
 APPLICATION NOTE

RX Family R20AN0039EJ0100
Rev.1.00

Oct.08.2010M3S-TFS-Tiny: Original File System Software

Introduction

This document explains the usage of the TFS FileSystem software library along with a sample program.

Target device

RX family

Contents

1. ... 3 Library specifications

2. .. 3 Library type definitions

3. .. 3 Explanation of terms
3.1 .. 3 Logic sector / Logic Sector Number
3.2 ... 3 Drive / Drive number

4. ... 4 Library structures
4.1 .. 4 tfs_volume – Volume structure
4.2 ... 4 tfs_file – File structure

4.3 .. 5 tfs_buff – Buffer structure
4.4 ... 5 tfs_config – File system configuration
4.5 .. 5 tfs_format_param – FAT16 parameters

4.6 ... 6 tfs_format_param1 – File system format parameters
4.7 .. 7 tfs_stat – File status
4.8 ... 7 tfs_statfs – File system status

5. .. 8 Library error codes

6. .. 9 Library functions
6.1 ... 9 R_tfs_init

6.2 .. 10 R_tfs_exit
6.3 .. 11 R_tfs_format1
6.4 .. 12 R_tfs_attach

6.5 ... 13 R_tfs_detach
6.6 .. 14 R_tfs_alloci
6.7 ... 15 R_tfs_openi

6.8 .. 16 R_tfs_close
6.9 .. 17 R_tfs_write
6.10 ... 18 R_tfs_read

6.11 .. 19 R_tfs_lseek
6.12 ... 20 R_tfs_removei
6.13 ... 21 R_tfs_stati

6.14 ... 22 R_tfs_statfs
6.15 ... 23 R_tfs_get_errno

R20AN0039EJ0100 Rev.1.00 Page 1 of 36

Oct.08.2010

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 2 of 36

Oct.08.2010

6.16 .. 24 R_tfs_get_date

6.17 .. 25 R_tfs_get_time

7. .. 26 Memory driver interface
7.1 ... 26 Functions

7.1.1 ... 26 R_tfs_write_lsec
7.1.2 ... 27 R_tfs_read_lsec

8. ... 28 Sample Program

8.1 ... 28 Outline
8.2 ... 29 Flow
8.3 ... 30 Function list

8.4 .. 30 Function chart
8.5 .. 31 Folder composition in workspace

9. ... 32 Sample software usage

9.1 ... 32 Sample software execution
9.2 .. 32 Real Time Clock
9.3 .. 32 Sample Data for File Read / Write

10. ... 33 Library Characteristics
10.1 .. 33 Occupied memory size
10.2 .. 33 Occupied stack size

10.3 ... 33 Memory occupied by filesystem data structures

Website and Support ... 34

Revision Record .. 34

General Precautions in the Handling of MPU/MCU Products... 35

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 3 of 36

Oct.08.2010

1. Library specifications

Following are the main specifications of the Tiny Filesystem library:

Specification Value

Compatible media sizes 32 MB, 64 MB, 128 MB, 256 MB, 512 MB, 1 GB
FAT Wrapping FAT Type FAT16

Multiple drive support Yes (work area required to be set during initialization)

Directory Root directory only

No. of directory entries
65,534 blocks maximum (set and save directory area
size during formatting)

Directory entry size 128 byte fixed length

File designation File number (file names cannot be used)
Number of files that can be
opened simultaneously

Multiple (work area required to be set during
initialization)

File size Variable (allocated in blocks)
No. of blocks that can be
allocated per file

4

Block size
Select block size from 8 KB, 16 KB, 32 KB, 64 KB, 128
KB or 256 KB while formatting

Block limit 65,534 blocks maximum

I/O buffer size 64 byte fixed length (logic sector)

Number of I/O buffers At least 1

2. Library type definitions

This section gives the details about the type definitions used in the library.

Datatype Typedef

unsigned char uint8_t

unsigned short uint16_t

unsigned long uint32_t

signed char int8_t

signed short int16_t

signed long int32_t

3. Explanation of terms

This section explains some of the terms related to the TFS library.

3.1 Logic sector / Logic Sector Number
The TFS reads/writes to the drive which is assumed to be divided into 64-byte fixed length blocks. This 64-
byte fixed length block is called the logic sector. Each logic sector is identified with a logic sector number in
the ascending order starting from zero.

