronous mode, the callback function is executed when
receptions for the maximum number of times specified with SCI_CFG_CHn_RX_FIFO_THRESH have been
completed or 15 etu (1) has elapsed from the stop bit of the last received data.

The callback function is set by specifying the address of the callback function to the fourth parameter of
R_SCI_Open(). When the callback function is called, the following parameters are set.

typedef struct st_sci_cb_args // Arguments of the callback function
{
sci_hdl_t hdl; // Handle upon an event occurrence
sci_cb_evt_t event; // Event which triggered the event occurred
uint8_t byte; // Receive data upon an event occurrence
uint8_t num; // Receive data size (valid only when FIFO is
used)
} sci_cb_args_t;

typedef enum e_sci_cb_evt // Event for the callback function
{
// Events for asynchronous and infrared communication mode
SCI_EVT_TEI, // TEI interrupt occurred.
SCI_EVT_RX_CHAR, // Character received; Have placed in the queue.
SCI_EVT_RXBUF_OVFL, // Receive queue full; No more data can be stored.
SCI_EVT_FRAMING_ERR, // Framing error occurred in the receiver.
// Events for asynchronous mode
SCI_EVT_PARITY_ERR, // Parity error occurred in the receiver.
SCI_EVT_RX_CHAR_MATCH // Received data match; already place in the queue.
// Events for SSPI/clock synchronous mode
SCI_EVT_XFER_DONE, // Transfer completed.
SCI_EVT_XFER_ABORTED, // Transfer canceled.
// Common event
SCI_EVT_OVFL_ERR, // Overrun error occurred in receive device
/* Receive Sync Done */
SCI_EVT_RX_SYNC_DONE,
/* Receive Async Done */
SCI_EVT_RX_DONE

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 68 of 122
Jun.12.23

} sci_cb_evt_t;

Since the argument is passed as a void pointer, arguments of the callback function must be the pointer
variable of type void, for example, when using the argument value within the callback function, it must be
type-casted.

Note 1. etu (Elementary Time Unit): 1-bit transfer period

When the following events occur, a received data stored in the argument of the callback function becomes
undefined value:

 SCI_EVT_TEI

 SCI_EVT_XFER_DONE

 SCI_EVT_XFER_ABORTED

 SCI_EVT_OVFL_ERR (when FIFO function enabled)

 SCI_EVT_PARITY_ERR (when FIFO function enabled)

 SCI_EVT_FRAMING_ERR (when FIFO function enabled)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 69 of 122
Jun.12.23

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 70 of 122
Jun.12.23

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 71 of 122
Jun.12.23

3. API Functions

R_SCI_Open()
This function applies power to the SCI channel, initializes the associated registers, enables interrupts, and
provides the channel handle for use with other API functions. This function must be called before calling any
other API functions.

Format
sci_err_t R_SCI_Open (

uint8_t const chan,

 sci_mode_t const mode,

 sci_cfg_t * const p_cfg,

 void (* const p_callback)(void *p_args),

 sci_hdl_t * const p_hdl

)

Parameters
uint8_t const chan
 Channel to initialize.

sci_mode_t const mode
 Operational mode (see enumeration below)

sci_cfg_t * const p_cfg
 Pointer to configuration union, structure elements (see below) are specific to mode

p_callback
 Pointer to function called from interrupt when an RXI or receiver error is detected or for transmit end (TEI)
condition
 Refer to 2.12, Callback Function for details.

sci_hdl_t * const p_hdl
 Pointer to a handle for channel (value set here)

Confirm the return value from R_SCI_Open is “SCI_SUCCESS” and then set the first parameter for the
other APIs except R_SCI_GetVersion(). Refer to 2.10, Parameters.

The following SCI modes are currently supported by this driver module. The mode specified determines the
union structure element used for the p_cfg parameter.
typedef enum e_sci_mode // SCI operational modes
{
 SCI_MODE_OFF=0, // channel not in use
 SCI_MODE_ASYNC, // Asynchronous
 SCI_MODE_SSPI, // Simple SPI
 SCI_MODE_SYNC, // Synchronous
 SCI_MODE_IRDA, // Infrared data communication
 SCI_MODE_MAX // End of modes currently supported
} sci_mode_t;

#defines shown on the next page indicate configurable options for Asynchronous mode used in its
configuration structure. These values correspond to bit definitions in the SMR register and specify the data
length, the parity function, and the STOP bit. The BRR register and the SEMR register are set using the
clock source (8x/16x of the internal/external clock) specified with clk_src of the sci_uart_t structure and the
bit rate specified with baud_rate of the sci_uart_t structure. Please note this does not guarantee the specified

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 72 of 122
Jun.12.23

bit rate (there may be some errors depending on the setting). In addition, when using the channel 10 and 11
in the Synchronous mode or SSPI mode with the FIFO feature, you will not be able to set high-speed bit rate
than PCLKA/8. (For example, if PCLKA is 120 MHz, it is possible to set the bit rate of equal to or less than
15 Mbps.)

The following shows the union for p_cfg:

typedef union
{
 sci_uart_t async;
 sci_sync_sspi_t sync;
 sci_sync_sspi_t sspi;
 sci_irda_t irda;
} sci_cfg_t;

The following shows the structure used for settings in Asynchronous mode:

typedef struct st_sci_uart
{
 uint32_t baud_rate; // ie 9600, 19200, 115200 (valid for internal
clock)
 uint8_t clk_src; // use SCI_CLK_INT/EXT8/EXT16
 uint8_t data_size; // use SCI_DATA_nBIT
 uint8_t parity_en; // use SCI_PARITY_ON/OFF
 uint8_t parity_type; // use SCI_ODD/EVEN_PARITY
 uint8_t stop_bits; // use SCI_STOPBITS_1/2
 uint8_t int_priority; // txi, tei, rxi, eri INT priority; 1=low,
15=high
} sci_uart_t;

The following shows the definitions of the structure (sci_uart_t) members used in Asynchronous mode:

/* Definitions for the sck_src member. */
#define SCI_CLK_INT 0x00 // use internal clock for baud rate generation
#define SCI_CLK_EXT_8X 0x03 // use external clock 8x baud rate
#define SCI_CLK_EXT_16X 0x02 // use external clock 16x baud rate

/* Definitions for the data_size member. */
#define SCI_DATA_7BIT 0x40 // 7-bit length
#define SCI_DATA_8BIT 0x00 // 8-bit length

/* Definitions for the parity_en member. */
#define SCI_PARITY_ON 0x20 // Parity ON
#define SCI_PARITY_OFF 0x00 // Parity OFF

/* Definitions for the parity_type member. */
#define SCI_ODD_PARITY 0x10 // Odd parity
#define SCI_EVEN_PARITY 0x00 // Even parity

/* Definitions for the stop_bits member.
#define SCI_STOPBITS_2 0x08 // 2-stop bit
#define SCI_STOPBITS_1 0x00 // 1-stop bit

The following shows the structure used for settings in SSPI and Synchronous modes:

typedef struct st_sci_sync_sspi
{
 sci_spi_mode_t spi_mode; // clock polarity and phase; unused for sync
 uint32_t bit_rate; // ie 1000000 for 1Mbps

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 73 of 122
Jun.12.23

 bool msb_first;
 bool invert_data;
 uint8_t int_priority; // rxi,eri interrupt priority; 1=low,
15=high
} sci_sync_sspi_t;

The following shows the enumeration used for spi_mode of the sci_sync_sspi_t structure in SSPI or
Synchronous mode:

typedef enum e_sci_spi_mode
{
 SCI_SPI_MODE_OFF = 1, // Used in synchronous mode
 SCI_SPI_MODE_0 = 0x80,// SPMR Register CKPH=1, CKPOL=0
 // Mode 0: 00 CPOL=0 resting lo, CPHA=0 leading
edge/rising
 SCI_SPI_MODE_1 = 0x40,// SPMR Register CKPH=0, CKPOL=1
 // Mode 1: 01 CPOL=0 resting lo, CPHA=1 trailing
edge/falling
 SCI_SPI_MODE_2 = 0xC0,// SPMR Register CKPH=1, CKPOL=1
 // Mode 2: 10 CPOL=1 resting hi, CPHA=0 leading
edge/falling
 SCI_SPI_MODE_3 = 0x00 // SPMR Register CKPH=0, CKPOL=0
 // Mode 3: 11 CPOL=1 resting hi, CPHA=1 trailing
edge/rising
} sci_spi_mode_t;

The following shows the structure used for settings in Infrared communication mode:

typedef struct st_sci_irda
{
 uint32_t baud_rate; // ie 9600, 19200, 115200 (valid for internal
clock)
 uint8_t clk_out_width; // Setting value for the high pulse output width
of the IrDA IRTXD pin
 uint8_t int_priority; // txi, tei, rxi, eri INT priority; 1=low,
15=high
} sci_irda_t;

The following shows the definitions of the structure (sci_irda_t) members used in Infrared communication
mode:

/* Definitions for the clk_out_width member. */
#define SCI_IRDA_OUT_WIDTH_3_16 (0x00U)
#define SCI_IRDA_OUT_WIDTH_2 (0x01U)
#define SCI_IRDA_OUT_WIDTH_4 (0x02U)
#define SCI_IRDA_OUT_WIDTH_8 (0x03U)
#define SCI_IRDA_OUT_WIDTH_16 (0x04U)
#define SCI_IRDA_OUT_WIDTH_32 (0x05U)
#define SCI_IRDA_OUT_WIDTH_64 (0x06U)
#define SCI_IRDA_OUT_WIDTH_128 (0x07U)

Return Values
[SCI_SUCCESS] /* Successful; channel initialized */
[SCI_ERR_BAD_CHAN] /* Channel number is invalid for part*/
[SCI_ERR_OMITTED_CHAN] /* Corresponding SCI_CHx_INCLUDED is invalid (0) */
[SCI_ERR_CH_NOT_CLOSED] /* Channel currently in operation; Perform R_SCI_Close() first*/
[SCI_ERR_BAD_MODE] /* Mode specified not currently supported*/
[SCI_ERR_NULL_PTR] /* p_cfg pointer is NULL*/
[SCI_ERR_INVALID_ARG] /* An element of the p_cfg structure contains an invalid value. */

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 74 of 122
Jun.12.23

[SCI_ERR_QUEUE_UNAVAILABLE] /* Cannot open transmit or receive queue or both (Asynchronous
mode) */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
Initializes an SCI channel for a particular mode and provides a Handle in *p_hdl for use with other API
functions. RXI and ERI interrupts are enabled in all modes. TXI is enabled in Asynchronous mode.

Example: Asynchronous Mode
 sci_cfg_t config;
 sci_hdl_t Console;
 sci_err_t err;

 config.async.baud_rate = 115200;
 config.async.clk_src = SCI_CLK_INT;
 config.async.data_size = SCI_DATA_8BIT;
 config.async.parity_en = SCI_PARITY_OFF;
 config.async.parity_type = SCI_EVEN_PARITY; // ignored because parity is
disabled
 config.async.stop_bits = SCI_STOPBITS_1;
 config.async.int_priority = 2; // 1=lowest, 15=highest

 err = R_SCI_Open(SCI_CH1, SCI_MODE_ASYNC, &config, MyCallback, &Console);

Example: SSPI Mode
 sci_cfg_t config;
 sci_hdl_t sspiHandle;
 sci_err_t err;

 config.sspi.spi_mode = SCI_SPI_MODE_0;
 config.sspi.bit_rate = 1000000; // 1 Mbps
 config.sspi.msb_first = true;
 config.sspi.invert_data = false;
 config.sspi.int_priority = 4;
 err = R_SCI_Open(SCI_CH12, SCI_MODE_SSPI, &config, sspiCallback,
&sspiHandle);

Example: Synchronous Mode
 sci_cfg_t config;
 sci_hdl_t syncHandle;
 sci_err_t err;

 config.sync.spi_mode = SCI_SPI_MODE_OFF;
 config.sync.bit_rate = 1000000; // 1 Mbps
 config.sync.msb_first = true;
 config.sync.invert_data = false;
 config.sync.int_priority = 4;
 err = R_SCI_Open(SCI_CH12, SCI_MODE_SYNC, &config, syncCallback,
&syncHandle);

Example: Infrared Data Communication Mode
 sci_cfg_t config;
 sci_hdl_t Console;
 sci_err_t err;

 config.irda.baud_rate = 115200;
 config.irda.clk_src = SCI_IRDA_OUT_WIDTH_3_16;

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 75 of 122
Jun.12.23

 config.irda.int_priority = 2; // 1=lowest, 15=highest

 err = R_SCI_Open(SCI_CH5, SCI_MODE_IRDA, &config, irdaCallback, &Console);

Special Notes:
The driver calculates the optimum values for BRR, SEMR.ABCS, and SMR.CKS using BSP_PCLKA_HZ and
BSP_PCLKB_HZ as defined in mcu_info.h of the board support package. This however does not guarantee
a low bit error rate for all peripheral clock/baud rate combinations.

If an external clock is used in Asynchronous mode, the pin direction must be selected before calling the
R_SCI_Open() function, and the pin function and mode must be selected after calling the R_SCI_Open()
function. The following is an example initialization for RX111 channel 1:

Before the R_SCI_Open() function call

 PORT1.PDR.BIT.B7 = 0; // set SCK pin direction to input (dflt)

After the R_SCI_Open() function call

MPC.P17PFS.BYTE = 0x0A; // Pin Func Select P17 SCK1
 PORT1.PMR.BIT.B7 = 1; // set SCK pin mode to peripheral

For settings of the pins used for communications, the pin directions and their outputs must be selected
before calling the R_SCI_Open() function, and the pin functions and modes must be selected after calling
the R_SCI_Open() function.
An example for initializing channel 6 for SSPI on the RX64M is as follows:

Before the R_SCI_Open() function call

 PORT0.PODR.BIT.B2 = 0; // set line low
 PORT0.PODR.BIT.B0 = 0; // set line low
 PORT0.PDR.BIT.B2 = 1; // set clock pin direction to output
 PORT0.PDR.BIT.B0 = 1; // set MOSI pin direction to output
 PORT0.PDR.BIT.B1 = 0; // set MISO pin direction to input

After the R_SCI_Open() function call

 MPC.P00PFS.BYTE = 0x0A; // Pin Func Select P00 MOSI
 MPC.P01PFS.BYTE = 0x0A; // Pin Func Select P01 MISO
 MPC.P02PFS.BYTE = 0x0A; // Pin Func Select P02 SCK
 PORT0.PMR.BIT.B0 = 1; // set MOSI pin mode to peripheral
 PORT0.PMR.BIT.B1 = 1; // set MISO pin mode to peripheral
 PORT0.PMR.BIT.B2 = 1; // set clock pin mode to peripheral

When using Asynchronous mode, two byte queues are used for one channel. Adjust the number of byte
queues as necessary. Refer to the application note "BYTEQ Module Using Firmware Integration Technology
(R01AN1683)" for details.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 76 of 122
Jun.12.23

R_SCI_Close()
This function removes power from the SCI channel and disables the associated interrupts.

Format
sci_err_t R_SCI_Close (

sci_hdl_t const hdl

)

Parameters
sci_hdl_t const hdl
 Handle for channel
 Set hdl when R_SCI_Open() is successfully processed.

Return Values
[SCI_SUCCESS] /* Successful; channel closed */
[SCI_ERR_NULL_PTR] /* hdl is NULL */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
Disables the SCI channel designated by the handle and enters module-stop state.

Example
sci_hdl_t Console;
 ...
err = R_SCI_Open(SCI_CH1, SCI_MODE_ASYNC, &config, MyCallback, &Console);
 ...
err = R_SCI_Close(Console);

Special Notes:
This function will abort any transmission or reception that may be in progress.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 77 of 122
Jun.12.23

R_SCI_Send()
When Asynchronous Mode and DTC/DMAC are not used, queues data for later transmit. In other modes
initiates transmit if transmitter is not in use.

Format
sci_err_t R_SCI_Send (

sci_hdl_t const hdl,

 uint8_t *p_src,

 uint16_t const length

)

Parameters
sci_hdl_t const hdl
 Handle for channel
 Set hdl when R_SCI_Open() is successfully processed.

uint8_t* p_src
 Pointer to data to transmit

uint16_t const length
 Number of bytes to send

Return Values
[SCI_SUCCESS] /* Transmit initiated or loaded into queue
 (When Asynchronous Mode and DTC/DMAC are not used) */
[SCI_ERR_NULL_PTR] /* hdl value is NULL */
[SCI_ERR_BAD_MODE] /* Mode specified not currently supported */
[SCI_ERR_INSUFFICIENT_SPACE] /* Insufficient space in queue to load all data
 (When Asynchronous Mode and DTC/DMAC are not used) */
[SCI_ERR_XCVR_BUSY] /* Channel currently busy (SSPI/Synchronous/
 When Asynchronous Mode and circular buffer is not used/
 When Asynchronous Mode and DTC/DMAC are used) */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
When Asynchronous Mode and DTC/DMAC are not used, this function places data into a transmit queue if
the transmitter for the SCI channel referenced by the handle is not in use. When circular buffer
(SCI_CFG_USE_CIRCULAR_BUFFER (1)) is used, the function allows data to be put on a transmit queue
during transmission.

When Asynchronous Mode and DTC/DMAC are used, this function registers DTC/DMAC setting and
specifies to the TXI and transmission begins immediately if the transmitter is not already in use.

In SSPI and Synchronous modes, no data is queued and transmission begins immediately if the transceiver
is not already in use.

Note that the toggling of Slave Select lines when in SSPI mode is not handled by this driver. The Slave
Select line for the target device must be enabled prior to calling this function.

Also, toggling of the CTS/RTS pin in Synchronous/Asynchronous mode is not handled by this driver.

Note that in case of calling continuously R_SCI_Send function in Asynchronous mode, the number of TEI
interrupts may not equal the number of R_SCI_Send function calls.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 78 of 122
Jun.12.23

Use TEI interrupt to determine whether there is any more data in queue left to transmit.
For using TEI callback function, refer to 2.12 Callback Function for details.

