

R01AN6027EJ0100

Rev.1.0

# RH850 Series CAN Configuration (CAN FD Mode)

# Summary

This document describes an example of a procedure for setting CAN Configuration using the RH850 series. Please refer to the notes in the latest user's manual hardware edition for the settings of each register.

# **Operation Confirmed Devices**

This document applies to the RH850 series.

The variables described in the text are as follows.

|                                                       | Variable | Target MCU |              |             |
|-------------------------------------------------------|----------|------------|--------------|-------------|
|                                                       | variable | RH850/E2x  | RH850/E1M-S2 | RH850/P1M-E |
| RS-CAN FD channel number                              | m        | 0~4        | 0~3          | 0~2         |
| GAFLIDj, GAFLMj, GAFLP0j,<br>GAFLP1j Register numbers | j        | 0~15       | 0~15         | 0~15        |
| Transmit/Receive FIFO buffer number                   | k        | 0~14       | 0~11         | 0~8         |
| Receive FIFO buffer number                            | х        | 0~7        | 0~7          | 0~7         |
| Receive buffer number                                 | q        | 0~79       | 0~63         | 0~47        |
| Transmit buffer number                                | р        | 0~79       | 0~63         | 0~47        |
| RAM test number                                       | r        | 0~63       | 0~63         | 0~63        |
| GAFLCFGi、GTINTSTSi<br>register number                 | i        | 0          | 0            | 0           |
| Number of each status register                        | у        | 0~2        | 0,1          | 0,1         |

#### Table 1-1 Target Devices and Variables

The functions marked with " $\star$ " in the text are applicable to cases where 2 or more channels are installed. In the text, CFD is omitted from the register names.



# Contents

| 1.  | CAN Configuration                                     | 3  |
|-----|-------------------------------------------------------|----|
| 2.  | CAN State (Mode) Transition1                          | 0  |
| 3.  | Communication Speed1                                  | 9  |
| 4.  | Global Function2                                      | 23 |
| 5.  | Receive Rule Table                                    | 30 |
| 6.  | Buffer, FIFO Buffer                                   | 39 |
| 7.  | Global Error Interrupt5                               | 50 |
| 8.  | Channel Function5                                     | 52 |
| 9.  | CAN-related Interrupt6                                | 30 |
| 10. | Transmitter Delay Compensation (Only in CAN FD Mode)6 | 52 |
| 11. | Precautions for Processing Flow6                      | 33 |
| 12. | Appendix                                              | 35 |



# 1. CAN Configuration

In CAN configuration, set the functions required for CAN communication. Perform the configuration when resets MC, detects BUS failures, starts and restarts CAN communication after WAKEUP.

The stats available when performing CAN configuration are shown below. For CAN State (Mode), refer to "Section

- 2, CAN State (Mode) Transition".
- After CAN module enable (the CAN0EN bit in the PER2 register is "1")
- Global reset mode
- Channel reset mode
- Channel halt mode

The required functions when setting CAN configuration are shown below. For details of each process, refer to the following chapters.

- CAN state (mode) transition
- Communication speed
- Global function
- Receive rule table
- Buffer
- Global error interrupt
- Channel function



# 1.1 CAN Configuration after CAN Module Enable

# 1.1.1 CAN Configuration after CAN Module Enable

Perform the initialization of entire RS-CANFD modules after resetting MCU.

# 1.1.2 Setting Procedures of CAN Configuration after CAN Module Enable

Figure 1-1 and Figure 1-2 shows the procedure of CAN Configuration after CAN Module Enable

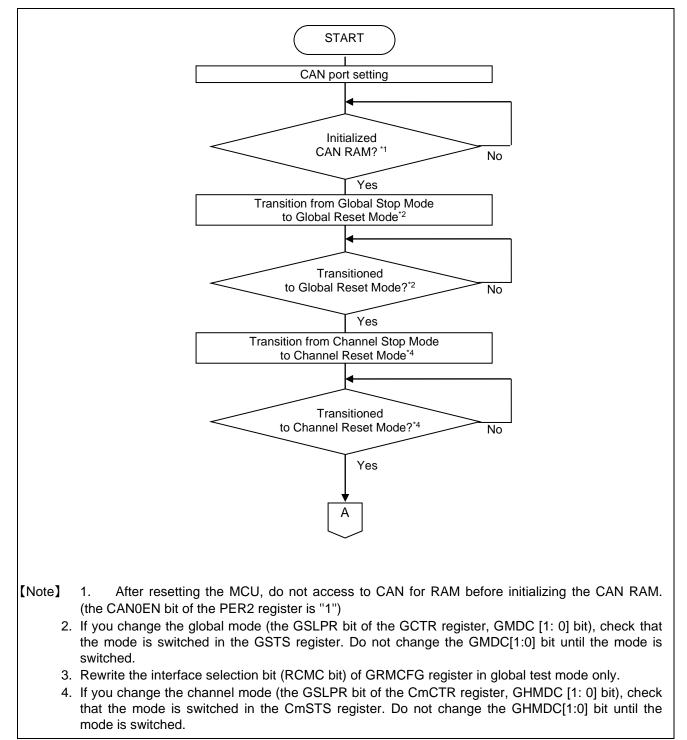



Figure 1-1 Procedure of CAN Configuration after resetting MCU 1/2

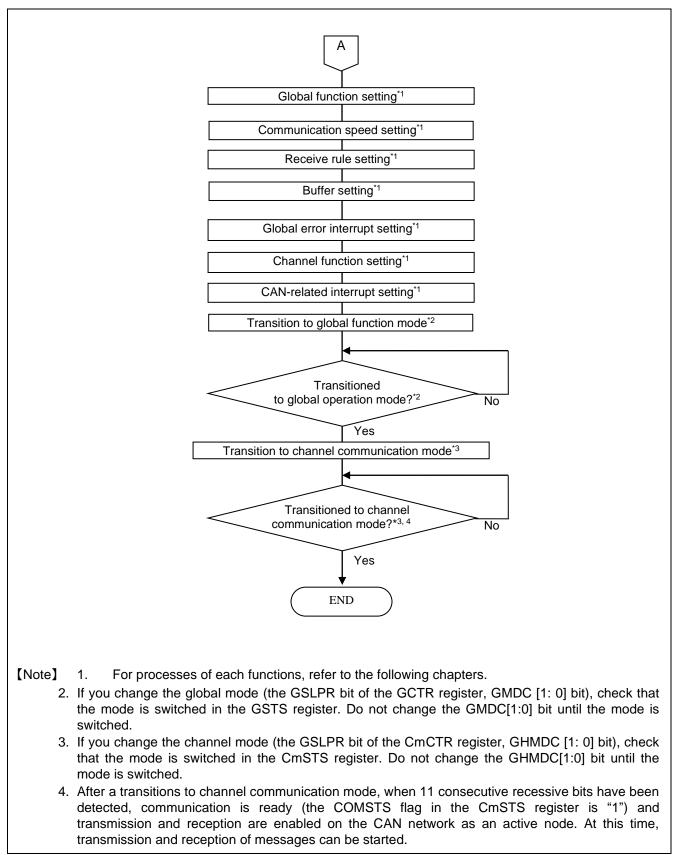
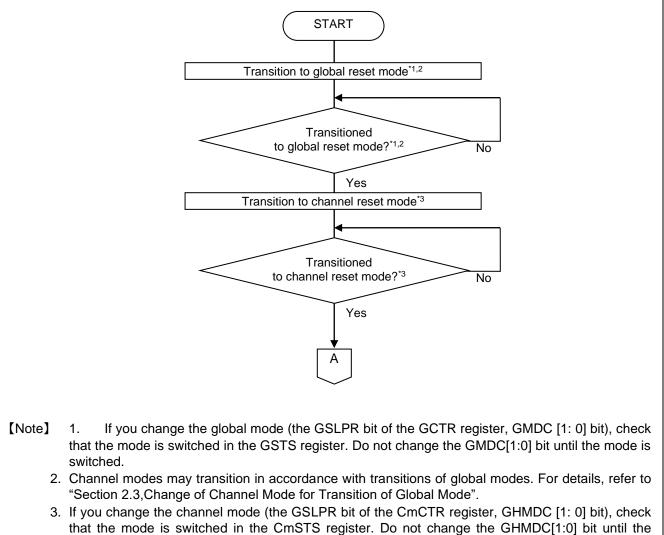


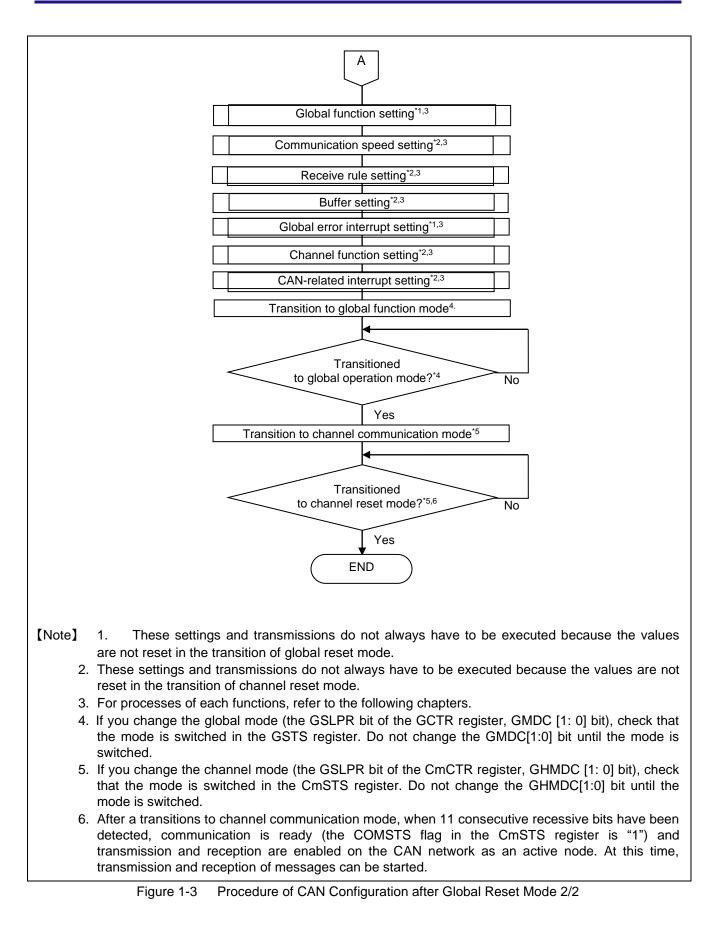

Figure 1-2 Procedure of CAN Configuration after resetting MCU 2/2


# 1.2 CAN Configuration after Global Reset Mode

## 1.2.1 CAN Configuration after Global Reset Mode

Perform the initialization of CAN configuration after global reset mode transition.

# 1.2.2 Setting Procedures of CAN Configuration after Global Reset Mode


Figure 1-3 and Figure 1-4 shows the procedure of CAN configuration after global reset mode.

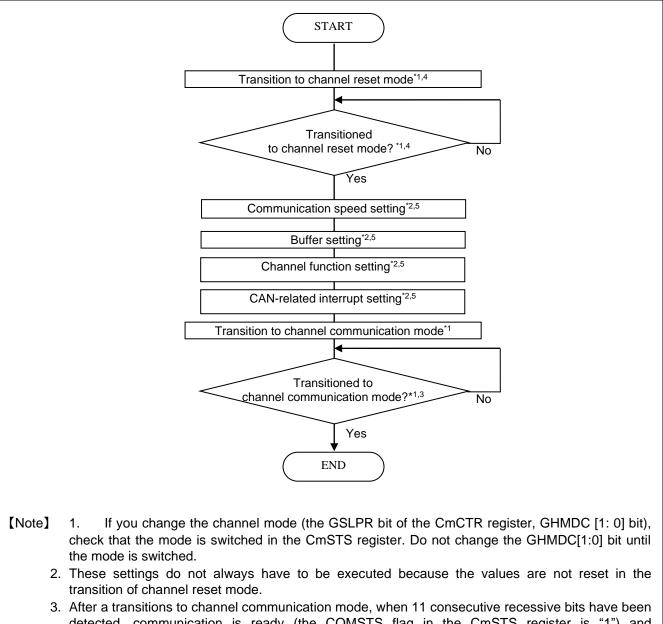


mode is switched.

Figure 1-2 Procedure of CAN Configuration after Global Reset Mode 1/2






# 1.3 CAN Configuration after Channel Reset Mode

## 1.3.1 CAN Configuration after Channel Reset Mode

Perform the initialization of CAN configuration after channel reset mode transition.

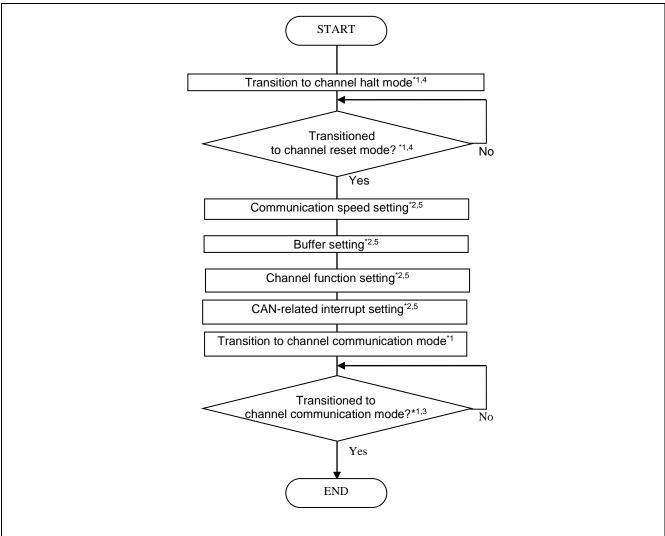
# 1.3.2 Setting Procedures of CAN Configuration after Channel Reset Mode

Figure 1-5 shows the procedure of CAN configuration after channel reset mode.



- 3. After a transitions to channel communication mode, when 11 consecutive recessive bits have been detected, communication is ready (the COMSTS flag in the CmSTS register is "1") and transmission and reception are enabled on the CAN network as an active node. At this time, transmission and reception of messages can be started.
- 4. To channel reset mode is transitioned before communication is completed. To allow transition to channel reset mode after communication is completed, confirm that communication has been completed and transition to channel halt mode has been completed, and then transition to channel reset mode.
- 5. For processes of each functions, refer to the following chapters.