3.2 Drive / Drive number
The TFS is identified as a drive in which the FAT volume (similar to a DOS partition) is stored in the file
system. If the TFS has more than one drive, the additional drives should be identified with numbers starting
from 0. The drive number is this drive identification number.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 4 of 36

Oct.08.2010

4. Library structures

This section gives the details of the structures used in the library.

4.1 tfs_volume – Volume structure
Explanation

This structure is used to hold the drive information. The number of structures required will be equal to the
number of drives to be use. For instance, if the number of drives is 1, only one structure variable will be
required; if the number of drives is 2, two structures will be required and so on.

The members of this structure should not be accessed directly from the user program. The user program
should only declare a structure variable array with array size equal to the number of drives to be used.

Structure

Datatype
Structure
element

Explanation

uint8_t is_mounted

uint8_t drv

uint16_t rootents

uint16_t blocks

uint16_t bsize

uint32_t start

uint32_t vsize

uint32_t rsize

uint32_t hsize

uint32_t dsize

For TFS internal usage

4.2 tfs_file – File structure
Explanation

This structure is used to hold the file information. The number of structures required will be equal to the
number of files to be opened simultaneously. For instance, if the number of files to be used at a time is only 1,
only one structure variable will be required; if the number of files to be used at a time is 2, two structures will
be required and so on.

The members of this structure should not be accessed directly from the user program. The user program
should only declare a structure variable array with array size equal to the number of files to be used
simultaneously.

Structure

Datatype
Structure
element

Explanation

uint8_t is_open

uint8_t id

uint8_t drv

uint8_t flags

uint16_t ent

uint32_t size

uint32_t ptr

For TFS internal usage

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 5 of 36

Oct.08.2010

4.3 tfs_buff – Buffer structure
Explanation

This structure is used to hold the logic sector buffer information.

The members of this structure should not be accessed directly from the user program. The user program
should declare a buffer structure variable array with only one element. The number of array elements required
is only one irrespective of the number of drives or files to be used.

Structure

Datatype Structure element Explanation

uint8_t cnt

uint8_t drv

uint32_t lsec

uint8_t buf[]

For TFS internal usage

4.4 tfs_config – File system configuration
Explanation

This structure is used to set the file system configuration as per the user’s requirements. The user should
initialize this structure with the desired values and then call the tfs_init function to set these values.

Structure

Datatype Structure element Explanation

uint16_t drives Number of drives to be used(≥1)

uint16_t files
Number of file descriptors to be used i.e. no.
of files to be opened simultaneously.(≥1)

uint16_t buffs
Number of logic sector buffers to be
used(≥1)

struct tfs_volume* volume
Start address of volume structure array.
The number of array elements should be
equal to the number of drives to be used.

struct tfs_file* file
Start address for file structure array.
The number of array elements should be
equal to the number of files to be used.

struct tfs_buff* buff
Start address for buffer structure array.
It is sufficient to have only one element in
this array.

4.5 tfs_format_param – FAT16 parameters
Explanation

This structure is a member of the tfs_format_param1 structure. It holds the FAT16 parameters used
while formatting the drive.

Structure

Datatype Structure element Explanation

uint32_t TotSec Total number of sectors in the volume

uint16_t SecPerTrk Number of sectors per track

uint16_t NumHeads Total number of heads

const uint8_t* VolLab Volume label

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 6 of 36

Oct.08.2010

4.6 tfs_format_param1 – File system format parameters
Explanation

This structure holds the formatting parameters for the memory drive.

Structure

Datatype
Structure
element

Explanation

struct tfs_format_param fat FAT16 parameters (as explained in 4.5)

uint16_t rootents Number of root directory entries

uint16_t bsize Block size in KB

Members

fat.TotSec
Set the total number of sectors in the volume (512 bytes/sector).

fat.SecPerTrk

Set the number of sectors per track on the drive. (BIOS Parameter)

fat.NumHeads
Set the number of heads on the drive.

fat.VolLab

Set the FAT Volume label. Setting NULL will use the label “NONAME” track on the drive.

rootents
Set the number of entries in the root directory. Set value which is an integral multiple of 4.

bsize

Set the data block size in kilobytes (KB). Valid values are 8, 16, 32, 64, 128 and 256.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 7 of 36

Oct.08.2010

4.7 tfs_stat – File status
Explanation

This structure holds the file information returned by tfs_stati function.

