

Customer Notification

RL78/F13 Family

16-bit Single-Chip Microcontroller

Injected Current Specification

Document No. R01TU0058ED0102 Date Published October 2015 (Rev 1.02)

© Renesas Electronics Europe GmbH

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of 2. third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3 You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 4. semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- When exporting the products or technology described in this document, you should comply with the applicable export control 5. laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 6. does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. "Standard":

Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-"High Quality":

crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, specific characteristics such as the occurrence of radiation resistance data fraid and maintenance in control and second the second sec of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility 10. of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 11. Flectronics
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 12. document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table of Contents

1.	Related Products	4
2.	Port Pin Groups	
3.	Electrical Specification for Injected Current	
4.	The influence on an adjacent pin caused by the Injected Current	
5.	Valid Specification	10
6.	Revision History	11

1. Related Products

Series	Pin	Package	Product Name	Temperature
	Count	Type		Grades
RL78/F13	20-pins	SSOP	R5F10A6A /C /D /E	L, K, Y
	30-pins	SSOP	R5F10AAA /C /D /E,	
			R5F10BAC /D /E /F /G	
	32-pins	QFN	R5F10ABA /C /D /E,	
			R5F10BBC /D /E /F /G	
	48-pins	QFP	R5F10AGA /C /D /E /F /G,	
		QFN	R5F10BGC /D /E /F /G	
	64-pins	QFP	R5F10ALC /D /E /F /G,	
			R5F10BLC /D /E /F /G	
	80-pins	QFP	R5F10AME /F /G,	
			R5F10BME /F /G	

Formatted: German (Germany)

2. Port Pin Groups

Depending on the products the corresponding ports are split into four groups:

Products		Port	Port	Port	Port
		Group A	Group B	Group C	Group D
20 pin	R5F10A6A, R5F10A6C R5F10A6D, R5F10A6E	P13-P17, P30, P120, P125		P80-P81	•
30 pin	R5F10AAA, R5F10AAC, R5F10AAD, R5F10AAE	P10-P17, P30, P41, P120, P125		P80-P87	
30 pin	R5F10BAC, R5F10BAD, R5F10BAE, R5F10BAF, R5F10BAG	P10-P17, P30, P41,	P120, P125	P80, P85-P87	P81-P84
	R5F10ABA, R5F10ABC, R5F10ABD, R5F10ABE	P10-P17, P30, P41, P60-P63, P120, P125		P80-P85	
32 pin	R5F10BBC, R5F10BBD, R5F10BBE, R5F10BBF, R5F10BBG	P10-P17, P30, P41, P60-P63	P120, P125	P80, P85	P81-P84
48 pin	R5F10AGA, R5F10AGC, R5F10AGD, R5F10AGE	P00, P10-P17, P30-P32, P41 P60-P63, P70-P73, P92, P120, P125, P140		P80-P87, P90-P91	
	R5F10AGF, R5F10AGG, R5F10BGC, R5F10BGD, R5F10BGE, R5F10BGF, R5F10BGG	P00, P10-P17, P30-P32, P41, P60-P63, P70-P73, P140	P120, P125	P80, P85-P87, P90-P92	P81-P84
	R5F10ALC, R5F10ALD, R5F10ALE	P00, P10-P17, P30-P32, P41-P43, P50-P53, P60-P63, P70-P77, P92-P96, P120, P125, P140		P80-P87, P90-P91	
64 pin	R5F10ALF, R5F10ALG, R5F10BLC, R5F10BLD, R5F10BLE, R5F10BLF, R5F10BLG	P00, P10-P17, P30-P32, P41-P43, P50-P53, P60-P63, P70-P77, P140	P96, P120, P125	P80, P85-P87, P90-P95	P81-P84
80 pin	R5F10AME, R5F10AMF, R5F10AMG, R5F10BME, R5F10BMF, R5F10BMG	P00-P02, P10-P17, P30-P32, P41-P47, P50-P57, P60-P67, P70-P77, P126, P140	P96-P97, P120, P125	P80, P85-P87, P90-P95	P81-P84