Figure 1-4 Procedure of CAN Configuration after Channel Reset Mode


# 1.4 CAN Configuration after Channel Halt Mode

# 1.4.1 CAN Configuration after Channel Halt Mode

Perform the initialization of CAN configuration after channel halt mode transition.

# 1.4.2 Setting Procedures of CAN Configuration after Channel Halt Mode

Figure 1-6 shows the procedure of CAN configuration after channel halt mode.



- [Note] 1. If you change the channel mode (the GSLPR bit of the CmCTR register, GHMDC [1: 0] bit), check that the mode is switched in the CmSTS register. Do not change the GHMDC[1:0] bit until the mode is switched.
  - 2. These settings do not always have to be executed because the values are not reset in the transition of channel reset mode.
  - 3. After a transitions to channel communication mode, when 11 consecutive recessive bits have been detected, communication is ready (the COMSTS flag in the CmSTS register is "1") and transmission and reception are enabled on the CAN network as an active node. At this time, transmission and reception of messages can be started.
  - 4. While the CAN bus is locked to the dominant level (BLF flag in the CmERFLL register is "1"), transition to channel halt mode is not made. In that case, enter channel reset mode.
  - 5. For processes of each functions, refer to the following chapters.

Figure 1-5 Procedure of CAN Configuration after Channel Halt Mode

# 2. CAN State (Mode) Transition

RS-CANFD module has the state of entire channels (here after called Global) and each channel (mode). The states RS-CANFD module has are shows below.

- Global Mode
  - Global stop mode Global reset mode Global test mode Global operation mode
  - Channel Mode Channel stop mode Channel reset mode Channel halt mode Channel communication mode

# 2.1 Global Mode

This is the mode of entire RS-CANFD mode. Figure 2-1 shows the transition of global mode.

Channel modes may transition in accordance with transitions of global modes. For details, refer to "Section 2.3, Change of Channel Mode for Transition of Global Mode".

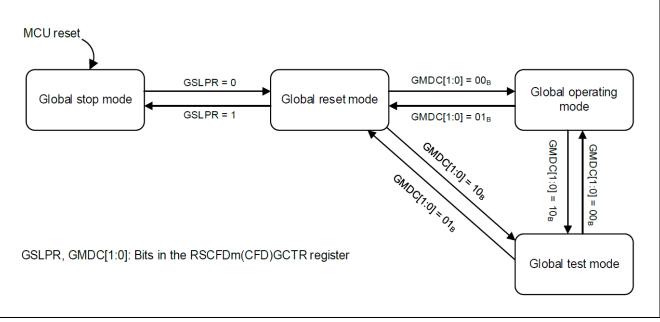



Figure 2-1 Transitions of Global Mode



## 2.1.1 Global Stop Mode

This mode stop RS-CANFD module clocks. CAN clock do not runt and therefore power consumption is reduced. CAN registers can be read, but writing data to them is prohibited. Register values are retained.

## 2.1.2 Global Reset Mode

This mode performs settings for entire RS-CANFD module. When the RS-CANFD module transitions to global reset mode, some registers are initialized. Table 2-2 and Table 2-3 show the list of the registers to be initialized.

#### 2.1.3 Global Test Mode

This mode performs settings for test-related resisters. When the RS-CANFD module transitions to global test mode, all CAN communications are disabled.

#### 2.1.4 Global Operation Mode

This mode operates entire RS-CANFD module. When do a communication using each channel, transition to global operation mode is required.



# 2.2 Channel Mode

These modes is each of the channels. Figure 2-2 Shows a channel mode transition chart.



Figure 2-2 Transitions of Channel Mode



## 2.2.1 Channel Stop Mode

This mode stop RS-CANFD module clocks. CAN clock do not runt and therefore power consumption is reduced. CAN registers can be read, but writing data to them is prohibited. Register values are retained.

## 2.2.2 Channel Reset Mode

This mode performs settings for channel. When a transitions to channel reset mode, some channel-related registers are initialized. Table 2-2 shows the list of the registers to be initialized.

#### 2.2.3 Channel Halt Mode

This mode performs settings for test-related resisters of the channel. When a channel transitions to channel halt mode, corresponding CAN communication of the channel stops.

## 2.2.4 Channel Communication Mode

This mode perform CAN communication. Each cannel waits following communication states during CAN communication.

#### • Idle

Neither reception nor transmission is in progress.

• Reception

Receiving a message sent from another node.

• Transmission

Transmitting a message.

• Bus off

Isolated from CAN communication.

# 2.3 Change of Channel Mode for Transition of Global Mode

Channel modes may transition in accordance with transitions of global modes. Table 2-1 and figure 2-3 show the transitions of channel modes depending on the global mode setting.

| Table 2-1 | Transitions of Channel Modes Depending on Global Mode Setting |
|-----------|---------------------------------------------------------------|
|-----------|---------------------------------------------------------------|

|                                | Channel Mode after setting |               |               |                          |
|--------------------------------|----------------------------|---------------|---------------|--------------------------|
| Channel Mode<br>before Setting | Global Operating           | Global Test   | Global Reset  | Global Stop              |
| Channel communication          | Channel communication      | Channel halt  | Channel reset | Transition<br>prohibited |
| Channel halt                   | Channel halt               | Channel halt  | Channel reset | Transition<br>prohibited |
| Channel reset                  | Channel reset              | Channel reset | Channel reset | Channel stop             |
| Channel stop                   | Channel stop               | Channel stop  | Channel stop  | Channel stop             |

[Note] **Bold** : The positions are transitioned channel mode depending on the transition of global mode. *Red* : Restriction



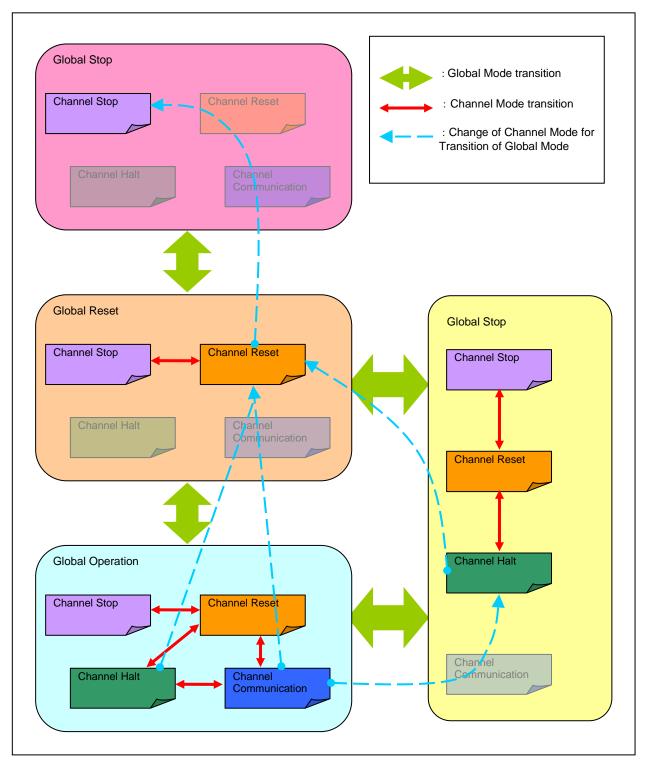



Figure 2-3 Transitions of Global Mode and Channel Mode

| CFSTSk registerCFMC[7:0]、CFFLL、CFEMP、CFMLT、CFRXIF、CFTISTS registerCFkTXIFTMCp registerTMOM、TMTAR、TMTRTMSTSp registerTMTARM、TMTRM、TMTRF[1:0]、TMTSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S、COMSTS、(ESIF)、<br>R、AERR、FERR、SERR、<br>BEF                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| CmSTS registerREC[7:0], TEC[7:0]CmERFL registerCRCREG[14:0], ADERR, B0ERR, B1ERR, CERF<br>ALF, BLF, OVLF, BORF, BOEF, EPF, EWF,CmFDCTR registerEOCCLR, SOCCLRCmFDSTS registerSOC[7:0], EOC[7:0], SOCO, EOCO, TDCVF, TCmFDCRC registerCRCREG[20:0]CFCCk registerWhen transmit/receive FIFO buffer is in transmit modeCFSTSk registerCFKTXIFTMCp registerCFkTXIFTMCp registerTMTARSTSp (Bits of corresponding channel are initia<br>mode.)TMTARSTSy registerTMTARSTSp (Bits of corresponding channel are initia                                                                                                                                                     | R、AERR、FERR、SERR、<br>BEF                                                                                             |  |  |
| CMERFL registerALF、BLF、OVLF、BORF、BOEF、EPF、EWF、CmFDCTR registerEOCCLR、SOCCLRCmFDSTS registerSOC[7:0]、EOC[7:0]、SOCO、EOCO、TDCVF、TCmFDCRC registerCRCREG[20:0]CFCCk registerWhen transmit/receive FIFO buffer is in transmit modeCFSTSk registerWhen transmit/receive FIFO buffer is in transmit modeCFTISTS registerCFKC[7:0]、CFFLL、CFEMP、CFMLT、CFRXIF、CFTISTS registerCFkTXIFTMCp registerTMTARM、TMTRM、TMTRF[1:0]、TMTSTSTMTRSTSy registerTMTRSTSp (Bits of corresponding channel are initia mode.)TMTARSTSy registerTMTARSTSp (Bits of corresponding channel are initia                                                                                             | BEF                                                                                                                  |  |  |
| CmFDSTS registerSOC[7:0]、EOC[7:0]、SOCO、EOCO、TDCVF、TCmFDCRC registerCRCREG[20:0]CFCCk registerWhen transmit/receive FIFO buffer is in transmit modeCFSTSk registerWhen transmit/receive FIFO buffer is in transmit modeCFSTSk registerCFMC[7:0]、CFFLL、CFEMP、CFMLT、CFRXIF、CFTISTS registerCFkTXIFTMCp registerTMOM、TMTAR、TMTRTMSTSp registerTMTARM、TMTRM、TMTRF[1:0]、TMTSTSTMTRSTSy registerTMTRSTSp (Bits of corresponding channel are initia mode.)TMTARSTSy registerTMTARSTSp (Bits of corresponding channel are initia                                                                                                                                           | DCR[6:0]、                                                                                                            |  |  |
| CmFDCRC register         CRCREG[20:0]           CFCCk register         When transmit/receive FIFO buffer is in transmit model           CFSTSk register         When transmit/receive FIFO buffer is in transmit model           CFTISTS register         CFMC[7:0], CFFLL, CFEMP, CFMLT, CFRXIF,           CFTISTS register         CFkTXIF           TMCp register         TMOM, TMTAR, TMTR           TMSTSp register         TMTARM, TMTRM, TMTRF[1:0], TMTSTS           TMTRSTSy register         TMTARSTSp (Bits of corresponding channel are initia mode.)           TMTARSTSy register         TMTARSTSp (Bits of corresponding channel are initia mode.) | DCR[6:0]、                                                                                                            |  |  |
| CFCCk registerWhen transmit/receive FIFO buffer is in transmit modelCFSTSk registerWhen transmit/receive FIFO buffer is in transmit modelCFSTSk registerCFMC[7:0]、CFFLL、CFEMP、CFMLT、CFRXIF、CFTISTS registerCFkTXIFTMCp registerTMOM、TMTAR、TMTRTMSTSp registerTMTARM、TMTRM、TMTRF[1:0]、TMTSTSTMTRSTSy registerTMTRSTSp (Bits of corresponding channel are initia<br>mode.)TMTARSTSy registerTMTARSTSp (Bits of corresponding channel are initia                                                                                                                                                                                                                     |                                                                                                                      |  |  |
| CFSTSk register       When transmit/receive FIFO buffer is in transmit mode.)         CFSTSk register       CFMC[7:0], CFFLL, CFEMP, CFMLT, CFRXIF,         CFTISTS register       CFkTXIF         TMCp register       TMOM, TMTAR, TMTR         TMSTSp register       TMTARM, TMTRM, TMTRF[1:0], TMTSTS         TMTRSTSy register       TMTRSTSp (Bits of corresponding channel are initia mode.)         TMTARSTSy register       TMTARSTSp (Bits of corresponding channel are initia                                                                                                                                                                           |                                                                                                                      |  |  |
| CFSTSk register       CFMC[7:0], CFFLL, CFEMP, CFMLT, CFRXIF,         CFTISTS register       CFkTXIF         TMCp register       TMOM, TMTAR, TMTR         TMSTSp register       TMTARM, TMTRM, TMTRF[1:0], TMTSTS         TMTRSTSy register       TMTRSTSp (Bits of corresponding channel are initia mode.)         TMTARSTSy register       TMTARSTSp (Bits of corresponding channel are initia                                                                                                                                                                                                                                                                 | de or gateway mode : CFE                                                                                             |  |  |
| TMCp register       TMOM、TMTAR、TMTR         TMSTSp register       TMTARM、TMTRM、TMTRF[1:0]、TMTSTS         TMTRSTSy register       TMTRSTSp (Bits of corresponding channel are initia mode.)         TMTARSTSy register       TMTARSTSp (Bits of corresponding channel are initia mode.)                                                                                                                                                                                                                                                                                                                                                                            | When transmit/receive FIFO buffer is in transmit mode or gateway mode :<br>CFMC[7:0]、CFFLL、CFEMP、CFMLT、CFRXIF、CFTXIF |  |  |
| TMSTSp register       TMTARM、TMTRM、TMTRF[1:0]、TMTSTS         TMTRSTSy register       TMTRSTSp (Bits of corresponding channel are initia mode.)         TMTARSTSy register       TMTARSTSp (Bits of corresponding channel are initia                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |  |  |
| TMTRSTSy register       TMTRSTSp (Bits of corresponding channel are initia mode.)         TMTARSTSy register       TMTARSTSp (Bits of corresponding channel are initia mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |  |  |
| TMTRSTSy register     mode.)       TMTARSTSy register     TMTARSTSp (Bits of corresponding channel are init)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMTRSTSp (Bits of corresponding channel are initialized in channel reset mode.)                                      |  |  |
| niode:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alized in channel reset                                                                                              |  |  |
| TMTCSTSy register TMTCSTSp(Bits of corresponding channel are initial mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ized in channel reset                                                                                                |  |  |
| TMTASTSy register TMTASTSp(Bits of corresponding channel are initial mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TMTASTSp(Bits of corresponding channel are initialized in channel reset mode.)                                       |  |  |
| TXQCCm register TXQE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |  |  |
| TXQSTSm register TXQIF、TXQFLL、TXQEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |  |  |
| THLCCm register THLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |  |  |
| THLSTSm register THLMC[4:0]、THLIF、THLELT、THLFLL、THLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                    |  |  |
| GTINTSTS0 register TSIFm、TAIFm、TQIFm、CFTIFm、THIFm (m=0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |  |  |

| Table 2-2 F | Registers Initialized in Global Reset Mode or Channel Reset Mode |
|-------------|------------------------------------------------------------------|
|-------------|------------------------------------------------------------------|

