
 Application Note

R01AN2009EJ0124 Rev.1.24 Page 1 of 83
Mar.20.25

RX Family
Ethernet Module Using Firmware Integration Technology
Introduction
This application note describes an Ethernet module that uses Firmware Integration Technology (FIT). This
module performs Ethernet frame transmission and reception using an Ethernet controller and an Ethernet
controller DMA controller. In the remainder of this document, this module is called the Ethernet FIT module.

Pin setting in the Ethernet FIT module has been removed from Rev.1.11. In order to use the Ethernet FIT
module, assign input and output signals for Ethernet Controller to I/O Ports. Refer to section 4 Pin Setting in
detail.

Target Devices
This API supports the following devices.

• RX64M
• RX71M
• RX65N
• RX72M
• RX72N
• RX66N

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.2 Confirmed Operation
Environment".

Related Documents
• Board Support Package Module Using Firmware Integration Technology (R01AN1685)

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 2 of 83

Mar.20.25

Contents

1. Overview ... 4
1.1 Ethernet FIT Module .. 4
1.2 Outline of the API .. 4
1.3 Use Limit .. 6

2. API Information .. 7
2.1 Hardware Requirements ... 7
2.2 Software Requirements .. 7
2.3 Supported Toolchains .. 7
2.4 Usage of Interrupt Vector ... 7
2.5 Header Files ... 7
2.6 Integer Types ... 7
2.7 Configuration Overview .. 8
2.8 Code Size ... 11
2.9 Arguments ... 12
2.10 Return Values .. 15
2.11 Callback Function ... 16
2.12 Adding the FIT Module to Your Project .. 18
2.13 Ethernet Frame Format ... 19

2.13.1 Frame Format for Data Transmission and Reception ... 19
2.13.2 PAUSE Frame Format ... 19
2.13.3 Magic Packet Frame Format .. 19

2.14 “for”, “while” and “do while” statements ... 20

3. API Functions ... 21
3.1 R_ETHER_Initial() .. 21
3.2 R_ETHER_Open_ZC2() ... 23
3.3 R_ETHER_Close_ZC2() .. 25
3.4 R_ETHER_Read_ZC2() ... 26
3.5 R_ETHER_Read_ZC2_BufRelease() .. 28
3.6 R_ETHER_Write_ZC2_GetBuf() ... 30
3.7 R_ETHER_Write_ZC2_SetBuf() ... 32
3.8 R_ETHER_CheckLink_ZC() .. 34
3.9 R_ETHER_LinkProcess() .. 36
3.10 R_ETHER_WakeOnLAN() ... 38
3.11 R_ETHER_CheckWrite() ... 40
3.12 R_ETHER_Read() .. 42
3.13 R_ETHER_Write() .. 44
3.14 R_ETHER_Control() .. 46

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 3 of 83

Mar.20.25

3.15 R_ETHER_WritePHY() ... 51
3.16 R_ETHER_ReadPHY() ... 52
3.17 R_ETHER_GetVersion() .. 53

4. Pin Setting .. 54
4.1 Pin setting example for using RSK+RX64M/RSK+RX71M/RSK+RX72M 54
4.2 Pin setting example for using RSK+RX65N/RSK+RX65N-2M ... 58
4.3 Pin setting example for using RSK+RX72N ... 59

5. How to use .. 60
5.1 Section Allocation ... 60

5.1.1 GCC for Renesas RX section setting example .. 61
5.1.2 IAR C/C++ Compiler for Renesas RX section setting example 63
5.1.3 Notes on Section Allocation .. 65

5.2 Ethernet FIT Module Initial Settings .. 66
5.2.1 Notes on Ethernet FIT Module Initial Settings ... 66

5.3 Magic Packet Detection Operation .. 67
5.3.1 Notes on Magic Packet Detection Operation ... 67

5.4 Notes on Accessing MII/RMII Registers .. 68
5.5 How to Use API Function Called in Non-Blocking ... 70

6. Appendices ... 72
6.1 EPTPC Light FIT Module .. 72

6.1.1 Usage Notes .. 72
6.2 Confirmed Operation Environment ... 73
6.3 Troubleshooting .. 77

7. Provided Modules .. 78

8. Ethernet FIT Module Usage Notes .. 78

9. Reference Documents ... 78

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 4 of 83

Mar.20.25

1. Overview
The Ethernet FIT module uses an Ethernet controller (ETHERC) and an Ethernet controller DMA controller
(EDMAC) and a PHY management interface (PMGI)*1 to implement Ethernet frame transmission and
reception. The Ethernet FIT module supports the following functions.

• MII (Media Independent Interface) and RMII (Reduced Media Independent Interface)
• An automatic negotiating function is used for the Ethernet PHY-LSI link.
• The link state is detected using the link signals output by the Ethernet PHY-LSI.
• The result of the automatic negotiation is acquired from the Ethernet PHY-LSI and the connection mode

(full or half duplex, 10 or 100 Mbps transfer rate) is set in the ETHERC.

Note 1. Use PMGI if ETHER_CFG_NON_BLOCKING is set to 1.

1.1 Ethernet FIT Module
The Ethernet FIT module is implemented in a project and used as the API. Refer to 2.11 Adding the FIT
Module for details on implementing the module to the project.

1.2 Outline of the API
Table 1.1 lists the API functions included in the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 5 of 83

Mar.20.25

Table 1.1 API Functions

Function Contents
R_ETHER_Initial() Initializes the Ethernet driver.
R_ETHER_Open_ZC2() Applies a software reset to the ETHERC, EDMAC, and PHY-LSI,

after which it starts PHY-LSI auto-negotiation and enables the link
signal change interrupt.

R_ETHER_Close_ZC2() Disables transmit and receive functionality on the ETHERC. Does
not put the ETHERC and EDMAC into the module stop state.

R_ETHER_Read() Receives data in the specified receive buffer.
R_ETHER_Read_ZC2() Returns a pointer to the start address of the buffer that holds the

receive data.
R_ETHER_Read_ZC2_BufRelease() Releases the buffer read with the R_ETHER_Read_ZC2() function.
R_ETHER_Write() Transmits data from the specified transmit buffer.
R_ETHER_Write_ZC2_GetBuf() Returns a pointer to the start address of the write destination for

transmit data.
R_ETHER_Write_ZC2_SetBuf() Enables transmission of the transmit buffer data to the EDMAC.
R_ETHER_CheckLink_ZC() Checks the link state of a physical Ethernet using the PHY

management interface. If the PHY is connected to an appropriately
initialized remote device with a cable, the Ethernet link state
becomes link-up.

R_ETHER_LinkProcess() Performs link signal change detected and magic packet detected
interrupt handling.

R_ETHER_WakeOnLAN() Switches the ETHERC setting from normal transmission and
reception to magic packet detected operation.

R_ETHER_CheckWrite() Verifies that data transmission has completed.
R_ETHER_Control() Performs the processing that corresponds to a specified control

code.
R_ETHER_WritePHY() Write access to the registers in the PHY-LSI using the PHY

management interface.
R_ETHER_ReadPHY() Read access to the registers in the PHY-LSI using the PHY

management interface.
R_ETHER_GetVersion() Returns the Ethernet FIT module version.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 6 of 83

Mar.20.25

1.3 Use Limit
The Ethernet FIT module has the following limitations.

• When using the Ethernet FIT module with RX64M, RX71M, RX72M, RX72N, RX66N, address 00000000h
to 0000001Fh can not be used.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 7 of 83

Mar.20.25

2. API Information
The API functions of the Ethernet FIT module adhere to the Renesas API naming standards.

2.1 Hardware Requirements
This driver requires your MCU supports the following feature:

• ETHERC
• EDMAC
• PMGI*1

Note 1. Use PMGI if ETHER_CFG_NON_BLOCKING is set to 1.

2.2 Software Requirements
This driver is dependent upon the following packages:

• Renesas Board Support Package (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchains
The operation of the Ethernet FIT module has been confirmed with the toolchain listed as C compiler in 6.2
Confirmed Operation Environment.

2.4 Usage of Interrupt Vector
EINT0 interrupt, or EINT1 interrupt corresponding to the channel number is enabled after specified argument
to channel number and calling R_ETHER_Open_ZC2 function. Table 2.1 shows each interrupt vector that
Ethernet FIT module uses.

Table 2.1 List of Usage of Interrupt Vectors

Device Contents
RX64M
RX71M
RX72M
RX72N

GROUPAL1 interrupt (Vector number. 113)
• EINT0 interrupt [channel number 0] (group interrupt source number. 4)
• EINT1 interrupt [channel number 1] (group interrupt source number. 5)

RX65N
RX66N

GROUPAL1 interrupt (Vector number. 113)
• EINT0 interrupt [channel number 0] (group interrupt source number. 4)

RX72M
RX72N

• PMGI0 interrupt [channel number 0] (Vector number. 252*1)
• PMGI1 interrupt [channel number 1] (Vector number. 253*1)

RX66N • PMGI0 interrupt [channel number 0] (Vector number. 252*1)

Note 1. The interrupt vector numbers for software configurable interrupt A show the default values specified
in the board support package FIT module (BSP module).

2.5 Header Files
All API calls and their supporting interface definitions are located in r_ether_rx_if.h.

2.6 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 8 of 83

Mar.20.25

2.7 Configuration Overview
The configuration options in the Ethernet FIT module are specified in r_ether_rx_config.h. When using Smart
Configurator, the configuration option can be set on software component configuration screen. The setting
value is automatically reflected in r_ether_rx_config.h when adding modules to user project. The option
names and setting values are listed in the table below.

Configuration options in r_ether_rx_config.h
#define ETHER_CFG_MODE_SEL
Note: Default value = 0

Sets the interface between ETHERC and the Ethernet
PHY-LSI.
If set to 0, MII (Media Independent Interface) is
selected.
If set to 1, RMII (Reduced Media Independent
Interface) is selected.

#define ETHER_CFG_CH0_PHY_ADDRESS
Note: Default value = 0*6

Specify the PHY-LSI address used by ETHERC
channel 0.
Specify a value between 0 and 31.

#define ETHER_CFG_CH1_PHY_ADDRESS
Note: Default value = 1*8

Specify the PHY-LSI address used by ETHERC
channel 1.
Specify a value between 0 and 31.

#define ETHER_CFG_EMAC_RX_DESCRIPTORS
Note: Default value = 1

Sets the number of receive descriptors.
This must be set to a value 1 or greater

#define ETHER_CFG_EMAC_TX_DESCRIPTORS
Note: Default value = 1

Sets the number of transmit descriptors.
This must be set to a value 1 or greater

#define ETHER_CFG_BUFSIZE
Note: Default value = 1,536

Specify the size of the transmit buffer or receive
buffer.
The buffer is aligned with 32-byte boundaries, so
specify a value that is a multiple of 32 bytes.

#define ETHER_CFG_AL1_INT_PRIORTY
Note: Default value = 2

Sets the priority level of the group AL1 interrupt.
This must be set to a value in the range 1 to 15.*4

#define ETHER_CFG_CH0_PHY_ACCESS
Note: Default value = 1*1*7

Specify the PHY access channel used by ETHERC
channel 0.
When 0 is specified, ETHERC0 is used for PHY
register access.*2
When 1 is specified, ETHERC1 is used for PHY
register access.*3

#define ETHER_CFG_CH1_PHY_ACCESS
Note: Default value = 1*1*7

Specify the PHY access channel used by ETHERC
channel 1.
When 0 is specified, ETHERC0 is used for PHY
register access.*2
When 1 is specified, ETHERC1 is used for PHY
register access.*3

#define ETHER_CFG_PHY_MII_WAIT
Note: Default value = 8

Specify the loop count of software loop used for read
or write in PHY-LSI. Set the number of loops
according to the PHY-LSI to be used.
Specify a value of 1 or greater.

#define ETHER_CFG_PHY_DELAY_RESET
Note: Default value = 0x00020000

Specify the loop count used for timeout processing of
PHY-LSI reset completion wait. Set the number of
loops according to the PHY-LSI to be used.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 9 of 83

Mar.20.25

#define ETHER_CFG_LINK_PRESENT
Note: Default value = 0

Specify the polarity of the link signal output by the
PHY-LSI.
When 0 is specified, link-up and link-down correspond
respectively to the fall and rise of the LINKSTA signal.
When 1 is specified, link-up and link-down correspond
respectively to the rise and fall of the LINKSTA signal.

#define ETHER_CFG_USE_LINKSTA
Note: Default value = 1

Specify whether or not to use the PHY-LSI status
register instead of the LINKSTA signal when a change
in the link status is detected.*5
When 0 is specified, the PHY-LSI status register is
used.
When 1 is specified, the LINKSTA signal is used.

#define ETHER_CFG_USE_PHY_KSZ8041NL
Note: Default value = 0

Specify whether or not the KSZ8041NL PHY-LSI from
Micrel is used.
When 0 is specified, the KSZ8041 is not used.
When 1 is specified, the KSZ8041 is used.

#define ETHER_CFG_USE_PHY_ICS1894_32
Note: Default value = 0*10

Specify whether or not the ICS1894-32 PHY-LSI from
Renesas Electronics is used.
When 0 is specified, the ICS1894-32 is not used.
When 1 is specified, the ICS1894-32 is used.

#define ETHER_CFG_NON_BLOCKING
Note: Default value = 0*11

Specify whether or not to use non blocking for some
API functions operation.
When 0 is specified, the non-blocking mode is not
used.
When 1 is specified, the non-blocking mode is used.

#define ETHER_CFG_PMGI_CLOCK
Note: Default value = 2500000*9

Specify the clock of the PHY Management Station.
Specify a value in the range 97657 to 60000000

#define
ETHER_CFG_PMGI_ENABLE_PREAMBLE
Note: Default value = 0*9

PHY Management Station Preamble Control.
 When 0 is specified, include Preamble field
 When 1 is specified, not include Preamble field

#define ETHER_CFG_PMGI_HOLD_TIME
Note: Default value = 0*9

Specify the Hold Time Adjustment of the PHY
Management Station.
Specify a value in the range 0 to 7

#define ETHER_CFG_PMGI_CAPTURE_TIME
Note: Default value = 0*9

Define the Capture Time Adjustment of the PHY
Management Station.
Specify a value in the range 0 to 7

#define ETHER_CFG_PMGI_INT_PRIORTY
Note: Default value = 2*9

Sets the priority level of the group PMGI interrupt.
This must be set to a value in the range 1 to 15.

