
 APPLICATION NOTE

R01AN1288EJ0100 Rev. 1.00 Page 1 of 27
Nov. 30, 2012

R8C/56E Group
I2C bus Single Master Control Program (Master Transmit/Receive)

Abstract
This document describes an I2C bus single master control program (master transmit/receive) using I2C bus interface.

Products
R8C/56E Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1288EJ0100
Rev.1.00

Nov 30, 2012

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 2 of 27
Nov. 30, 2012

Contents

1. Specifications .. 3

2. Operation Confirmation Conditions .. 4

3. Software .. 5
3.1 Operation Overview .. 6
3.2 Constants ..10
3.3 Structure List ..10
3.4 Variables..11
3.5 Functions ...11
3.6 Function Specifications ..12
3.7 Flowcharts ...16

3.7.1 Main Processing ...16
3.7.2 System Clock Setting ..17
3.7.3 I2C_0 Initial Setting ..18
3.7.4 Master Control Start Processing ..20
3.7.5 I2C bus Interface Interrupt Processing ...22
3.7.6 Stop Condition Detection ...23
3.7.7 Master Transmission ...24
3.7.8 Master Reception ..25
3.7.9 Master Control End Processing ...26

4. Sample Code ...27

5. Reference Documents ..27

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 3 of 27
Nov. 30, 2012

1. Specifications
Transmit and receive data in master mode. The usage conditions are described below. The specifications of this
application note conform to the I2C bus communication protocol.

Usage conditions

• Slave address length: 7 bits

• Transfer rate: Approximately 357 kHz (standard mode and fast mode are supported)

• Single master communication (multi-master is not supported)

• Restart condition generation is not supported

 Table 1.1 lists the Peripheral Function and Its Application and Figure 1.1 shows a Block Diagram.

Table 1.1 Peripheral Function and Its Application

Peripheral Function Application
Clock synchronous serial interface
(I2C bus interface mode)

Transmit and receive data

R8C/56E Group

SCL

SDA
I2C bus

Figure 1.1 Block Diagram

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 4 of 27
Nov. 30, 2012

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R8C/56E Group
Operating frequencies • XIN clock: 20 MHz

• System clock: 20 MHz
• CPU clock: 20 MHz

Operating voltage 5.0 V (2.7 to 5.5 V)
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09

C compiler Renesas Electronics Corporation
 M16C Series, R8C Family C Complier V.5.45 Release 01
Compile options
 -D__UART0__ -c -finfo -dir "$(CONFIGDIR)" -R8C
 (Default setting is used in the integrated development environment.)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 5 of 27
Nov. 30, 2012

3. Software
Transmit 3 bytes of data in master transmit mode and then receive 3 bytes of data in master receive mode. Repeat
master transmit and master receive alternately.

Settings

• Use the P3_5/SCL pin for the serial clock I/O.

• Use the P3_7/SDA pin for the serial data I/O.

• Set the I2C bus interface mode to master mode.

• Use channel I2C_0.

• Set the transfer clock to f1/56 (set the transfer rate to approximately 357 kHz).

• Select no wait states (data and the acknowledge bit are transferred consecutively) for the wait insertion time.

• Use the MSB first for the transfer format.

• Set SDA digital delay value to 3 × f1 cycles.

• Use the receive acknowledge bit (ACKBR bit) to determine an acknowledge signal.

• Use the receive data full interrupt request.

• Use the transmit end interrupt request.

• Use the stop condition detection interrupt request.

• Do not use the transmit data empty interrupt request.

• Do not use the NACK receive interrupt request or arbitration lost/overrun error interrupt request.

Formula for calculating the transfer rate

Transfer rate = Settings for bits CKS3 to CKS0 in the SICR1_0 register

 = 20 MHz (f1) ÷ 56

 = 357.142 kHz

Notes on using this program

• When using the I2C bus function, access the registers SITDR_0 and SIRDR_0 in 8-bit units.

• In the register definition file which is automatically generated by High-performance Embedded Workshop, data
type of the above registers is defined as unsigned short. Therefore, those registers need to be configured as union
byte_def or unsigned short in the program.