Structure

Datatype Structure element Explanation

uint32_t st_size File size

uint16_t st_mdate Date when the file was last modified

uint16_t st_mtime Time when the file was last modified

uint16_t st_mode File mode

Members

st_size
Stores the size of file in bytes.

st_mdate

Stores the date when the file was modified.
bit15:9 - Year from 1980 (Value in the range of 0 to 127)
bit8:5 - Month (Value in the range 1 to 12)
bit4:0 - Day (Value in the range 1 to 31)

st_mtime

Stores the time when the file was modified or the directory was created.
bit15:9 - Hour (Value in the range 0 to 23)
bit8:5 - Minutes (Value in the range 0 to 59)
bit4:0 – Seconds are displayed in two second intervals. (Value in the range 0 to 29 and displayed as 0-
58)

st_mode

File mode is used to indicate whether the file is a normal file or a directory.

4.8 tfs_statfs – File system status
Explanation

This structure holds the file system information returned by tfs_statfs function.

Structure

Datatype Structure element Explanation

uint16_t f_bsize Block size (in KB)

uint16_t f_blocks Total number of blocks

uint16_t f_bfree Number of free blocks available
uint16_t f_files Total number of root directory entries

uint16_t f_ffree Number of free directory entries

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 8 of 36

Oct.08.2010

5. Library error codes

This section gives the significance of the macros corresponding to the error codes returned by the library functions.

Macro Value Significance

TFS_EPERM 1 Operation not permitted

TFS_ENOENT 2 No such file or directory

TFS_ESRCH 3 No such process

TFS_EINTR 4 Interrupted system call

TFS_EIO 5 I/O error

TFS_ENXIO 6 No such device or address

TFS_E2BIG 7 Argument list too long

TFS_EBADF 9 Bad file number

TFS_EAGAIN 11 Try again

TFS_ENOMEM 12 Out of memory

TFS_EACCES 13 Permission denied

TFS_EFAULT 14 Bad address

TFS_EBUSY 16 Device or resource busy

TFS_EEXIST 17 File exists

TFS_EXDEV 18 Cross-device link

TFS_ENODEV 19 No such device

TFS_ENOTDIR 20 Not a directory

TFS_EISDIR 21 Is a directory

TFS_EINVAL 22 Invalid argument

TFS_ENFILE 23 File table overflow

TFS_EMFILE 24 Too many open files

TFS_EFBIG 27 File too large

TFS_ENOSPC 28 No space left on device

TFS_EROFS 30 Read-only file system

TFS_ERANGE 34 Math result not representable

TFS_EDEADLK 35 Resource deadlock occurred

TFS_ENAMETOOLONG 36 File name too long

TFS_ENOLCK 37 No record locks available

TFS_ENOTEMPTY 39 Directory not empty

TFS_ETIMEDOUT 100 Operation timed out

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 9 of 36

Oct.08.2010

6. Library functions

6.1 R_tfs_init
Prototype

int16_t R_tfs_init (const struct tfs_config *config)

Explanation

This function initializes the TFS library with the configuration given by the structure tfs_config. This
function must be called before calling any other library function.

Arguments

Argument Type Explanation

config const struct tfs_config*
Initialize this structure with the desired values as
explained in section 4.4

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

struct tfs_volume volume[1];

struct tfs_file file[1];

struct tfs_buff buff[1];

struct tfs_config conf = {

 1, //No. of drives

 1, //No. of file descriptors

 1, //No. of buffers

 volume, //Start address of volume array

 file, //Start address of file descriptor array

 buff //Start address of buffer array

};

int16_t ret_val;

ret_val = R_tfs_init(&conf);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 10 of 36

Oct.08.2010

6.2 R_tfs_exit
Prototype

int16_t R_tfs_exit (uint16_t force)

Explanation

This function is the end processing of the library. However, this function can be called only when the drive is
unmounted. If this function is called when the drive is mounted, it will result in an error.

Normally, value 0 is set to the argument force. If a value other than zero is set, the function will perform a
force end. After this function is called, no other function can be called without initializing the library again (by
calling the R_tfs_init function).