Note: Bits and flags in parentheses exist only in registers in CAN FD mode.

| レジスタ          | ビット/フラグ                                                                      |
|---------------|------------------------------------------------------------------------------|
| CiCTRLレジスタ    | CHMDC[1:0]                                                                   |
| CiCTRHレジスタ    | CTMS[1:0]、CTME                                                               |
| CiSTSLレジスタ    | CHLTSTS、EPSTS、BOSTS、TRMSTS、RECSTS、COMSTS                                     |
| CiSTSHレジスタ    | REC[7:0]、TEC[7:0]                                                            |
| CiERFLLレジスタ   | ADERR、B0ERR、B1ERR、CERR、AERR、FERR、SERR、ALF、BLF、OVLF、<br>BORF、BOEF、EPF、EWF、BEF |
| CiERFLHレジスタ   | CRCREG[14:0]                                                                 |
| CFCCLkレジスタ    | 送受信FIFOバッファが送信モード:CFE                                                        |
| CFSTSkレジスタ    | 送受信FIFOバッファが送信モード : CFMC[5:0]、CFTXIF、CFRXIF、CFMLT、<br>CFFLL、CFEMP            |
| TMCpレジスタ      | TMOM、TMTAR、TMTR                                                              |
| TMSTSpレジスタ    | TMTARM、TMTRM、TMTRF[1:0]、TMTSTS                                               |
| TMTRMSxx レジスタ | TMTRSTSp                                                                     |



CAN Configuration (CAN FD Mode)

# **RH850 Series**

| TMTCSTSxxレジスタ | TMTCSTSp                              |
|---------------|---------------------------------------|
| TMTASTSxxレジスタ | TMTASTSp                              |
| THLCCiレジスタ    | THLE                                  |
| THLSTSiレジスタ   | THLMC[3:0]、THLIF、THLELT、THLFLL、THLEMP |
| CGTISRレジスタ    | TSIFi、TAIFi、CFTIFi、THIFi              |



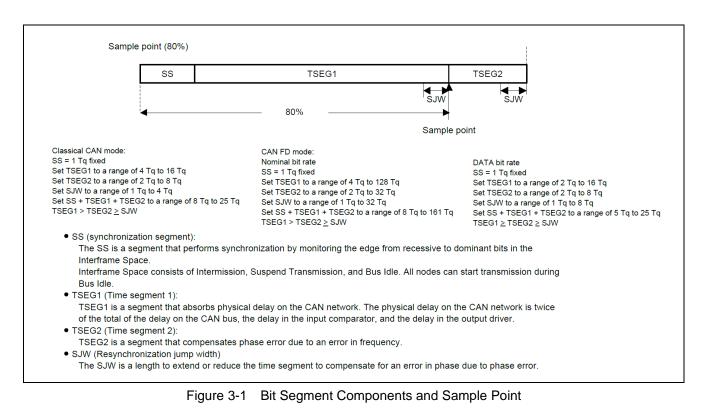
|                               | Table 2-3 Registers Initialized in Global Reset Mode                                              |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Registers                     | Bit/Flag                                                                                          |  |  |  |  |
| GSTS register                 | GHLTSTS                                                                                           |  |  |  |  |
| GERFL register                | EEF0、EEF1、EEF2、EEF3、(CMPOF)、THLES、MES、DEF                                                         |  |  |  |  |
| GTSC register                 | TS[15:0]                                                                                          |  |  |  |  |
| RMNDy register                | RMNSq                                                                                             |  |  |  |  |
| RFCCx register                | RFE                                                                                               |  |  |  |  |
| RFSTSx register               | RFMC[7:0]、RFIF、RFMLT、RFFLL、RFEMP                                                                  |  |  |  |  |
| CFCCk register                | When transmit/receive is in receive mode : CFE                                                    |  |  |  |  |
| CFSTSk register               | When transmit/receive FIFO is in receive mode : CFMC[7:0], CFFLL, CFEMP, CFTXIF, CFRXIF, CFMLT    |  |  |  |  |
| FESTS register                | CFkEMP、RFxEMP                                                                                     |  |  |  |  |
| FFSTS register                | CFkFLL、RFxFLL                                                                                     |  |  |  |  |
| FMSTS register                | CFkMLT、RFxMLT                                                                                     |  |  |  |  |
| RFISTS register               | RFxIF                                                                                             |  |  |  |  |
| CFRISTS register              | CFkRXIF                                                                                           |  |  |  |  |
| CDTCT register                | CFDMAEm、RFDMAEx                                                                                   |  |  |  |  |
| CDTSTS register               | CFDMASTSm、RFDMASTSx                                                                               |  |  |  |  |
| GTSTCFG register              | RTMPS[6:0]、C0ICBCE、C1ICBCE、C2ICBCE、C3ICBCE                                                        |  |  |  |  |
| GTSTCTR register              | RTME、ICBCTME                                                                                      |  |  |  |  |
| Note: Bits and flags in paren | Note: Bits and flags in parentheses exist only in registers in CAN FD mode.                       |  |  |  |  |
| CiCTRL register               | CHMDC[1:0]                                                                                        |  |  |  |  |
| CiCTRH register               | CTMS[1:0]、CTME                                                                                    |  |  |  |  |
| CiSTSL register               | CHLTSTS、EPSTS、BOSTS、TRMSTS、RECSTS、COMSTS                                                          |  |  |  |  |
| CiSTSH register               | REC[7:0]、TEC[7:0]                                                                                 |  |  |  |  |
| CiERFLL register              | ADERR、B0ERR、B1ERR、CERR、AERR、FERR、SERR、ALF、BLF、OVLF、<br>BORF、BOEF、EPF、EWF、BEF                      |  |  |  |  |
| CiERFLH register              | CRCREG[14:0]                                                                                      |  |  |  |  |
| CFCCLk register               | When transmit/receive FIFO buffer is in tramsmit mode : CFE                                       |  |  |  |  |
| CFSTSk register               | When transmit/receive FIFO buffer is in transmit mode : CFMC[5:0]、CFTXIF、CFRXIF、CFMLT、CFFLL、CFEMP |  |  |  |  |
| TMCp register                 | TMOM、TMTAR、TMTR                                                                                   |  |  |  |  |
| TMSTSp register               | TMTARM、TMTRM、TMTRF[1:0]、TMTSTS                                                                    |  |  |  |  |
| TMTRMSxx register             | TMTRSTSp                                                                                          |  |  |  |  |
| TMTCSTSxx register            | TMTCSTSp                                                                                          |  |  |  |  |
| TMTASTSxx register            | TMTASTSp                                                                                          |  |  |  |  |
| THLCCi register               | THLE                                                                                              |  |  |  |  |
| THLSTSi register              | THLMC[3:0]、THLIF、THLELT、THLFLL、THLEMP                                                             |  |  |  |  |
| CGTISR register               | TSIFi、TAIFi、CFTIFi、THIFi                                                                          |  |  |  |  |
| GSTS register                 | GHLTSTS                                                                                           |  |  |  |  |
| GERFLL register               | THLES、MES、DEF                                                                                     |  |  |  |  |
| GTSC register                 | TS[15:0]                                                                                          |  |  |  |  |

| レジスタ        | ビット/フラグ                                                            |
|-------------|--------------------------------------------------------------------|
| GSTSレジスタ    | GHLTSTS                                                            |
| GERFLLレジスタ  | THLES、MES、DEF                                                      |
| GTSCレジスタ    | TS[15:0]                                                           |
| RMNDn レジスタ  | RMNSn                                                              |
| RFCCmレジスタ   | RFE                                                                |
| RFSTSmレジスタ  | RFMC[5:0]、RFIF、RFMLT、RFFL、RFELL                                    |
| CFCCLkレジスタ  | 送受信FIFOが受信モード時:CFE                                                 |
| CFSTSkレジスタ  | 送受信FIFOバッファが受信モード時 : CFMC[5:0]、CFFLL、CFEMP、CFTXIF、<br>CFRXIF、CFMLT |
| RFMSTSレジスタ  | RFmMLT                                                             |
| CFMSTSレジスタ  | CFkMLT                                                             |
| RFISTSレジスタ  | RFmIF                                                              |
| CFISTSレジスタ  | CFkIF                                                              |
| GTSTCFGレジスタ | RTMPS[2:0]                                                         |
| GTSTCTRレジスタ | RTME                                                               |



## 3. Communication Speed

Set the communication speed for CAN communication. You need to perform the following settings to determine CAN communication speed.


- Bit Timing Setting
- Communication Speed Setting

## 3.1 CAN Bit Timing Setting

In this CAN bit timing setting of RS-CANFD module, one bit of a communication frame consists of three segments. Figure 3-1 shows segments of bits and sample point.

In these segments, Time Segment 1(called TSEG1 hereafter) and Time Segment 2 (called TSEG2 hereafter) indicate the sample point. Also, it can be changed the timing for sampling by changing the values of segments. FD mode has 2 types of bit rate (nominal bit rate and data bit rate) and be sett for each of them.

This minimum protection area unit of timing setting is called 1 Time Quanta (called Tq hereafter), also it is consisted by inputted clock frequency and baud rate prescaler division value to RS-CANFD module.





# 3.2 Communication Speed Setting

Communication speed is consisted by CAN clock (fCAN) that is clock source of RS-CANFD module , baud rate prescaler division value, and Tq count per bit. fCAN is available for use clkc or clk xincan. For fCAN setting, refer to "Section 4.5, CAN clock source setting".

Table 3-1 and 3-2 show the main formula and example of communication speed. Table 3-3 shows example of bit timing setting.

| Formula of          | fCAN                                                                |          |                     |
|---------------------|---------------------------------------------------------------------|----------|---------------------|
| Communication Speed | Nominal Bit Rate Prescaler Division Ration $\times$ Tq count of 1 b |          | count of 1 bit time |
| fCAN                | 40MHz 20MHz 10MHz                                                   |          | 10MHz               |
| Comm                |                                                                     |          |                     |
| Speed               |                                                                     |          |                     |
| 1Mbps               | 10Tq(4)                                                             | 10Tq(2)  | 10Tq(1)             |
|                     | 20Tq(2)                                                             | 20Tq(1)  |                     |
| 500Kbps             | 10Tq(8)                                                             | 10Tq(4)  | 10Tq(2)             |
|                     | 20Tq(4)                                                             | 20Tq(2)  | 20Tq(1)             |
| 250Kbps             | 10Tq(16)                                                            | 10Tq(8)  | 10Tq(4)             |
|                     | 20Tq(8)                                                             | 20Tq(4)  | 20Tq(2)             |
| 125Kbps             | 10Tq(32)                                                            | 10Tq(16) | 10Tq(8)             |
|                     | 20Tq(16)                                                            | 20Tq(8)  | 20Tq(4)             |
| 83.3Kbps            | 8Tq(60)                                                             | 8Tq(30)  | 8Tq(15)             |
|                     | 10Tq(48)                                                            | 10Tq(24) | 10Tq(12)            |
|                     | 12Tq(40)                                                            | 12Tq(20) | 12Tq(10)            |
|                     | 15Tq(32)                                                            | 15Tq(16) | 15Tq(8)             |
|                     | 16Tq(30)                                                            | 16Tq(15) | 20Tq(6)             |
|                     | 20Tq(24)                                                            | 20Tq(12) | 24Tq(5)             |
|                     | 24Tq(20)                                                            | 24Tq(10) |                     |
| 33.3Kbps            | 8Tq(150)                                                            | 8Tq(75)  | 10Tq(30)            |
|                     | 10Tq(120)                                                           | 10Tq(60) | 12Tq(25)            |
|                     | 12Tq(100)                                                           | 12Tq(50) | 15Tq(20)            |
|                     | 15Tq(80)                                                            | 15Tq(40) | 20Tq(15)            |
|                     | 20Tq(60)                                                            | 20Tq(30) |                     |
|                     | 24Tq(50)                                                            | 24Tq(25) |                     |

 Table 3-1
 Example of Communication Speed setting (Nominal Bit Rate)

Note: Values in ( ) are baud rate prescaler division values.