Notes: 1. Refer to Table 2.2 regarding settings for operating the Ethernet FIT module on the Renesas
Starter Kit+ for RX64M (product number: R0K50564MSxxxBE). Or refer to Table 2.3 regarding settings for
operating the Ethernet FIT module on the Renesas Starter Kit+ for RX71M (product number:
R0K50571MSxxxBE)

Table 2.2 ETHER_CFG_CH0_PHY_ACCESS/ETHER_CFG_CH1_PHY_ACCESS Settings 1

Short Pin J3 Short Pin J4 ETHER_CFG_CH0_PHY_ACCESS and
ETHER_CFG_CH1_PHY_ACCESS Setting Values

1 and 2 shorted 1 and 2 shorted 0
 0
2 and 3 shorted 2 and 3 shorted 1
 1

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 10 of 83

Mar.20.25

Table 2.3 ETHER_CFG_CH0_PHY_ACCESS/ETHER_CFG_CH1_PHY_ACCESS Settings 2

Short Pin J13 Short Pin J9 ETHER_CFG_CH0_PHY_ACCESS and
ETHER_CFG_CH1_PHY_ACCESS Setting Values

1 and 2 shorted 1 and 2 shorted 0
 0
2 and 3 shorted 2 and 3 shorted 1
 1

 2. Setting when ETHERC and PHY-LSI are connected as shown below.

ET0_MDC
ET0_MDIO

MDC
MDIO

RX64M/RX71M PHY-LSI

 3. Setting when ETHERC and PHY-LSI are connected as shown below.

ET1_MDC
ET1_MDIO

MDC
MDIO

RX64M/RX71M PHY-LSI

 4. This setting is valid only when the target microcontroller is the RX64M, RX71M, RX65N, RX72M,

RX72N or RX66N.

 5. This setting is valid for all channels when the target microcontroller is the RX64M, RX71M, RX72M

or RX72N.

 6. The default value is a numeric value based on the initial setting of Renesas Starter Kit+ for

RX64M, Renesas Starter Kit+ for RX71M. When using Renesas Starter Kit+ for RX65N (product
number. RTK500565NSxxxxxBE) or Renesas Starter Kit+ for RX65N-2MB (product number.
RTK50565N2SxxxxxBE), set the value to 30. When using Renesas Starter Kit+ for RX72M
(product number. RTK5572Mxxxxxxxxxx), set the value to 1.

 7. The default value is a numeric value based on the initial setting of Renesas Starter Kit+ for

RX64M, Renesas Starter Kit+ for RX71M or Renesas Starter Kit+ for RX72N. When using
Renesas Starter Kit+ for RX65N, Renesas Starter Kit+ for RX65N-2MB or Renesas Starter Kit+ for
RX72M set the value to 0.

 8. The default value is a numeric value based on the initial setting of Renesas Starter Kit+ for RX64M,

Renesas Starter Kit+ for RX71M or Renesas Starter Kit+ for RX72N. When using Renesas Starter
Kit+ for RX72M (product number. RTK5572Mxxxxxxxxxx), set the value to 2.

 9. These macros are only valid when ETHER_CFG_NON_BLOCKING == 1.

 10. The PHY-LSI ICS1894-32 only support full-duplex mode. If you enable this option, prepare a

device that support full-duplex mode as the communication partner.

 11. This setting can be set to 1 only when the target microcontroller is the RX72M, RX72N, RX66N.

Set the value to 0 when the target microcontroller is the RX64M, RX65N, RX71M.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 11 of 83

Mar.20.25

2.8 Code Size
The code size when using the supported toolchain (see section 2.3) is assumed to be that when optimization
level 2 and optimization for code size are used. The sizes of ROM (code and constants) and RAM (global
data) are set in the configuration header file of the Ethernet FIT module and determined at build time by
configuration options.

The values in the table below are confirmed under the following conditions.

Module Revision: r_ether_rx rev1.23

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00

(Compiler option is default setting when using the Smart Configurator.)

GCC for Renesas RX 8.3.0.202104

(Compiler option is default setting when using the Smart Configurator.)

IAR C/C++ Compiler for Renesas RX version 4.20.1

(Compiler option is default setting of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler
Blocking*3 Non-blocking*4 Blocking Non-blocking Blocking Non-blocking

RX72M*1 ROM 4,703 bytes 6,703 bytes 9,588 bytes 13,664 bytes 6,177 bytes 9,421 bytes

RAM 6,281bytes 6,349bytes 6, 272bytes 6,392bytes 6,281 bytes 6,333bytes

STACK*2 148 bytes 148 bytes - 216 bytes 216 bytes

RX65N*1 ROM 4,577 bytes 9,312 bytes 5,674 bytes

RAM 3,146 bytes 3,200 bytes 3,146 bytes

STACK*2 148 bytes - 168 bytes

Note1: With the following settings: ETHER_CFG_EMAC_RX_DESCRIPTORS = 1,
ETHER_CFG_EMAC_TX_DESCRIPTORS = 1, ETHER_CFG_BUFSIZE = 1536
Note2: The sizes of maxmum usage stack of Interrupts functions is included.

Note3: The sizes when ETHER_CFG_NON_BLOCKING = 0.

Note4: The sizes when ETHER_CFG_NON_BLOCKING = 1.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 12 of 83

Mar.20.25

2.9 Arguments
This section documents the enumerations, unions, and structures used as arguments to API functions.
These are included in the r_ether_rx_if.h header file along with the API function prototype declarations.

typedef enum
{
 CONTROL_SET_CALLBACK, /* Callback function registration */
 CONTROL_SET_PROMISCUOUS_MODE,
 /* Promiscuous mode setting */
 CONTROL_SET_INT_HANDLER, /* Interrupt handler function registration */
 CONTROL_POWER_ON, /* Cancel ETHERC/EDMAC module stop */
 CONTROL_POWER_OFF, /* Transition to ETHERC/EDMAC module stop */
 CONTROL_MULTICASTFRAME_FILTER, /* Multicast frame filter setting */
 CONTROL_BROADCASTFRAME_FILTER, /* Broadcast frame filter continuous */
 /* receive count setting */
 CONTROL_RECEIVE_DATA_PADDING, /* Insert receive data padding */
 CONTROL_SET_PMGI_CALLBACK /* Set PMGI callback */
} ether_cmd_t;

typedef union
{
 ether_cb_t ether_callback; /* Callback function pointer */
 ether_promiscuous_t * p_ether_promiscuous; /* Promiscuous mode setting */
 ether_cb_t ether_int_hnd; /* Interrupt handler function pointer */
 uint32_t channel; /* ETHERC channel number */
 ether_multicast_t * p_ether_multicast;
 /* Multicast frame filter setting */
 ether_broadcast_t * p_ether_broadcast;
 /* Broadcast frame filter setting */
 ether_cb_t pmgi_callback; /* PMGI callback function pointer */
 ether_recv_padding_t * padding_param;
 /* Parameters for inserting received data padding */
} ether_param_t;

typedef struct
{
 void (*pcb_func)(void *); /* Callback function pointer */
 void (*pcb_int_hnd)(void *); /* Interrupt handler function pointer */
 void (*pcb_pmgi_hnd) (void *); /* PGMI callback function pointer */
} ether_cb_t;

typedef enum
{
 ETHER_PROMISCUOUS_OFF, /* ETHERC operates in standard mode */
 ETHER_PROMISCUOUS_ON /* ETHERC operates in promiscuous mode */
} ether_promiscuous_bit_t;

typedef enum
{
 ETHER_MC_FILTER_OFF, /* Disable multicast frame filter */
 ETHER_MC_FILTER_ON /* Enable multicast frame filter */
} ether_mc_filter_t;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 13 of 83

Mar.20.25

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 ether_promiscuous_bit_t bit; /* Promiscuous mode */
} ether_promiscuous_t;

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 ether_mc_filter_t flag; /* Multicast frame filter setting */
} ether_multicast_t;

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 uint32_t counter; /* Broadcast frame continuous receive count */
} ether_broadcast_t;

typedef enum
{
 ETHER_CB_EVENT_ID_WAKEON_LAN, /* Magic packet detection */
 ETHER_CB_EVENT_ID_LINK_ON, /* Link up detection */
 ETHER_CB_EVENT_ID_LINK_OFF /* Link down detection */
} ether_cb_event_t;

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 ether_cb_event_t event_id; /* Event code for callback function */
 uint32_t status_ecsr;
 /* ETHERC status register for interrupt handler */
 uint32_t status_eesr;
 /* ETHERC/EDMAC status register for interrupt handler */
} ether_cb_arg_t;

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 uint8_t position; /* Padding insertion position */
 uint8_t size; /* Padding insertion size */
}ether_recv_padding_t;

typedef enum
{
 OPEN_ZC2 = 0, /* Executing R_ETHER_Open_ZC2 function */
 CHECKLINK_ZC, /* Executing R_ETHER_CheckLink_ZC function */
 LINKPROCESS, /* Executing R_ETHER_LinkProcess function */
 WAKEONLAN, /* Executing R_ETHER_WakeOnLAN function */
 LINKPROCESS_OPEN_ZC2, /* Executing R_ETHER_LinkProcess function */
 LINKPROCESS_CHECKLINK_ZC0, /* Executing R_ETHER_LinkProcess function */
 LINKPROCESS_CHECKLINK_ZC1, /* Executing R_ETHER_LinkProcess function */
 LINKPROCESS_CHECKLINK_ZC2, /* Executing R_ETHER_LinkProcess function */
 WAKEONLAN_CHECKLINK_ZC, /* Executing R_ETHER_WakeOnLAN function */
 WRITEPHY, /* Executing R_ETHER_WritePHY function */
 READPHY, /* Executing R_ETHER_ReadPHY function */
 PMGI_MODE_NUM /* PMGI operation mode number */
}pmgi_mode_t;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 14 of 83

Mar.20.25

typedef enum
{
 STEP0 = 0, /* PMGI operation step 0 */
 STEP1, /* PMGI operation step 1 */
 STEP2, /* PMGI operation step 2 */
 STEP3, /* PMGI operation step 3 */
 STEP4, /* PMGI operation step 4 */
 STEP5, /* PMGI operation step 5 */
 STEP6, /* PMGI operation step 6 */
 PMGI_STEP_NUM /* PMGI operation step number */
}pmgi_step_t;

typedef enum
{
 PMGI_IDLE = 0, /* PMGI is idle */
 PMGI_RUNNING = 1, /* PMGI is running */
 PMGI_COMPLETE = 2, /* PMGI is complete */
 PMGI_ERROR = -1 /* PMGI is error */
}pmgi_event_t;

typedef struct
{
 ether_return_t (* p_func)(uint32_t ether_channel);
 /* Type of function pointer array */
} st_pmgi_interrupt_func_t;

typedef struct
{
 bool locked; /* The flag of PMGI locked status */
 pmgi_event_t event; /* PMGI current operation status */
 pmgi_mode_t mode; /* PMGI operation mode */
 pmgi_step_t step; /* PMGI operation step */
 uint16_t read_data; /* The read value of PMGI register */
 uint32_t reset_counter; /* The counter of reading reset register */
 uint32_t ether_channel; /* ETHERC channel number */
}pmgi_param_t;

typedef struct
{
 uint32_t channel; /* ETHERC channel */
 pmgi_event_t event; /* Event code for callback function */
 pmgi_mode_t mode; /* PMGI operation mode */
 uint16_t reg_data; /* PHY register data for interrupt handler */
} pmgi_cb_arg_t;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 15 of 83

Mar.20.25

2.10 Return Values
This section describes return values of API functions. This enumeration is located in r_ether_rx_if.h as are
the prototype declarations of API functions.

typedef enum /* Error code of Ether API */
{
ETHER_SUCCESS, /* Processing completed successfully */
ETHER_ERR_INVALID_PTR, /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_INVALID_DATA, /* Value of the argument is out of range */
ETHER_ERR_INVALID_CHAN, /* Nonexistent channel number */
ETHER_ERR_INVALID_ARG, /* Invalid argument */
ETHER_ERR_LINK, /* Auto-negotiation is not completed, and */

/*transmission/reception is not enabled. */
ETHER_ERR_MPDE, /* As a Magic Packet is being detected, and */
 /* transmission/reception is not enabled. */
ETHER_ERR_TACT, /* Transmit buffer is not empty. */
ETHER_ERR_CHAN_OPEN, /* Indicates the Ethernet cannot be opened because */
 /* it is being used by another application */
ETHER_ERR_MC_FRAME, /* Multicast frame detected when multicast frame */
 /* filtering is enabled. */
ETHER_ERR_RECV_ENABLE, /* Could not change setting because receive */
 /* function is enabled. */
ETHER_ERR_LOCKED, /* When non-blocking mode is enabled, during PHY */
 /* access. */
ETHER_ERR_OTHER /* Other error */
} ether_return_t;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 16 of 83

Mar.20.25

2.11 Callback Function
(1) Callback Function Called by API Function R_ETHER_LinkProcess
In the Ethernet FIT module, a callback function is called when either a magic packet or a link signal change
is detected.

To set up the callback function, use the function R_ETHER_Control(), which is described later in this
document, and set the control code CONTROL_SET_CALLBACK as the enumeration (the first argument)
described in 2.9 Arguments, and set the address of the function to be registered as the callback function in
the structure (the second argument).

When the callback function is called, a variable in which the channel number for which the detection occurred
and a constant shown in Table 2.4 are stored is passed as an argument. If the value of this argument is to be
used outside the callback function, it’s value should be copied into, for example, a global variable.

Table 2.4 Argument List of the callback Function

Constant Definition Description
ETHER_CB_EVENT_ID_WAKEON_LAN Detect magic packet
ETHER_CB_EVENT_ID_LINK_ON Detect link signal change (link-up)
ETHER_CB_EVENT_ID_LINK_OFF Detect link signal change (link-down)

(2) Callback Function Called by EINT0/EINT1 Status Interrupts
The Ethernet FIT module calls an interrupt handler when an interrupt indicating a condition other than the
following occurs.

• Magic Packet detection operation by the Ethernet FIT module
 Link signal change detection*1
 Magic packet detection

• Normal operation by the Ethernet FIT module
 Link signal change detection*1
 Frame receive detection or frame transmit end detection

To specify the interrupt handler, use the R_ETHER_Control function described below to set the control code
“CONTROL_SET_INT_HANDLER” in the enumeration (first argument) shown in 2.9 Arguments, and set the
function address of the interrupt handler to be registered in the structure (second argument).

When the interrupt handler function is called, variables in which are stored the number of the channel on
which the interrupt occurred, the ETHERC status register value, and the ETHERC/EDMAC status register
value are passed as arguments. To use the argument values in functions other than the callback function,
copy them to global variables or the like.

Note 1. If the setting of #define ETHER_CFG_USE_LINKSTA is 0, the interrupt handler function is not
called when a link signal change is detected.

(3) Callback Function Called by PMGI interrupt
In the Ethernet FIT module, call the callback function when the non-blocking API function processing is
completed.

To set up the callback function, use the function R_ETHER_Control(), which is described later in this
document, and set the control code CONTROL_SET_PMGI_CALLBACK as the enumeration (the first
argument) described in 2.9 Arguments, and set the address of the function to be registered as the callback
function in the structure (the second argument).

When the callback function is called, the channel number for which API processing has been completed, the
variable storing the constants shown in Table 2.5, the variable storing the constants shown in Table 2.6, and
the PHY register read data are passed as arguments. When using the argument value outside the callback
function, copy it to a variable such as a global variable.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 17 of 83

Mar.20.25

Table 2.5 Argument List of the callback Function

Constant Definition Description
OPEN_ZC2 Processing of the R_ETHER_Open_ZC2 function is

complete.
CHECKLINK_ZC Processing of the R_ETHER_CheckLink_ZC function is

complete.
LINKPROCESS Processing of the R_ETHER_LinkProcess function is

complete.
WAKEONLAN Processing of the R_ETHER_WakeOnLAN function is

complete.
WRITEPHY Processing of the R_ETHER_WritePHY function is

complete.
READPHY Processing of the R_ETHER_ReadPHY function is

complete.

