
 APPLICATION NOTE

R01AN3294EJ0106 Rev.1.06 Page 1 of 74
Mar 1, 2021

RX Family
Internal Flash ROM rewrite program via USB CDC

Overview

This application note explains Flahs ROM rewrite program, which uses USB peripheral controllers.

Target Devices

RX111, RX113, RX231, RX23W

RX62N/RX621, RX630, RX63N/RX631, RX63T

RX65N/RX651, RX64M, RX71M, RX66T/RX72T

RX72M, RX72N, RX66N, RX671

When implementing this application note in the user system, conduct an extensive evaluation to ensure compatibility.

Table of Contents

1. Document Outline ... 2

2. Internal Flash ROM rewrite program via USB CDC Overview .. 4

3. Internal Flash ROM rewrite program via USB CDC Setup .. 8

4. Execute Internal Flash ROM rewrite program via USB CDC... 10

5. Cautions Regarding Creating the User Program ... 26

6. Internal Flash ROM rewrite program via USB CDC and User Program Settings 28

7. Internal Flash ROM rewrite program via USB CDC Explanation .. 34

8. File Transfer Application (RX USB Firmware Updater) Explanation .. 54

9. Data Transmission Specification ... 67

10. Using the e2 studio project with CS+ ... 73

R01AN3294EJ0106
Rev.1.06

Mar 1, 2021

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 2 of 74
Mar 1, 2021

1. Document Outline

This application note explains the Updater used for USB peripheral controllers. Please use in combination with the documents listed

in Section 1.2 Related Documents.

1.1 Functions

This updater updates the user program using the Communication Device Class of the Universal Serial Bus Specification (referred to

as USB herein).

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. RX Family Flash Module Using Firmware Integration Technology Application Note

3. RX Family Board Support Package Model Application Note

4. User’s Hardware Manual corresponding to each MCU

The latest versions of all documents are available for download from the Renesas Electronics website.

Renesas Electronics website

 http://www.renesas.com/
USB device page

 http://www.renesas.com/prod/usb/

1.3 Cautions
a. The operations described in this application note are not guaranteed. When using this application note for your system,

conduct an extensive evaluation to ensure compatibility.

b. The program settings are based on Little Endian. If the user program is based on Big Endian, please modify this program to

Big Endian as well. Please refer to 6.2 Internal Flash ROM rewrite program via USB CDC Settings about the endian

setting.

c. When implementing this program into your system, please refer to the contents of section 6 Internal Flash ROM rewrite

program via USB CDC and User Program Settings and 7.4 Cautions section.

d. Internal Flash ROM rewrite program via USB CDC does not analyze the user program (mot/hex file). When you develop

the file transfer application program (GUI tool) woking on PC, the GUI tool needs to analyze the user program. In addition,

refer to the section 9, Data Transmission Specification for the USB data transfer specification with RX device.

e. This program does not support USB Command Verifier (CV).

f. The operation is not checked when changing the header files except r_usb_fwupdater_config.h file in r_config folder.

g. This program uses each FIT module. In this program, the FTI module source code which is released in Renesas Web is

changed for the Firmware Updater.

h. Allocate the "FW_CODE" section at address 0xFFFFFF7C when using the dual mode.

i. It is necessary to move the following resistance on the RSSK board when using RSSK(RX23W).

R89 --> R90

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 3 of 74
Mar 1, 2021

R96 --> R97
R112 --> R113

j. Please refer to the following about the term "USB0 module" and "USB1 module" described in this documentation.

Term MCU USB module name
USB0 module RX62N/RX621 USB module
(start address:0xA0000) RX63N/RX631 USBa module
 RX630 USBa module
 RX63T USBa module
 RX64M USBb module
 RX71M USBb module
 RX65N/RX651 USBb module
 RX66T/RX72T USBb module
 RX72M USBb module
 RX72N USBb module
 RX66N USBb module
 RX111 USBc module
 RX113 USBc module
 RX231 USBd module
 RX23W USBc module
USB1 module RX62N/RX621 USB module
(start address:0xA0200 / 0xD0400) RX63N/RX631 USBa module
 RX64M USBA module
 RX71M USBAa module

1.4 List of Abbreviations and Acronyms
The following lists terms and abbreviations used in this document.

API : Application Program Interface
BSP : Renesas Board support package module
CDC : Communication Device Class
e2 studio : Eclipse embedded studio (RX-supported)
H/W : Renesas USB device
MCU : Micro control Unit
P/E : Program / Erase
RSK : Renesas Starter Kit
RSSK : Renesas Solution Starter Kit
USB : Universal Serial Bus

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 4 of 74
Mar 1, 2021

2. Internal Flash ROM rewrite program via USB CDC Overview

 The program transfers a specified user program from the file transfer application on the host machine (referred to as “PC” herein) to

the evaluation board via a USB connection. The transferred user program is written to an address in the ROM using the Flash

self-programming library

 The program is configured as follows:

(1). Internal Flash ROM rewrite program via USB CDC

This is the program to be implemented in the evaluation board; performs serial transmission via USB and self

programming.

(2). File transfer application

The application runs on the host machine (PC) and transfers specified files to the evaluation board in USB transmissions.

(3). User program

This file is written by Internal Flash ROM rewrite program via USB CDC for the operation confirming.

 Program 1: LEDs on RSK/RSSK board light up in consecutive order.

Program 2: LEDs on RSK/RSSK board light up simultaneously.

The following shows the program’s data flow.

(Memory image)

CDC USB

connection

Internal Flash ROM
rewrite program

via USB

Host machine (PC)

Data transferred from PC
 is written to memory

Evaluation board

File transfer
application

User

program

Figure 2-1 RX USB F/W Update Data Flow

The Internal Flash ROM rewrite program via USB CDC works when the evaluation board is started up in specified conditions,

otherwise the user program works.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 5 of 74
Mar 1, 2021

2.1 Features

This program offers the following features.

1. The program performs full-speed data transfers between the USB host and the evaluation board using CDC (Communication

Deive Class).

2. The program occupies part of the internal flash memory. If your MCU supports user boot area, the Flash ROM rewite

program can be assigned to the user boot area.

3. This program supports the Motorola S and Intel HEX formats as the user program format (.mot/.hex files).

4. The program supports writing and verification with respect to the Flash ROM.

5. The program supports dual mode. (For information regarding dual mode, see the hardware manual of an MCU that supports

dual mode.)

6. A backup function is supported. For details of the backup function, refer to section 7.2, Backup Function.

7. The user program can use all interrupt functions.

2.2 ROM Size

The following is ROM size used by this program.

ROM Size : 8K bytes

 [Note]

The compiler uses CC-RX V.3.01/V.3.03 and the default option is specified for the optimization option.

2.3 Target Device & Flash Type

 Four types of RX Flash are available. The following table shows which type of Flash is available according to MCU. For more

details, please refer to the RX Family Flash Module Using Firmware Integration Technology Application Note.

Table 2-1 MCU Flash Programming Type

Flash Programming Type Target Device

Flash Type1 RX111, RX113, RX231, RX23W

Flash Type2 RX62N/RX621, RX630, RX63N/RX631, RX63T

Flash Type3 RX64M, RX71M, RX66T/RX72T

Flash Type4 RX65N/RX651, RX72M, RX72N, RX66N, RX671

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 6 of 74
Mar 1, 2021

2.4 Operation Confirmation Environment
Operations for this program have been confirmed under the following environment:

1. Hardware environment

(1). Evaluation board RSK/RSSK

(2). MCU RX71M, RX64M, RX63N, RX651, RX62N, RX63T, RX630, RX111, RX113, RX231, RX72T,
 RX72M, RX72N, RX66N, RX23W

(3). Emulator E2 Lite

(4). USB cable USB communication between evaluation board and PC

(5). PC PC running on Window® 8.1/ Window® 10 (32bit/64bit)

Note:

RSSK board is used when using RX23W.

2. Software environment

(1). Integrated Development Environment (IDE) e2 studio

(2). Compiler RX Family C/C++ Compiler Package CC-RX V.3.01

(3). Flash programming tool Renesas Flash Programmer V.3.03.00

(4). USB F/W Update sample/program set

 Internal Flash ROM rewrite program via USB CDC

 File transfer application

 Sample user program

Note:

(a). Operations for this program has not been confirmed when using USB1 module in RX62N.

(b). The operation was checked using RX Family C/C++ Compiler Package CC-RX V.3.01 in RX671.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 7 of 74
Mar 1, 2021

2.5 Folder Configuration
The following is the folder configuration for this program.

 (Top Directory)
 +―reference
 | +--cdc_inf
 | | CDC driver sample inf file (CDC_Demo.inf)
 | +--FirmupdateGUI
 | | | File transfer application (UsbfUpdater.exe / UsbfUpdater.ini)
 | | +---source
 | | File transfer application sources
 | +--SampleProgram (Sample program for operation confirmation)
 | +-- (MCU name)
 | +-- src (Sample program sources)
 | +-- mot (Sample user program)
 +―workspace (Internal Flash ROM rewrite program via USB CDC Sample projects)
 +-- (MCU name_FirmwareUpdater)

The following provides a description of each folder.

(1). reference¥cdc_inf

This folder stores the INF file to install the Windows ® CDC driver.

CDC_Demo.inf: Windows ® CDC driver (Windows® 32bit/64bit)

(2). reference¥FirmupdateGUI

This folder stores the file transfer application.

UsbfUpdater.exe: File transfer application execution file

UsbfUpdater.ini: File transfer application setting file

(3). reference¥FirmupdateGUI¥source

This folder stores the file transfer application source program. For more details, refer to section 8, File Transfer

Application (RX USB Firmware Updater) Explanation

(4). reference¥SampleProgram

This folder stores the sample user program.

sample1.mot: LEDs light up in consecutive order

sample2.mot: LEDs light up simultaneously

(5). workspace

This file stores Internal Flash ROM rewrite program via USB CDC for each MCU. For more details, refer to section 7

Internal Flash ROM rewrite program via USB CDC Explanation.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 8 of 74
Mar 1, 2021

3. Internal Flash ROM rewrite program via USB CDC Setup

 This section explains the setup sequence for this program.

3.1 Project Setup

 Select the folder with the name of the MCU you are using from the Workspace folder tab. Set up the project according to the

following sequence. This sequence is for setting up with e2 studio.

(1). Start up e2 studio.

*If running e2 studio for the first time, the Workspace Launcher dialog box will appear first. Specify the folder which will store the
project.

(2). Select [File] [Import]; the import dialog box will appear.

(3). In the Import dialog box, select [Existing Projects into Workspace].

Figure 3-1 Select Import Source

(4). Press [Browse] for [Select root directory]. Select the folder in which [.cproject] (project file) is stored.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 9 of 74
Mar 1, 2021

Figure 3-2 Project Import Dialog Box

(5). Click [Finish].

This completes the step for importing a project to the project workspace.