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 6 of 27
Nov. 30, 2012

WSlave address Data 1S
T

Master → Slave

N
A
C
K

Master transmit

Master receive

A
C
K

S
P

RSlave addressS
T

A
C
K

S
P

ST : Start condition SP : Stop condition
W : Write is 0 R : Read is 1
ACK : Acknowledge is 0 NACK: No acknowledge is 1

Data 0

A
C
K

Data 2
A
C
K

A
C
K

Data 0

A
C
K

Data 1
A
C
K

Data 2

Slave → Master

Figure 3.1 Transfer Format

3.1 Operation Overview
The processing outline is described below. Numbers in parenthesis correspond to the parenthesized numbers in Figures
3.2 to 3.5.

(1) Initial setting

Set the system clock and SFRs associated with I2C bus interface, and initialize the variables used.

(2) Start master control

Generate a start condition. Enable the I2C bus interface interrupt (transmit end interrupt request) to transmit the
slave address.

(3) I2C bus interface interrupt (transmit end interrupt request)

An interrupt is generated at the rising edge of the ninth bit of the SCL clock.

At master transmit:

• Determine ACK/NACK and set the next byte of transmit data.

At master receive:

• Determine ACK/NACK and set the next byte of transmit data if it is ACK.

• To complete communication, disable the transmit end interrupt request and receive data full interrupt request.
Then, generate a stop condition and enable the stop condition detection interrupt request.

(4) I2C bus interface interrupt (receive data full interrupt request)

At master receive, an interrupt is generated at the rising edge of the ninth bit of the SCL clock. Set the next byte
ACK/NACK and read the receive data. To complete communication, disable the transmit end interrupt request and
receive data full interrupt request. Then generate a stop condition and enable the stop condition detection interrupt
request.

(5) I2C bus interface interrupt (stop condition detection interrupt request)

An interrupt is generated when the stop condition is detected. Disable the stop condition detection interrupt request.
Read the last receive data at master receive. Set to slave receive mode and disable the I2C bus interface interrupt.

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 7 of 27
Nov. 30, 2012

Figure 3.2 shows an Outline Flowchart and Figure 3.3 to Figure 3.5 show the Timing Diagrams.

Start

(1) Initial setting

(2) Start master control
(master transmit)

Execute transmit operation?

Yes (transmit operation)

No (receive oepration)

(2) Start master control
(master receive)

(3)

Is the bus busy?

Communication completed?

Yes (communication completed)

No
(communication
 in progress)

No (bus free)

Yes
(bus busy)

Is the bus busy?

No (bus free)
Yes
(bus busy)

(4)
I2C bus interface interrupt

(receive data full interrupt request)*(1)

I2C bus interface interrupt
(transmit end interrupt request)

Note: Generated only at master receive.

(5)
I2C bus interface interrupt

(stop condition detection interrupt request)

Wait a certain period of time before starting next communication .Wait

Figure 3.2 Outline Flowchart

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 8 of 27
Nov. 30, 2012

(1) Initial setting

SDA
(master output)

SCL
(master output)

D7

SDA
(slave output)

Program processing

1

0

1 2

D6

7

D1

8

D0
(W)

9 1 2

Start condition

TEND bit in the SISR_0 register

7 8 9

Stop condition

ACK ACK

(3)

D7 D6 D1 D0

R/W

(2) Start master control

(3)

1

0
STOP bit in the SISR_0 register

I2C bus interface interrupt
(stop condition detection interrupt request)

(5)

Slave address

Set to 0 by a program.

I2C bus interface interrupt
(transmit end interrupt request)

Set to 0 by a program after
a stop condition is generated.

Become 0 when data is written
to the SITDR_0 register

Figure 3.3 Operation Timing in Master Transmit Mode

Program processing

Start condition

I2C bus interface interrupt
(receive data full interrupt request)

R/W

(2) Start master control I2C bus interface interrupt
(transmit end interrupt request)

(4)

SCL
(master output) 1 2 7 8 9 1 2 7 8 9

SDA
(master output) D7 D6 D1 D0

(R)

SDA
(slave output) D6 D1 D0

1

0

RDRF bit in the SISR_0 register

Timing diagram from initial setting to ACK transmission

(1) Initial setting

D7 D7

1

0

TEND bit in the SISR_0 register

Master transmit mode Master receive mode

1

0
STOP bit in the SISR_0 register

(3)

ACK

ACK

Set the TRS bit to 0.

Slave address

Set to 0 by a program.

Become 0 when data is read
from the SIRDR_0 register.