Table 2.6 Argument List of the callback Function

Constant Definition Description
PMGI_COMPLETE API function processing completed successfully.

In the case of the R_ETHER_CheckLink_ZC function, a
link up was detected.

PMGI_ERROR API function processing ended abnormally.
In the case of the R_ETHER_CheckLink_ZC function, a
link down was detected.

PMGI_IDLE API function processing completed successfully without
PMGI operation.
In the case of the R_ETHER_LinkProcess function, no
PMGI operations are performed during function
execution.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 18 of 83

Mar.20.25

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)”
for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 19 of 83

Mar.20.25

2.13 Ethernet Frame Format
The Ethernet FIT module supports the Ethernet II/IEEE 802.3 frame format.

2.13.1 Frame Format for Data Transmission and Reception
Figure 2.1 shows the Ethernet II/IEEE 802.3 frame format.

Transfer
destination

address (6 bytes)

Transfer source
address
(6 bytes)

Length/type
(2 bytes)

Data + padding
(46 to 1,500 bytes)

FCS
(4 bytes)

Preamble
(7 bytes)

SFD
(1byte)

Physical header Ethernet header Payload Trailer

Valid software (Ethernet FIT module) dataHardware
processing data

Hardware
processing data

SFD
(1 byte)

Figure 2.1 Ethernet II/IEEE 802.3 Frame Format

The preamble and SFD signal the start of an Ethernet frame. The FCS contains the CRC of the Ethernet
frame and is calculated on the transmitting side. When data is received the CRC value of the frame is
calculated in hardware, and the Ethernet frame is discarded if the values do not match.

When the hardware determines that the data is normal, the valid range of receive data is: (transmission
destination address) + (transmission source address) + (length/type) + (data).

2.13.2 PAUSE Frame Format
Table 2.2 shows the PAUSE frame format.

Transfer destination
address

(01:80:C2:00:00:01)

Transfer source
address
(6 bytes)

Length/type
(0x8808)

Pause duration
(0 to 65535)

FCS
(4 bytes)

Preamble
(7 bytes)

SFD
(1byte)

Physical header Ethernet header Payload Trailer

Operation
code

(0x0001)
PaddingSFD

(1 byte)

Figure 2.2 PAUSE Frame Format

The transmission destination address is specified as 01:80:C2:00:00:01 (a multicast address reserved for
PAUSE frames). At the start of the payload the length/type is specified as 0x8808 and the operation code as
0x0001.

The pause duration in the payload is specified by the value of the automatic PAUSE (AP) bits in the
automatic PAUSE frame setting register (APR), or the manual PAUSE time setting (MP) bits in the manual
PAUSE frame setting register (MPR).

2.13.3 Magic Packet Frame Format
Table 2.3 shows the Magic Packet frame format.

Transfer destination
address (6 bytes)

Transfer source
address
(6 bytes)

Length/type
(2 bytes)

Data
(FF:FF:FF:FF:FF:FF, Transfer destination

address × 16)

FCS
(4 bytes)

Preamble
(7 bytes)

SFD
(1 byte)

Physical header Ethernet header Payload Trailer

Padding

Figure 2.3 Magic Packet Frame Format

In a Magic Packet, the value FF:FF:FF:FF:FF:FF followed by the transmission destination address repeated
16 times is inserted somewhere in the Ethernet frame data.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 20 of 83

Mar.20.25

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /*
WAIT_LOOP */

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 21 of 83

Mar.20.25

3. API Functions

3.1 R_ETHER_Initial()
This function makes initial settings to the Ethernet FIT module.

Format
void R_ETHER_Initial(void);

Parameters
None

Return Values
None

Properties
Prototyped in r_ether_rx_if.h.

Description
Initializes the memory to be used in order to start Ethernet communication.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

void callback_sample(void*);
void int_handler_sample(void*);

ether_return ret;
ether_param_t param;
ether_cb_t cb_func;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

/* Initialize memory which ETHERC/EDMAC is used */
R_ETHER_Initial();

channel = ETHER_CHANNEL_0
param.channel = channel;

/* Set the callback function */
cb_func.pcb_func = &callback_sample;
param.ether_callback = cb_func;
ret = R_ETHER_Control(CONTROL_SET_CALLBACK, param);

/* Set the interrupt handler */
cb_func.pcb_int_hnd = &int_handler_sample;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 22 of 83

Mar.20.25

param.ether_int_hnd = cb_func;
ret = R_ETHER_Control(CONTROL_SET_INT_HANDLER, param);

/* Release ETHERC and EDMAC module stop, port settings using ETHERC */
ret = R_ETHER_Control(CONTROL_POWER_ON, param);
if(ETHER_SUCCESS == ret)
{
 /* Initialized successfully completed without ETHERC, EDMAC */
}

Special Notes:
This function must be called before calling the R_ETHER_Open_ZC2() function.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 23 of 83

Mar.20.25

3.2 R_ETHER_Open_ZC2()
When using the ETHER API, this function is used first.

Format
ether_return_t R_ETHER_Open_ZC2(
 uint32_t channel /* ETHERC channel number */
 const uint8_t mac_addr[] /* The MAC address of ETHERC */

 uint8_t pause /* Specifies whether flow control */
 /* functionality is enabled or disabled. */

);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

mac_addr

Specifies the MAC address of ETHERC.

pause

Specifies the value set in bit 10 (Pause) in register 4 (auto-negotiation advertisement) of the PHY-LSI.
The setting ETHER_FLAG_ON is possible only when the user’s PHY-LSI supports the pause function.
This value is passed to the other PHY-LSI during auto-negotiation. Flow control is enabled if the auto-
negotiation result indicates that both the local PHY-LSI and the other PHY-LSI support the pause
function.
Specify ETHER_FLAG_ON to convey that the pause function is supported to the other PHY-LSI during
auto-negotiation, and specify ETHER_FLAG_OFF if the pause function is not supported or will not be
used even though it is supported.

Return Values

ETHER_SUCCESS /* Processing completed successfully or the PMGI operation start */
 /* normally when the non-blocking mode is enable*/
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_PTR /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_INVALID_DATA /* Value of the argument is out of range */
ETHER_ERR_OTHER /* PHY-LSI initialization failed */
 /* when the non-blocking mode is enabled */
 /* and PMGI callback function is not registered */
ETHER_ERR_LOCKED /* When PHY access is in progress when non-blocking mode is
enabled */

Properties

Prototyped in r_ether_rx_if.h.

Description

The R_ETHER_Open_ZC2() function resets the ETHERC, EDMAC and PHY-LSI by software, and starts
PHY-LSI auto-negotiation to enable the link signal change interrupt.

The MAC address is used to initialize the ETHERC MAC address register.

When non-blocking mode is enabled, the processing result of the function is passed as an argument of the
PMGI callback function.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 24 of 83

Mar.20.25

Example

The MAC address used in the sample code is assigned based on the vendor ID of Renesas Electronics
Corporation. Customers developing products must use a MAC address obtained by submitting an application
to the IEEE.

#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;

/* Source MAC Address */
static uint8_t mac_addr_src[6] = {0x74,0x90,0x50,0x00,0x79,0x01};

/* Flow control function
 * ETHER_FLAG_ON = Use flow control function
 * ETHER_FLAG_OFF = No use flow control function
 */
static volatile uint8_t pause_enable = ETHER_FLAG_OFF;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

/* Initialize ETHERC, EDMAC */
ret = R_ETHER_Open_ZC2(channel, mac_addr_src, pause_enable);
if(ETHER_SUCCESS == ret)
{
 while(1)
 {
 /* Check Link status when Initialized successfully completed */
 R_ETHER_LinkProcess(channel);
 }
}

Special Notes:
Either after the R_ETHER_initial() function is called immediately following a power-on reset, or after the
R_ETHER_Close_ZC2() function was called, applications should only use the other API functions after first
calling this function and verifying that the return value is ETHER_SUCCESS.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 25 of 83

Mar.20.25

3.3 R_ETHER_Close_ZC2()
The R_ETHER_Close_ZC2() function disables transmit and receive functionality on the ETHERC. This
function does not put the ETHERC and EDMAC into the module stop state.

Format
ether_return_t R_ETHER_Close_ZC2(
 uint32_t channel /* ETHERC channel number */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */

Properties

Prototyped in r_ether_rx_if.h.

Description

The R_ETHER_Close_ZC2() function disables transmit and receive functionality on the ETHERC and
disables Ethernet interrupts. It does not put the ETHERC and EDMAC into the module stop state.

Execute this function to end the Ethernet communication.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

/* Disable transmission and receive function */
ret = R_ETHER_Close_ZC2(channel);
if(ETHER_SUCCESS == ret)
{
 goto end;
}

Special Notes:
None

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 26 of 83

Mar.20.25

3.4 R_ETHER_Read_ZC2()
The R_ETHER_Read_ZC2() function returns a pointer to the starting address of the buffer storing the
receive data.

Format
int32_t R_ETHER_Read_ZC2(
 uint32_t channel /* ETHERC channel number */
 void ** pbuf /* Pointer to buffer that holds the receive data */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

** pbuf

Returns a pointer to the starting address of the buffer storing the receive data.

Return Values

A value of 1 or greater /* Returns the number of bytes received. */
ETHER_NO_DATA /* A zero value indicates no data is received. */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_PTR /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception */

/* is not enabled. */
ETHER_ERR_MC_FRAME /* Multicast frame detected when multicast frame filtering is enabled. */

Properties

Prototyped in r_ether_rx_if.h.

Description
The driver’s buffer pointer to the starting address of the buffer storing the receive data is returned in the
parameter pbuf. Returning the pointer allows the operation to be performed with zero-copy. Return value
shows the number of received bytes. If there is no data available at the time of the call, ETHER_NO_DATA
is returned. When auto-negotiation is not completed, and reception is not enabled, ETHER_ERR_LINK is
returned. ETHER_ERR_MPDE is returned when a Magic Packet is being detected.

The EDMAC hardware operates independent of the R_ETHER_Read_ZC2() function and reads data into a
buffer pointed by the EDMAC receive descriptor. The buffer pointed by the EDMAC receive descriptor is
statically allocated by the driver.

When multicast frame filtering on the specified channel is enabled by the R_ETHER_Control function, the
buffer is released immediately when a multicast frame is detected. Also, the value
ETHER_ERR_MC_FRAME is returned. Note that when hardware-based multicast frame filtering is enabled
on the RX64M, RX71M, RX72M, RX72N or RX66N, multicast frames are discarded by the hardware and
detection is not possible. For details, see section 6.1 EPTPC Light FIT Module.

Frames that generate a receive FIFO overflow, residual-bit frame receive error, long frame receive error,
short frame receive error, PHY-LSI receive error, or receive frame CRC error are treated as receive frame
errors. When a receive frame error occurs, the descriptor data is discarded, the status is cleared, and
reading of data continues.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 27 of 83

Mar.20.25

Example

#include <string.h>
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;
uint8_t * pread_buffer_address;
uint8_t * pbuf;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Read_ZC2(channel, (void **)&pread_buffer_address);
/* When there is data to receive */
if(ETHER_NO_DATA < ret)
{
 memcpy(pbuf, pread_buffer_address, (uint32_t)ret);

 /* Release the receive buffer after reading the receive data. */
 R_ETHER_Read_ZC2_BufRelease(channel);
}

Special Notes:
This function is used in combination with the R_ETHER_Read_ZC2_BufRelease function. Always call the
R_ETHER_Read_ZC2 function and then the R_ETHER_Read_ZC2_BufRelease function in sequence. If the
value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 28 of 83

Mar.20.25

3.5 R_ETHER_Read_ZC2_BufRelease()
The R_ETHER_Read_ZC2_BufRelease() function releases the buffer read by the R_ETHER_Read_ZC2()
function.

Format
int32_t R_ETHER_Read_ZC2_BufRelease(
 uint32_t channel /* Specifies the ETHERC channel number. */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception */
 /* is not enabled. */

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_Read_ZC2_BufRelease() function releases the buffer read by the R_ETHER_Read_ZC2()
function.

Example
#include <string.h>
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;
uint8_t * pread_buffer_address;
uint8_t * pbuf;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Read_ZC2(channel, (void **)&pread_buffer_address);
/* When there is data to receive */
if(ETHER_NO_DATA < ret)
{
 memcpy(pbuf, pread_buffer_address, (uint32_t)ret);

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 29 of 83

Mar.20.25

 /* Release the receive buffer after reading the receive data. */
 R_ETHER_Read_ZC2_BufRelease(channel);
}

Special Notes:
Before calling this function, use the R_ETHER_Read_ZC2 function to read data. Call this function after a
value of 1 or greater is returned.

This function is used in combination with the R_ETHER_Read_ZC2_BufRelease function. Always call the
R_ETHER_Read_ZC2 function and then the R_ETHER_Read_ZC2_BufRelease function in sequence. If the
value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 30 of 83

Mar.20.25

3.6 R_ETHER_Write_ZC2_GetBuf()
The R_ETHER_Write_ZC2_GetBuf() function returns a pointer to the starting address of the transmit data
destination.

Format
ether_return_t R_ETHER_Write_ZC2_GetBuf(
 uint32_t channel /* ETHERC channel number */
 void ** pbuf /* Pointer to the starting address of the */
 /* transmit data destination */

 uint16_t * pbuf_size /* The Maximum size to write to the buffer */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

** pbuf

Returns a pointer to the starting address of the transmit data destination.

* pbuf_size

Returns the maximum size to write to the buffer.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_PTR /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception */

 /* is not enabled. */
ETHER_ERR_TACT /* Transmit buffer is not empty. */

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_Write_ZC2_GetBuf() function returns the parameter pbuf containing a pointer to the starting
address of the transmit data destination. The function also returns the maximum size to write to the buffer to
the parameter pbuf_size. Returning the pointer allows the operation to be performed with zero-copy.

Return values indicate if the transmit buffer (pbuf) is writable or not. ETHER_SUCCESS is returned when the
buffer is writable at the time of the call. When auto-negotiation is not completed, and transmission is not
enabled, ETHER_ERR_LINK is returned. ETHER_ERR_MPDE is returned when a Magic Packet is being
detected. ETHER_ERR_TACT is returned when the transmit buffer is not empty.