Note:

Please change to the device for linear mode from "Change Device:" (red frame) in Figure 3-3 when using MCU supporting dual
mode is used as linear mode. For example, please change from "R5F565NEHxFB_DUAL" (Dual mode) to "R5F565NEHxFB"
(Linear mode) when using the device (R5F565NEHxFB)

Figure 3-3 Change Device

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 10 of 74
Mar 1, 2021

4. Execute Internal Flash ROM rewrite program via USB CDC
This section describes how to execute this program.

This process uses the RSK/RSSK board to confirm operations of two different user programs.

4.1 File Transfer Application (RX USB Function Firmware Updater) Startup

 The File Transfer Application which transmits the user program starts up when the UsbfUpdater.exe file in the FirmupdateGUI folder

is executed.

 Figure 4-1 shows how to set the following file transfer application.

Notes:

If the file transfer application does not start up, make sure the folder that contains the exe file also contains the UsbfUpdater.ini,

and then retry the process.

Figure 4-1 RX USB Firmware Updater GUI Software

Device:
Name:
Select the MCU to which
data will be written.

ROM Address Set:

Sets the MCU ROOM
address in the P/E Access
Enable Area.

Port:

Set the USB connection
port here.

Exit:

Closes the application.

Clear:
Clears the
message.

Update:

Starts the updater.

File:

Set the user program file
here. The application can
transfer “.mot / .hex” file
types.

ROM Address Set:

Program/Erase area
setting
*8-digit hexadecimal input

Size:

Displays ROM size

Load File:

Selects the file to be
written.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 11 of 74
Mar 1, 2021

4.1.1 P/E Access Enable Area Address

Set the Program/Erase enable area so that this program area will not be written over when the user program is written to the MCU.

Note that this program does not allow access to the ROM block that includes the reset vector (Block 0 in the RX Series). Please use

the settings listed in Table 4-1 to set the range for P/E Access Enable Area Address.

Table 4-1 P/E Access Enable Area Address Settings

Backup Function P/E address Setting

OFF
On-chip ROM Area

(Program ROM)
Start Address

- 0xFFFFDFFF

ON Start Address of
Program Execution Area - 0xFFFFDFFF

Notes:

1. The block including the specified address will be erased during an erase operation. Be careful when setting the ROM block

size. For more details on ROM block size, refer to the user’s hardware manual corresponding to the target MCU.

2. When selecting dual mode, specify the startup bank area (and not the update target area).

3. Specify the start address (start address of the start Flash ROM block) and the end address (end address of the end Flash ROM

block) for the user prograum in P/E Access Enable Area Address.

4. For Backup function and the program execution area, refer to section 7.2, Backup Function.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 12 of 74
Mar 1, 2021

4.2 Writing Internal Flash ROM rewrite program via USB CDC to Flash ROM write
and execution

This section explains the sequence for writing and executing the Internal Flash ROM rewrite program.

4.2.1 Writing Internal Flash ROM rewrite program via USB CDC to ROM
(1). Hardware setup

The following figures show connection diagrams for writing Internal Flash ROM rewrite program via USB CDC to the MCU.

a. Using an emulator

RSK Board

Emulator
USB connection

PC software:
Renesas Flash
Programmer (RFP)

Figure 4-2 Connection Diagram Using an Emulator

b. Not using an emulator

USB/Serial cable

RSK Board

PC software:
Renesas Flash
Programmer (RFP)

Figure 4-3 Connection Diagram with No Emulator

Notes:

a) Note that when writing this program to the user boot area in USB boot mode, the existing USB boot mode program in the

user boot area will be overwritten.

b) When writing this program to the user boot area without use of an emulator (as in Figure 4-3), write to the ROM in boot

mode. The user boot area cannot be programmed in USB boot mode.

c) This program can be written to the user boot area when using an emulator (as in Figure 4-2).

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 13 of 74
Mar 1, 2021

d) When writing this program in USB boot mode, write the program to an area other than the user boot area.

e) Refer to the target MCU’s user’s hardware manual for more details on boot mode and USB boot mode.

(2). Writing the Internal Flash ROM rewrite program via USB CDC

 Run the Renesas Flash Programmer (RFP) and, using the [Browse] for [Program File] button, select Internal Flash ROM

rewrite program via USB CDC file to be written from the Workspace/(MCU name) folder. Press Start to download the

program to the target board. The write operation is complete when OK is displayed.

Figure 4-4 File Specification

Notes:

a. Refer to the following URLs for more details on the Renesas Flash Programmer:

URL:
https://www.renesas.com/en-us/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html

https://www.renesas.com/en-us/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 14 of 74
Mar 1, 2021

b. Refer to section 4.2.2 Internal Flash ROM rewrite program via USB CDC address assignment for more details

concering positioning of Internal Flash ROM rewrite program via USB CDC.

(3). Copying the Flash ROM rewrite program to the update target area (when dual mode is selected)

After writing of Internal Flash ROM rewrite program via USB CDC, as described in step (2), is complete, the Internal Flash

ROM rewrite program via USB CDC in the startup bank will copy itself to the update target area when the RSK/RSSK

powered-on or reset.

Bank 1
(Update Target Area)

Bank 0
(Startup Bank)

FlashROM Rewrite
Program

FlashROM Rewrite
Program

Rewrite program in startup bank area
copies itself.

Written by RFP.

Copying

Figure 4-5 Placement of the Flash ROM Rewrite Program

Note:

The following message is displayed on the file transfer application (GUI tool) when the user program is written after the

copying processing of FlashROM rewrite program is failure to the update target area.

ERR: Copying of Flash ROM rewrite program failed.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 15 of 74
Mar 1, 2021

4.2.2 Internal Flash ROM rewrite program via USB CDC address assignment
This section explains the assigned address of this program.

(1). Assignment to ROM area other than user boot area

Allocate Internal Flash ROM rewrite program via USB CDC in the following area.

Alloation Areas for Internal Flash ROM rewrite
program via USB CDC

0xFFFFE000 - 0xFFFFFFFF

The following shows the memory map for RX63N. For more details, refer to the user’s hardware manual corresponding to the

target MCU.

RAM

FFFF FFFFH

Program area

ROM area

Flash Block 0

Flash Block 2

FFE0 0000 H

007F 8000 H

0002 0000 H

0000 0000 H

Part of RAM is used by Flash

self-programming library.

Flash Block 69

FFFF E000H
Internal Flash ROM

rewrite program

・・・

FCU Firm RAM

FEFF E000 H

FEFF E000 H

Flash Block 1

FCU Firm ROM

007F A000 H

Used by Flash self-programming

library.

Figure 4-6 Memory Map (user boot area not used)
Notes:

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 16 of 74
Mar 1, 2021

When compiling Internal Flash ROM rewrite program via USB CDC, select 24 bits as the [Branch width size] in e2

studio. To specify the [Branch width size], select [File] [Properties] [C/C+ Build] [Settings], specify [Common]

[CPU].

(2). Assigning program to user boot area

Internal Flash ROM rewrite program via USB CDC can be assigned to the user boot area if it is supported by the target

MCU. Table 4-2 provides user boot area information.

Table 4-2 MCU User Boot Area Information

MCU User Boot Area User Boot Address

RX71M 32KB 0xFF7F8000 - 0xFF7FFFFF
RX64M 32KB 0xFF7F8000 - 0xFF7FFFFF
RX66T/RX72T 32KB 0xFF7F8000 - 0xFF7FFFFF
RX63T 16KB 0xFF7FC000 - 0xFF7FFFFF
RX63N/RX631 16KB 0xFF7FC000 - 0xFF7FFFFF
RX630 16KB 0xFF7FC000 - 0xFF7FFFFF
RX62N/RX621 16KB 0xFF7FC000 - 0xFF7FFFFF

 Note:

When compiling Internal Flash ROM rewrite program via USB CDC, select [None] as the [Branch width size] in

e2 studio. To specify the [Branch width size], select [File] [Properties] [C/C+ Build] [Settings], specify [Common]

 [CPU].

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 17 of 74
Mar 1, 2021

 The following shows the memory map when Internal Flash ROM rewrite program via USB CDC is assigned to the user

boot area in RX63N.

RAM

FFFF FFFFH

Program area

ROM area

Flash Block 0

Flash Block 2

FFE0 0000 H

007F 8000 H

0002 0000 H

0000 0000 H

Part of RAM is used by the Flash

self-programming library

Flash Block 69

FF7F C000H

・・・

FCU Firm RAM

FEFF E000 H

FEFF E000 H

Flash Block 1

FCU Firm ROM

007F A000 H

Used by the Flash self-programming

library

 Internal Flash ROM
rewrite program

via USB

FF80 0000H

User boot area

Figure 4-7 Memory Map (when using user boot area)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 18 of 74
Mar 1, 2021

(3). When using dual mode

The momory map when using dual mode is shown below.

RAM

FFFF FFFFH

Update Target Area

Bank 1

Flash Block 0

Flash Block 2

0000 0000 H

Part of RAM is used by Flash

self-programming library.

Flash Block

Internal Flash ROM
rewrite program

・・・

FCU Firm RAM

Flash Block 1

Used by Flash self-programming

library.

Internal Flash ROM
rewrite program

Bank 0

Startup Bank Area

Figure 4-8 Memory Map (Dual Mode Used)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 19 of 74
Mar 1, 2021

4.3 Execution of Internal Flash ROM rewrite program via USB CDC (user program
write operation)

This section explains the sequence for Internal Flash ROM rewrite program via USB CDC execution and user program write

operation.

(1). Hardware preparation

 To execute the write operation, detach the emulator and connect the PC and evaluation board with the USB cable. Figure 4-9

shows the connection diagram.

RSK BoardUSB connection

Figure 4-9 PC-Evaluation Board Connection Diagram

(2). Internal Flash ROM rewrite program via USB CDC startup

 Press the RESET button while holding down switch SW3 on the evaluation board. After transitioning to program mode, the board

will wait for transfer data from the PC.

Note:

a. Don't detach the USB cable while erasing or writing of the user program.

b. The PC used to run the file transfer application must be installed with a CDC driver. For details, refer to section 4.5 CDC

Driver Installation.

(3). File transfer preparation

 Run the file transfer application (RX USB Function Firmware Updater: PC-side software). Refer to Figure 4-11 for image.

 Confirm the Windows device manager under “COM:” in the updater window, and then select the assigned COM number.

Note:

The COM number varies according to environment. Numbers 1 to 9 can be used the COM number.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 20 of 74
Mar 1, 2021

Figure 4-10 Device Manager Port Confirmation

(4). Transfer file selection

 Click the Load File button in the file transfer application (RX USB Function Firmware Updater: PC-side software) and select the

file to be written to the ROM. Then select the target MCU under Device:.

Figure 4-11 RX USB Firmware Updater GUI Software (file transfer application)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 21 of 74
Mar 1, 2021

For details on how to use the file transfer application, refer to section 4.1 File Transfer Application (RX USB Function

Firmware Updater) Startup.

(5). P/E limited area setting (P/E Enable Address setting)

 Next, set the Program/Erase Enable Area within the ROM. For details, refer to section 4.1.1 P/E Access Enable Area Address.

Sequence:

Figure 4-12 P/E Limited Area Setting

(6). User program transfer execution

Click the Update button in the file transfer application GUI window. This will display the start message and start the file transfer or

write operation processing.