Figure 3.4 Operation Timing in Master Receive Mode (1/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 9 of 27
Nov. 30, 2012

Processing by a program

Stop condition

SCL
(master output) 9 1 2 3 4 5 6 7 8 97 8

SDA
(master output) ACK

D7SDA
(slave output) D1 D0D0 D2D3D4D5D6

Timing diagram from ACK transmission to stop condition generation

NACK

1

0
RDRF bit in the SISR_0 register

1

0
TEND bit in the SISR_0 register

1

0

STOP bit in the SISR_0 register

I2C bus interface interrupt
(stop condition detection interrupt request)

(5)

I2C bus interface interrupt
(receive data full interrupt request)

(4) (4)

Become 0 when data is read from
the SIRDR_0 register.

Set to 0 by a program.

Become 0 when data is read from
the SIRDR_0 register

Figure 3.5 Operation Timing in Master Receive Mode (2/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 10 of 27
Nov. 30, 2012

3.2 Constants
Table 3.1 lists the Constants Used in the Sample Code.

Table 3.1 Constants Used in the Sample Code

Constant Name Setting Value Contents
DEVICE_ADDRESS 0b01010101 Slave address (7 bits from b6 to b0 are used)
READ 1 Master receive
WRITE 0 Master transmit
LENGTH 3 Number of transmit/receive data bytes
BUFSIZE 255 Number of transmit/receive data buffers
PD_IIC 0x2E7 Direction register address
PD_IIC_INIT 0b01011111 Direction register setting values

PD3_5/SCL: input
PD3_7/SDA: input

IIC_SP_ON 1 Stop condition generated
IIC_SP_OFF 0 Stop condition not generated

3.3 Structure List
Figure 3.6 shows the Structure Used in the Sample Code.

typedef union{
struct{

unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;

}bit;
unsigned char all;

}byte_dt;

Static byte_dt iic_str1; /*-- Device address(b7-b1) + R/W(b0) --*/
#define iic_slave_addr iic_str1.all /* Slave Address */
#define iic_rw iic_str1.bit.b0 /* 0: Write (Master Transmit) 1: Read (Master Receive) */

Static byte_dt iic_str2; /* -- Status -- */
#define iic_status iic_str2.all /* All status */
#define iic_starT iic_str2.bit.b0 /* 1: During communication 0: Communication end */
#define iic_err_par iic_str2.bit.b1 /* 1: Parameter error 0: not error */
#define iic_err_nack iic_str2.bit.b2 /* 1: NACK detection error 0: not error */
#define iic_err_addr iic_str2.bit.b3 /* 1: Address not match error 0: not error */

static unsigned char iic_length; /* Transfer data length */
static unsigned char iic_index; /* Index of transmit/receive byte number */
static unsigned char far *iic_pointer; /* Pointer of buffer */

Figure 3.6 Structure Used in the Sample Code

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 11 of 27
Nov. 30, 2012

3.4 Variables
Table 3.2 lists the Global Variables.

Table 3.2 Global Variables

Type Variable Name Contents Function Used
unsigned char iic_tx[BUFSIZE] Transmit buffer main
unsigned char iic_rx[BUFSIZE] Receive buffer main

3.5 Functions
Table 3.3 lists the Functions.

Table 3.3 Functions

Function Name Outline
mcu_init System clock setting
iic_init I2C_0 initial setting
iic_master_start Master control start processing
_ssuic I2C bus interface interrupt processing
stp_int Stop condition detection processing
master_trn_int Master transmission
master_rcv_int Master reception
iic_master_end Master control end processing

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 12 of 27
Nov. 30, 2012

3.6 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header iic.h

Declaration void main(void)
Description Perform the following processes.

• Call the initialization functions for the system clock and I2C bus interface.
• After the initial setting, master transmission and master reception are repeated

alternately. Call the iic_master_start function to start master control and call the
iic_master_end function to wait for completion of master control.

