
 APPLICATION NOTE

R01AN4375EJ0100 Rev.1.00 Page 1 of 71
Dec. 14, 2018

RL78/G1D Beacon Stack
Multi-Hop Feature (without Security)
Introduction
This application note explains the sample program, which runs on Bluetooth® Low Energy microcontroller RL78/G1D
device and executes uses Multi-Hop Feature by using RL78/G1D Beacon Stack.

The sample program consists of Application Layer and Multi-Hop Layer.

The Multi-Hop layer controls Advertising and Scan of Bluetooth Low Energy to transmit, receive and relay Multi-Hop
frames with flooding method. In addition, this layer provides Security feature to authenticate and encrypt frames.

The application layer is provided to execute transmitting and receiving Multi-Hop frames by RL78/G1D Evaluation
Board. When the switch on the evaluation board is pushed, the sample program transmits the Multi-Hop frames
periodically. And upon receiving the frame addressed to own node, the sample program outputs the frame data log via
UART.

Note that the following application notes are released for the Multi-Hop Feature. The difference is whether the security
feature is implemented or not.

Multi-Hop Feature (with Security) R01AN4466
Multi-Hop Feature (without Security) R01AN4375

Target Device
RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

Related Documents

Document Name Document No.

RL78/G1D

 User's Manual: Hardware R01UH0515

 RL78/G1D Evaluation Board

 User's Manual R30UZ0048

 E1 Emulator

 User's Manual R20UT0398

 Additional Document for User’s Manual (Notes on Connection of RL78) R20UT1994

 Renesas Flash Programmer V3.05 Flash memory programming software

 User's Manual R20UT4307

 CC-RL Compiler

 User's Manual R20UT3123

 RL78/G1D Beacon Stack

 User's Manual R01UW0171

R01AN4375EJ0100
Rev.1.00

Dec. 14, 2018

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 2 of 71
Dec. 14, 2018

Contents

1. Overview ... 5
1.1 Use-Case .. 5

1.1.1 Broadcasting a command (e.g. Lighting Control) ... 5
1.1.2 Gathering a data (e.g. Sensor Data) .. 5

2. System architecture ... 6

3. Multi-Hop Layer Specification ... 7
3.1 Basic Operation ... 7
3.2 Networks and Nodes ... 8
3.3 Security .. 9
3.4 Multi-Hop Frame .. 10

3.4.1 Encrypted Frame ... 12
3.4.2 Option Data Frame .. 13

3.5 Transmitting and Receiving ... 14

4. Application Layer Specification .. 15
4.1 Operation ... 15
4.2 Frame Data ... 16
4.3 System Configuration ... 18
4.4 Sequence ... 21

5. Operating Procedure .. 22
5.1 Operation Environment .. 22
5.2 Slide-Switch Setting .. 23
5.3 Writing Firmware ... 24
5.4 Operation ... 28

6. Building Procedure .. 31
6.1 Developing Environment .. 31
6.2 File Composition ... 32
6.3 Building Firmware ... 34
6.4 Company ID ... 36

7. Hardware Resource Used .. 37

8. Multi-Hop API .. 38
8.1 Type .. 38
8.2 Macro .. 38

8.2.1 Status Macro .. 38
8.2.2 Device Address Type Macro .. 38
8.2.3 Event Macro ... 38

8.3 Structure .. 39

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 3 of 71
Dec. 14, 2018

8.3.1 Device Address Structure .. 39
8.3.2 Multi-Hop Configuration Structure .. 39
8.3.3 Security Configuration Structure .. 39
8.3.4 Frame Data Structure ... 39
8.3.5 Option Data Structure ... 39
8.3.6 Relayed Path Log Structure ... 39
8.3.7 Multi-Hop Event Structure .. 40
8.3.8 Frame Transmission Indication Structure .. 40
8.3.9 Frame Reception Indication Structure .. 40
8.3.10 Frame Discard Warning Structure... 40

8.4 Function ... 41
8.4.1 R_MH_Init ... 41
8.4.2 R_MH_Proc .. 42
8.4.3 R_MH_Security .. 43
8.4.4 R_MH_Receive .. 44
8.4.5 R_MH_Stop .. 44
8.4.6 R_MH_Send ... 44
8.4.7 R_MH_CheckRoot ... 45

8.5 Event ... 46
8.5.1 RMH_EVT_RECEIVE_IND ... 46
8.5.2 RMH_EVT_OPTION_IND ... 46
8.5.3 RMH_EVT_STOP_CMP ... 47
8.5.4 RMH_EVT_SEND_CMP ... 47
8.5.5 RMH_EVT_ENCCNT_WRN ... 47
8.5.6 RMH_EVT_HOP_WRN .. 48
8.5.7 RMH_EVT_DUP_WRN ... 49

8.6 Sequence ... 50
8.6.1 Frame Reception ... 50
8.6.2 Frame Transmission ... 51

8.7 Frame Reception ... 52
8.7.1 Receiving Frame addressed to own node .. 52
8.7.2 Relaying Frame addressed to another node .. 52

8.8 Frame Transmission ... 53
8.8.1 Transmitting frame in reception operation .. 53

8.9 Transmission and Reception Channels .. 54

9. Appendix ... 55
9.1 Path Check Feature ... 55
9.2 Device Filter ... 56
9.3 Device Driver ... 57

9.3.1 Platform (Clock and Port) ... 57

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 4 of 71
Dec. 14, 2018

9.3.2 12-bit Interval Timer .. 58
9.3.3 Timer Array Unit .. 59
9.3.4 Data Flash .. 61
9.3.5 UART .. 63
9.3.6 External Input Interrupt .. 65
9.3.7 LED ... 65

9.4 Example of Measuring Frame Transport Ratio .. 66
9.4.1 Notice ... 66
9.4.2 Operation ... 66
9.4.3 Frame transport ratio in the case of with or without relaying .. 68
9.4.4 Frame transport ratio in the case of shortened frame transmission cycle 70

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 5 of 71
Dec. 14, 2018

1. Overview
1.1 Use-Case
This section explains use-cases using Multi-Hop.

1.1.1 Broadcasting a command (e.g. Lighting Control)
Figure 1-1 shows a use-case controlling lightings by using Multi-Hop.

Controller transmits a command to change a lighting level of either all or a part of lightings. When a lighting near the
controller receives this command, it retransmits the command to relay to other lightings around. They also relay the
command. In this way, the command is relayed by each lighting successively and reaches all lightings.

Even if some lightings are too far to receive a command from a controller directly, they can receive a command by
using Multi-Hop.

Figure 1-1 Broadcasting a command

1.1.2 Gathering a data (e.g. Sensor Data)
Figure 1-2 shows a use-case gathering sensor data by using Multi-Hop.

Each sensor transmits sensing data periodically. When other sensors receive these data, they retransmit the data to relay.
In this way, these data are relayed successively and reaches a collector.

Even if some sensors are too far to transmit data to a collector directly, they can transmit data by using Multi-Hop.

Figure 1-2 Gathering a data

Controller
Multi-Hop Lightings

MonitorCollector

Multi-Hop Sensors

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 6 of 71
Dec. 14, 2018

2. System architecture
Figure 2-1 shows system architecture of the sample program.

• Application Layer

Executes Multi-Hop frames transmission and reception.

• Multi-Hop Layer

Controls Advertising and Scan to manages Multi-Hop frames transmission and reception.

• Beacon Stack

Controls RF unit of RL78/G1D to execute Advertising and Scan.

Figure 2-1 System Architecture

Application Layer and the Multi-Hop Layer are provided as the following source code files.

Application Layer: Project_Source\application\src\r_node.c

Multi-Hop Layer: Project_Source\application\src\r_multihop.c

Application Layer transmits and receives frames periodically by calling Multi-Hop API. You can develop various
software using Multi-Hop feature by customizing this layer.

Multi-Hop Layer provides Multi-Hop Feature. Basically, it is not necessary to change this layer.

Regarding the specification of Beacon Stack, refer to RL78/G1D Beacon Stack User's Manual (R01UW0171).

Regarding the details of RL78/G1D, refer to RL78/G1D User's Manual: Hardware (R01UH0515).

Note that Beacon Stack Library included in this project is different from the one included in the application note of
"RL78/G1D Beacon Stack Basic Operation" (R01AN3045) and is optimized for Multi-Hop Feature. When you develop
an application, use the library included in this project.

RL78/G1D
Bluetooth low energy microcontroller

Beacon Stack
Executes Advertising and Scan

Application Layer
executes frame transmission and reception

Multi-Hop Layer
manages frame transmission and reception

scope described
in this document

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 7 of 71
Dec. 14, 2018

3. Multi-Hop Layer Specification
This section explains Multi-Hop Layer specification. Regarding Multi-Hop API, refer to chapter 8 "Multi-Hop API" in
this document.

3.1 Basic Operation
Figure 3-1 shows basic operation of Multi-Hop.

Each device participating a network is called a Multi-Hop Node. And each data unit to transmit an information is called
a Multi-Hop Frame.

The frames are transmitted from originator node to destination node(s) by relaying. Each node executes the following
steps. Each circle in this figure indicates a range that each node can transmit a frame directly.

1. Originator node transmits frame addressed to destination node.

2. When relay nodes receive the frame, the nodes retransmit the frame to relay.

3. Each relay nodes relay the frame successively, and then the frame reaches destination node. As a supplement, each
relay node retransmits the frame after randomized time to avoid frame collision.

4. If already retransmitted frame is received, each relay node discards this frame.

5. If already retransmitted frame is received, destination node discards this frame.

Figure 3-1 Frame Transmission of Multi-Hop

Originator
node

1. Originator node transmits a frame.

Relay node

Destination
node

discards a framediscards a frame

2. A relay node relays a frame.

4. Already relayed frame is discarded. 5. Already received frame is discarded.

receives a frame

3. Each relay node relays a frame.

transmits a frame

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 8 of 71
Dec. 14, 2018

3.2 Networks and Nodes
Figure 3-2 shows networks and nodes of Multi-Hop.

Network is a cluster of nodes exchange frames. Each network is identified by a network ID. Each node in a same
network is identified by a node ID. It is not affected that same node ID is assigned to nodes in different network.

Frames are transmitted and received among nodes in same network; frames cannot be transmitted to nodes in different
network.

Figure 3-2 Networks and Nodes

To set individual a network ID and a node ID to each device, a mechanism called System Configuration is implemented
in the sample program. Regarding the detail, refer to section 4.3 "System Configuration" in this document.

Node ID1

Node ID1

Node ID3

Node ID2

Node ID0

Node ID2

Node ID4

Network ID0

Node ID0

Node ID5

Node ID3

Network ID1

Each node transmits and receives a frame in the same Network only.

×

A frame having different Network ID is discarded.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 9 of 71
Dec. 14, 2018

3.3 Security
Multi-Hop Layer provides Security feature to authenticate and encrypt frame. (R01AN4466 only)

Authentication and encryption are executed with AES-CCM*. To decrypt a frame encrypted by another node, all nodes
should share same 128-bit encryption key in advance.

Security feature executes the following processing.

• When originator node transmits a frame, this feature encrypts data and adds MIC to frame.

• When relay node receives a frame, this feature calculates MIC of frame to authenticate.

• When destination node receives a frame, this feature authenticates frame and decrypts data.

By using Security feature, it can be expected the following.

• Data Encryption

Security feature encrypts data, so data is not understood by a device which does not have encryption key.

• Frame Authentication

Security feature authenticates, and discards frame falsified by a device which does not have encryption
key. Moreover, because frame including invalid counter is discarded, replay attack can be prevented.

Figure 3-3 Security with Encryption and Authentication

When Security feature is enabled, Multi-Hop Layer discards all un-encrypted frame. Similarly, when Security feature is
disabled, Multi-Hop Layer discards all encrypted frame.

Security feature uses AES Library. Regarding the detail, refer to the following URL.

AES Library for the RL78 Family

https://www.renesas.com/software-tool/crypto-library

Note that Security feature implemented in the sample program is not guaranteed that complete security of system.

Implement additional security mechanism, if necessary.

Originator node encrypts data and
adds a MIC to frame to authenticate.

Originator Relay Destination

(eavesdropping frame)
Data is encrypted,

data content is not understood.

(falsifying frame)
Falsifyed frame is dicarded

by authentication.

Each node relays only a frame that
its authentication is succeeded.

Destination node authenticates a
frame and decrypt data.

https://www.renesas.com/software-tool/crypto-library

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 10 of 71
Dec. 14, 2018

3.4 Multi-Hop Frame
Figure 3-4 and Table 3-1 show the field composition of Multi-Hop frame.

Figure 3-4 Field Composition of Multi-Hop Frame

Multi-Hop frame is transmitted as a <<Manufacturer Specific Data>> by Advertising packet of Bluetooth Low Energy.
Regarding the specification of Manufacturer Specific Data, refer to Part A, Section 1.4 "MANUFACTURER SPECIFIC
DATA" in Supplement to the Bluetooth Core Specification | CSS Version 7.

Network ID is set in a Network ID field. Node IDs of originator and destination are set to Originator and Destination
field respectively. Data transferred from originator to destination is stored Payload Data field.