Example: Asynchronous Mode
 #define STR_CMD_PROMPT "Enter Command: "
 sci_hdl_t Console;
 sci_err_t err;

 err = R_SCI_Send(Console, STR_CMD_PROMPT, sizeof(STR_CMD_PROMPT));

 // Cannot block for this transfer to complete. However, can use TEI
interrupt
 // to determine when there is no more data in queue left to transmit.

Example: SSPI Mode
 sci_hdl_t sspiHandle;
 sci_err_t err;
 uint8_t flash_cmd,sspi_buf[10];

 // SEND COMMAND TO FLASH DEVICE TO PROVIDE ID */
 FLASH_SS = SS_ON; // enable gpio flash slave select
 flash_cmd = SF_CMD_READ_ID;

 R_SCI_Send(sspiHandle, &flash_cmd, 1);
 while (SCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 /* READ ID FROM FLASH DEVICE */
 R_SCI_Receive(sspiHandle, sspi_buf, 5);
 while (SCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF; // disable gpio flash slave select

Example: Synchronous Mode
 #define STRING1 "Test String"
 sci_hdl_t lcdHandle;
 sci_err_t err;

 // SEND STRING TO LCD DISPLAY AND WAIT TO COMPLETE */
 R_SCI_Send(lcdHandle, STRING1, sizeof(STRING1));

 while (SCI_SUCCESS != R_SCI_Control(lcdHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

Example: Infrared Data Communication Mode
 #define ONETIME_SEND_SIZE 16

 sci_hdl_t Console;
 uint8_t data_send_buf[ONETIME_SEND_SIZE] =
{80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95};

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 79 of 122
Jun.12.23

 void main(void)
 {
 sci_err_t err;
 sci_cfg_t config;
 uint16_t cnt;

 config.irda.baud_rate = 115200;
 config.irda.clk_out_width = SCI_IRDA_OUT_WIDTH_3_16;
 config.irda.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_SCI_Open(SCI_CH5, SCI_MODE_IRDA, &config, irdaCallback, &Console);
 if (SCI_SUCCESS != err)
 {
 while(1) { };
 }
 /* Get the size of the send buffer, if there is free space, passing the
transmitted data. */
 R_SCI_Control(Console, SCI_CMD_TX_Q_BYTES_FREE, (void *)&cnt);
 if (cnt - ONETIME_SEND_SIZE > 0)
 {
 /* Pass the transmitted data. If transmission idle and starts transmission.
*/
 err = R_SCI_Send(Console, &data_send_buf[0], ONETIME_SEND_SIZE);
 if (SCI_SUCCESS != err)
 {
 while(1) { };
 }
 }
 }

Special Notes:
None.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 80 of 122
Jun.12.23

R_SCI_Receive()
When Asynchronous Mode and DTC/DMAC are not used, fetches data from a queue which is filled by RXI
interrupts. In other modes, initiates reception if transceiver is not in use.

Format
sci_err_t R_SCI_Receive (

sci_hdl_t const hdl,

 uint8_t *p_dst,

 uint16_t const length

)

Parameters
sci_hdl_t const hdl
 Handle for channel
 Set hdl when R_SCI_Open() is successfully processed.

uint8_t* p_dst
 Pointer to buffer to load data into

uint16_t const length
 Number of bytes to read

Return Values
[SCI_SUCCESS] /* Requested number of bytes were loaded into p_dst
 (Asynchronous) Clocking in of data initiated (SSPI/Synchronous) */
[SCI_ERR_NULL_PTR] /* hdl value is NULL */
[SCI_ERR_BAD_MODE] /* Mode specified not currently supported */
[SCI_ERR_INSUFFICIENT_DATA] /* Insufficient data in receive queue to fetch all data
 (When Asynchronous Mode and DTC/DMAC are not used) */
[SCI_ERR_XCVR_BUSY] /* Channel currently busy (SSPI/Synchronous/
 When Asynchronous Mode and DTC/DMAC are used) */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
When Asynchronous Mode and DTC/DMAC are not used, this function gets data received on an SCI
channel referenced by the handle from its receive queue. This function will not block if the requested number
of bytes is not available.

When Asynchronous Mode and DTC/DMAC are used, this function registers DTC/DMAC setting and
specifies to the RXI and data is passed to *p_dst by DTC/DMAC each time the RXI interrupt occurs.

In SSPI/Synchronous modes, the clocking in of data begins immediately if the transceiver is not already in
use. The value assigned to SCI_CFG_DUMMY_TX_BYTE in r_sci_config.h is clocked out while the receive
data is being clocked in.

If any errors occurred during reception, the callback function specified in R_SCI_Open() is executed. Check
an event passed with the argument of the callback function to see if the reception has been successfully
completed. Refer to 2.12, Callback Function for details.

Note that the toggling of Slave Select lines when in SSPI mode is not handled by this driver. The Slave
Select line for the target device must be enabled prior to calling this function.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 81 of 122
Jun.12.23

Example: Asynchronous Mode
 sci_hdl_t Console;
 sci_err_t err;
 uint8_t byte;

 /* echo characters */
 while (1)
 {
 while (SCI_SUCCESS != R_SCI_Receive(Console, &byte, 1))
 {
 }
 R_SCI_Send(Console, &byte, 1);
 }

Example: SSPI Mode
 sci_hdl_t sspiHandle;
 sci_err_t err;
 uint8_t flash_cmd,sspi_buf[10];

 // SEND COMMAND TO FLASH DEVICE TO PROVIDE ID */

 FLASH_SS = SS_ON; // enable gpio flash slave select
 flash_cmd = SF_CMD_READ_ID;

 R_SCI_Send(sspiHandle, &flash_cmd, 1);
 while (SCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 /* READ ID FROM FLASH DEVICE */
 R_SCI_Receive(sspiHandle, sspi_buf, 5);
 while (SCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF; // disable gpio flash slave select

Example: Synchronous Mode
 sci_hdl_t sensorHandle;
 sci_err_t err;
 uint8_t sensor_cmd,sync_buf[10];

 // SEND COMMAND TO SENSOR TO PROVIDE CURRENT READING */

 sensor_cmd = SNS_CMD_READ_LEVEL;

 R_SCI_Send(sensorHandle, &sensor_cmd, 1);
 while (SCI_SUCCESS != R_SCI_Control(sensorHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 /* READ LEVEL FROM SENSOR */
 R_SCI_Receive(sensorHandle, sync_buf, 4);
 while (SCI_SUCCESS != R_SCI_Control(sensorHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 82 of 122
Jun.12.23

 }

Example: Infrared Data Communication Mode
 sci_hdl_t Console;
 uint8_t data_recv_buf[80];

 void main(void)
 {
 sci_err_t err;
 sci_cfg_t config;
 uint16_t cnt;

 config.irda.baud_rate = 115200;
 config.irda.clk_out_width = SCI_IRDA_OUT_WIDTH_3_16;
 config.irda.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_SCI_Open(SCI_CH5, SCI_MODE_IRDA, &config, irdaCallback, &Console);

 if (SCI_SUCCESS != err)
 {
 while(1) { };
 }
 /* Whether the buffer is receiving data, I want to check. */
 R_SCI_Control(Console, SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, (void *)&cnt);
 if (0 != cnt)
 {
 /* Retrieve the data of the size stored. */
 err = R_SCI_Receive(Console,&data_recv_buf[cnt_data],cnt);
 if (SCI_SUCCESS != err)
 {
 while(1) { };
 }
 }
 }

Special Notes:
See section 2.12 Callback Function for values passed to arguments of the callback function.
In Asynchronous mode, when data match detected, received data stored in a queue and notify to user by
callback function with event SCI_EVT_RX_CHAR_MATCH.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 83 of 122
Jun.12.23

R_SCI_SendReceive()
For Synchronous and SSPI modes only. Transmits and receives data simultaneously if the transceiver is not
in use.

Format
sci_err_t R_SCI_SendReceive (

sci_hdl_t const hdl,

 uint8_t *p_src,

 uint8_t *p_dst,

 uint16_t const length

)

Parameters
sci_hdl_t const hdl
 Handle for channel
 Set hdl when R_SCI_Open() is successfully processed.

uint8_t* p_src
 Pointer to data to transmit

uint8_t* p_dst
 Pointer to buffer to load data into

uint16_t const length
 Number of bytes to send

Return Values
[SCI_SUCCESS] /* Data transfer initiated */
[SCI_ERR_NULL_PTR] /* hdl value is NULL */
[SCI_ERR_BAD_MODE] /* Channel mode not SSPI or Synchronous */
[SCI_ERR_XCVR_BUSY] /* Channel currently busy */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
If the transceiver is not in use, this function clocks out data from the p_src buffer while simultaneously
clocking in data and placing it in the p_dst buffer.

Note that the toggling of Slave Select lines for SSPI is not handled by this driver. The Slave Select line for
the target device must be enabled prior to calling this function.

Also, toggling of the CTS/RTS pin in Synchronous/Asynchronous mode is not handled by this driver.