Arguments

Argument Type Explanation

force uint16_t
Set 0 to perform a normal end.
Set any other value to perform a force end.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val;

// Other code before end processing

ret_val = R_tfs_exit(0);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 11 of 36

Oct.08.2010

6.3 R_tfs_format1
Prototype

int16_t R_tfs_format1 (uint16_t drv, const struct tfs_format_param1 *param)

Explanation

This function formats the drive drv with the parameters set in the structure param.

The drive can be formatted only when the drive is unmounted. If this function is called when the drive is
mounted, it will result in an error. Also during formatting, all the open files must be closed.

The formatting takes place in the following order:

 The entire volume is first formatted as a FAT16 file system.

 Next, the TFS area is saved as a single file in the FAT16 file system that was just created.

 Last, the internal TFS area is formatted and initialized.

Arguments

Argument Type Explanation

drv uint16_t Number of the drive to be formatted.

param
const struct
tfs_format_param1*

Initialize this structure with the desired
values as explained in section 4.5 and 4.6

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

const struct tfs_format_param1 test = {

{

(unsigned long)64*1024*2, /* Total no. of sectors (512B/sector) */

63, /* Sectors per track */

255, /* Number of heads */

"TINYFS " /* Volume label */

},

64, /* No. of root directory entries */

128 /* Size of data block (KB) */

};

int16_t ret_val;

// Library initialization

ret_val = R_tfs_format1(0, &test);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 12 of 36

Oct.08.2010

6.4 R_tfs_attach
Prototype

int16_t R_tfs_attach(uint16_t drv)

Explanation

This function mounts the TFS volume on the drive number drv passed as argument.

Arguments

Argument Type Explanation

drv uint16_t
Drive number on which the TFS volume is to
be mounted

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val;

// Library initialization

ret_val = R_tfs_attach(0);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 13 of 36

Oct.08.2010

6.5 R_tfs_detach
Prototype

int16_t R_tfs_detach(uint16_t drv, uint16_t force)

Explanation

This function unmounts the drive drv passed as argument. The drive cannot be unmounted if the drive is in use.
The function returns an error if the drive is in use.

Normally, value 0 is set to the argument force. If a value other than zero is set, the function will perform a
force unmount.

Arguments

Argument Type Explanation

drv uint16_t
Drive number from which the TFS volume is to be
unmounted

force uint16_t
Set 0 to perform a normal end.
Set any other value to perform a force end.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val;

// Initialization

R_tfs_attach(0);

// Processing

ret_val = R_tfs_detach(0,0);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 14 of 36

Oct.08.2010

6.6 R_tfs_alloci
Prototype

uint16_t R_tfs_alloci(uint16_t drv, uint16_t did, uint16_t fid)

Explanation

This function returns the first available file number greater than fid on the drive drv passed as argument.
When file number is to be retrieved from the top of the directory, set the fid value to 0. Value 0 (root directory)
must be set to the directory number did.

Arguments

Argument Type Explanation

drv uint16_t Drive number on which file is to be created

did uint16_t Must be set to the value 0 (root directory)

fid uint16_t
File number beyond which first available file number is to be
searched for.

Return value

Type Explanation

uint16_t
Returns the available file number if function execution is successful.
Return value TFS_NONUM if an error occurs.

Sample Usage

uint16_t file_no;

// Initialization and other processing

file_no = R_tfs_alloci(0,0,0);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 15 of 36

Oct.08.2010

6.7 R_tfs_openi
Prototype

int16_t R_tfs_openi(uint16_t drv, uint16_t did, uint16_t fid, int16_t
flags)

Explanation

This function opens the file fid on the drive drv. Value 0 (root directory) must be set to the directory number
did. The file can be opened in different modes using logical OR combination of the flags.

Arguments

Argument Type Explanation

drv uint16_t Drive number on which file is to be opened

did uint16_t Must be set to the value 0 (root directory)

fid uint16_t File number retrieved from R_tfs_alloci funtion

flags int16_t

The following values can be appointed to the flags:
TFS_O_RDONLY – Open as read-only
TFS_O_WRONLY – Open as write-only
TFS_O_RDWR – Open as read / write
TFS_O_CREAT – Create a new file if it is non-existent.