0 1 2 3 4 5 6 7 8 9 10 30

Le
ng

th
A

D
 T

yp
e

Fo
rm

at
C

on
tro

l
N

et
w

or
k

ID
D

es
tin

at
io

n
O

rig
in

at
or

S
eq

ue
nc

e

Payload Data

...

C
om

pa
ny

 ID

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 11 of 71
Dec. 14, 2018

Table 3-1 Field Composition of Multi-Hop Frame

Offset Size
(byte)

Field Description

0 1 Length AdvData Length (byte)
length from AD Type field to Payload Data field

1 1 AD Type AdvData
0xFF: <<Manufacturer Specific Data>>

2 2 Company ID Bluetooth Company ID (LSO: Least Significant Octet First)
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

4 1 Format Multi-Hop Frame Format Version
0x01: Frame Format ver.1.00

5 1 Control Multi-Hop Control
 Bit Field Description

0:3 hop limit Remaining Hopping Limit Count
0 to 15
When a frame is relayed, hop limit is decreased by 1.
If hop limit is 0, frame is not relayed.

4:5 counter Frame Transmission Count
This count shows the number of transmitting same frame.
0: first transmission
1: second transmission
2: third transmission
To improve transport factor, same frame is transmitted three
times.

6 encrypted Encrypted Flag
This flag shows whether payload data is encrypted or not.
0: not encrypted
1: encrypted (R01AN4466 only)

7 optional Option Data Flag
This flag shows whether payload data is Option Data or not.
0: not Option Data
1: Option Data

6 1 Network ID Network ID
0x00 to 0xFF

7 1 Destination Destination Node ID
0x00 to 0xFE is transmitted to individual one node.
0xFF is transmitted to all nodes.

8 1 Originator Originator Node ID
0x00 to 0xFE is ID of node transmitting frame.

9 1 Sequence Sequence Number
This number is to identify each frame and used to check if frame is duplicated.
0x00 to 0xFF
This number is increased by 1 in each frame transmission.

10 Max.21 Payload Data Payload Data

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 12 of 71
Dec. 14, 2018

3.4.1 Encrypted Frame
Figure 1-1 and Table 3-2 show the field composition of Encrypted Multi-Hop frame.

When frame is encrypted, Payload Data field of the encrypted frame consists of three sub-field: Counter, Encrypted
Data, and MIC. And the encrypted bit of Control field is set.

Figure 3-5 Sub-field Composition of Payload Data in Encrypted Frame

Table 3-2 Field Composition of Encrypted Multi-Hop Frame

Offset Size (byte) Field Description
10 3 Counter Upper 3byte Counter Value

Sequence field and Counter field are used as a 4byte counter which is LSO
(Least Significant Octet)-First.
This 4byte counter is used as Nonce for AES-CCM.
Each node has an individual Nonce Counter.
This Nonce is increased by 1 in each frame transmission.
(When Sequence is lapped around, Counter field is increased by 1.)

13 Max.14 Encrypted Data Encrypted Data
Max.27 4 MIC Message Integrity Code

To randomize encrypted data, fields from Destination field to Counter field are used as a Nonce by Multi-Hop layer.

Fields to be authenticated are from Destination field to Encrypted Data field. Field to be encrypted is Encrypted Data
field.

MIC: Message Integrity Code is added to the last of frame.

0 1 2 3 4 5 6 7 8 9 10 ... 12 13 26 27 ... 30...

Le
ng

th
A

D
 T

yp
e

C
om

pa
ny

 ID

Fo
rm

at
C

on
tro

l
N

et
w

or
k

ID
D

es
tin

at
io

n
O

rig
in

at
or

S
eq

ue
nc

e Payload Data

Counter Encrypted Data MIC

Nonce 6byte

authenticated 6byte authenticated and encrypted max.14byte

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 13 of 71
Dec. 14, 2018

3.4.2 Option Data Frame
A feature to check relayed path (see Section 9.1) is implemented in Multi-Hop Layer. This feature uses Option Data
Frame described in the following.

Figure 3-6, Figure 3-7, and Table 3-3 show the field composition of Multi-Hop Option Data Frame.

Payload Data field of the option data frame consists of three sub-field: ID, Length, and Option Data. And the optional
bit of Control field is set.

Upon receiving the option data frame, Multi-Hop Layer executes option feature in accordance with Option Data ID.

Figure 3-6 Sub-field Composition of Payload Data in Option Data Frame

Figure 3-7 Sub-field Composition of Payload Data in Encrypted Option Data Frame

Table 3-3 Field Composition of Multi-Hop Option Data Frame

Offset Size (byte) Field Description
10 1 ID Option Data ID
11 1 Length Option Data Length
12 Max.19

(If encrypted, Max.12)
Option Data Option Data

Regarding the definition of Option Data Structure, refer to subsection 8.3.5 "Option Data Structure" in this document.

0 1 2 3 4 5 6 7 8 9 10 30

ID
Le

ng
th

Option Data

...

Le
ng

th
A

D
 T

yp
e

C
om

pa
ny

 ID

Fo
rm

at
C

on
tro

l
N

et
w

or
k

ID
D

es
tin

at
io

n
O

rig
in

at
or

S
eq

ue
nc

e Payload Data

0 1 2 3 4 5 6 7 8 9 10 ... 12 13 26 27 ... 30
ID

Le
ng

th

Option Data

Le
ng

th
A

D
 T

yp
e

C
om

pa
ny

 ID

Fo
rm

at
C

on
tro

l
N

et
w

or
k

ID
D

es
tin

at
io

n
O

rig
in

at
or

S
eq

ue
nc

e

...

Payload Data

Counter Encrypted Data MIC

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 14 of 71
Dec. 14, 2018

3.5 Transmitting and Receiving
Each node transmits a frame by Advertising and receives a frame by Scan. Figure 3-8 shows an example of how frame
is transmitted and received. In this figure, there are nodes assigned as ID0 to ID3 respectively, and they relay a frame on
the path of ID3 ID2 ID1 ID0.

By executing the following transmission and reception processing, frame is transferred from originator node to
destination node.

1. All nodes start receiving operation.

2. Node of ID3 transmits a frame addressed to ID0.

This node transmits a frame three times to reach to other nodes as many as possible.

3. Nodes of ID2 and ID1 receives the frame and then retransmits the frame received.

Each node retransmits the frame three times to reach to other nodes as many as possible.

Each node retransmits the frame at randomized timing to avoid frame collision.

After that, if same frame is received again, each node discards the frame and retransmit no frame.

4. Node of ID0 receives the frame addressed to ID0, frame data is notified to application.

After that, if same frame is received again, the frame is discarded.

Figure 3-8 Example of Frame Transmission and Reception

Frame is transmitted three times to all advertising channels. Regarding the details, refer to section 8.8 "Frame
Transmission".

Receiving operation switches advertising channels periodically. Regarding the details, refer to section 8.7 "Frame
Reception".

reception operation

transmission operation

ID3

ID2

ID1

ID0

All nodes starts reception operation. transmits a frame addressed to ID0

relays a frame

receives a frame and then
notifies data to application

relays a frame

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 15 of 71
Dec. 14, 2018

4. Application Layer Specification
This chapter explains Application Layer Specification. Regarding the operation procedure of the sample program, refer
to chapter 5 "Operating Procedure".

4.1 Operation
The sample program runs on the evaluation board. It starts receiving operation after starting-up. If switch is pushed, it
transmits frames addressed to ID0 periodically.

For example, there are four evaluation board assigned ID as from ID0 to ID3. By pushing a switch of evaluation board
ID3, it transmits a frame addressed to ID0 every second. Each frame has a different sequence number.

Upon receiving a frame, the evaluation board of ID1 and ID2 relay the frame respectively. Relaying is executed by
Multi-Hop layer automatically and Application layer is not notified that relay operation is executed.

Upon receiving a frame, the evaluation board of ID0 outputs a frame data log via UART. After that, if it receives a
frame which has same sequence number again, log is not output.

By pushing a switch, the evaluation board
transmits frames addressed to ID0 every second.

ID0

ID3

ID1

ID2 Host machine
UART

transmits frames

ID0

ID3 ID1

ID2 Host machine
UART

frame log

Serial Terminal Software
receives frames

When the evaluation board of ID0 receives a frame,
it outputs frame log through UART.

relay frames

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 16 of 71
Dec. 14, 2018

4.2 Frame Data
When switch SW2 is pushed, the application transmits frames to ID0 periodically.

Data to be transmitted is implemented as an array in the following source code. The sample program transmits data in
sequence repeatedly.

- Project_Source\application\src\r_node.c

Node of ID0 outputs the received frame data log via UART with the following format.

SerialNumber ORG -> DST SEQ FrameDataSize [FrameData (ASCII)]

For example, node of ID3 transmits frames and then node of ID0 receives the frames. Node of ID0 outputs the data log
as shown in Figure 4-1. By checking log, you can confirm if node of ID0 receives frames transmitted by node of ID3
sequentially.

Figure 4-1 Example Log of Received Data

101: static RMH_DATA demo_payload_data[] =
102: {
103: {{"0...................."}, 21, 0},
104: {{".1..................."}, 21, 0},
105: {{"..2.................."}, 21, 0},
106: {{"...3................."}, 21, 0},
107: {{"....4................"}, 21, 0},
108: {{".....5..............."}, 21, 0},
109: {{"......6.............."}, 21, 0},
110: {{".......7............."}, 21, 0},
111: {{"........8............"}, 21, 0},
112: {{".........9..........."}, 21, 0},
113: {{"..........A.........."}, 21, 0},
114: {{"...........B........."}, 21, 0},
115: {{"............C........"}, 21, 0},
116: {{".............D......."}, 21, 0},
117: {{"..............E......"}, 21, 0},
118: {{"...............F....."}, 21, 0},
119: };

data: Frame Data len: Frame Data Size (Max.21byte)

node: Destination Node ID (0x00 to 0xFF)

Frame Data (ASCII)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 17 of 71
Dec. 14, 2018

When Security feature is enabled, frame data is encrypted by Multi-Hop layer. Data to be encrypted and transmitted is
also implemented as an array in the following source code. (R01AN4466 only) The sample program encrypts and
transmits data in sequence repeatedly.

- Project_Source\application\src\r_node.c

For example, node of ID3 transmits encrypted frames. By the way, Scan program (see section 5.4) is included in this
application note. It scans all Multi-Hop frames and outputs frame log as shown in Figure 4-2. By using Scan program,
you can confirm that data content is encrypted.

Figure 4-2 Example Log of Encrypted Frame

When node of ID0 receives the encrypted frame, the node outputs frame log as shown in Figure 4-3

By checking log, you can confirm that encrypted data is decrypted correctly.

Figure 4-3 Example Log of Received Data

125: static RMH_DATA demo_sec_data[] =
126: {
127: {{"0............."}, 14, 0},
128: {{".1............"}, 14, 0},
129: {{"..2..........."}, 14, 0},
130: {{"...3.........."}, 14, 0},
131: {{"....4........."}, 14, 0},
132: {{".....5........"}, 14, 0},
133: {{"......6......."}, 14, 0},
134: {{".......7......"}, 14, 0},
135: {{"........8....."}, 14, 0},
136: {{".........9...."}, 14, 0},
137: {{"..........A..."}, 14, 0},
138: {{"...........B.."}, 14, 0},
139: {{"............C."}, 14, 0},
140: {{".............D"}, 14, 0},
141: };

data: Frame Data len: Frame Data Size (Max.14byte)

node: Destination Node ID (0x00 to 0xFF)

Frame Data (ASCII)

Frame Data (ASCII)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 18 of 71
Dec. 14, 2018

4.3 System Configuration
Each node needs to be assigned ID which is different from each other. So, the sample program provides a mechanism to
set individual parameters which is called System Configuration.

Figure 4-4 shows the overview of System Configuration.

To write the system configuration, you can use the Unique Code Embedding Function of Renesas Flash Programmer.
And a list of the system configuration is described to Unique Code data file.

By executing Renesas Flash Programmer, you can write common firmware and individual system configuration to each
node.

When the firmware starts to run, the sample program reads parameters such as node ID from the system configuration
and uses the parameters as a Multi-Hop setting.

Figure 4-4 System Configuration

Table 4-1 shows the start address of the system configuration.

The system configuration is allocated out of the program area in Code Flash memory. You can change the start address
of the system configuration by modifying the source code.

Table 4-1 Start Address of System Configuration

RL78/G1D Start Address
R5F11AGG 0x1FC00
R5F11AGH 0x2FC00
R5F11AGJ 0x3F400

device1

device2

device0

Common Firmware
(hex format)

Unique Code
(ruc format)

System Configuration
for device0

System Configuration
for device1

System Configuration
for device2

Firmw are

System Configuration

<writes to flash memory>

Firmw are

System Configuration

Firmw are

System Configuration

<reads parameters>

<reads parameters>

<reads parameters>

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 19 of 71
Dec. 14, 2018

Table 4-2 shows the system configuration specification. You can change the specification by modifying the source
code.

Note1: When you use RL78/G1D module (RY7011), the sample program uses a device address not in the system
configuration but in Block255 of Code Flash memory preferentially, which is written when manufacturing.