Example: SSPI Mode
 sci_hdl_t sspiHandle;
 sci_err_t err;
 uint8_t in_buf[2] = {0x55, 0x55}; // init to illegal values

 /* READ FLASH STATUS USING SINGLE API CALL */

 // load array with command to send plus one dummy byte for clocking in
status reply

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 84 of 122
Jun.12.23

 uint8_t out_buf[2] = {SF_CMD_READ_STATUS_REG, SCI_CFG_DUMMY_TX_BYTE };

 FLASH_SS = SS_ON;

 err = R_SCI_SendReceive(sspiHandle, out_buf, in_buf, 2);
 while (SCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF;

 // in_buf[1] contains status

Special Notes:
See section 2.12 Callback Function for values passed to arguments of the callback function.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 85 of 122
Jun.12.23

R_SCI_Control()
This function configures and controls the operating mode for the SCI channel.

Format
sci_err_t R_SCI_Control (

sci_hdl_t const hdl,

 sci_cmd_t const cmd,

 void *p_args

)

Parameters
sci_hdl_t const hdl
 Handle for channel
 Set hdl when R_SCI_Open() is successfully processed.

sci_cmd_t const cmd
 Command to run (see enumeration below)

void *p_args
 Pointer to arguments (see below) specific to command, casted to void *

The valid cmd values are as follows:
typedef enum e_sci_cmd // SCI Control() commands
{

/* All modes */
 SCI_CMD_CHANGE_BAUD, /* change baud/bit rate */
#if ((SCI_CFG_CH7_FIFO_INCLUDED) || (SCI_CFG_CH8_FIFO_INCLUDED) ||
(SCI_CFG_CH9_FIFO_INCLUDED) || (SCI_CFG_CH10_FIFO_INCLUDED) ||
(SCI_CFG_CH11_FIFO_INCLUDED))
 SCI_CMD_CHANGE_TX_FIFO_THRESH, /* change TX FIFO threshold */
 SCI_CMD_CHANGE_RX_FIFO_THRESH, /* change RX FIFO threshold */
#endif
 SCI_CMD_SET_RXI_PRIORITY, /* change RXI priority level */
 SCI_CMD_SET_TXI_PRIORITY, /* change TXI priority level */
 SCI_CMD_SET_TXI_RXI_PRIORITY, /* change TXI and RXI priority level
simultaneously */
 /* Async commands */
 SCI_CMD_EN_NOISE_CANCEL, /* enable noise cancellation */
 SCI_CMD_EN_TEI, /* SCI_CMD_EN_TEI is obsolete
command,
 but it exists only for
compatibility with older version. */
 SCI_CMD_OUTPUT_BAUD_CLK, /* output baud clock on the SCK pin
*/
 SCI_CMD_START_BIT_EDGE, /* detect start bit as falling edge
of RXDn pin
 (default detect as low level on
RXDn pin) */
 SCI_CMD_GENERATE_BREAK, /* generate break condition */
 SCI_CMD_COMPARE_RECEIVED_DATA, /* Compare received data with
comparison data */

 /* Async/IrDA commands */
 SCI_CMD_TX_Q_FLUSH, /* flush transmit queue */
 SCI_CMD_RX_Q_FLUSH, /* flush receive queue */

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 86 of 122
Jun.12.23

 SCI_CMD_TX_Q_BYTES_FREE, /* get count of unused transmit
queue bytes */
 SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, /* get num bytes ready for reading
*/

 /* Async/Sync commands */
 SCI_CMD_EN_CTS_IN, /* enable CTS input (default RTS
output) */

 /* SSPI/Sync commands */
 SCI_CMD_CHECK_XFER_DONE, /* see if send, rcv, or both are
done; SCI_SUCCESS if yes */
 SCI_CMD_ABORT_XFER,
 SCI_CMD_XFER_LSB_FIRST, /* start from LSB bit when sending
*/
 SCI_CMD_XFER_MSB_FIRST, /* start from MSB bit when sending
*/
 SCI_CMD_INVERT_DATA, /* logic level of send/receive data
is invert */

 /* SSPI commands */
 SCI_CMD_CHANGE_SPI_MODE, /* change clock polarity and phase
in SSPI mode */
 SCI_CMD_CHECK_TX_DONE, /* see if tx requests complete;
SCI_SUCCESS if yes */
 SCI_CMD_CHECK_RX_DONE, /* see if rx request complete in
sync mode; SCI_SUCCESS if yes */
 SCI_CMD_CHECK_RX_SYNC_DONE,

/*Sampling/transition timing adjust commands*/
SCI_CMD_RX_SAMPLING_ENABLE,
SCI_CMD_RX_SAMPLING_DISABLE,
SCI_CMD_TX_TRANSITION_TIMING_ENABLE,
SCI_CMD_TX_TRANSITION_TIMING_DISABLE,
SCI_CMD_SAMPLING_TIMING_ADJUST,
SCI_CMD_TRANSITION_TIMING_ADJUST

} sci_cmd_t;

Commands other than the following command do not require arguments and take FIT_NO_PTR for p_args.

The argument for SCI_CMD_CHANGE_BAUD is a pointer to the sci_baud_t variable containing the new bit
rate desired. The sci_baud_t structure is shown below.
typedef struct st_sci_baud
{
 uint32_t pclk; // peripheral clock speed; e.g. 24000000 is 24 MHz
 uint32_t rate; // e.g. 9600, 19200, 115200
} sci_baud_t;

The argument for SCI_CMD_TX_Q_BYTES_FREE and SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ is a
pointer to a uint16_t variable to hold a count value.

The argument for SCI_CMD_CHANGE_SPI_MODE is a pointer to the enumeration (sci_sync_sspi_t)
variable containing the new mode desired.

The argument for SCI_CMD_SET_TXI_PRIORITY, SCI_CMD_SET_RXI_PRIORITY and
SCI_CMD_SET_TXI_RXI_PRIORITY is a pointer to a uint8_t variable to hold the priority level.

Note: The priority level of the interrupt source is changed by SCI_CMD_SET_TXI_PRIORITY,
SCI_CMD_SET_RXI_PRIORITY and SCI_CMD_SET_TXI_RXI_PRIORITY, depending on the Target Device.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 87 of 122
Jun.12.23

 For RX600/RX700:
- SCI_CMD_SET_TXI_PRIORITY: Change the priority of TXI.
- SCI_CMD_SET_RXI_PRIORITY: Change the priority of RXI.
- SCI_CMD_SET_TXI_RXI_PRIORITY: Change the priority of TXI, RXI at the same time and same level.

For RX100/RX200 (ERI, TEI, TXI, RXI using same register IPR):
- SCI_CMD_SET_TXI_PRIORITY, SCI_CMD_SET_RXI_PRIORITY and
SCI_CMD_SET_TXI_RXI_PRIORITY: Change the priority of ERI, TEI, TXI, RXI at the same time and same
level.

Return Values
[SCI_SUCCESS] /* Successful; channel initialized */
[SCI_ERR_NULL_PTR] /* hdl or p_args pointer is NULL (when required) */
[SCI_ERR_BAD_MODE] /* Mode specified not currently supported */
[SCI_ERR_INVALID_ARG] /* The cmd value or an element of p_args contains an invalid value. */

Properties
Prototyped in file “r_sci_rx_if.h”

Description
This function is used for configuring special hardware features such as changing driver configuration and
obtaining driver status.

The CTS/ RTS pin functions as RTS by default hardware control. By issuing an SCI_CMD_EN_CTS_IN, the
pin functions as CTS.

Example: Asynchronous Mode
 sci_hdl_t Console;
 sci_cfg_t config;
 sci_baud_t baud;
 sci_err_t err;
 uint16_t cnt;

 R_SCI_Open(SCI_CH1, SCI_MODE_ASYNC, &config, MyCallback, &Console);
 R_SCI_Control(Console, SCI_CMD_EN_NOISE_CANCEL, NULL);
 R_SCI_Control(Console, SCI_CMD_EN_TEI, NULL);
 ...
 /* reset baud rate due to low power mode clock switching */
 baud.pclk = 8000000; // 8 MHz
 baud.rate = 19200;
 R_SCI_Control(Console, SCI_CMD_CHANGE_BAUD, (void *)&baud);
 ...
 /* after sending several messages, determine how much space is left in tx
queue */
 R_SCI_Control(Console, SCI_CMD_TX_Q_BYTES_FREE, (void *)&cnt);
 ...
 /* check to see if there is data sitting in the receive queue */
 R_SCI_Control(Console, SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, (void *)&cnt);

Example: SSPI Mode
 sci_cfg_t config;
 sci_spi_mode_t mode;
 sci_hdl_t sspiHandle;
 sci_err_t err;

 config.sspi.spi_mode = SCI_SPI_MODE_0;
 config.sspi.bit_rate = 1000000; // 1 Mbps
 config.sspi.msb_first = true;
 config.sspi.invert_data = false;

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 88 of 122
Jun.12.23

 config.sspi.int_priority = 4;
 err = R_SCI_Open(SCI_CH12, SCI_MODE_SSPI, &config, sspiCallback,
&sspiHandle);
 ...
 ...
 // for changing to slave device which operates in a different mode
 mode = SCI_SPI_MODE_3;
 R_SCI_Control(sspiHandle, SCI_CMD_CHANGE_SPI_MODE, (void *)&mode);

Special Notes:
When SCI_CMD_CHANGE_BAUD is used, the optimum values for BRR, SEMR.ABCS, and SMR.CKS is
calculated based on the bit rate specified. This however does not guarantee a low bit error rate for all
peripheral clock/baud rate combinations.