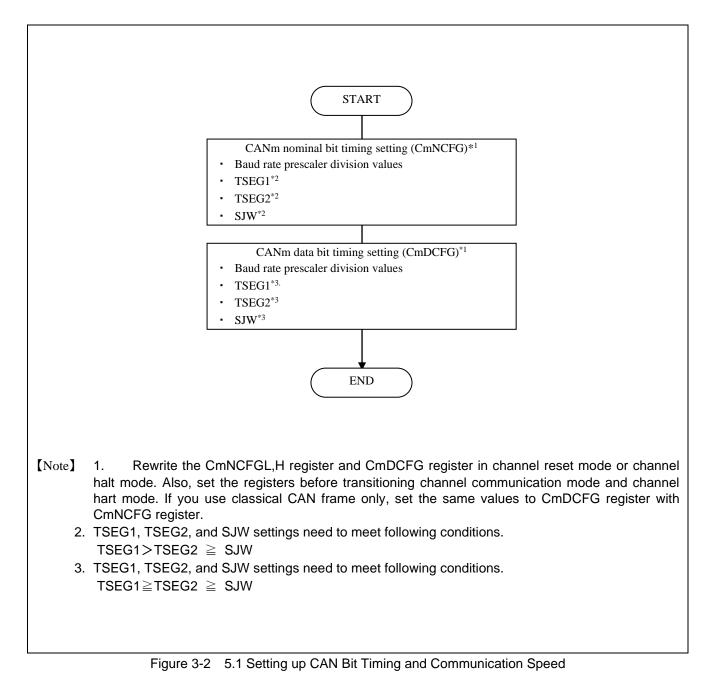
| Table 3-2 | Example of Communication | Speed | Setting (Data Bit Rate) |  |
|-----------|--------------------------|-------|-------------------------|--|
|-----------|--------------------------|-------|-------------------------|--|

| Formula of          |         | fCAN                                                       |         |  |  |
|---------------------|---------|------------------------------------------------------------|---------|--|--|
| Communication Speed |         | Data Bit Prescaler Divison Ration × Tq count of 1 bit time |         |  |  |
| fCAN                | 40MHz   | 20MHz                                                      |         |  |  |
| Comm                |         |                                                            |         |  |  |
| Speed               |         |                                                            |         |  |  |
| 5Mbps               | 8Tq(1)  |                                                            | なし      |  |  |
| 2Mbps               | 20Tq(1) |                                                            | 10Tq(1) |  |  |

Note: Values in () are baud rate prescaler division values.

| 1 Bit |    | Setting Va | Sample Point |     |                |
|-------|----|------------|--------------|-----|----------------|
| I DIL | SS | TSEG1      | TSEG2        | SJW | Percentage (%) |
| 5Tq   | 1  | 2          | 2            | 1   | 60.00          |
| 8Tq   | 1  | 4          | 3            | 1   | 62.50          |
| ory   | 1  | 5          | 2            | 1   | 75.00          |
| 10Tq  | 1  | 6          | 3            | 1   | 70.00          |
| iuiq  | 1  | 7          | 2            | 1   | 80.00          |
| 16Ta  | 1  | 10         | 5            | 1   | 68.75          |
| 16Tq  | 1  | 11         | 4            | 1   | 75.00          |
|       | 1  | 12         | 7            | 1   | 65.00          |
| 20Tq  | 1  | 13         | 6            | 1   | 70.00          |
|       | 1  | 15         | 4            | 3   | 80.00          |
| 247.4 | 1  | 15         | 8            | 1   | 66.66          |
| 24Tq  | 1  | 16         | 7            | 1   | 70.83          |
| 50Tq  | 1  | 39         | 10           | 4   | 80.00          |

| Table 3-3 | Example of Bit Timing Setting |
|-----------|-------------------------------|




# 3.3 CAN Bit Timing and Communication Speed Setting Procedures

Figure 3-2 shows setting procedures of CAN bit timing and communication speed.

Perform these settings during CAN configuration.

Refer to "Section 1, CAN Configuration" for procedure of CAN configuration.





## 4. Global Function

Set the following functions that are common to entire RS-CANFD Module (all channels).

- Transmit priority setting
- DLC check setting
- DLC replacement function setting
- Mirror function setting
- CAN clock source setting
- Timestamp clock setting
- Interval timer prescaler setting

# 4.1 Transmit Priority Setting

Set the transmit priority when the transmit request is requested from multiple transmit buffer in the same channel.

It is not able to set the transmit priority for each channel because the transmit priority is common to entire channels.

You can choose following two of judgment methods.

#### • ID priority

The messages are transmitted according to the priority of stored message IDs. Priority of IDs conforms to the CAN bus arbitration specification defined in the CAN specification.

Targets of priority determination are IDs of messages placed in transmit buffers, transmit/receive FIFO buffers (set to transmit mode or gateway mode<sup> $\star$ </sup>), and transmit queues.

When transmit/receive FIFO buffers is used, the oldest message in a FIFO buffer becomes a target of priority determination.

When a message is being transmitted from a transmit/receive FIFO buffer, the next message in the same FIFO buffer becomes a target of priority determination.

When transmit queues are used, all messages in transmit queues are targets of priority determination. When the same ID is set for two or more buffers, the buffer with a lower number takes precedence.

#### • Transmit buffer number priority

the message in the transmit buffer whose number is the lowest among buffers having transmit requests are transmitted first.

When transmit/receive FIFO buffers is linked to transmit buffers, transmit priority is determined according to the linked transmit buffer numbers.

When messages are retransmitted due to an arbitration-lost or an error, transmit priority determination is made again whichever transmit priority is selected.

[Note] 1. It is prohibited to select when using transmit queue. Select the ID priority.



# 4.2 DLC Check Setting

Set the ability and disability of DLC check function.

When the DLC check function is enabled, DLC filter processing is performed for messages that pass through the acceptance filter processing.

When the DLC check function is disenabled, DLC check is not performed after performing acceptance filter processing.

In DLC check, when the DLC value in a message is equal to or larger than the DLC value set in the receive rule, the message passes through the DLC filter processing. When the DLC value of the received message is smaller than that of the receive rule, the message does not pass through the DLC filter processing. In this case, the message is not stored in the receive buffer or the FIFO buffer and a DLC error is present.

Please refer to "Section 5, Receive Rule Table" for the receive rule.

## 4.3 DLC Replacement Function

Set the ability and disability of DLC replacement function.

DLC replacement is effective only when DLC check function is enabled.

When DLC replacement is enabled, the DLC value of the receive rule is stored in the buffer instead of the DLC value of the received message. In this case, a value of "00'H" is written to data bytes that are larger than the DLC value of the receive rule.

When DLC replacement is enabled, the DLC value of the received message is stored in the buffer. In this case, all

the data bytes in the received message are stored in the buffer.

Please refer to "Section 5, Receive Rule Table" for the receive rule.



| GCFGL           | Register                         | Received message DLC                                                                  | Received N          | lessage       |
|-----------------|----------------------------------|---------------------------------------------------------------------------------------|---------------------|---------------|
| DCE Bit         | DRE Bit                          | ✓ Receive rule DLC                                                                    | Processing          | Stored DLC    |
| 0<br>(DLC check | 0<br>(DLC replacement            | Received message DLC<br><received dlc<="" rule="" td=""><td></td><td></td></received> |                     |               |
| disabled)       | is disabled)                     | Received message DLC                                                                  |                     |               |
|                 |                                  | ≧Received rule DLC                                                                    |                     |               |
|                 |                                  | Received rule DLC=0                                                                   |                     |               |
|                 |                                  |                                                                                       | Stored to buffer*1  | Received      |
|                 | 1                                | Received message DLC                                                                  |                     | message DLC   |
|                 | (DLC replacement                 | < Received rule DLC                                                                   |                     |               |
|                 | is enabled)                      | Received message DLC                                                                  |                     |               |
|                 |                                  | ≧Received rule DLC                                                                    |                     |               |
|                 |                                  | Received rule DLC=0                                                                   |                     |               |
|                 |                                  |                                                                                       |                     |               |
| 1               | 0                                | Received message DLC                                                                  | Discard (DLC error) | —             |
| (DLC check is   | (DLC replacement                 | <received dlc<="" rule="" td=""><td></td><td></td></received>                         |                     |               |
| enable)         | is disabled)                     | Received message DLC                                                                  | Stored to buffer    | Received      |
|                 |                                  | ≧Received rule DLC                                                                    |                     | message DLC   |
|                 |                                  | Received rule DLC=0                                                                   | Stored to buffer    | Received      |
|                 |                                  |                                                                                       |                     | message DLC   |
|                 | 1                                | Received message DLC                                                                  | Discard (DLC error) | —             |
|                 | (DLC replacement                 | <received dlc<="" rule="" td=""><td></td><td></td></received>                         |                     |               |
|                 | is enabled) Received message DLC |                                                                                       | Stored to buffer    | Received rule |
|                 |                                  | $\geq$ Received rule DLC                                                              |                     | DLC*2         |
|                 |                                  | Received rule DLC=0                                                                   | Stored to buffer    | Received      |
|                 |                                  |                                                                                       |                     | message DLC   |

| Table 4-1 | DLC Filter Processing and DLC Replacement Processing |
|-----------|------------------------------------------------------|
|-----------|------------------------------------------------------|

[Note] 1.DLC check itself is not performed.

2. "00'H" is written to data bytes that are larger than the DLC of the receive rule.



# 4.4 Mirror Function Setting

Set the ability and disability of mirror function.

The mirror function allows reception of own transmitted messages. When the mirror function is in use, receive rules for which mirror function is unused are applied to the data processing for messages received from other CAN nodes. When own transmitted messages are received, receive rules for which mirror function is unused are used for data processing.

Please refer to "Section 5, Receive Rule Table" for the receive rule.

| MME Bit of<br>GCFGL Register  | GAFLLB Bit of<br>GAFLDHj Register | Message Targeted for Data Processing of Receive rule |
|-------------------------------|-----------------------------------|------------------------------------------------------|
| 0                             | 0                                 | Message received from other CAN node                 |
| (Mirror function is disabled) | 1                                 | No targeted message                                  |
| 1                             | 0                                 | Message transmitted from other CAN node              |
| (Mirror function is enabled)  | 1                                 | Own transmitted message transmitted                  |

#### Table 4-2 DLC Filter Processing and DLC Replacement Processing

# 4.5 CAN Clock Source Setting

Set the CAN clock (fCAN) which is clock source of CAN clock source in DCS bit of GCFG register. The clocks enabled as CAN clock source are shown below.

- clk\_xincan
- clkc



# 4.6 Timestamp Clock Setting

Set the clock source and the Division Ration for using timestamp clock.

The timestamp counter is a 16-bit free-running counter used for recording the message reception time and transmission time. The timestamp counter value is fetched at the SOF (Start of Frame)<sup>\*1</sup> of the message and is then stored in a receive buffer or a FIFO buffer together with the message ID and data during data reception.

You can select the following clocks for using timestamp.

- pclk/2
- CANm nominal time clock

When the nominal CANm bit time clock is used as a clock source, the timestamp counter stops when the corresponding channel transitions to channel reset mode or channel halt mode. When pclk/2 is used as a clock source, the timestamp function is not affected by channel mode.

Figure 4-1 show the timstop function block diagram.

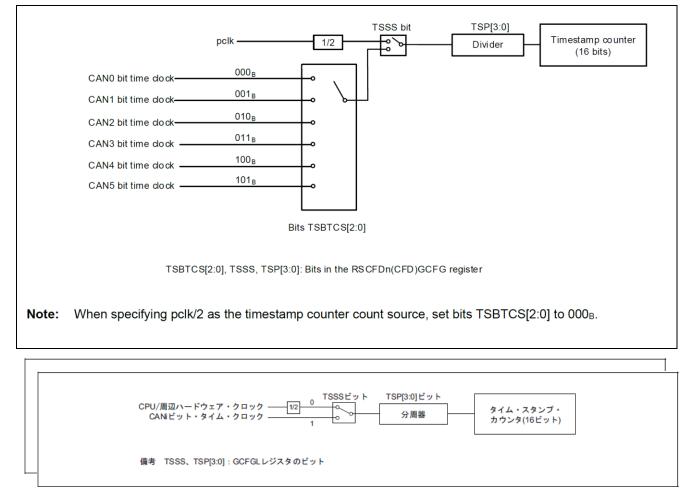



Figure 4-1 Timestamp Function Block Diagram

[Note] 1. Start Of Frame Field represent start of frame



# 4.7 Interval Timer Prescaler Setting

Set the prescaler value when pclk is selected as an interval timer count source.

Please refer to "Section 6.4.3, Interval Timer Counter Setting" for interval timer function.



# 4.8 Global Function Setting

Figure 4-2 show global function setting procedures.

Perform these settings during CAN configuration.

Prese refer to "Section 1, CAN Configuration" for CAN configuration setting procedure.

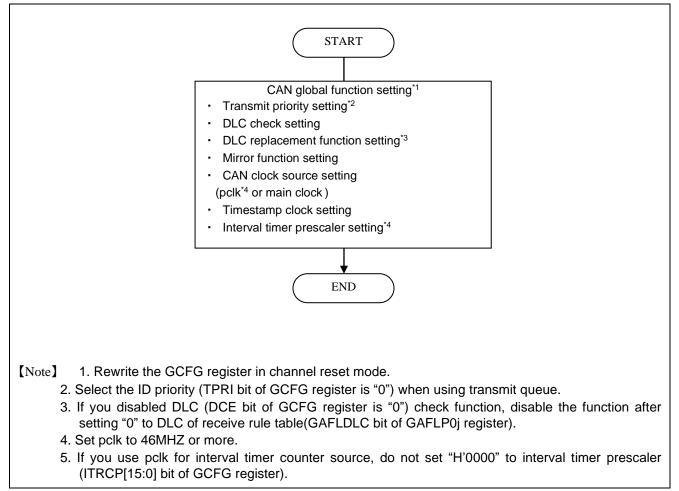



Figure 4-2 Global Function Setting Procedure

# 5. Receive Rule Table

Set receive rule table for filtering received message.

Data processing using the receive rule table store selected messages to the specified buffer. Data processing includes acceptance filter processing, DLC filter processing, routing processing, label addition processing, and mirror function processing.

Following setting is required for receive rule.

- Receive rule setting
- IDE/RTR/ID setting
- Receive rule target message setting
- IDE mask/RTR mask/ID mask setting
- DLC check setting
- Receive rule label setting
- Stored buffer setting

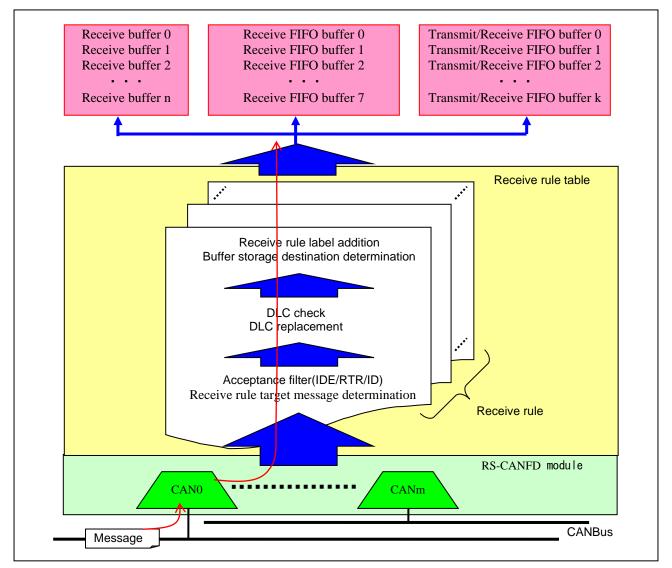



Figure 5-1 Filtering Image by Receive Rule Table

## 5.1 Receive Rules Setting

Set the receive rules for each channel.

The receive rules are  $64 \times$  channels in entire module, and the maximum channel unable to register channel rules to a channel are 128.