The EDMAC hardware operates independent of the R_ETHER_Write_ZC2_GetBuf() function and writes
data stored in a buffer pointed by the EDMAC transmit descriptor. The buffer pointed by the EDMAC transmit
descriptor is statically allocated by the driver.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 31 of 83

Mar.20.25

Example

The MAC address used in the sample code is assigned based on the vendor ID of Renesas Electronics
Corporation. Customers developing products must use a MAC address obtained by submitting an application
to the IEEE.
#include <string.h>
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;
uint8_t * pwrite_buffer_address;
uint8_t * pbuf;
uint16_t buf_size;

/* Transmit data */
static uint8_t send_data[60] =
{
 0x74,0x90,0x50,0x00,0x79,0x02, /* Destination MAC address */
 0x74,0x90,0x50,0x00,0x79,0x01, /* Source MAC address */
 0x00,0x00, /* The type field is not used */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Data field */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00
};

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Write_ZC2_GetBuf(channel, (void **)&pwrite_buffer_address,
&buf_size);
/* When transmission buffer is empty */
if(ETHER_SUCCESS == ret)
{
 /* Write the transmit data to the transmission buffer. */
 memcpy(pwrite_buffer_address, send_data, sizeof(send_data));

 R_ETHER_Write_ZC2_SetBuf(channel, sizeof(send_data));

 /* Verifying that the transmission is completed */
 ret = R_ETHER_CheckWrite(channel);
 if(ETHER_SUCCESS == ret)
 {
 /* Transmission is completed */
 }
}

Special Notes:
This function is used in combination with the R_ETHER_Write_ZC2_SetBuf function. Always call the
R_ETHER_Write_ZC2_GetBuf function and then the R_ETHER_Write_ZC2_SetBuf function in sequence. If
the value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 32 of 83

Mar.20.25

3.7 R_ETHER_Write_ZC2_SetBuf()
The R_ETHER_Write_ZC2_SetBuf() function enables the EDMAC to transmit the data in the transmit buffer.

Format
ether_return_t R_ETHER_Write_ZC2_SetBuf(
 uint32_t channel /* ETHERC channel number */
 const uint32_t len /* The size (60 to 1,514 bytes) which is the */
 /* Ethernet frame length minus 4 bytes of CRC */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

len

Specifies the size (60 to 1,514 bytes) which is the Ethernet frame length minus 4 bytes of CRC.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_DATA /* Value of the argument is out of range */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception */
 /* is not enabled. */

Properties
Prototyped in r_ether_rx_if.h.

Description
Call this function after writing one frame of transmit data is completed.

Set the buffer length to be not less than 60 bytes (64 bytes of the minimum Ethernet frame minus 4 bytes of
CRC) and not more than 1,514 bytes (1,518 bytes of the maximum Ethernet frame minus 4 bytes of CRC).

To transmit data less than 60 bytes, make sure to pad the data with zero to be 60 bytes.

Return values indicate that the data written in the transmit buffer is enabled to be transmitted.
ETHER_SUCCESS is returned when the data in the transmit buffer is enabled to be transmitted at the time
of the call. When auto-negotiation is not completed, and transmission is not enabled, ETHER_ERR_LINK is
returned. ETHER_ERR_MPDE is returned when a Magic Packet is being detected.

Example
The MAC address used in the sample code is assigned based on the vendor ID of Renesas Electronics
Corporation. Customers developing products must use a MAC address obtained by submitting an application
to the IEEE.
#include <string.h>
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;
uint8_t * pwrite_buffer_address;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 33 of 83

Mar.20.25

uint8_t * pbuf;
uint16_t buf_size;

/* Transmit data */
static uint8_t send_data[60] =
{
 0x74,0x90,0x50,0x00,0x79,0x02, /* Destination MAC address */
 0x74,0x90,0x50,0x00,0x79,0x01, /* Source MAC address */
 0x00,0x00, /* The type field is not used
 */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Data field */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00
};

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Write_ZC2_GetBuf(channel, (void **)&pwrite_buffer_address,
&buf_size);
/* When transmission buffer is empty */
if(ETHER_SUCCESS == ret)
{
 /* Write the transmit data to the transmission buffer. */
 memcpy(pwrite_buffer_address, send_data, sizeof(send_data));

 R_ETHER_Write_ZC2_SetBuf(channel, sizeof(send_data));

 /* Verifying that the transmission is completed */
 ret = R_ETHER_CheckWrite(channel);
 if(ETHER_SUCCESS == ret)
 {
 /* Transmission is completed */
 }
}

Special Notes:
• Call this function after writing one frame of transmit data is completed.
• To transmit data less than 60 bytes, make sure to pad the data with zero to be 60 bytes.
• Before calling this function, use the R_ETHER_Write_ZC2_GetBuf function to read data. Call this function

after ETHER_SUCCESS is returned.
• This function is used in combination with the R_ETHER_Write_ZC2_GetBuf function. Always call the

R_ETHER_Write_ZC2_GetBuf function and then the R_ETHER_Write_ZC2_SetBuf function in
sequence. If the value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet
FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 34 of 83

Mar.20.25

3.8 R_ETHER_CheckLink_ZC()
The R_ETHER_CheckLink_ZC() function checks the status of the physical Ethernet link using PHY
management interface. Ethernet link is up when the cable is connected to a peer device whose PHY is
properly initialized.

Format
ether_return_t R_ETHER_CheckLink_ZC(
 uint32_t channel /* ETHERC channel number */
);

Parameters
channel

Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values

ETHER_SUCCESS /* the link status is link up or the operation starts normally when */
/* the non-blocking mode is enabled*/

ETHER_ERR_OTHER /* the link status is link-down or the non-blocking mode is */
/* enabled and the interrupt handler function is not registered*/

ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_LOCKED /* When PHY access is in progress when non-blocking mode is */
 /* enabled */

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_CheckLink_ZC() function checks the status of the physical Ethernet link using PHY
management interface. This information (status of Ethernet link) is read from the basic status register
(register 1) of the PHY-LSI device. If non-blocking mode is disabled, ETHER_SUCCESS is returned when
the link is up, and ETHER_ERR_OTHER when the link is down.

When non-blocking mode is enabled, the check result is passed as an argument of the interrupt handler
function after the link status check is completed.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_CheckLink_ZC(channel);

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 35 of 83

Mar.20.25

if(ETHER_SUCCESS == ret)
{
 /* Link is up */
 LED1 = LED_ON;
}
else
{
 /* Link is down */
 LED1 = LED_OFF;
}

Special Notes:
None

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 36 of 83

Mar.20.25

3.9 R_ETHER_LinkProcess()
The R_ETHER_LinkProcess() function performs link signal change interrupt processing and Magic Packet
detection interrupt processing.

Format
void R_ETHER_LinkProcess(
 uint32_t channel /* ETHERC channel number */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values
None

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_LinkProcess() function performs link signal change interrupt processing and Magic Packet
detection interrupt processing. Note that link status change detection processing takes place but link signal
change interrupt processing does not occur when ETHER_CFG_USE_LINKSTA is set to a value of 0. When
non-blocking mode is enabled, the processing result of the function is passed as an argument of the PMGI
callback function.

• When a Magic Packet detection interrupt occurs:
 The callback function registered by the function R_ETHER_Control() reports that a magic packet was

detected.
• When a link signal change (link is up) interrupt occurs:

 The descriptors and the contents of the transmit and receive buffers are erased.
 After ETHERC and EDMAC are initialized, decide the appropriate configuration to support full-

duplex/half-duplex, link speed, and flow control based on the auto-negotiation result, and then enable
transmission and reception functionality.

 EDMAC descriptor is set up to its initial status.
 The callback function registered by the function R_ETHER_Control() reports that a link signal change

(link is up) was detected.
• When a link signal change (link is down) interrupt occurs:

 After the transmission and reception functions are disabled, the callback function registered by the
function R_ETHER_Control() reports that a link signal change (link is down) was detected.

• When ETHER_CFG_USE_LINKSTA is set to a value of 0:
 The PHY-LSI basic status register (register 1) is read to confirm the Ethernet link status. If a change in

the link status is detected, the processing described below occurs.
 If the link status has changed (link status is link up):

• The descriptors and the contents of the transmit and receive buffers are erased.
• After the ETHERC and EDMAC are initialized, the appropriate configuration of full-duplex/half-

duplex, link speed, and flow control are determined based on the auto-negotiation result, and
transmission and reception functionality are enabled.

• The EDMAC descriptors are set to their initial status.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 37 of 83

Mar.20.25

• The callback function registered by the R_ETHER_Control function reports that a link status
change (link up) was detected.

 If the link status has changed (link status is link down):
• After the transmission and reception functions are disabled, the callback function registered by the

R_ETHER_Control function reports that a link status change (link down) was detected.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

while(1)
{
 /* Perform link signal change interrupt processing and
 * Magic Packet detection interrupt processing
 */
 R_ETHER_LinkProcess(channel);
}

Special Notes:
• If ETHER_CFG_USE_LINKSTA is set to a value of 1, either call this function periodically within the

normal processing routine. Note that Ethernet transmission and reception may not operate correctly, and
the Ethernet driver may not enter Magic Packet detection mode correctly, if this function is not called.

• If ETHER_CFG_USE_LINKSTA is set to a value of 0, either call this function periodically within the
normal processing routine, or call it from an interrupt function that is processed when a periodically
occurring interrupt source occurs. Note that Ethernet transmission and reception may not operate
correctly, and the Ethernet driver may not enter Magic Packet detection mode correctly, if this function is
not called.

• If no callback function was registered with the function R_ETHER_Control(), there will be no notification
by a callback function.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 38 of 83

Mar.20.25

3.10 R_ETHER_WakeOnLAN()
The R_ETHER_WakeOnLAN() function switches the ETHERC setting from normal transmission/reception to
Magic Packet detection.

Format
ether_return_t R_ETHER_WakeOnLAN(
 uint32_t channel /* ETHERC channel number */
);

Parameters

channel
Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values

ETHER_SUCCESS /* Processing completed successfully or the operation starts*/
 /* normally when the non-blocking mode is enable */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_OTHER /* A switch to magic packet detection was performed when the */

 /* link state was link is down. Or the non-blocking mode is */
 /* enabled and the interrupt handler function is not registered */
ETHER_ERR_LOCKED /* When PHY access is in progress when non-blocking mode is */
 /* enabled */

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_WakeOnLAN() function initializes the ETHERC and EDMAC, and then switches the
ETHERC to Magic Packet detection.

If non-blocking call is disabled, return values indicate whether the ETHERC has been switched to Magic
Packet detection or not. When auto-negotiation is not completed, and transmission/reception is not enabled,
ETHER_ERR_LINK is returned. ETHER_ERR_OTHER is returned if the link is down after ETHERC is set to
Magic Packet detection.

When non-blocking mode is enabled, the processing result of the function is passed as an argument of the
PMGI callback function.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 39 of 83

Mar.20.25

channel = ETHER_CHANNEL_0;

while(1)
{
 /* Perform link signal change interrupt processing and
 * Magic Packet detection interrupt processing
 */
 R_ETHER_LinkProcess(channel);

 /* Enter Magic Packet detection mode. */
 ret = R_ETHER_WakeOnLAN(channel);
 if(ETHER_SUCCESS == ret)
 {
 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_LPC_CGC_SWR);
 /*
 * Set the MCU in sleep mode as low power consumption mode when the MCU is
 * awaiting a Magic Packet detection.
 */
 SYSTEM.SBYCR.BIT.SSBY = 0;
 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_LPC_CGC_SWR);

 wait();
 }
}

Special Notes:
None

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 40 of 83

Mar.20.25

3.11 R_ETHER_CheckWrite()
The R_ETHER_CheckWrite() function verifies that data transmission has completed.

Format
ether_return_t R_ETHER_CheckWrite(
 uint32_t channel /* ETHERC channel number */
);

Parameters
channel

Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */

Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_CheckWrite() function verifies that data was transmitted.

If the transmission completed, ETHER_SUCCESS is returned.

Example
The MAC address used in the sample code is assigned based on the vendor ID of Renesas Electronics
Corporation. Customers developing products must use a MAC address obtained by submitting an application
to the IEEE.
#include <string.h>
#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;
uint8_t * pwrite_buffer_address;
uint8_t * pbuf;
uint16_t buf_size;

/* Transmit data */
static uint8_t send_data[60] =
{
 0x74,0x90,0x50,0x00,0x79,0x02, /* Destination MAC address */
 0x74,0x90,0x50,0x00,0x79,0x01, /* Source MAC address */
 0x00,0x00, /* The type field is not used
 */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Data field */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00
};

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 41 of 83

Mar.20.25

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Write_ZC2_GetBuf(channel, (void **)&pwrite_buffer_address,
&buf_size);
/* When transmission buffer is empty */
if(ETHER_SUCCESS == ret)
{
 /* Write the transmit data to the transmission buffer. */
 memcpy(pwrite_buffer_address, send_data, sizeof(send_data));

 R_ETHER_Write_ZC2_SetBuf(channel, sizeof(send_data));

 /* Verifying that the transmission is completed */
 ret = R_ETHER_CheckWrite(channel);
 if(ETHER_SUCCESS == ret)
 {
 /* Transmission is completed */
 }
}

Special Notes:
• This function should be called after transmit data has been written with the

R_ETHER_Write_ZC2_Setbuf() function.
• Note that it takes several tens of microseconds for data transmission to actually complete after the

R_ETHER_Write_ZC2_Setbuf() function is called. Therefore, when using the R_ETHER_Close_ZC2()
function to shut down the Ethernet module following data transmission, call the R_ETHER_CheckWrite()
function after calling the R_ETHER_Write_ZC2_Setbuf() function and, after waiting for data transmission
to finish, call the R_ETHER_Close_ZC2() function. Calling the R_ETHER_Close_ZC2() function without
calling the R_ETHER_CheckWrite() function can cause data transmission to be cut off before it
completes.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 42 of 83

Mar.20.25

3.12 R_ETHER_Read()
The R_ETHER_Read() function receives data into the specified receive buffer.

Format
int32_t R_ETHER_Read(
 uint32_t channel /* ETHERC channel number */
 void * pbuf /* The receive buffer (to store the receive data) */
);

Parameters
channel

Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

* pbuf

Specifies the receive buffer (to store the receive data).
The maximum write size is 1,514 bytes. When calling this function, specify the start address of a array
with a capacity of 1,514 bytes.

Return Values

A value of 1 or greater /* Returns the number of bytes received. */
ETHER_NO_DATA /* A zero value indicates no data is received. */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_PTR /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception is */
 /* not enabled. */
ETHER_ERR_MC_FRAME /* Multicast frame detected when multicast frame filtering is enabled. */

Properties
Prototyped in r_ether_rx_if.h.

Description
This function stores the receive data in the specified receive buffer.

Return values indicate the number of bytes received. If there is no data available at the time of the call,
ETHER_NO_DATA is returned. When auto-negotiation is not completed, and reception is not enabled,
ETHER_ERR_LINK is returned. ETHER_ERR_MPDE is returned when a Magic Packet is being detected.

When multicast frame filtering on the specified channel is enabled by the R_ETHER_Control function, the
buffer is released immediately when a multicast frame is detected. Also, the value
ETHER_ERR_MC_FRAME is returned. Note that when hardware-based multicast frame filtering is enabled
on the RX64M, RX71M, RX72M, RX72N or RX66N, multicast frames are discarded by the hardware and
detection is not possible. For details, see section 6.1 EPTPC Light FIT Module.