Arguments None
Returned Value None

mcu_init
Outline System clock setting
Header None

Declaration void mcu_init(void)
Description Set the system clock.
Arguments None

Returned Value None

iic_init

Outline I2C_0 initial setting
Header None

Declaration void iic_init(unsigned char ini)
Description Perform initial setting for I2C_0.
Arguments unsigned char ini 0: I2C_0 module disabled

 1: I2C_0 module enabled
Returned Value None

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 13 of 27
Nov. 30, 2012

iic_master_start
Outline Master control start processing
Header None

Declaration unsigned char iic_master_start(
unsigned char addr,
unsigned char rw,
unsigned char far *buf,
unsigned char len)

Description Perform processing to start master control. Prior to executing this function, execute
the iic_init function to enable the I2C_0 module.
Perform the following processes:
• In the function header, all statuses are initialized and the argument parameters

are read. If any parameter value is invalid, the parameter error flag is set to 1
and 0xFF is returned. Master control start processing is not performed when a
parameter error is detected.

• Next, read the bus status. When the bus is busy, the returned value is 0 and
master control start processing is not performed. When the bus is free, the
returned value is 1 and master control start processing is performed. After
setting the communication-in-process flag to 1, a start condition is generated
and a slave address is transmitted.

Arguments unsigned char addr 0x00 to 0x7F: Slave address
 unsigned char rw 0x00: Master transmit

0x01: Master receive
 unsigned char far *buf Transmit/receive buffer pointer
 unsigned char len 0x01 to 0xFF: Transmit data length

Returned Value unsigned char 0: Bus is busy
1: Bus is free
0xFF: Parameter error

_ssuic
Outline I2C bus interface interrupt processing
Header None

Declaration void _ssuic(void)
Description An interrupt is generated at the rising edge of the ninth bit of the SCL clock or when

a stop condition is detected. When a stop condition is detected, call the stp_int
function. When a stop condition is not detected, call the master_trn_int function for
master transmit and call the master_rcv_int function for master receive. To complete
communication, generate a stop condition and enable the stop condition detection
interrupt request.

Arguments None
Returned Value None

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 14 of 27
Nov. 30, 2012

stp_int
Outline Stop condition detection processing
Header None

Declaration static void stp_int(void)
Description This function is called from I2C bus interface interrupt processing. The I2C bus

interface associated SFRs changed during communication are reset, and the
communication-in-progress flag is set to 0.

Arguments None
Returned Value None

master_trn_int
Outline Master transmission
Header None

Declaration static unsigned char master_trn_int(void)
Description This function is called from the I2C bus interface interrupt processing.

IIC_SP_OFF is returned in the following case:
• ACK is detected and not the last byte (starts next transmission).
IIC_SP_ON is returned in the following case:
• NACK is detected (NACK detection error flag is set to 1).
• The last byte transmission is completed.

Arguments None
Returned Value unsigned char IIC_SP_ON(0) : Stop condition generated

IIC_SP_OFF(1) : Stop condition not generated

master_rcv_int
Outline Master reception
Header None

Declaration static unsigned char master_rcv_int(void)
Description This function is called from I2C bus interface interrupt processing.

After transmitting the first byte (slave address), set to master receive mode and
enable the receive data full interrupt request.
IIC_SP_OFF is returned in the following case:
• The following data is not the last byte of data.
IIC_SP_ON is returned in the following case:
• NACK is detected (NACK detection error flag is set to 1).
• The last byte has been received.

Arguments None
Returned Value unsigned char IIC_SP_ON(0) : Stop condition generated

IIC_SP_OFF(1) : Stop condition not generated

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 15 of 27
Nov. 30, 2012

iic_master_end
Outline Master control end processing
Header None

Declaration unsigned char iic_master_end(void)
Description This function is called from the main function. It informs the user of the master control

state. During communication, this function returns 0. When communication is
completed, this function returns 1. Add processing for communication completion as
needed.

Arguments None
Returned Value unsigned char 0: Communication in progress

1: Communication completed

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 16 of 27
Nov. 30, 2012

3.7 Flowcharts
3.7.1 Main Processing
Figure 3.7 shows the Main Processing.

main

Disable maskable interrupts

High-speed clock mode setting

I2C_0 initial setting

I flag ← 0

Set the PMC pin assignment Normal pin assignment setting

Set transmit data to transmit buffer

Initialize receive buffer

Master control start
processing

iic_master_start()

Is the next operation
master transmit

(mode*(1) = WRITE)?

Yes (master transmit)

Enable maskable interrupts I flag ← 1

Set to master transmit mode*(1) ← WRITE

No (master receive)

Master control start
processing

iic_master_start()

Set to master receive Set to master transmit

Is the bus busy
(returned value is 0)?Yes

(bus busy)
No (bus free or parameter error)

Yes
(bus busy)

No (bus free or parameter
 error)

Master control end
processing

iic_master_end()

Is communication
in progress

(returned value is 0)?Yes
(communication
 in progress)

No (communication completed)

Wait until next communication

mode*(1) ← READ mode*(1) ← WRITE

Note: mode is a local variable used in the main function.