Check processes begin with the lowest channel rule number in ascending order. When all the bits to be compared in a received message match the bits set in the receive rule or when all the receive rules are compared without any match, filter processing stops. When there is no matching receive rule, the received message is not stored in the receive buffer or FIFO buffer.

The restrictions of receive rules can be registered are shown below.

- Restriction of receive rules for each channel
  - CAN0 receive rules  $\leq 64 \times$  channels
    - •
  - CANm receive rules  $\leq 64 \times$  channels
- Restriction of all receive channels CAN0 receive rules + • • • +CANm receive rules ≤64 × channels

Figure 5-2 shows the receive rules registration diagram when channel 0,1 is used.



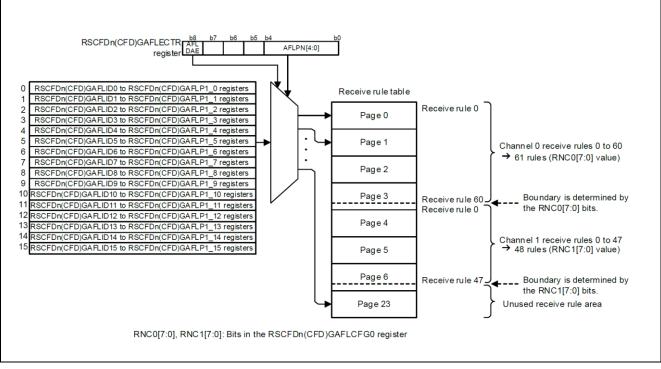



Figure 5-2 Receive Rule Registration (in the case of setting channel 0 and 1)



# 5.2 IDE/RTR/ID Setting

Set the ID format (standard ID or extended ID), frame format(data frame or remote frame), and receive ID of the received message.

# 5.3 Receive Rule Target Message Setting

When you set the transmitted message from another CAN node (GAFLLB bit of GAFLIDHj register is "0"), data processing to be performed using the receive rule when a message transmitted from another CAN node is received. When you set the own transmitted message using mirror function (GAFLLB bit is "1"), data processing to be

performed using the receive rule when the own transmitted message is received.

Please refer to "Section 4.4, Mirror Function Setting" for mirror function.

# 5.4 IDE Mask/RTR Mask/ID Mask Setting

Set the mask value that is set in IDE/RTR/ID.

The bit that is not masked in IDE mask/RTR mask/ID mask becomes effective by acceptance filter.

# 5.5 DLC Check Counter Value Setting

Set DLC value of the receive rule which is compared with DLC value of received message when DLC check is

allowed DLC.

Please refer to "Section 4.2, DLC check setting" for DLC check.

# 5.6 Routing Processing

When the payload length of the received message exceeds the payload storage size of the storage buffer, the CMPOF flag in the GERFL register is set to 1 (payload overflow) and the processing is handled according to the CMPOC bit in the GCFG register. When the CMPOC bit is "0", the received message which exceeds the payload storage size is not stored in the buffer. When the CMPOC bit is "1", the received message is stored in the buffer with payloads exceeding the storage size being discarded.

# 5.7 Receive Rule Label Setting

Set added 12-bit label information when message that passed through filter processing is stored to buffer.

It is possible to set label voluntary, and it is able to freely use received message label by program. For example, if

you set the receiving channel number to the label, it is possible to check which channel the message with same ID in the receive FIFO buffer was received.



# 5.8 Store Buffer Setting

Set the buffer stored the message that passed through filter processing.

Buffers be unable to select as storage destination are shown below.

- Receive buffer q (For 1 receive rule, 1 buffer is selectable.)
- Receive FIFO buffer q
- Transmit/Receive FIFO buffer k (receive mode)

Maximum 2 store buffer is selectable for 1 receive rule. However, It is only possible to select 1 buffer as storage destination. (For example, it is not possible to store to receive buffer 0 and 1.)

Example of maximum storage destination)

- Max 2 buffer = (Receive FIFO buffer x) : 1 piece
  - + receive buffer q : 1 piece
- Max 2 buffer = (Receive FIFO buffer + Transmit/Receive FIFO buffer k) : 2 piece

Unable/ Disable setting example)

 $\circ$  : Store to receive buffer 0, receive FIFO buffer 2, and receive FIFO buffer 3

×: Store to receive buffer 0, receive buffer 1, and receive FIFO buffer 2 \* Disable to store 2 receive buffer.



# 5.9 Receive Rule Usage Example

Receive rule usage example are shown below.

- Example. 1
  - Example of each register is shown when below messages are received.
  - ID format : Standard ID
  - Message format : Data frame
  - Mirror Function : Massage receive from another CAN node

: 010h

- Receive ID : 120h,121h,122h,123h
- DLC : Receive message DLC  $\geq 6$
- Label
- Storage destination buffer : Receive buffer 3, Receive FIFO buffer 0, 1, 2

|             |       | GAFLIDE/GAFLIDEM | GAFLRTR/GAFLRTRM | GAFLLB | GAFLID/GAFLIDM  |            |            |            |  |  |
|-------------|-------|------------------|------------------|--------|-----------------|------------|------------|------------|--|--|
| GAFLIDLj,Hj |       | 0                | 0                | 0      | B'00000         | B'00000000 | B'0000001  | B'00100000 |  |  |
| GAFLMLj,Hj  |       | 1                | 1                | —      | B'00000         | B,00000000 | B'00000111 | B'11111100 |  |  |
|             | H'120 |                  |                  |        | В'              | В'         | B'001      | B'00100000 |  |  |
| Receivable  | H'121 | 0                | 0                | 0      | B' B'001 B'0010 |            |            |            |  |  |
| message     | H'122 | 0                | 0                | 0      | В'              | В'         | B'001      | B'00100010 |  |  |
|             | H'123 |                  |                  |        | В'              | В'         | B'001      | B'00100011 |  |  |

|          | GAFLDLC | GAFLPTR | GAFLRMV | GAFLRMDP | GAFLFDP  |
|----------|---------|---------|---------|----------|----------|
| GAFLP0Hj | 6       | H'010   | —       | —        | _        |
| GAFLP0Lj | Ι       | _       | 1       | 3        | B' 00011 |

#### • Example. 2

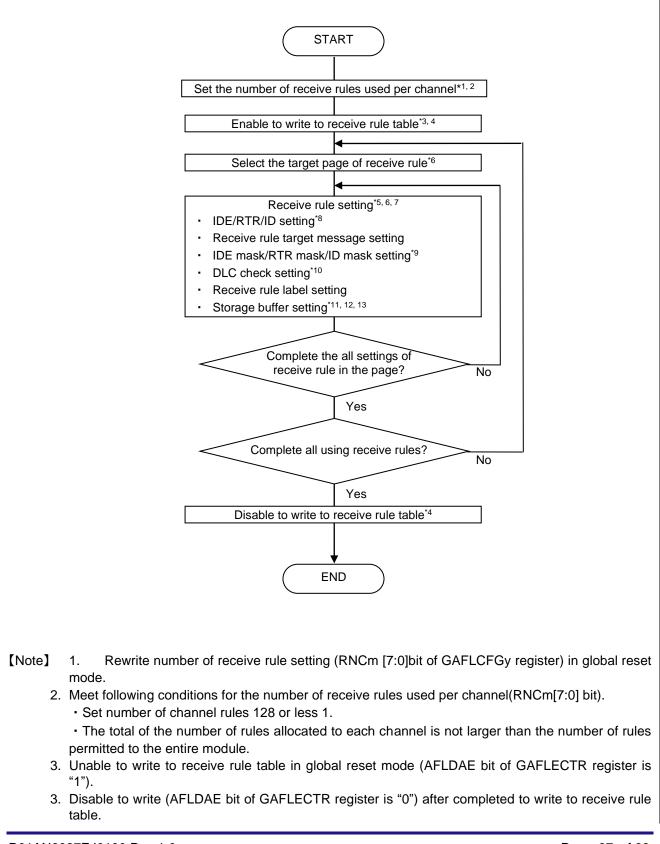
- Example of each register is shown when below messages are received.
- ID format : Standard ID
- Message format : Remote frame, Data frame
- Mirror Function : Massage receive from another CAN node

:130h

- Receive ID : 130h
- DLC : Unused DLC check
- Label
- Storage destination buffer : Receive FIFO buffer 4, 6, Transmit/Receive FIFO buffer 1, 2

|             |              | GAFLIDE/GAFLIDEM | GAFLRTR/GAFLRTRM | GAFLLB | GAFLID/GA | FLIDM      |            |            |
|-------------|--------------|------------------|------------------|--------|-----------|------------|------------|------------|
| GAFLIDLj,Hj |              | 0                | 0                | 0      | B'00000   | B'00000000 | B'00000001 | B'00110000 |
| GAFLMLj,Hj  |              | 1                | 0                | -      | B'00000   | B'00000000 | B'00000111 | B'11111111 |
| Receivable  | H'130 (Data) | 0                | 0                | 0      | В'        | В'         | B'001      | B'00110000 |
| Message     | H'130 (Rmt)  | 0                | 1                | 0      | В'        | В'         | B'001      | B'00110000 |

|          | GAFDLC | GAFLPTR | GAFLRMV | GAFLRMDP | GAFLFDP |
|----------|--------|---------|---------|----------|---------|
| GAFLP0Hj | 0      | H'130   | —       | —        | _       |
| GAFLP0Lj |        | —       | 0       | 0        | B'10001 |




# 5.10 Receive Rule Table Setting Procedures

Figure 5-3 show receive rule table setting procedures.

Set these settings during CAN configuration.

Please refer to "section 1, CAN Configuration" for CAN configuration processing.





- 4. Do not set the page more than number of pages that can be set in module to setting target page.
- 5. Rewrite receive rule(GAFLIDj register, GAFLMj register, GAFLP0j register, GAFLP1j register) in the condition enabled to write to receive rule table and global reset mode.
- 6. Set receive rule continusly for each cahnnel. It is diabled to share and set alternately with another channel.
- In standard ID, set standard ID values to b10~b0 ID(GAFLID[28:0] bit of GAFLIDj register), and set "0" to b28~b11.
- If IDE bit is not compared (GAFLIDEM bit of GAFLMj register is "0"), set "do not compared all bit" (all GAFLIDEM[28:0] bit of GAFLMj register is "0").
- 9. It is effective if DLC check function is allowed(DCE bit of GCFG register is "1").
- 10.Maximum 8 FIFO buffers can be selected. However, maximum 7 buffers can be selected if the message is stored to receive buffer (GAFLRMV bit of GAFLP0j register is "1").
- 11.Only select transmit/receive buffer set to receive FIFO buffer and receive mode, or gateway mode\*.
- 12. If you select receive buffer as storage destination, enable to receive buffer (GAFLRMV bit is "1"), and set the number smaller than the number used receive buffer (Setting values to NRXMBm[7:0] bit of RMNBy register).

Figure 5-3 Receive Rule Table Setting Processing



# 6. Buffer, FIFO Buffer

Set buffer used in transmit/ receive and FFO buffer. Following buffer and FIFO buffer setting are required.

- Receive buffer setting
- Receive FIFO buffer setting
- Transmit/Receive FIFO buffer setting
- Transmit buffer setting
- Transmit qeue
- Transmit history buffer setting
- Payload strage size

The restriction of settable number of buffers to receive buffer, receive FIFO buffer, and transmit/receive FIFO buffer are showed below.

Receive buffer  $\times$  (12+Payload strage size) +Total (Stage number  $\times$  (12+Payload strage size) ) of Receive FIFO buffer x +Total (Stage number  $\times$  (12+Payload strage size) ) of Transmit/Receive FIFO buffer k  $\leq$ 7168 byte



Figure 6-1 shows buffer configuration.

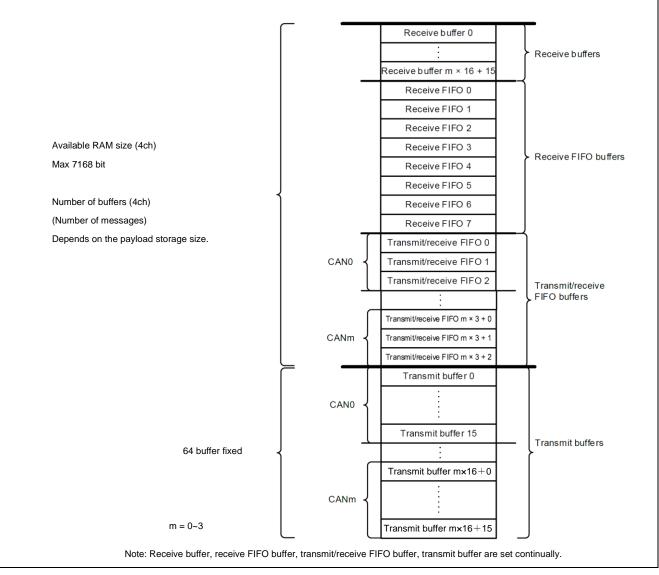



Figure 6-1 Buffer Configuration



## 6.1 Receive Buffer Setting

Set number of buffer assigned to buffer and payload size abled to store to per buffer. It is possible to assign buffers of  $0\sim16\times$  number of channels to receive buffer. Receive buffer is not able to use if "0" is set to number of receive buffer.

There is no setting of related interrupt because there is no interrupt of related receive buffer.

# 6.2 Receive FIFO Buffer Setting

Required settings used for receive FIFO buffer are showed below.

- Number of buffers and payload size setting
- Interrupt enable/disable setting, and interrupt source setting

#### 6.2.1 Number of Buffers setting

Set number of buffer assigned to FIFO buffer and payload size.

There are 8 receive buffers, and maximum 128 buffers can be assigned.

Number of buffers assigned to receive FIFO buffer are able to select from 0<sup>\*1</sup>, 4, 8, 16, 32, 48, 64, 128.

#### 6.2.2 Interrupt enable/disable Setting, and Interrupt Source Setting

Set interrupt enable/disable setting, and interrupt source setting.

When you use receive FIFO interrupt, interrupt source able to select below.