Return value

Type Explanation

int16_t
Returns the file descriptor if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t fd;

uint16_t file_no;

// Initialization

file_no = R_tfs_alloci(0,0,0);

fd = R_tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 16 of 36

Oct.08.2010

6.8 R_tfs_close
Prototype

int16_t R_tfs_close (int16_t fd)

Explanation

This function closes the file associated with the file descriptor fd.

Arguments

Argument Type Explanation

fd int16_t File descriptor associated with the file to be closed.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val, fd;

uint16_t file_no;

// Initialization

file_no = R_tfs_alloci(0,0,0);

fd = R_tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

ret_val = R_tfs_close(fd);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 17 of 36

Oct.08.2010

6.9 R_tfs_write
Prototype

int16_t R_tfs_write (int16_t fd, const void *buf, uint32_t count)

Explanation

This function writes count bytes from the buffer buf to the file associated with the file descriptor fd.

Arguments

Argument Type Explanation

fd int16_t
File descriptor associated with the file in which data
is to be written

buf const void*
Pointer to the buffer containing the data to be
written.

count uint32_t Number of bytes of data that is to be written.

Return value

Type Explanation

int16_t
Returns the actual number of bytes written if function execution is
successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val, fd;

uint16_t file_no;

// Initialization

fd = R_tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

ret_val = R_tfs_write(fd,"123456789",9);

R_tfs_close(fd);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 18 of 36

Oct.08.2010

6.10 R_tfs_read
Prototype

int16_t R_tfs_read (int16_t fd, void *buf, uint32_t count)

Explanation

This function reads count bytes of data from the file associated with the file descriptor fd into the buffer buf.

Arguments

Argument Type Explanation

fd int16_t
File descriptor associated with the file from which
data is to be read.

buf void*
Pointer to the buffer in which the read data is to
be stored.

count uint32_t Number of bytes of data that is to be read.

Return value

Type Explanation

int16_t
Returns the actual number of bytes read if function execution is
successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val, fd;

uint16_t file_no;

// Initialization and other processing

fd = R_tfs_openi(0, 0, file_no, TFS_O_RDWR);

ret_val = R_tfs_read(fd,rw_buff,9);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 19 of 36

Oct.08.2010

6.11 R_tfs_lseek
Prototype

int16_t R_tfs_lseek (int16_t fd, int32_t offset, int16_t whence)

Explanation

This function moves the file pointer associated with the file descriptor fd by offset number of bytes from the
position given by whence. The argument whence can take the following values:

Whence value File pointer position

TFS_SEEK_SET Start of the file

TFS_SEEK_CUR Current file pointer position

TFS_SEEK_END End of the file

Arguments

Argument Type Explanation

fd int16_t File descriptor associated with the file.

offset int32_t
Number of bytes by which the file pointer is to be
moved.

whence int16_t Position from where file pointer is to be moved.

Return value

Type Explanation

int16_t
Returns the file pointer position if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t fd;

uint16_t file_no;

int32_t fp;

// Initialization and other processing

fd = R_tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

fp = R_tfs_lseek(fd, 5,TFS_SEEK_SET);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 20 of 36

Oct.08.2010

6.12 R_tfs_removei
Prototype

int16_t R_tfs_removei (uint16_t drv, uint16_t did, uint16_t fid)

Explanation

This function removes/deletes the file fid from the drive drv. Value 0 (root directory) must be set to the
directory number did.

Arguments

Argument Type Explanation

drv uint16_t
Drive number from which the file is to be
deleted

did uint16_t Must be set to the value 0 (root directory)

fid uint16_t File number of the file to be deleted.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val;

uint16_t file_no;

// Initialization and other processing

ret_val = R_tfs_removei(0,0,file_no);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 21 of 36

Oct.08.2010

6.13 R_tfs_stati
Prototype

int16_t R_tfs_stati(uint16_t drv, uint16_t did, uint16_t fid, struct
tfs_stat *buf)

Explanation

This function retrieves the file information of file fid and stores it in the R_tfs_stat structure buf.