Note:

a. Don't detach the USB cable while programming the user program. If the USB cable was detached, you need to reset the RX

MCU.

b. If the user program write operation fails, the file transfer application interface will show a corresponding message. See

section 8.4, Application Messages for detailed explanations.

c. In using dual mode, if the copying processing of Internal Flash ROM rewrite program via USB CDC to the update

target area described in (3) in section 4.2.1 is failure, The message " ERR:Flash ROM rewrite program does not exist in

update taget area." is displayed on the file transfer appication (PC tool)

Area specified here is
erased.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 22 of 74
Mar 1, 2021

(7). User program transfer complete

When the file transfer or write operation processing ends, the file transfer application interface will display “Success” to indicate the

operation is complete. This ends the full write operation processing. Note that when dual mode is selected, bank switching will be

performed by the Internal Flash ROM rewrite program via USB CDC if the writing of the user program to the update target

area exits normally. Also note that bank switching will not be performed by the Internal Flash ROM rewrite program via

USB CDC if the writing of the user program to the update target area fails.

Figure 4-13 Write Processing Complete
(8). User program startup

When the rewrite operation is completed, a software reset is executed automatically and the written user program is started.

When sample program 1 (user program) has been written to the MCU, the LEDs on the RSK/RSSK board light up in consecutive

order. Note that when dual mode is selected, the user program that was written to the update target area will be launched if the

writing of the user program in step (7) above exits normally. Also note that the user program that was previously present in the

startup bank area will be launched if the writing of the user program fails.

(9). User program rewrite operation

This step rewrites the user program. Prepare sample program 2 (user program), restart the Internal Flash ROM rewrite

program via USB CDC, and repeat the sequence from step (4).

(10). Rewrite complete

When the rewrite operation is complete, the evaluation board is reset, and the new user program is started. The RSK/RSSK board

LEDs light up if sample program 2 (user program) is written.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 23 of 74
Mar 1, 2021

4.4 Cautions Regarding User Program Write Operation

1. If you write the user program to the area which already contains Internal Flash ROM rewrite program via USB CDC, please

start over by re-writing Internal Flash ROM rewrite program via USB CDC.

*Note that the ROM erase block unit differs depending on the MCU.

2. Be careful not to erase any block that includes the reset vector. Internal Flash ROM rewrite program via USB CDC will not

run if the reset vector has been erased.

4.5 CDC Driver Installation

The PC used to run the file transfer application must be installed with a CDC driver. The wizard shown in Figure 4-14 will appear

on your screen and prompt the CDC driver installation when you connect your PC to target board used to write Internal Flash ROM

rewrite program via USB CDC to the MCU.

(1). Select Update Driver Software from the device manager.

(2). Select “Browse my computer for driver software”.

Note:

a. It is not necessary the following installation work for CDC driver when using Window® 10.

b. The catalog file with the digital signature is required when using Windows® 8.1. The customer needs to create this catalog

file.

Figure 4-14 New Hardware Search Wizard

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 24 of 74
Mar 1, 2021

(3). Select “Browse for driver software on your computer"

 Click Browse, specify the folder in which the CDC_Demo.inf is stored, then click “Next”

Figure 4-15 Select Driver Location

Note:
The CDC_Demo.inf file is stored in "reference¥cdc_inf" in the package.

(4). If the following installation confirmation screen appears, click “Browse for driver software on your computer”

Figure 4-16 Installation Confirmation Screen

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 25 of 74
Mar 1, 2021

(5). When the following window appears, the CDC driver has been successfully installed. Click “Close.”

Figure 4-17 Installation Complete

* An error may occur when installing the driver in the Windows 8.1 environment. In this case the installation confirmation screen will

not appear.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 26 of 74
Mar 1, 2021

5. Cautions Regarding Creating the User Program
This sections explains cautions that apply when creating the user program

5.1 File Format

The program supports the following file formats.

・Motorola S format

・Intel HEX format

Note:

This program only supports the file with the load addresses in ascending order and does not supports the file with
addresses in descending order, or addresses before and after.

5.2 UserApp Header Area (user application header)
When using this program to write a user program, you must include a UserApp Header (user application header) area in the user

program. The size of the UserApp Header area should be a total of 8 bytes: 4 bytes for the user program start address storage area

and 4 bytes for the security code storage area (see Figure 5-1).

Refer to section 6.1 User Program Settings for details on how to create the UserApp Header area.

0 7

User program start address

XXXXXXXXh

Security code

（55AA55AAh）

UserApp Header
address

+4

Security code: 55AA55AAh (default)

bit

Figure 5-1 UserApp Header Area

This header information is read when Internal Flash ROM rewrite program via USB CDC is started up and transitions to the

UserApp startup sequence. For details, refer to section 7.3.1 Power On / Reset Operation Flow.

5.3 Fixed Vectors

Do not include fixed vector area in the user program (mot/hex file).

Note:

The fixed vectors of the Internal Flash ROM rewrite program via USB CDC will be used.

5.4 Option-Setting Memory
Do not make any settings to the option setting memory in the user program when using the MCU with option-setting memory. If

there is the setting to the option-setting memory in the user program (mot/hex file), this program does not work properly.

Note:

Make settings to option setting memory in this program. For details, see 6.2, Internal Flash ROM rewrite program via USB

CDC Settings.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 27 of 74
Mar 1, 2021

5.5 Section Setting When Using Backup Function
The user program is run from Area 1, so Area 1 should be specified in the section settings for the user program code attribute and

romdata attribute when you build your project.

code attribute : Stored execution code.

romdata attribute : Stored rom data

Note:

For the buckup function, refer to section 7.2, Backup Function.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 28 of 74
Mar 1, 2021

6. Internal Flash ROM rewrite program via USB CDC and User Program Settings

 This section provides the setting contents required for Internal Flash ROM rewrite program via USB CDC and the user

program.

6.1 User Program Settings
1. Setting Content 1

 Create the UserApp Header area in the user program according to the sample in Figure 6-1. For more details about the

UserApp Header, see section 5.2 UserApp Header Area (user application header).

2. Setting Content 2

 Set the section for the UserApp Header area created in step 1 above, and make sure to allocate the section to the start of the

user program. Specify the start address of the Flash ROM block address to the allocated address.

 /***
 APPLICATION INTERFACE HEADER
 The purpose of the header is for an external application to be able to read
 certain values from known addresses.
 - Start address of UserApp.
 - Security code must match what PCDC Flashloader expects.
 - For revision purposes of applications etc.
 - Do not change the order of these variables!
***/
#pragma section C UserApp_Head_Sect

/* START ADDRESS of user application header data - Appheader address + 0x00. */
const uint32_t userapp_entry_addr = (uint32_t) PowerON_Reset_PC;

/* - Appheader address + 0x04. */
const uint32_t userapp_sec_code = (uint32_t) USERAPP_SECURITY_CODE;

/* Total header area size 12 bytes */

Section specification

Header
information

Figure 6-1 UserApp Header Code Example

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 29 of 74
Mar 1, 2021

Sequence:

First select [Properties] [C/C+ Build] [Settings]. Next, select the Tool setting tab, and select [Linker] [Section].

Figure 6-2 Example of Section Settings for Sample Program

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 30 of 74
Mar 1, 2021

6.2 Internal Flash ROM rewrite program via USB CDC Settings

1. Setting Content 1

Adjust the following definition setting to your system. The following definition is described in

"r_config¥r_usb_fwupdater_config.h" file.

(1). USB module setting

Specify the USB module number as the USB_CFG_USE_USBIP definition. When using the USB0 module, set USB_CFG_IP0

as the USB_CFG_USE_USBIP definition; when using the USB1 module, set USB_CFG_IP1.

#define USB_CFG_USE_USBIP USB_CFG_IP0 // USB0 module using setting
#define USB_CFG_USE_USBIP USB_CFG_IP1 // USB1 module using setting

Note:

If the target MCU supports only one USB module, set USB_CFG_IP0 as the USB_CFG_USE_USBIP definition.

(2). Vendor ID and Product ID setting

Specify your vendor ID and product ID to the USB_CFG_VENDOR_ID and USB_CFG_PRODUCT_ID definition.

#define USB_CFG_VENDOR_ID 0x0000 // Vendor ID setting
#define USB_CFG_PRODUCT_ID 0x0002 // Product ID setting

Notes:

a. Be sure to set your vendor ID to USB_CFG_VENDOR_ID definition.

b. Be sure to set the setting value to the above macro defition to INF file (PC side).

(3). Backup Function Settings

Specify whether or not the backup function will be used as the USB_CFG_BACKUP definition. To use the

backup function set the definition to USB_CFG_ENABLE; set the definition to USB_CFG_DISABLE if the backup

function will not be used.

#define USB_CFG_BACKUP USB_CFG_ENABLE // Backup function is used.
#define USB_CFG_BACKUP USB_CFG_DISABLE // Backup function is not used.

Note:

For details of the backup function, refer to section 7.2, Backup Function.

(4). USB Pipe setting

Specify the pipe number to use for data transfer.

a. Bulk IN/OUT transfer

Set the pipe number (PIPE1 to PIPE5) to use for Bulk IN/OUT transfer. Do not set the same pipe number for the
definitions of USB_CFG_PCDC_BULK_IN and USB_CFG_PCDC_BULK_OUT.

#define USB_CFG_PCDC_BULK_IN Pipe number (USB_PIPE1 to USB_PIPE5)
#define USB_CFG_PCDC_BULK_OUT Pipe number (USB_PIPE1 to USB_PIPE5)

b. Interrupt IN transfer
Set the pipe number (PIPE6 to PIPE9) to use for Interrupt IN transfer.

#define USB_CFG_PCDC_INT_IN Pipe number (USB_PIPE6 to USB_PIPE9)

(5). USB Power setting

Specify USB_CFG_BUS or USB_CFG_SELF to the following definition.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 31 of 74
Mar 1, 2021

#define USB_CFG_POWER USB_CFG_BUS // Bus Power Setting
#define USB_CFG_POWER USB_CFG_SELF // Self Power Setting

(6). Input System Clock Frequency setting

Specify 20MHz setting or 24MHz setting to the Input system clock frequency bit (CLKSEL) in PHYSET register.when using

USBAa/USBA module.

#define USB_CFG_CLKSEL USB_CFG_24MHZ // 24MHz setting
#define USB_CFG_CLKSEL USB_CFG_20MHZ // 20MHz setting

Note:

This definition is ignored when using USB module except USBAa/USBA module supported by

RX71M/RX64M.

(7). CPU buswait setting

Specify the value to the following definition (USB_CFG_BUSWAIT).

This value is set to BUSWAIT register in USBA/USBAa module.

#define USB_CFG_BUSWAIT 7 // 7 wait setting

Notes:

a. Refer to the RX71M/RX64M hardware manual about the value which is set to USB_CFG_BUSWAIT

definition.

b. This definition is ignored when using USB module except USBAa/USBA module supported by

RX71M/RX64M.

(8). USB regulator setting

Specify whether your system uses USB regulator function supported by RX231 or not.