- Receive FIFO interrupt occur (RFM bit of RFCCx register is "0") when RFIGCV[2.0] bit of RFCCx register meet following conditions.
  - When the message stored to receive FIFO buffer is 1/8 full.<sup>\*2</sup>
  - When the message stored to receive FIFO buffer is 2/8 full.
  - When the message stored to receive FIFO buffer is 3/8 full.<sup>\*2</sup>
  - When the message stored to receive FIFO buffer is 4/8 full.
  - When the message stored to receive FIFO buffer is 5/8 full.\*2
  - When the message stored to receive FIFO buffer is 6/8 full.
  - When the message stored to receive FIFO buffer is 7/8 full.<sup>\*2</sup>
  - When receive FIFO buffer is full.
- Receive FIFO interrupt occurs every time when a message reception is completed (RFIM bit of RFCCx register is "1").
- [Note] 1. If you do not use receive FIFO buffer, set 0 message (RFDC[2:0] bit of RFCCx register is "B'000") to buffer number of receive FIFO buffer.
  - 2. Do not set if you set 4 messages (RFDC[2:0] bit is "B'001") to buffer number of receive FIFO buffer.



#### 6.3 Transmit/Receive FIFO Buffer Setting

Required settings for using transmit/receive FIFO is shown below.

- Number of buffers setting
- Interrupt enable/disable setting, and interrupt source setting
- Transmit/Receive FIFO mode setting
- Interval timer counter setting (Transmit mode, gateway mode<sup>★</sup>)
- Transmit buffer link setting (Transmit mode, gateway mode<sup> $\star$ </sup>) •

#### 6.3.1 Number of buffers setting

There are three transmit/receive FIFO buffers for each channel, and maximum 128 buffers are assigned. Number of buffers assigned to transmit/receive FIFO buffer are able to select from 0\*1, 4, 8, 16, 32, 48, 64, 128.

#### 6.3.2 Interrupt Enable/Disable Setting, and Interrupt Source Setting

Set interrupt enable/disable setting, and interrupt source setting of each transmit/receive FIFO buffer. Table 6-1 shows settable interrupt source for each transmit/receive FIFO mode.

| Transmit/Receive<br>FIFO Mode | CFIM Bit of<br>CFCCLk<br>Register | Interrupt Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receive Mode                  | 0                                 | When receive message is met condition set in CFIGCV[2:0] bit of CFCCLK register, receive complete interrupt of transmit/receive FIFO is occurred.<br>CFIGCV[2:0] bit setting<br>$000_B$ : When the message stored to receive FIFO buffer is 1/8 full. <sup>*2</sup><br>$001_B$ : When the message stored to receive FIFO buffer is 2/8 full.<br>$010_B$ : When the message stored to receive FIFO buffer is 3/8 full. <sup>*2</sup><br>$011_B$ : When the message stored to receive FIFO buffer is 3/8 full. <sup>*2</sup><br>$011_B$ : When the message stored to receive FIFO buffer is 4/8 full.<br>$100_B$ : When the message stored to receive FIFO buffer is 5/8 full. <sup>*2</sup><br>$101_B$ : When the message stored to receive FIFO buffer is 6/8 full.<br>$110_B$ : When the message stored to receive FIFO buffer is 7/8 full. <sup>*2</sup><br>$111_B$ : When the message stored to receive FIFO buffer is 7/8 full. <sup>*2</sup> |
|                               | 1                                 | Receive complete interrupt of transmit/receive FIFO is occurred when a message reception is completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Transmit Mada                 | 0                                 | Receive complete interrupt of transmit/receive FIFO is occurred when buffer becomes empty by completed message transmit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Transmit Mode                 | 1                                 | Receive complete interrupt of transmit/receive FIFO is occurred when a message transmit is completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 6-1 Transmit/Receive FIFO Buffer interrupt source

If you do not use transmit/receive FIFO buffer, set 0 message (CFDC[2:0] bit of CFCCLk register is "B'000") to buffer number of transmit/receive FIFO buffer. 2. Do not set if you set 4 messages (RFDC[2:0] bit is "B'001") to buffer number of transmit/receive

FIFO buffer.

Transmit/Receive FIFO transmit complete interrupt becomes occurrence source of CANm transmit interrupt. The

occurrence sources of CANm transmit interrupt are shown below.

CANm transmit complete interrupt

CANm transmit abort interrupt

CANm transmit/receive FIFO transmit comlete interrupt

CANm transmit qeue interrupt

CANm transmit history interrupt

#### 6.3.3 Transmit/Receive FIFO Mode Setting

Set transmit/receive FIFO buffer mod. It is possible to select receive mode or transmit mode.

Receive modeOperate as receive FIFO.Transmit mode

Operate as transmit FIFO.

#### 6.3.4 Interval Timer Counter Setting

Set counter source of interval timer counter and transmission interval. The interval timer counter is effective in transmit mode and gateway mode<sup>\*</sup>.

Table 6-2 shows the count source of interval timer counter and formula of interval time.

| CFITR bit and                                                                      | Count Source                                                                    | Formula                                             |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| CFITSS bit of                                                                      |                                                                                 |                                                     |
| CFCCHk registe                                                                     |                                                                                 |                                                     |
| B'00                                                                               | Clock obtained pclk by dividing ITRCP[15:0] of GCFGH register.                  | 1/f <sub>CLK</sub> <b>x</b> 2 <b>x</b> a <b>x</b> b |
| B'10                                                                               | 10 times divided clock of clock obtained pclk by ITRCP[15:0] of GCFGH register. | 1/f <sub>CLK</sub> x2xax10xb                        |
| B'x1                                                                               | CANm nominal bit time clock                                                     | 1/f <sub>CANBIT</sub> ×b                            |
| [Note] a                                                                           | e : pclk prescaler value (setting value of ITRCP[15:0] bit)                     |                                                     |
| b : Setting value of message transmit interval (CFITT[7:0] bit of CFCCHk register) |                                                                                 |                                                     |
| fclk                                                                               | : pclk frequency                                                                |                                                     |
| <b>f</b> CANBIT                                                                    | : CANm nominal bit time clock frequency                                         |                                                     |

Table 6-2 Count Source of Interval Timer counter and Formula of Interval Time



#### 6.3.5 Transmit Buffer Link Setting

Link transmit/receive FIFO buffer to transmit buffer. The transmit buffer is effective in transmit mode and gateway mode<sup> $\star$ </sup>.

Do not assign transmit buffer linked to transmit/receive FIFO buffer to receive quue. Only one transmit/receive FIFO buffer can be linked to one transmit buffer. Do not link several transmit/receive FIFO buffers to the same number of transmit buffers.

# 6.4 Transmit Buffer Setting

Set transmit complete interrupt enable/disable for each transmit buffer.

The transmit buffer has 16 buffers per one channel, and it is able to use as either transmit buffer, transmit/receive FIFO buffer (transmit mode and gateway mode<sup> $\star$ </sup>) for link, or transmit queue.

When you use the transmit buffer as either transmit/receive FIFO buffer (transmit mode and gateway mode<sup>\*</sup>) for link or transmit queue, set "H'00" to corresponding TMCp register. Also, set "0" (interrupt disable) to TMIEp bit of TMIECy register.

In addition, transmit complete interrupt becomes source of CANm transmit interrupt. Occurrence source of CANm transmit interrupt are shown below.

- CANm transmit complete interrupt
- CANm transmit abort interrupt
- CANm transmit/receive FIFO transmit complete interrupt
- CANm transmit queue interrupt
- CANm transmit history interrupt

# 6.5 Transmit Queue Setting

Required settings for using transmit queue are shown blow.

- Number of buffers setting
- Interrupt enable/disable setting, and interrupt source setting

#### 6.5.1 Number of Buffers Settings

Set buffer number of transmit queue.

There is one transmit queue per channel, and up to 16 buffers are assinged. The transmit quque is assinged in descending order from the transmit buffer number  $[(16 \times m+15)]$ . Also, transmit buffer  $[(16 \times m+15)]$  becomes a common access window of each channel.

Select the transmit priority to ID priority when transmit quue is used.



#### 6.5.2 Interrupt Enable/Disable Setting, and Interrupt Source Setting

Set interrupt enable/disable setting and interrupt source setting. The interrupt source that can be set when transmit queue intrrupt is used are shown below.

- Transmit queue interrupt is occurred when transmit queue became empty by tramsmit complete.
- Transmit queue interrupt is occurred each time one message trasmit is completed.

Also, transmit queue becomes occurance source of CANm transmit related interrupt. Occurance source of CANm transmit related interrupt are shown below.

- CANm transmit complete interrupt
- CANm transmit abort interrupt
- CANm transmit/receive FIFO transmit complete interrupt
- CANm transmit queue interrupt
- CANm transmit history interrupt



# 6.6 Transmit History Buffer Setting

Required settings for using transmit history buffer are shown below.

The transmit history buffer can store 8 transmit history data per channel.

- Storage target buffer setting
- Interrupt enable/disable and interrupt source settings

## 6.6.1 Storage Target Buffer Setting

Set target buffer for storing transmit history data to transmit history buffer. The target buffer to be stored can be selected below.

Also, you can set weather to store the transmit history data of the message when storing the transmit message.

- Entry from transmit/receive FIFO buffer and transmit queue.
- Entry from transmit buffer, transmit/receive FIFO buffer, and transmit queue.

#### 6.6.2 Interrupt Enable/Disable and Interrupt Source Settings

Set transmit history interrupt enable/disable setting and interrupt source setting. Transmit history buffer interrupt sources are shown below.

- Transmit history interrupt is occurred when 6 data are stored to transmit history buffer.
- Transmit history interrupt is occurred each time a transmit history data storage is completed.

In addition, transmit history interrupt becomes occurrence source of CANm transmit interrupt. The occurrence

sources of CANm transmit interrupt are shown below.

- CANm transmit complete interrupt
- CANm transmit abort interrupt
- CANm transmit/receive FIFO transmit complete interrupt
- CANm transmit queue interrupt
- CANm transmit history interrupt



# 6.7 Buffer Setting Procedures

Figure 6-2 shows receive buffer and receive FIFO buffer setting procedures. Figure 6-3 shows transmit FIFO buffer, transmit buffer, and transmit history buffer setting procedures.

Perform these settings during CAN configuration.

Please refer to "Section 1, CAN Configuration" for CAN configuration procedure.

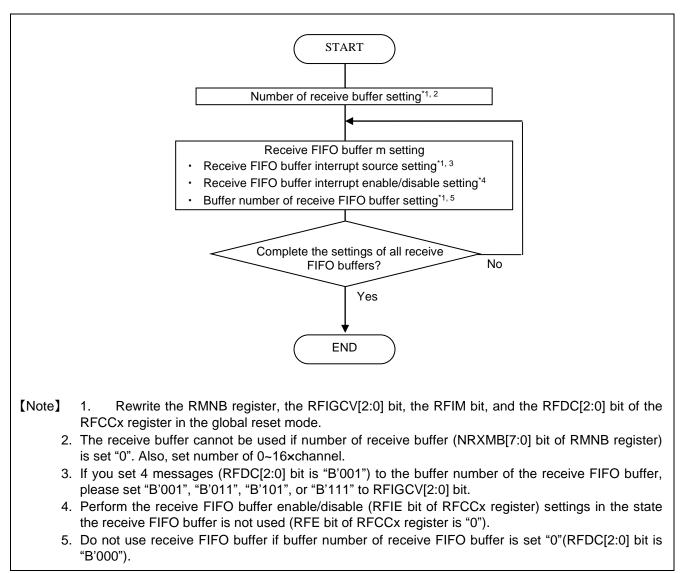
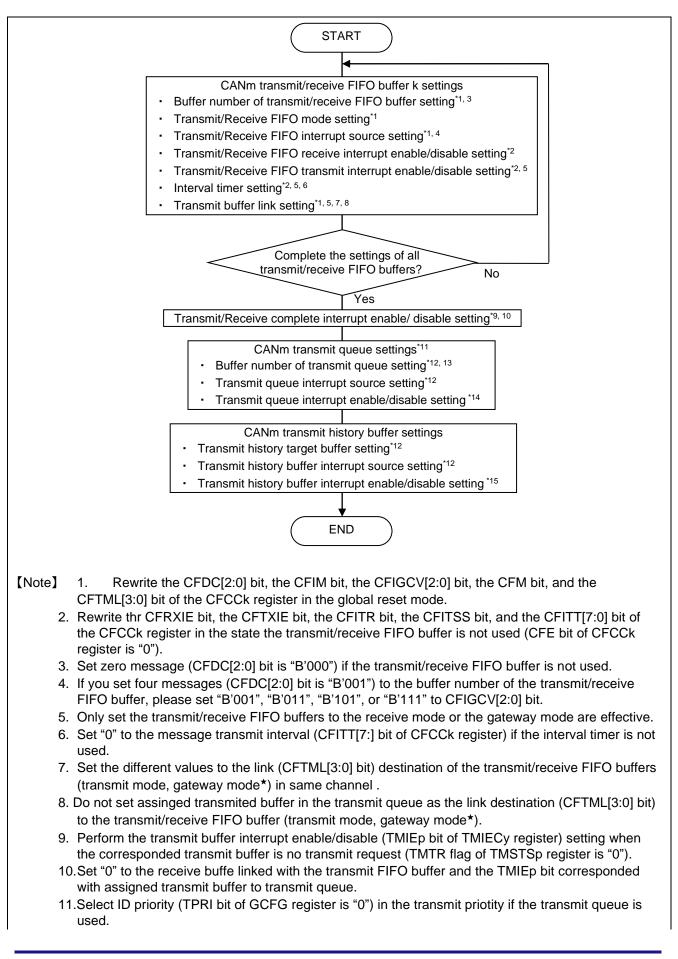




Figure 6-2 Receive Buffer and Receive FIFO Buffer Setting Procedures





- 12.Rewrite the TXQDC[3:0] bit and the TXQIM bit of the TXQCCm register, the THLDTE bit and the THLIM bit of the THLCCm register in the channel reset mode.
- 13. The transmit queue cannot be used if the buffer number of the transmit queue (TQDC[3:0] bit) is "0". Also, do not set "1".
- 14. Perform the transmit queue interrupt eanble/disabele (TQIE bit of TXQCCi register) settnig in the conditon transmit queue is not used (TQE bit is "0").
- 15. Rewrite in the state transmit history buffer is not used(THLE bit of THLCCm register is "0").

Figure 6-3 Transmit Buffer, Transmit/Receive FIFO Buffer, and Transmit History Buffer Setting Procedures



# 7. Global Error Interrupt

Set global error interrupt. When corresponded interrupt enable bit is enabled, interrupt request is outputted from CAN module. Occurrence of interrupts also depends on the interrupt control register settings of the interrupt controller.