Arguments

Argument Type Explanation

drv uint16_t Drive number of the file.

did uint16_t Must be set to the value 0 (root directory).

fid uint16_t File whose information is to be retrieved.

buf struct tfs_stat*
Return value received from the function
consisting of the file information.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

uint16_t file_no;

struct tfs_stat stat;

int16_t ret_val;

// Initialization and other processing

ret_val = R_tfs_stati(0,0,file_no,&stat);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 22 of 36

Oct.08.2010

6.14 R_tfs_statfs
Prototype

int16_t R_tfs_statfs (uint16_t drv, struct R_tfs_statfs *buf)

Explanation

This function retrieves the space availability information on the mounted volume.

Arguments

Argument Type Explanation

drv uint16_t Drive on which the volume is mounted

buf struct tfs_statfs*
Return value received from the function
consisting of the volume information.

Return value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int16_t ret_val;

struct R_tfs_statfs statfs;

// Initialization and other processing

ret_val = R_tfs_statfs(0,&statfs);

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 23 of 36

Oct.08.2010

6.15 R_tfs_get_errno
Prototype

int16_t R_tfs_get_errno (void)

Explanation

This function returns the error number corresponding to the immediately preceding library function. 0 is returned
if the preceding library function execution was successful.

Arguments

None

Return value

Type Explanation

int16_t TFS Library error number (as explained in Sec. 5)

Sample Usage

int16_t err_code, fd;

// Initialization and other processing

R_tfs_write(fd,"123456789123456789123456789",27);

err_code = R_tfs_get_errno(); //Returns error code corresponding to
//R_tfs_write

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 24 of 36

Oct.08.2010

6.16 R_tfs_get_date
Prototype

uint16_t R_tfs_get_date (void)

Explanation

This is a user-defined function. The library does not include the definition for this function. The user needs to
implement this function based on the working environment. The implementation should be such that the function
returns the current date in the format as explained in the Sec. 4.7.

Arguments

None

Return value

Type Explanation

uint16_t Current date in the format as given in Sec. 4.7

Sample Usage

Please refer to the sample software for a sample implementation of the R_tfs_get_date function.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 25 of 36

Oct.08.2010

6.17 R_tfs_get_time
Prototype

uint16_t R_tfs_get_time (void)

Explanation

This is a user-defined function. The library does not include the definition for this function. The user needs to
implement this function based on the working environment. The implementation should be such that the function
returns the current time in the format as explained in the Sec. 4.7.

Arguments

None

Return value

Type Explanation

uint16_t Current time in the format as given in Sec. 4.7

Sample Usage

Please refer to the sample software for a sample implementation of the R_tfs_get_time function.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 26 of 36

Oct.08.2010

7. Memory driver interface

This section explains the details of the memory driver interface functions. The prototype of these functions along with
the processing necessary in the implementation of each function has been explained. The implementation of these
functions should be written by the user such that they can be used in conjunction with the memory driver available with
the user.

7.1 Functions
Drives used by TFS are single volume (DOS partition) compatible. Partition table information is concealed from
the TFS, so if the partition table needs to be used, the driver must process it. The TFS library uses the drive as a 64-
byte fixed length logic sector array, and requests I/O with in these logic sectors.

7.1.1 R_tfs_write_lsec
Prototype

int16_t R_tfs_write_lsec (uint16_t drv, uint32_t lsec, const void *buf)

Explanation

This function should consist of the code to write data to the disk drive. The details about the data to be written
are given by the arguments. This function writes data from the buffer buf to the volume (DOS partition suitable)
logic sector given by lsec in the drive drv.

Arguments

Argument Type Explanation

drv uint16_t Drive on which the volume is mounted

lsec uint32_t Specifies the logic sector number.

buf const void* Pointer to the data to be written.

Return Value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 27 of 36

Oct.08.2010

7.1.2 R_tfs_read_lsec
Prototype

int16_t R_tfs_read_lsec (uint16_t drv, uint32_t lsec, void *buf)

Explanation

This function should consist of the code to read data from the disk drive. The details about the data to be read are
given by the arguments. This function reads data from the volume (DOS partition suitable) logic sector given by
lsec in the drive drv into the buffer buf

Arguments

Argument Type Explanation

drv uint16_t Drive on which the volume is mounted

lsec uint32_t Specifies the logic sector number.

buf void* Pointer to the buffer to store the read data

Return Value

Type Explanation

int16_t
Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 28 of 36

Oct.08.2010

8. Sample Program

This section explains the sample program for Tiny FS library usage. The sample program is in the form of a HEW
（High-Performance Embedded Workshop) workspace. Change the initialization of the microcomputer and its
peripherals according to the system in use.