Table 4-2 Structure of System Configuration

Offset Size (byte) Data
0 6

(RBLE_BD_ADDR Structure)
Device Address, See Note1

6 1
(uint8_t type)

Device Address Type
0x00: public, 0x01: random

7 1
(uint8_t type)

Network ID
0x00 to 0xFF

8 1
(uint8_t type)

Node ID
0x00 to 0xFE

9 1
(bool type)

Security Flag
0x01: enable Security (R01AN4466 only)
0x00: disable Security

10 16
(uint8_t[16] type)

128bit Encryption Key
If Security is disabled, there is no need to set this key.

The system configuration is described in the following unique code file.

- RUC_File\r5f11agj_syscfg.ruc

The unique code file is shown below. Each system configuration is indexed and written to each RL78/G1D in order. Off
course, you can edit this file.

// --
// -- System Configuration for RL78/G1D Multi Hop Sample Program --
// -- Device Part Number : R5F11AGJ --
// --
format hex
area user flash
address 0x3f400
size 10
index data
// |----------| uint8_t[6]: Device Address (LSB-first)
// || uint8_t: Device Address Type (00:Public, 01:Random)
// || uint8_t: Network ID (0x00 to 0xFF)
// || uint8_t: Node ID (0x00 to 0xFE)
// || bool: Security Flag (00:disable, 01:enable)

000000 00F4712CD7DC01000000
000001 01F4712CD7DC01000100
000002 02F4712CD7DC01000200
000003 03F4712CD7DC01000300
000004 04F4712CD7DC01000400
000005 05F4712CD7DC01000500
000006 06F4712CD7DC01000600
000007 07F4712CD7DC01000700

Security Flag (1byte) = 00

Node ID (1byte)

Network ID (1byte)

Device Address Type (1byte)

Device Address (6byte)

Index

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 20 of 71
Dec. 14, 2018

The system configuration to enable Security feature is described in the following unique code file. (R01AN4466 only)

- RUC_File\r5f11agj_syscfg_sec.ruc

List of the unique code file is shown below. To enable the security feature, Security Flag is set and 128bit Encryption
Key is added at last to each system configuration.

// --
// -- System Configuration for RL78/G1D Multi Hop Sample Program --
// -- Device Part Number : R5F11AGJ --
// --
format hex
area user flash
address 0x3f400
size 10
index data
// |----------| uint8_t[6]: Device Address (LSB-first)
// || uint8_t: Device Address Type (00:Public, 01:Random)
// || uint8_t: Network ID (0x00 to 0xFF)
// || uint8_t: Node ID (0x00 to 0xFE)
// || bool: Security Flag (00:disable, 01:enable)
// |------------------------------| uint8_t[16]: Encryption Key
(128bit)

000000 00F4712CD7DC010000010102030405060708090A0B0C0D0E0F10
000001 01F4712CD7DC010001010102030405060708090A0B0C0D0E0F10
000002 02F4712CD7DC010002010102030405060708090A0B0C0D0E0F10
000003 03F4712CD7DC010003010102030405060708090A0B0C0D0E0F10
000004 04F4712CD7DC010004010102030405060708090A0B0C0D0E0F10
000005 05F4712CD7DC010005010102030405060708090A0B0C0D0E0F10
000006 06F4712CD7DC010006010102030405060708090A0B0C0D0E0F10
000007 07F4712CD7DC010007010102030405060708090A0B0C0D0E0F10

Security Flag (1byte) = 01

Encryption Key (16byte)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 21 of 71
Dec. 14, 2018

4.4 Sequence
Figure 4-4 shows a sequence of the application layer.

When the application layer starts, initialization function: node_init() executes R_MH_Init() to initialize Multi-Hop layer
and then calls R_MH_Receive() to start receiving operation.

When a switch is pushed, an external input interrupt: INTP5 occurs and then interrupt handler: input_callback()
executes R_MH_Send() to transmit frame. And this handler starts 12-bit interval timer operation.

Furthermore, interval interrupt: INTIT of 12-bit interval timer occurs every second and then interval handler:
it_callback() executes R_MH_Send() to transmit a frame.

Figure 4-5 Sequence of Sample Program

Regarding the Multi-Hop API specification, refer to chapter 8 "Multi-Hop API".

Note that the application layer should execute R_MH_Proc() periodically. By executing R_MH_Proc(), Multi-Hop
layer relays frames to other nodes or notifies events by calling a callback function: node_callback(). Regarding how to
implement, refer to subsection 8.4.2 "R_MH_Proc".

R_MH_Init(cfg->callback = node_callback)

R_MH_Security()

R_MH_Receive(hop_en = true)

INTP5

R_MH_Send()

INTIT

R_MH_Send()

INTIT relay a frame

R_MH_Send()

receives a frame for own

UART

node_callback(evt->type = RMH_EVT_RECEIVE_IND)
node_callback()

starts reception operation

transmits a frame

transmits a frame

transmits a frame

node_callback(evt->type = RMH_EVT_SEND_CMP)node_callback()

receives a frame for other

it_callback()

input_callback()

node_callback(evt->type = RMH_EVT_SEND_CMP)node_callback()

it_callback()

Application Layer Multi-Hop Layer

node_init()

By pushing a switch SW2,
interrupt INTP5 occurs.

It outputs frame log.

INTIT occurs periodically.

Application is not notifyed that a frame is relayed.

If it uses Security feature,
it executes R_MH_Security().

INTIT occurs periodically.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 22 of 71
Dec. 14, 2018

5. Operating Procedure
This chapter explains the operating procedure of the sample program.

5.1 Operation Environment
To write a firmware of the sample program to the evaluation board, you can use Flash memory programming software:
Renesas Flash Programmer.

Renesas Flash Programmer (Programming GUI)
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui

The necessary hardware and software environment for evaluating the sample program is as follow:

• Hardware Environment

 Host

 PC/ATTM compatible computer

 Device

 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ): at least 2 boards

 USB cable (A type make/mini-B type make): 2 cables

 Tool

 Renesas On-chip Debugging Emulator E1 (R0E000010KCE00)

• Software Environment

 Windows® 10

 Renesas Flash Programmer v3.05.00

 Tera Term Pro (or Terminal software which can connect to serial port)

 UART-USB conversion device driver

Note: It may be that device driver for UART-USB conversion IC FT232RL is requested when you connect RL78/G1D
Evaluation Board to Host first time. In this case, you can get the device driver from below website.

- FTDI (Future Technology Devices International) - Drivers

http://www.ftdichip.com/Drivers/D2XX.htm

https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 23 of 71
Dec. 14, 2018

5.2 Slide-Switch Setting
Figure 5-1 shows slide-switch of RL78/G1D Evaluation Board.

Figure 5-1 Slide-Switch on RL78/G1D Evaluation Board

Table 5-1 shows the slide-switch setting to evaluate the sample program.

Table 5-1 Slide-Switch Setting

Switch Setting Description
SW7 2-3 connected (right) Power is supplied from DC/USB VBUS via a regulator.

If 1-2 is connected (left), power is directly supplied from a battery.
SW8 2-3 connected (right) Power is supplied from USB VBUS to a regulator.

If 1-2 is connected, power is supplied from DC to a regulator.
SW9 2-3 connected (right) Connected to the USB device.
SW10 1-2 connected (left) Power is supplied to the module.
SW11 2-3 connected (right) Power is supplied from a source other than the E1 debugger (3.3V).
SW12 2-3 connected (right) Unused
SW13 1-2 connected (left) USB interface is connected

Regarding the slide-switch of the evaluation board, refer to the section 6.1 "Power Line System" in RL78/G1D
Evaluation Board User's Manual (R30UZ0048).

SW13SW10 SW9 SW11 SW7

SW8SW12

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 24 of 71
Dec. 14, 2018

5.3 Writing Firmware
Figure 5-2 shows the overview of writing firmware.

Host machine and E1 Emulator are needed to write the firmware. By using Renesas Flash Programmer on the host
machine, you can write firmware. In addition, by using the Unique Code Embedded Function of Renesas Flash
Programmer, you can set an individual node ID to each RL78/G1D evaluation board respectively.

Figure 5-2 Writing Firmware

Regarding the details of E1 Emulator, refer to E1 Emulator User's Manual (R20UT0398) and E1 Emulator Additional
Document for User's Manual (Notes on Connection of RL78) (R20UT1994).

How to write a firmware to RL78/G1D Evaluation Board is below:

1. Connect E1 Emulator to the evaluation board as well as E1 Emulator to Host machine.

2. Connect the evaluation board to Host machine or AC-USB power supply adapter to supply power.

3. Start Renesas Flash Programmer and create a project according to the following steps.

Once you create a project, you can skip these steps.

3-1. Select [File][Create a new project].

3-2. Select [RL78] as a Microcontroller, input a project name and click [Connect] in [Create New Project]
dialog.

E1 Emulator

RL78/G1D Evaluation Board

ID0 ID1 ID2 ID3

Host machine

(1) (2) (3) (4)
Renesas Flash Programmer

Firmware

System Configuration

Input files

sets ID according to the writing

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 25 of 71
Dec. 14, 2018

3-3. Confirm [Operation completed] message in Log output panel.

4. Specify a unique code file describing the system configuration according to the following steps.

4-1. Select [Unique Code] tab.

4-2. Check [Enable].

4-3. Specify the below unique code file at [Unique Code File].

- (R01AN4375) RUC_File\r5f11agj_syscfg.ruc

- (R01AN4466) RUC_File\r5f11agj_syscfg_sec.ruc

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 26 of 71
Dec. 14, 2018

Regarding the system configuration, refer to section 4.3 "System Configuration" in this document.

Regarding to the Unique Code Embedding Function, refer to subsection 2.3.6 "[Unique Code] Tabbed Page" in Renesas
Flash Programmer V3.05 Flash memory programming software User's Manual (R20UT4307).

5. Prevent erasing Block 254, 255 in Code Flash memory according to the following steps.

In RL78/G1D Module, Shipping Check Flag is written in Block 254 and Device Address is written in Block 255
respectively.
5-1. Select [Operation Setting] tab and select [Erase Selected Blocks] at [Erase Option].

5-2. Select [Block Setting] tab and uncheck each [Erase], [P.V] of Block254, 255.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 27 of 71
Dec. 14, 2018

6. Select [Operation] table and specify the following firmware at [Program File].

- (R01AN4375) ROM_File\R5F11AGJ_MultiHop.hex

- (R01AN4466) ROM_File\R5F11AGJ_MultiHopSEC.hex

7. Click [Start] button to start writing the firmware.

8. Confirm [Operation completed] message.

9. Disconnect E1 Emulator and Power Supply from the evaluation board.

10. Connect E1 Emulator and Power Supply to next evaluation board and execute step 7 again.
Repeat above steps until you write firmware to all evaluation boards.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 28 of 71
Dec. 14, 2018

5.4 Operation
Figure 5-3 shows the operation of the sample program. The evaluation boards of other than ID0 transmit and relay
frames successively. And the evaluation board of ID0 receives frames as a destination.

By the way, a device filter is implemented in the sample program. This filter allows the sample program to receive only
a frame transmitted from specified device. By using a device filter, you can confirm relaying frame within a restricted
path; e.g. ID3ID2ID1ID0. Regarding the details, refer to section 9.2 "Device Filter".

Figure 5-3 Operation of Sample Program

How to execute frame transmission and reception is shown below:

Evaluation Board of ID0:

1. Connect the evaluation board to Host machine with USB cable.

2. Start terminal software (e.g. Tera Term) on Host machine. Then set serial communication setting in accordance
with Table 5-2.

Table 5-2 Serial Communication Setting

Item Setting
Serial Port Port USB Serial Port

Note that COM number is different
from each evaluation board.

Baud Rate 1,000,000bps
Data Bit Length 8bit
Parity None
Stop Bit Length 1bit
Flow Control None

New Line Receive LF
Transmit LF

Terminal Size Horizontal over than 128 characters

When Tera Term is used as terminal software, there is no "1,000,000bps" in the drop-down list of Baud Rate. Thus, it is
necessary to enter "1000000" to the input box of Baud Rate directly.

Log

ID0ID2

ID1ID3

Evaluation Board of ID0
It receives frames addressed to ID0 and outputs Frame Log.

Evaluation Board of other than ID0
The evaluation board that is pushed a switch, transmits frames addressed to ID0.
Other evaluation boards relay frames.

Serial Termnial Software
Host machine

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 29 of 71
Dec. 14, 2018

Evaluation Boards of other than ID0:

1. Start to supply power the evaluation board via either DC jack or USB interface selected by slide-switch.

2. Push a switch SW2 on an evaluation board of ID3.

The evaluation board pushed a switch transmits a frame addressed to ID0 every second.

3. When the evaluation board of ID0 receives frames, you can confirm that the following frame data log is
displayed on a terminal software.

If you use the board that switch SW is not implemented, write the following firmware which starts frame transmission
automatically to the boards of other than ID0.

- ROM_File\R5F11AGJ_MultiHop(NO_SW).hex

To start frame transmission automatically, change the macro TEST_NO_SW to (1) defined in the following file.

- Project_Source\application\src\r_node.c

54: /* 1: start to sends frame immediately after application initialization */
55: /* 0: start to sends frame when switch is pushed */
56: #define TEST_NO_SW (0)

change to (1)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 30 of 71
Dec. 14, 2018

Scan program which scans Multi-Hop frame is included in the package of the sample program.