Frames that generate a receive FIFO overflow, residual-bit frame receive error, long frame receive error,
short frame receive error, PHY-LSI receive error, or receive frame CRC error are treated as receive frame
errors. When a receive frame error occurs, the descriptor data is discarded, the status is cleared, and
reading of data continues.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 43 of 83

Mar.20.25

Example
#include "platform.h"
#include "r_ether_rx_if.h"
#include "r_ether_rx_config.h"

ether_return ret;
uint8_t read_buffer[ETHER_BUFSIZE];

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Read(channel, (void *)read_buffer);
if(ETHER_NO_DATA < ret)
{
 /* Reading the receive data is completed */
}

Special Notes:
• As this function calls the R_ETHER_Read_ZC2() function and the R_ETHER_Read_ZC2_BufRelease()

function internally, data is copied between the buffer pointed by the EDMAC receive descriptor and the
receive buffer specified by the R_ETHER_Read() function. (The maximum write size is 1,514 bytes, so
set aside a space of 1,514 bytes for the specified receive buffer.)

• Make sure not to use the R_ETHER_Read_ZC2() function and R_ETHER_Read_ZC2_BufRelease()
function when using the R_ETHER_Read() function.

• This function uses the standard function memcpy, so string.h is included.
• If the value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 44 of 83

Mar.20.25

3.13 R_ETHER_Write()
The R_ETHER_Write() function transmits the data from the specified transmit buffer.

Format
ether_return_t R_ETHER_Write(
 uint32_t channel /* ETHERC channel number */
 void * pbuf /* Transmit buffer pointer */
 const uint32_t len /* The size (60 to 1,514 bytes) which is the */
 /* Ethernet frame length minus 4 bytes of CRC */

);

Parameters
channel

Specifies the ETHERC and EDMAC channel number (0 or 1). This value must be specified as 0 on
products with only one ETHERC and EDMAC channel.

* pbuf

Specifies the transmit data (the destination for the transmit data to be written).

len

Specifies the size (60 to 1,514 bytes) which is the Ethernet frame length minus 4 bytes of CRC.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_INVALID_DATA /* Value of the argument is out of range */
ETHER_ERR_INVALID_PTR /* Value of the pointer is NULL or FIT_NO_PTR */
ETHER_ERR_LINK /* Auto-negotiation is not completed, and reception is not enabled. */
ETHER_ERR_MPDE /* As a Magic Packet is being detected, transmission and reception */
 /* is not enabled. */
ETHER_ERR_TACT /* Transmit buffer is not empty. */

Properties
Prototyped in r_ether_rx_if.h.

Description
This function transmits data from the specified transmit buffer.

Set the buffer length to be not less than 60 bytes (64 bytes of the minimum Ethernet frame minus 4 bytes of
CRC) and not more than 1,514 bytes (1,518 bytes of the maximum Ethernet frame minus 4 bytes of CRC).

To transmit data less than 60 bytes, make sure to pad the data with zero to be 60 bytes.

Return values indicate that the data written in the transmit buffer is enabled to be transmitted.
ETHER_SUCCESS is returned when the data in the transmit buffer is enabled to transmit at the time of the
call. When auto-negotiation is not completed, and transmission is not enabled, ETHER_ERR_LINK is
returned. ETHER_ERR_MPDE is returned when a Magic Packet is being detected. The value
ETHER_ERR_TACT is returned if there is no free space in the transmit buffer.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 45 of 83

Mar.20.25

Example
The MAC address used in the sample code is assigned based on the vendor ID of Renesas Electronics
Corporation. Customers developing products must use a MAC address obtained by submitting an application
to the IEEE.

#include "platform.h"
#include "r_ether_rx_if.h"

ether_return ret;

/* Transmit data */
static uint8_t send_data[60] =
{
 0x74,0x90,0x50,0x00,0x79,0x02, /* Destination MAC address */
 0x74,0x90,0x50,0x00,0x79,0x01, /* Source MAC address */
 0x00,0x00, /* The type field is not used
 */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Data field */
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00
};

/* Ethernet channel number
 * ETHER_CHANNEL_0 = Ethernet channel number is 0
 * ETHER_CHANNEL_1 = Ethernet channel number is 1
 */
uint32_t channel;

channel = ETHER_CHANNEL_0;

ret = R_ETHER_Write(channel, (void *)send_data, sizeof(send_data));
if (ETHER_SUCCESS == ret)
{
 /* Transmission is completed */
}

Special Notes:
• To transmit data less than 60 bytes, make sure to pad the data with zero to be 60 bytes.
• As this function calls the R_ETHER_Write_ZC2_GetBuf() function and the

R_ETHER_Write_ZC2_SetBuf() function internally, data is copied between the buffer pointed by the
EDMAC transmit descriptor and the transmit buffer specified by the R_ETHER_Write() function.

• Make sure not to use the R_ETHER_Write_ZC2_GetBuf() function and R_ETHER_Write_ZC2_SetBuf()
function when using the R_ETHER_Write() function.

• This function uses the standard functions memset and memcpy, so string.h is included.
• If the value ETHER_ERR_LINK is returned when this function is called, initialize the Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 46 of 83

Mar.20.25

3.14 R_ETHER_Control()
The R_ETHER_Control() function performs the processing that corresponds to the control code.

Format
ether_return_t R_ETHER_Control(
 ether_cmd_t const cmd /* Control code */
 ether_param_t const contorl /* Parameters according to the control */
 /* code */
);

Parameters
cmd

Specifies the control code.

control

Specify the parameters according to the control code.

Return Values

ETHER_SUCCESS /* Processing completed successfully */
ETHER_ERR_INVALID_CHAN /* Nonexistent channel number */
ETHER_ERR_CHAN_OPEN /* Indicates the Ethernet cannot be opened because it is being used by another

application */
ETHER_ERR_INVALID_ARG /* Invalid argument */
ETHER_ERR_RECV_ENABLE /* ETHERC receive function enabled */

Properties
Prototyped in r_ether_rx_if.h.

Description
Performs the processing that corresponds to the control code. The value ETHER_ERR_INVALID_ARG is
returned if the control code is not supported.

The table below lists the corresponding control codes.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 47 of 83

Mar.20.25

Control Code Description
CONTROL_SET_CALLBACK Registers a function to be called by callback when a link

signal change interrupt occurs or a magic packet is detected.
Registers the function specified with the second argument.

CONTROL_SET_PROMISCUOUS_MODE Set the promiscuous mode bit (PRM) in the ETHERC mode
register (ECMR).
The second argument specifies the ETHERC channel
number of the side on which PRM is to be set and the
address of the variable storing the PRM value.

CONTROL_SET_INT_HANDLER Registers the function that is called when an EINT0 or EINT1
status interrupt occurs.
Registers the function specified with the second argument.

CONTROL_POWER_ON Cancels module stop for the ETHERC and EDMAC.
The second argument specifies the ETHERC channel for the
cancel module stop.

CONTROL_POWER_OFF Transitions the ETHERC and EDMAC to the module stop
state.
The second argument specifies the ETHERC channel for the
transition to module stop.

CONTROL_MULTICASTFRAME_FILTER Enables functionality that reads descriptor information,
detects multicast frames, and discards those frames
(multicast frame filtering).
Specify the setting value for multicast frame filtering
functionality with the second argument.

CONTROL_BROADCASTFRAME_FILTER Specifies the number of broadcast frames that can be
received continuously by the ETHERC. When more than the
specified number of broadcast frames are received by the
ETHERC, the additional broadcast frames are discarded.
Specify the ETHERC channel number and the number of
broadcast frames that can be received continuously by the
ETHERC with the second argument. This function is
disabled when the number of broadcast frames is specified
as 0.

CONTROL_RECEIVE_DATA_PADDING Specifies the parameters of receive data padding insert
register (PRADIR).
The second argument specifies the ETHERC channel,
padding insert position and padding insert size.

CONTROL_SET_PMGI_CALLBACK If non-blocking call is enabled, register a function to be called
back after API function processing is completed.
Registers the function specified with the second argument.

Example
To register a callback function.)

void callback(void*);

ether_return_t ret;
ether_param_t param;
ether_cb_t cb_func;

cb_func.pcb_func = &callback;
param.ether_callback = cb_func;

ret = R_ETHER_Contorl(CONTROL_SET_CALBACK, param);

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 48 of 83

Mar.20.25

To set up promiscuous mode)

ether_return ret;
ether_param_t param;
ether_promiscuous_t promiscuous;

promiscuous.channel = ETHER_CHANNEL_0;
promiscuous.bit = ETHER_PROMISCUOUS_ON;
param.p_ether_promiscuous = &promiscuous;

ret = R_ETHER_Control(CONTROL_SET_PROMISCUOUS_MODE, param);

Registering an interrupt handler function)

void int_handler(void*);

ether_return_t ret;
ether_param_t param;
ether_cb_t cb_func;

cb_func. pcb_int_hnd = &int_handler;
param.ether_callback = cb_func;

ret = R_ETHER_Contorl(CONTROL_SET_INT_HANDLER, param);

Interrupt handler function)
static uint32_t status_ecsr[2];
static uint32_t status_eesr[2];

void int_handler(void * p_param)
{
 ether_cb_arg_t *p_arg;

 p_arg = (ether_cb_arg_t *)p_param;

 if (ETHER_CANNEL_MAX > p_arg->channel)
 {
 status_ecsr[p_arg->channel] = p_arg->status_ecsr;
 status_eesr[p_arg->channel] = p_arg->status_eesr;
 }
}

Canceling ETHERC/EDMAC module stop)

ether_return_t ret;
ether_param_t param;

param.channel = channel;
ret = R_ETHER_Control(CONTROL_POWER_ON, param);

Transitioning ETHERC/EDMAC to module stop)

ether_return_t ret;
ether_param_t param;

param.channel = channel;
ret = R_ETHER_Control(CONTROL_POWER_OFF, param);

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 49 of 83

Mar.20.25

To enable or disable multicast frame filtering)

ether_return_t ret;
ether_param_t param;
ether_multicast_t multicast;

multicast.channel = channel;
multicast.flag = ETHER_MC_FILTER_ON;
param.p_ether_multicast = &multicast;

ret = R_ETHER_Contorl(CONTROL_MULTICASTFRAME_FILTER, param);

To set the continuous receive count for broadcast frame filtering)

ether_return_t ret;
ether_param_t param;
ether_broadcast_t broadcast;

broadcast.channel = channel;
broadcast.counter = 10;
param.p_ether_broadcast = &broadcast;

ret = R_ETHER_Contorl(CONTROL_BROADCASTFRAME_FILTER, param);

To set the receive data insert padding)
ether_return_t ret;
ether_param_t param;
ether_recv_padding_t pad_param;

pad_param.channel = channel;
pad_param.position = 0x3f;
pad_param.size = 0x3;
param.padding_param = &pad_param;

ret = R_ETHER_Contorl(CONTROL_RECEIVE_DATA_PADDING, param);

Registering an PMGI callback function)

void int_handler(void*);

ether_return_t ret;
ether_param_t param;
ether_cb_t cb_func;

cb_func. pcb_pmgi_hnd = &int_handler;
param.ether_callback = cb_func;

ret = R_ETHER_Contorl(CONTROL_SET_PMGI_CALLBACK, param);

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 50 of 83

Mar.20.25

PMGI callback function)

static pmgi_event_t pmgi_event;
static pmgi_mode_t pmgi_mode;
static uint16_t phy_reg_data;

void int_handler(void * p_param)
{
 pmgi_cb_arg_t *p_arg;

 p_arg = (pmgi_cb_arg_t *)p_param;

 if (ETHER_CANNEL_MAX > p_arg->channel)
 {
 pmgi_event = p_arg->event;
 pmgi_mode = p_arg->mode;
 pmgi_reg_data = p_arg->reg_data;
 }
}

Special Notes:
Register callback functions and interrupt handlers before calling the R_ETHER_Open_ZC2() function. It may
not be possible to detect the first interrupt if the preceding are registered after the R_ETHER_Open_ZC2()
function is called.

Specify promiscuous mode after setting the control code to CONTROL_POWER_ON and calling this
function. The intended value will not be stored in the ETHERC mode register if the promiscuous mode
setting is specified without first setting the control code to CONTROL_POWER_ON and calling this function.

Multicast frame filtering and broadcast frame filtering settings cannot be made while the receive functionality
of the ETHERC is enabled. Make these settings before calling the R_ETHER_LinkProcess function. After the
R_ETHER_LinkProcess function is called, the receive functionality is enabled when the Ethernet FIT module
enters link up status, so calling this function with CONTROL_MULTICASTFRAME_FILTER or
CONTROL_BROADCASTFRAME_FILTER set as the control code causes ETHER_ERR_RECV_ENABLE
to be returned, and the settings have no effect.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 51 of 83

Mar.20.25

3.15 R_ETHER_WritePHY()
The R_ETHER_WritePHY function uses the PHY management interface to write to registers in the PHY-LSI.
Format
ether_return_t R_ETHER_WritePHY(
 uint32_t channel, /* ETHERC channel number */
 uint16_t address, /* Register address of PHY-LSI to access */
 uint16_t data /* Data to be written to PHY-LSI registers */
);

Parameters

channel
Specify the ETHERC / EDMAC channel number (0, 1). Be sure to specify channel number 0 for products
with only 1 channel of ETHERC / EDMAC.

address
Specify the address of the PHY-LSI register to be accessed. For details, check the data sheet of the
PHY-LSI to be used.

data
Specify the data to be written to the PHY-LSI register. For details, check the data sheet of the PHY-LSI to
be used.

Return Values
ETHER_SUCCESS / * When access is completed normally or when the operation start normally

when*/ /* non-blocking mode is enabled * /
ETHER_ERR_OTHER / * When non-blocking mode is enabled and no interrupt handler function is*/

/* registered * /
ETHER_ERR_INVALID_CHAN / * For a nonexistent channel * /
ETHER_ERR_LOCKED / * When non-blocking mode is enabled and PHY is being accessed * /
Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_WritePHY function uses the PHY management interface to write access to registers in the
PHY-LSI. If non-blocking mode is disabled, ETHER_SUCCESS is returned when write access is successfully
completed.

When non-blocking mode is enabled, the callback function is executed after the write access is completed.

Example
#include "platform.h"
#include "r_ether_rx_if.h"
ether_return_t ret;
uint32_t channel;
uint16_t address;
uint16_t data;

channel = ETHER_CHANNEL_0;
address = PHY_REG_CONTROL;
data = PHY_CONTROL_RESET;
ret = R_ETHER_WritePHY(channel, address, data);

Special Notes:
None.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 52 of 83

Mar.20.25

3.16 R_ETHER_ReadPHY()
The R_ETHER_ReadPHY function uses the PHY management interface to access to the registers in the
PHY-LSI.

Format
ether_return_t R_ETHER_ReadPHY(
 uint32_t channel, /* ETHERC channel number */
 uint16_t address, /* Register address of PHY-LSI to access */
 uint16_t *p_data /* Pointer to the variable that stores the value */
 /* of the read register*/
);

Parameters

channel
Specify the ETHERC / EDMAC channel number (0, 1). Be sure to specify channel number 0 for products
with only 1 channel of ETHERC / EDMAC.

address
Specify the address of the PHY-LSI register to be accessed. For details, check the data sheet of the
PHY-LSI to be used.