#define USB_CFG_REGULATOR USB_CFG_OFF // No use
#define USB_CFG_REGULATOR USB_CFG_ON // Use

Note:

This definition is ignored when using MCU except RX231.

(9). Other setting

Internal Flash ROM rewrite program via USB CDC references the UserApp Header area in the user program.

Therefore, if you change the assigned address of the UserApp Header area, make sure you also change this program to

reference the revised UserApp Header area. In the same manner, if you change the security code value, make sure you make

the corresponding changes in this program. Refer to section 5.2 UserApp Header Area (user application header) about

UserApp Header area.

a. USERAPP_HEADER_ADDR definition setting

Set the assigned address of the UserApp Header area to the USERAPP_HEADER_ADDR definition in the main.c file.

#define USB_CFG_USERAPP_HEADER_ADDR Assigned address of UserApp Header area

b. USERAPP_SECURITY_CODE definition setting

Set the security code specified in the UserApp Header area to the USERAPP_SECURITY_CODE definition in the main.c file.

#define USB_CFG_USERAPP_SECURITY_CODE Security code

Note:

Specify the value other than 0xFFFFFFFF to the security code.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 32 of 74
Mar 1, 2021

2. Setting Content 2
When using an MCU that supports dual mode, specify either 0 (dual mode) or 1 (linear mode) in the definition of

BSP_CFG_CODE_FLASH_BANK_MODE in the r_config¥r_bsp_config.h file.

#define BSP_CFG_CODE_FLASH_BANK_MODE 0 // Dual mode
#define BSP_CFG_CODE_FLASH_BANK_MODE 1 // Linear mode

3. Setting Content 3
 This program jumps to Internal Flash ROM rewrite program via USB CDC or the user program depending on the state

of SW (Switch) on the evaluation board. The process for determining the state of SW depends on the board specifications. Please

adjust the determination process to meet the target board specifications. This determination process is performed in the main

function.

4. Setting Content 4 (option setting memory)

Make USB pin setting according to your system. USB pin setting processing is described in the following function.

File Name : demo_src¥main.c

Function Name : usb_pin_setting()

5. Setting Content 5 (option setting memory)

The option setting memory can only be used to set the following items. Set all other items to the default values.

(1). FASTSTUP bit

(2). LVDAS / STUPLVD1REN bit

(3). VDSEL / STUPLVD1LVL bit

(4). MDE bit

 Note that the updater does not write operation to the ROM in the user program’s option setting memory. Because the firmware

update program option setting memory is also used by the user program, set the option setting memory in accordance with the

firmware update program.

Notes:

a. The initial settings for the firmware update option setting memory are all the default values.

b. RX62N does not support the option setting memory.

c. For more details about the option setting memory, refer to the hardware version of the target MCU user’s manual.

6. Setting Content 6 (compile option)
Set the following compile options for the compile to be executed after steps 1 to 4 described above.

(1). When assigning the firmware update program to a ROM area other than the user boot area:

Select Compiles within 24 bits as Branch width size in the e2 studio

(2). When assigning the firmware update program to the user boot area:

Select None as Branch width size in the e2 studio

Note:

To specify the [Branch width size], select [File] [Properties] [C/C+ Build] [Settings], specify [Common] [CPU].

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 33 of 74
Mar 1, 2021

7. Setting Content 7 (Selecting Dual Mode)
If you specify the dual mode in the above "Setting Content 2", add FW_CODE section on the address 0xFFFFFF7C.

6.3 User Program Position

Make sure you assign the user program to ROM area which does not overlap with the area written by Internal Flash ROM rewrite

program via USB CDC. Assign the user program locations according to section settings.

 Note:

1. Specify settings such that the user program will be placed in the ROM areas below. In addition, when dual mode is selected,

specify settings such that the user program will be placed in the startup bank area.

Backup Function P/E address Setting

OFF
On-chip ROM Area

(Program ROM)
Start Address

- 0xFFFFDFFF

ON Start Address of
Program Execution Area - 0xFFFFDFFF

Note:

For the backup function and the program execution area, refer to section 7.2, Backup Function..

2. The 4 bytes area from 0xFFFFDFFC to 0xFFFFDFFF is used as the management area by Internal Flash ROM rewrite

program via USB CDC.

3. Although the Flash self-programming library occupies part of the RAM area, it is only used when executing Internal Flash

ROM rewrite program via USB CDC and will not affect the user program operations.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 34 of 74
Mar 1, 2021

7. Internal Flash ROM rewrite program via USB CDC Explanation
This section explains each file used by Internal Flash ROM rewrite program via USB CDC.

7.1 File/Folder Configuration

The following shows the source file/folder configuration of this program.

(MCU name)

 +HardwareDebug Build result
 +src
 +―――r_config [API setting file]
 |
 +―――r_flash_rx [Simple Flash API]
 | +―― src [FlashAPI driver]

| +―flash_type_1 Flash write type 1 API
| +―flash_type_2 Flash write type 2 API
| +―flash_type_3 Flash write type 3 API
| +―flash_type_4 Flash write type 4 API
| +―targets ROM information for each MCU

 +―――r_bsp [Renesas Board Support Package]
 | +――― board BSP setting for each RSK/RSSK
 | +――― mcu BSP setting for each MCU
 +―――demo_src [Sample application]
 | +――― inc Sample application program
 +―――USB [USB driver]
 +――― inc USB driver common header file
 +――― src USB driver

Figure 7-1 Internal Flash ROM rewrite program via USB CDC Folder Configuration

This program uses the following packages.

・r_bsp (Renesas board support package)

・r_flash_rx (RX family simple flash module)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 35 of 74
Mar 1, 2021

7.1.1 src¥r_config Folder
 This folder stores all the setting files for the target MCU.

Table 7-1 API Header Files

File Name Description

r_bsp_config.h BSP setting header file

r_flash_rx_config.h Flash write setting file

r_usb_fwupdater_config.h Flash ROM rewrite program setting file

7.1.2 src¥r_flash_rx Folder
This folder stores the simple flash API source files and header files. For more details, refer to the Flash Module Using

Firmware Integration Technology application note.

 The flash write type is automatically selected when the MCU is selected in the board support package (r_bsp).

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 36 of 74
Mar 1, 2021

7.1.3 src¥r_bsp Folder
This folder stores the Renesas Board support package module source files and header files. For more details, refer to the RX

Family Support Package Module Application Note.

7.1.4 src¥demo_src Folder
This folder stores Internal Flash ROM rewrite program via USB CDC source files.

Table 7-2 Internal Flash ROM rewrite program via USB CDC Source Files

File Name Description

main.c C language main function description file

r_usb_pcdc_apl.c USB data transfer processing file

r_fwupdater_apl.c Flash ROM rewrite program processing file

r_flash_apl.c Flash API calling processing file (Flash ROM rewriting processing)

r_usb_descriptor.c USB descriptor definition file

inc¥r_usb_pcdc_apl.h USB data transfer processing header file

inc¥r_fwupdater_apl.h Flash ROM rewrite program processing header file

inc¥r_flash_apl.h Flash ROM rewrite program header file

7.1.5 src¥USB Folder
This folder stores the CDC (USB) source files and header file.

Table 7-3 Internal Flash ROM rewrite program via USB CDC Source Files

File Name Description

inc¥r_usb_reg.h USB register initialization, setting definitions

inc¥r_usb_define.h USB definition

inc¥r_usb_extern.h Function Extern

src¥r_usb_api.c USB transmit/receive, initialization processing file

src¥r_usb_driver.c USB driver processing

src¥r_usb_classcdc.c USB CDC processing

src¥r_usb_rx_mcu.c USB interrupt initialization, port setting file

src¥r_usb_reg.c USB register setting, etc.

7.1.6 Hardware Debug Folder
This folder stores object files and mot files of Internal Flash ROM rewrite program via USB CDC that can be executed

during a build.

Table 7-4 Creating File

File Name Description

MCU name_FirmwareUpdater.mot mot format executable object file

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 37 of 74
Mar 1, 2021

7.2 Backup Function
Internal Flash ROM rewrite program via USB CDC supports a backup function that launches the user program stored in

the specific area if overwriting of the flash ROM fails, for example due to USB transfer failure etc while the overwriting of the flash

ROM is in progress.

An outline of the flash ROM overwrite processing of the backup function is presented below.

1. Internal Flash ROM rewrite program via USB CDC divides the on-chip flash ROM (program ROM area) into

two areas and uses the first (Area 1) as a program execution area and the second (Area 2) as a user program

storage area. The division between Area 1 and Area 2 is located at the center of the on-chip flash ROM area.

These two ROM areas are the same size. In addition, Area 2 contains an unused area because Internal Flash

ROM rewrite program via USB CDC, which is present in Area 1, is not present in Area 2.

User program
stored area

(Area 2)

Program execution
area

(Area 1)

Internal FlashROM
rewrite program

Unused Area

Figure 7-2 Flash ROM Area When Using Backup Area

2. When the backup function is enabled, Internal Flash ROM rewrite program via USB CDC will always write the user

program to Area 2.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 38 of 74
Mar 1, 2021

User program
stored area

(Area 2)

Program execution area
(Area 1)

Internal FlashROM
rewrite program

First, the user program
is written to Area 2

USB
Transer

Unused area

Figure 7-3 Writing of User Program to On-Chip Flash ROM (Area 2)

3. When the write finishes successfully, Internal Flash ROM rewrite program via USB CDC is copied from Area 2 to

Area 1. When copying to Area 1 finishes, the user program located in Area 1 is launched.

Unused area

User program
stored area

(Area 2)

Program execution area
(Area 1)

Internal FlashROM
rewrite program

Copying

After copying completes,
the user program located in
this area (Area 1) is
launched.

Figure 7-4 Copying of User Program

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 39 of 74
Mar 1, 2021

4. When Internal Flash ROM rewrite program via USB CDC is used to update the user program, it first erases Area 2 of the

flash ROM, then writes the user program to Area 2, and finally, after writing completes, copies the user program to Area 1.

Program execution area
(Area 1)

Internal FlashROM
rewrite program

User program
stored area

(Area 2)

Program execution area
(Area 1)

Internal FlashROM
rewrite program

User program
stored area

(Area 2)

Program update
completed

Unused area Unused area
Copying

Figure 7-5 Updating the User Program

Note:

After the writing completes properly to Area 2, if this program can not be erased Area 1 by some reason, the user
program previously written in Area 1 start up again since the user program is not updated to Area 1. If the
phenomenon that Area 1 can not be erased occures, please do the writing processing again to Area 2. (Refer to
the above step 2.) When this program can not erase Area 1, The message "ERR: Writing process stop." or "ERR:
Data reception error." is displayed on the file transfer application (PC tool).

5. If writing to Area 2 fails, for example due to USB transfer failure while the write to the flash ROM is in progress, the user

program that was written to Area 1 in step 4, above, remains intact, so the user program previous to the failed write to the flash

ROM can be launched.

プログラム実行領域
(Area 1)

Program execution area
(Area 1)

User program
stored area

(Area 2) Write
failure!!