The firmware of the scan program is the following file.

- ROM_File\R5F11AGJ_Scan.hex

Figure 5-4 shows the overview of the scan program.

Write the scan program firmware to the evaluation board, and then connect it to the Host machine.

To check the log output by the scan program, use the terminal software as well as how to evaluate the node of ID0.

Figure 5-4 Operation of Scan Program

The scan program outputs the log of received frame via UART with the following format.

SerialNumber Channel RSSI DeviceAddress DeviceAddressType (NodeID) ORG -> DST (HopLimit,
TransmissionCount) SEQ FrameDataSize [FrameData (ASCII)]

Figure 5-5 shows example log output by the scan program.

Figure 5-5 Example Log of Received Frame

Log

Serial Terminal Software
Host machine

Scan program receives frames tranimistted by all nodes and outputs log.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 31 of 71
Dec. 14, 2018

6. Building Procedure
This chapter explains the building procedure of the sample program.

6.1 Developing Environment
To develop and build a firmware of the sample program, you can use either CS+ for CC or e2 studio.

CS+
https://www.renesas.com/software-tool/cs
e2 studio
https://www.renesas.com/software-tool/e-studio

The necessary hardware and software environment for compiling is as follow:

• Hardware Environment

 Host

 PC/ATTM compatible computer

 Device

 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ): at least 2 boards

 USB cable (A type make/mini-B type make): 2 cables

 Tool

 Renesas On-chip Debugging Emulator E1 (R0E000010KCE00)

• Software Environment

 Windows® 10

 Renesas CS+ for CC V7.00.00 / Renesas CC-RL V1.07.00

or

Renesas e2 studio Version 7.0.0 / Renesas CC-RL V1.07.00

 Tera Term Pro (or Terminal software which can connect to serial port)

 UART-USB conversion device driver

Note: It may be that device driver for UART-USB conversion IC FT232RL is requested when you connect RL78/G1D
Evaluation Board to Host first time. In this case, you can get the device driver from below website.

- FTDI (Future Technology Devices International) - Drivers

http://www.ftdichip.com/Drivers/D2XX.htm

The following libraries are included in the package. (R01AN4466 only). These libraries are required to build the sample
program corresponding to Security feature.

AES Library: AES Library for the RL78 Family V1.05 Release 00

Data Flash Library: EEPROM Emulation Library Pack02 for the CC-RL Compiler for the RL78 Family

https://www.renesas.com/software-tool/cs
https://www.renesas.com/software-tool/e-studio
http://www.ftdichip.com/Drivers/D2XX.htm

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 32 of 71
Dec. 14, 2018

6.2 File Composition
File and folder composition of the sample program is shown below.

RL78G1D_MultiHop
 ├ROM_File
 │ R5F11AGJ_MultiHop.hex Sample Program Firmware (R01AN4375 only)
 │ R5F11AGJ_MultiHop(DEV_FILTER).hex (DEV_ADDR_FILTER=1)
 │ R5F11AGJ_MultiHop(NO_SW).hex (TEST_NO_SW=1)
 │ R5F11AGJ_MultiHopSEC.hex Sample Program Firmware (R01AN4466 only)
 │ R5F11AGJ_MultiHop(DEV_FILTER).hex (DEV_ADDR_FILTER=1)
 │ R5F11AGJ_MultiHop(NO_SW).hex (TEST_NO_SW=1)
 │ R5F11AGJ_Scan.hex Scan Program Firmware
 ├RUC_File
 │ r5f11agj_syscfg.ruc System Configuration
 │ r5f11agj_syscfg_sec.ruc System Configuration (R01AN4466 only)
 └Project_Source
 ├library
 │ r_arch.h

Beacon Stack Library

 │ r_compiler.h
 │ r_iodefine.h
 │ r_ll.h
 │ r_port.h
 │ r_bcn_api.h
 │ BLE_BEACON_CC.lib
 └application
 ├src
 │ │ cstart.asm Start-up Routine
 │ │ r_config.h Beacon Stack Configuration
 │ │ r_interrupt.c Beacon Stack Interrupt Handler
 │ │ r_main.c Application Entry Point
 │ │ r_multihop.c

Multi-Hop Layer │ │ r_multihop.h
 │ │ r_node.c

Node Application │ │ r_node.h
 │ │ r_utility.c

Utility │ │ r_utility.h
 │ ├aes
 │ │ │ P_AesProto.h

 AES-CCM Conversion
(R01AN4466 only) │ │ │ P_Ccmz.c

 │ │ └library
 │ │ r_aes.h

AES Library
(R01AN4466 only)

 │ │ r_mw_version.h
 │ │ r_stdint.h
 │ │ aes_rl78_s2_m_ccrl.lib
 │ └driver
 │ ├dataflash
 │ │ │ r_dataflash.c Data Flash Driver

(R01AN4466 only) │ │ │ r_dataflash.h
 │ │ │ r_eel_descriptor_t02.c EEPROM Emulation Library Descriptor

(R01AN4466 only) │ │ │ r_eel_descriptor_t02.h
 │ │ │ r_fdl_descriptor_t02.c Data Flash Library Descriptor

(R01AN4466 only) │ │ │ r_fdl_descriptor_t02.h
 │ │ └library
 │ │ eel.h

EEPROM Emulation Library
(R01AN4466 only)

 │ │ eel.lib
 │ │ eel_types.h
 │ │ fdl.h

Data Flash Library
(R01AN4466 only)

 │ │ fdl.lib
 │ │ fdl_types.h
 │ ├input
 │ │ r_input.c

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 33 of 71
Dec. 14, 2018

 │ │ r_input.h External Input Interrupt Driver
 │ ├it
 │ │ r_it.c 12-bit Interval Timer Driver

 │ │ r_it.h
 │ ├led
 │ │ r_led.c

LED Driver │ │ r_led.h
 │ ├plf
 │ │ r_plf.c

Platform Driver │ │ r_plf.h
 │ ├timer
 │ │ r_timer.c

Timer Array Unit Driver │ │ r_timer.h
 │ │ r_timerx.c Index Timer Feature
 │ └uart
 │ r_log.c Log Output Feature
 │ r_uart.c

UART Driver │ r_uart.h
 └project
 └cs_cc
 └BLE_Software
 │ BLE_Software.mtpj CS+ for CC Project File
 ├R5F11AGJ_MultiHop
 │ R5F11AGJ_MultiHop.mtsp CS+ for CC Sub-Project File (R01AN4375 only)
 └R5F11AGJ_MultiHopSEC
 R5F11AGJ_MultiHopSEC.mtsp CS+ for CC Sub-Project File (R01AN4466 only)

Note that Beacon Stack Library included in this project is different from the one included in the application note of
"RL78/G1D Beacon Stack Basic Operation" (R01AN3045) and is optimized for Multi-Hop Feature. When you develop
an application, use the library included in this project.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 34 of 71
Dec. 14, 2018

6.3 Building Firmware
You can use either CS+ for CC or e2 studio as an Integrated Development Environment for building a firmware of the
sample program.

Using CS+ for CC:

1. Start CS+ for CC and open the project named BLE_Software.mtpj from below folder by selecting Open from
File menu bar: [File][Open…].

- Project_Source\application\project\cs_cc\BLE_Software\

2. (R01AN4375) Right-click R5F11AGJ_Multihop(Subproject) in Project Tree window, then select Rebuild
R5F11AGJ_Multihop in the right-click menu to build the firmware.

(R01AN4466) Right-click R5F11AGJ_MultihopSEC(Subproject) in Project Tree window, then select Rebuild
R5F11AGJ_MultihopSEC in the right-click menu to build the firmware.

3. Confirm that no error occurs, and it succeeds in building a firmware.

4. (R01AN4375) Confirm that the firmware R5F11AGJ_MultiHop.hex is generated in the following folder.

- Project_Source\application\project\cs_cc\BLE_Software\R5G11AGJ_MultiHop\DefaultBuild\

(R01AN4466) Confirm that the firmware R5F11AGJ_MultiHopSEC.hex is generated in the following folder.

- Project_Source\application\project\cs_cc\BLE_Software\R5G11AGJ_MultiHopSEC\DefaultBuild\

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 35 of 71
Dec. 14, 2018

Using e2 studio:

1. Start Renesas e2 studio and select below path as a workspace.

- Project_Source\

2. Select Import from File menu bar: [File][Import] to open Import dialog.

3. Select Existing Project into Workspace from General: [General][Existing Project into Workspace] and click
[Next] button.

4. (R01AN4375) Select below path as a root folder and select R5F11AGJ_MultiHop in [Projects].

(R01AN4466) Select below path as a root folder and select R5F11AGJ_MultiHopSEC in [Projects].

- Project_Source\

5. Click [Finish] button to close Import dialog.

6. Close [Welcome].

7. (R01AN4375) Select R5F11AGJ_MultiHop in the Project Explorer.

(R01AN4466) Select R5F11AGJ_MultiHopSEC in the Project Explorer.

8. Select Build Project from Project menu: [Project][Build Project] and confirm that successful compilation.

9. (R01AN4375) Confirm that the firmware R5F11AGJ_MultiHop.hex is generated in the below path.

- Project_Source\application\project\e2_cc\BLE_Software\R5F11AGJ_MultiHop\DefaultBuild\

(R01AN4466) Confirm that the firmware R5F11AGJ_MultiHopSEC.hex is generated in the below path.

- Project_Source\application\project\e2_cc\BLE_Software\R5F11AGJ_MultiHopSEC\DefaultBuild\

Note: Default debugger setting of e2 studio erases flash memory before writing firmware.

In the case of developing by using e2 studio, change the debugger setting before starting debugging, to avoid erasing
Shipping Checking Flag and Device Address written in RL78/G1D Module. When changing the debugger setting,
disconnect the E1 Emulator from RL78/G1D Module at first.

- Select [Debugger] tab in [Edit launch configuration properties] dialog, and set [No] in [Erase Flash ROM
When Starting].

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 36 of 71
Dec. 14, 2018

6.4 Company ID
Figure 6-1 shows Company ID field in Multi-Hop frame.

Multi-Hop frame is transferred as a Manufacturer Specific Data in Advertising packet of Bluetooth Low Energy.
Manufacturer Specific Data need to be set Bluetooth Company ID.

When you develop a product, set your company ID to the sample program.

Figure 6-1 Company ID Field of Multi-Hop Frame

To set a Bluetooth Company ID, change the macro COMPANY_ID defined in the following file.

- Project_Source\application\src\r_node.c

You can confirm Bluetooth Company ID by the following web site. To assign a company ID, an application to
Bluetooth SIG is required.

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

0 1 2 3 4 5 6 7 8 9 10 30

Le
ng

th
A

D
 T

yp
e

Fo
rm

at
C

on
tro

l
N

et
w

or
k

ID
D

es
tin

at
io

n
O

rig
in

at
or

S
eq

ue
nc

e

...
C

om
pa

ny
 ID

Payload Data

50: /* Bluetooth Company ID */
51: /* https://www.bluetooth.com/specifications/assigned-numbers/company-identifie
52: #define COMPANY_ID (0xFFFF)

change to Bluetooth Company ID

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 37 of 71
Dec. 14, 2018

7. Hardware Resource Used
Hardware resources, which used by the sample program with default settings, are shown below.

MCU Unit
 Clock Generator Only the following clock frequency of High-speed on-chip oscillator: fIH can be

set as a MCU Main System Clock: fMAIN.
• 4MHz
• 8MHz: default setting
• 16MHz
• 32MHz
Only High-speed on-chip oscillator: fIH can be used as a MCU Main System
Clock: fMAIN.
External Main System Clock: fEX cannot be used.
Whether to use XT1 oscillation clock: fXT is used or not is selectable.
• use XT1oscillation: default setting
• not use XT1 oscillation (use RF on-chip oscillator)
If XT1 oscillation is used, clock should be input from MCU to RF; clock is output
from PCLBUZ0 pin and is input to EXSLK_RF pin.
If XT1 oscillation is used, connecting to a 32.768kHz resonator is required.

Clock output/buzzer output Output clock from PCLBUZ0 pin is selectable as a RF slow clock.
• use 16.384kHz clock from PCLBUZ0
• use 32.768kHz clock from PCLBUZ0
• not use clock from PCLBUZ0: default setting
If not use clock from PCLBUZ0, RF on-chip oscillation clock is required.

Timer Array Unit Operation Clock CK00 is set to 1MHz
Operation Clock CK01 is set to 250kHz
Beacon Stack uses TM00 and its operation clock is CK00
Multi-Hop Layer uses TM01 and TM02 and its operation clock is CK01

Serial array unit use CSI21
DMA controller use DMA2 and DMA3
Interrupt use INTRF

use INTDMA2
use INTDMA3
use INTTM00

RL78/G1D RF Unit
 DC-DC Converter Whether to use RF DC-DC converter or not is selectable.

• use RF on-chip DC-DC converter: default setting
• not use RF on-chip DC-DC converter
If DC-DC converter is used, external inductor/capacitor is required.

Oscillator for RF slow clock Whether to use RF on-chip oscillator or not is selectable.
• use RF on-chip oscillator: default setting
• not use RF on-chip oscillator
If not use RF on-chip oscillator, input clock to EXSLK_RF pin is required.