# 7.1 Global Error Interrupt Setting

Occurrence sources of global error interrupt are shown below.

- DLC check error
- FIFO message lost
- Transmit history buffer overflow
- Payload overflow

## 7.1.1 DLC Check Error

When DLC check is enabled, the DLC check error is detected in case DLC of message in DLC check after passing acceptance filtering process is smaller than DLC of transmit rule.

#### 7.1.2 FIFO Message Lost

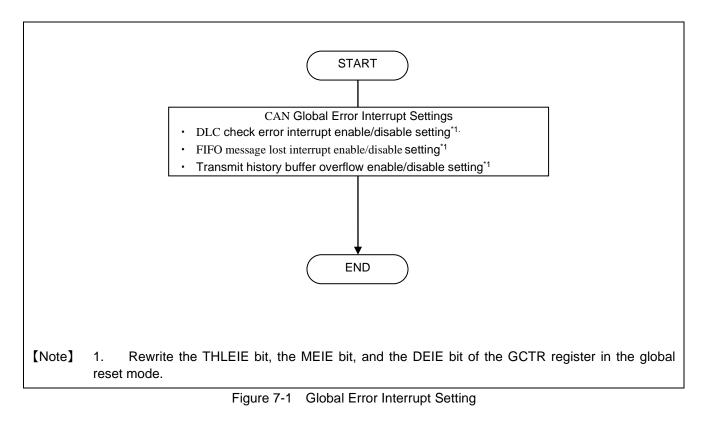
The FIFO message lost is detected in case the state transmit/receive FIFO buffer is full and attempting to store new message to FIFO.

# 7.1.3 Transmit History Buffer Overflow

The transmit history buffer overflow is detected in case history buffer is full and attempting to store new transmit history data to transmit history buffer.

#### 7.1.4 Payload Overflow

The payload overflow is detected in case payload length of received message exceeds payload storage size of storage destination buffer.




# 7.2 Global Error Interrupt Setting Procedure

Figure 7-1 shows global error interrupt setting procedure.

Please perform these settings during CAN configuration.

Please refer to "Section 1, CAN Configuration" for CAN configuration procedure.





## 8. Channel Function

Set the following functions for each channel.

- Channel error interrupt setting
- Transmit abort interrupt setting
- Bus off recovery mode setting
- Error display mode setting
- Communication test mode setting

# 8.1 CANm Error Interrupt

Set CANm error interrupt enable/disable. The occurrence sources of channel error interrupt are shown below.

- Bus error
- Error warning
- Error passive
- Bus off entry
- Bus off recovery
- Overload frame
- Bus lock
- Arbitration lost

#### 8.1.1 Bus Error

Interrupt is occurred in case any one of the following is detected.

- A form error is detected in the ACK delimiter (ADERR flag of CmERFLL register is "1").
- A recessive is detected even though a dominant is transmitted (B0ERR flag of CmERFLL register is "1").
- A dominant is detected even though a recessive is transmitted (B1ERR flag of CmERFLL register is "1")
- A CRC error is detected (CERR flag of CmERFLL register is "1").
- An ACK error is detected (AERR flag of CmERFLL register is "1").
- A form error is detected (FERR flag of CmERFLL register is "1").
- A stuff error is detected (SERR flag of CmERFLL register is "1")

# 8.1.2 Error Warning

The interrupt is occurred in case an error warning state (receive error counter or transmit error counter >95) is detected. The interrupt is occurred when only the receive error counter or transmit error counter first exceeds 95.

#### 8.1.3 Error Passive

The interrupt is occurred in case an error passive state (receive error counter or transmit error counter >127) is detected. The interrupt is occurred when only the receive error counter or transmit error counter first exceeds 127.



#### 8.1.4 Bus Off Entry

The interrupt is occurred in case a bus off state (transmit error counter >225) is detected.

The interrupt is also occurred in case the bus off recovery mode setting became the bus off state by the transition to channel halt mode (BOM[1:0] bit of CmCTR register is "b'01") in bus off state.

#### 8.1.5 Bus Off Recovery

The interrupt is occurred in case an 11 bit consecutive recessive is detected 128 times and the recovery from the buss off state is detected. Please refer to "Section 8.3, Buss Off Recovery Mode Setting" for detail.

#### 8.1.6 Overload frame transmit

The interrupt is occurred in case transmit condition of overload frame is detected when receiving or transmitting.

#### 8.1.7 Bus Lock

The interrupt is occurred in case a bus lock is detected.

It is judged as a bus lock when a 32 bit consecutive dominant is detected on the CAN bus in channel communication mode.

#### 8.1.8 Arbitration Lost transmit/receive

The interrupt is occurred in case an arbitration lost is detected.

#### 8.2 CANm Transmit Abort Interrupt

Set the transmit abort interrupt enable/disable. The interrupt is occurred when transmit abort complete has been detected in case the transmit abort interrupt is enabled.

Also, the transmit abort interrupt becomes occurrence sources of CANm transmit interrupt. The occurrence sources of the CANm transmit interrupt are shown below.

- CANm transmit coplete interrupt
- CANm transmit abort interrupt
- CANm transmit/receive FIFO transmit complete interrupt
- CANm transmit queue interrupt
- CANm transmit history inetrrupt



# 8.3 Bus Off Recovery Mode Setting

Set the operation when recovering bus off. Table 8-1, and Figure 8-1 ~ Figure 8-4 show the operation of each bus off recovery mode.

| CmCTR<br>BOM[1:0] Bit | Function                                                                         | Bus Off Entry<br>Interrupt | Bus Off Recovery<br>Interrupt <sup>*1</sup> |
|-----------------------|----------------------------------------------------------------------------------|----------------------------|---------------------------------------------|
| B'00                  | ISO11898-1 compliant                                                             | Occur                      | Occur <sup>*2</sup>                         |
| B'01                  | Transitions to channel halt mode automatically at bus-off entry <sup>*3, 4</sup> | Occur                      | Not occur                                   |
| B'10                  | Transitions to channel halt mode automatically at bus-off end <sup>*3, 4</sup>   | Occur                      | Occur                                       |
| B'11                  | Transitions to channel halt mode (in bus-off state) by program request           | Occur                      | Occur*5                                     |

| Table 8-1 | The Operation | When Recovering Bus Off |
|-----------|---------------|-------------------------|
|-----------|---------------|-------------------------|

[Note] 1. When transitioning to channel reset mode before detecting an 11 bit recessive 128 times (Set "B'01" to CHMDC[1:0] bit of CmCTR register), the interrupt is not occurred in case.

2. When transitioned to channel halt mode (CHMDC[1:0] is "B'01") before detecting a 11 bit consecutive recessive 128 times, it is not transmitted to channel halt mode until a 11 bit consecutive recessive is detected 128 times. Also, the interrupt is not occurred in case of recovering from bus off forcibly.

3. If the channel transitions to channel halt mode by the CAN module simultaneously when the program writes a value to the CHMDC[1:0] bits, writing by the program takes precedence.

4. An automatic transition to channel halt mode is made only in channel communication mode (CHMDC[1:0] bit is "B'00").

5. When transitioned to channel halt mode by program request before detecting a 11 bit con recessive 128 times during bas off, the interrupt is not occurred.



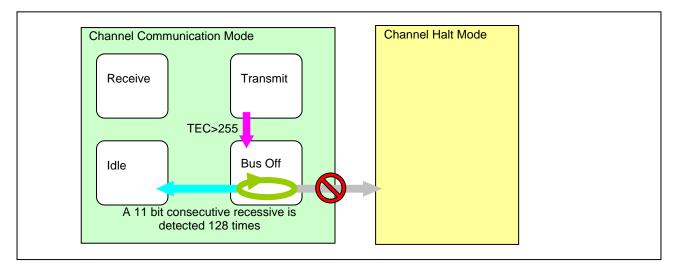



Figure 8-1 The operation when compliant ISO11898-1 (BOM[1:0] bit is B' 00)



Figure 8-2 The operation when transitioning to channel halt mode at bus off entry (BOM[1:0] bit is B' 01)



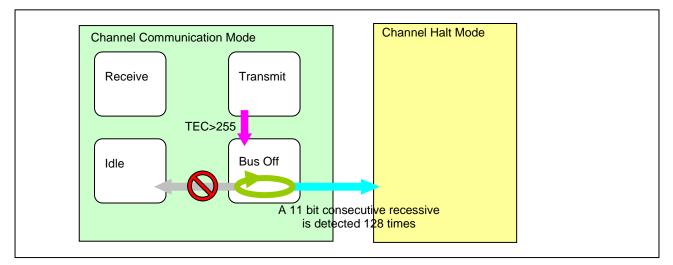



Figure 8-3 The operation when transitioning to channel halt mode at bus off end (BOM[1:0] bit is B' 01)

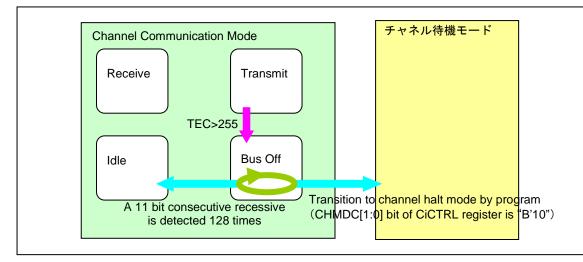



Figure 8-4 The operation when transitioning to channel halt mode by program request at bas off (BOM[1:0] bit is B' 11)



# 8.4 Error Display Mode Setting

When CAN bus error is occurred, set bit 14~8 display mode of CmERFLL register. The display mode enabled to set is shown below.

Display only the first occurred error information (ERRD bit of CmCTR register = "0").

- The first occurred error flag only become "1". When several errors are occurred at the same time, the flag of the detected several error will be "1".
- Display all of the occurred error information. (ERRD bit = "1"). Regardless of the order of occurrence, all the flags of the errors that occur will be "1".

Figure 8-5 shows the operation example of CMERFLL register in each error display mode.

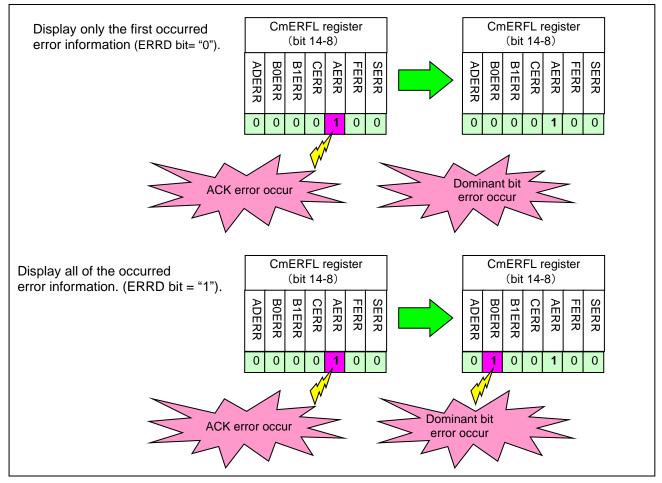



Figure 8-5 Operation Example of Error Display Mode



# 8.5 Communication Test Mode Setting

Set communication test mode. Please refer to "Test Mode Procedure Application Note" for the communication test mode.



# 8.6 Channel Function Setting Procedure

Figure 8-6 shows the channel function procedure.

Please perform these settings during CAN configuration.

Refer to "Section 1, CAN Configuration" for procedure of CAN configuration.

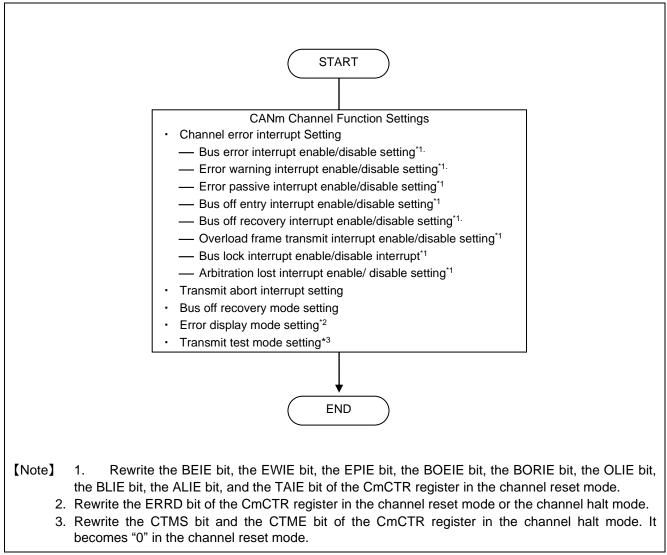



Figure 8-6 Channel Function Setting Procedure



# 9. CAN-related Interrupt

Set the corresponding EI level interrupt control register (EIC register) for the CAN-related interrupt enable/disable.

The available CAN-related interrupts are shown below.

- Global receive FIFO interrupt
- Global error interrupt
- CANm transmit interrupt
- CANm transmit/receive FIFO receive complete interrupt
- CANm error interrupt
- CANm wakeup interrupt

| Interrupt                                     | Occurrence Source                                   |
|-----------------------------------------------|-----------------------------------------------------|
| Global receive FIFO interrupt                 | Receive FIFO buffer interrupt request generation    |
| Global error interrupt                        | DLC check error                                     |
|                                               | FIFO message lost                                   |
|                                               | Transmit history buffer overflow                    |
| CANm transmit interrupt                       | CANm transmit complete interrupt request generation |
|                                               | CANm transmit abort interrupt request generation    |
|                                               | CANm transmit/receive FIFO transmit complete        |
|                                               | interrupt request generation                        |
|                                               | CANm transmit queue interrupt request generation    |
|                                               | CANm transmit history interrupt request generation  |
| CAN transmit/reasing EIEO complete interrupt  | Channel m transmit/receive FIFO receive complete    |
| CANm transmit/receive FIFO complete interrupt | interrupt request generation                        |
| CANm error interrupt                          | Bus error                                           |
|                                               | Error warning                                       |
|                                               | Error passive                                       |
|                                               | Bus-off entry                                       |
|                                               | Bus-off end                                         |
|                                               | Overload flame transmit                             |
|                                               | Bus lock                                            |
|                                               | Arbitration lost                                    |
|                                               | Transmitter Delay Compensation violation            |
| CANm wakeup interrupt <sup>*1</sup>           | CAN bus dominant edge detection                     |
| [Noto] 1 The external INT interrupt is used   |                                                     |

[Note] 1. The external INT interrupt is used.