If the write to Area 2
fails, nothing is copied
from Area 2 to Area 1

Internal FlashROM
rewrite program

Unused area

Figure 7-6 User Program Update Failure

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 40 of 74
Mar 1, 2021

Note:

1. While copying from Area 2 to Area 1, if the copying processing is failure by some reason, please reset or power on the

RSK/RSSK. This program copies the user program again from Area 2 to Area 1. The user program is started up if the copy

processing completes properly. This copy process requires a maximum of about 10 seconds after resetting or power on the

RSK/RSSK.

Program execution area
(Area 1)

Internal FlashROM
rewrite program

User program stored area
(Area 2)

Unused area Copying

Copying
failure!!

Program execution area
(Area 1)

Internal FlashROM
rewrite program

User program stored area
(Area 2)

Unused area
Copying

Power ON/Reset

Figure 7-7 Failure to Copy from Area 2 to Area 1

2. The user program is run from Area 1, so Area 1 should be specified in the section settings for the user program code attribute

and romdata attribute when you build your project.
code attribute : Stored execution code.

romdata attribute : Stored rom data

3. Whether or not the backup function is supported is specified by a macro definition in r_usb_fwupdater_config.h. For details of

this setting, refer to 6.2, Internal Flash ROM rewrite program via USB CDC Settings.

4. Enable dual mode if the MCU you are using supports it.

7.3 Boot Processing
Boot processing indicates the processing executed after the MCU is reset and before the main function (C language description:

main()) is executed.

In RX MCUs, boot processing chiefly performs the following as initialization after reset:

• Allocate stack area and set stack pointer

• Allocate argument area for main function

• Initialize data area and stack area

• Branch to user program and initialize MCU peripheral devices in hdwinit function

• Branch to main function

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 41 of 74
Mar 1, 2021

After reset, processing jumps from Internal Flash ROM rewrite program via USB CDC to the user program. Therefore, make

sure Internal Flash ROM rewrite program via USB CDC is complete and the above-described MCU initializations are executed.

7.3.1 Power On / Reset Operation Flow
This section explains the operation flow after power is turned on for Internal Flash ROM rewrite program via USB CDC.

Power ON / Reset

Startup routine
processing

CPU initialization

Firmware update
processing

End

Branch to startup
routine for user
program specified by
UsrApp Header
contents

End

Note:
If the user board does not have this
switch, please change the process.

main()
When the switch is pressed When the switch is not pressed

Security code

When security code has not
been written

When security code
has been written

*At this point, if the address is not written
correctly, the program will not run properly.

UsrApp Header

Firmware update
 program startup User program startup

Determine
switch state

Figure 7-8 Power On / Reset Operation Flow

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 42 of 74
Mar 1, 2021

Branch to startup
routine for user
program specified by
UsrApp Header
contents

Power ON / Reset

Startup routine
processing

CPU initialization

Firmware update
processing

End

End

Note:
This is a RSK board process. If the
user board does not have this switch,
please change the process.

main()
When the switch is pressed When the switch is not pressed

Yes

Copying process of
the rewrite program
to the update target
area.

Is the rewrite program in
the update target area ?

Security code

When security code has not
been written

When security code
has been written

*At this point, if the address is not
written correctly, the program will not
run properly.

UsrApp Header

Firmware update
 program startup

User program startup

Determine
Switch state

No

Figure 7-9 Power On / Reset Operation Flow (Using Dual mode)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 43 of 74
Mar 1, 2021

Power On/Reset

Startup routine
process

User program written to
Area1 ?

Yes

No

User program written to
Area 2?

Yes

Copy from Area 2 to
Area1

No

Area2

Area1

Switch pressed ?

No

Can user program run ?

Run Internal FlashROM
rewrite program

Branch to startup routine in
user program (Area 1) as
specified in UserApp header

Yes
Internal FlashROM

Yes

No

Checking of security code and
update completion code

Figure 7-10 Power On / Reset Operation Flow (Using the backup function)

For information regarding branch address to security code and user program, refer to section 5.2 UserApp Header Area

(user application header)

Note that even if the security code in the UsrApp Header area is set correctly, if the start address of the user program is

incorrect, the user program will not operate properly.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 44 of 74
Mar 1, 2021

7.3.2 User program startup conditions
The user program set in the UsrApp Header area is started up when all of the following conditions are met:

a. Correct security code is set

b. Correct user program start address is set

c. Update completion code is written properly

This rewrite program writes the update completion code automatically when the user program writing completes
properly.

 If the security code and the update completion code do not match (is incorrect), the Internal Flash ROM rewrite program

via USB CDC will start up; the user program will not run.

7.3.3 Internal Flash ROM rewrite program via USB CDC startup conditions
1. When user program has been written to ROM:

 The Internal Flash ROM rewrite program via USB CDC starts up when RESET is executed while the switch (RSK:

Switch3, RSSK: Switch2) on the evaluation board is pressed.

2. When user program has not been written to ROM:

 The Internal Flash ROM rewrite program via USB CDC starts up when power is turned on.

7.4 Cautions
1. Internal Flash ROM rewrite program via USB CDC determines whether to jump to the user program or continue on with

the firmware update program by judging the state of the switch (RSK: Switch3, RSSK: Switch2) on the evaluation board. This

judgment process is dependent on the board’s specifications. Please change the judgment process to meet the specifications of

your evaluation board. The judgment processing is performed in the main function of the Internal Flash ROM rewrite

program via USB CDC.

2. Note that a check is not performed as to whether or not the addresses to which the Internal Flash ROM rewrite program via

USB CDC is to be written is within the Flash ROM area.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 45 of 74
Mar 1, 2021

7.5 Functions for Internal Flash ROM rewrite program via USB CDC

This section describes all functions used in the Updater other than BSP and simple Flash API-related functions.

7.5.1 Data Type

Data types applicable in Internal Flash ROM rewrite program via USB CDC are listed below.

Table 7-5 Data Type

Data Type Specifier Valid Range

int8_t signed char Signed 8-bit integer

int16_t signed short Signed 16-bit integer

int32_t signed long Signed 32-bit integer

uint8_t unsigned char Unsigned 8-bit integer

uint16_t unsigned short Unsigned 16-bit integer

uint32_t unsigned long Unsigned 32-bit integer

7.5.2 Structures

Table 7-6 response_record_t Structure Definition

Data Type Variable Name Description

uint32_t record_type Record type

uint8_t record_len Record length

uint8_t response_type Response type ACK/NAK

uint8_t err_field Error code

uint8_t checksum Check sum

Table 7-7 rom_rewrite_buf_t Strucure Definition

Data Type Variable Name Description

uint8_t data[ROM_WRITE_SIZE] ROM write buffer

uint32_t dest_addr Program destination address

uint32_t data_flag
Data storage confirmation flag
0: None, 1: Data Storared

Table 7-8 rom_erase_addr_t Strucure Definition

Data Type Variable Name Description

uint32_t start_addr ROM erase start address

uint32_t end_addr ROM erase end address

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 46 of 74
Mar 1, 2021

7.5.3 Flash write main processing functions

Table 7-9 Main Processing Functions

File Name Function Name Processing Description

main.c main USB pin setting, judgment to jump to user program or Flash
ROM rewrite program

r_usb_pcdc_apl.c usb_main Initialization, main processing
r_usb_pcdc_apl.c fu_cdc_read USB CDC data reception requirement processing
r_usb_pcdc_apl.c fu_main Flash ROM rewriting main processing
r_usb_pcdc_apl.c usb_send_response_record Data response processing to USB Host(GUI tool)
r_usb_pcdc_apl.c jump_to_userapp Jump processing to User program
r_usb_pcdc_apl.c usb_transfer_complete Transmission/Reception completion flag changing processing
r_fwupdater_apl.c fl_write_data_init Initialization processing to the variable for Flash programming
r_fwupdater_apl.c fl_erase_area Flash ROM erase processing
r_fwupdater_apl.c fl_write_data Flash ROM programming judgment, programming processing
r_fwupdater_apl.c fu_check_security_code Security code checking processing
r_fwupdater_apl.c fu_byte2num Convert4-byte address to address value in unsigned long

r_flash_apl.c fl_rom_write Calling processing the function for Flash ROM program API.
Processing branches according to type.

r_flash_apl.c fl_rom_erase Calling processing the function for ROM erase API.
Processing branch according to type.

r_flash_apl.c fl_set_access_window Flash ROM access enable setting processing. Flash Type 1
only.

r_flash_apl.c fl_get_blk_num Calculate number of blocks and block position information from
ROM start and end addresses

r_flash_apl.c fl_get_blk_addr Calculate start address of ROM block from corresponding ROM
address

Table 7-10 main()

Function Name main

Description
Format

void main (void)

Function Entry function at start. Executes initialization processing and branching to
Internal Flash ROM rewrite program via USB CDC or user program.

I/O Input None

Output None

Remarks For operation details, refer to section 7.5.5 Branch to firmware update
program.

Table 7-11 usb_main()

Function Name usb_main

Description
Format

void usb_main (void)

Function Initialization, main processing

I/O Input None

Output None

Remarks For operation details, refer to section 7.5.5, Branch to Internal Flash ROM

rewrite program via USB CDC.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 47 of 74
Mar 1, 2021

Table 7-12 fu_cdc_read()

Function Name fu_cdc_read

Description
Format

static uint16_t fu_cdc_read(void)

Function CDC data reception detection

I/O Input None

Output uint16_t: read results

Remarks CDC_BLK_OUT_OK: read complete
CDC_NO_CONFIGUED: CDC not connected
CDC_DETCH: CDC connection error
CDC_BLK_OUT_ERR: read error

Table 7-13 fu_main()

Function Name fu_main

Description
Format

void fu_main (void)

Function main processing for Internal Flash ROM rewrite program via USB CDC

I/O Input None

Output None

Remarks --

Table 7-14 usb_send_response_record()

Function Name usb_send_response_record
Description
Format

static void usb_send_response_record
(uint8_t response_type, uint8_t response_field)

Function Data response processing to USB Host(GUI tool)

I/O Input None

Output None

Remarks For details concerning communication protocol, refer to section 9 Data

Transmission Specification.

Table 7-15 jump_to_userapp()

Function Name jump_to_userapp

Description
Format

static void jump_to_userapp (void)

Function Jump processing to User program

I/O Input None

Output None

Remarks For more information concerning the jump destination address, refer to
section 5.2 UserApp Header Area (user application header).