Clock Output Divided RF Base Clock can be output to CLKOUT_RF pin.
• not output clock: default setting
• output 16MHz clock
• output 8MHz clock
• output 4MHz clock
If not output clock is selected, CLKOUT_RF pin is input mode.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 38 of 71
Dec. 14, 2018

8. Multi-Hop API
This chapter explains the specification of Multi-Hop API provided by Multi-Hop layer.

8.1 Type
Type Name Standard Type Description

uint8_t unsigned char un-signed 8bit integer
uint16_t unsigned short un-signed 16bit integer
uint32_t unsigned long un-signed 32bit integer
int8_t signed char signed 8bit integer
int16_t signed short signed 16bit integer
int32_t signed long signed 32bit integer
bool unsigned char boolean; either true or false
int_t signed int signed integer
uint_t unsigned int un-signed integer
char_t char character
RBLE_STATUS unsigned char return value of Multi-Hop function

8.2 Macro
8.2.1 Status Macro

Macro Name Value Description
RBLE_OK 0x00 Success
RBLE_ERR_PARAM 0x01 Error: invalid parameter
RBLE_ERR_WL 0x02 Error: White List is empty
RBLE_ERR_PWRDOWN 0x03 Error: supplying power to RF unit is stopped
RBLE_ERR_PWRUP 0x04 Error: supplying power to RF unit is already started
RBLE_ERR_RFRX 0x05 Error: RF unit Rx is disabled
RBLE_ERR_START 0x06 Error: RF operation is already started
RBLE_ERR_STOP 0x07 Error: RF operation is stopped
RBLE_ERR_HW_STANDBY 0x08 Error: RF unit abnormality in STANDBY_RF
RBLE_ERR_HW_STANDBYRX 0x09 Error: RF unit abnormality in STANDBY_RF and enabling Rx
RBLE_ERR_HW_IDLE 0x0A Error: RF unit abnormality in IDLE_RF

8.2.2 Device Address Type Macro
Macro Name Value Description

RBLE_ADDR_PUBLIC 0x00 Public Device Address
RBLE_ADDR_RANDOM 0x01 Random Device Address

8.2.3 Event Macro
Macro Name Value Description

RMH_EVT_RECEIVE_IND 0x01 Frame Reception Indication
RMH_EVT_OPTION_IND 0x02 Frame Reception Indication (Option Data)
RMH_EVT_STOP_CMP 0x03 Reception Stop Completion
RMH_EVT_SEND_CMP 0x04 Transmission Completion
RMH_EVT_ENCCNT_WRN 0x05 Near an End of Encryption Counter Warning
RMH_EVT_HOP_WRN 0x06 Frame Discard by Relaying Buffer Full Warning
RMH_EVT_DUP_WRN 0x07 Frame Discard by Duplicate Check Buffer Full Warning

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 39 of 71
Dec. 14, 2018

8.3 Structure
8.3.1 Device Address Structure

Member Name Type Offset Description
struct RBLE_BD_ADDR
 addr uint8_t[6] 0 Device Address

8.3.2 Multi-Hop Configuration Structure
Member Name Type Offset Description

struct RMH_CFG
 own_addr RBLE_BD_ADDR 0 Device Address

own_addr_type uint8_t 6 Device Address Type
reserved uint8_t 7 (reserved)
company uint16_t 8 Company ID
network uint8_t 10 Network ID
node uint8_t 11 Node ID
callback void (*)(RMH_EVT*) 12 Multi-Hop Callback Function

8.3.3 Security Configuration Structure
Member Name Type Offset Description

struct RMH_SEC
 enable bool 0 enable or disable Security

reserved uint8_t 1 (reserved)
key uint8_t[16] 2 Encryption Key
counter uint32_t 18 Initial Nonce Counter

8.3.4 Frame Data Structure
Member Name Type Offset Description

struct RMH_DATA
 data uint8_t[21] 0 Frame Data

len uint8_t 21 Frame Data Length
node uint8_t 22 Node ID
reserved uint8_t 23 (reserved)

8.3.5 Option Data Structure
Member Name Type Offset Description

struct RMH_OPTION
 id uint8_t 0 Option Data ID

len uint8_t 1 Option Data Length
union data
 buf uint8_t[19] 2 Option Data

rootcheck ROOTCHECK 2 Relayed Path Log

8.3.6 Relayed Path Log Structure
Member Name Type Offset Description

struct ROOTCHECK
 counter uint16_t 0 Transmission Counter

rootlog uint8_t[15] 2 Relayed Path Log
tail uint8_t 17 Tail of Relayed Path Log

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 40 of 71
Dec. 14, 2018

8.3.7 Multi-Hop Event Structure
Member Name Type Offset Description

struct RMH_EVT
 type uint8_t 0 Event Type

reserved uint8_t 1 (reserved)
union param
 send RMH_SEND 2 Transmission Completion Parameter

receive RMH_RECEIVE 2 Reception Indication Parameter
discard RMH_DISCARD 2 Frame Discard Warning

8.3.8 Frame Transmission Indication Structure
Member Name Type Offset Description

struct RMH_SEND
 union num

 seq uint8_t 0 Sequence Number when enc is false
counter uint32_t 0 Nonce Counter when enc is true

enc bool 4 Encrypted Frame Flag

8.3.9 Frame Reception Indication Structure
Member Name Type Offset Description

struct RMH_RECEIVE
 data uint8_t[21] 0 Frame Data

len uint8_t 21 Frame Data Length
dst uint8_t 22 Destination Node ID
org uint8_t 23 Originator Node ID
union num
 seq uint8_t 24 Sequence Number when enc is false

counter uint32_t 24 Nonce Counter when enc is true
enc bool 28 Encrypted Frame Flag

8.3.10 Frame Discard Warning Structure
Member Name Type Offset Description

struct RMH_DISCARD
 dst uint8_t 0 Destination Node ID

org uint8_t 1 Originator Node ID
union num
 seq uint8_t 2 Sequence Number when enc is false

counter uint32_t 2 Nonce Counter when enc is true
enc bool 6 Encrypted Frame Flag

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 41 of 71
Dec. 14, 2018

8.4 Function
Table 8-1 shows the functions provided by Multi-Hop layer.

Table 8-1 Multi-Hop API Functions

Function Operation
R_MH_Init() Initializes Multi-Hop Feature.
R_MH_Proc() Executes Multi-Hop Processing.
R_MH_Security() Enables Security feature. (R01AN4466 only)
R_MH_Receive() Starts Receiving Multi-Hop Frame.
R_MH_Stop() Stops Receiving Multi-Hop Frame.
R_MH_Send() Sends Multi-Hop Frame.
R_MH_CheckRoot() Sends Multi-Hop Relayed Path Frame to Check Relayed Path.

8.4.1 R_MH_Init
void R_MH_Init(RMH_CFG* cfg);
This function initializes Multi-Hop Feature.
To transmit and receive Multi-Hop Frames, it is necessary to execute this function once on boot.

Regarding the implementation of callback function specified by the argument cfg->callback, refer to Usage.
Parameters:

 *cfg

own_addr Device Address of own device

own_addr_type
Device Address Type of own device
Regarding the setting, refer to subsection 8.2.2 "Device Address Type Macro".

company Company ID of own node
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

network Network ID of own node
0x00 to 0xFF

node Node ID of own node
0x00 to 0xFE

callback Callback Function to notify Multi-Hop Events
typedef void (*RMH_CALLBACK)(RMH_EVT* evt);

Return:
 None
Usage:

An example of callback function implementation is shown below.
static void node_callback(RMH_EVT* evt)
{
 switch (evt->type)
 {
 case RMH_EVT_SEND_CMP:
 /* reach here after transmitting multi-hop frame */
 break;

 case RMH_EVT_RECEIVE_IND:
 /* reach here when receiving multi-hop frame */
 break;

 case RMH_EVT_STOP_CMP:
 /* reach here after stopping frame reception */
 break;

 default:
 break;
 }
}

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 42 of 71
Dec. 14, 2018

8.4.2 R_MH_Proc
void R_MH_Proc(void);
This function executes Multi-Hop processing.

This function takes events out from Beacon Stack and executes below processing.

- After frame transmission, this function notifies that transmission is completed to application.
- After stopping reception processing, this function notifies that reception is stopped to application.
- Upon receiving a frame addressed to own node, this function notifies that frame is received to application.
- Upon receiving a frame addressed to other node, this function transmits the frame to relay.

When there is no event of Beacon Stack to be handled, this function returns.

This function needs to be executed repeatedly.
Regarding the implementation, refer to Usage.
Parameters:
 None
Return:
 None
Usage:

This function needs to be executed when Beacon Stack event occurs.
An example of implementation in main loop is shown below.

while (1)
{
 /* execute Hulti-Hop processing */
 R_MH_Proc();
}

MCU current consumption can be reduced by executing HALT or STOP instruction in main loop.
Note that some MCU peripherals are stopped by entering STOP mode. So, it is necessary to use either HALT or
STOP instruction properly depends on whether MCU peripheral is operated or not.
An example of HALT and STOP instruction implementation is shown below.

while (1)
{
 /* execute Multi-Hop processing */
 R_MH_Proc();

 __disable_interrupt();
 if(R_TIMER_IsActive())
 {
 /* HALT mode ends by un-masked interruption of either rf or other peripherals */
 __halt();
 }
 else
 {
 /* STOP mode ends by un-masked interruption of either rf or other peripherals */
 __stop();
 }
 __enable_interrupt();
}

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 43 of 71
Dec. 14, 2018

8.4.3 R_MH_Security
void R_MH_Security(RMH_SEC* sec);
This function enables Security feature and sets both an encryption key and a nonce counter.
If application does not use Security feature, it is not necessary to use this function.
Note that this function is implemented in R01AN4466 only.

Encryption key is used for transmitting, relaying and receiving encrypted frame.
So, it is necessary to set the same encryption key to all node in the network.

After enabling Security feature, Multi-Hop layer transmits encryption frame when application executes R_MH_Send().
And Multi-Hop layer receives and relays encryption frames when application executes R_MH_Receive().
Parameters:

 sec

enable
Boolean whether to enable Security feature or not
true：enable
false：disable

key 128bit Common Encryption Key
Encryption Key should be shared by all nodes having the same Network ID.

counter Initial Value of 32bit Nonce Counter
This value is used as a Nonce to randomize encrypted data.

Return:

RBLE_OK Success
RBLE_ERR_START Error: Multi-Hop processing is working.
RBLE_ERR_PARAM Error: invalid parameter

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 44 of 71
Dec. 14, 2018

8.4.4 R_MH_Receive
RBLE_STATUS R_MH_Receive(bool hop_en);
This function starts Multi-Hop frame reception processing.
When application sets the argument hop_en to true, Multi-Hop layer relays frames addressed to other nodes.

When Multi-Hop layer receives the frame addressed to either own node or all nodes, RMH_EVT_RECEIVE_IND event
is notified by the callback function.
When Multi-Hop layer relays the frame addressed to other nodes, no event is notified.

To stop reception processing, execute R_MH_Stop().
Even if reception processing works, application can send frame by executing R_MH_Send().
Parameters:

 hop_en
Boolean whether to enable relaying frames
true: enable
false: disable

Return:

RBLE_OK Success
RBLE_ERR_START Error: Multi-Hop reception processing is working.
RBLE_ERR_PARAM Error: invalid parameter

8.4.5 R_MH_Stop
RBLE_STATUS R_MH_Stop(void);
This function stops reception processing started by R_MH_Receive().

After stopping reception processing, RMH_EVT_STOP_CMP event is notified by the callback function.
Parameters:
 None
Return:

RBLE_OK Success
RBLE_ERR_STOP Error: Multi-Hop reception processing is not working.

8.4.6 R_MH_Send
RBLE_STATUS R_MH_Send(RMH_DATA* data);
This function sends Multi-Hop frame.

After the frame transmission, RMH_EVT_SEND_CMP event is notified by the callback function.
If application sends some frames, execute this function after the RMH_EVT_SEND_CMP event for each frame.
Parameters:

 *data

data Multi-Hop Frame Data

len
Multi-Hop Frame Data Length (byte)
un-encrypted frame: Max.21byte
encrypted frame: Max.14byte (R01AN4466 only)

node
Destination Node ID of Multi-Hop Frame
0x00 to 0xFE individual node
0xFF all nodes

Return:

RBLE_OK Success
RBLE_ERR_START Error: Multi-Hop transmission processing is working.
RBLE_ERR_PARAM Error: invalid parameter

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 45 of 71
Dec. 14, 2018

8.4.7 R_MH_CheckRoot
RBLE_STATUS R_MH_CheckRoot(uint8_t dst, uint16_t counter);
This function sends Relayed Path Frame to check relayed path.
Note that this function can be used when Path Check feature is enabled. Regarding the Path Check feature, refer to
section 9.1 "Path Check Feature".