If the command SCI_CMD_EN_CTS_IN is to be used, the pin direction must be selected before calling the
R_SCI_Open() function, and the pin function and mode must be selected after calling the R_SCI_Open()
function. The following is an example initialization for RX111 channel 1:

Before the R_SCI_Open() function call

PORT1.PDR.BIT.B4 = 0; // set CTS/RTS pin direction to input (dflt)

After the R_SCI_Open() function call

MPC.P14PFS.BYTE = 0x0B; // Pin Func Select P14 CTS
PORT1.PMR.BIT.B4 = 1; // set CTS/RTS pin mode to peripheral

If the command SCI_CMD_OUTPUT_BAUD_CLK is to be used, the pin direction must be selected before
calling the R_SCI_Open() function, and the pin function and mode must be selected after calling the
R_SCI_Open() function.
The following is an example initialization for RX111 channel 1:

Before the R_SCI_Open() function call

 PORT1.PDR.BIT.B7 = 1; // set SCK pin direction to output

After the R_SCI_Open() function call

 MPC.P17PFS.BYTE = 0x0A; // Pin Func Select P17 SCK1
 PORT1.PMR.BIT.B7 = 1; // set SCK pin mode to peripheral

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 89 of 122
Jun.12.23

The commands listed below can be executed during transmission. Do not execute the other commands
during transmission.

 SCI_CMD_TX_Q_BYTES_FREE

 SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ

 SCI_CMD_CHECK_XFER_DONE

 SCI_CMD_ABORT_XFER

When this function is executed, the TXD pin temporarily becomes Hi-Z. Use any of the following methods to
prevent the TXD pin from becoming Hi-Z.

When the SCI_CMD_GENERATE_BREAK command is used:

 Connect the TXD pin to Vcc via a resistor (pull-up).

When a command other than above is used:

Perform one of the following methods:

 Connect the TXD pin to Vcc via a resistor (pull-up).

 Switch the pin function of the TXD pin to general I/O port before the SCI_Control function is
executed. Then switch it back to peripheral function after the SCI_Control function has been
executed.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 90 of 122
Jun.12.23

R_SCI_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_SCI_GetVersion (void)

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_sci_rx_if.h”

Description
Returns the version of this module. The version number is encoded such that the top 2 bytes are the major
version number and the bottom 2 bytes are the minor version number.

Example
uint32_t version;
 ...
version = R_SCI_GetVersion();

Special Notes:
None.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 91 of 122
Jun.12.23

4. Pin Setting
To use the SCI FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting before calling the R_SCI_Open function.

When performing the pin setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.
Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_SCI_PinSet_SCIx x: Channel number

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 92 of 122
Jun.12.23

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 sci_demo_rskrx113, sci_demo_rskrx113_gcc
This is a simple demo of the RX113 Serial Communications Interface (SCI) for the RSKRX113 starter kit (FIT
module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI channel
configured as the UART. The RS232 interface is not on the RSKRX113 in the demo, thus the USB virtual
COM interface is used as serial interface for RSKRX113. A PC running the terminal emulation application is
required for communicating with the user.

Setup and Execution
1. Prepare jumpers for the RSKRX113 board. Mount J15 jumper between 1 and 2, and J16 jumper

between 2 and 3.

2. Build this sample application, download it to the RSK board, and execute the application using a
debugger.

3. Connect the serial port on the RSK board to the serial port on the PC.

This demo project uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

4. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

5. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1-stop bit, no flow control

6. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

7. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX113

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 93 of 122
Jun.12.23

5.2 sci_demo_rskrx231, sci_demo_rskrx231_gcc
This is a simple demo of the RX231 Serial Communications Interface (SCI) for the RSKRX231 starter kit (FIT
module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI channel
configured as the UART. The RS232 interface is not on the RSKRX231 in the demo, thus the USB virtual
COM interface is used as serial interface for RSKRX231. A PC running the terminal emulation application is
required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

This demo project uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1-stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX231

5.3 sci_demo_rskrx64m, sci_demo_rskrx64m_gcc
This is a simple demo of the RX64M Serial Communications Interface (SCI) for the RSKRX64M starter kit
(FIT module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI
channel configured as the UART. The RS232 interface is not on the RSKRX64M in the demo, thus the USB
virtual COM interface is used as serial interface for RSKRX64M. A PC running the terminal emulation
application is required for communicating with the user.

Setup and Execution
1. Prepare jumpers for RSKRX64M board. Mount J16 and J18 jumpers between 2 and 3.

2. Build this sample application, download it to the RSK board, and execute the application using a
debugger.

3. Connect the serial port on the RSK board to the serial port on the PC.

This demo project uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

4. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

5. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1-stop bit, no flow control

6. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 94 of 122
Jun.12.23

7. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX64M

5.4 sci_demo_rskrx71m, sci_demo_rskrx71m_gcc
This is a simple demo of the RX71M Serial Communications Interface (SCI) for the RSKRX71M starter kit
(FIT module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI
channel configured as the UART. The RS232 interface is not on the RSKRX71M in the demo, thus the USB
virtual COM interface is used as serial interface for RSKRX71M. A PC running the terminal emulation
application is required for communicating with the user.

Setup and Execution
1. Prepare jumpers for RSKRX71M board. Mount J16 and J18 jumpers between 2 and 3.

2. Build this sample application, download it to the RSK board, and execute the application using a
debugger.

3. Connect the serial port on the RSK board to the serial port on the PC.

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

4. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

5. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

6. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

7. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX71M

5.5 sci_demo_rskrx65n, sci_demo_rskrx65n_gcc
This is a simple demo of the RX65N Serial Communications Interface (SCI) for the RSKRX65N starter kit
(FIT module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI
channel configured as the UART. The RS232 interface is not on the RSKRX65N in the demo, thus the USB
virtual COM interface is used as serial interface for RSKRX65N. A PC running the terminal emulation
application is required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 95 of 122
Jun.12.23

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX65N

5.6 sci_demo_rskrx65n_2m, sci_demo_rskrx65n_2m_gcc
This is a simple demo of the RX65N-2MB Serial Communications Interface (SCI) for the RSKRX65N-2MB
starter kit (FIT module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the
SCI channel configured as the UART. The RS232 interface is not on the RSKRX65N-2MB in the demo, thus
the USB virtual COM interface is used as serial interface for RSKRX65N-2MB. A PC running the terminal
emulation application is required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

Boards Supported
RSKRX65N-2MB

5.7 sci_demo_rskrx72m, sci_demo_rskrx72m_gcc
This is a simple demo of the RX72M Serial Communications Interface (SCI) for the RSKRX72M starter kit
(FIT module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI
channel configured as the UART. The RS232 interface is not on the RSKRX72M in the demo, thus the USB
virtual COM interface is used as serial interface for RSKRX72M. A PC running the terminal emulation
application is required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 96 of 122
Jun.12.23

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

5.8 sci_demo_rskrx671, sci_demo_rskrx671_gcc
This is a simple demo of the RX671 Serial Communications Interface (SCI) for the RSKRX671 starter kit (FIT
module "r_sci_rx"). In the demo project, the MCU communicates with the terminal through the SCI channel
configured as the UART. The RS232 interface is not on the RSKRX671 in the demo, thus the USB virtual
COM interface is used as serial interface for RSKRX671. A PC running the terminal emulation application is
required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the SCI driver and then
the application returns the characters to the terminal.

5.9 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.10 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 97 of 122
Jun.12.23

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the SCI FIT module.

Table 6.1 Confirmed Operation Environment (Rev.5.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.5.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)

Table 6.2 Confirmed Operation Environment (Rev.4.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.90
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 98 of 122
Jun.12.23

Table 6.3 Confirmed Operation Environment (Rev.4.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.80
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

Table 6.4 Confirmed Operation Environment (Rev.4.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.70
Board used Renesas Starter Kit for RX140 (product No.: RTK551406BC00000BJ)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 99 of 122
Jun.12.23

Table 6.5 Confirmed Operation Environment (Rev.4.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.60
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)

Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 100 of 122
Jun.12.23

Table 6.6 Confirmed Operation Environment (Rev.4.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.50
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564MxxxxBE)

Renesas Starter Kit+ for RX72M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit for RX113 (product No.: RTK5051308CxxxxBR)
Renesas Starter Kit for RX231 (product No.: R0K505113CxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK5005651CxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: R0K505231SxxxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)

Table 6.7 Confirmed Operation Environment (Rev.4.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.40
Board used Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 101 of 122
Jun.12.23

Table 6.8 Confirmed Operation Environment (Rev.4.30)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.30
Board used Renesas Starter Kit for RX66T (product No: RTK50566T0SxxxxxBE)

Table 6.9 Confirmed Operation Environment (Rev.4.20)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2022-01
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.20
Board used Renesas Starter Kit+ for RX140 (product No.: RTK55RX1406Bxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 102 of 122
Jun.12.23