*p_data
Specify the pointer of the variable to store the register value read from PHY-LSI. For details, check the
data sheet of the PHY-LSI to be used.

Return Values

ETHER_SUCCESS / * When access is completed normally or when the operation starts */
 /* normally when non-blocking mode is enabled * /

ETHER_ERR_OTHER / * When non-blocking mode is enabled and no interrupt handler function */
/* is registered * /

ETHER_ERR_INVALID_CHAN / * For a nonexistent channel * /
ETHER_ERR_LOCKED / * When non-blocking mode is enabled and PHY is being accessed * /
Properties
Prototyped in r_ether_rx_if.h.

Description
The R_ETHER_ReadPHY function uses the PHY management interface to read access to the registers in
the PHY-LSI. When non-blocking mode is disabled, the register value read from the PHY-LSI is stored in the
argument p_data. Also, ETHER_SUCCESS is returned when the read access is successfully completed.

When non-blocking mode is enabled, the read value is transferred as an argument of the callback function.

Example
#include "platform.h"
#include "r_ether_rx_if.h"
ether_return_t ret;
uint32_t channel;
uint16_t address;
uint16_t data;
channel = ETHER_CHANNEL_0;
address = PHY_REG_CONTROL;
ret = R_ETHER_ReadPHY(channel, address, &data);

Special Notes:
None.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 53 of 83

Mar.20.25

3.17 R_ETHER_GetVersion()
This function returns the API version.

Format
uint32_t R_ETHER_GetVersion(void);

Parameters
None

Return Values
Version number

Properties
Prototyped in r_ether_rx_if.h.

Description
Returns the API version number.

Example
#include "platform.h"
#include "r_ether_rx_if.h"

uint32_t version;

version = R_ETHER_GetVersion();

Special Notes:
None.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 54 of 83

Mar.20.25

4. Pin Setting
To use the Ethernet FIT module, input/output signals of the peripheral function have to be allocated to pins
with the multi-function pin controller (MPC). This pin allocation is referred to as “pin setting” in this document.
Please perform the pin setting before calling the R_ETHER_Open_ZC2 function.

When performing the pin setting in the e2 studio, the pin setting feature of the FIT configurator or the Smart
Configurator can be used. When using the pin setting feature, a source file is generated according to the
option selected in the Pin Setting window in the FIT configurator or the Smart Configurator. Pins are
configured by calling the function defined in the source file. Refer to Table 4.1 for details.

Table 4.1 Function Output by the FIT Configurator

MCU Used Option Selected Function to be Output Remarks
RX64M,
RX71M,
RX65N,
RX72M,
RX72N,
RX66N

Channel 0
MII mode

R_ETHER_PinSet_ETHERC0_MII() When Channel 0 is used in
MII mode.

Channel 0
RMII mode

R_ETHER_PinSet_ETHERC0_RMII() When Channel 0 is used in
RMII mode.

Channel 1
MII mode

R_ETHER_PinSet_ETHERC1_MII() When Channel 1 is used in
MII mode.

Channel 1
RMII mode

R_ETHER_PinSet_ETHERC1_RMII() When Channel 1 is used in
RMII mode.

4.1 Pin setting example for using RSK+RX64M/RSK+RX71M/RSK+RX72M
Table 4.3 and Table 4.4 shows pin setting example using RSK+RX64M or RSK+RX71M, Table 4.5 and
shows pin setting example using RSK+RX72M. Note that channel number in need of pin setting are
determined by use channel and configuration option specified in Table 4.2. Don’t set the parameters
other than Table 4.2. Table 4.3, Table 4.4, Table 4.5 and Table 4.6 show the details of each channel’s
Pins.

Table 4.2 Channel number in need of pin setting by use channel and configuration option

Use Channel Setting of Configuration Option Channel Number in Need of Pin Setting
Channel 0 ETHER_CFG_CH0_PHY_ACCESS (0)

ETHER_CFG_CH1_PHY_ACCESS (0)
Channel 0

ETHER_CFG_CH0_PHY_ACCESS (1)
ETHER_CFG_CH1_PHY_ACCESS (1)

Channel 0
Channel 1

Channel 1 ETHER_CFG_CH0_PHY_ACCESS (0)
ETHER_CFG_CH1_PHY_ACCESS (0)

Channel 0
Channel 1

ETHER_CFG_CH0_PHY_ACCESS (1)
ETHER_CFG_CH1_PHY_ACCESS (1)

Channel 1

Channel 0
Channel 1

ETHER_CFG_CH0_PHY_ACCESS (0)
ETHER_CFG_CH1_PHY_ACCESS (0)

Channel 0
Channel 1

ETHER_CFG_CH0_PHY_ACCESS (1)
ETHER_CFG_CH1_PHY_ACCESS (1)

Channel 0
Channel 1

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 55 of 83

Mar.20.25

Table 4.3 Pin setting example for channel 0 of RSK+RX64M and RSK+RX71M

Case of Using MII Mode Case of Using RMII Mode I/O Port
ET0_TX_CLK PC4
ET0_RX_CLK REF50CK0 P76
ET0_TX_EN RMII0_TXD_EN P80
ET0_ETXD3 PC6
ET0_ETXD2 PC5
ET0_ETXD1 RMII0_TXD1 P82
ET0_ETXD0 RMII0_TXD0 P81
ET0_TX_ER PC3
ET0_RX_DV PC2
ET0_ERXD3 PC0
ET0_ERXD2 PC1
ET0_ERXD1 RMII0_RXD1 P74
ET0_ERXD0 RMII0_RXD0 P75
ET0_RX_ER RMII0_RX_ER P77
ET0_CRS RMII0_CRS_DV P83
ET0_COL PC7
ET0_MDC P72
ET0_MDIO P71
ET0_LINKSTA P34 *1
ET0_EXOUT - *2
ET0_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.
Table 4.4 Pin setting example for channel 1 of RSK+RX64M and RSK+RX71M

Case of Using MII Mode Case of Using RMII Mode I/O Port
ET1_TX_CLK PG2
ET1_RX_CLK REF50CK1 PG0
ET1_TX_EN RMII1_TXD_EN P60
ET1_ETXD3 PG6
ET1_ETXD2 PG5
ET1_ETXD1 RMII1_TXD1 PG4
ET1_ETXD0 RMII1_TXD0 PG3
ET1_TX_ER PG7
ET1_RX_DV P90
ET1_ERXD3 P97
ET1_ERXD2 P96
ET1_ERXD1 RMII1_RXD1 P95
ET1_ERXD0 RMII1_RXD0 P94
ET1_RX_ER RMII1_RX_ER PG1
ET1_CRS RMII1_CRS_DV P92
ET1_COL P91
ET1_MDC P31
ET1_MDIO P30
ET1_LINKSTA P93 *1
ET1_EXOUT - *2
ET1_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 56 of 83

Mar.20.25

Table 4.5 Pin setting example for channel 0 of RSK+RX72M

Case of Using MII Mode Case of Using RMII Mode I/O Port
CLKOUT25M PH7
ET0_TX_CLK PM6
ET0_RX_CLK REF50CK0 PL3
ET0_TX_EN RMII0_TXD_EN PL6
ET0_ETXD3 PM5
ET0_ETXD2 PM4
ET0_ETXD1 RMII0_TXD1 PL5
ET0_ETXD0 RMII0_TXD0 PL4
ET0_TX_ER - *2
ET0_RX_DV PK2
ET0_ERXD3 PK5
ET0_ERXD2 PK4
ET0_ERXD1 RMII0_RXD1 P74
ET0_ERXD0 RMII0_RXD0 P75
ET0_RX_ER RMII0_RX_ER PL2
ET0_CRS RMII0_CRS_DV PM7
ET0_COL PK1
PMGI0_MDC *3 PK0
PMGI0_MDIO *3 PL7
ET0_MDC *4 PK0
ET0_MDIO *4 PL7
ET0_LINKSTA P34 *1
ET0_EXOUT - *2
ET0_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.
Notes: 3. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 0.
Notes: 4. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 1.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 57 of 83

Mar.20.25

Table 4.6 Pin setting example for channel 1 of RSK+RX72M

Case of Using MII Mode Case of Using RMII Mode I/O Port
CLKOUT25M PH7
ET1_TX_CLK PN2
ET1_RX_CLK REF50CK1 PQ4
ET1_TX_EN RMII1_TXD_EN PQ7
ET1_ETXD3 PN1
ET1_ETXD2 PN0
ET1_ETXD1 RMII1_TXD1 PQ6
ET1_ETXD0 RMII1_TXD0 PQ5
ET1_TX_ER - *2
ET1_RX_DV PQ2
ET1_ERXD3 PM3
ET1_ERXD2 PM2
ET1_ERXD1 RMII1_RXD1 PM1
ET1_ERXD0 RMII1_RXD0 PM0
ET1_RX_ER RMII1_RX_ER PN3
ET1_CRS RMII1_CRS_DV PQ0
ET1_COL PQ1
PMGI0_MDC *3 PK0
PMGI0_MDIO *3 PL7
ET0_MDC *4 PK0
ET0_MDIO *4 PL7
ET1_LINKSTA P84 *1
ET1_EXOUT - *2
ET1_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.
Notes: 3. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 0.
Notes: 4. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 1.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 58 of 83

Mar.20.25

4.2 Pin setting example for using RSK+RX65N/RSK+RX65N-2M
Table 4.7 shows pin setting example for using RSK+RX65N or RSK+RX65N-2M.

Table 4.7 Pin setting example for using RSK+RX65N or RSK+RX65N-2M

Case of Using MII Mode Case of Using RMII Mode I/O Port
ET0_TX_CLK PC4
ET0_RX_CLK REF50CK0 P76
ET0_TX_EN RMII0_TXD_EN P80
ET0_ETXD3 PC6
ET0_ETXD2 PC5
ET0_ETXD1 RMII0_TXD1 P82
ET0_ETXD0 RMII0_TXD0 P81
ET0_TX_ER PC3
ET0_RX_DV PC2
ET0_ERXD3 PC0
ET0_ERXD2 PC1
ET0_ERXD1 RMII0_RXD1 P74
ET0_ERXD0 RMII0_RXD0 P75
ET0_RX_ER RMII0_RX_ER P77
ET0_CRS RMII0_CRS_DV P83
ET0_COL PC7
ET0_MDC P72
ET0_MDIO P71
ET0_LINKSTA *1 P54 (RSK+RX65N) *1

P34 (RSK+RX65N-2M) *1
ET0_EXOUT - *2
ET0_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 59 of 83

Mar.20.25

4.3 Pin setting example for using RSK+RX72N
Table 4.8 shows pin setting example for using RSK+RX72N.

Table 4.8 Pin setting example for using RSK+RX72N

Case of Using MII Mode Case of Using RMII Mode I/O Port
CLKOUT25M PH7
ET1_TX_CLK PN2
ET1_RX_CLK REF50CK1 PQ4
ET1_TX_EN RMII1_TXD_EN PQ7
ET1_ETXD3 PN1
ET1_ETXD2 PN0
ET1_ETXD1 RMII1_TXD1 PQ6
ET1_ETXD0 RMII1_TXD0 PQ5
ET1_TX_ER - *2
ET1_RX_DV P90
ET1_ERXD3 P97
ET1_ERXD2 P96
ET1_ERXD1 RMII1_RXD1 P95
ET1_ERXD0 RMII1_RXD0 P94
ET1_RX_ER RMII1_RX_ER PN3
ET1_CRS RMII1_CRS_DV PQ0
ET1_COL P91
PMGI1_MDC *3 P31
PMGI1_MDIO *3 P30
ET1_MDC *4 P31
ET1_MDIO *4 P30
ET1_LINKSTA *1 P93*1
ET1_EXOUT - *2
ET1_WOL - *2

Notes: 1. Setting is not required if the setting of #define ETHER_CFG_USE_LINKSTA is 0.
Notes: 2. Setting is not required because these pin are not used in Ethernet FIT module.
Notes: 3. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 0.
Notes: 4. Setting is not required if the setting of #define ETHER_CFG_NON_BLOCKING is 1.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 60 of 83

Mar.20.25

5. How to use
5.1 Section Allocation
Table 5.1 shows a sample section allocation for the Ethernet FIT module.

Table 5.1 Program Section Allocation

Address Device Section Description
0x00000020 Internal

RAM
SI Interrupt stack area
SU User stack area
B_1 Uninitialized data area of 1byte boundary
R_1 Initialized data area of 1byte boundary

(variable)
B_2 Uninitialized data area of 2byte boundary
R_2 Initialized data area of 2byte boundary

(variable)
B Uninitialized data area of 4byte boundary
R Initialized data area of 4byte boundary

(variable)
0x00010000 B_ETHERNET_BUFFERS* Transmit buffer and receive buffer area

B_RX_DESC* Receive descriptor area
B_TX_DESC* Transmit descriptor area

0xFFFF8000 Internal
ROM

C_1 Constant area of 1byte boundary
C_2 Constant area of 2byte boundary
C Constant area of 4byte boundary
C$* Constant region (C$DEC, C$BSEC, C$VECT)

of C$* section
D* Initialization data area
P* Program area
W* Branch table area for switch statements
L String literal area

0xFFFFFF80 EXCEPTVECT Interrupt vector area
0xFFFFFFFC RESETVECT Reset vector area

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 61 of 83

Mar.20.25

5.1.1 GCC for Renesas RX section setting example
Edit the linker_script.ld file and add sections and symbols.

Add Sections and Symbols
Add the following code.
 B_ETHERNET_BUFFERS_1 0x00010000 (NOLOAD) : AT(0x00010000)
 {
 _B_ETHERNET_BUFFERS_1_start = .;
 *(B_ETHERNET_BUFFERS_1)
 _B_ETHERNET_BUFFERS_1_end = .;
 } >RAM
 B_RX_DESC_1 (NOLOAD) :
 {
 _B_RX_DESC_1_start = .;
 *(B_RX_DESC_1)
 _B_RX_DESC_1_end = .;
 } >RAM
 B_TX_DESC_1 (NOLOAD) :
 {
 _B_TX_DESC_1_start = .;
 *(B_TX_DESC_1)
 _B_TX_DESC_1_end = .;
 } >RAM

(1) Open "linker_script.ld" from Project Explorer.

(1)Open linker_script.ld

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 62 of 83

Mar.20.25

(2) Click linker_script.ld.

(3) Enter code.

(2)Click linker_script.ld

(3)Enter code

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 63 of 83

Mar.20.25

5.1.2 IAR C/C++ Compiler for Renesas RX section setting example
Edit the icf file and add section settings.

The icf file to be edited depends on the target device of the project, so please confirm and edit the upper 8
digits of the model name of the device to be used.

As an example, edit "lnkr5f565ne.icf" with RX65N (R5F565NEDDFC).

The following is an example of editing on the RX65N (R5F565NEDDFC).

Add section settings.

(1) Create "config" folder in project folder.

(2) Copy "lnkr5f565ne.icf" from "\rx\config" where IAR C/C++ Compiler for Renesas RX ("EWRX") is installed
to the "config" folder in the project folder.