After the Relayed Path Frame transmission, RMH_EVT_SEND_CMP event is notified by the callback function.
When Multi-Hop layer receives the Relayed Path Frame, RMH_EVT_OPTION_IND event is notified by the callback
function and Relayed Path Log Structure (refer to subsection 8.3.6) is set as a Frame Data in the event parameter.
Parameters:

dst

Destination Node ID of Relayed Path Frame
0x00 to 0xFE individual node
0xFF all nodes

counter counter value to identify each frame
Return:

RBLE_OK Success
RBLE_ERR_START Error: Multi-Hop transmission processing is working.
RBLE_ERR_PARAM Error: invalid parameter

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 46 of 71
Dec. 14, 2018

8.5 Event
Table 8-2 shows the events provided by Multi-Hop layer.

Multi-Hop layer notifies the following events by calling callback function registered by R_MH_Init().

Callback function to notify events is executed by R_MH_Proc().

Table 8-2 Multi-Hop API Events

Event Detail
RMH_EVT_RECEIVE_IND Notifies that frame addressed to own node was received.
RMH_EVT_OPTION_IND Notifies that frame having Option Data and addressed to own node was received.
RMH_EVT_STOP_CMP Notifies that reception processing was stopped completely.
RMH_EVT_SEND_CMP Notifies that frame transmission was finished completely.
RMH_EVT_ENCCNT_WRN Warns that near end of Encryption Nonce Counter (R01AN4466 only)
RMH_EVT_HOP_WRN Warns that frame was discarded by Relaying Buffer Full.
RMH_EVT_DUP_WRN Warns that frame was discarded by Duplicate Check Buffer Full.

8.5.1 RMH_EVT_RECEIVE_IND
RMH_EVT_RECEIVE_IND
This event notifies that frame addressed to own node was received.
When the frame that addressed to either own node ID or all nodes is received by executing R_MH_Receive(), this
event is notified by the callback function.
If an encrypted frame is received, data decrypted is stored in the parameter data.
Parameters:

data[21] Frame Data
len Frame Data Length (byte)
dst Destination Node ID
org Originator Node ID
seq un-encrypted frame: Sequence Number
counter encrypted frame: Nonce Counter

enc
Encrypted Frame Flag
true：Encrypted frame
false：Un-encrypted frame

8.5.2 RMH_EVT_OPTION_IND
RMH_EVT_RECEIVE_IND
This event notifies that the option data frame addressed to own node was received.
When the optional data frame that addressed to either own node ID or all nodes is received by executing
R_MH_Receive(), this event is notified by the callback function.
If an encrypted option data frame is received, data encrypted is stored in the parameter data.
Parameters:

data[21] Option Data
len Option Data Length (byte)
dst Destination Node ID
org Originator Node ID
seq un-encrypted frame: Sequence Number
counter encrypted frame: Nonce Counter

enc
Encrypted Frame Flag
true：Encrypted frame
false：Un-encrypted frame

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 47 of 71
Dec. 14, 2018

8.5.3 RMH_EVT_STOP_CMP
RMH_EVT_STOP_CMP
This event notifies that reception processing is stopped completely.
When reception processing is stopped by executing R_MH_Stop(), this event is notified by the callback function.
Parameters:
 None

8.5.4 RMH_EVT_SEND_CMP
RMH_EVT_SEND_CMP
This event notifies that frame transmission is finished completely.
After the frame is transmitted by executing R_MH_Send(), this event is notified by the callback function.
Parameters:

seq un-encrypted frame: Sequence Number
counter encrypted frame: Nonce Counter

enc
Encrypted Frame Flag
true：Encrypted frame
false：Un-encrypted frame

8.5.5 RMH_EVT_ENCCNT_WRN
RMH_EVT_ENCCNT_WRN
This event notifies that Encryption Nonce Counter that is set to an encrypted frame is near end and is reset to 0
soon. (R01AN4466 only).
This event is notified only when Security feature is enabled by R_MH_Security() and Nonce counter value exceeds
the threshold of warning Nonce counter.

If the event is notified, it is necessary to notify that Nonce counter is reset to all other nodes.
(Note that this handling is not implemented in this version.)
Parameters:

counter Encrypted frame: Nonce Counter

enc Encrypted Frame Flag
always true：Encrypted frame

Supplementation:

The threshold of Nonce counter is defined by the macro ENCCNT_THRESHOLD in the following file.
- Project_Source\application\src\r_multihop.c

106: /* encryption counter warning threshold to notify application */
107: #define ENCCNT_THRESHOLD (0xFFFFFFF1UL)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 48 of 71
Dec. 14, 2018

8.5.6 RMH_EVT_HOP_WRN
RMH_EVT_HOP_WRN
This event notifies that received frame should be relayed to other nodes but discarded.
If a frame is discarded because the relay frame buffer is full and a frame cannot be stored, this event is notified by
the callback function.

If this event is notified, the following factors can be considered.

- The number of nodes transmitting frames is too many.
- Frame transmission frequency sent by application is too high.

If this event is notified, it is necessary to reduce a relay frequency by reconfiguring a frame transmission frequency
of application. In addition, refer to Supplementation and expand the size of a buffer to store frame.
Parameters:

dst Destination Node ID
org Originator Node ID
seq un-encrypted frame: Sequence Number
counter encrypted frame: Nonce Counter

enc
Encrypted Frame Flag
true：Encrypted frame
false：Un-encrypted frame

Supplementation:

The number of the relaying frame buffer is defined by the macro HOP_BUFFER_NUM implemented in the
following file.

- Project_Source\application\src\r_multihop.c

Relay feature uses the timer, so the number of time management buffer is equal to the number of relaying frame
buffer.

95: /* hop frame buffer size */
96: #define HOP_BUFFER_NUM (INDEXTIMER_NUM)

The number pf time management buffer is defined by the macro INDEXTIMER_NUM implemented in the
following file.
If you change this macro, it is necessary to change it to the value which is power of 2.

- Project_Source\application\src\driver\timer\r_timer.h
45: /* the number of timer index (power of 2 (2^N)) */
46: #define INDEXTIMER_NUM (0x10)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 49 of 71
Dec. 14, 2018

8.5.7 RMH_EVT_DUP_WRN
RMH_EVT_DUP_WRN
This event notifies that the new frame is discarded.
If a new frame is discarded because the frame check buffer is full and a frame cannot be stored, this event is notified
by the callback function.

If this event is notified, it is necessary to expand the size of a buffer to store frame. Regarding how to expand the
buffer size, refer to Supplementation.
Parameters:

dst Destination Node ID
org Originator Node ID
seq un-encrypted frame: Sequence Number
counter encrypted frame: Nonce Counter

enc
Encrypted Frame Flag
true：Encrypted frame
false：Un-encrypted frame

Supplementation:

The number of duplicate frame check buffer is defined by the macro MH_NODE_NUM implemented in the
following file.

- Project_Source\application\src\r_multihop.c

Change the macro value to the number of nodes existing in the same network. This value can be set up to 0xFE.

48: /* the number of nodes existing in the network */
49: #define MH_NODE_NUM (0x40)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 50 of 71
Dec. 14, 2018

8.6 Sequence
Subsection 8.6.1 and 8.6.2 show the sequence of Multi-Hop API.

Application layer initializes Multi-Hop layer by executing R_MH_Init() and then starts frame reception operation by
executing R_MH_Receive(). When it uses the security feature, it enables the security feature, and sets and encryption
key to Multi-Hop layer by executing R_MH_Security(). (R01AN4466 only)

Multi-Hop layer notifies each event by calling callback function registered by R_MH_Init().

Note that application layer should execute R_MH_Proc(), to execute processing of Multi-Hop layer for relaying frames
or notifying events by calling callback function. Regarding how to implement, refer to subsection 8.4.2 "R_MH_Proc".

8.6.1 Frame Reception

Figure 8-1 Frame Reception

R_MH_Init()

enables Security feature
R_MH_Security()

R_MH_Receive()

receives a frame for own node

Callback function (RMH_EVT_RECEIVE_IND)

Relaying a frame
(if argument "hop_en" of R_MH_Receive is true)

receives a frame for other node

Transtmittsing a frame

R_MH_Send()

R_MH_Proc()

Callback function (RMH_EVT_SEND_CMP)

R_MH_Stop()

R_MH_Proc()

Callback function (RMH_EVT_STOP_CMP)

 RL78/G1D

Application Layer Multi-Hop Layer

R_MH_Proc()

R_MH_Proc()

relays a frame

tranimits a frame for other node

Starts reception operation

Stops reception operation

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 51 of 71
Dec. 14, 2018

8.6.2 Frame Transmission

Figure 8-2 Frame Transmission

R_MH_Init()

enables Security feature
R_MH_Security()

R_MH_Send()

R_MH_Proc()

Callback function (RMH_EVT_SEND_CMP)

Application Layer Multi-Hop Layer

transmits a frame

 RL78/G1D

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 52 of 71
Dec. 14, 2018

8.7 Frame Reception
By executing R_MH_Receive(), frame reception operation starts.

Reception operation switches Advertising channel; 37, 38, and 39ch periodically and receive frames.

By executing R_MH_Stop(), frame reception operation stops. After stopping, callback function is called and
RMH_EVT_STOP_CMP event is notified.

Figure 8-3 Frame Reception

8.7.1 Receiving Frame addressed to own node
When a frame addressed to own node is received, callback function is called and RMH_EVT_RECEIVE_IND event is
notified.

Figure 8-4 Frame Reception

8.7.2 Relaying Frame addressed to another node
By executing R_MH_Receive() that its argument hop_en is true, frame relaying operation is enabled.

When a frame addressed to another node is received, this frame is relayed.

A frame is transmitted after randomized time to avoid collision of frame transmitted by around nodes. And a frame is
transmitted to all Advertising channel three times to reach to other nodes as many as possible.

Figure 8-5 Frame Relay

105msec 105msec 105msec

 RF 37ch 38ch 39ch 37ch

 SW

R_MH_Receive() R_MH_Stop()

Callback Function
(RMH_EVT_STOP_CMP)

Reception

Frame addressed to own node

 RF 37ch 38ch 39ch 37ch

 SW

Callback Function
(RMH_EVT_RECEIVE_IND)

R_MH_Receive() R_MH_Stop()

Callback Function
(RMH_EVT_STOP_CMP)

Reception

Frame addressed to other node
120msec 120msec

random(30msec ~ 58.5msec) random(30msec ~ 58.5msec) random(30msec ~ 58.5msec)

 RF 37ch 37ch 38ch 39ch

 SW

37 38 39ch 37 38 39ch 37 38 39ch

R_MH_Receive
(hop_en=true)

Callback Function
(RMH_EVT_STOP_CMP)

R_MH_Stop()

Reception
Transmission

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 53 of 71
Dec. 14, 2018

8.8 Frame Transmission
By executing R_MH_Send(), frame is transmitted.

A frame is transmitted after randomized time to avoid collision of frame transmitted by around nodes. And a frame is
transmitted to all Advertising channel three times to reach to other nodes as many as possible.

After frame transmission, RMH_EVT_SEND_CMP event is notified by calling callback function.

Figure 8-6 Frame Transmission

8.8.1 Transmitting frame in reception operation
It is possible to transmit a frame even if frame reception operation has executed.

By executing R_MH_Send() in reception operation, a frame is transmitted. After transmitting, callback function is
called and RMH_EVT_RECEIVE_IND event is notified.

Figure 8-7 Frame Transmission

120msec 120msec

random(0msec ~ 28.5msec) random(0msec ~ 28.5msec)

 RF

 SW

37 38 39ch 37 38 39ch 37 38 39ch

Callback Function
(RMH_EVT_SEND_CMP)

R_MH_Send()

Transmission

120msec 120msec

random(0msec ~ 28.5msec) random(0msec ~ 28.5msec)

 RF 37ch 37ch 38ch 39ch

 SW

37 38 39ch 37 38 39ch 37 38 39ch

Callback Function
(RMH_EVT_SEND_CMP)

Calback Function
(RMH_EVT_STOP_CMP)

R_MH_Send()R_MH_Receive() R_MH_Stop()

Reception
Transmission

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 54 of 71
Dec. 14, 2018

8.9 Transmission and Reception Channels
As shown in section 8.7 and 8.8, Multi-Hop layer transmits and receives frames by all Advertising channels.

In addtion, transmittion and reception channel can be limited only one channel. To limit the channel, change the macro
MH_ALL_CH_EN to (0) and MH_SINGLE_CH to channel used. These macros are defined in the following file.

- Project_Source\application\src\r_multihop.c

Figure 8-8 shows the frame reception operation on only one channel.

Figure 8-8 Frame Reception on Only One Channel
Figure 8-9 shows the frame transmission operation on only one channel. A frame is transmitted three times.

Figure 8-9 Frame Transmission on Only One Channel

 RF 37ch

 SW

Callback Function (RMH_EVT_STOP_CMP)

R_MH_Receive() R_MH_Stop()

Reception

40msec 40msec

random(0msec ~ 9.5msec) random(0msec ~ 9.5msec)

37ch 37ch 37ch
 RF

 SW

Callback Function (RMH_EVT_SEND_CMP)

R_MH_Send()

Transmission

51: /* 1: uses ALL advertising channels for multi-hop transmission/reception. *
52: /* 0: uses SINGLE advertising channel for multi-hop transmission/reception. *
53: #define MH_ALL_CH_EN (1)
54: #if !MH_ALL_CH_EN
55: #define MH_SINGLE_CH (RBLE_ADV_CHANNEL_37)
56: #endif

Change to (0)

Change to either 37, 38 or 39

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 55 of 71
Dec. 14, 2018

9. Appendix
9.1 Path Check Feature
A feature to check frame relay path is implemented in the sample program. By using this feature, you can confirm that
which node relayed a frame.