System clock setting
mcu_init()

I2C_0 initial setting
iic_init()

Is the bus busy
(returned value is 0)?

Figure 3.7 Main Processing

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 17 of 27
Nov. 30, 2012

3.7.2 System Clock Setting
Figure 3.8 shows the System Clock Setting.

mcu_init

Enable writing to registers

Start XIN clock CM0 register
 CM05 bit ← 0 : XIN clock oscillates

Wait until oscillation stabilizes

Set system clock

CM4 register
 Bits CM42 to CM40 ← 000b : Select XIN clock

Set CPU clock

CM1 register ← 28h
 Bits CM17 and CM16 = 00b : Divide-by-1 mode

Disable writing to registers PRCR register
 PRC0 bit ← 0 : Disable writing to registers CM0, CM1, CM3, CM4,

 OCD, FRA0, FRA2, PLC0, and PCLKR1.
return

Select XIN pin CM1 register
 CM13 bit ← 1 : Select XIN-XOUT pin

PRCR register
 PRC0 bit ← 1 : Enable writing to registers CM0, CM1, CM3, CM4,

 OCD, FRA0, FRA2, PLC0, and PCLKR1.

CM0 register
 CM06 bit ← 0

Figure 3.8 System Clock Setting

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 18 of 27
Nov. 30, 2012

3.7.3 I2C_0 Initial Setting
Figure 3.9 and Figure 3.10 show the I2C_0 Initial Setting.

No (disabled)

iic_init

I2C_0
 module enabled

(argument ini = 1)?

Set PD3 register

PD3 register
 PD3_7 ← 0: Set SDA pin to input mode.
 PD3_5 ← 0: Set SCL pin to input mode.

Disable I2C_0 bus
interface interrupt

IICIC_0 register ← 00h
Set I2C_0 to

normal operation

MSTCR1 register
MSTIIC_0 bit ← 0: IICSSU_0 normal operation

Select SDA pin
assignments

SSUIIC_0SR register ← 00h
SDA_0SEL bit = 0: P3_7 pin assigned.

Select I2C_0 bus interface

IICCR_0 register
 IICSEL bit ← 1: I2C bus function

Set the SIER_0 register

SIER_0 register ← 00h
 RE_STIE bit = 0
 : Stop condition detection interrupt request disabled .
 TE_NAKIE bit = 0

: NACK receive interrupt request and arbitration lost
 interrupt request disabled.

 RIE bit = 0
: Receive data full interrupt request disabled.

 TEIE bit = 0
: Transmit end interrupt request disabled.

Clear stop condition
detection flag

SISR_0 register
 STOP bit ← 0

Set the PD3 register

PD3 register
 PD3_7 ← 0: Set SDA pin to input mode.
 PD3_5 ← 0: Set SCL pin to input mode.

Disable I2C_0 bus
interface interrupt

IICIC_0 register ← 00h
Set I2C_0 to

normal operation

MSTCR1 register
 MSTIIC_0 bit ← 0: IICSSU_0 normal operation

Select SDA pin
assignments

SSUIIC_0SR register ← 00h
 SDA_0SEL bit = 0: P3_7 pin assigned.

Select I2C_0 bus interface

IICCR_0 register
 IICSEL bit ← 1: I2C bus function

Set the SIER_0 register

Set I2C bus function to
transfer enable status

SICR1_0 register
 ICE bit ← 1: Transfer with I2C bus function is enabled.

SIER_0 register ← 00h
 RE_STIE bit = 0

: Stop condition detection interrupt request disabled .
 TE_NAKIE bit = 0

: NACK receive interrupt request and arbitration lost
 interrupt request disabled.

 RIE bit = 0
: Receive data full interrupt request disabled.

 TEIE bit = 0
: Transmit end interrupt request disabled.

2

Set the SICR1_0 register

SICR1_0 register ← 00h
 ICE bit = 0

: Output from SCL and SDA is disabled (input to
 SCL and SDA is enabled).