3. Electrical Specification for Injected Current

(Ta = -40 to +150 °C, $2.7V \le V_{DD} = EV_{DD0} \le 5.5V$, $V_{SS} = EV_{SS0} = 0V$) (Note 1)

$1a = -40 \text{ to } +150 \text{ °C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{UV}$ (Note 1)						
Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Pos. Injected Current		Per input pin (Group A) (Note 4)			5	mA
$V_{IN} > V_{DD}$ (Peak value) (Note 2)	I _{INJP}	Per input pin (Groups B, C, D)			2	mA
Neg. Injected Current		Per input pin (Group A) (Note 2)			-5	mA
V _{IN} < V _{SS} (Peak value) ^(Note 2)	linjn	Per input pin (Groups B, C, D)			-0.5	mA
Sum of all Positive	5 I	Sum for all input pins (Group A) (Note 4)			40	mA
Injected Currents (Peak value) (Note 3)	ΣI _{INJP}	Sum for all input pins (Groups B, C, D)			10	mA
Sum of all Negative	Σ I _{INJN}	Sum for all input pins (Group A)			-40	mA
Injected Currents (Peak value) (Note 3)		Sum for all input pins (Groups B, C, D)			-2.0	mA
Total Sum of all Injected Currents (Positve and	Σ I _{INJP}	Total Sum for all input pins (Group A) (Note 4)			40	mA
Negative) (Peak value) (Note 3)	+ Σ I _{INJN}	Total Sum for all input pins (Groups B, C, D)			10	mA
		Per input pin (Group A) (Note 4)			0.4	mA
Pos. Injected Current		Per input pin (Groups B, C, D)			0.15	mA
$V_{\text{IN}} > V_{\text{DD}}$	l l	Sum for all input pins (Group A) (Note 4)			4	mA
(Average value) (Note 5, 6)		Sum for all input pins (Group B, C, D**)			1	mA
		D**: Sum for all pins belonging to D			0.15	mA

- Note 1: 64-pin and 80-pin products have EV $_{DD0}$, EV $_{SS0}$. For all other products EV $_{DD0}$ is V $_{DD}$ and EV $_{SS0}$ is V $_{SS}$
- Note 2: If any of the Injected Current specifications (Peak values) are exceeded even momentarily, there is a possibility to destroy the device.
- Note 3: If the Sum of the Injected Current specifications (Peak values) are exceeded even momentarily, there is a possibility to destroy the device.
- Note 4: The injected current specification ($V_{IN} > V_{DD} = I_{INJP} \& I_{INJPAVG}$) is not valid for P137/INTP0, because this port pin doesn't have the protection diode to V_{DD} .
- Note 5: When the Injected Current value exceeds the allowed Injected Current value (Average value), the electrical characteristics can't be specified.
- Note 6: If the allowed Injected Current value (Average value) is exceeded permanently, the product life time could be influenced.
 - However, when the injected current exceed the Average value but is **still below** the Peak value the product life time will not be influenced if the injected current will follow the example as given on the next page:

Example for an input belonging to Group B, C or D:

Requirement:

```
\begin{array}{ll} I_{\text{INJP AVG}} \leq \left(I_{\text{INJP (PEAK)}} \ x \ t1\right) + \left(I_{\text{INJ P A}} \ x \ t2\right) \ / \ (t1 + t2) \leq 150 \text{uA} \\ I_{\text{INJP AVG}} \leq \left(2\text{mA} \ x \ t1\right) & + \left(100 \text{uA} \ x \ t2\right) \ / \ (t1 + t2) \leq 150 \text{uA} \end{array}
```

Remark:

The above mentioned example could also be used for the input pins belonging to Group A with: $I_{\text{INJP AVG}} \leq 400 \text{uA}$

General Cautions:

- 1. An Injected Current conditions occur, if the standard operating conditions are exceeded. Example: The input voltage on any pin exceeds the specified range: V_{IN} > EV_{DD} / V_{DD} / AV_{REF} + 0.3 V → (I_{INJP} > 0) or V_{IN} < EV_{SS} / V_{SS} / AV_{SS} 0.3 V → (I_{INJN} < 0). I_{INJP}, I_{INJN} = Injected current value that doesn't influence to the operation of the device.
- 2. The supply voltages must always remain within the specified limits.
- A proper operation is not specified if an Injected Current occurs on the functional pins such as: P121/X1, P122/X2/EXCLK, P123/XT1, P124/XT2/EXCLKS, P137/INTP0, /RESET, P33/ANI0/AVREFP, P34/ANI1/AVREFM, P40/TOOL0
- 4. The above specifications are not tested in the outgoing inspection, but they are specified based on the design rules and the device characterization.

4. The influence on an adjacent pin caused by the Injected Current

(Ta = -40 to +150 °C, $~2.7V \le V_{DD} = EV_{DD0} \le 5.5V, ~V_{SS} = EV_{SS0} = 0V$) $^{(Note \ 1)}$

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
		Input pins (Group A + B)			5 x 10 ⁻³	-
Leakage current coupling factor for a Positive Injected Current		Input pins (Group C)			1 x 10 ⁻⁴	-
		Input pins (Group D)			(Note 2)	
		Input pins (Group A + B)			1 x 10 ⁻²	-
Leakage current coupling factor for a Negative Injected Current		Input pins (Group C)			3.2 x 10 ⁻³	-
		Input pins (Group D)			(Note 2)	

Note 1: 64-pin and 80-pin products have EV_{DD0}, EV_{SS0}. For all other products EV_{DD0} is V_{DD} and EV_{SS0} is V_{SS}

Note 2: The following leakage current (ILINJP or ILINJN) could be generated on any pin of Group D when an injected current is input to another pin of Group D:

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Leakage current of adjacent pins caused by a Positive		I _{INJP} =2mA			-14	uA
Injected Current (Note 3)	ILINJP	I _{INJP} =0.15mA			-1.5	uA
Leakage current of adjacent pins caused by a Negative Injected Current (Note 3)	I _{LINJN}	I _{INJN} =-0.5mA			3.5	uA

Note 3: A leakage current (I_{LINJP}, I_{LINJN}) is generated on the remaining pins of Group D when a current is injected to a pin of Group D.

Cautions:

- An Injected Current through a pin will cause a certain error current in the adjacent pins.
 This error current must be added to the respective leakage current (I_{LIH} / I_{LIL}) of the adjacent pins.
- 2. The amount of error leakage current depends on the Injected Current and it is defined by the coupling factor K_{INJ}.
- 3. The total leakage current through a pin is $| I_{Ltotal} | = | I_{LIH} / I_{LIL} | + (| I_{INJn} | x K_{INJn})$
- 4. The additional error current may affect the input voltage on the analog inputs.
- A proper operation is not specified if an Injected Current occurs on the functional pins such as: P121/X1, P122/X2/EXCLK, P123/XT1, P124/XT2/EXCLKS, P137/INTP0, /RESET, P33/ANI0/AVREFP, P34/ANI1/AVREFM, P40/TOOL0
- 6. These specifications are not tested in the outgoing inspection, but it is specified based on the design rules and the device characterization.

5. Valid Specification

Item	Date published	Document No.	Document Title
1	May, 2014	R01UH0368EJ0200	RL78/F13, F14 User's Manual: Hardware 16-Bit Single-Chip Microcontrollers

6. Revision History

Item	Date published	Document No.	Comment
1	December, 2013	R01TU0058ED0100	1 st Release
2	April 2014	R01TU0058ED0101	1st Update - page 5: move P120 and P125 of 30 and 32 pin device to Port Goup B - page 5: remove P130 from the table because this is output only Correct some typos
3	October, 2015	R01TU0058ED0102	2 nd Update - page 4: add "Y" to Temperature Grades - pages 6 & 8: Expand the temperature range specification (Ta = -40°C to +150°C)