To enable path check feature, change the macro HOP_ROOT_CHECK to (1) defined in the following file.

Note that by enabling this feature, Security feature is disabled.

- Project_Source\application\src\r_multihop.h

Next, write the firmware which is enabled this feature to all evaluation board. By pushing the switch SW2 on the
evaluation board, it starts to transmit frames to ID0 periodically.

Node of ID0 outputs the relay path log of received frame via UART with the following format.

SerialNumber ORG -> DST SEQ FrameDataSize [FrameNumber] RelayPath

Figure 9-1 shows example log of relay path that node of ID 3 transmits to node of ID0.

Figure 9-1 Example Log of Relay Path

By checking this path log, you can confirm that each frame was relayed the following path.

ID=3→ID=2→ID=1→ID=0 ：frame 24
ID=3→ID=1→ID=0 ：frame 21 and 22
ID=3→ID=2→ID=0 ：the other frames

44: /* 1: enables the function to check hopping root */
45: /* 0: normal operation; disable the function to check */
46: #define HOP_ROOT_CHECK (1)

Change to (1)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 56 of 71
Dec. 14, 2018

9.2 Device Filter
For demonstration use, device filter is implemented in the sample program. By using it, only advertising packets that is
transmitted by the specified device is received, but other advertising packets are discarded. You can evaluate Multi-Hop
feature in the case that each frame is relayed in the restricted path.

To enable the device filter, change the macro DEV_ADDR_FILTER to (1) defined in the following file.

- Project_Source\application\src\r_multihop.h

Device Address which is written by using the system configuration included in the package is DC:D7:2C:71:F4:xx of
Random Device Address; XX is Node ID.

e.g.) Node ID0： DC:D7:2C:71:F4:00
 Node ID1： DC:D7:2C:71:F4:01

If you use the device filter with no change from default setting, each device transmits and receives frames only between
the device having a neighborhood node ID: that means own node ID +1 or own node -1.

Figure 9-2 shows the frame relay path restricted by the device filter of the default setting.

Figure 9-2 Path Restricted by Device Filter

The following firmware is built by changing the macro DEV_ADDR_FILTER to (1).

- ROM_File\R5F11AGJ_MultiHop(DEV_FILTER).hex

ID2
DC:D7:2C:71:F4:02

ID1
DC:D7:2C:71:F4:01

×

ID0
DC:D7:2C:71:F4:00

ID3
DC:D7:2C:71:F4:03

Frame

ID4
DC:D7:2C:71:F4:04

FrameFrame

Only a frame from node of either (own ID + 1) or (own ID - 1) is received and relayed.

×

ID5
DC:D7:2C:71:F4:05

Frame Frame

48: /* 1: receives the frame from only the device addresses registered in addr_fil
49: /* 0: normal operation; receives the frame without filtering. */
50: #define DEV_ADDR_FILTER (0)

Change to (1)

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 57 of 71
Dec. 14, 2018

9.3 Device Driver
This section explains the specification of device driver functions implemented in the sample program.

Device drivers can be customized, because source code files of device driver are included in the package.

9.3.1 Platform (Clock and Port)
The sample program initializes platform: clock and port.

The source codes of the platform driver are included in the following folder.

- Project_Source\application\src\driver\plf

The specification of the platform driver is described as follows.

bool R_PLF_Init(void);
This function initializes the platform, clock and ports.

- Hi-speed on-chip oscillator
- XT1 oscillation and Low-speed on-chip oscillator
- Sub Clock output
- I/O ports

This function is assumed that the sample program works on RL78/G1D Evaluation Board (RTK0EN0001D01001BZ).
If you use other RL78/G1D board, it is necessary to modify the ports setting implemented in this function.
Parameters:
 None
Return:

true Success
false Failed, User Option Byte is wrong

Regarding the user option bytes, refer to refer to the chapter25 "Option Byte" in RL78/G1D User's Manual: Hardware
(R01UH0515).

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 58 of 71
Dec. 14, 2018

9.3.2 12-bit Interval Timer
Application layer used 12-bit Interval Timer to transmit a frame periodically.

The source codes of the 12-bit interval timer driver are included in the following folder.

- Project_Source\application\src\driver\it

The specification of the 12-bit interval timer driver is described as follows.

void R_IT_Init(void);
This function initializes 12-bit Interval Timer.
Parameters:
 None
Return:
 None

void R_IT_Start(uint16_t time, IT_CALLBACK callback);
This function starts 12-bit Interval Timer Operation.
The 12-bit Interval timer can still operate even when MCU is STOP mode.
When the timer expires, callback function specified by argument callback is executed.
Parameters:

time

Compare Value
0x0001 to 0x0FFF
subsystem clock (32.768kHz)：(time+1)×30.5usec
low-speed on-chip oscillator clock (15kHz)：(time+1)×66.6usec

callback Callback Function to notify Timer Expires
typedef void (*IT_CALLBACK)(void);

Return:
 None

void R_IT_Stop(void);
This function stops 12-bit Interval Timer Operation.
Parameters:
 None
Return:
 None

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 59 of 71
Dec. 14, 2018

9.3.3 Timer Array Unit
Multi-Hop layer uses Timer Array Unit to control frame transmission cycle. In addition, application can use the timer
array unit for various use.

channel 0: used by Beacon Stack

channel 1 and 2: used by Multi-Hop layer

channel 3: used by UART driver

channel 4 to 7: not used, application can use them

The source codes of the timer array unit driver are included in the following folder.

- Project_Source\application\src\driver\timer

The specification of the timer array unit driver is described as follows.

void R_TIMER_Init(void);
This function initializes Timer Array Unit.
After initialization, Channel 1 to 7 of the Timer Array Unit can be used.
Parameters:
 None
Return:
 None

bool R_TIMER_IsActive(void);
This function checks operation state of Timer Array Unit.
Parameters:
 None
Return:

true any channel of Timer Array Unit is operating.
false all channel of Timer Array Unit is not operating.

void R_TIMER1_Start(uint16_t time, TIMER_CALLBACK callback);
 :
void R_TIMER7_Start(uint16_t time, TIMER_CALLBACK callback);
Each function starts timer operation of each channel 1 to 7of Timer Array Unit.
The Timer Array Unit stops when MCU is STOP mode.
When the timer expires, callback function specified by argument callback is executed.
Parameters:

time

Compare Value
1 to 500
The timer per 1 clock is 0.5msec

callback Callback Function to notify Timer Expires
typedef void (*TIMER_CALLBACK)(void);

Return:
 None

void R_TIMER1_Stop(void);
 :
void R_TIMER7_Stop(void);
Each function stops timer operation of each channel 1 to 7of Timer Array Unit.
Parameters:
 None
Return:
 None

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 60 of 71
Dec. 14, 2018

void R_TIMER1_Elapsed(void);
 :
void R_TIMER7_Elapsed(void);
Each function checks elapsed time of each channel 1 to 7of Timer Array Unit.
Parameters:
 None
Return:

Elapsed Time
1 to 500
The time per 1 clock is 0.5msec

void R_TIMERX_Init(TIMERX_CALLBACK callback);
This function initializes Index Timer.
The Index Timer uses only Timer Array Unit Channel 0 and can measure multiple time simultaneously.
Each Index Timer is identified by index. Index can be specified in the range of 0 to 15.
The index of expired timer is notified by argument of the callback function.
Parameters:

 callback
Callback Function to notify Each Index Timer Expires.
typedef void (*TIMERX_CALLBACK)(uint8_t);
The index of timer expiring is notified by argument of the callback function.

Return:
 None

void R_TIMERX_Start(uint8_t idx, uint16_t time);
This function starts each Index Timer operation.
Note that the Index Timer uses Timer Array Unit. So, this timer also stops if MCU is STOP mode.
When the Index Timer expires, the callback function specified by argument callback of R_TIMERX_Init().
Parameters:

idx Index of Index Timer
0 to 15

time
Compare Value
1 to 500
The timer per 1 clock is 0.5msec

Return:
 None

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 61 of 71
Dec. 14, 2018

9.3.4 Data Flash
Application layer uses data flash memory to store Nonce counter value for the security feature.

The source codes of the data flash driver are included in the following folder. (R01AN4466 only)

- Project_Source\application\src\driver\dataflash

Note that this driver uses Data Flash Library.

EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78 Family
https://www.renesas.com/software-tool/data-flash-libraries

The specification of the data flash driver is described as follows.

uint8_t R_DFL_Init(void);
This function initializes Data Flash Driver.
Parameters:
 None
Return:

DFL_OK Success
others Error

uint8_t R_DFL_Start(void);
This function starts Data Flash operation.
After executing this function, Data Flash becomes accessible and below functions can be executed.

- R_DFL_Read()
- R_DFL_Write()
- R_DFL_Refresh()
- R_DFL_Format()

After executing this function, MCU cannot be changed into HALT mode or STOP mode.
Before changing into either HALT mode or STOP mode, it is necessary to execute R_DFL_STOP().
Parameters:
 None
Return:

DFL_OK Success
others Error

uint8_t R_DFL_Stop(void);
This function stops Data Flash operation.
After executing this function, Data Flash becomes inaccessible.
Parameters:
 None
Return:

DFL_OK Success
others Error

https://www.renesas.com/software-tool/data-flash-libraries

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 62 of 71
Dec. 14, 2018

uint8_t R_DFL_Read(const uint8_t id, void* addr);
This function reads data specified by argument id from Data Flash.
Below Data ID are defined in advance.

Data ID for 4byte: EEL_ID_DATA01 and EEL_ID_DATA02
Data ID for 8byte: EEL_ID_DATA03 and EEL_ID_DATA04
Data ID for 16byte: EEL_ID_DATA05 and EEL_ID_DATA06
Data ID for 32byte: EEL_ID_DATA07 and EEL_ID_DATA08

Parameters:

id Data ID
addr Address of Data Buffer

Return:

DFL_OK Success
DFL_ERR_PARAMETER Error: invalid parameter
others Error

uint8_t R_DFL_Write(const uint8_t id, void* addr);
This function writes data specified by argument id to Data Flash.
Below Data ID are defined in advance.

Data ID for 4byte: EEL_ID_DATA01 and EEL_ID_DATA02
Data ID for 8byte: EEL_ID_DATA03 and EEL_ID_DATA04
Data ID for 16byte: EEL_ID_DATA05 and EEL_ID_DATA06
Data ID for 32byte: EEL_ID_DATA07 and EEL_ID_DATA08

Parameters:

id Data ID
addr Address of Data Buffer

Return:

DFL_OK Success
DFL_ERR_PARAMETER Error: invalid parameter
DFL_ERR_NO_INSTANCE Error: data not existed
DFL_ERR_POOL_FULL Error: block used is full
others Error

uint8_t R_DFL_Refresh(void);
This function refreshes block state of Data Flash.
Data in Data Flash are maintained.
Parameters:
 None
Return:

DFL_OK Success
others Error

uint8_t R_DFL_Format(void);
This function formats Data Flash.
Data in Data Flash are erased.
Parameters:
 None
Return:

DFL_OK Success
others Error

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 63 of 71
Dec. 14, 2018

9.3.5 UART
Application layer uses UART to output frame data log.

The source codes of the UART driver are included in the following folder.

- Project_Source\application\src\driver\uart

The specification of the UART driver is described as follows.

bool R_UART_Init(UART_INFO* info);
This function initializes UART0 of Serial Array Unit.
Parameters:

 info

baudrate

UART Baud Rate
UART_BAUDRATE_9600_BPS 9,600bps
UART_BAUDRATE_115200_BPS 115,200bps
UART_BAUDRATE_1M_BPS 1,000,000bps

rx_tout

UART Reception Timeout
1 to 100msec
If data of the specified size is not received within this timeout time, received data
is discarded and UART reception restarts.
If 0 is set, Rx Timeout is disabled.

rx_callback callback function to notify data is received after executing R_UART_Rx()
tx_callback callback function to notify data is transmitted by executing R_UART_Tx()
err_callback callback function to notify reception error occurs after executing R_UART_Rx()

Return:

true Success
false Failed

bool R_UART_IsActive(void);
This function checks UART operation status.
Parameters:
 None
Return:

true UART operation works.
false UART operation does not work.

void R_UART_Rx(__near uint8_t *rxbuf, const uint16_t size);
This function starts UART reception operation.
Received data is stored in the data buffer specified by the argument rxbuf.
When data of the size specified by the argument size is received completely, UART driver executes callback function
registered by the argument info->rx_callback of R_UART_Init().
Parameters:

rxbuf Received Data Buffer

size Data Size
1 to 1024byte

Return:
 None

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 64 of 71
Dec. 14, 2018

void R_UART_Tx(__near const uint8_t *txbuf, const uint16_t size);
This function starts UART data transmission.
Data in the data buffer specified by the argument txbuf is transmitted.
When data of the size specified by the argument size is transmitted completely, UART driver executes callback
function registered by the argument info->tx_callback of R_UART_Init().
Parameters:

txbuf Data to be transmitted

size Data Size
1 to 1024byte

Return:
 None

void R_LOG_Init(uint8_t baudrate);
This function initializes the log output feature.
The log output feature has multiple log buffer and transmits data stored in the buffer by using UART.
This function executes R_UART_Init() to use UART.
Parameters:

 baudrate

UART Baudrate
UART_BAUDRATE_9600_BPS 9,600bps
UART_BAUDRATE_115200_BPS 115,200bps
UART_BAUDRATE_1M_BPS 1,000,000bps

Return:

true Success
false Failed

bool R_LOG_Send(char_t* string);
This function transmits log string.
Log string specified by the argument string is stored to log buffer and is transmitted by UART.
This function executes R_UART_Tx() to transmits log string.
Parameters:

 string Log String
1 to 200byte

Return:

true Success to store log to buffer.