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 48 of 74
Mar 1, 2021

Table 7-16 usb_transfer_complete()

Function Name usb_transfer_complete
Description
Format

void usb_transfer_complete(void)

Function Transmission/Reception completion flag changing processing

I/O Input None

Output None

Remarks None

Table 7-17 fl_write_data_init()

Function Name fl_write_data_init
Description
Format

void fl_write_data_init(void)

Function Initialization processing to the variable for Flash programming

I/O Input None

Output None

Remarks None

Table 7-18 fl_erase_area()

Function Name fl_erase_area
Description
Format

flash_err_t fl_erase_area(void)

Function Flash ROM erase processing

I/O Input None

Output Result of Flash ROM erasing

Remarks None

Table 7-19 fl_write_data()

Function Name fl_write_data
Description
Format

flash_err_t fl_write_data(void)

Function Flash ROM programming judgment, programming processing

I/O Input None

Output Result of Flash ROM programming

Remarks None

Table 7-20 fu_check_security_code()

Function Name fu_check_security_code
Description
Format

flash_err_t fu_check_security_code(void)

Function Security code checking processing

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 49 of 74
Mar 1, 2021

I/O Input None

Output Result of the security code checking and ROM erasing

Remarks None

Table 7-21 fu_byte2num()

Function Name fu_byte2num
Description
Format

static uint32_t fu_byte2num(uint8_t * dat, uint16_t size)

Function Convert4-byte address to address value in unsigned long

I/O Input Dat: byte row
Size: size to be connected

Output Calculated results

Remarks None

Table 7-22 fl_rom_write()

Function Name fl_rom_write
Description
Format

flash_err_t fl_rom_write(void)

Function Calling processing the function for Flash ROM program API. Processing
branches according to type.

I/O Input None

Output Processing result

Remarks None

Table 7-23 fl_rom_erase()

Function Name fl_rom_erase
Description
Format

flash_err_t fl_rom_erase(const uint32_t start_addr, const uint32_t end_addr)

Function Calling processing the function for Flash ROM program API. Processing branches
according to type.

I/O Input start_addr: erase start address (erase block that includes address)
end_addr: erase end address (erase block that includes address)

Output flash_err_t: proccessing result

Remarks Although types 1 and 3 allow bulk erase specification, with type 2 the area
limitations are judged in the API side processing and prevent the user from
specifying an area that exceeds those limits for one erase. As a result, the erase
operation must be specified in single blocks.

Table 7-24 fl_set_access_window()

Function Name fl_set_access_window
Description
Format

flash_err_t fl_set_access_window (const uint32_t start_addr,
 const uint32_t end_addr)

Function Call function for ROM access enable API. Type 1 only.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 50 of 74
Mar 1, 2021

I/O Input start_addr: ROM access enable start address
end_addr ROM access enable end address

Output flash_err_t: processing result

Remarks This process is only performed for Flash type 1. The access-enabled
address is set assuming the end address will be truncated by 10-bits
because it is retained after a 10-bit shift. This will become an access
enabled area, so there will be no problems in processing a large area.

Table 7-25 fl_get_blk_num()

Function Name fl_get_blk_num
Description
Format

static uint32_t fl_get_blk_num(const uint32_t iaddr_start,
 const uint32_t iaddr_end,
 uint16_t *start_blk,
 uint16_t *end_blk)

Function Calculate number of blocks and block position information from ROM
start and end addresses

I/O Input iaddr_sta: start address specification
iaddr_end: end address specification
sta_blk: start block number
sta_end: end block number

Output uint32_t: block count between start and end addresses

Remarks The definition used for this function is dependent on ROM information
definition of the Flash API.
Please note that block numbers are assigned from the back of the ROM
forward, so StartAddress=EndBlock and EndAddress=StartBlock.

Table 7-26 fl_get_blk_addr()

Function Name fl_get_blk_addr
Description
Format

static flash_block_address_t fl_get_blk_addr(const uint32_t iaddr)

Function Calculate start address of ROM block from corresponding ROM address

I/O Input iaddr: ROM address for calculating block start address

Output flash_block_address_t: block start address

Remarks The definition used for this function is dependent on ROM information
definition of the Flash API.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 51 of 74
Mar 1, 2021

7.5.4 USB Driver Functions

Table 7-27 lists the USB driver functions.

Table 7-27 USB Module Functions

File Name Function Name Processing Description
r_usb_api.c usb_bulk_in_start Bulk data receive request
r_usb_api.c usb_bulk_out_start Bulk data send request
r_usb_api.c usb_driver_init USB initialization processing
r_usb_driver.c usb_int_isr USB interrupt processing

r_usb_driver.c usb_save_request Get request information
r_usb_driver.c usb_ctrl_read_data_stage Control read data stage processing

r_usb_driver.c usb_ctrl_write_nodata_stage Control no-data status stage processing
r_usb_driver.c usb_intr_int_pipe0 USB BRDY interrupt processing for PIPE0

r_usb_driver.c usb_bemp_int_pipe0 USB BEMP interrupt processing for PIPE0
r_usb_driver.c usb_intr_int Bulk data send and receive processing
r_usb_driver.c usb_intr_int_read Bulk data receive
r_usb_driver.c usb_intr_int_write Bulk data send
r_usb_driver.c usb_ctr_read_start Control data send request
r_usb_driver.c usb_ctr_write_start Control data receive request
r_usb_driver.c usb_write_fifo Data writing to USB FIFO
r_usb_driver.c usb_read_fifo Data reading from USB FIFO
r_usb_driver.c usb_chk_frdy Checking FRDY bit in USB module
r_usb_driver.c usb_chg_port USB pipe switching processing
r_usb_driver.c usb_req_get_descriptor Standard request processing
r_usb_driver.c usb_req_set_configuration Standard request processing
r_usb_classcdc.c usb_reset_ep USB pipe configuration processing
r_usb_classcdc.c usb_cdc_init Serial initialize
r_usb_classcdc.c usb_class_write_data_stage Class request write data stage processing
r_usb_classcdc.c usb_class_read_data_stage Class request read data stage processing
r_usb_classcdc.c usb_class_write_nodata_stage Class request no-data status stage processing
r_usb_rx_mcu.c usb_cpu_mcu_initialize MCU initialization
r_usb_rx_mcu.c usb_int_init USB interrupt initialization
r_usb_rx_mcu.c usb_cpu_delay_1us Software waiting processing (us)
r_usb_rx_mcu.c usb_cpu_delay_1ms Software waiting processing (ms)
r_usb_rx_mcu.c usb_cpu_int_disable USB interrupt disable
r_usb_rx_mcu.c usb_cpu_usbint_init USB interrupt initialization

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 52 of 74
Mar 1, 2021

7.5.5 Branch to Internal Flash ROM rewrite program via USB CDC
The main() function in Internal Flash ROM rewrite program via USB CDC performs branch judgment to determine whether to

jump to the user program or to continue with Internal Flash ROM rewrite program via USB CDC.

After conditional branching is performed, the CPU build-in functions and peripheral circuits are initialized and Internal Flash

ROM rewrite program via USB CDC is executed.

 void main(void)
{
 if (SW3 != SW_ACTIVE)

 {

 if(USER_PROG_WRITE_OK == fu_user_prog_start())

 {

 usb_cpu_int_disable();

 jump_to_userapp();

 }

 }

 usb_pin_setting();
 usb_main();
}

Judgment for starting up the
user application

Startup user application

Figure 7-11 main() Function

 void usb_main(void)
{
 flash_err_t flash_err = FLASH_SUCCESS;
 g_usb_response_record.record_type = REC_TYPE_RESPONSE;
 g_usb_response_record.record_len = NR_RESPONSE_BYTES;

 usb_driver_init();
 usb_cdc_init();
 fl_write_data_init();

/*FCU firm ready*/
 flash_err = R_FLASH_Open();
 if (FLASH_SUCCESS != flash_err)
 {
 g_fw_sequence = FLASH_SEQ_FLASH_NG;
 }

 while (1)
 {
 if (0 != g_usb_confnum)
 {
 if (CDC_BLK_OUT_OK == fu_cdc_read())
 {
 fu_main();
 }
 }
 }

Firmware updater processing

USB data receive
checking

Flash API Initialization

USB connecting checking

Figure 7-12 usb_main()関数

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 53 of 74
Mar 1, 2021

7.5.6 Jump to user application

 The processing to jump to the user program is performed in the jump_to_userapp() function. Refer to section 5.2 UserApp

Header Area (user application header) for details on specifying the start address of the user program jump destination.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 54 of 74
Mar 1, 2021

8. File Transfer Application (RX USB Firmware Updater) Explanation
This section explains how the file transfer application performs on the host PC.

8.1 Development Environment

The file transfer application is configured with the following environment:

OS: Windows 8.1, Windows 10

Development language: Visual Studio 2017

8.2 Operation Overview

The file transfer application transitions to the direct re-write processing when it receives the name (or option) of a target re-write

file name as an argument at startup. If a file has not been specified, the setting dialog is displayed.

Startup

GUI Display

Settings for all types

Transmission

processing

(Application dialog class)

(Rewrite transmission
processing thread class)

Figure 8-1 File Transfer Application Operation Overview

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 55 of 74
Mar 1, 2021

8.3 File Configuration
The following lists the file transfer application files (only key files are listed).

Table 8-1 File Transfer Application Files

File Name Description

FlashSelfRewriteGUI.sin Solution file

FlashSelfRewriteGUI.rc Resource file

FlashSelfRewriteGUI.cpp Application class processing file

FlashSelfRewriteGUI.h Application class definition file

FlashSelfRewriteGUIDlg.cpp Application dialog class processing file

FlashSelfRewriteGUIDlg.h Application dialog class definition file

CommandThread.cpp Rewrite transmission processing thread class processing
file

CommandThread.h Rewrite transmission processing thread class definition
file

CommonProc.cpp Common processing class processing file

CommonProc.h Common processing class definition file

SerialPort.cpp Serial COM port transmission class processing file

SerialPort.h Serial COM port transmission class definition file

Resource.h Resource header file

UsbfUpdater.ini Application operation setting file

8.3.1 Application Class (FlashSelfRewriteGUI)
This processing checks the arguments (options) at the initial startup, then calls the dialog class.

The following lists the application startup options.

Table 8-2 Application Startup Options

Option Description

/S nnnnnn Specify the write start address as a hexadecimal number

/C nn Specify the connection COM port number

Filename Target rewrite file path

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 56 of 74
Mar 1, 2021

8.3.2 Application Dialog Class (FlashSelfRewriteGUIDlg)
This processing displays the rewrite specification dialog screen (refer to section 4 Execute Internal Flash ROM rewrite

program via USB CDC for details). This screen allows the user to specify operation mode, rewrite address, rewrite file, and

connection COM port. In addition, if these items are already specified when the screen is displayed, the function reads the

application operation setting file and reflects the settings as default values.

Click the Update button to call the rewrite transmission processing thread class.

Added member variables are shown below.

Table 8-3 Application Dialog Class Member Variables

Member Variable Description
Type Name

Int m_nCOM Number of COM port to be connected

TCHAR m_tcAppDir[_MAX_PATH] Application execution directory

CString m_strCurTargetSeries Current target series

CString m_strCurTarget Current target name

CString m_strCurDevice Current device

CStringArray m_arDeviceSeries Device series list

CStringArray m_arDeviceVal Device list

CStringArray m_arDeviceText Device name list

Int m_nDevSize Current device ROM size

CWinThrread* m_pCommandThread Thread class pointer

BOOL m_bExistThread Thread operation status

BOOL m_bStartUp Display initial startup

DWORD m_dwROMStartAddress ROM area start address

DWORD m_dwROMEndAddress ROM area end address

DWORD m_dwEnROMStartAddress ROM P/E access enabled start address

DWORD m_dwEnROMEndAddress ROM P/E access enabled end address

COleDateTime m_dtStart Rewrite processing start date and time

COleDateTime m_dtEnd Rewrite processing end date and time

Member functions are described below.