Table 6.10 Confirmed Operation Environment (Rev.4.10)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.10
Board used Renesas Starter Kit+ for RX140 (product No.: RTK5RX140xxxxxxxxx)

Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)
Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.11 Confirmed Operation Environment (Rev.4.00)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 103 of 122
Jun.12.23

Table 6.12 Confirmed Operation Environment (Rev.3.91)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.3.91
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.13 Confirmed Operation Environment (Rev.3.90)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.3.90
Board used Renesas Starter Kit+ for RX140 (product No.: RTK5RX140xxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 104 of 122
Jun.12.23

Table 6.14 Confirmed Operation Environment (Rev.3.80)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR C/C++ Compiler for Renesas RX version 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Little endian/Big endian
Revision of the module Rev.3.80
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.15 Confirmed Operation Environment (Rev.3.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Little endian
Revision of the module Rev.3.70
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 105 of 122
Jun.12.23

Table 6.16 Confirmed Operation Environment (Rev.3.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Little endian
Revision of the module Rev.3.60
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)
Renesas Starter Kit+ for RX113 (product No.: R0K505113SxxxBE)
Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)

Table 6.17 Confirmed Operation Environment (Rev.3.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.50
Board used Renesas Solution Starter Kit+ for RX23E-A

(product No.: RTK0ESXBxxxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 106 of 122
Jun.12.23

Table 6.18 Confirmed Operation Environment (Rev.3.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.40
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

Table 6.19 Confirmed Operation Environment (Rev.3.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.30
Board used RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 107 of 122
Jun.12.23

Table 6.20 Confirmed Operation Environment (Rev.3.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.21 Confirmed Operation Environment (Rev.3.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 108 of 122
Jun.12.23

Table 6.22 Confirmed Operation Environment (Rev.3.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Table 6.23 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)

Table 6.24 Confirmed Operation Environment (Rev.2.11)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.11
Board used Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 109 of 122
Jun.12.23

Table 6.25 Confirmed Operation Environment (Rev.2.10)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.10

Board used
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308SxxxxxBE)

Table 6.26 Confirmed Operation Environment (Rev.2.01)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.01

Board used Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308SxxxxxBE)

Table 6.27 Confirmed Operation Environment (Rev.2.00)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 5.4.0 (WS Patch)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.00

Board used Renesas Starter Kit+ for RX 65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308SxxxxxBE)

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 110 of 122
Jun.12.23

Table 6.28 Confirmed Operation Environment (Rev.1.90)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 5.3.0.023

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.90

Board used

Renesas Starter Kit+ for RX24U (product No.: RTK500524USxxxxxBE)
Renesas Starter Kit+ for RX24T (product No.: RTK500524TSxxxBE)
Renesas Starter Kit+ for RX113 (product No.: R0K505113SxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE)

Table 6.29 Confirmed Operation Environment (Rev.1.80)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 5.0.1.005
Renesas Electronics e2 studio Version 5.0.0.043
Renesas Electronics e2 studio Version 4.3.0.007
Renesas Electronics e2 studio Version 4.2.0.012

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.05.00
Renesas Electronics C/C++ Compiler Package for RX Family V2.04.01
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.80

Board used

Renesas Starter Kit+ for RX65N (product No.: RTK500565NSxxxxxBE) (1)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE) (2)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE) (3)
Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE) (4)
Renesas Starter Kit+ for RX130 (product No.: RTK5005130SxxxBE) (4)
Renesas Starter Kit+ for RX111 (product No.: R0K505111SxxxBE) (4)
Renesas Starter Kit+ for RX23T (product No.: RTK500523TSxxxBE) (4)
Renesas Starter Kit+ for RX24T (product No.: RTK500524TSxxxBE) (4)
Renesas Starter Kit+ for RX113 (product No.: R0K505113SxxxBE) (4)
Renesas Starter Kit+ for RX210 (product No.: R0K505210SxxxBE) (4)
Renesas Starter Kit+ for RX63N (product No.: R0K50563NSxxxBE) (4)

Note 1. Operation confirmed in e2 studio Version 5.0.1.005 with C compiler V2.05.00.
Note 2. Operation confirmed in e2 studio Version 4.3.0.007 with C compiler V2.04.01.
Note 3. Operation confirmed in e2 studio Version 4.2.0.012 with C compiler V2.04.01.
Note 4. Operation confirmed in e2 studio Version 5.0.0.043 with C compiler V2.04.01.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 111 of 122
Jun.12.23

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_sci_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error: ERROR - Unsupported
channel chosen in r_sci_config.h.

A: The setting in the file “r_sci_rx_config.h” may be wrong. Check the file “r_sci_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.8, Configuration Overview for details.

(4) Q: Transmit data is not output from the TXD pin.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4. “Pin Setting” for details.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 112 of 122
Jun.12.23

7. Reference Documents
User’s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects the content of the following technical updates.

TN-RX*-A151A/E

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 113 of 122
Jun.12.23

Revision History

Rev.

Date

Description
Page Summary

1.00 Nov-15-2013 — Initial Multi-Mode Release.
1.20 Apr-17-2014 1,3 Added mention of RX110 support.
1.30 Jul-02-2014 - Fixed RX63N bug that prevented receive errors (Group12)

from interrupting except on channel 2.
1.40 Dec-16-2014 1,

7
Added RX113 to list of supported devices.
Added section 2.11 Code Size and RAM usage.

1.50 Mar-18-2015 1,3,5 Added RX64M, RX71M to list of supported devices.
1.60 Jun-30-2015 1,3,5 Added RX231 to list of supported devices.
1.70 Sep-30-2015 —

7

11
13

22
22

Added support for the RX23T Group.
Updated information of 2.11 Code Size and RAM usage
including code sizes in Table 2.
Modified the setting procedure in the following sections:
 Special Notes in R_SCI_Open():

- When an external clock is used in Asynchronous mode
- For settings of the pins used for communications

 Special Notes in R_SCI_Control():
- When the command SCI_CMD_EN_CTS_IN is to be used
- When the command SCI_CMD_OUTPUT_BAUD_CLK is

to be used
1.80 Oct-1-2016 —

3, 4

5

7

8, 9

10
11
11-13
14

18, 19, 21

25

29
30-33
34

Added support for the RX65N Group.
Revised the contents in 1. Overview including new sections 1.1
and 1.2.
Added the limitation in 2.4 Limitations.
Updated the information in 2.5 Supported Toolchains.
Added the definitions regarding FIFO as the configuration
option in Table 2.1.
Updated the table for ROM and RAM minimum sizes and the
formula in 2.9 Code Size.
Added section 2.10 Parameters.
Moved section Return Values from 3.2 to 2.11.
Added section 2.12 Callback Function.
3.1 R_SCI_Open()
- Added some descriptions in the introduction of the function,
and parameters p_callback and p_hdl.

- Moved descriptions regarding the callback function to section
2.12.

3.2 R_SCI_Close(),3.3 R_SCI_Send(),3.4 R_SCI_Receive(),
3.5 R_SCI_SendReceive()
- Added a description in the parameter hdl.
3.6 R_SCI_Control()
- Added a description in the parameter hdl.
- Added definitions regarding FIFO in the valid cmd values.
Added section 4. Pin Setting.
Added section 5. Demo Projects.
Added the section for technical update information.

1.90 Feb-28-2017 —
3

Added support for the RX24U Group.
Added RX24U to Table 1.1 SCI Peripheral Functions.
Supported by MCU Groups.
Deleted descriptions regarding usage of the

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 114 of 122
Jun.12.23

3,7,16

4

4

5
8,9
11,12

17, 18

20
22

26

28, 29

SCI_CMD_EN_TEI command.
Modified the description regarding the FIFO function in the
Error Detection.
Modified the description for the R_SCI_Send and
R_SCI_Receive functions in Table 1.2 API Function List.
Added RXC v2.06.00 to 2.5 Supported Toolchains.
Updated memory sizes in 2.9 Code Size.
2.12 Callback Function:
- Modified the existing description and added the description
regarding the FIFO function in the overview part.
- Added the description of events such that a receive data is
not stored in an argument of a callback function when these
events occur.
Added the description for handling communication error when
the FIFO function is enabled in the Special Notes in 3.1
R_SCI_Open() function.
Modified the description in 3.3 R_SCI_Send().
Modified the description regarding the callback function for
when a receive error occurs in Description in
 3.4 R_SCI_Receive().
3.6 R_SCI_Control():
- Modified the description in the overview part.
- Parameters:
 - Added SCI_CMD_SET_RXI_PRIORITY and
SCI_CMD_SET_TXI_PRIORITY to commands.
 - Modified the comment for the SCI_CMD_EN_TEI
command.
 - Added comments for commands that did not have
comments in the previous version.
- Special Notes:
- Added descriptions for executable commands during
transmission.
- Added the description regarding the TXD pin when using
commands.

 Program Corrected typo.

Modified the SCI_CMD_EN_TEI command to perform no
processing.
(This command is not necessary anymore, however, kept for
compatibility with old versions.)

Modified the code to check arguments for both NULL and
FIT_NO_PTR.

Modified the R_SCI_Control function to return
SCI_ERR_INVALID_ARG when the SCI_CMD_EN_CTS_IN
command is specified in simple SPI mode. (CTS input is invalid
in simple SPI mode.)