8.1 Outline
The sample program creates a text file, writes data to the file and then confirms the data that is actually written to the
file.

When the program is run, a Tiny Filesystem volume is mounted on the external memory card. The memory card is
connected to the RSK(*) by means of an external add-on board (**). A file is created on the memory card and text data
of 2 KB is written to the file. The file is then closed. For confirmation of the data that is written, the file is opened again
in the read mode. The entire contents of the file are read and they are compared with the write buffer data in the
program. Whether the contents of the data are matching or not is indicated on the LEDs on board the RSK.

The data is defined in the header file data_file.h.

(*)RSK refers to

Renesas Starter Kit for RX610

 (**) The external add-on board has a slot for inserting the memory medium. The pins of the memory medium are
connected to the appropriate pins of the RSK. This circuit board will not be included with the Renesas Solutions Kits
that the user intends to buy and is not available from Renesas.

RX Family M3S-TFS-Tiny
 Original File System Software

8.2 Flow

main

Initialize clock, timer and other
peripherals

Initialize configuration
parameters for TFS

Format TFS volume

Attach TFS volume

Get next available file number

Open file in write mode

Write data to the file

Close the file

Open file in read mode

Read data from the file

Compare read data & write data

Close the file

Indicate completion on LEDs

while(1)

Timer interrupt

Increment real time clock
every 1 second

return

Figure 1: Flow of sample program

R20AN0039EJ0100 Rev.1.00 Page 29 of 36

Oct.08.2010

RX Family M3S-TFS-Tiny
 Original File System Software

8.3 Function list
This following table gives a list of functions present in the sample program.

No. Function name Outline

1.0 main Writes data to a file; reads and confirms the written data.

1.1 R_init_clock
The clock of the microcomputer and other clock related registers are
initialized.

1.2 R_init_portpins Initializes the port pins for peripherals

1.3 R_init_1sTimer The timer is set up for Real Time Clock implementation.

1.4 R_error Error handling function

1.5 R_mmc_drv_init Memory driver initialization

1.6 R_tfs_init Initializes the library configuration – Library function

1.7 R_tfs_format1 Formats the memory card – Library function

1.8 R_tfs_attach Mounts the drive on TFS volume – Library function

1.9 R_tfs_alloci Retrieves the next available file number – Library function

1.10 R_tfs_openi Opens a file – Library function

1.11 R_tfs_write Writes data to a file – Library function

1.12 R_tfs_read Reads data from a file – Library function

1.13 R_tfs_close Closes a file – Library function

1.14 R_tfs_detach Unmounts the drive – Library function

1.15 R_tfs_exit End processing for the library – Library function

2.0 R_int_timer_CMI0A Increments the Real Time Clock every second.

8.4 Function chart

1.151.14 1.12 1.11

1.101.91.81.7

1.1 1.5

1.6

R_tfs_openiR_tfs_init R_tfs_format1 R_tfs_attach R_tfs_alloci

R_tfs_write R_tfs_read R_tfs_close R_tfs_detach

R_mmc_drv_init

1.41.3 1.2

R_errorR_init_1sTimerR_init_portpi
ns

R_init_clock

1.0

main

R_tfs_exit

2.0

R_int_timer_CMI0A

Figure 2: Function chart

R20AN0039EJ0100 Rev.1.00 Page 30 of 36

Oct.08.2010

RX Family M3S-TFS-Tiny
 Original File System Software

8.5 Folder composition in workspace

 |-- hew_files HEW auto-generated files storage directory.

 |

 |-- sample Sample source storage directory.

 |

 |-- Release Configuration directory

 |

 |-- lib TFS FileSystem library storage directory

 |

 |-- Debug_RX600_E1_E20_SYSTEM Configuration directory

 |

 |-- Debug Configuration directory

|-- R5F56108 Project directory

 |

|

|

tfs_sample_RX600 Workspace directory

R20AN0039EJ0100 Rev.1.00 Page 31 of 36

Oct.08.2010

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 32 of 36

Oct.08.2010

9. Sample software usage

This section explains the details related to sample software execution.

9.1 Sample software execution
 Build the sample software workspace and download the abs file to the RSK.

 After the “Reset Go” button is clicked, program starts running.