Table 8-4 Read_DeviceInfo Function

Function name Read_DeviceInfo

Description bool Read_DeviceInfo (void)

Function Get information from application operation setting file

I/O Input None

Output TRUE(SUCCESS) / FALSE(FAILURE)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 57 of 74
Mar 1, 2021

Table 8-5 Write_DeviceInfo Function

Function Name Write_DeviceInfo

Description
Format

bool Write_DeviceInfo (void)

Function Update application operation setting file

I/O Input None

Output TRUE(success)/FALSE(fail)

Table 8-6 Update_Message Function

Function Name Update_Message

Description
Format

void Update_Message (LPCTSTR)

Function Display message in message display column

I/O Input Message character string pointer

Output None

Table 8-7 Initialize_Device Function

Function Name Initialize_Device

Description
Format

void Initialize_Device (void)

Function Initialization processing

I/O Input None

Output None

Table 8-8 DeviceListRefresh Function

Function Name DeviceListRefresh

Description
Format

void DeviceListRefresh (void)

Function Create Device list

I/O Input None

Output None

Table 8-9 DeviceInfoRefresh Function

Function Name DeviceInfoRefresh

Description
Format

void DeviceInfoRefresh (void)

Function Update device combo box

I/O Input None

Output None

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 58 of 74
Mar 1, 2021

Table 8-10 AppStatus Function

Function Name AppStatus

Description
Format

void AppStatus(bool stu)

Function Set status at rewrite operation

I/O Input stu: TRUE (enable screen controls)
FALSE (disable screen controls)

Output None

8.3.3 Rewrite Transmission Processing Thread Class (CommandThread)
This processing uses the serial COM port transmission class to send and receive the specified file based on the interface

specifications when connected to the target evaluation board. If the file is a HEX file, analysis is also performed.

Added member variables are shown below (files listed under application dialog class are not repeated here).

Table 8-11 Rewrite Transmission Processing Thread Class Member Variables

Member Variable Description
Type Member Name

CDialog* m_pAppDlg Dialog class of call origin pointer

CString m_strAppDir Directory in application

BOOL* m_pbExistThread Thread operation status pointer

CSerialPort m_Serial Serial COM port transmission class

int m_nCOM Connection COM port number

CString m_strFileName Target file path

EnMode m_enMode Rewrite mode

DWORD m_dwStartAddress Rewrite start address

DWORD m_dwROMStartAddress ROM start address

DWORD m_dwROMEndAddress ROM end address

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 59 of 74
Mar 1, 2021

Added member functions are listed below.

Table 8-12 Cal_CheckSum Function

Function Name Cal_CheckSum

Description
Format

BYTE Cal_CheckSum(LPBYTE bytes, LONG size)

Function Calculate check sum

I/O Input Bytes: data string pointer
Size: data string length

Output Calculated check sum value

Table 8-13 Change_strHex2Bibary Function

Function Name Change_strHex2Binary

Description
Format

VOID Change_strHex2Binary (LPCSTR strHex, LPBYTE pbytes,
LONG size)

Function Convert string displayed in hex to binary data string

I/O Input strHex: pointer to character string displayed in hexidecimal notation
pbyte: data string start pointer
size: number of conversion data

Output None

Table 8-14 Upsets_DWORD Function

Function Name Upsets_DWORD

Description

Format

DWORD Upsets_DWORD(DWORD dwVal)

Function Invert DWORD type values by byte

(ex.) 0xaabbccdd -> 0xddccbbaa

I/O Input dwVal: value of DWROD to be inverted

Output Inverted value

Table 8-15 SET_StartRecord Function

Function Name SET_StartRecord

Description

Format

VOID SET_StartRecord (LPVOID lpRecord)

Function Creates rewrite start record

I/O Input lpRecord: record storage pointer

Output None

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 60 of 74
Mar 1, 2021

Table 8-16 SET_EndRecord Function

Function Name SET_EndRecord

Description

Format

VOID SET_EndRecord (LPVOID lpRecord)

Function Creates rewrite end record

I/O Input lpRecord: record storage pointer

Output None

8.3.4 Common Processing Class (CommonProc)
Processes that are shared in the File Transfer Application are defined in this section. Added member functions are described

below.

Table 8-17 GetAppDir Function

Function Name GetAppDir

Description
Format

static VOID GetAppDir(LPTSTR path, int sw = 0)

Function Get the application execution address

I/O Input Path: target character string pointer
sw: 0 Get path as is

1 Get shortened path

Output None

Table 8-18 Change_Hex2Val Function

Function Name Change_Hex2Val

Description
Format

static DWORD Change_Hex2Val(LPCSTR pHex)

Function Convert character string displayed in 1 byte (2 hex digits) to a
numerical value

I/O Input pHex: pointer for character string displayed in 2 hex digits

Output Converted value

Table 8-19 IsNumeric Function

Function Name IsNumeric

Description
Format

static BOOL IsNumeric(LPCTSTR lpNum, LONG size, int type)

Function Numerical value check processing

I/O Input lpNum: pointer of character string expressed in numerical value
size: number of digits of checked value
type：10 Check as a decimal number

16 Check as a hex number

Output TRUE (indicates a numerical value) /FALSE (indicates a
non-numerical value)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 61 of 74
Mar 1, 2021

Table 8-20 IsExistFile Function

Function Name IsExistFile

Description
Format

static BOOL IsExistFile(LPCTSTR lpszFileName, BOOL bDirectory =
FALSE)

Function Check for existing file

I/O Input lpszFileName: file path to be confirmed
bDirectory: FALSE (check file)
TRUE (check directory)

Output TRUE (file exists) / FALSE (no file)

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 62 of 74
Mar 1, 2021

8.3.5 Serial COM Port Transmission Class (SerialPort)
This class is used for serial transmission via the COM port.

Added member variables are list below.

Table 8-21 Serial COM Port Transmission Class Member Variables

Member Variable Description

Type Member Name

HANDLE m_hCom Handle that is received when connection is
made

DCB m_Dcb Device control block structure

COMMTIMEOUTS m_TimeoutSts Time out setting structure

INT m_nCOM Number of port to be connected

Member functions are described below.

Table 8-22 Port_Open Function

Function Name Port_Open

Description
Format

LONG Port_Open(INT com)

Function Connect to specified COM port.

I/O Input Com: COM port number

Output 0 Successful connection
－1 Failed connection

Table 8-23 Port_Close Function

Function Name Port_Close

Description
Format

VOID Port_Close(VOID)

Function Disconnect the connected port.

I/O Input None

Output None

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 63 of 74
Mar 1, 2021

Table 8-24 Port_Write Function

Function Name Port_Write

Description
Format

LONG Port_Write(LPCVOID buf, LONG cnt)

Function Transmit data in serial transmission

I/O Input Buf: transmit data string pointer
Cnt: transmit data length (bytes)

Output Number of transmitted bytes, “-1” indicates transmit failure.

Table 8-25 Port_Read Function

Function Name Port_Read

Description
Format

LONG Port_Read(LPVOID buf, LONG cnt)

Function Receive data in serial transmission.

I/O Input Buf: pointer of data string that stores receive data
cnt: receive data length (bytes)

Output Number of received bytes. “-1” indicated receive failure.

Table 8-26 Get_PortNumber Function

Function Name Get_PortNumber

Description
Format

INT Get_PortNumber(VOID)

Function Get number of connected port.

I/O Input None

Output Number of currently connected port

Table 8-27 AutoScanCom Function

Function Name AutoScanCom

Description
Format

INT AutoScanCom (LPCTSTR pszService, LPCTSTR pszInterface,
INT nNo = 0)

Function Detect connectable COM ports.

I/O Input pszService: Name of service run by COM port
pszInterface: interface name
nNo: search beyond this number

Output Detected COM port number. If not found, return 0.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 64 of 74
Mar 1, 2021

8.3.6 Application Operation Setting File (UsbfUpdater.ini)
The application operation setting file is ini file format and retains setting values and device information. Please keep this file in

the folder that stores the exe file. Note that the application will not run normally without the ini file.

Definitions for the ini file are provided below.

Table 8-28 Application Operation Setting File Description (sections)

Section Description

Application Display values currently set in the application.
This is information to be written by the application.

SS_xxx Retain previously displayed device information.
This is information to be written by the application.

Device. XXXXXXXX Display device information (multiple settings possible),
This is information that can be added by user.

Table 8-29 Application Operation Setting File Contents

Section Key Value Description

Application Series XXX Series of specified target

COM 1 to 20 The number of the COM port that is
currently or will be connected
Note: Can be set but not used in OS
versions later than Windows 10.

EnableStartAddress FFFFFFFF Write enabled start address

EnableEndAddress FFFFFFFF Write enabled end address

SS_XXX Device XXX Device specified by target

Device. XXX TargetSeries XXX Series of this device

Name XXX Name of this device

Size 1 to 999 ROM size (Kbytes) of this device

StartAddress FFFFFFFF ROM start address for this device

Items other than the device information are stored as display information and will be updated automatically when the GUI software is

closed.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 65 of 74
Mar 1, 2021

 [Application]
Series=RX111
COM=6
EnableStartAddress=FFFE0000
EnableEndAddress=FFFFDFFF
 [Device.R5F51105]
TargetSeries=RX110
Name=R5F51105
Size=128
StartAddress=FFFE0000
[Device.R5F51104]
TargetSeries=RX110
Name=R5F51104
Size=96
StartAddress=xxxxxxx

・・

[SS_RX63N]
Device=R5F563NF
[SS_RX71M]
Device=R5F571ML

[Application Information]

Displayed target series: RX111 (Retained information from previous display)

Connected COM port: 6 (Retained information from previous connection)

Write enabled address: Start address to End address

Information for display. Retained information from

previously selected device.

[Device Information]
Device target series: RX110
Device name: R5F51105
Size: 128K bytes
ROM Address 0xFFFE0000 to 0xFFFFFFFF
(Input address using 8 hex numbers)

The remaining is individual device
information

Figure 8-2 Application Operation Setting ini File

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 66 of 74
Mar 1, 2021

8.4 Application Messages
The following lists the messages displayed by the application in the message column and the timing in which they are displayed.

Table 8-30 Application Messages

Message Display Timing

Start upload file. At start of rewrite processing

Now erasing Easing Flash ROM

Now writing Writing Flash ROM

Now copying Copying Flash ROM (Using the backup funcion only)

Please input file. At rewrite processing when specified file is not specified.
Also when specified file is not found.

Please set the address correctly. When address is not specified correctly

Please set COM port. When COM port is not specified correctly

ERR: file open error. Failure in opening file

ERR: file format error. When a file in other than Motorola S format or Intel HEX
format is specified

ERR: Unable to connect to the
COM port n.

Failed connection to COM port n

ERR: Flash ROM Initialization error Flash ROM initializing error

ERR: Data transmission error. Failed data transmission

ERR: Data reception error. Failed data reception (failed for 3 retries)

ERR: Verify error A verification error occurred.