Deleted an unnecessary logical operation before processing to
clear an error flag in the sci_error function.

1.90 Feb-28-2017 Program The following issue has been fixed.
Target Device:
RX110/RX111/RX113/RX130/RX210/RX230/RX231/RX23T/R

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 115 of 122
Jun.12.23

X24T/ RX63N/RX631/RX64M/RX651/RX65N/RX71M
Description:
In reception in clock synchronous mode, the number of data
greater than the number of data specified may be received.
Condition:
In clock synchronous mode, when receiving 2-byte or longer
data, time after first dummy data write before the counter is
decremented for second dummy data write is 1 frame or
longer.
Measure:
The sci_receive_sync_data function now performs dummy
data write only once. (same as the specification in Rev. 1.70)
Use Rev. 1.90 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX110/RX111/RX113/RX130/RX210/RX230/RX231/RX23T/R
X24T/RX63N/RX631/RX64M/RX651/RX65N/RX71M
Description:
When an error occurs in asynchronous mode, the error
interrupt may repeatedly occur and the main processing may
not operate correctly.
Condition:
Parity error, overrun error or framing error occurs when the
callback function is not used in asynchronous mode.
Measure:
In the sci_error function, the error flag was only cleared when
the callback function was used. Now the error flag is cleared in
any case (same as the specification in Rev. 1.70).
Use Rev. 1.90 or later version of the SCI FIT module.

2.00 Jul-24-2017 — Added support for RX130-512KB and RX65N-2MB.
 1 Related Documents: Added the following document:

“Renesas e2 studio Smart Configurator User Guide
(R20AN0451)”

 6 to 10 2.6 Interrupt Vector: Added.
 16

18
19

30

35
39
40 to 42

2.13 Callback Function: Modified some description regarding
FIFO. With FIFO enabled, the callback function is now called
only once.
2.14 Adding the FIT Module to Your Project: Revised.
3.1 R_SCI_Open(): In Special Notes, added description
regarding byte queue in Asynchronous mode.
3.6 R_SCI_Control(): SCI_CMD_SET_RXI_PRIORITY and
SCI_CMD_SET_TXI_PRIORITY commands can now be used
in all modes.
4. Pin Setting: Added the description of “Smart Configurator”.
5.6 Downloading Demo Projects: Added.
6. Appendices: Added.

2.00 Jul-24-2017 Program The following issue has been fixed.
Target Device:
RX65N
Description:
The error flag is not cleared. Thus, an error interrupt occurs all
the time.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 116 of 122
Jun.12.23

Condition:
When opened with FIFO enabled and the callback function not
provided, a receive error occurs.
Measure:
There was no processing to clear the receive error condition
when FIFO is enabled. The processing has been added so that
the receive error condition is always cleared before exiting an
error interrupt handler whether the callback function is provided
or not.
Use Rev. 2.00 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX65N
Description:
When changing the threshold value for transmit/receive FIFO,
if the argument is not specified, an unknown value is set to the
threshold value.
Condition:
SCI_CMD_CHANGE_TX_FIFO_THRESH / SCI_CMD_
CHANGE_RX_FIFO_THRESH is set as the command in the
R_SCI_Control function, and NULL is set to the argument for
these commands.
Measure:
Added NULL check processing for arguments to the
R_SCI_Control function.
Use Rev. 2.00 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX65N
Description:
If a transmission is restarted during transmission, the current
transmission is canceled. Then, new transmission does not
start.
Condition:
When FIFO is enabled, a transmission is started during
transmission with the channel set as Synchronous mode.
Measure:
Modified processing. If a transmission is started during
transmission, SCI_ERR_XCVR_BUSY is now returned, so the
current transmission is not canceled.
Use Rev. 2.00 or later version of the SCI FIT module.

2.00 Jul-24-2017 Program The following issue has been fixed.
Target Device:
RX65N
Description:
Even if the receive FIFO threshold value is changed, the
threshold value becomes “8” after a reception is complete.
Condition:
When FIFO is enabled in Synchronous mode, a reception is
performed with the receive FIFO threshold value set to a value
other than the initial value (8).
Measure:
Modified the code to hold the changed threshold value for the

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 117 of 122
Jun.12.23

transmit/receive FIFO in the handler. The threshold value is
now restored with the value held in the handler instead of the
initial value.
Use Rev. 2.00 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX65N
Description:
Even if the number of bytes received exceeds the receive FIFO
threshold value, the receive interrupt does not occur.
Condition:
With FIFO enabled in Synchronous mode, when the receive
FIFO threshold value is changed to a value less than the initial
value (8), the number of the received data is less than 8 bytes.
Measure:
Modified the code to hold the changed threshold value for the
transmit/receive FIFO in the handler. The threshold value is
now restored with the value held in the handler instead of the
initial value.
Use Rev. 2.00 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX65N
Description:
If the receive FIFO threshold value is 8, the callback function is
executed eight times continuously after 8 bytes data are
received.
Condition:
When opened with callback function and FIFO enabled,
multiple bytes are received (this occurs even if the number of
received bytes is less than 8 bytes).
Measure:
Modified the code to execute the callback function once per
receive interrupt when FIFO is enabled. Also the member
“num” which stores the number of bytes to be received has
been added to the argument for the callback function.
If the number of bytes to be received is greater than the
receive buffer size, the data for the buffer size are stored and
the rest of the data are discarded (the callback function event
is “SCI_EVT_RXBUF_OVFL” for this case).
Use Rev. 2.00 or later version of the SCI FIT module.

2.00 Jul-24-2017 Program The following issue has been fixed.
Target Device:
RX64M/RX71M/RX65N
Description:
When the priority level for transmission/reception is changed,
the priority level set becomes unknown.
Condition:
SCI_CMD_SET_TXI_PRIORITY / SCI_CMD_SET_RXI_
PRIORITY is set as the command in the R_SCI_Control
function and NULL is set to the argument for these commands.
Measure:
Added NULL check processing for arguments and range check

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 118 of 122
Jun.12.23

processing for the interrupt priority level in the R_SCI_Control
function.
Use Rev. 2.00 or later version of the SCI FIT module.

The following issue has been fixed.
Target Device:
RX64M/RX71M/RX65N
Description:
The interrupt priority level can be changed only in
Asynchronous mode.
Condition:
With Synchronous mode, SCI_CMD_SET_TXI_PRIORITY /
SCI_CMD_SET_RXI_PRIORITY is set as the command in the
R_SCI_Control function.
Measure:
Modified the code, so the interrupt priority level can be
changed in both Synchronous and Asynchronous modes.
Use Rev. 2.00 or later version of the SCI FIT module.

2.01 Oct 31, 2017 39
40
40
41

5.5 sci_demo_rskrx65n: Added
5.6 sci_demo_rskrx65n_2m: Added
5.8 Downloading Demo Projects: Added
6.1 Operation Confirmation Environment:
Added Table for Rev.2.01

2.10 Sep 28, 2018 1,3 Added support for RX66T.
 13 Added configuration setting for RX66T
 16 Added code size corresponding to RX66T
 46 6.1 Confirmed Operation Environment:

Added Table for Rev 2.10
2.11 Nov 16, 2018 – Added document number in XML
 1, 3 Added support for RX651.
 46 Changed Renesas Starter Kit Product No for RX66T.

Added Table for Rev 2.11
2.20 Feb 01, 2019 Program Added support for RX72T.
 1,3,12,14 Added support for RX72T.
 17,18 Added code size corresponding to RX72T
 25-42 Removed ‘Reentrant’ description in each API function.
 48 6.1 Confirmed Operation Environment:

Added Table for Rev 2.20.
3.00 May.20.19 — Supported the following compilers:

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 1 Deleted the RX210, RX631, and RX63N in Target Devices for
end of update these devices.

 Added the section of Target compilers.
 Deleted related documents.
 4 1.2 Deleted RX210, RX63N, RX631

5 1.4 Deleted RX63N, RX631
6 2.2 Software Requirements

Requires r_bsp v5.20 or higher
7 2.4 Deleted RX210, RX63N, RX631

 14-23 Updated the section of 2.8 Code Size
 53 Table 6.1 Confirmed Operation Environment:

Added table for Rev.3.00

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 119 of 122
Jun.12.23

 58 Deleted the section of Website and Support.
 Program Changed below for support GCC and IAR compiler:

1. Deleted the inline expansion of the R_SCI_GetVersion
function.
2. Replaced evenaccess with the macro definition of BSP.
3. Replaced nop with the intrinsic functions of BSP.
4. Replaced the declaration of interrupt functions with the
macro definition of BSP.

3.10 Jun.28.19 1, 4, 7, 8 Added support for RX23W
 15 Added code size corresponding to RX23W
 54 6.1 Confirmed Operation Environment:

Added Table for Rev.3.10
Program Added support for RX23W.