Stored log is transmitted in order.
false Failed to store log to buffer, because of buffer full.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 65 of 71
Dec. 14, 2018

9.3.6 External Input Interrupt
Application layer uses External Input Interrupt to detect that switch of the evaluation board is pushed.

The source codes of the external input interrupt driver are included in the following folder.

- Project_Source\application\src\driver\input

The specification of the external input interrupt driver is described as follows.

void R_INPUT_Init(input_callback_t callback);
This function initializes external input interrupt.
This function enables rising edge detection of INTP5/P16 connected to switch SW2 of the evaluation board.
When the external input interrupt occurs, the external input interrupt driver executes callback function specified by the
argument callback.
Parameters:

 callback Callback Function to notify External Input Interrupt
typedef void (*input_callback_t)(void);

Return:
 None

9.3.7 LED
Upon receiving a frame, Application layer changes LED status of the evaluation board. Moreover, upon relaying a
frame, Multi-Hop layer changes LED status.

The source codes of the LED driver are included in the following folder.

- Project_Source\application\src\driver\led

The specification of the LED driver is described as follows.

void R_LED_Init(void);
This function initializes P120, P147, P03, and P60 connected to LED1 to LED4 on RL78/G1D Evaluation Board.
Parameters:
 None
Return:
 None

void R_LED_Set(uint8_t led);
This function changes LED states on RL78/G1D Evaluation Board.
Parameters:

 led

LED status
bit0：LED1 (0: off, 1: on)
bit1：LED2 (0: off, 1: on)
bit2：LED3 (0: off, 1: on)
bit3：LED4 (0: off, 1: on)

Return:
 None

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 66 of 71
Dec. 14, 2018

9.4 Example of Measuring Frame Transport Ratio
This section shows the evaluation result of the frame transport ratio of Multi-Hop Feature in our environment.

9.4.1 Notice
The result described in this section is NOT guaranteed performance but for reference only. It is recommended to
measure with the condition of actual use case.

9.4.2 Operation
This evaluation was conducted in a building of ours company. Many wireless LAN devices and other Bluetooth devices
had run in this environment.

Figure 9-3 shows the overview of the evaluation. Each RL78/G1D Evaluation Board was placed at intervals of
6.5meters. A firmware to evaluate the frame transport ratio was written to these boards. And, ID number was assigned
to each board in order. The board of ID0 was connected to PC via USB, and other boards were connected to a battery.

Figure 9-3 Overview of Measuring Frame Transport Ratio
Originator node transmitted Multi-Hop frames to node 0. In the evaluation, we measured a ratio that node0 received
frames as a frame transport ratio.

Table 9-1 shows the configuration of the evaluation program. For this evaluation, transmit power was changed from the
default configuration of Multi-Hop layer.

Table 9-1 Configuration of the evaluation program

Item Condition

MCU Main System Clock 8MHz
DC-DC converter Uses RF on-chip DC-DC converter.
Oscillator for RF slow clock Uses RF on-chip oscillator and executes calibration.
Transmission Power -15dBm (changed from default)

To shorten a reach distance of frame transmitted by each node, transmission
power is changed from 0dBm to -15dBm.

Transmission Channel Uses 3channels (37,38,39ch)
Multi-Hop Operation Enables Path Check feature and disables Security feature.

Regarding the Path Check feature, refer to section 9.1 "Path Check Feature".

USB connection for supplying power
and serial communication

Originator node Relay Node Relay Node Relay Node

Battery Battery Battery Battery

PC for saving log

Originator node transmtted frames to Node0 periodically, and each frame is relayed by Relay node.
We measured the number of frames received by Node0.

6.5m 6.5m6.5m

………
Node0

6.5m

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 67 of 71
Dec. 14, 2018

Figure 9-4 shows the sequence of the evaluation program measuring frame transport ratio.

Originator node transmits frames to node0. Nodes other than originator node and node0 relay frames. Frames reach
node0 finally. Note that frame relay path may be different from each other.

Frame transport ratio is calculated with the following expression.

Frame transport ratio = the number of frames received by node0 / the number of frames transmitted by originator

Figure 9-4 Sequence of Measuring Frame Transport Ratio

Log99

Frame99 Frame99
………… Frame99

Log1

…
…

…
…

………… Frame1

Frame1 Frame1
Log0

Frame0
Frame0

………… Frame0

Originator NodeX NodeY NodeZ Node0

Originator node transmits
frames to Node0 periodically.

Upon receiving a frame,
Node0 outputs frame log.

Relay Nodes

Each relay node relays frames.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 68 of 71
Dec. 14, 2018

9.4.3 Frame transport ratio in the case of with or without relaying

(1) Procedure

We measured a transport ratio in the case of both with and without relay nodes. By this measurement, we checked the
effect of frame relaying by Multi-Hop Feature.

Figure 9-5 shows the node composition with relay nodes. Similarly, Figure 9-6 shows the composition without relay
node.

In the both composition, originator node transmitted a frame to node0 every 500 milliseconds. Further, each transport
ratio was measured respectively in condition that originator node is node1 to node 6.

Figure 9-5 Measurement Composition without Relay Node

Figure 9-6 Measurement Composition with Relay Node

Node0

Relay nodes (other than Originator node and Node0)
relays frame. (But how frame will be relayed is not specified.)

26m 19.5m 13m 6.5m 0m39m 32.5m

Originator node (either one of Node1 to Node6)
transmits frame to Node0 every 500 milliseconds.

Node1Node2Node3Node4Node5Node6

Node0

26m 19.5m 13m 6.5m 0m39m 32.5m

Originator node (either one of Node1 to Node6)
transmits frame to Node0 every 500 milliseconds.

Node1Node2Node3Node4Node5Node6

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 69 of 71
Dec. 14, 2018

(2) Result

Table 9-2 and Figure 9-7 shows the measurement result of frame transport ratio in the case of both with and without
relay node. Each originator node transmitted frames every 500 milliseconds.

Table 9-2 Result of frame transport ratio in the case of both with and without relay node

Originator Without Relay With Relays
Node1 99.5%
Node2 100.0% 100.0%
Node3 70.5% 100.0%
Node4 0.0% 100.0%
Node5 0.0% 100.0%
Node6 1.0% 100.0%

Figure 9-7 The Result of Frame Transport Ratio

In the measurement result, when there was not relay node, the transport ratio declined gradually as it gets longer. When
originator was either node4 to node6, the transport ratio was almost 0%.

On the other hand, when there were relay nodes, the transport ratio was 100% even if originator node was either node3
to node6.

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 70 of 71
Dec. 14, 2018

9.4.4 Frame transport ratio in the case of shortened frame transmission cycle
In the previous measurement, originator node transmitted frames every 500 milliseconds. This subsection shows a
frame transport ratios of shortened transport cycle.

(1) Procedure

We also measured a transport ratio in the case of shorted frame transmission cycle. The cycle was 100 milliseconds, 250
milliseconds, and 500 milliseconds.

By the following configuration change, frame transmission cycle and frame relay cycle were shortened.

- Project_Source\application\src\r_multihop.c

Before changing r_multihop.c:

After changing r_multihop.c:

(2) Result

Table 9-3 shows the result of frame transport ratio in the case of shortened frame transmission cycle: 100 milliseconds,
250 milliseconds. and 500 milliseconds.

Table 9-3 Result of frame transport ratio in the case of shortened frame transmission cycle

Originator Cycle 100msec Cycle 250msec Cycle 500msec
Node2 99.7% 100.0% 100.0%
Node3 99.7% 100.0% 100.0%
Node4 99.3% 99.7% 100.0%
Node5 100.0% 100.0% 100.0%
Node6 100.0% 100.0% 100.0%

In the measurement result, by shortening a transmission cycle, the transport ratio declined slightly. At least in this
environment, it is necessary to set a transmission cycle over than 250 milliseconds.

Shortening a transmission cycle might increase a probability of frame collision; for example, a frame may collide with
frames from originator node or other relay node, or packets from another wireless communication device. And then a
transport ratio might decline.

In this measurement, each node was placed in a line. However, note that when nodes are placed at high density, a
probability of frame collision may increase.

71: /* unit:0.5msec value:120msec */
72: #define MH_TX_INTERVAL (240)
73:
74: /* unit:0.5msec resolution:1.5msec range:30msec to 58.5msec */
75: #define MH_RAND_RANGE (57)
76: #define MH_RAND_OFFSET (60)
77: #define MH_RAND_TIME() (((((uint16_t)rand()) & 0xFF) * MH_RAND_RANGE * 3)
78: #define MH_RAND_MAX (MH_RAND_RANGE + MH_RAND_OFFSET)

724: R_HopTimer_Start(idx, gs_hop_buf[idx].delay);

71: /* unit:0.5msec value:10msec */
72: #define MH_TX_INTERVAL (20)
73:
74: /* disable random delay */
75: #define MH_RAND_RANGE (0) /* 0msec */
76: #define MH_RAND_OFFSET (0) /* 0msec */
77: #define MH_RAND_TIME() (0) /* 0msec */
78: #define MH_RAND_MAX (0)

724: R_HopTimer_Start(idx, MH_TX_INTERVAL);

RL78/G1D Beacon Stack Multi-Hop Feature (without Security)

R01AN4375EJ0100 Rev.1.00 Page 71 of 71
Dec. 14, 2018

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	1.1 Use-Case
	1.1.1 Broadcasting a command (e.g. Lighting Control)
	1.1.2 Gathering a data (e.g. Sensor Data)

	2. System architecture
	3. Multi-Hop Layer Specification
	3.1 Basic Operation
	3.2 Networks and Nodes
	3.3 Security
	3.4 Multi-Hop Frame
	3.4.1 Encrypted Frame
	3.4.2 Option Data Frame

	3.5 Transmitting and Receiving

	4. Application Layer Specification
	4.1 Operation
	4.2 Frame Data
	4.3 System Configuration
	4.4 Sequence

	5. Operating Procedure
	5.1 Operation Environment
	5.2 Slide-Switch Setting
	5.3 Writing Firmware
	5.4 Operation

	6. Building Procedure
	6.1 Developing Environment
	6.2 File Composition
	6.3 Building Firmware
	6.4 Company ID

	7. Hardware Resource Used
	8. Multi-Hop API
	8.1 Type
	8.2 Macro
	8.2.1 Status Macro
	8.2.2 Device Address Type Macro
	8.2.3 Event Macro

	8.3 Structure
	8.3.1 Device Address Structure
	8.3.2 Multi-Hop Configuration Structure
	8.3.3 Security Configuration Structure
	8.3.4 Frame Data Structure
	8.3.5 Option Data Structure
	8.3.6 Relayed Path Log Structure
	8.3.7 Multi-Hop Event Structure
	8.3.8 Frame Transmission Indication Structure
	8.3.9 Frame Reception Indication Structure
	8.3.10 Frame Discard Warning Structure

	8.4 Function
	8.4.1 R_MH_Init
	8.4.2 R_MH_Proc
	8.4.3 R_MH_Security
	8.4.4 R_MH_Receive
	8.4.5 R_MH_Stop
	8.4.6 R_MH_Send
	8.4.7 R_MH_CheckRoot

	8.5 Event
	8.5.1 RMH_EVT_RECEIVE_IND
	8.5.2 RMH_EVT_OPTION_IND
	8.5.3 RMH_EVT_STOP_CMP
	8.5.4 RMH_EVT_SEND_CMP
	8.5.5 RMH_EVT_ENCCNT_WRN
	8.5.6 RMH_EVT_HOP_WRN
	8.5.7 RMH_EVT_DUP_WRN

	8.6 Sequence
	8.6.1 Frame Reception
	8.6.2 Frame Transmission

	8.7 Frame Reception
	8.7.1 Receiving Frame addressed to own node
	8.7.2 Relaying Frame addressed to another node

	8.8 Frame Transmission
	8.8.1 Transmitting frame in reception operation

	8.9 Transmission and Reception Channels

	9. Appendix
	9.1 Path Check Feature
	9.2 Device Filter
	9.3 Device Driver
	9.3.1 Platform (Clock and Port)
	9.3.2 12-bit Interval Timer
	9.3.3 Timer Array Unit
	9.3.4 Data Flash
	9.3.5 UART
	9.3.6 External Input Interrupt
	9.3.7 LED

	9.4 Example of Measuring Frame Transport Ratio
	9.4.1 Notice
	9.4.2 Operation
	9.4.3 Frame transport ratio in the case of with or without relaying
	(1) Procedure
	(2) Result

	9.4.4 Frame transport ratio in the case of shortened frame transmission cycle
	(1) Procedure
	(2) Result