ERR: Copying of Flash ROM rewrite
program failed.

The copying of Internal FlashROM rewrite program is
failure. (Using Dual mode only)

ERR: Unused area writing error Unused area writing error (Using the backup function only)

ERR: Option-Setting Memory writing error Option-Setting Memory writing error occured.

ERR: Writing process stop. Received NAK (error) in response record from board side
ERR: Write Enable Area Address is ROM
area over, or illegal value.

The specified P/E Access Enable Area exceeds ROM area
or an illegal value (only when Use P/E Access Enable is
selected).

ERR: Address is ROM area over.
Process stop.

Programming address exceeds ROM area

ERR: file size error. When file size check shows data size exceeds ROM area
ERR: Security code of Updater and User
program do not match.

Security code of Firmware Updater and User program do
not match.

ERR: Get ROM Address Error.
<Device: xxxx >

When the ini file ROM information is incorrect

ERR: Get ROM Address Error.
Update process stop.

When a write operation is executed and the ROM
information read in the ini file is incorrect

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 67 of 74
Mar 1, 2021

9. Data Transmission Specification

9.1 Rewrite Transmission Interface Specification
This section describes transmission between the PC which the file transfer application works on and the evaluation board.

9.1.1 Transmission data configuration
The PC transmits the start record and end record. The write data is sent to the Flash memory in data record format.

 Start record →

Data record →

End record →

← Response record

← Response record

← Response record

・
・
・

PC Evaluation

board

Figure 9-1 Transmission Data Sequence

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 68 of 74
Mar 1, 2021

9.1.2 PC-side transmission data
The PC side sends the start record, data record, and end record.

Each record is transmitted one at a time and the next record is not sent until a response for the previously sent record is

received.
(1). Start record

The start record is the first record to be transmitted when executing a rewrite: 14 bytes.

R
ecord type (

①)

R
ecord length (

②)

D
evice type (

③)

R
eserve (

④)

Erase start

address (
⑤)

Erase end

address (

⑥)

R
eserve (

⑨)

C
heck sum

 (

⑩)

Figure 9-2 Start Record Format

① Record type: 1 byte

Record type

The start record record type is 0x00.

② Record length: 1 byte

Number of bytes after the device type

③ Device type: 1 byte

Device type (currently unused, therefore fixed as 0x00)

④ Reserve: 1 byte

 0x00 fixed

⑤ Erase start address: 4 bytes

ROM erase start address setting. The address is a 32-bit numerical value in Little Endian format.

⑥ Erase end address: 4 bytes

ROM end address specification. The address is a 32-bit numerical value in Little Endian format.

⑦ Reserve:1 byte

 0x00 fixed

⑧ Check sum: 1 byte

Record check sum.

Check sum of the record length, device type, and date and time.

The lower 8 bits of the complement 1 of the sum of all the bytes received.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 69 of 74
Mar 1, 2021

(2). Data record

Write data record: (7+number of data) bytes (MAX 64 bytes)

R
ecord type (

①)

R
ecord length (

②)

Load address (

（
③
）

Data ．．． (④)

C
heck sum

 (

⑤)

Figure 9-3 Data Record Format

① Record type: 1 byte

Record type

The data record record type is 0x0f.

① Record length: 1 byte

Number of bytes after the load address.

② Load address: 4 bytes

Flash memory address

Data is written from this address.

The load address is a 32-bit numerical value in Little Endian format.

③ Data: 1 to 57 bytes

Data to be written to the Flash memory

1 record is a maximum of 57 bytes.

④ Check sum: 1 byte

Record check sum.

Check sum of the record length and address data.

The lower 8 bits of the complement 1 of the sum of all the bytes received.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 70 of 74
Mar 1, 2021

(3). End record

The end record is sent after all data is transmitted: 4 bytes.

R
ecord type (

①)

R
ecord length (

②)

D
evice type (

③)

C
heck sum

 (

④)

Figure 9-4 End Record Format

① Record type: 1 byte

Record type

The end record record type is 0xf0.

⑨ Record length: 1 byte

Number of bytes after the device type

⑩ Device type: 1 byte

Device type (currently unused, therefore fixed as 0x00)

⑪ Check sum: 1 byte

Record check sum.

Check sum of the record length and device type.

The lower 8 bits of the complement 1 of the sum of all the bytes received.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 71 of 74
Mar 1, 2021

9.1.3 Evaluation board-side transmission data
The evaluation board sends a record in response to the record received from the PC: 5 to 8 bytes

(1). Response record

R
ecord type (

①)

R
ecord length (

②)

R
esponse type (

③)

Field ．．．(④)

C
heck sum

 (

⑤)

Figure 9-5 Response Record Format

① Record type: 1 byte

Record type

Type of record to which a response is being sent.

The response record type is 0xFF

② Record length: 1 byte

Number of bytes after the response type

③ Response type: 1 byte

Response type

One of the following 3 types

－0x00 : ACK

－0x0f : NAK (re-transmit/receive request)

－0xf0 : NAK (error end)

④ Field: 1 to 4 bytes

a. In the start record, the code to indicate the enable or disable of the backup function is returned.

Backup Function Enable : 0xB0
Backup Function Disable : 0xB1

b. In the data record or the end record, the following status code or error code is returned.

(a). Status Code

Flash ROM erasing : 0x01
Flash ROM writing : 0x03

(b). Error Code

Flash ROM initialization error : 0xE1
Security code unmatching error : 0xE2
Flash ROM erasing error : 0xE3
Parameter error : 0xE4
Verify error : 0xE5
Option-Setting memory writing error : 0xE6
Copying of Internal FlashROM rewrite program to the
update target are is failure (Using dual mode only)

: 0xE7

Unused writing error (Using backup function only) : 0xE8

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 72 of 74
Mar 1, 2021

If not an error, this driver returns the following status code.

⑫ Check sum: 1 byte

Record check sum.

Check sum of the record length, response type, and field.

The lower 8 bits of the complement 1 of the sum of all the bytes received.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 73 of 74
Mar 1, 2021

10. Using the e2 studio project with CS+
This package contains a project only for e2 studio. When you use this project with CS+, import the project to CS+ by

following procedures.

[Note]

1. The name of the folder which stores src folder and rcpc file has to be "MCU name_FirmwareUpdater".
For example, the folder name is "RX63N_FirmwareUpdater" when using RX63N.

2. Uncheck the checkbox Backup the project composition files after conversion in Project Convert Settings window.

Figure 10-1 Using the e2 studio project with CS+

Launch CS+ and click “Start”.
Select [Open Exsisting e2studio/CubeSuite/High-performance Embedded
Workshop/PM+ project] in Start menu.

Select [project file
for e2studio] Select the file with the extension

[.rcpc] and click Open button.

Select the device used in
the project.

Select Project type, and specify the
project name and its location.
Click OK button if they are OK.

Select the used project

e.g. Sample
The project name depends on the AN.

RX Family Internal Flash ROM rewrite program via USB CDC

R01AN3294EJ0106 Rev.1.06 Page 74 of 74
Mar 1, 2021

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision Record

Rev. Date
Description

Page Summary
1.00 Jun 30, 2016 - First edition issued.
1.01 Jun 30, 2017 - RX65N and RX651 are added in Target Device.
1.02 Sep 30, 2017 - 1. Support for RX65N/RX651-2M

2. Support for dual mode.
3. Support for writing and verification

1.03 Feb 16, 2018 - Support the backup function
1.04 Apr 16, 2019 - RX66T and RX72T are added in Target Device.
1.05 Mar 1, 2020 - RX72M, RX72N, RX66N and RX23W are added in Target

Device.
1.06 Mar 1, 2021 - RX671 added in Target Device.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Document Outline
	1.1 Functions
	1.2 Related Documents
	1.3 Cautions
	1.4 List of Abbreviations and Acronyms

	2. Internal Flash ROM rewrite program via USB CDC Overview
	2.1 Features
	2.2 ROM Size
	2.3 Target Device & Flash Type
	2.4 Operation Confirmation Environment
	2.5 Folder Configuration

	3. Internal Flash ROM rewrite program via USB CDC Setup
	3.1 Project Setup

	4. Execute Internal Flash ROM rewrite program via USB CDC
	4.1 File Transfer Application (RX USB Function Firmware Updater) Startup
	4.1.1 P/E Access Enable Area Address

	4.2 Writing Internal Flash ROM rewrite program via USB CDC to Flash ROM write and execution
	4.2.1 Writing Internal Flash ROM rewrite program via USB CDC to ROM
	4.2.2 Internal Flash ROM rewrite program via USB CDC address assignment

	4.3 Execution of Internal Flash ROM rewrite program via USB CDC (user program write operation)
	4.4 Cautions Regarding User Program Write Operation
	4.5 CDC Driver Installation

	5. Cautions Regarding Creating the User Program
	5.1 File Format
	5.2 UserApp Header Area (user application header)
	5.3 Fixed Vectors
	5.4 Option-Setting Memory
	5.5 Section Setting When Using Backup Function

	6. Internal Flash ROM rewrite program via USB CDC and User Program Settings
	6.1 User Program Settings
	6.2 Internal Flash ROM rewrite program via USB CDC Settings
	6.3 User Program Position

	7. Internal Flash ROM rewrite program via USB CDC Explanation
	7.1 File/Folder Configuration
	7.1.1 src\r_config Folder
	7.1.2 src\r_flash_rx Folder
	7.1.3 src\r_bsp Folder
	7.1.4 src\demo_src Folder
	7.1.5 src\USB Folder
	7.1.6 Hardware Debug Folder

	7.2 Backup Function
	7.3 Boot Processing
	7.3.1 Power On / Reset Operation Flow
	7.3.2 User program startup conditions
	7.3.3 Internal Flash ROM rewrite program via USB CDC startup conditions

	7.4 Cautions
	7.5 Functions for Internal Flash ROM rewrite program via USB CDC
	7.5.1 Data Type
	7.5.2 Structures
	7.5.3 Flash write main processing functions
	7.5.4 USB Driver Functions
	7.5.5 Branch to Internal Flash ROM rewrite program via USB CDC
	7.5.6 Jump to user application

	8. File Transfer Application (RX USB Firmware Updater) Explanation
	8.1 Development Environment
	8.2 Operation Overview
	8.3 File Configuration
	8.3.1 Application Class (FlashSelfRewriteGUI)
	8.3.2 Application Dialog Class (FlashSelfRewriteGUIDlg)
	8.3.3 Rewrite Transmission Processing Thread Class (CommandThread)
	8.3.4 Common Processing Class (CommonProc)
	8.3.5 Serial COM Port Transmission Class (SerialPort)
	8.3.6 Application Operation Setting File (UsbfUpdater.ini)

	8.4 Application Messages

	9. Data Transmission Specification
	9.1 Rewrite Transmission Interface Specification
	9.1.1 Transmission data configuration
	9.1.2 PC-side transmission data
	9.1.3 Evaluation board-side transmission data

	10. Using the e2 studio project with CS+