3.20 Aug.15.19 1, 4, 12-16 Added support for RX72M
 20, 24, 28 Added code size corresponding to RX72M
 59 6.1 Confirmed Operation Environment:

Added Table for Rev.3.20
Table 6.2: Corrected board name for RX23W

Program Added support for RX72M.
3.21 Sep.16.19 Program Fixed issue in RX631/RX63N sci_initialize_ints().
3.30 Nov.25.19 1, 4, 7, 8

6
Added support for RX13T.
Add new section 2.3 RAM Location Limitations.

 16, 21, 25 Added code size corresponding to RX13T.
59

6.1 Confirmed Operation Environment:
Added Table for Rev.3.30.

Program Added support for RX13T.
Changed the comment of API functions to the doxygen style.
Fixed the “R_SCI_Send” and “R_SCI_SendReceive” issues as
mentioned in R20TS0494EJ0100.

3.40 Dec.30.19 1, 4, 12-16 Added support for RX72N, RX66N.
 21-22, 26-

27, 31-32
Added code size corresponding to RX72N, RX66N.

 63 6.1 Confirmed Operation Environment:
Added Table for Rev.3.40.

Program Added support for RX72N, RX66N.
3.50 Mar.31.20 1, 4, 8-9 Added support for RX23E-A.
 18, 23-24, Added code size corresponding to RX23E-A.
 29-30
 65 6.1 Confirmed Operation Environment:

Added Table for Rev.3.50.
 Program Added support for RX23E-A.
3.60 Aug.25.20 1,4 Added information that SCI supported by DTC/DMAC

Added information Merged IrDA functionality to SCI.
 5,6 Added notes to use SCI with DTC/DMAC support.

Added notes to use IrDA functionality.
 15-18 Added configuration setting to use DTC/DMAC.

Added configuration setting for IrDA functionality.
 20-39 Added code size corresponding to SCI with DTC/DMAC

support
Added code size corresponding to Merged IrDA
functionality to SCI.

 43-63 Added information Merged IrDA functionality to SCI.
Updated and added new demo project

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 120 of 122
Jun.12.23

Added RSKRX72M to “5. Demo Projects”.
 72-73
 74 6.1 Confirmed Operation Environment:

Added Table for Rev.3.60.
Added support for SCI with DTC/DMAC support

 Program Added support for Merged IrDA functionality to SCI.
3.70 Sep.30.20 74

6.1 Confirmed Operation Environment:
Added Table for Rev.3.70.
Fixed issue of duplicate device group for SCI11 in MDF file.

 Program Fixed issue of missing SSCL, SSDA in MDF file.
3.80 Mar.31.21 1,4,11 Added support for RX671.
 6 Updated note when using DTC/DMAC, SCI FIT does not use

BYTEQ.
 7 Added 1.5 Using the FIT SCI module.

Added 1.5.1 Using FIT SCI module in C++ project.
 15 Added new macro definition

SCI_CFG_USE_CIRCULAR_BUFFER to support circular
buffer in Asynchronous mode.

 16-19 Added configurations for RX671.
 27,34,41 Added code size corresponding to RX671.

Deleted FIFO SPI
 59 Updated description for transfer operation when using circular

buffer.
 67 Added configuration setting to use Sampling/Transition timing.
 79 6.1 Confirmed Operation Environment:

Added Table for Rev.3.80.
 Program Added support for RX671.

Added support circular buffer in mode asynchronous.
Updated macro definitions to enable and disable TXI, RXI, ERI,
TEI.
Removed using BYTEQ when using DTC/DMAC in
Asynchronous mode.

3.90 Apr.15.21 1,4,9 Added support for RX140.
 29,37,44 Added code size corresponding to RX140.
 80 6.1 Confirmed Operation Environment:

Added Table for Rev.3.90.
 Program Added support for RX140.

Added CS+ support for demo project.
3.91 Aug.16.21 60 3. API Functions
 R_SCI_Send() function: Added notes to describe using TEI

callback function.
 80 6.1 Confirmed Operation Environment:

Added Table for Rev.3.91.
4.00 Sep.13.21 79 Added “5.8 sci_demo_rskrx671, sci_demo_rskrx671_gcc”
 80

Table 6.1: Confirm Operation Environment:
Added Table for Rev. 4.00.

 Program Updated and added new demo projects
4.10 Nov.15.21 68, 69, 70 3. API Functions

R_SCI_Control() function: Added
SCI_CMD_SET_TXI_RXI_PRIORITY to commands.
Added support command SCI_CMD_SET_TXI_PRIORITY and
SCI_CMD_SET_RXI_PRIORITY in R_SCI_Control() for
RX100 and RX200.

 80 Table 6.1: Confirm Operation Environment:

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 121 of 122
Jun.12.23

Added Table for Rev. 4.10.
 Program Added support for SCI_CMD_SET_TXI_RXI_PRIORITY.

Added support command SCI_CMD_SET_TXI_PRIORITY and
SCI_CMD_SET_RXI_PRIORITY in R_SCI_Control() for
RX100 and RX200.

4.20 Dec.29.21 80

6.1 Confirmed Operation Environment:
Added Table for Rev.4.20.

 Program Added support for RX140-256KB.
4.30 Mar.14.22 80

6.1 Confirmed Operation Environment:
Added Table for Rev.4.30.

 Program Added support for RX66T-48Pin.
4.40 Mar.31.22 1, 4, 11

5, 6
32, 44, 55
92

Added support for RX660.
Added notes to use SCI with DTC/DMAC support.
Added code size corresponding to RX660.
6.1 Confirmed Operation Environment:
Added Table for Rev.4.40.

 Program Added support for RX660.
Fixed the issue with DTC mode which incorrectly uses the
same transfer information for all channels

4.50 Jun.28.22 92 6.1 Confirmed Operation Environment:
Added Table for Rev.4.50.

 Program Updated demo projects.
4.60 Dec.27.22 5

15, 16

93

Added a description of nested interrupt
Added new macros SCI_CFG_CHn_EN_TXI_NESTED_INT,
SCI_CFG_CHn_EN_RXI_NESTED_INT,
SCI_CFG_CHn_EN_TEI_NESTED_INT and
SCI_CFG_CHn_EN_ERI_NESTED_INT to support nested
interrupt
6.1 Confirmed Operation Environment:
Added Table for Rev.4.60.

 Program Fixed the issue that rx_idle is not changed to true when
reception is complete in DMAC mode.
Added macro definition enable and disable nested interrupt for
SCI.

4.70 Feb.16.23 88

94

Program

4. Pin Setting:
Modified the following setting procedure:
Please perform the pin setting before calling the R_SCI_Open
function.
6.1 Confirmed Operation Environment:
Added Table for Rev.4.70.
Fixed a bug that return wrong value in sci_init_bit_rate()
function in RX140, RX660, RX671, RX72M, RX72N, RX72T,
RX66N, RX66T.
Fixed a bug in sci_send_sync_data() function with DTC mode.

4.80 Mar.31.23 1, 4, 14 Added support for RX26T.
 36, 49, 61 Added code size corresponding to RX26T.
 98 6.1 Confirmed Operation Environment:

Added Table for Rev.4.80.
 Program Added support for RX26T.

Removed byteq header include in SYNC mode and SSPI
mode.
Moved the source code which checks for IRDA mode support
to MDF file.

RX Family SCI Module Using Firmware Integration Technology

R01AN1815EJ0500 Rev.5.00 Page 122 of 122
Jun.12.23

4.90 May.29.23 1, 4, 6, 15 Added support for RX23E-B.
 35, 48, 60 Added code size corresponding to RX23E-B.
 97 6.1 Confirmed Operation Environment:

Added Table for Rev.4.90
 69, 91 Deleted the description of FIT configurator from "2.13 Adding

the FIT Module to Your Project", "4. Pin Settings"
 Program Added support for RX23E-B.
5.00 Jun.12.23 77, 80 3. API Functions

Modified the description and return values of R_SCI_Send()
and R_SCI_Receive().

 97 6.1 Confirmed Operation Environment:
Added Table for Rev.5.00

 Program Fixed bugs in sci_send_sync_data(), sci_receive_sync_data()
and sci_receive_async_data() function in using DTC/DMAC.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

 © 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SCI FIT Module
	1.2 Overview of the SCI FIT Module
	1.3 API Overview
	1.4 Limitations
	1.5 Using the FIT SCI module
	1.5.1 Using FIT SCI module in C++ project

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.3.1 RAM Location Limitations

	2.4 Supported Toolchain
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Parameters
	2.11 Return Values
	2.12 Callback Function
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_SCI_Open()
	R_SCI_Close()
	R_SCI_Send()
	R_SCI_Receive()
	R_SCI_SendReceive()
	R_SCI_Control()
	R_SCI_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 sci_demo_rskrx113, sci_demo_rskrx113_gcc
	5.2 sci_demo_rskrx231, sci_demo_rskrx231_gcc
	5.3 sci_demo_rskrx64m, sci_demo_rskrx64m_gcc
	5.4 sci_demo_rskrx71m, sci_demo_rskrx71m_gcc
	5.5 sci_demo_rskrx65n, sci_demo_rskrx65n_gcc
	5.6 sci_demo_rskrx65n_2m, sci_demo_rskrx65n_2m_gcc
	5.7 sci_demo_rskrx72m, sci_demo_rskrx72m_gcc
	5.8 sci_demo_rskrx671, sci_demo_rskrx671_gcc
	5.9 Adding a Demo to a Workspace
	5.10 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