1

Yes (enabled)

Figure 3.9 I2C_0 Initial Setting (1/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 19 of 27
Nov. 30, 2012

return

Initialize the SICR2_0 register

SICR2_0 register ← F5h

Set the SICR1_0 register

SICR1_0 register ← 88h
 Bits CKS3 to CKS0 = 1000b

: Transfer clock f1/56 selected.
 TRS bit = 0 : Receive mode
 MST bit = 0 : Slave mode
 RCVD bit = 0 : After tHe SIRDR_0 register is read While TRS

 is 0, next receive operation is continued.

1 2

Set the SIMR1_0 register

SIMR1_0 register ← 10h
 Bits BC2 to BC0 = 000b : Bit counters set to 9 bits.
 CPOS_WAIT bit = 0 : No wait states (data and the acknowledge

 bit are transferred consecutively)
MLS bit = 0 : Set to 0 in I2C bus interface mode.

Set the IICCR_0 register

IICCR_0 register ← 0Fh
 IICTCTWI bit = 0 : Transfer rate is the same as the value set

 with bits CKS3 to CKS0 in the SICR1 register.
 IICTCHALF bit = 0 : Transfer rate is the same as the value set

 with bits CKS3 to CKS0 in the SICR1 register.
 Bits SDADLY1 and SDADLY0 = 0

: Digital delay of 3 × f1 cycles

SISR_0 register setting

SISR register ← SISR register & 97h
 STOP bit = 0 : STOP bit cleared
 RDRF bit = 0 : RDRF bit cleared
 TEND bit = 0 : TEND bit cleared

SIMR2_0 register setting

SIMR2_0 register ← 00h
 MS bit = 0 : I2C bus interface mode
 Bits SVA6 to SVA0 = 0 : Slave address set to 00h

Set I2C_0 to standby mode

MSTCR1 register
 MSTIIC_0 bit ← 1: IICSSU_0 standby

Figure 3.10 I2C_0 Initial Setting (2/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 20 of 27
Nov. 30, 2012

3.7.4 Master Control Start Processing
Figure 3.11 and Figure 3.12 show the Master Control Start Processing.

No (no errors occurred)

Yes (an error occurred)

iic_master_start

Did a parameter
error occurr

((len = 0) or (rw > 1) or
(addr > 0x7f))?

Clear all status flags (variables) iic_status ← 00h

Set slave address and R/W iic_slave_addr ← addr << 1 : Slave address set.
iic_slave_addr ← Iic_slave_addr + rw : R/W set.

Set transfer data length

Set communication-in-progress flag

Initialize the variable in which the number
of transmit/receive bytes is stored

Clear stop condition detection flag SISR_0 register
 STOP bit ← 0

iic_err_par ← 1

Set the SICR1_0 register SICR1_0 register ← 30h
 TRS bit = 1 : Transmit mode
 MST bit = 1 : Master mode

1

Set parameter error
 flag (variable)

Is the bus busy
(BBSY bit = 1)?

No (bus free)

Yes (bus busy)
return(0xff)

return(0)

iic_length ← len : Transfer data length set.

Set buffer address iic_pointer ← buf : Buffer address set.

iic_start ← 1 : Communication-in-progress flag set.

iic_index ← 0 : Set 0 to the variable in which the number of
transmit/receive bytes is stored.

Generate start condition SICR2_0 register ← B5h
 BBSY bit = 1 : Start condition generated.
 SCP bit = 0 : When writing to the BBSY bit, write 0 to this bit

simultaneously.

Figure 3.11 Master Control Start Processing (1/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 21 of 27
Nov. 30, 2012

return

Enable transmit end interrupt request

SIER_0 register
 TEIE bit ← 1 : Transmit end interrupt request enabled.

1

Enable I2C bus interface interrupt

IICIC_0 register ← 00h
 Bits ILVL2 to ILVL0 = 001b : Level 1

Start transmitting the first byte
(slave address)

SITDR_0 register ← iic_slave_addr

No (no data is present)

Yes (data is present)Is data present
in the SITDR_0 register
(TDRE_SISR_0 = 0)?

Figure 3.12 Master Control Start Processing (2/2)

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 22 of 27
Nov. 30, 2012

3.7.5 I2C bus Interface Interrupt Processing
Figure 3.13 shows the I2C bus Interface Interrupt Processing.

_ssuic

No (master receive)

Yes (master transmit)

return

No (do not generate a stop condition)

Is the current
operation master transmit

(iic_rw = 0)?