The installation default is "C: \Program Files (x86)\IAR Systems\Embedded Workbench 8.1".

(3) Open the copied "lnkr5f565ne.icf" file and add the following code.
place at address mem:0x00010000 { rw section B_ETHERNET_BUFFERS*, rw
section B_RX_DESC*, rw section B_TX_DESC* };

(2)Copy "lnkr5f565ne.icf"

(1)Create "config" folder

(3)Add the following code

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 64 of 83

Mar.20.25

(4) Open the project from EWRX, right-click the project in the workspace and open options.

(5) Select "Category: Linker" and click "Config".

(6) Check "Override default".

(7) Set the file edited in step (3) as a reference destination.

(8) Click "OK".

(5)Select "Linker"

(5)Click "Config"

(4)Right-click the project

(6)Check "Override default"

(7)Set destination

(8)Click "OK"

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 65 of 83

Mar.20.25

5.1.3 Notes on Section Allocation
• Since the EDMAC mode register (EDMR) transmit/receive descriptor length bits (DL) are set to specify 16

bytes, sections must be allocated on 16-byte boundaries.
• Transmit buffer and receive buffer areas must be allocated on 32-byte boundaries.
• If Ethernet FIT module is installed in the user project by FIT configurator of e2 studio, section allocation is

will be set automatically. Please change the setting according the user program.
• When using the Ethernet FIT module with RX64M, RX71M, RX72M, RX72N and RX66N, do not use

addresses 0000 0000h to 0000 001Fh.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 66 of 83

Mar.20.25

5.2 Ethernet FIT Module Initial Settings
Figure 5.1 is a flowchart of the routine for making initial settings to the Ethernet FIT module.

Figure 5.1 Flowchart of Ethernet FIT Module Initial Settings

5.2.1 Notes on Ethernet FIT Module Initial Settings
Calling the R_ETHER_Initial function clears the memory contents for all channels.

main

Memory initialization
R_ETHER_Initial()

PHY mode settings, module stop cancellation
R_ETHER_Control(CONTROL_POWER_ON)

Callback function registration
R_ETHER_Control(CONTROL_SET_CALLBACK)

ETHERC and EDMAC initialization
R_ETHER_Open_ZC2()

Link up
R_ETHER_LinkProcess()

Switching the link status of the Ethernet FIT module
depending on read PHY-LSI link status.

Interrupt handler function registration
R_ETHER_Control(CONTROL_SET_INT_HANDLER)

Registers the callback function called when a Magic Packet
detection interrupt or link signal change detection interrupt
occurs.

Registers the callback function called by
R_ETHER_LinkProcess() after a Magic Packet detection
interrupt or link signal change detection interrupt occurs.

User defined processing

Clears the transmit and receive descriptors and the contents
of the transmit and receive buffers.

Set PHY mode of ETHERC, and cancels the ETHERC and
EDMAC module stop state.

Performs a software reset of the ETHERC, EDMAC, and
PHY-LSI. Also sets the ETHERC MAC address and enables
the link signal change detection interrupt.

Link signal change detection interrupt

Set the pins used by the ETHERC.
Please use the user program or pin setting function in FIT
Configurator for pin setting process.

Pin setting
R_ETHER_PinSet_ETHERCn_xxx()

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 67 of 83

Mar.20.25

5.3 Magic Packet Detection Operation
Figure 5.2 is a flowchart showing the processing whereby the ETHERC and EDMAC are initialized when a
Magic Packet is detected, following the transition to Magic Packet detection operation mode.

User definition processing

Return operation
R_ETHER_LinkProcess()

Transition to Magic Packet
detection operation

R_ETHER_WakeOnLAN()

Execute WAIT instruction Transitions to sleep mode.

Initializes the ETHERC and EDMAC after a Magic
Packet is detected.

Magic Packet detection interrupt
(When the value of #define
ETHER_CFG_USE_LINKSTA is 1, link signal change
detection is also included as a return source.)

Figure 5.2 Flowchart of Magic Packet Detection Operation

5.3.1 Notes on Magic Packet Detection Operation
• Do not transition the ETHERC or EDMAC to the module stop state after switching to Magic Packet

detection operation. Doing so will make it impossible to the CPU to recover from sleep mode following a
WAIT instruction, because the ETHERC will be unable to detect Magic Packets.

• When a Magic Packet is detected, there will be data from the previously received broadcast frame, etc., in
the receive FIFO, and the ETHERC will receive notifications of receive status, etc. Therefore, call the
R_ETHER_LinkProcess function to initialize the ETHERC and EDMAC.

• When the value of #define ETHER_CFG_USE_LINKSTA is set to 1, the interrupt handler function is
called when a change in the link signal is detected. Therefore, if the CPU was in sleep mode when the
link signal change was detected, it will return to normal operation regardless of whether or not a Magic
Packet is detected.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 68 of 83

Mar.20.25

5.4 Notes on Accessing MII/RMII Registers
When ETHER_CFG_NON_BLOCKING is set to 0, the MII/RMII register in PHY-LSI is accessed using PIR
register. Serial data according to the MII/RMII management frame format is transmitted and received by
controlling the ETn_MDC and ETn_MDIO pins with software.
Figure 5.3 shows the MII/RMII register access timing when accessing the MII/RMII registers in the PHY-LSI
under the conditions shown in Table 5.2.

Table 5.2 Conditions for Accessing MII/RMII Registers in PHY-LSI
Item Value
Microcomputer used R5F565N9ADFB
C compiler CC-RX V3.02
ICLK frequency 120MHz
PCLKA frequency 120MHz
Ether FIT Version 1.21
ETHER_CFG_PHY_MII_WAIT setting value 4
PHY implemented in RSK DP83620

T4 T1

MDIO(PHY output)

MDIO(PHY input)

T2 T3

Vaild Data

MDC

MDC

Figure 5.3 MII/RMII Register Access Timing

Table 5.3 shows the AC specifications of the input/output timing of MDC/MDIO in the PHY mounted on RSK
and the measured values (reference) when the MII/RMII register is accessed under the conditions of Table
5.2.

Table 5.3 AC specifications and measurement values(reference) of MDC/MDIO input/output timing
in PHY implemented in RSK

Item Parameter Min Max Measured Value (ref.) Unit
MDC to MDIO (Output) Delay Time T1 0 20 8 ns
MDIO (Input) to MDC Setup Time T2 10 - 500 ns
MDIO (Input) to MDC Hold Time T3 10 - 2300 ns
MDC Frenquency T4 40 - 2840 ns

When ETHER_CFG_NON_BLOCKING is set to the value 1, PMGI is used to access the MII/RMII register in
the PHY-LSI. Serial data according to the MII/RMII management frame format is sent and received from the
PMGIn_MDC and PMGIn_MDIO pins. Figure 5.4 shows the MII/RMII register access timing when accessing
the MII/RMII register in the PHY-LSI under the conditions shown in Table 5.4.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 69 of 83

Mar.20.25

Table 5.4 Conditions for Accessing MII/RMII Registers in PHY-LSI
Item Value
Microcomputer used R5F572NNDDBD
C compiler CC-RX V3.02
ICLK frequency 240MHz
PCLKA frequency 120MHz
ETHER_CFG_PMGI_CLOCK 2500000
ETHER_CFG_PMGI_HOLD_TIME 7
ETHER_CFG_PMGI_CAPTURE_TIME 0
Ether FIT Version 1.21
PHY implemented in RSK KSZ8041NL

T4 T1

MDIO(PHY output)

MDIO(PHY input)

T2 T3

Vaild Data

MDC

MDC

Figure 5.4 MII/RMII Register Access Timing

Table 5.5 shows the AC specifications of the input/output timing of MDC/MDIO in the PHY mounted on RSK
and the measured values (reference) when the MII/RMII register is accessed under the conditions of Table
5.4.

Table 5.5 AC specifications and measurement values(reference) of MDC/MDIO input/output timing
in PHY implemented in RSK

Item Parameter Min Max Measured Value (ref.) Unit
MDC to MDIO (Output) Delay Time T1 - - 64 ns
MDIO (Input) to MDC Setup Time T2 10 - 332 ns
MDIO (Input) to MDC Hold Time T3 4 - 60 ns
MDC Frenquency T4 - - 399 ns

If you cannot meet the AC specifications of the PHY to be used under the set conditions, change the
configuration option settings shown in Section 2.7 so that the MII/RMII register access timing can meet the
AC specifications of the PHY.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 70 of 83

Mar.20.25

5.5 How to Use API Function Called in Non-Blocking
Setting ETHER_CFG_NON_BLOCKING to a value of 1 makes R_ETHER_Open_ZC2,
R_ETHER_CheckLink_ZC, R_ETHER_LinkProcess, R_ETHER_WakeOnLAN, R_ETHER_WritePHY, and
R_ETHER_ReadPHY function calls non-blocking-call. The callback function is called when the processing of
the API function called by the non-blocking-call is completed. Figures 5.5 to 5.6 show flowcharts of usage
examples of API functions called by non-blocking-call.

Memory initialization
Callback function registration

Interrupt handler function registration
Pin setting

Run R_ETHER_LinkProcess in non-blocking mode.
When the linkup is completed, the callback function
sets link_up = true.

No

No

main

Callback function registration called from PMGI interrupt
R_ETHER_Contorl(CONTROL_SET_PMGI_CALLBACK)

ETHERC, EDAMC initialization
R_ETHER_Open_ZC2()

Link status check
R_ETHER_CheckLink_ZC()

Link up
R_ETHER_LinkProcess()

pgmi_busy == false?

Yes

No

link_stat == true?

Yes

link_up == true?

Next user-defined process

Yes

Initialize the global variables needed for non-
blocking.

Please refer to the description of Figure 5.1.

Calls the callback function when the non-blocking
API function processing is completed.

Run R_ETHER_Open_ZC2 in non-blocking mode.
Upon completion of initialization, the callback
function sets pgmi_busy = false.

Run R_ETHER_CheckLink_ZC in non-blocking
mode. When the check is complete, the callback
function sets link_stat = true.

Execute next user-defined processing including the API
function that called other non-blocking.

Global variable initialization
link_stat = false;
link_up = false;

pgmi_busy = true;
...

Figure 5.5 Usage Example of API Function Called by Non-Blocking-Call (1) - Main Routine

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 71 of 83

Mar.20.25

pgmi_busy = false

Local variable initialization
pmgi_cb_arg_t * pdecode =

(pmgi_cb_arg_t *) ppram

PMGI interrupt callback function

pdecode->mode ==
CHECKLINK_ZC?

pdecode->mode ==
LINKPROCESS?

pdecode->mode ==
OPEN_ZC2?

pdecode->event ==
PMGI_COMPLETE?

Yes

Yes
Yes

YesYes

Yes

No

end

No

No

No
No

link_stat = false link_stat = true

link_up = true

Update global variables prepared for other
non-blocking processing

No

pdecode->event ==
PMGI_COMPLETE

or PMGI_IDLE?

pdecode->event ==
PMGI_COMPLETE?

Figure 5.6 Usage Example of API Function Called by Non-Blocking-Call (2) - PMGI Interrupt Callback
Function

Note: For PMGI callback functions, refer to 2.11 Callback Function.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 72 of 83

Mar.20.25

6. Appendices
6.1 EPTPC Light FIT Module
Simple switching functionality and multicast frame filtering functionality can be implemented on the RX64M,
RX71M, RX72M and RX72N by combining the Ethernet FIT module with the EPTPC Light FIT module.

 Simple Switching
When using a two-channel ETHERC, frame transfers between channels take place in hardware.

Channel 0 to channel 1, channel 1 to channel 0, or bidirectional can be selected as the transfer direction.
Store and forward or cut through can be selected as the transfer method.

 Multicast Frame Filtering

Processing to receive or discard multicast frames received by the ETHERC is performed in hardware.

It is possible to receive all multicast frames, to receive no multicast frames, or to receive only multicast
frames with a designated destination address (up to two addresses can be registered).

For details, refer to the EPTPC Light FIT module application note “RX Family: EPTPC Light Module Using
Firmware Integration Technology Modules,” document No. R01AN3035

6.1.1 Usage Notes
When using the Ethernet FIT module and EPTPC Light FIT module together in combination, it is not possible
at the same time to use the EPTPC FIT module (full version),*1 which provides time synchronization based
on the IEEE 1588 specification.

When using simple switching or multicast frame filtering on the RX64M, RX71M, RX72M or RX72N select
one of the following.

• When not using the IEEE 1588 time synchronization functionality:
Select the EPTPC Light FIT module (module name: r_ptp_light_rx).

• When using the IEEE 1588 time synchronization functionality:
Select EPTPC FIT module (full version) (module name: r_ptp_rx).

Note 1. RX Family: EPTPC Module Using Firmware Integration Technology, document No. R01AN1943

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 73 of 83

Mar.20.25

6.2 Confirmed Operation Environment
This section describes confirmed operation environment for the Ethernet FIT module.

Table 6.1 confirmed operation environment (Rev1.13)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 6.00.000

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX64M (product number.R0K50564MSxxxBE)

Renesas Starter Kit+ for RX65N (product number.RTK500565NSxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product
number.RTK50565N2SxxxxxBE)

Table 6.2 confirmed operation environment (Rev1.15)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 6.2.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX64M (product number.R0K50564MSxxxBE)

Renesas Starter Kit+ for RX71M (product number.R0K50571MCxxxBE)
Renesas Starter Kit+ for RX65N (product number.RTK500565NSxxxxxBE)

Table 6.3 confirmed operation environment (Rev1.16)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX65N (product number.RTK500565Nxxxxxx)

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 74 of 83

Mar.20.25

Table 6.4 confirmed operation environment (Rev1.17)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX72M (product number.RTK5572Mxxxxxxxxxx)

Table 6.5 confirmed operation environment (Rev1.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX72N (product number.RTK5572Nxxxxxxxxxx)

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 75 of 83

Mar.20.25

Table 6.6 confirmed operation environment (Rev1.21)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.14.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202002
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX72N (product number.RTK5572Nxxxxxxxxxx)

Table 6.7 confirmed operation environment (Rev1.22)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX65N (product number.RTK500565Nxxxxxx)

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 76 of 83

Mar.20.25

Table 6.8 confirmed operation environment (Rev1.23)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00
Compiler option: Default setting when using the Smart Configurator.
GCC for Renesas RX 8.3.0.202104
Compiler option: Default setting when using the Smart Configurator.
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used Renesas Starter Kit+ for RX65N (product number.RTK500565Nxxxxxx)

Table 6.9 confirmed operation environment (Rev1.24)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01 IAR
Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: Default setting when using the Smart Configurator.
GCC for Renesas RX 8.3.0.202411
Compiler option: Default setting when using the Smart Configurator.
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian order Big-endian/Little-endian
Board used -

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 77 of 83

Mar.20.25

6.3 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_ether_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_ether_rx_config.h” may be wrong. Check the file “r_ether_rx_config.h”. If there
is a wrong setting, set the correct value for that. Refer to 2.7 Configuration Overview for details.