# 9.1 CAN-related Interrupt Setting Procedure

Figure 9-1 shows the interrupt setting procedure.

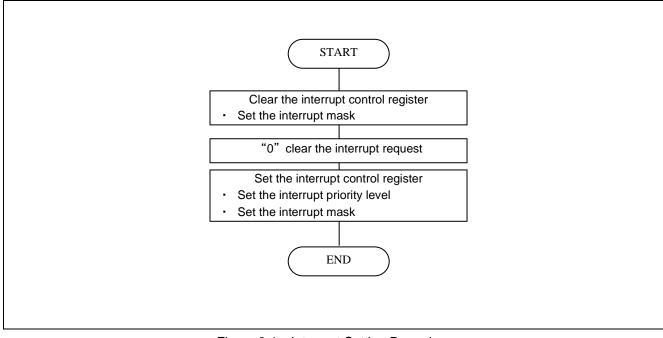



Figure 9-1 Interrupt Setting Procedure



#### 10. Transmitter Delay Compensation (Only in CAN FD Mode)

A high baud rate is used in the data phase in CAN FD mode. Transmitter delay compensation is provided as a function to accept propagation delay in this case.

To use this function, set the TDCE bit in the FDCFG register to 1. Also set the secondary sample point (SSP) timing used in the data phase by the TDCOC bit and TDCO[6:0] bits in the FDCFG register.

When the TDCOC bit is 0, the SSP timing equals the total value of the delay measured by the RS-CANFD module and the TDCO[6:0] value. (This value is rounded off to the nearest integer of Tq.) Usually, the TDCO[6:0] value must be equal to SS + TSEG1, the sample point timing.

Figure 10-1 shows the SSP timing.

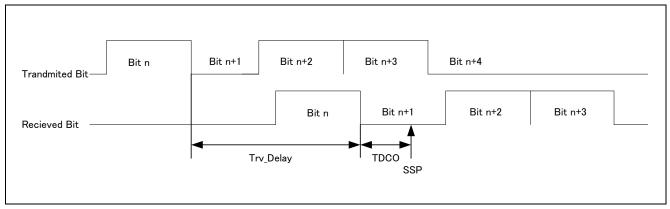



Figure 10-1 SSP Timing

When the TDCOC bit is "1", the SSP timing is determined only by the TDCO[6:0] value. (When the DBRP[7:0] value in the DCFG register is larger than "0", the TDCO[6:0] value is also rounded off to the nearest integer of Tq.) The SSP offset value becomes the set values of the TDCO[6:0] bit +1.

The RS-CANFD module compensates a delay up to 3 CANm bit time (2 fCAN). (CANm bit time is the value of data bit rate.)

The TDCR[6:0] flag in the FDSTS register is the bit that indicates the transmitter delay compensation result as a multiple of CAN clock frequency (fCAN). This result depends on the settings of the TDCOC bit and TDCO[6:0] bits in the FDCFG register. These flags are updated at a falling edge between the FDF bit and res bit when the TDCE bit in the FDCFG register is set to "1"(transmitter delay compensation enable) and also the TDCOC bit in the FDCFG register is set to "0" (measurement and offset).

The TDCVF bit in the FDSTS register indicates violation of transmitter delay compensation. The transmit data is compared with the reception CAN bus level delayed due to the transceiver's loop delay. This delay changes due to physical factors such as temperature. Because the TDCR[6:0] flags are updated for each message, temporary maximum delay cannot be confirmed. This bit is set to "1" when the transmitter delay compensation exceeds the maximum compensation 3 CANm bit times (2fCAN). (CANm bit time is the value of data bit rate)



#### 11. Precautions for Processing Flow

#### 11.1 About Functions

In this application note, there is a part that is functionalized even in the processing of single line, but this is only described as a function to clarify the processing for each function. When you actually create a program, you don't necessarily have to make it functional.

#### 11.2 Setting for Each Channel

In this application note, even if processing is required for each channel, only processing for one channel is described. When actually creating a program, perform the processes for multiple channels as necessary.

#### 11.3 Infinite Loop

To simplify the notation, there are some infinite loops in the processing flow. When actually creating a program, give each loop a time limit so that it can be exited during overtime. Figure 11-1 shows an example of processing when the loop time limit is set. Table 11-1 and Table 11-2 shows the maximum transition time to individual modes

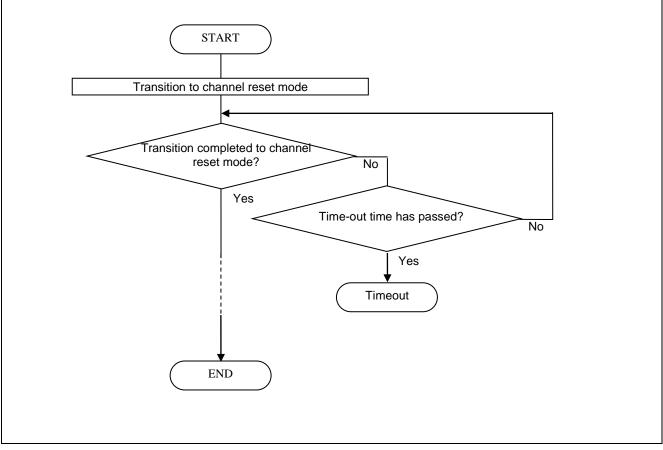



Figure 11-1 Example of Processing with Loop Time Limit



| Mode before transition | Mode after transition | Maximum transition time        |
|------------------------|-----------------------|--------------------------------|
| Global stop            | Global reset          | 3 clocks of pclk               |
| Global reset           | Global stop           | 3 clocks of pclk               |
| Global reset           | Global test           | 10 clocks of pclk              |
| Global reset           | Global operation      | 10 clocks of pclk              |
| Global test            | Global reset          | 2CAN bit time <sup>*1, 2</sup> |
| Global test            | Global operation      | 3 clocks of pclk               |
| Global operation       | Global reset          | 2CAN bit time <sup>*1, 2</sup> |
| Global operation       | Global test           | 2CANframes <sup>*1</sup>       |

|  | Table 11-1 | Transition | Time in | Global N | Node |
|--|------------|------------|---------|----------|------|
|--|------------|------------|---------|----------|------|

[Note] 1. It is the CAN bit time and CAN frame time of the slowest communication speed among the channels used.

2. In CAN FD mode, the normal bit rate is CAN bit time.

| Mode before transition | Mode after transition | Maximum transition time      |
|------------------------|-----------------------|------------------------------|
| Channel Stop           | Channel reset         | 3 clocks of pclk             |
| Channel reset          | Channel Stop          | 3 clocks of pclk             |
| Channel reset          | Channel halt          | 3CANm bit time <sup>*1</sup> |
| Channel reset          | Channel communication | 4CANm bit time <sup>*1</sup> |
| Channel halt           | Channel reset         | 2CANm bit time <sup>*1</sup> |
| Channel halt           | Channel communication | 4CANm bit time <sup>*1</sup> |
| Channel communication  | Channel reset         | 3CANm bit time <sup>*1</sup> |
| Channel communication  | Channel halt          | 2 CANm frames                |

| Table 11-2 Transition Time in Channel Mode |
|--------------------------------------------|
|--------------------------------------------|

[Note] 1. In CAN FD mode, the normal bit rate is CANm bit time.



# 12. Appendix

# 12.1 Performed CAN Configuration Processing in Individual States

Table 12-1 shows performed CAN configuration processing in individual states

|                                |                                  | CAN Configuration <sup>*1</sup> |                                  |                                |                               |
|--------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------------|-------------------------------|
| Processing                     |                                  | After<br>MCU reset              | After<br>global<br>reset<br>mode | After<br>channel<br>reset mode | After<br>channel halt<br>mode |
| CAN state (mode)               | Global mode trasition            | 0                               | 0                                | —                              | —                             |
| transition                     | Channel mode transition          | 0                               | 0                                | 0                              | 0                             |
| Global function                | Transmit priority setting        |                                 |                                  |                                |                               |
| setting                        | DLC check setting                |                                 |                                  |                                |                               |
|                                | DLC replacemt function setting   | 0                               | Δ                                |                                |                               |
|                                | Mirror function setting          |                                 |                                  | _                              | -                             |
|                                | Clock setting                    |                                 |                                  |                                |                               |
|                                | Timestamp clock setting          |                                 |                                  |                                |                               |
|                                | Interval timer prescaler setting |                                 |                                  |                                |                               |
| Communication                  | Bit timing setting               | 0                               | Δ                                | Δ                              | Δ                             |
| speed setting                  | Communication speed setting      | _                               |                                  |                                | Δ                             |
| Receive rulr table setting     |                                  | 0                               | Δ                                | —                              | —                             |
| Buffer setting                 | Receive buffer setting           |                                 |                                  | _                              |                               |
|                                | Receive FIFO buffer setting      |                                 | Δ                                |                                |                               |
|                                | Transmit/Receive FIFO buffer     | 0                               |                                  | <b>Δ<sup>注2</sup></b>          | △ <sup>注2</sup>               |
|                                | setting                          |                                 |                                  |                                |                               |
|                                | Transmit buffer setting          |                                 |                                  | Δ                              | Δ                             |
|                                | Transmit queue setting           |                                 |                                  |                                |                               |
|                                | Transmit history buffer setting  |                                 |                                  |                                |                               |
| Global error interrupt setting |                                  | 0                               | Δ                                | _                              | —                             |
| Channel function se            | etting                           | 0                               | Δ                                | Δ                              | Δ                             |

| Table 12-1 | formed CAN Configuration Processing in Individual States |
|------------|----------------------------------------------------------|
|------------|----------------------------------------------------------|

【注】 1.  $\circ$ : Setting required, -: Cannot be set,  $\triangle$ : No setting required 2. Rewrite the following bits in global reset mode.

CFTML[3:0] bit ,CFM[1:0] bit, CFIGCV[2:0] bit, CFIM bit, CFE bit in CFCCLk,Hk register

# Our Company's Website and Inquiry

Website

http://japan.renesas.com/

#### Inquiry

http://japan.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.



# **Revision History**

|      |           | Description |                 |
|------|-----------|-------------|-----------------|
| Rev. | Date      | Page        | Summary         |
| 1.0  | 2017.5.10 | -           | Initial edition |
|      |           |             |                 |

Precautions for use of the product

This section describes the "Precautions" that apply to all microcontroller products. Please refer to this document and the Technical Update for precautions on individual products.

1. Treatment of unused pins [Caution] Please dispose of unused pins according to "Handling of unused pins" in the text. The impedance of the input pins of CMOS products is generally high impedance. If the unused pins are operated in an open state, noise around the LSI may be applied due to the induction phenomenon, a through current may flow inside the LSI, or it may be recognized as an input signal and malfunction may occur. Dispose of unused pins according to the instructions given in "Disposal of unused pins" in the text. 2. Treatment at power-on [Caution] The state of the product is undefined when the power is turned on. When the power is turned on, the state of the internal circuits of the LSI is indeterminate and the state of register settings and pins is undefined. For products that are reset using the external reset pin, the pin state cannot be guaranteed from the time the power is supplied until the reset becomes valid. Similarly, in the case of products that are reset using the built-in power-on reset function, the pin states cannot be guaranteed from the time the power is turned on until the voltage reaches a certain level. Prohibition of Access to Reserved Addresses 3. [Caution] Access to reserved addresses is prohibited. The address area has a reserved address allocated for future function expansion. The operation when these addresses are accessed cannot be guaranteed, so do not access them. 4. About clock [Caution] When resetting, release the reset after the clock has stabilized. When switching the clock during program execution, switch the clock after the switching destination clock is stable. In a system that starts operating with a clock that uses an external oscillator (or external oscillator circuit) at reset, release the reset after the clock is sufficiently stable. Also, when switching to a clock that uses an external oscillator (or external oscillator circuit) in the middle of a program, make sure that the clock to be switched to is sufficiently stable before switching. 5. Differences between products [Caution] When changing to a product with a different model name, perform a system evaluation test for each product model name. Even if the MCUs in the same group have different model numbers, the characteristic values, operating margins, noise immunity, noise radiation, etc. may differ within the range of electrical characteristics due to differences in internal ROM and layout patterns. When changing to a product with a different model name, perform a system evaluation test for each individual product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renes as Electronics disclaims any and all lability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application another.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties are ing from such alteration, modification, copying or reverse engineering.
- 5 Renease Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renease Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment, communications equipment, test and measurement, equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, eto); traffic lopts); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesse Electronica data sheet or other Renesses Electronica document, Renesses Electronica coursent, Renesses Electronica document, Renesses Electronica data sheet or other Renesses Electronica document, and a solution of products or systems; underse repeaters; nuclear power control systems; airorafi control systems; key plant systems; military equipment; etc.), or may cause serious property damages or losses incurred by you or any third parties arising from the use of any Renesses Electronics product that is inconsistent with any Renesse Electronica data sheet, user's manual or other Renesses Electronics document.

- 6 When using Reneass Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renease Electronics with respect to maximum ratings, operating power supply votage range, heat dissipation characteristics, installation, etc. Renease Electronics declarms any and all lability for any mailunctions, failure or accident arising out of the use of Renease Electronics products outside of such specified ranges.
- 7. Athough Renes as Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and mailfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document. Renesas Electronics products are not subject to radiation reas tance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or mailfunction of Renesas Electronics south as safety design for hardware and software, including but not limited to redundancy, fire control and mailfunction prevention, appropriate teatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and indication of systems monifectured to vol.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written cors ent of Renesas Electronics.
- 12. Please contact a Renes as Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics products)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

# RENESAS

SALES OFFICES

#### Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Mipitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hil, Ontario Canada L4C 9T3 Tet: +1-062-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tet: +44-1628-651-700, Fat: +44-1628-651-804

#### Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Piaza, No. 27 Zhichun Lu, Haidian District, Beijing, 100191 P. R. China Tet: +86-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A. Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tet: +86-21-2225-0888, Fax: +86-21-2225-0999

Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tet + 852-255-6588, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #05-02 Hyftxx Innovation Centre, Singapore 339949 Tet. +656213-0200, Fax: +656213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Biock B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. 1 M.

Renesas Electronics India Pvt. Ltd. No. 777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F. KAMCO Yangjae Tower, 252. Gangnam-daero, Gangnam-gu, Seoul. 06265 Korea Tet: +82-2558-3737, Fax: -82-2-558-5338