 First the file write operation takes place. A new text file is created on the memory card and 2 KB text data is
written in it. The file is then closed.

 The same file is opened again in the read mode. The contents of the file are read and compared with the data that
was passed while writing the file. This is done to confirm whether the data written to the file through the write
function was actually written to the file as expected.

 The current state of the program is indicated by the LEDs on board the RSK.

 Following table gives the LED indications corresponding to program execution.

LED0 LED1 Significance
ON OFF Program running

ON ON Execution successful

OFF ON Error occurred

9.2 Real Time Clock
The sample software includes a real time clock implementation with the help of a timer. The timer is configured to
generate an interrupt every second. In the corresponding Interrupt Service Routine, the current time and date are
incremented. This time and date is used for some of the file manipulation operations. For details related to time and
data storage, please refer sec 4.7

9.3 Sample Data for File Read / Write
The sample data for file read / write is stored in the header file data_file.h. The data is stored in an array of 2048
elements giving a total size of 2 KB (2048 Bytes). The data array consists of the text string “Renesas” written
repeatedly. If required, the user can modify this array and the corresponding macro FILESIZE.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 33 of 36

Oct.08.2010

10. Library Characteristics

This section gives details about the memory consumption of the library.

10.1 Occupied memory size

Microcomputer ROM RAM

RX600 5649 158
Unit: Byte

10.2 Occupied stack size

Function RX600

R_tfs_init 16
R_tfs_exit 8
R_tfs_format1 156
R_tfs_attach 60
R_tfs_detach 16
R_tfs_alloci 52
R_tfs_openi 88

R_tfclose 32

R_tfs_write 128

R_tfs_read 124

R_tfs_lseek 4

R_tfs_removei 72

R_tfs_stati 40

R_tfs_statfs 60

R_tfs_get_errno 4
Unit:Byte

10.3 Memory occupied by filesystem data structures

Memory for one structure variable
Structure

RX600
tfs_volume 28
tfs_file 16
tfs_buff 72
tfs_config 12
tfs_format_param1 16
tfs_stat 12
tfs_statfs 10

Unit:Byte

The table given above can be used to calculate the memory required for the different TFS library structure variables
in the user’s application. Memory required for one structure variable multiplied by the number of variables will give
the memory required for all variables of that particular structure.

RX Family M3S-TFS-Tiny
 Original File System Software

R20AN0039EJ0100 Rev.1.00 Page 34 of 36

Oct.08.2010

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

Description
Rev.

Date Page Summary

1.00 Oct.08.10 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Library specifications
	2. Library type definitions
	3. Explanation of terms
	3.1 Logic sector / Logic Sector Number
	3.2 Drive / Drive number

	4. Library structures
	4.1 tfs_volume – Volume structure
	4.2 tfs_file – File structure
	4.3 tfs_buff – Buffer structure
	4.4 tfs_config – File system configuration
	4.5 tfs_format_param – FAT16 parameters
	4.6 tfs_format_param1 – File system format parameters
	4.7 tfs_stat – File status
	4.8 tfs_statfs – File system status

	5. Library error codes
	6. Library functions
	6.1 R_tfs_init
	6.2 R_tfs_exit
	6.3 R_tfs_format1
	6.4 R_tfs_attach
	6.5 R_tfs_detach
	6.6 R_tfs_alloci
	6.7 R_tfs_openi
	6.8 R_tfs_close
	6.9 R_tfs_write
	6.10 R_tfs_read
	6.11 R_tfs_lseek
	6.12 R_tfs_removei
	6.13 R_tfs_stati
	6.14 R_tfs_statfs
	6.15 R_tfs_get_errno
	6.16 R_tfs_get_date
	6.17 R_tfs_get_time

	7. Memory driver interface
	7.1 Functions
	7.1.1 R_tfs_write_lsec
	7.1.2 R_tfs_read_lsec

	8. Sample Program
	8.1 Outline
	8.2 Flow
	8.3 Function list
	8.4 Function chart
	8.5 Folder composition in workspace

	9. Sample software usage
	9.1 Sample software execution
	9.2 Real Time Clock
	9.3 Sample Data for File Read / Write

	10. Library Characteristics
	10.1 Occupied memory size
	10.2 Occupied stack size
	10.3 Memory occupied by filesystem data structures