(4) Q: Data transmission and reception is not started.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4 Pin Setting for details.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 78 of 83

Mar.20.25

7. Provided Modules
The module provided can be downloaded from the Renesas Electronics website.

8. Ethernet FIT Module Usage Notes
Keep the following points in mind when using the Ethernet FIT module.

• If broken frames or noise on an external line cause detection of a frame error during reception by the
ETHERC and EPTPC on the RX64M, RX71M, RX72M, RX72N or RX66N, proper reception may no not
be possible even if subsequent received frames are normal. For details, refer to the technical updates
and application notes listed below.

• Notes on Using Ethernet Controller (Technical Notification No. TN-RX*-A125A/E)
• RX Family Retrieve Recommend Operation of INFABT Occurrence in The Ethernet Controller (Doc No.

R01AN2604)
• If the EDMR.SWR bit is set to 1 while data transfer is being performed by EDMAC0, EDMAC1, or

PTPEDMAC in RX64M / RX71M / RX72M/ RX72N/ RX66N, data at address 0000 0000h to 0000 001Fh
may be destroyed. Please refer to the following technical update for details.

• Notes on software reset of the DMA controller (EDMAC) for the RX64M group and RX71M group
Ethernet controller (Technical Update No. TN-RX * -A0212A / J)

9. Reference Documents
User’s Manual: Hardware

RX64M Group User’s Manual: Hardware (Doc No. R01UH0377)
RX71M Group User’s Manual: Hardware (Doc No. R01UH0493)
RX65N Group, RX651 Group User’s Manual: Hardware (Doc No. R01UH0590)
RX72M Group User’s Manual: Hardware (Doc No. R01UH0804)
RX72N Group User’s Manual: Hardware (Doc No. R01UH0824)
RX66N Group User’s Manual: Hardware (Doc No. R01UH0825)
(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

User’s Manual: Development Tools

RX Family C/C++ Compiler, Assembler, Optimizing Linkage Editor Compiler Package (R20UT0570)
(The latest version can be downloaded from the Renesas Electronics website.)

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 79 of 83

Mar.20.25

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 29, 2014  First edition issued
1.01 Jan 28, 2015 1 RX71M added to Target Devices
 5 Notes 1 to 3 of 2.6, Configuration Overview, amended

Table 2.2 added
 9 Steps 7 and 8 of 2.10.1, Adding the Ethernet FIT Module,

amended
 10 Special Notes of 3.1, R_ETHER_Initial(), amended
 23 Special Notes of 3.11, R_ETHER_CheckWrite(), amended
 30 Special Notes of 3.14, R_ETHER_Control(), amended
 32 Address 0x00120064 deleted from table 4.1, Program Section

Allocation
 53 RX71M Group User’s Manual: Hardware added to 6,

Reference Documents
Information regarding development environment user’s manual
amended

1.02 Mar 27, 2015  R_ETHER_LinkProcess() in r_ether_rx.c amended
1.10 Mar 15, 2016 1 RX63N added to Target Devices
 3 Limitations deleted under Overview
 5 #define ETHER_CFG_EINT_INT_PRIORITY added to 2.6,

Configuration Overview
 6, 7 Notes 4 to 8 on #define ETHER_CFG_USE_LINKSTA added

to 2.6, Configuration Overview
 7 2.7 Code Size added
 8 Description of ether_cmd_t in 2.8, Arguments, amended
 10 Description of ether_return_t in 2.9, Return Values, amended
 11 Description of (2) Callback Function Called by EINT0/EINT1

Status Interrupts in 2.10, Callback Function, amended. Note 1.
added

 Description of 2.11, Adding the FIT Module, amended
 12 2.12, Ethernet Frame Format, added
 13 to 43 Description of API functions in 3., API Functions, amended
 45 4.2, Ethernet FIT Module Initial Settings, added
 46 4.3, EPTPC Light FIT Module, added
 47 4.4, Magic Packet Detection Operation, added
  4.2, Sample Code, deleted
 48 6., Ethernet FIT Module Usage Notes, added
1.11 Oct 1, 2016  Pin setting in the Ethernet FIT module has been removed for

support pin setting function of e2 studio.
 1 RX65N added to Target Devices
 8, 9 Notes 5, 7 and 8 amended
 43 Description in 3.14, R_ETHER_Control(), amended
 48 Description of Figure 4.1 in 4.2, Ethernet FIT Module Initial

Settings, amended
 49 4.3, Ethernet FIT Module Pin Settings, added
 52 5, Appendices, added

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 80 of 83

Mar.20.25

1.12 Nov 11, 2016 Program The module is updated to fix the software issue.
Description:

When R_ETHER_LinkProcess function is called, there are
cases when link up/link down are not processed
successfully.

Conditions:
ETHER_CFG_USE_LINKSTA is set to a value of 0.

Corrective action:
Please use the Ethernet FIT module Rev1.12.

1.13 Oct 01, 2017  Supported RX65N-2MB version.
 54 Move 2.3 Operating Condition to 6.2 Operation Confirmation

Environment
 6 2.4 Usage of Interrupt Vector, fixed
 9 Notes 7 and 8 amended
 14 2.12 Adding the FIT Module, amended
 47 Move 4.3 Ethernet FIT Module Pin Setting to 4. Pin Setting
 49, 50 4.1.2 Pin Setting example for using RSK+RX63N and 4.1.3 Pin

Setting example for using RSK+RX65N/RSK+RX65N-2M
 51 5.1 Section Allocation, amended
 52 5.2 Ethernet FIT Module Initial Setting, amended
 55 6.3 Troubleshooting, added
1.14 Jan 08, 2018  Supported setting function of configuration option using GUI on

Smart Configurator
 6 2.7 Configuration Overview, fixed
 46 Table 4.1, fixed
 55 9. Reference Documents, amended
1.15 May 07, 2018 Program The module is updated to fix the software issue.

Description:
When R_ETHER_Read_ZC2 function or R_ETHER_Read
function is called, there is case when the Ethernet frame
cannot be received normally.

Conditions:
R_ETHER_Read_ZC2 function or R_ETHER_Read function
is called in the interrupt function.

Corrective action:
Please use the Ethernet FIT module Rev1.15.
The following function is changed by this correction.

R_ETHER_LinkProcess function

Corresponding Tool News number : R20TS0307

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 81 of 83

Mar.20.25

 Program The module is updated to fix the software issue.
Description:

When R_ETHER_LinkProcess function is called, there is
case when link up processing is not completed normally.

Conditions:
When R_ETHER_LinkProcess function is called, PHY auto-
negotiation is not completed.

Corrective action:
Please use the Ethernet FIT module Rev1.15.
The following function is changed by this correction.

R_ETHER_LinkProcess function

Corresponding Tool News number : R20TS0307

 Program The module is updated to fix the software issue.
Description:
When R_ETHER_Read_ZC2 function or R_ETHER_Read
function is called, there is case when execution of function is
not completed.
Conditions:
R_ETHER_LinkProcess function is called in the interrupt
function.
Corrective action:
Please use the Ethernet FIT module Rev1.15.
The following function is changed by this correction.

R_ETHER_Read_ZC2 function

Corresponding Tool News number : R20TS0307

 9 2.8 Code Size, amended
 54 6.2 Confirmed Operation Environment, amended
1.16 May 20, 2019 - Update the following compilers:

GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

 1 Added Target Compilers.
 1 Deleted R01AN1723, R01AN1826, R20AN0451 from Related

Documents.
 5 Added revision of dependent r_bsp module in 2.2 Software

Requirements.
 8 2.8 Code Size, amended.
 47 R_ETHER_GetVersion function, deleted special notes.
 53-56 5.1.1 and 5.1.2, added.
 61 Added Table 6.3 Operation Confirmation Environment (Ver.

1.16).
1.17 Jul 30,2019 - Supported RX72M version.
 5 1.3 Use Limit, added.
 6 Table 2.1 List of Usage of Interrupt Vectors, amended.
 9

Note 5, Note6, Note 7, Note 8, amended.

 Note 9, added.
 2.8 Code Size, amended.
 16 2.14 “for”, “while” and “do while” statements, added.
 17-46 Delete “Reentrant” item on the API description page.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 82 of 83

Mar.20.25

 47-50 Table 4.5 Pin setting example for channel 0 of RX72M and
Table 4.6 Pin setting example for channel 1 of RX72M, added.

 53 5.1 Section Allocation, amended.
 58 5.1.3 Notes on Section Allocation, amended.
 60 6.1 EPTPC Light FIT Module add RX72M.
 62 6.2 Confirmed Operation Environment, amended.
 65 8 Ethernet FIT Module Usage Notes, amended.
 9 Reference Documents, amended.
 Program Ethernet FIT module fixed due to software failure

Description:
If an Ethernet frame is received after buffer open processing in
the R_ETHER_Read_ZC2_BufRelease function or
R_ETHER_Read function, the following phenomenon may

 occur.
(1) There are cases where the received Ethernet frame can not
be read.
(2) The received error frame may be read as a normal Ethernet
frame.
Conditions:
An Ethernet frame is received after buffer open processing in
the R_ETHER_Read_ZC2_BufRelease function or
R_ETHER_Read function.
Corrective action:
Please use Ethernet FIT module Rev1.17.
The following functions have been changed by this correction.

R_ETHER_Read_ZC2_BufRelease Function

Correspondence tool news number: R20TS0447

1.20 Nov 22,2019 - Supported RX72N and RX66N version.
 5 Table 1.1 API Functions, amended.
 6 Table 2.1 List of Usage of Interrupt Vectors, amended.
 8 Configuration options in r_ether_rx_config.h, amended.
 10 Note 4, Note 5, Note6, Note 7, Note 8, amended.

Note 9, added.
 11 2.8 Code Size, amended.
 16-17 2.11 Callback Function, amended.
 23 3.2 R_ETHER_Open_ZC2(), amended.
 34 3.8 R_ETHER_CheckLink_ZC(), amended.
 36 3.9 R_ETHER_LinkProcess(), amended.
 38 3.10 R_ETHER_WakeOnLAN(), amended.
 46-49 3.14 R_ETHER_Control(), amened.
 51 3.15 R_ETHER_WritePHY(), added.
 52 3.16 R_ETHER_ReadPHY(), added.
 - 4.1.2 Pin setting example for using RSK+RX63N, deleted.
 59 4.1.3 Pin setting example for using RSK+RX72N, added.
 70 Table 6.5 confirmed operation environment (Rev1.20), added.
 72 8 Ethernet FIT Module Usage Notes, amended.
 9 Reference Documents, amended.

RX Family Ethernet Module Using Firmware Integration Technology

R01AN2009EJ0124 Rev.1.24 Page 83 of 83

Mar.20.25

 Program Ethernet FIT module fixed due to software failure
Description:
When one receive descriptor is set, Ethernet frames may not
be received after the buffer release processing in the
“R_ETHER_Read_ZC2_BufRelease” function or
“R_ETHER_Read” function.
Conditions:
Use the R_ETHER_Read_ZC2_BufRelease function or
R_ETHER_Read function to receive an Ethernet frame.
Corrective action:
Please use Ethernet FIT module Rev1.20.
The following functions are changed by this modification.

R_ETHER_Read_ZC2
R_ETHER_Read_ZC2_BufRelease function

Corresponding tool news number: R20TS0481

 Program Ethernet FIT module fixed due to software failure
Description:
When one transmission descriptor is set, the Ethernet frame
may not be transmitted after the transmission start processing
in the “R_ETHER_Write_ZC2_SetBuf” function or the
“R_ETHER_Write” function.
Conditions:
Use the R_ETHER_Read_ZC2_SetBuf function or
R_ETHER_Write function to transmit an Ethernet frame.
Corrective action:
Please use Ethernet FIT module Rev1.20.
The following functions are changed by this modification.

R_ETHER_Write_ZC2_GetBuf function

Corresponding tool news number: R20TS0481

1.21 Sep 10,2020 10 Note 10 amended
 18 2.12 Adding the FIT Module to Your Project, amended.
 56-57 Table 4.5 and 4.6, amended.
 59 Table 4.8, amended.
 68 5.4 Notes on Accessing MII/RMII Registers, added.
 70 5.5 How to Use API Function Called in Non-Blocking, added.
 75 Table 6.6 confirmed operation environment (Rev1.21), added.
1.22 Nov 21,2021 9, 10 2.7 Compile Time Settings, amended.
1.23 Mar 01,2022 62-66 5.1 Section Allocation, amended.
1.24 Mar 20,2025 76 Table 6.6 confirmed operation environment (Rev1.24), added.
 Program Changed the disclaimer in program sources

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

 © 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Ethernet FIT Module
	1.2 Outline of the API
	1.3 Use Limit

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Usage of Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Arguments
	2.10 Return Values
	2.11 Callback Function
	(1) Callback Function Called by API Function R_ETHER_LinkProcess
	(2) Callback Function Called by EINT0/EINT1 Status Interrupts
	(3) Callback Function Called by PMGI interrupt

	2.12 Adding the FIT Module to Your Project
	2.13 Ethernet Frame Format
	2.13.1 Frame Format for Data Transmission and Reception
	2.13.2 PAUSE Frame Format
	2.13.3 Magic Packet Frame Format

	2.14 “for”, “while” and “do while” statements

	3. API Functions
	3.1 R_ETHER_Initial()
	3.2 R_ETHER_Open_ZC2()
	3.3 R_ETHER_Close_ZC2()
	3.4 R_ETHER_Read_ZC2()
	3.5 R_ETHER_Read_ZC2_BufRelease()
	3.6 R_ETHER_Write_ZC2_GetBuf()
	3.7 R_ETHER_Write_ZC2_SetBuf()
	3.8 R_ETHER_CheckLink_ZC()
	3.9 R_ETHER_LinkProcess()
	3.10 R_ETHER_WakeOnLAN()
	3.11 R_ETHER_CheckWrite()
	3.12 R_ETHER_Read()
	3.13 R_ETHER_Write()
	3.14 R_ETHER_Control()
	3.15 R_ETHER_WritePHY()
	3.16 R_ETHER_ReadPHY()
	3.17 R_ETHER_GetVersion()

	4. Pin Setting
	4.1 Pin setting example for using RSK+RX64M/RSK+RX71M/RSK+RX72M
	4.2 Pin setting example for using RSK+RX65N/RSK+RX65N-2M
	4.3 Pin setting example for using RSK+RX72N

	5. How to use
	5.1 Section Allocation
	5.1.1 GCC for Renesas RX section setting example
	5.1.2 IAR C/C++ Compiler for Renesas RX section setting example
	5.1.3 Notes on Section Allocation

	5.2 Ethernet FIT Module Initial Settings
	5.2.1 Notes on Ethernet FIT Module Initial Settings

	5.3 Magic Packet Detection Operation
	5.3.1 Notes on Magic Packet Detection Operation

	5.4 Notes on Accessing MII/RMII Registers
	5.5 How to Use API Function Called in Non-Blocking

	6. Appendices
	6.1 EPTPC Light FIT Module
	(1) Simple Switching
	(2) Multicast Frame Filtering
	6.1.1 Usage Notes

	6.2 Confirmed Operation Environment
	6.3 Troubleshooting

	7. Provided Modules
	8. Ethernet FIT Module Usage Notes
	9. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