Is the
SCL pin high level
(SCLO bit = 1)?

Generate a stop condition

Clear transmit end flag

SICR2_0 register ← 35h
 BBSY bit = 0: Stop condition generated.
 SCP bit = 0: When writing to the BBSY bit,

 write 0 to this bit simultaneously.

Yes (the result is “slave address
 does not match”)

No (slave address matched or
 starting from the second byte)

No (master receive)

Yes (master transmit) Yes

No

No (not detected)

Yes (detected)

Clear stop condition
detection flag

Enable stop condition detection
interrupt request

stop_req*(1) ← IIC_SP_ON

iic_err_addr ← 1

Disable transmit end
interrupt request

Disable receive data full
interrupt request

SIER_0 register
 TEIE bit ← 0: Transmit end interrupt request disabled.

Yes (generate a stop condition)

Clear stop condition
detection flag

SISR_0 register
 STOP bit ← 0

return

Stop condition detection processing
stp_int()

Set stop condition
generation flag

Set an error flag (variable)
that indicates address

not matched

SISR_0 register
 TEND bit ← 0

SIER_0 register
 RE_STIE bit ← 1

: Stop condition detection interrupt request enabled .

Generate a stop condition

Note: stop_req is a local variable used in the _ssuic function.

SIER_0 register
 RIE bit ← 0 : Receive data full interrupt request disabled.

SISR_0 register
 STOP bit ← 0

Is the current
operation master transmit

(TRS bit = 1)?

SICR2_0 register ← 35h
 BBSY bit = 0: Stop condition generated.
 SCP bit = 0: When writing to the BBSY bit,

 write 0 to this bit simultaneously.

Stop
condition detected
((STOP bit = 1) &

(RE_STIE bit = 1))?

Is the
transmission

result “slave address
does not match”
((iic_index = 0) &
(ACKBR bit = 1))?

Generate
a stop condition
(stop_req*(1) =
 IIC_SP_ON)?

Master transmit processing
master_trn_int()

stop_req*(1) ← returned value

Master receive processing
master_rcv_int()

stop_req*(1) ← returned value

Figure 3.13 I2C bus Interface Interrupt Processing

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 23 of 27
Nov. 30, 2012

3.7.6 Stop Condition Detection
Figure 3.14 shows the Stop Condition Detection.

stp_int

return

Disable stop condition detection
interrupt request

Is the current
operation master receive

(TRS bit = 0)?

Set the SICR1_0 register SICR1_0 register ← SICR1_0 register & CFh
 Bits CKS3 to CKS0 = 1111b : Transfer clock is f1/256
 TRS bit = 0 : Receive mode
 MST bit = 0 : Slave mode

Read last received data

Set receive disable bit

Select acknowledge to transmit

*iic_pointer ← SIRDR_0 register

SICR1_0 register
 RCVD bit ← 0 : After the SIRDR_0 register is read while TRS

 is 0, next receive operation continues.

SIER_0 register
 CEIE_ACKBT bit ← 0 : In receive mode, 0 is transmitted as the

 acknowledge bit.

Clear communication-in-progress
 flag (variable)

Disable I2C bus interface interrupt IICIC_0 register ← 0x00
 Bits ILVL2 to ILVL0 = 000b : Level 0 (interrupt disabled)

iic_start ← 0

No
(master transmit)

Yes (master receive)

SIER_0 register
 RE_STIE bit ← 0

Initialize the variable in which
the number of transmit/receive

bytes is stored
iic_index ← 0

Clear stop condition detection flag SISR_0 register
 STOP bit ← 0

Figure 3.14 Stop Condition Detection

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 24 of 27
Nov. 30, 2012

3.7.7 Master Transmission
Figure 3.15 shows the Master Transmission.

return(IIC_SP_OFF)

 ACK detected?
(ACKBR bit = 0)

No (NACK detected)

Yes (ACK detected)

master_trn_int

iic_err_nack ← 1

No (last byte)

Yes (byte except for the last byte)

SITDR_0 register ← *iic_pointer
 : Set transmit data to the SITDRT_0 register

Start transmission

iic_pointer++Increment pointer to the
 transmit buffer

Increment the number of
transmit/receive bytes

iic_index++

return(IIC_SP_ON)

Set NACK detection error
flag (variable)

Byte (except
for the last byte) is transmitted

(iic_index < iic_length)?

Figure 3.15 Master Transmission

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 25 of 27
Nov. 30, 2012

3.7.8 Master Reception
Figure 3.16 shows the Master Reception.

return(IIC_SP_OFF)

No (starting from the second byte)

Yes (first byte (slave address))

master_rcv_int

Increment transmit/receive bytes Iic_index++

Yes (last byte)

No (not the last byte)

Yes (last byte)

No (not the last byte)

*iic_pointer ← SIRDR_0 register
 : Read data is stored to receive buffer .

Read receive data

iic_pointer++Increment the pointer to receive buffer

return(IIC_SP_ON)

Clear transmit end flag SISR_0 register
 TEND bit ← 0

Set to receive mode

Clear transmit data empty flag

Enable receive data full
interrupt request

SICR1_0 register ← SICR1_0 register & EFh
 TRS bit = 0: Rreceive mode

SISR_0 register
 TDRE bit ← 0

SIER_0 register
 REI bit ← 0: Receive data full interrupt request enabled

Set the CEIE_ACKBT bit

SIER_0 register
 CEIE_ACKBT bit ← 1: In receive mode, 1 is transmitted as

 the acknowledge bit.

Yes

No

Set transmit/receive byte
index to 1 iic_index ← 1

Set the CEIE_ACKBT bit

SIER_0 register
 CEIE_ACKBT bit ← 1
 : In receive mode, 1 is transmitted as the acknowledge bit.

Dummy read dummy_data*(1) ← SIRDR_0 register

No (2 bytes or more)

Yes (1 byte)
SIER_0 register
 CEIE_ACKBT bit ← 0
 : In receive mode, 0 is transmitted as

 the acknowledge bit.

Set the CEIE_ACKBT bit

Set the RCVD bit
SICR1_0 register
 RCVD bit ← 1
 : After the SIRDR_0 register is read while TRS is 0, next
 receive operation disabled.

SICR1_0 register
 RCVD bit = 1 : After the SIRDR_0 register is read

 while TRS is 0, next receive
 operation disabled.

Set the RCVD bit

Disable transmit end interrupt
request

SIER_0 register
 TEIE bit ← 0: Transmit end interrupt request disabled

Note: dummy_data is a local variable used in the master_rcv_int function.

Is it the last byte
(iic_index >= iic_length)?

Is the next
receive byte the last one
(iic_index >= iic_length)?Is the

SCL pin at high level
(SCLO bit = 1)?

Is it slave address
(iic_index = 0)?

Is the
receive data 1 byte

(iic_length = 1)?

Figure 3.16 Master Reception

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 26 of 27
Nov. 30, 2012

3.7.9 Master Control End Processing
Figure 3.17 shows the Master Control End Processing.

iic_master_end

return (1)

Is communication
 in progress

(iic_start = 1)?

Note 1 Note 2

No (communication completed)

Is an error detected
((iic_status & 0x0e) = 00h)?

No (no error detected)

Yes (communication in progress)

Yes (error detected)

return(0)

Notes: 1. Add processing for communication normal completion as needed .
2. Add processing for communication error completion as needed .

Figure 3.17 Master Control End Processing

R8C/56E Group I2C bus Single Master Control Program (Master Transmit/Receive)

R01AN1288EJ0100 Rev. 1.00 Page 27 of 27
Nov. 30, 2012

4. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents
User’s Manual: Hardware

R8C/56E Group User’s Manual: Hardware Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY R8C/56E Group Application Note I2C bus
Single Master Control Program (Master Transmit/Receive)

Rev. Date
Description

Page Summary
1.00 Nov 30, 2012 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	1. Specifications
	2. Operation Confirmation Conditions
	3. Software
	3.1 Operation Overview
	3.2 Constants
	3.3 Structure List
	3.4 Variables
	3.5 Functions
	3.6 Function Specifications
	3.7 Flowcharts
	3.7.1 Main Processing
	3.7.2 System Clock Setting
	3.7.3 I2C_0 Initial Setting
	3.7.4 Master Control Start Processing
	3.7.5 I2C bus Interface Interrupt Processing
	3.7.6 Stop Condition Detection
	3.7.7 Master Transmission
	3.7.8 Master Reception
	3.7.9 Master Control End Processing

	4. Sample Code
	5. Reference Documents

